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The electric-field–induced “zero-degree domain walls”
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Abstract – The internal structure of electric-field–induced magnetic topological defects in dielec-
tric magnetic film with inhomogeneous magnetoelectric effect is considered. It is shown that this
“zero-degree domain wall” has a complex internal structure with the sense of magnetization rota-
tion and corresponding electric polarity changing twice across the wall. The two possible solutions
corresponding to 0◦ domain walls (the pure cycloidal domain wall and the mixed one) as well as
their energies are analyzed. It is shown that the 0◦ domain wall is a transitional state between the
homogeneously magnetized media and the electric-field–induced magnetic domain. The critical
field of the domain nucleation obtained from this model is within the range of experimental values
of several MV/cm.
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Introduction. – The concepts of coupling between
magnetism and ferroelectricity in multiferroics and mag-
netoelectric media have evolved dramatically since the
beginning of the century [1–3]. One of the new trends
in multiferroics studies is the magnetoelectricity localized
on domain walls, magnetic vortices, skyrmions and other
magnetic topological defects [4–8].

Electric-field–induced effects have recently been shown
to play an important role in micromagnetism: both in
multiferroic media [9] and in magnets with central sym-
metry [10]. Various magnetoelectric phenomena were ob-
served on micromagnetic structures in iron garnet films:
the domain wall motion driven by electric field [11–13] the
inverse effect of magnetic switching of the domain wall
electric polarity [14], direct detection of the electric field
associated with magnetic domain wall [15], the electric-
field–induced Bloch line displacement and domain wall
broadening [16,17], and quite recently the magnetic bub-
ble domain generation in single domain state [18,19].

About a decade ago I. E. Dzyaloshinskii in the seminal
paper Magnetoelectricity in ferromagnets [10] predicted
that a topological defect, e.g., a Néel-type domain wall,
can be generated in a single domain state by the electric
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field exceeding the certain threshold value. Due to the
boundary condition (the newborn magnetic topological
defect is surrounded by the initial single domain state) the
integral angle of the magnetization rotation in this type of
the structure should be zero. This zero-degree domain wall
(0◦-DW) can be considered as an initial state of bubble do-
main nucleation observed in experiments [18–21], thus the
magnetization distribution in it should be studied in more
detail.

The relation between electric field and inhomogeneous
magnetization distribution in ferromagnet is described by
the Lifshitz-type invariant term linear with respect to
the spatial derivatives of the magnetic order parameter
m [22–26]:

WME = M2
S(E · {b1mdiv m + b2[m × rotm]}), (1)

where Ms is the saturation magnetization, E is the
strength of the electric field, b1, b2 are the constants
of inhomogeneous magnetoelectric interaction [27], m =
M/Ms is the unit magnetization vector. This type of
magnetoelectric interaction is the origin of spin cycloid
in multiferroics [28] as well as magnetically induced ferro-
electricity in spiral magnets [24,29].

In this letter we show that the micromagnetic structure
of the electric-field–induced 0◦ domain wall differs from
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Fig. 1: The geometry of the problem. E is the electric field of
the electrode, m is the unit magnetization vector in the film.

the conventional one and implies reversals of the sense
of magnetization rotation across the domain wall. It has
a complex structure comprising the central part of the
domain wall (“nucleus”) and two “tails” that have the
opposite sense of magnetization rotation with respect to
the nucleus.

The model. – Let us consider a film of uniaxial fer-
romagnetic dielectric material with ME interaction de-
scribed by eq. (1) placed in a non-uniform electric field
perpendicular to the film surface. The geometry of the
problem is shown in fig. 1: the polar axis Oz is oriented
along the direction of magnetization modulation, the Ox-
axis is along normal to the film is taken to be parallel to
the crystal symmetry axis.

We assume that the non-uniform distribution of mag-
netization is induced by the non-uniform electric field and
proceed by considering free energy represented in the form

W =
∫ ∞

−∞

{
A

[(
dθ

dz

)2

+ sin2θ

(
dϕ

dz

)2
]

+Ku(sin2ϕ sin2 θ + cos2 θ)

+M2
s E

[
−(b1 sin2 θ + b2 cos2 θ) cos ϕ

dθ

dz

+b2 sinϕ sin θ cos θ
dϕ

dz

]
+ 2πM2

s cos2 θ

}
dz, (2)

where θ, ϕ are, respectively, the polar and azimuthal an-
gles of the unit magnetization vector m, A is the exchange
stiffness constant, Ku is the constant of uniaxial magnetic
anisotropy. Hereinafter we suppose that the non-uniform
electric field, whose strength is determined by the law

Ex = Eo/ch(z/L), (3)

acts in the restricted area, where L is the width of the area
subjected to non-uniform electric field, Eo is the magni-
tude of the electric-field strength in the center of the stripe
electrode y = 0.

The equilibrium distribution of θ(z), ϕ(z) are de-
termined by solving a set of Euler-Lagrange equations

minimizing the energy functional (1)

d(sin2 θdϕ/dξ)/dξ − sin ϕ cos ϕ sin2 θ

−(λ1 + λ2)f(ξ) sin ϕ sin2 θdθ/dξ

+λ2 sin ϕ sin θ cos θdf/dξ = 0,

d2θ/dξ2 + sin θ cos θ[cos2 θ − (dϕ/dξ)2]
+(λ1 + λ2)f(ξ) sin ϕ sin2 θdϕ/dξ − (λ1 sin2 θ+λ2 cos2 θ)
× cos ϕdf/dξ + Q−1 sin θ cos θ = 0, (4)

where εi = Eo/Ei, Ei = 2KuΔ0/M
2
s bi, i = 1, 2, ζ = z/Δ0,

l = L/Δ0, Δ0 =
√

A/Ku, f(ζ) = ch−1(ζ/l).
Here ε, Ei are the dimensionless and the characteristic

fields, respectively. Q = Ku/2πM2
s is the quality factor.

Depending on the relation between the constants of
magnetic anisotropy, the quality factor, the strength
of electric field and the length of electric-field non-
uniformity, various spatially modulated structures can be
realized in the system. Let us consider the high-symmetry
case of isotropic spin flexo-electricity: b1 = b2 = b. The
quality factor Q = 3 is close to the value in the
experiments [11,14,18].

The analysis of eqs. (4) with single domain state
boundary conditions shows that there are two solutions
corresponding to the zero-degree domain wall. The
magnetization rotation in the electric-field–induced inho-
mogeneity does not evolve according to the classic Bloch
scenario, it is rather the quasi-Bloch–type [30] or pure Néel
one.

The quasi-Bloch domain wall has a significant compo-
nent of the magnetization mz along the modulation di-
rection (fig. 2), that, according to eq. (1), corresponds to
the nonzero electric polarization P (z) = −∂WME/∂E. In
accordance to eq. (1) the reversal of the sense of magne-
tization rotation results in the alternating electric polar-
ization: the nucleus of the domain wall with the largest
spatial derivative of magnetization is characterized by the
maximum of electric polarization while the two tails sur-
rounding the nucleus correspond to the minima with po-
larization of opposite sign. The normalized dependence
of polarization on the dimensionless coordinate, p(ζ) =
P (ζ)Δ0/(M2

s b), is shown in the right inset of fig. 2.
Another solution of eqs. (4) corresponding to a

0◦-domain wall is a pure Néel-type one (fig. 3): ϕ = 0,
i.e., magnetization rotates in the Oxz-plane (fig. 1). As
in the previous case of quasi-Bloch wall, the Néel 0◦-DW
has the antisymmetric coordinate dependence θ = θ(z)
with the extrema growing with the external electric field
E0 growth. The corresponding electric polarization of the
domain wall p(ζ) is the alternating function of the co-
ordinate making the electrical triple layer (fig. 3). The
bound surface charge density increases with increasing the
electric field E0 while the electric charge integrated over
the domain wall width remains zero which guarantees self-
screening of the triple layer. The positions of the surface
charge density maxima do not change with increasing the
electric field E0 and depend on the width L of the stripe
electrode.
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Fig. 2: The magnetization distribution of the quasi-Bloch
0◦-DW structure (shown with arrows) and the surface elec-
tric charges associated with it (shown with red/blue contrast).
The electrode edges are shown with dashed line (the electrode
semi-width parameter l = 5). Corresponding graphs of the
unit magnetization components and dimensionless electric po-
larization are presented in the insets.

Fig. 3: The magnetization distribution of the Néel-type 0◦-DW
structure (shown with arrows) and the surface electric charges
associated with it (shown with red/blue contrast). The elec-
trode edges are shown with the dashed line (the electrode semi-
width parameter l = 5). Corresponding graphs are shown in
the insets.

Discussion. – The zero-degree magnetic topological
defects frequently encountered in magnetic dynamics [31]
can also be found as the solution of certain static problems
of micromagnetism. These are the micromagnetic struc-
tures formed in the vicinity of the I-order spin-orientation
phase transitions [32] and the ones hosted by the potential
well-type defects: the 0◦-DW [33] and the skyrmion-type
magnetic vortices [34,35].

The stability of skyrmions and spin cycloids in
chiral magnets is provided by the Dzyaloshinskii-
Moriya interaction [36,37]. Taking into account that the
flexomagnetoelectric term described by eq. (1) can be

Fig. 4: The dependence of the dimensionless energy w of the
micromagnetic structures of various topologies on the reduced
field ε with the following parameter values: l = 5, Q = 3.
The solid line corresponds to double 180◦-DW, the dashed one
corresponds to quasi-Bloch 0◦-DW, and the dash-dotted one
to the Néel 0◦-DW. The phase diagram of the 0◦-DW state
is shown in the left inset (the red region above the line E∗

c (l)
corresponds to the 0◦ quasi-Bloch DW, the gray region below
the line is the homogenous single domain state). In the right
inset the curves for Néel and quasi-Bloch DWs corresponding
to l = 25 are shown.

derived from the microscopic Dzyaloshinskii-Moria inter-
action [38], the appearance of the 0◦-DW seems natural.
In this context the inhomogeneous electric field provided
by the stripe electrode can be considered as a poten-
tial well-type defect. However the specific feature of the
0◦-DW described by eqs. (4) is the nonzero Néel compo-
nent of the magnetization while the potential well defects
previously considered in [33] support the pure Bloch-type
0◦-DW state.

The dependences of the DW surface energy on the elec-
tric field corresponding to various types of solutions of
eqs. (4) are presented in fig. 4. The dimensionless energy
w is normalized on the product of anisotropy constant and
domain width parameter: w = W/(KuΔ0) (fig. 1).

The zero energy level corresponds to the homogeneous
magnetization distribution. The dependence of the dou-
ble 180◦ domain wall transforming in electric field from
zero-field Bloch state to the Néel one is also shown. It
can be seen that in the low-field region the generation of
Néel-type 0◦-DW defect is energetically favorable. Then
at critical field Ec the double 180◦ Néel wall becomes en-
ergetically preferable, which means nucleation of the new
domain with downward magnetization direction. Taking
into account the experimental parameters from [11,14,18]:
Δ0 = 100 nm, Ku = 103 erg/cm3, M2

s bi = 10−6 CGS, the
dimensionless value of the critical field Ec = 2 corresponds
to electric field ∼10MV/cm that is in agreement with the
experimental situation of 1 kV voltage applied to the μm-
sized tip electrode [19].

It is interesting to compare the energies of two types
0◦-DW: in the gradient field of the stripe electrode the
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Néel-type domain wall has lower energy than the quasi-
Bloch one while at the homogeneous electric field limit
(l → ∞) the energy dependences of two types of 0◦-DWs
tend to the same asymptotic curve at high electric field
values (the right inset of fig. 4). It is reasonable, since the
Néel-type domain wall has zero integral charge: the energy
of its Coulomb interaction with the electrode is minimized
only when the nucleus (with energetically favorable direc-
tion of electric polarization) is localized in the region of the
maximum strength of the electric field while the negatively
polarized tails are expelled to the low electric field region.

Though quasi-Bloch 0◦-DW seems to lose the energy
competition, it is of interest as one-dimensional analogue
of skyrmion. Furthermore, the structural hole-like de-
fects preventing nucleation of the Néel-type domain wall
for magnetostatic reasons can support the formation of
quasi-Bloch 0◦-DW. The phase diagram corresponding to
0◦-DW existence area in the coordinates “strength of the
field ε and the semi-width of the electrode l” is presented
in the left inset of fig. 4).

Conclusion. – Thus in contrast to the originally con-
sidered 180◦-degree Néel domain wall [10] in this paper we
propose the new electric-field–induced 0◦-degree structure
with the sense of magnetization rotation changing twice
across the domain wall. The nucleus of the domain wall
has energetically favorable sense of magnetization rota-
tion while the two tails have the sense of magnetization
rotation that is opposite with respect to the nucleus one,
making the integral rotation angle to be zero. The reversal
of the sense of magnetization rotation implies alternating
electric polarization: the electric polarity of the tails is
also opposite to that of the nucleus one.

In homogeneous magnetic media under the influence of
electric field the 0◦-DW state becomes energetically favor-
able compared to the single domain state provided that
the domain wall has a nonzero Néel-component. This
case corresponds to the so-called quasi-Bloch domain wall.
Another solution is the pure Néel-type domain wall with
compensated electric charge integrated over the domain
wall width. For the 0◦-DW Néel-type domain wall the
electric-field gradient is the key requirement for nucle-
ation: the field gradient enables to maximize the elec-
tric polarization under the electrode leaving the tails with
the opposite electric polarity on the periphery. The 0◦-
DW Néel-type domain wall can be considered as a transi-
tional state between the homogeneously magnetized state
and the electric-field–induced domain observed in experi-
ments [18,19].
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