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Abstract — The heterogeneous inter-event time of human contacts may fundamentally alter
spreading dynamics. This generally assumes that the inter-event time distribution can be de-
picted with power-law—like decays. In empirical human communication data, the shape of the
inter-event distribution is more complicated. Particularly, both the head and the tail of the
inter-event distribution deviates from the power-law-like decay. In this paper, we examine two
communication databases and propose a mixed distribution to depict the inter-event distributions,
which agrees better with the empirical data. We then show how the inter-event distributions shape
the co-evolved SIR spreading. Especially, the SIR dynamical equations are extended to adapt to
the general inter-event distribution via introducing the new infected rate. By a numerical anal-
ysis of the newly infected individuals at each time step, we illustrate how the spreading size is

determined by the inter-event time distribution and the parameters of the SIR dynamic.

Copyright © EPLA, 2020

Introduction. — Over the decades, due to the avail-
able digital data of the individual active behaviors, it has
become possible to explore the statistic characteristics of
the individual activity and its effects on the collective phe-
nomena involved. Communication behavior as the most
important human activity attracts a large amount of at-
tention in the science community. In general, the activity
in digital records of the communication behavior can be
formatted as tuples, i.e., the id of the sender, the id of
the receiver and the timing of this special communication
event. Based on this types of records, in the level of in-
dividuals, the distribution of the inter-event time 7 of the
consecutive communication events implies the underlying
communication dynamic. In particular, the inter-event
time 7 of the consecutive event for individuals follows a
power-law distribution [1,2].

These non-trivial individual activity patterns have im-
pacts on the co-evolving dynamics across the population.
The co-evolved dynamics ought to have the approaching
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time scale with the individual activity patterns. For the
spreading dynamic, Iribarren and Moro et al. based on
an experiment addressed the failure of Poissonian approx-
imation and indicated that the large heterogeneity found
in the response time slows down the information spread-
ing [3], and also Vazquez et al. drew a similar conclusion
by considering the power-law distribution of inter-event
time and the structure of the spreading process to be tree-
like [4]. The model combining individuals following power-
law inter-event time is applied to the meme spreading over
the online social media [5]. Apart from the spreading pro-
cess, the effects of the inter-event time were considered on
the random walk over the network [6]. Other dynamics
like opinion dynamics also considered the influence of the
inter-event time distribution recently [7].

The study of how the individual communication dy-
namics affects the co-evolving collective dynamics eluci-
dates a central tension on how to reasonably model the
individuals’ inter-event time distribution. Different indi-
vidual inter-event time distribution models may quanti-
tatively change the results of the dynamics among the
individuals. Previous researches consider the individual
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inter-event time distribution as the power-law distribution
and the power-law distribution with a cutoff [8]. Some
other forms of distribution such as the log-normal distri-
bution are an alternative for the power-law distribution
and even perform better with some empirical data [9].
On the other hand, when applied to the mutual com-
munication process, the inter-event time distribution is
more complicated than a single power-law distribution,
and needs to combine the power-law pattern with other
mechanisms [10]. Therefore, for understanding how hu-
man communication behavior affects the spreading pro-
cess, a more accurate inter-event time distribution model
ought to be introduced, in order to then examine its effects
on the spreading process.

In this paper, we study the two usually used datasets
and model the inter-event time distribution as a mixed
distribution. In particular, we discriminate the interrela-
tion of any two successive events in event series as either
being related or unrelated, and thus, a mixed distribution
seems to be the natural model. Based on the fact that
both the head and tail of empirical distributions deviate
from the power-law fitting, a log-normal distribution is
considered to model the related inter-event time, while an
exponential distribution models the unrelated or memory-
less portion. Along with the two distributions, we consider
one parameter a representing the probability of whether or
not an event responds to the previous event. Given these
assumptions, the inter-event time distribution can be ex-
pressed as a functional form of a mixed distribution which
shows a good agreement with the empirical data. Further-
more, we study the effectiveness of the mixed distribution
by the variances of the estimated parameters of the mixed
distribution model over the two datasets. For investigat-
ing the effects of the inter-event time distribution on the
co-evolving SIR spreading dynamics, the dynamical equa-
tions of the SIR process are modified to allow for the gen-
eral inter-event time distribution. Such an extended form
is built on decomposing the newly infected individuals at
each time step as contributions from all previous time. In
this framework, we show the effect of the distribution on
the spreading process both by the numerical solution and
the stochastic simulation.

Empirical patterns. — We consider two datasets
that come in the form of lists of messages from one
person to another at a time stamp. Database I comes
from the operator company [10] with a total number
of 548182 time stamp short message records and 44430
users over 30 days. Database IT of e-mail logs [11] has a
total number of 643502 communication events for 72146
users over 112 days. The time stamp of both datasets
has a resolution of 1s. We examine the individual event
series in such datasets. For the validity of statistics, we
extract the individuals’ event series satisfying the total
event number ranging from 100 to 3000 in Database I and
ranging from 100 to 10000 in Database II. As a result,
2133 individuals of Database I and 1125 individuals of
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Fig. 1: The sketch map of an example containing 5 individ-
ual event series. (a) A, B, C, D, E represent the event series
of five different individual, respectively. A bar in the series is
an event of the individual being active at that time and con-
tacting another active node. (b) A possible temporal network
constructed by the individual even series. Here, the structures
of 4 time points are shown as an example. The color of nodes
corresponds to the individuals in (a). For example, at time
t = 0, four individuals are active and contacts occur between
them.

Database II are used for the following analysis. Formally,
the communication event series of an individual can be
denoted by {(E1,t1),(Ea2,t2),...,(En,tn)} where E; is
an event at time point ¢;,. In the context of messages
communication, F; represents individuals sending or
receiving a text message. We do not distinguish between
the sender or the receptor of the communication event,
which means the individual event purely represents a con-
tact behavior no matter whether he or she is the sender or
not. Therefore, an individual event series is reduced to a
set of time stamps, {t1,ta,...,t,}. Generally, of interest
is the inter-event time 7, = t¢;41 — t; and its possibility
density function f(7).

Figure 1 gives a sketch map of a database only contain-
ing event series of 5 individuals. In fig. 1(a), A, B, C,
D, E represent the event series of five different individu-
als, respectively. A bar in the event series represents a
communication event meaning that the individual is ac-
tive and contacts another active individual at this time
point. The distribution of inter-event time 7; = ;41 — ¢;
gives the active pattern of individuals. Figure 1(b) shows
a possible temporal structure constructed by the event se-
ries of 5 individuals. Notice that at time point ¢t = 24,
3 individuals are active including a pair of interconnected
nodes and an unpaired node. At time ¢ = 1, only one
individual is active and is not paired with the other 4 in-
dividuals. These unpaired individuals may indicate that
the unpaired node has contact with other nodes outside of
the database we considered. In this paper, we neglect the
temporal interaction structure of the individuals or nodes
and assume the active nodes are paired at random. With
such an assumption, at each time step, active nodes ran-
domly choose another active node and connect with each
other until the next time step. Although there are cases
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Fig. 2: Complementary cumulative distribution function
(CCDF) Pc(T > 1) of the inter-event time for 4 typical in-
dividuals. The first column shows examples of the distribution
of phone text messages. The second column is the distribution
of e-mail messages. Pc(7) is binned in the log-log scale. Blue
dots show the empirical data. The red line is the fitting curve
of the mixed distribution function (MIX). The black line and
yellow line are the power-law fitting (PL) and exponential fit-
ting (EXP), respectively. All the fitting lines are obtained by
the least squares estimation (LSE). The mixed distribution pa-
rameters are (a) a = 0.507, A = 2.0x107%, u=5.12, 0 = 2.588;
(b) a = 0.581, A = 1.148 x 1075, u = 8.756, 0 = 1.745;
() a = 0.649, A = 1.777 x 107°, u = 5.319, ¢ = 1.342;
(d) a = 0.465, A = 5.795 x 107°, = 6.129, o = 0.908.

of unpaired active individuals, the effects can be ignored
when the population is large enough. In this framework,
the interaction between active individuals is random, and
we study the active pattern of individuals and how the ac-
tive pattern affects the spreading dynamic. The empirical
distributions are shown to follow power-law decays for in-
termediate 7, and deviate from it at the tail and the head,
as shown in fig. 2. Especially, the deviation of the tail can
be divided into two cases. In the first case, the probabil-
ity continuously decreases as shown in figs. 2(a) and (b),
while in the second case, the individuals’ event series fol-
low the distributions where a hump occurs at the tail, ex-
amples shown in fig. 2(c) and (d). The complexity of the
inter-event distribution implies a non-trivial mechanism
underlying these communications behaviors.

In the context of one-to-one communication, we model
individual communication behaviors as follows. One event
would trigger the next with probability a, or in other
words, the event would be responded to with probabil-
ity a. The corresponding inter-event time is assumed to
follow a log-normal distribution. On the contrary, a new
event would occur with probability 1 — a, and the corre-
sponding inter-event time follows an exponential distribu-
tion. Here, we consider the log-normal distribution based

on the observation of the derivation of the head from the
body straight line in the log-log plot. Indeed, works in the
literature presented the relation between the power-law
and log-normal distributions [12] and these two distribu-
tions are prevalent in empirical data [2,13-15]. Our model
corresponds to a hidden Markov model with two hidden
states. Particularly, the individual activity is assumed to
transform between these two states with a probability of
a and 1 — a. Due to the special state transformation rule,
state change depends only on the current state and is not
affected by the previous state and thus the inter-event time
series can be modeled by a renewal process, so that event
series could just be sampled randomly from the predefined
distribution, which leads to a mixed distribution,

—AT 1 1 ln(T) — M

Pe(T>71)=(1—-a)e +a(2 2erf( J3e )),

(1)
where erf(x) is the error function used to simplify the inte-
gral expression of the log-normal distribution. Contrasting
with the broadly used power-law distribution with cutoff
f(7) oc 7%=, the mixed distribution model possesses
flexibility in modifying whether the tail is over the extrap-
olation of the power-law fitting.

In fig. 2, the red line represents the fitting of the mixed
distribution. The black line and the yellow line as bench-
marks represent the power-law and exponential fitting, re-
spectively. Our results show that the mixed distribution
has a good fitting to the empirical data. We need to no-
tice that the previous broadly used power-law with cutoff
distribution, f(7) = 7%, is not good to fit the case
where the tail of the distribution displays an anomalous
behavior (figs. 1(c) and (d)). On the other hand, because
of our sufficient parameters within the mixed distribution
model, in some senses, it appears a natural consequence to
well approximate to the empirical data. However, apply-
ing this mixed distribution model to the empirical data,
we found some of the parameters reusable among individu-
als. We use RSD (relative standard derivation) to measure
the variation of parameters among the corresponding
population. A large RSD of the parameter indicates
corresponding parameters in the population are wildly dis-
tributed, and vice versa. Table 1 shows the RSD and the
averages of the three parameters in the two databases.
Both in the SMS and e-mail datasets, A varies a lot among
the populations. The other two parameters own a relative
small RSD meaning that there is similarity among individ-
uals. By parameter variances, the inter-event distribution
of one particular communication behavior has not as many
varying parameters as we supposed.

Individual active rate. — In this section, we study
the individual active rate P.(t) which represents the ex-
pected possibility of an individual being active at time ¢
provided that the individual is active at time t = 0. It has
been shown that the special hidden Markov model means
the inter-event time series comes from a renewal process,
so that the active rate of individuals P.(t) is capable of
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Table 1: The mean of parameters for the mixed distribution
in the empirical data. The value within the round brackets
indicates the relative standard derivation (RSD). All parame-
ters are estimated by the non-linear least square method. The
statistic results are from the fitting results whose R-squared
is greater than 0.99. In the phone messages data, 1902/2133
individuals are included. In the email messages data, 965/1125
individuals are included.

Parameters Database 1 Database II
N 1902 965
a 0.507(0.428) 0. 301(0 640)
A 7.761 x 107°(3.334) 2.772 x 1075(1.455)
I 6.210(0.248) 7.721(0.283)
o 1.909(0.630) 2.081(0.833)

being directly derived from the inter-event distribution.
For convenience, let us make clear the symbols used here-
after. The random variable T; denotes the time interval
between the (i — 1)-th and the i-th event of this process.
N(t) represents the number of events that have happened
by the time ¢. Then the time of the n-th event S,, can be
expressed as: S, =Y. T,

In the discrete-time framework, the probability of an
event occurring or the active rate at timing ¢ reads

(2)

where P(S; =t) = fi(t) with f;(¢) the i-th-order convo-
lution of the inter-event time distribution f(7).

In spite of the complex form of P,.(t), the limiting prop-
erty of P.(t) shows that

P.(t) — 1/{7) as t — o0,

where (7)
bution f(7).
Zz 1F(t

is the expected value of the inter-event distri-
This can be shown as m(t) = E[N(t)] =
), ( ) is the cumulative distribution of f;(t).
= [y P(y)dy.

1 1 =y

By the elementary theorem of

the book — 1/{1) as t — oo. Therefore,

w — 1/(X) as t — oo. Using the L’Hospital’s
rule, P.(t) — 1/(X) as t — oc.

The limiting property of P.(t) also implies that for com-
paring different individual active patterns in the same
pages, the expectations of the inter-event time distribu-
tion should equal each other. According to the formula-
tion of the active rate, P.(t) = 1/(r) if the inter-event
distribution f(7) is exponential. Actually, only the expo-
nential distribution has a constant active rate. For the
power-law active pattern f(7) ~ 7%, the expectation (7)
is not convergent if a < 2. That means that the individ-
ual being active at ¢ = 0 would not be active at t — oc.
For comparison of different active patterns, we reproduce
the mixed distribution pattern using the parameters esti-
mated from Database I. While considering the singularity
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Fig. 3: The active rate P.(t) for the three inter-event distribu-
tion patterns. (a) shows the simulation result of active rates
can be well depicted by the P.(t). (b) Pe(t) gradually converges
to 1/(7). The mixed distribution pattern and the power-law
distribution pattern have large P.(¢) at initial time. The pa-
rameters of the mixed distribution pattern are estimated from
Database I, while that of the power-law and the exponential
patterns are estimated by fitting the generated mixed distribu-
tion. Simulation results are obtained by computing the prob-
ability of the synthetic event series whose inter-event time are
drawn from the predefined distribution.

of the power-law distribution pattern, we obtain the ex-
ponent of the power-law distribution from the generated
mixed distribution, and the parameter of the exponential
distribution can be directly obtained from the expectation
of the mixed distribution. Figure 3(a) shows the numeri-
cal solution of P,(t) approaches the simulation results well.
Figure 3(b) compares the active rate P, (t) for the three
patterns. At the initial time, the mixed and the power-
law distribution pattern have large values then gradually
converge to the limiting property 1/(7).

Extended SIR dynamic for a general inter-event
time distribution. — Each communication event repre-
sents individuals being active, that is potential for the
co-evolving diffusion processes. The classical SIR diffu-
sion model has been widely used to understand the effects
of the active pattern of individuals. In the context of the
SIR diffusion process, the individual states would be trans-
formed from the susceptible (unaware of the information)
to the infected state (knowing and spreading the informa-
tion) and finally, the infected state would transform into
the recovery state (knowing yet not spreading the infor-
mation). In the following, we consider this co-evolving
process via simulation and numerical solution of the de-
rived equations.

In this paper, we focus our analysis on the active pattern
through neglecting the interconnection structure though
it impacts on the co-evolving dynamics as well. There-
fore, at any snapshot of the temporal network, the active
nodes are paired randomly. We assume that there are n(t)
active individuals at time ¢. For even n(t), an active in-
dividual connects with another one with equal probability
until all individuals are paired. For odd n(t), a random
active individual would not connect to other active indi-
viduals because only one link per node is allowed in this
model. In the thermodynamic limit, the one rest node
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can be ignored. After time ¢, the connections at ¢ among
active individuals are destroyed and new connections are
created among the new active individuals. This generated
temporal structure is illustrated by fig. 1(b). The compu-
tational simulation is built on this framework. To analyze
the SIR process over this kind of random paired temporal
population, we extend the SIR process to allow for in-
dividual following general inter-event time distributions.
For the sake of simplicity and convenience, we consider
the discrete SIR process which in general is given by

S(t) — S(t — 1) = —TIa(t),
I(t) — I(t —1) = Ia(t) — yI(t — 1),
R(t) — R(t—1) = 7I(t — 1),

(3)

where Ia(t) represents the newly infected individuals at
time ¢. + is the recovery rate of the SIR process. This
set of equations can be solved numerically so long as the
only unknown term [la(t) can be expressed as the func-
tion of I(t') and S(¥') with ¢ < t. Consider a textbook
situation, if the individuals are continuously active dur-
ing the whole time range, in the fully mixed population,
Ta(t) = BS(t — 1)I(t — 1) with 8 representing suscepti-
ble individuals being affected by the infectious individu-
als. When it comes to the situation where individuals are
only active at some special time points, and only active
individuals are potential for propagating information, we
analyze this case by unfolding the Ia(t) into the contri-
butions from all previous discrete time. Suppose = < t,
then Ta(x)(1 — )"~ *P.(t — z) will be the active infected
individuals at time ¢ contributed by active individuals at
time z. (1 —~)~® and P.(t — z) represent the probabil-
ity of individuals still being infected and active at time ¢,
respectively. Then, in general, Ia(t) can express the ac-
cumulation rate as Ta(t) = ﬁ(zl;% Ta(i)(1 — ) P.(t —

i) x (Pe(t+W)_I§(%£illWI/(;(i)Pe(t_i))’ where P.(t + W) repre-
sents the active fraction of population at time ¢ and W
is the elapsed time before the spreading process happens.
And since P.(t) converges to a constant, W occurs here
for removing the influence of the early time. Formally,
the new individuals Ta(t) = 8(3'Z1 Ta(i)(1 —~) " Pa(t —

1)) X (PQ(HW)_I)%:&{MI,‘;U)PS(t_i)) for all ¢t > 2. Given Ia(1)
a fraction of the seeds, the set of equations (3) can be
solved iteratively. Also, since S(t) = 1—Y2!_, Ta(i) for all
t, R(t) =1—S(t) = Y°i_, Ta(i) in the limit ¢ — co. Ac-
cording to these reasonings, the new adding infected nodes
Ta(t) at every time step can also represent the SIR process.

Figures 4(a), (¢), (e) show the SIR process evolving with
the time ¢. In the short term of the spreading process,
the mixed distribution pattern and the power-law distri-
bution pattern accelerate the spreading shown by the lo-
cation of the hump of i(t), the fraction of the infected
nodes. Figures 4(b), (d), (f) are Ta(t), the corresponding
new adding infected nodes of the SIR process. Here we
show the figures from time step ¢ = 2 given that the seed
of the infected individuals of the three different patterns
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Fig. 4: The evolution of the SIR process over the tempo-
ral population. (a), (c), (e) correspond to the results of the
mixed distribution pattern, the power-law distribution pattern
and the exponential distribution pattern, respectively. Solid
lines are the numerical solutions of the SIR spreading process.
(b), (d), (f) are the corresponding new adding infected nodes
Ia(t) at time ¢t. The location of the hump of Ia(t) shows the
early feature of the spreading process. The integral of Ia(t) in-
dicates the evolution results of the SIR process. The simulation
runs over the network with size N = 4000. The parameters of
the SIR process are 8 = 0.7 and v = 0.03.

are equal. The ITa(t) for the exponential distribution pat-
tern is relatively small in the short term and then has a
peak representing bursty increasing of Ia(t). Compared
with the exponential distribution pattern, the power-law
distribution pattern has a large Ia(t) at the initial time
step. The mixed distribution has a bursty increasing of
Ia(t) and the bursty duration occurs earlier than that
of the exponential distribution pattern. The Ia(t) of the
mixed distribution pattern is a combination of the power-
law distribution pattern and the exponential distribution
pattern. From the observation of Ia(t), the differences be-
tween different inter-event distributions are clearly shown.
Next, we study the threshold and the spreading size of
the SIR process. In fig. 5, the phase diagram is applied
to show the correlations between the spreading size and
the parameters of the SIR process. First, let us put some
thought into the threshold of the SIR process which sep-
arates the phase diagram into two regimes in which the

20002-p5



Shengfeng Wang et al.

(@ 1

2
C
© —~=0.003
1.5 St - -y =0.0045 -
- ey = 0.006
< L |
S
0.5 ) -\/\ -
0 T 0 -
10° 10° 10* 10° 10° 10*
¢ t

Fig. 5: The phase diagram of the SIR process and the evolv-
ing of Ia(t) for different distribution patterns under different
7. The red line, the black line, and the yellow line represent
the results of the mixed distribution pattern, the power-law
distribution pattern and the exponential distribution pattern,
respectively. (a) and (b) correspond to the different recovery
rates. The blue cross symbol represents the simulation results.
The solid lines are obtained by the integral of Ia(t). The pa-
rameters of the inter-event distribution used in this figure are
from Database I in table 1. The gray dashed lines correspond
to the threshold computed by eq. (5). Different v’s greatly af-
fect the spreading size of the exponential distribution pattern.
(c) and (d) show how Ia(t) is affected by 7. As the increasing
of Ia(t) for the power-law distribution pattern and the mixed
distribution pattern is at the early time of the spreading pro-
cess, the large v has less impacts on these two patterns.

infected nodes of the SIR process either spread out or die
out. This spreading size is written as R(o0) = >.,2, Ta(t).
Generally, around the threshold, the quadratic terms and
higher-order terms of Ia(i) can be ignored. Therefore, the
recursive equations can be simplified as

S ta(t) = A3 S Ta()(1 - 1) R ) (1)
t=1 t=1 1=1

Through exchanging the order of the summation over ¢

and ¢, the spreading threshold [ is expressed by
1
Yo (L =) Pe(i)

The exponential decay form of (1 —+) in eq. (5) means
that the spreading threshold f. is basically determined by
the early feature of P.(t). The mixed distribution and
the power-law distribution lead to a large P.(¢) at the ini-
tial time and then gradually converges to 1/(r). Indeed,
the phase diagram in figs. 5(a) and (b) shows that the
mixed distribution pattern and the power-law distribution
pattern have a smaller threshold than the exponential dis-
tribution pattern. By the combination of eq. (5) and the

ﬂc = (5)

feature of P.(t) for the exponential pattern and suppos-
ing 8 =1, we can derive the upper bound of the recovery
rate as v = 1 — ﬁ Moreover, figs. 5(a) and (b) show
the phase diagram under different recovery rate . In this
figure, the red line, the black line and the yellow line rep-
resent the results of the mixed distribution pattern, the
power-law distribution pattern and the exponential distri-
bution pattern, respectively. The numerical solution is co-
herent with the simulation results. For the small recovery
rate v = 0.003 and large spreading rate 3, the spreading
size of the power-law distribution pattern is less than that
of the exponential distribution pattern. On the contrary, if
the recovery rate v = 0.006 or for small spreading rate [3,
the spreading size of the power-law distribution pattern
is greater than that of the exponential distribution pat-
tern. This feature would come from the quadratic terms
of the recursive equation of Ia(t) which can be neglected
in computing the threshold as in eq. (5). According to our
previous equations, the spreading size R(co) is the inte-
gral of the new adding infected nodes Ia(t). Figures 5(c)
and (d) show how the recovery rate of the SIR process
~ affects Ia(t). For the exponential distribution pattern,
the bursty increasing duration has been put off and the
hump of the burst drops down with the increasing of the
recovery rate -y, while for the mixed distribution pattern
and the power-law distribution pattern the descending of
the Ta(t) is quite slight. The increasing of v affects greatly
the spreading size of the exponential distribution pattern
as its bursty duration of Ia(t) needs a long wait.

Discussion and conclusion. — In the modeling of
the inter-event time distribution of human communica-
tion behavior, the model based on the hidden Markov
chain was shown to well depict the real data. We showed
in the study of two empirical databases, by ignoring the
type of the communication event, that the communica-
tion process can be modeled by the hidden Markov model
with two states. This simple case allows an analytical
inter-event distribution which is useful in the study of
the effects on the co-evolving dynamic. A mixed distri-
bution derived from the hidden Markov model as f(7) =

(n7—p)?
(1 —a)de ™ + am}/ﬁe 252
good agreement with the empirical inter-event distribu-
tions. Here, the Markov assumption appears to be rea-
sonable in a one-to-one communication behavior, because
people hardly respond to the event that occurs far from
the latest event. This is in contrast with the collective
behavior involving many people, like editing articles of
Wikipedia in which any event can be triggered by all previ-
ous events [17]. Moreover, although our model has four pa-
rameters to determine the empirical distribution, among
the population, three of them are relatively stable and only
one parameter A\ varies a lot. The parameter A\ explains
the shape of the tail, and a small X\ corresponds to the case
where a hump occurs around the tail of the distributions.
This justification is in the spirit coherent with the bimodal

was shown to have a
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model [10] in which the parameter of the Poisson process
affects the shape of the tail of the distribution.

Based on the individual inter-event distribution, we in-
vestigate how the inter-event time pattern quantitatively
affects the SIR process. Assuming the population being
fully mixed, we derived the dynamic equations of the SIR
process by unfolding the newly added infected individu-
als Ta(t) as being contributed to by all the previous time.
Within these equations, the individual active probability
P.(t) is the core to understand the process. As seen in
this paper, the mixed distribution has a large P.(t) at the
initial time and then gradually converges to that of the
exponential distribution pattern. Actually, these results
are relatively robust, and by the definition of P.(t), only
the Poissonian pattern has a constant P.(t). Therefore
any non-Poissonian pattern would have a larger probabil-
ity at the initial time and then gradually converge to the
Poisson pattern when these inter-event time distributions
keep the same expectation. According to our analysis, at
the initial time, the larger P.(t) is, the larger Ia(t) is,
consequently the SIR spreading process across the popu-
lation runs much faster at initial times. On the basis of
our expansion for the SIR dynamic, we also show that the
smaller threshold of the SIR process is guaranteed by the
P,.(t) with large value at the initial time. However, if the
infectious rate 3 of the SIR dynamic is far larger than the
threshold, this condition would induce a different long-
term result of the spreading size for the exponential and
the power-law distribution pattern at different recovery
rates 7. This difference is illustrated by the impact of
the recovery rate v on Ia(t). Because the bursty increas-
ing of Ia(t) for the exponential distribution occurs later
than the power-law and the mixed distribution, large
significantly affects the hump of Ia(t) for the exponential
distribution while it does not affects much the mixed and
the power-law distribution.

In summary, under the assumption of the state tran-
sition, we analytically derived the form of the inter-
event distribution that shows a good agreement with
the empirical data. In terms of the active rate P.(t)
that was calculated from the inter-event time distribu-
tion, we explored the possible influence of inter-event
time distributions on the co-evolving SIR spreading pro-
cess. In comparison with the exponential distribution,
the mixed and the power-law distributions accelerate the
spreading at initial times. The threshold of the spread-
ing model is mainly determined by the initial features of
the active rate P.(t). Since the time duration of the

increasing of Ta(t) for the exponential distribution pattern
was later than that of the mixed distribution pattern and
the power-law distribution, the spreading size of the ex-
ponential distribution was greatly affected by the recovery
rate v of the SIR process. In these analyses, considering
the mixed distribution model quantitatively changes the
spreading pattern.
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