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Abstract
The dispersion relations and Landau damping of Alfvén waves in kinetic and inertial limits are
studied in temperature anisotropic Cairns distributed plasma. In the case of kinetic Alfvén waves
(KAWs), it is found that the real frequencyis enhanced when either the electron perpendicular
temperature or the non-thermal parameter Λ increases. For inertial Alfvén waves (IAWs), the
real frequency is slightly affected by the electron temperature anisotropy and Λ. Besides the real
frequency, the damping rate of KAWs is reduced when the electron perpendicular temperature or
Λ increases. In the case of IAWs, the temperature anisotropy and Λ either enhance or reduce the
damping rate depending upon the perpendicular wavelength. These results may be helpful to
understand the dynamics of KAWs and IAWs in space plasmas where the non-Maxwellian
distribution of particles are routinely observed.
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1. Introduction

Alfvén waves are low frequency electromagnetic waves, first
discovered by Hannes Alfvén [1]. When the perpendicular
wavelength of these waves is comparable to the ion gyro-
radius, they are called kinetic Alfvén waves (KAWs) [2].
Hasegawa was the first person [3, 4] whose pioneering work
on KAWs is still a standard reference in space plasma. Later
on, Lysak and Lotko [5] discussed these waves in Maxwellian
distributed plasmas. Then Bashir et al [6]extended the work
of Lysak and Lotko by considering bi-Maxwellian distribu-
tion function. They showed that the KAWs stand modified
due to acoustic effects arising from temperature anisotropy.
Various mechanisms have been proposed for the generation
of these low frequency waves (for details, see [7–10]). More
recently, Barik et al [11] studied the generation of KAWs by
ion beam and velocity shear in the Earth’s magnetosphere.
Fromthe application point of view, KAWs play a pivotal role
in the heating processesin corona, magnetosphere, iono-
sphere etc [12]. These waves accelerate the charged particles
in plasma through Landau damping mechanism [13].

Kinetic limit is not the only regime in which Alfvén
waves exist. If the perpendicular wavelength of the Alfvén
waves becomes comparable to electron inertial length, rather

than the ion gyro-radius, then these waves are termed as
inertial Alfvén waves (IAWs). The inertial limit of these
waves was first reported by Goertz and Boswell [14]. It is
believed that inertial Alfvén waves are responsible for
accelerating the electrons parallel to the magnetic field in the
polar or auroral zone regions [15–17]. An important feature of
IAWs is that they suit well in earth’s ionosphere and the edge
regions of laboratory plasmas [18].

It should be noted that in all the above references, both
the KAWs and IAWs were studied either in Maxwellian or bi-
Maxwellian distributed plasmas. But realistic plasma particles
show deviations from Maxwellian and bi-Maxwellian dis-
tribution functions because plasma systems, most of the time,
are out of thermal equilibrium due to the presence of high
energetic non-thermal particles [19–25]. To date, different
types of velocity distribution functions have been considered
to study wave phenomena [6, 21, 24, 26, 27]. Among these
distributions, Cairns distribution function, first proposed by
Cairns et al [19] has recently attracted the attention of many
researchers ([27–29] and references therein). The Cairns
distribution function has been applied to study nonlinear
properties of electrostatic waves and the effects of energetic
electrons on the nonlinear ion acoustic structures [28, 30, 31].
Recently, the Whistler instability has been discussed in Cairns

© 2020 Chinese Physical Society and IOP Publishing Ltd Printed in China and the UK Communications in Theoretical Physics

Commun. Theor. Phys. 72 (2020) 035502 (5pp) https://doi.org/10.1088/1572-9494/ab5fb3

0253-6102/20/035502+05$33.00 iopscience.org/ctp | ctp.itp.ac.cn1

mailto:iali361@gmail.com
https://doi.org/10.1088/1572-9494/ab5fb3
https://crossmark.crossref.org/dialog/?doi=10.1088/1572-9494/ab5fb3&domain=pdf&date_stamp=2020-02-21
https://crossmark.crossref.org/dialog/?doi=10.1088/1572-9494/ab5fb3&domain=pdf&date_stamp=2020-02-21


distributed plasma, where it is shown that the non-thermality
significantly affects the growth rate of the wave [32]. Hence,
Cairns distribution may serve as a good theoretical model for
the family of non-thermal space plasmas.

So far, to the best of our knowledge, Cairns distribution
incorporating temperature anisotropy (or in other words,
bi-Cairns distribution) has not been employed for the study of
KAWs and IAWs. The aim of this paper is to examine how this
distribution influences the dispersion and damping relations of
KAWs and IAWs. The plan of the manuscript is as follows. In
section 2, we derive the generalized dispersion and damping of
KAWs and IAWs. In section 3, we present results and their
discussion. Finally in section 4, we conclude the paper.

2. Mathematical formalism

To derive the dispersion and damping relations of KAWs and
IAWs, we use Vlasov–Maxwell set of equations. Following
Bashir et al [6], the general dispersion relation of Alfvén
waves can be written as

( ) ( )∣∣= - - ^  D n n . 1xx zz xx
2 2

Here, ∣∣ ^n ,  ∣∣ w= ^ck , is the parallel/perpendicular refracti-
veindex, òxx and òzz are the elements of permittivity tensors,
given as

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )
∣∣ ∣∣

∣∣ ∣∣ ∣∣

∣∣

ò
w

w m
m

w

= + å å

´
- +

- - W

a
a

w w

a

^ =-¥
¥

¶

¶

¶

¶
a a

^

^

 v v
n

J

k v n

1 d

1
2

xx
p

n n

k v f

v

k v f

v

2
3

2

2
2

0 0

and

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

∣∣

∣∣ ∣∣

∣∣

∣∣

ò
w

w
m

w

= + å å

´
+ -

- - W

a
a

w w

a

^ =-¥
¥

^

W ¶

¶
W ¶

¶
a a a a

^ ^

 v v J
v

v

k v n

1 d

1
3

zz
p

n n

n v

v

f

v

n f

v

2
3 2

0 0

respectively.
In the above equations, w p=a an e m4p o

2 is the
plasma frequency, Ωα=eB0/mαc is the gyro-frequency,
Jn(μ) is the Bessel function with argument μ= k⊥v⊥/Ωα, and
f0α is the unperturbed bi-Cairns distribution function given as
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where ∣∣ ∣∣=a a a^ ^v T m2T , , is the perpendicular/parallel
thermalvelocity of α-species, where α shows electrons or

ions and L  0 is the spectral index that control the non-
thermal features of the plasma system. By putting Λ=0 in
equation (4), bi-Maxwellian distribution is retrieved. It is
difficult to visualize equation (4) due to the temperature dif-
ference in different directions. So, for the purpose of sim-
plicity and illustrations, we plot the isotropic Cairns
distribution function as shown in figure 1.

Using f0α in equations (2) and (3), and executing the
parallel and perpendicular integrations in òxx and òzz under the
assumptions of low β-plasma and low frequency limit
( )w Wi , we get
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Figure 1. Normalized distributions versus normalized parallel
velocity. On the horizontal and vertical axes, we considered v/vTα
and a av fT

3
0 , respectively. (a) The following values of Λ are used:

Λ=0 (black curve), Λ=0.5 (blue curve) and Λ=1 (red curve)
(b). Tails of the distribution functions with the same values of Λ.

2

Commun. Theor. Phys. 72 (2020) 035502 S Ayaz et al



and
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where p=v B n m4A i0 0 is the Alfvén speed; cis the speed
of light; l r= k̂e i e i,

2
,

2 with r = W^v 2e i T e i e i, , , is the electron/
ion gyro-radius; l w= v 2De i Te i pe i, , , is electron/ion Debye
length; ∣∣=c T ms e i is the acoustic speed; ( )z¢Z e i, is the
derivative of the plasma dispersion function with respect to its
argument ∣∣z w= k ve i Te i, , , ( ) ( ) ( )l l lG = - »Iexpe i e i n e i0 , , ,

l l- +1 e i e i,
3

4 ,
2 for small le i, and χ1 and χ2 represent ther-

mal anisotropies given by the following expressions
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respectively.

2.1. KAWs in Kinetic limit

In the kinetic limit, z 1e and z 1i , so we take

( )z z p¢ » - - z-Z 2 2 i ee e e
2
for electrons and ( )z z¢ » --Z i i

2

z p z-2 i ei i
2
for ions. Generally ω is complex i.e. ω= ωr+ iγ

with g wr. With these assumptions, and after substitution
of equations (5) and (6) in (1), we obtain
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Equations (7) and (8)show how the dispersion and damping
rate of KAW are modified due to the presence of non thermal
parameter Λ and temperature anisotropy. Note that by putting
Λ=0 in equations (7) and (8), the results of [33] are retrieved.

2.2. KAWs in the inertial limit

In the inertial limit z 1e i, , we take ( )z z¢ » --Z e e
2

z p z-2 i ee e
2
and ( )z z¢ » -Z i i

2. For ions, the imaginary term is
very small, that is why we neglected it. Carrying out the same
procedure as above, we obtain
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Equations (9) and (10) are modified due to temperature
anisotropy and Cairns distribution parameter Λ. Putting
Λ=0 in equations ((9) and (10), the result of bi-Maxwellian
distribution is retrieved [34].

3. Results and discussion

The real frequency ωr and damping rate γof KAWs have been
graphically analyzed for plasma sheet boundary layer at altitude
of 4–6 RE wherethe following parameters are appropriate
[35–37]: B0=4.0×10−7 T, ∣∣ = ´ -k 1.0 10 10 cm−1, ∣∣ =T i

=T̂ 20i KeV, n0e=n0i=1 cm−3.
With the choice of these parameters, the real frequency of

KAWs is enhanced for large perpendicular wavenumber
when ∣∣>T̂ Te e (figure 2(a)). The real frequency also
increases when Λincreases (figure 2(b)).

Figure 3 shows the damping rate of KAWs. It is found
that for large perpendicular wave-number, the damping rate
(in magnitude)decreases when ∣∣>T̂ Te e and increases when
Λ>0 (figures 3(a) and (b)).
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The results suggest that the existence of temperature
anisotropy ∣∣>T̂ Te e or the non-thermal particles with Λ>0
enables the wave to damp either at slow or fast rate. This
further implies that the waves can heat the plasma particles
over both small and large distances.

When the first term in equation (8) dominates, the elec-
trons will be heated; when the second term dominants, then
the ions heating will occur.

In order to evaluate the real frequency and damping rate of
IAW, we use the following parameters that are relevant for
auroral zone region at altitude of 1700 km [16]; B0=2.9×
10−5 T, vA=2.1×10

8 cm s−1, n0=6100 cm
−3 and =T̂ i

∣∣ =T 0.5i eV.
It is found that the real frequency of IAWs increases with

Λ, when the perpendicular wavelength is relatively small
(figure 4). But the real frequency is not affected by the
temperature anisotropy. The reason is the following. We
consider low β( )=c vs A

2 2 case i.e. β = 1. Under this condi-
tion, the anisotropy does not significantly affect the real fre-
quency of IAWs(see equation (9)).

Figure 5 illustrates the damping of IAWs in Cairns dis-
tributed plasmas. In both the cases ∣∣>T̂ Te e and Λ, the
damping rate is either increased or decreased depending upon
the perpendicular wave number. The change with ∣∣>T̂ Te e is
substantial, whereas the change with Λis small. Unlike
KAWs, IAWs can only heat the electrons due to the fact that
only electrons can effectively resonate with the wave.

As we have seen that both KAWs and IAWs remain
damped in the presence of temperature anisotropy and non-
thermal parameter Λ. But as we know the Cairns distribution

function can have positive slope which may possess free
energy to make the wave unstable. However, as shown in
figure 1, for those values of Λ which we have selected in the
paper, the distribution function does not show positive slope
anywhere in the region where the resonance points of KAWs
and IAWs lie. The resonance points of KAWs is shifted
towards the tail of electrons distribution due to the dynamics
of ions. In the case of IAWs, the resonance point also lies in
the tail but very far away.

The other free energy source, temperature anisotropy,
also only changes the number of resonance particles but does
not make the wave unstable because we have considered low
β ( )= c vs A

2 2 =1.

Figure 2. Normalized frequency of kinetic Alfvén waves in
anisotropic Cairns distributed plasma (a) Λ=0.2. (b) ∣∣ =T̂ T 2e e .

Figure 3. Normalized damping rate of kinetic Alfvén waves in
Cairns distributed plasma. (a) Λ=0.2. (b) ∣∣ =T̂ T 2e e .

Figure 4. Normalized frequency of inertial Alfvén waves in anisotropic
Cairns distributed plasma. The temperature ratio is ∣∣ =T̂ T 2e e .
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4. Conclusion

In this paper, we have studied the real frequencies and
damping rates of KAWs and IAWs in temperature anisotropic
Cairns distributed plasma. The kinetics limit has been ana-
lyzed in plasma sheet boundary layer while the inertial limit
in the auroral zone regions. We have found that temperature
anisotropy and the non-thermal parameter Λ significantly
influence KAWs and IAWs. The real frequency of KAWs is
enhanced with both the temperature anisotropy and Λ atlar-
ger perpendicular wave-number regions. However, the real
frequency of IAWs is not considerably affected by the
temperature anisotropy but slightly affected by Λ. Further-
more, in the case of KAWs, the temperature anisotropy and Λ

enhance the damping rate. On the other hand, the damping
rate of IAWs either increases or decreases depending upon the
values of the perpendicular wave-number. These results may
find interesting applications because both KAWs and IAWs
are predominant sources of energy transport in space plasmas.
Moreover, the present work can be extended to more realistic
situations by considering other effects such as the density
gradients, magnetic field gradients, or a combination thereof.
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