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Abstract
This paper presents a picture of compact structures for the f(R,

®

CrossMark

T) model of the form R+~ eX”,

with v and x being parameters. The polytropic equation of state and the MIT bag model reflect
the pressure density relation for these compact objects. For this purpose, a system of two
differential equations involving pressure as well as the mass of the stellar structure is obtained
from field equations and the Tolman—Oppenheimer—Volkoff (TOV) equation. The numerical

solution of this system gives a graphical description of various

characteristics of these compact

systems. To examine the viability and stability of assumed configurations, the energy conditions,
causality relation and adiabatic index are discussed for the presumed scenario.
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1. Introduction

Compact stellar remnants after the explosion of massive stars
are white dwarfs, neutron stars, black holes and supermassive
black holes. The formation of these compact structures
depends upon the primary mass of the star. Each of these
objects is a subject of great interest with its own fascinating
physical features. These objects are not just hypothetical
terms; they also exist in our universe. The existence of white
dwarfs and neutron stars in our universe is supported by many
observational evidence [1]. However, the existence of black
holes is strongly reinforced by the discovery of gravitational
waves and the recently captured image of a black hole by
radio telescopes.

General relativity (GR) provides a rostrum to discuss
different astrophysical and cosmological phenomena. How-
ever, from the last two decades, after the discovery of
accelerated expansion of the Universe, different modifications
of GR are proposed by researchers to cope with this issue.
One of them is the f(R, T) theory of gravity proposed by
Harko et al [2], where R and T correspond to the Ricci scalar
and trace of stress energy tensor. This coupling introduces
extra terms in the field equation that can mimic the source of
accelerated expansion, produce a deviation from geodesic
motion as well as assist in the study of the dark matter—dark
energy interactions [3]. Several issues, such as cosmic
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evolution [4-8], thermodynamic laws [9-12] and wormhole
configurations [13-16], have been investigated in this
context.

The study of gravitational collapse and its leftovers has
been extensively accomplished in GR and its extensions.
Here, we elaborate on some of them regarding the stability of
compact objects in modified theories. Abbas and Sarwar [17]
examined expansion-free systems for stability in Einstein
Gauss—Bonnet gravity with the conclusions that the system is
stable only for chosen parametric values. Noureen and Zubair
[18] investigated the stability of a spherical star with aniso-
tropic fluid in f(R, T) gravity and obtained some limitations
for physical quantities. Zubair and Abbas [19] considered
three observed models of compact configurations and inves-
tigated their stability as well as viability in f(R) gravity
assuming the Krori and Barua solution. Moraes et al [20]
examined the equilibrium structure of neutron stars for the
polytropic equation of state (EoS) and quark stars for the bag
model concluding that the extreme mass can cross observa-
tional limits.

Deb et al [21] explored some features for strange stars
assuming a decreasing density profile in the framework of
f(R, T) gravity. Yousaf et al [22] explored the issue of sta-
bility for cylindrical stellar models via a perturbation techni-
que finding that it relies on the stiffness parameter, matter
variables and higher order curvature terms of the f(R, T)
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theory. Sharif and Siddiqa [23] studied the stability of com-
pact objects via different models, fluid distributions and EoS.
Astashenok et al [24] analyzed the existence of realistic stellar
configurations for the f(R) =R + a R> gravity model.
Carvalho et al [25] explored white dwarfs in f(R, T) theory
finding that mass can violate the Chandrasekhar limit. Sharif
and Waseem [26] investigated the stability of particular quark
star models with anisotropic fluid in f(R, T) gravity using
Krori and Barua ansatz.

Recently, Moraes and Sahoo [27] proposed a new
functional form for f(R, T) as R + ~ e*’. They showed that
the energy conditions are satisfied for wormhole solutions in
this context. Moraes et al [28] examined the viability of this
model in cosmic evolution. They derived different cosmic
parameters and found satisfactory results by comparing them
with observational data. This article is devoted to the
investigation of the structure of compact stars for this model.
The scheme of the paper is mentioned here. In the coming
section, equations of stellar structure are formulated for f(R,
T) = R + e . Section 3 elaborates the formation of com-
pact stars and the assumed EoS for their matter. Section 4
gives the analysis of physical features for such compact stars
for this model, and the last section summarizes and concludes
the manuscript.

2. Stellar structure formalism

This study deals with a spherical symmetric stellar object
whose geometry is described with the following spacetime

ds? = —A;(r)dt? + Ay (r)dr?
+ r2(d6? + sin? 0d¢2), (D)

and stellar fluid distribution is defined by the following stress
energy tensor

elps = (e + p)VsVs + pgss» 2

where Vj, € and p are fluid’s four velocity, energy density and
pressure, respectively. Also, the trace of stress energy tensor
isT=—e+ 3p.

The modified Einstein—Hilbert action for curvature-mat-
ter coupling is given by

_ —
S — f[mﬂf(R, T) + ﬁm]ﬁd v, 3)

and the Finstein field equations are

1
JrRss — 5335f+ (gg& O — VsVafz
= 8nTss — fr (Tss + Ops), “4)
where ©gs has the following expression

0Ly
agﬁé ’

oT.
Ops = g”””ﬁ, Tss = 8asLm —

&)

Here, it is assumed that £,, = p and the gravity model f(R,
T) =R+ v ¢e¥ T (with the dimensions of v and x as L72)

A Siddiga
such that equation (4) is reduced to
1
Gﬂé‘ = 87Tys + Eggg’YeXT *fT (gggp - Tfé) 6)
The field equations for equation (1) are obtained as
!/
4 + 1 8me
A7t A
1
+ weX“"*f)[—E + X+ p)], ©)
Al/ 1 Yy
- = = 87p + —e\P 8
rA2A1 }"2 l’zAz P 2 ( )

The mass of the stellar sphere with radius r is defined as

m = %(1 — AL), and using field equations its derivative has
2
the expression

-1
m' = Amrle + %rzex(ﬁp)[T + x(e + p)]. ©))

The covariant derivative of the energy-momentum tensor
is obtained as [29]

%[(Tdﬁ + Ops) % Inf;

™ —=Jr

VT =
8 L
+ VPO — Eggév T,

and for f(R, T) = R + v e 7, it gives

yxeX!

Vo7 =
P 8 = rxeXT

[Vﬁ@ﬁ& - %gﬂévﬁT]'

The corresponding Tolman—Oppenheimer—Volkoff equation,
or TOV equation, is obtained after simplification as

we

A/
"4 p)—t = —
p+E+p) 2@r — )

R
A P

Substituting the value of % from equation (8), it becomes
1

(e + p)(87rpr + %reﬂp*f + 2—',")

2
2m xeXr—e e\
(1 B 7)[1 + 2(8m — yye\*P 5)(1 B E)]

In the onward discussion, equations (9) and (10) are
considered, which are in terms of density, pressure and the
mass of a stellar configuration. To reduce one variable, the
relation between pressure and density is incorporated via
the EoS.

P=- (10)

3. Compact objects and their EoS

In ordinary stars, fusion processes convert hydrogen into
helium providing the thermal pressure to counterbalance
gravity. With the running time, the helium reservoir in the
core of a star is fused into heavier elements like carbon and
oxygen. Consequently, the nuclear processes stop, the
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Figure 1. Density (¢), pressure (p) and their difference (¢-p) versus radial coordinate r for p = 0.000 552.

temperature is decreased and the pressure is increased in the
core of the star. When the primary mass of the star is less than
eight times the solar mass, the carbon fusion cannot take place
and, after blowing the outer layers, the star ends up with a
compact stage called a white dwarf. In white dwarfs, the
electron degeneracy pressure (based on the Pauli exclusion
principle) provides the counter force to gravity. Electrons are
the first particles to degenerate, and the role of nuclei pressure
is negligible here.

However, if the primary mass of the star is more than
eight times the solar mass a larger degeneracy pressure or
greater density is required to balance gravitational pull. This
pressure originates from the neutron degeneracy pressure
which is formed by protons and electrons. The resulting
object is in hydrostatic equilibrium and is named a neutron
star. Neutron stars are smaller and denser than white dwarfs.
The temperature of white dwarfs and neutron stars is very low
and tends to zero as time passes. Considering ideal circum-
stances where the compact object is composed of a single
non-interacting fermion species at null temperature the EoS
has the polytropic form p = we"; here, w and x correspond to
the polytropic constant and index, respectively. Here, it is
assumed that the compact structure has the EoS p = wes,
where the index xk = % represents the fact that fluid particles
are non-relativistic. Substituting the polytropic EoS in
equations (9) and (10), the following system of two ordinary

non-linear differential equations is obtained in terms of stellar
pressure and mass

3
55+ )
lrzex(() r

3
m = 47rr2((£)5 + 5

w

o i (B)g + (11)
2 X B Pl
((f)% + p)(Sﬂpr + %reXT + zl—rf)
p=- :
(1- 2)[1 (e i(fi)g)]
(12)

For graphical analysis, as well as to relate the compact
structure to realistic stellar models, the value of w is taken
as w =~ 0.0005 (fin®/MeV)*? [30], which is obtained for
neutron stars, and the central pressure is taken as
Do = 220MeV/ 'fim®, which is for the heaviest stable neutron
star [31]. To solve the above defined systems numerically, the
following initial conditions are assumed

m(0) =0 P(0) =220 MeV /fm?.

Here, the units are taken as: km for radius, M, for mass and
MeV /fm® for density and pressure [20].

At certain densities and below, the matter of compact
objects may be composed of protons, electrons, neutrons,
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Figure 2. Density (¢), pressure (p) and their difference (¢-p) versus radial coordinate r for p = 0.33(¢ — 240).

positrons, neutrinos and antineutrinos. However, in denser
matter the constituents may also include muons, hyperons and
quarks [30]. If the stellar matter is composed of quarks then
the corresponding compact object is called a quark star. The
formation of quark stars from neutron stars has been dis-
cussed in the literature [32]. Different approaches used to
obtain a satisfactory EoS for quark matter showed that quarks
should be supposed to be confined within some region termed
as a bag. In this respect, the frequently used model is the MIT
bag model proposed by scientists from MIT [33]. The EoS for
this model is p = a(e — 4b), where a and b are constants.

For the MIT bag model, the structure equations (9) and
(10) take the following form

a 2
—1
X [— + x((£ + 4b) +p)],
2 a

(¢ 20 1) e

o

(13)

2_'")
r2

et (1 _ l) '
287 — e —e) a

/

P =-

(14)

Here, the quark star is considered to be composed of the
lightest quarks that are up, down and strange quarks. In the
literature, the constant a has the value a ~ 0.33 for such
matter [20], while different values for the bag constant b are
considered in the literature [20, 34]. In this manuscript, I
consider b = 60MeV /fim® and the following initial conditions
for the quark star matter distribution

m(0) =0 P(0) = 500MeV/fm’.

4. Analysis of physical features

In this section, the numerical analysis of physical character-
istics is given for the compact structures obeying the poly-
tropic EoS and MIT bag relation. For convenience, all the
plots for the polytropic case are presented in a red color and
for the MIT bag model they are in a purple color. For a
smooth interpretation, these characteristics are split up into
the following subsections.

4.1. EoS variables

The term EoS variables corresponds to the density and pressure
of the fluid configuration. Assuming the above-mentioned
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Figure 3. Mass (m), compactness (1) and surface redshift (z; (r)) versus radial coordinate r for p = 0.000 5e3.

values of the parameters, as well as the initial conditions, the
following graphs are obtained for EoS variables corresponding
to the polytropic equation and MIT bag model. Also, the model
parameters y and x are assumed to be unity, i.e. y =1 = y.

The left graph of figure 1 gives the density profile, while
the right one interprets the behavior of the pressure for the
polytropic star. Both functions are positive and decreasing,
and p(0.006) ~ 0 indicates that » ~ 0.006 km is the radius of
the polytropic star in the considered scenario. Similarly,
figure 2 explains the behavior of density and pressure for the
quark star model in this background. For the assumed values
of all parameters, the radius of the quark star is observed as
r ~ 0.01 km.

In the study of stellar structures the discussion of energy
conditions is necessary to exclude the possibility of un-
realistic matter. Moreover, the energy conditions ensuring
viability of the fluid configuration are: € + p > 0 (NEC),
€20,e+p>20MWEC),e—p>20MDEC)andec +3p >0
(SEC). A sharp overview of the plots in figures 1 and 2
indicates that all the energy conditions are satisfied for both
cases as € > 0, p > 0 and e—p > 0 for both cases.

4.1.1. Mass and Associated Quantities. In the same pattern
from the two sets of differential equations, the plots for the
mass functions of the stellar configurations are obtained. The

expressions for the compactness factor u(r) as well as the
surface gravitational redshift z,(r) in terms of mass function
are given by

u(r) = ’”f”, (15)
24(r) = (1 _ 2’”(”)_7 1 (16)

The graphical behavior of functions m(r), u(r) and z, for
the polytropic EoS are given in figure 3. The mass increases
for all values of the radial coordinate, while the compactness
and redshift first increase and after r ~ 0.004 5 decrease
slightly. Similarly, figure 4 interprets the mass, compactness
and redshift for the MIT bag model, which are all increasing
with respect to the radial coordinate.

4.1.2. Stability Analysis. In general, the stability of the stellar
structure corresponds to dynamical stability and thermal
stability. Here, we do not consider thermal stability as the
compact structures considered have very low temperature and
cooling down with time. For stability analysis, the speed of
sound profile is obtained for both EoS. If the speed of sound
remains between zero and unity the causality relation holds for
this fluid distribution. This condition also defines the stability
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criteria of the stellar configuration. The plots in figure 5 indicate
that v, lies between these limits yielding the stability of the
polytropic star and quark star for the corresponding set of
parameters and initial conditions.

The stability of a stellar system can also be observed

through the adiabatic index, denoted and defined as
D= <ctrdr
de’

than % such that the system’s total energy remains bounded

For a stable configuration, it should be greater

and, if the adiabatic index is less than %, then the energy

becomes unbounded and ultimately the star explodes.
Figure 6 gives the plots for both cases and, according to
these, both configurations are stable.

5. Summary and conclusions

This paper examined the physical properties of a compact
stellar structure and their stability in the framework of an
exponential model proposed in [27]. In this respect, the
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polytropic EoS and MIT bag model are considered to
accommodate compact stars. The EoS parameters and initial
conditions are chosen accordingly. The numerical solution of
the structure equations for these chosen conditions and
parameters depicts the physical features of compact objects.

In general, for a stellar structure, density as well as
pressure are decreasing while the mass function is growing
with the increment in the radial coordinate. Similar behavior
of these functions is observed here, and the energy conditions
are satisfied implying realistic matter distribution. The com-
pactness and redshift measures fall within the bounds defined
in the literature for perfect fluid [35], and the masses are
below the well known Chandrasekhar [1] and TOV limits
[36]. The change in the values of constants a and b in the MIT
bag model are also observed, and it is found that the radius of
the quark star grows with the increase in a while it decreases
with the increment in b, which is compatible with [34].

In this study, the radii of stellar configurations that have a
structure similar to neutron stars as well as quark stars are
very small. This small radius can be associated with the
effects of the f(R, T) gravity model in such a way that due to
the exponential form of the model the corresponding change
in physical characteristics is also rapid or exponential. Con-
sequently, due to these small radii very large values of the
model parameters induce a change in the physical properties
of the star. The aim of this work is to explore the existence of
stable stellar structures for such an exponential model, and it
has been shown that stable configurations can exist in this
scenario.

Neutron stars, being very small objects, are detectable
and observable if they are pulsars (means rotating and emit-
ting radiation) or if they are in a binary system. From an
observational point of view thermal emission, explosions on
the surface and gravitational wave emission from neutron
stars are the sources for their mass and radius measurements.
A huge number of neutron stars are expected to exist in
our Universe as only the Milky Way is thought to contain
100 million neutron stars estimated by the number of super-
nova explosions. A gravitational wave signal has also been
observed from the merger of two neutron stars [37]. However,
the radii and masses of compact stars obtained in this

manuscript are very small. This can be associated with the
effects of the f(R, T) gravity model that due to the exponential
form of coupling the change in physical characteristics is also
rapid or exponential. It can be presumed that such small
compact stars may exist among the family of such objects in
our cosmos.
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