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Abstract
We have investigated the energies, magnetic dipole hyperfine structure constants (Ahyf) and
electric dipole (E1) matrix elements of a number of low-lying states of triply ionized tin (Sn3+)
by employing relativistic coupled-cluster theory. Contributions from the Breit interaction and
lower-order quantum electrodynamic (QED) effects in the determination of the above quantities
are also given explicitly. These higher-order relativistic effects are found to be important for the
accurate evaluation of energies, while only QED contributions are seen to contribute
significantly to the determination of Ahyf values. Our theoretical results for the energies are in
agreement with one of the measurements but show significant differences for some states with
another measurement. Reported Ahyf will be useful in guiding the measurements of hyperfine
levels in the stable isotopes of Sn3+. The calculated E1 matrix elements are further used to
estimate the oscillator strengths, transition probabilities and dipole polarizabilities (α) of many
states. Large discrepancies between the present results and previous calculations of oscillator
strengths and transition probabilities are observed among a number of states. The estimated α

values will be useful for carrying out high precision measurements using the Sn3+ ion in future
experiments.

Supplementary material for this article is available online

Keywords: atomic structure, fine and hyperfine splitting, polarizability, QED correction,
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1. Introduction

The spectra of medium to highly charged ions have aroused
considerable interest in recent years for their applications in
fundamental physics, such as in the search for the variation of
fundamental constants [1], the development of high precision

optical frequency standards [2–4], establishing a very long-
baseline interferometer for telescope array synchronization,
the development of extremely sensitive quantum tools for
geodesy [5, 6] and astronomy [7, 8]. Spectroscopic investi-
gations of Sn3+ ions have been an attractive research topic in
plasma physics because of their potential use in laser-pro-
duced plasmas (LPPs) to generate standard laboratory ion
sources [9–11] and pulsed short wavelength light sources
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[12]. LPPs have abundant applications in extreme-ultraviolet
(EUV) lithography [13, 14], EUV metrology [15] and surface
treatment and modification [16]. Spectroscopic information,
such as the study of line strengths for Sn3+, can help in
predicting the optimum plasma parameters and experimental
conditions for the production of laser-produced Sn plasma
sources [17, 18]. Despite the well-understood nature of the
force that binds these charged ions, highly accurate calcula-
tions of their properties are difficult and relatively sparse. In
the present work, we have considered medium charged Sn3+

ions from a Ag-like isoelectronic sequence for the theoretical
investigation of various spectroscopic properties. For this ion,
both Coulomb interactions and relativistic effects will be
equally important in accurately obtaining its properties. We
have carried out calculations by including these interactions
with relativistic coupled-cluster (RCC) theory.

The theoretical calculations and measurements of the
energies of the ground and some low-lying states of Sn3+ are
available in the literature [19–24]. Scheers et al [19] obtained
the optical spectra of Sn3+ from a laser-produced plasma. In
the same work, they also made relativistic Fock-space cou-
pled-cluster (FSCC) calculations of the measured energy
levels. Su et al [25] has performed the evolutionary analysis
of EUV radiation from laser-produced Sn plasmas. They had
applied the configuration interaction (CI) method using the
Cowan code to generate the required atomic data for the
spectral analysis and simulation. Safronova et al [26] has
presented Ag-like isoelectronic sequences and showed that
they satisfy the criteria for experimental exploration in many
fields of physics. Safronova et al [24] used relativistic many-
body perturbation theory (RMBPT method) to determine the
energies and lifetimes of the F P4 , 5j j and 5Dj states in Sn3+.
Only a few spectroscopic studies of some of the low lying
states of Sn3+ have been carried out [24, 27, 28]. Safronova
et al [24] has determined the oscillator strengths for the

- - -¢ ¢ ¢S P P D F D5 5 , 5 5 , 4 5j j j j j j and - ¢F G4 5j j transitions
using the RMBPT method. Biswas et al [27] has estimated
the transition properties for 33 lines of Sn3+ using RCC
theory. In their analysis, corrections due to Briet and quantum
electrodynamic (QED) effects, such as the electron self-
energy and vacuum polarization interactions, were omitted.
The oscillator strengths of a few transitions are given by
Cheng and Kim [28] using the multi-configuration Dirac–
Fock method. There have been a few measurements of the
lifetimes of some of the states of Sn3+ [29–31] using the
beam foil technique. Lifetime calculations of a few excited
states of Sn3+ have been made by Cheng et al [28] using the
relativistic Hartree–Fock method and by Pinnington et al [31]
using Coulomb approximation.

The study of hyperfine structure constants is of immense
interest for several applications. The accurate determination of
these quantities provides a stringent test of the correct behavior
of calculated atomic wave functions in the nuclear region
[32–35]. They are also employed to test the potential of many-
body methods by reproducing the measured values at different
levels of approximations in the employed methods [34–36]. One
can infer nuclear moments by combining measured hyperfine

structure constants with the corresponding calculations [35, 36].
Accurate investigation of these quantities is essential to estimate
the Zeeman shifts of the atomic energy levels in high-precision
experiments [3, 4, 37–39]. Tolansky and Forester [40] have
studied hyperfine structure splittings in the arc spectra of tin and
confirmed that the two odd isotopes of tin, Sn (117) and Sn
(119), have nuclear spin 1/2 and an identical magnetic moment.
However, measurements of the hyperfine structure constants of
the Sn IV ion for any isotope are not available so far.

In this work, we intend to investigate the roles of the
electron correlation effects and higher-order relativistic cor-
rections using RCC theory for the accurate calculation of
various properties in Sn3+. For this purpose, we present the
energies and magnetic dipole hyperfine structure constants
(Ahyf) of the nS1 2( = -n 5 9), nP1 2,3 2 ( = -n 5 9),
nD3 2,5 2( = -n 5 9) and nF5 2,7 2(n=4,5) states of Sn3+.
The accurate determination of Ahyf values is very sensitive to
relativistic effects owing to its origin from the atomic nucleus
[41]. We have also determined the electric dipole (E1) matrix
elements among the above states. Using these elements, we
further determine the transition probabilities and oscillator
strengths for many transitions. Additionally, we estimate the
lifetimes and static dipole polarizabilities of many states. A
comparison between some of our calculations and other
experimental and theoretical values available in the literature
is also presented. The spectroscopic investigations of the Sn
ion carried out in this work have potential applications in
future thermonuclear fusion reactors [42–44] and their dis-
covery in various stellar and interstellar atmospheres [45–51].
Our results on Ahyf values and dipole polarizabilities will be
useful for the comprehensive understanding of the roles of
electron correlation effects and higher-order relativistic effects
in their determination by comparing them with the exper-
imental values when available in the future. In sections 2, 3
and 4, we present the theory and method of the calculations,
the results and discussion, and the conclusions, respectively.

2. Theory and method of calculations

2.1. RCC theory

We use RCC theory with the single and double excitations
approximation (RCCSD method) (for example, see [52–54])
to determine the wave functions of the ground and excited
states of the Sn3+ ion. In this approach, we first obtain the
Dirac–Hartree–Fock (DHF) wave function (∣F ñ0 ) for the
closed core of Sn4+, then append the respective valence
orbital (v) of the ground or excited state as ∣ ∣†F ñ = F ñav v 0 to
define the DHF wave function of Sn3+ (also known as the

-VN 1 potential). Considering this DHF wave function as the
starting point, the exact atomic wave function (∣Y ñv ) is
determined by expressing it in RCC theory as

∣ { }∣ ( )Y ñ = + F ñe S1 , 1v
T

v v

where the RCC operators T and Sv are responsible for carrying
out excitations of the core, and core and valence electrons
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Table 1. The calculated excitation energy values using the DHF and RCCSD methods for the valence orbitals of Sn3+ (in cm−1) are presented. The ‘total’ column lists the sum of the RCCSD
calculations including Breit interaction (δBreit) and QED effects (δQED). A comparison with the theoretical values using relativistic many-body perturbation theory (RMBPT) calculations [24] and
Fock space coupled-cluster (FSCC) calculations [19] is given. The experimental values obtained in [19, 22] and [23] are compared. Uncertainties are presented in parentheses whereas only
statistical uncertainty is presented in parentheses for the experimental results from [19]. The BE values from the RCCSD method are also given at the bottom.

This work Others Experiment

State DHF RCCSD δBreit δQED Total RMBPT [24] FSCC [19] [19] [22, 23]

5S1/2 0 0 0 0 0 0 0 0 0 [23]
5P1/2 66 323.692 69 681.368 49.589 −90.275 69641(1185) 69265 69741 69 563.9 [23]
5P3/2 72 291.712 76 261.815 −34.819 −111.78 76115(1166) 75736 76256 76 072.3 [23]
5D3/2 156 482.544 165 698.24 −132.933 −104.872 165460(1011) 164538 165646 165304(1) 165 304.7 [23]
5D5/2 157 181.818 166 453.354 −153.345 −107.002 166193(1005) 165283 166382 165409(1) 165 410.8 [23]
6S1/2 164 598.765 174 156.834 −104.916 −74.952 173977(1012) 174236 174 138.8(4) 174 138.8 [23]
6P1/2 187 743.537 197 934.886 −83.068 −100.339 197751(992) 198025 197 850.6(6) 197 850.9 [23]
6P3/2 189 845.187 200 151.587 −110.882 −107.274 199933(990) 200216 200 030.1(4) 200 030.8 [23]
4F7/2 200 700.345 210 868.219 −164.418 −104.108 210599(993) 209418 210554 210 258.2(6) 210 257.7 [23]
4F5/2 200 786.473 210 938.307 −163.149 −104.165 210671(993) 209494 210627 210 317.9(7) 210 318.2 [23]
6D3/2 223 348.684 236 059.541 −140.896 −102.866 235816(1382) 235171 234 797.0(1) 234 795.7 [23]
6D5/2 223 665.869 236 367.216 −149.822 −106.37 236111(1364) 235497 235 128.7(2) 235 127.7 [23]
7S1/2 226 054.02 237 657.685 −130.047 −91.767 237436(975) 237920 237617(1) 237 615.7 [23]
7P1/2 237 033.876 248 820.864 −118.438 −102.859 248599(973) 249094 248 735.4(2)
7P3/2 238 045.388 249 868.557 −131.362 −106.214 249631(972) 250233 249 644.8(1)
5F7/2 241 131.954 252 545.707 −164.005 −134.164 252247(984) 250981 252626 251 853.0(2)
5F5/2 241 187.899 252 527.244 −160.734 −86.885 252279(977) 251025 252666 252 162.6(2)
7D3/2 255 004.484 267 331.238 −146.097 −105.2 267080(969) 267475 267 215.5(2) 267 247.6 [22]
7D5/2 255 175.107 267 511.929 −151.017 −105.746 267255(969) 267647 267 394.7(2) 267 395.7 [22]
8S1/2 256 302.957 268 626.54 −139.473 −97.969 268389(970) 268895 268 544.3(3) 268544 [22]
8P1/2 262 466.314 275 420.271 −133.151 −104.215 275183(967)
8P3/2 263 042.548 276 008.39 −140.286 −105.939 275762(967)
8D3/2 272 725.583 285 391.723 −147.942 −105.057 285139(968) 285497 285865(1)
8D5/2 272 826.052 285 497.679 −150.815 −105.529 285241(968) 285597 285370(1)
9S1/2 273 685.822 286 303.296 −143.41 −100.542 286059(968) 286013 [22]
9P1/2 277 722.569 290 763.335 −138.309 −104.466 290520(967)
9P3/2 278 133.263 291 184.229 −143.06 −105.699 290935(967)
9D3/2 283 870.151 296 762.238 −149.197 −105.215 296508(967)
9D5/2 283 923.004 296 817.943 −150.71 −105.383 296562(967)

BE 315 810.897 328 953.136 −150.639 −105.221 328697(967) 327453 328999 328 908.4(3) 328550(300) [23]
328910 [22]
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respectively from the DHF wave functions due to the corre-
lation effects. In the RCCSD method, these RCC operators
can be given in the second quantization notation as

( )† † †å åh h= +T a a a a a a
1

4
2

a p
a
p

p a
a b p q

ab
pq

p q b a
, , , ,

and

( )† † †å åh h= +
¹

S a a a a a a
1

2
, 3v

p v
v
p

p v
p q a

va
pq

p q a v
, ,

where a, b and p, q indices represent the occupied and
unoccupied orbitals, respectively, and η represents the
corresponding excitation amplitudes. These amplitudes are
solved by using the following equations

∣ ¯ ∣ ( ) ( )dáF F ñ = -H E E , 4K
N K DHF0 0 ,0 0

and

∣ ¯ { }∣ ( ) ∣{ }∣
( )

dáF + F ñ = - áF + F ñH S E E S1 ,
5

v
L

N v v v v
L

L v v0 ,0

where ¯ º -H e HeN
T T with the atomic Hamiltonian H and

subscript N means normal order form with respect to the
reference state ∣F ñ0 . The superscripts K and L indicate Kth and
Lth excited determinants with respect to ∣F ñ0 and ∣F ñv ,
respectively. Here, EDHF and E0 are the DHF and total energies
of the closed core, and Ev is the total energy of the considered
state of Sn3+ containing the valence orbital v. Therefore, the
evaluation of -E Ev 0 will give the binding energies (BE) to
Sn4+ for the corresponding valence orbital v. The excitation
energies (EEs) between different states are estimated by taking
the differences of the BE values of the associated states.

2.2. Construction of the Hamiltonian

For the calculations, we consider first the Dirac–Coulomb
(DC) Hamiltonian given by

[ · ( ) ( )] ( )å åa b= + - + +
>

H c c V r
r

p 1
1

, 6DC

i
i i i n i

i j i ij

2

,

where c is the speed of light, a and β are the usual Dirac
matrices, pi is the single particle momentum operator, Vn(ri)
denotes the nuclear potential, and

r

1

ij
represents the Coulomb

potential between the electrons located at the ith and jth
positions.

We investigate the Breit interaction contribution by
including the following potential in the DC Hamiltonian
(defined as the DCB Hamiltonian)

[ · ( · ˆ )( · ˆ )]
( )å

a a a a
= -

+

>

V
r

r r

2
, 7B

j i

i j i ij j ij

ij

where r̂ij is the unit vector along rij.
Contributions from the QED effects are estimated by

considering the lower-order vacuum polarization (VP) inter-
action (VVP) and the self-energy (SE) interactions (VSE). We

account for VVP through the Uehling [55] and Wichmann–
Kroll potentials ( = +V V VVP

Uehl WK ) given by

⎜ ⎟⎛
⎝

⎞
⎠

( )

[ ] ( )∣ ∣ ( )

ò ò
a

r=- å -

´ + -

¥ ¥

- - - +

V
r

dx x x dt t

t t
e e

2

3
1

1 1

2
8

Uehl
i

e

i
n

ct r x ct r x

2

0 1

2

3 5
2 2i i

and

( ( ) )
( ) ( )å p

r=
+

V
Z

c cr
r

0.368

9 1 1.62
, 9WK

i i
n i

2

3 4

respectively, with the electron density over the nucleus as
ρn(r) and the atomic number of the system as Z.

The SE contribution VSE is estimated by including two
parts as

( ) ( ) ( )å å
p a a

= - +V A
Z

r
I r B

r
I r

2
10SE

ef
l

i

e

i

ef
i l

i

e

i

ef
i

3

1 2

known as the effective electric form factor part and

· ( )

[ ( ∣ ∣)]
( )

∣ ∣ ( )

ò òg
a

r= å 
-

´ - - + - -

¥ ¥

- - - +

V
i

r
dx x x dt

t t

e e ct r x r x

4

1 1

1

2 ,

11

SE
mg

k
e

k
k

n

ct r x ct r x
k k

3

0 1 3 2

2 2k k

known as the effective magnetic form factor part. In the above
expressions, we use [56]

⎧⎨⎩ ( )
a
a a

=
+ =
+ + =

A
Z l

Z Z l

0.074 0.35 for 0, 1

0.056 0.05 0.195 for 2,
12l

e

e e
2 2

and

⎧⎨⎩
( )

= - - + =


B x x x l
l

1.071 1.97 2.128 0.169 for 0, 1
0 for 2.

13

l

2 3 4

The integrals are given by

( ) ( )[( ∣ )∣

( ( ) ) ] ( )

∣ ∣

( )

ò r= - +

- + +

¥
- -

- +

I r dx x x Z r x e

Z r x e

1

1 14

ef
n

Z r x

ct r x

1
0

2

and

⎜ ⎟

⎪

⎧⎨⎩
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫
⎬
⎭

}
{

( )

( ) ( )

( )

[ ]

[ ( (∣ ∣ )) ( ( ))]

∣ ∣ ( )

ò òr

a

a

=
-

-

´ - + + - +

´ - +

´ - + - + +

¥ ¥

- - - +
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I r dx x x dt
t t

t
Z t

t
e e r e

E ct r x r E ct r x r

1

1
1

1
2

ln 1 4 ln
1 1

2
3
2

1

2

2 2

ef
n

e

e ct r x ct r x
A

r ct

A A

2
0 1 2 2

2
2

2 2 2

1 1

A

with the orbital quantum number l of the system, =x
( )a a- =Z r Z80 , 0.07e A e

2 3, and the exponential integral
( ) ò=

¥ -E r dse s
r

s
1 . We have used the Fermi nuclear charge
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distribution in our calculations by defining

( ) ( )r
r

=
+ -r

e1
, 16n

0
r b

a

for the normalization factor ρ0, the half-charge radius b, and
( )=a 2.3 4 ln 3 is related to the skin thickness. We have

determined b using the relation

( )p= -b r a
5

3

7

3
, 17rms

2 2 2

with the root mean square (rms) charge radius of the nucleus
evaluated by using the formula

( )= +r A0.836 0.570, 18rms
1 3

in fm for the atomic mass A. Our calculations are carried out
after including the above QED effects with the DC Hamil-
tonian (referred to as the DCQ Hamiltonian).

2.3. Property evaluation

After obtaining the amplitudes of the RCC operators using
equations (4) and (5), we evaluate the reduced matrix ele-
ments of an operator between states ∣Y ñk and ∣Yñi from the

following RCC expression

∣∣ ∣∣
∣ ∣∣

∣∣{ } { }∣∣
( )

†

á ñ =
áY Yñ

áY Y ñáY Yñ

=
áF + + F ñ

O

S S

N N

O

O1 1
, 19

ki
k i

k k i i

k k i i

k i

where
†=O e OeT T and ∣ ∣†† †= áF + F ñN e e S e e Sv v

T T
v

T T
v v . For

the evaluation of the expectation value, both the states are
taken to be the same. The calculation procedures of these
expressions are discussed in detail elsewhere [53, 54]. Next,
we discuss the calculations of the hyperfine structure con-
stants, transition probabilities, lifetimes and dipole polariz-
abilities of the low-lying states of the Sn3+ ion using the
above expression.

2.3.1. Hyperfine structure constant. For isotopes with
nuclear spin I=1/2, the hyperfine levels of an atomic state
∣Y ñv can be expressed as

[ ( ) ( ) ( )] ( )= + - + - +W A F F I I J J
1

2
1 1 1 . 20F J hyf,

Table 2. The calculated Ahyf values of many low-lying states of 115Sn3+ (in MHz) from the DHF and RCCSD methods are presented using
the DC Hamiltonian. Corrections from the Breit interaction (δBreit) and QED effects (δQED) from the RCCSD method are also quoted.
Rough estimations of the uncertainties from partial excitations to some of the final results are given in parentheses. We have used
gI=−1.837 66 here.

State DHF RCCSD δBreit δQED Final

5S1/2 −35 859.61 -42 415.600 −18.707 357.388 −42077(165)
5P1/2 −7 573.95 −9 129.899 11.595 13.267 9105(28)
5P3/2 −1 169.13 −1 515.021 −2.444 0.808 −1516(7)
5D3/2 −275.15 −395.170 −1.525 0.110 −397.0
5D5/2 −115.07 −164.838 −0.772 −0.018 −165.0
6S1/2 −10 843.09 −12 324.836 −9.298 100.152 −12233(37)
6P1/2 −2 626.56 −3 025.854 1.893 4.135 −3019(9)
6P3/2 −414.11 −522.005 −0.992 0.331 −522(6)
4F7/2 −9.77 15.730 0.074 0.147 16.0
4F5/2 −17.51 −20.269 −0.037 0.165 −20.0
6D3/2 −125.65 −139.974 −0.643 0.183 −140.0
6D5/2 −52.57 −59.209 −0.147 0.036 −59.0
7S1/2 −4 895.78 −5 489.274 −4.722 44.159 −5450(15)
7P1/2 −1 259.14 −1 421.503 0.459 1.801 −1419(6)
7P3/2 −199.97 −251.208 −0.533 1.065 −250(4)
5F7/2 −7.69 10.878 ∼0 ∼0 11.0
5F5/2 −13.85 −27.123 −0.111 ∼0 −27.0
7D3/2 −67.80 −88.869 −0.349 −0.018 −89.0
7D5/2 −28.39 −40.469 −0.165 0.018 −40.0
8S1/2 −2 656.68 −2 960.047 −2.738 23.669 −2939(8)
8P1/2 −716.76 −762.923 0.551 1.084 −761.0
8P3/2 −113.97 −130.363 −0.221 0.055 −131.0
8D3/2 −39.98 −52.097 −0.202 ∼0 −52.0
8D5/2 −16.77 −23.577 −0.092 ∼0 −24.0
9S1/2 −1 717.03 −1 909.328 −1.819 15.234 −1896(4)
9P1/2 −513.05 −544.645 4.153 0.772 −540.0
9P3/2 −80.80 −90.651 −0.624 0.368 −91.0
9D3/2 −21.05 −27.509 −0.110 ∼0 −28.0
9D5/2 −8.83 −12.367 −0.055 ∼0 −12.0
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Here, = ÅF I J with the total angular momentum of state J
and the magnetic dipole hyperfine structure constant

∣∣ ∣∣

( )( )
( )

( )

m=
áY Y ñ

+ +
A g

J J J

O

1 2 1
, 21hyf N I

v hyf v
1

where μN is the nuclear Bohr magneton, = m
gI I

I with the

nuclear magnetic moment μI and ( )Ohyf
1 is the electronic

component of the spherical tensor describing the hyperfine
interaction in an atomic system.

2.3.2. Transition probability and lifetime. The transition
probability (Aik) from upper level i to lower level k is
obtained from the reduced matrix elements of the electric
dipole (E1) operator (D) by using the following standard
expression [57]

∣ ∣∣ ∣∣ ∣ ( )
l

=
´ áY Y ñ

A
g

D2.026 13 10
22ik

i k

i

18

3

2

and the emission oscillator strengths are given by [57]

∣ ∣∣ ∣∣ ∣ ( )
l

= - áY Y ñf
g

D
303.756

, 23ik
i

i k
2

where λ is the transition wavelength expressed in Å, gi is the
degeneracy factor for the ith state, and ∣∣ ∣∣áY Y ñDi k are used in
atomic units (a.u.) to obtain Aik in s−1. From equation (23),
the absorption oscillator strengths can be deduced using the
relation

( )= -f
g

g
f . 24ki

i

k
ik

The lifetime (τi) of the ith level is the inverse of the sum of
the transition probabilities arising from all the low-lying
levels and is given as

( )t =
å A

1
. 25i

k ik

It is to be noted here that we have neglected contributions
from the forbidden channels to determine the lifetimes of the
investigated atomic states as they are found to be extremely
small.

2.3.3. Dipole polarizability. The static dipole polarizability
(αv) of an atomic state ∣Y ñv with valence orbital v can be

Table 3. The calculated Ahyf values of many low-lying states of 117Sn3+ (in MHz) from the DHF and RCCSD methods are presented using
the DC Hamiltonian. Corrections from the Breit interaction (δBreit) and QED effects (δQED) from the RCCSD method are also quoted.
Rough estimations of the uncertainties from partial excitations to some of the final results are given in parentheses. We have used
gI=−2.002 14 here.

State DHF RCCSD δBreit δQED Final

5S1/2 −39 069.23 −46 212.014 −20.382 389.376 −45843(180)
5P1/2 −8 251.86 −9 947.072 12.633 14.455 −9920(30)
5P3/2 −1 273.78 −1 650.624 −2.663 0.881 −1652(8)
5D3/2 −299.78 −430.540 −1.661 0.120 −432.0
5D5/2 −125.37 −179.592 −0.841 −0.020 −180.0
6S1/2 −11 813.60 −13 427.973 −10.131 109.116 −13328(75)
6P1/2 −2 861.65 −3 296.683 2.062 4.505 −3290(10)
6P3/2 −451.18 −568.727 −1.081 0.360 −569(6)
4F7/2 −10.65 17.138 0.080 0.160 17.0
4F5/2 −19.08 −22.083 −0.040 0.180 −22.0
6D3/2 −136.90 −152.503 −0.701 0.200 −153.0
6D5/2 −57.28 −64.508 −0.160 0.040 −64.0
7S1/2 −5 333.98 −5 980.592 −5.145 48.111 −5938(16)
7P1/2 −1 371.84 −1 548.735 0.500 1.962 −1546(6)
7P3/2 −217.87 −273.692 −0.581 1.161 −273(4)
5F7/2 −8.38 11.852 ∼0 ∼0 12.0
5F5/2 −15.09 −29.552 −0.120 ∼0 −30.0
7D3/2 −73.87 −96.823 −0.380 −0.020 −97.0
7D5/2 −30.93 −44.287 −0.180 0.020 −44.0
8S1/2 −2 894.47 −3 224.987 −2.983 25.787 −3202(9)
8P1/2 −780.91 −831.208 0.600 1.181 −829.0
8P3/2 −124.17 −142.031 −0.240 0.060 −142.0
8D3/2 −43.56 −56.761 −0.220 ∼0 −57.0
8D5/2 −18.27 −25.687 −0.101 ∼0 −26.0
9S1/2 −1 870.71 −2 080.223 −1.982 16.597 −2066(4)
9P1/2 −558.97 −593.394 4.525 0.841 −588.0
9P3/2 −88.03 −98.765 −0.681 0.040 −99.0
9D3/2 −22.94 −29.972 −0.120 ∼0 −30.0
9D5/2 −9.63 −13.474 −0.060 ∼0 −14.0
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expressed as

∣ ∣ ∣ ∣ ( )åa = -
áY Y ñ

-¹

D

E E
2 , 26v

v k

v k

v k

2

where ∣Y ñk represents all possible intermediate states and E
denotes the energy. Carrying out tensor decomposition, it can

be divided into three parts as

( )( )åa a=
=

, 27v
q

v
q

0

2

where q=0, 1 and 2 stands for scalar, vector and tensor
polarizabilities, respectively. In the case of static polarizability,

Table 4. The calculated Ahyf values of many low-lying states of 119Sn3+ (in MHz) from the DHF and RCCSD methods are presented using the
DC Hamiltonian. Corrections from the Breit interaction (δBreit) and QED effects (δQED) from the RCCSD method are also quoted. Rough
estimations of uncertainties from partial excitations to some of the final results are given in parentheses. We have used gI=−2.094 56 here.

State DHF RCCSD δBreit δQED Final

5S1/2 −40 872.69 −48 345.188 −21.322 407.350 −47959(190)
5P1/2 −8 632.77 −10 406.235 13.216 15.123 −10378(31)
5P3/2 −1 332.58 −1 726.818 −2.785 0.922 −1728(8)
5D3/2 −313.61 −450.414 −1.738 0.125 −452.0
5D5/2 −131.16 −187.882 −0.879 −0.021 −188.0
6S1/2 −12 358.93 −14 047.816 −10.598 114.153 −13944(78)
6P1/2 −2 993.75 −3 448.861 2.157 4.713 −3441(11)
6P3/2 −472.00 −594.981 −1.131 0.377 −595(6)
4F7/2 −11.14 17.929 0.084 0.167 18.0
4F5/2 −19.96 −23.103 −0.042 0.188 −23.0
6D3/2 −143.22 −159.542 −0.733 0.209 −160.0
6D5/2 −59.92 −67.486 −0.167 0.042 −67.0
7S1/2 −5 580.20 −6 256.661 −5.383 50.332 −6212(17)
7P1/2 −1 435.17 −1 620.226 0.524 2.052 −1617(6)
7P3/2 −227.93 −286.326 −0.607 1.215 −285(4)
5F7/2 −8.77 12.399 ∼0 ∼0 12.0
5F5/2 −15.79 −30.915 −0.125 ∼0 −31.0
7D3/2 −77.28 −101.292 −0.397 −0.021 −102.0
7D5/2 −32.36 −46.331 −0.188 0.021 −46.0
8S1/2 −3 028.08 −3 373.854 −3.121 26.977 −3349(9)
8P1/2 −816.96 −869.577 0.628 1.236 −867.0
8P3/2 −129.90 −148.588 −0.251 0.063 −149.0
8D3/2 −45.57 −59.381 −0.230 ∼0 −60.0
8D5/2 −19.12 −26.873 −0.104 ∼0 −27.0
9S1/2 −1 957.07 −2 176.247 −2.073 17.364 −2161(4)
9P1/2 −584.78 −620.785 4.733 0.879 −615.0
9P3/2 −92.09 −103.325 −0.712 0.042 −104.0
9D3/2 −24.00 −31.355 −0.126 ∼0 −31.0
9D5/2 −10.07 −14.096 −0.063 ∼0 −14.0

Table 5. Contributions (in MHz) to ºO A ghyf I values of few low-lying states in Sn3+. Terms not mentioned explicitly are given together as
‘others’, and contributions from the normalization of wave functions are quoted as ‘norm’. O means effective one-body contributions from

†
e OeT T and c.c. denotes complex conjugate terms.

Term 5S1/2 5P1/2 5P3/2 5D3/2 5D5/2

O 19 513.74 4 121.52 636.21 149.73 62.62
-O O −20.88 −3.72 4.22 2.94 1.14

+OS c c. .v1 2 049.18 548.75 85.40 24.41 10.18
+OS c c. .v2 1 599.27 315.76 77.63 28.83 14.58

†S OSv v1 1 53.87 18.35 2.86 1.00 0.42
† +S OS c c. .v v1 2 64.74 17.71 4.05 1.39 0.62
†S OSv v2 2 303.21 45.29 25.85 7.85 0.56

Others −133.39 −27.28 −0.81 0.66 0.35
Norm −348.43 −68.16 −10.98 −1.77 −0.77
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Table 6. The DHF and RCCSD results of the BE and A ghyf I values of the few low-lying states of Sn IV using the DC, DCB and DCQ
Hamiltonians. This shows a change in the higher order relativistic effects from the DHF values due to the electron correlation effects.

Property DC DCB DCQ

DHF RCCSD DHF RCCSD DHF RCCSD

BE values (in cm−1)
5S1/2 315 810.90 328 953.14 315 676.22 328 802.50 315 713.41 328 847.92
5P1/2 249 487.21 259 271.77 249 300.06 259 071.54 249 474.63 259 256.82
5P3/2 243 519.19 252 691.32 243 411.17 253 575.50 243 525.43 252 697.19
5D3/2 159 328.35 163 254.90 159 309.88 163 237.19 159 328.74 163 254.55
5D5/2 158 629.08 162 499.78 158 630.35 162 502.49 158 631.59 162 501.56

Ahyf/gI values (in MHz)

5S1/2 19 513.74 23 081.31 19 495.49 23 091.49 19 347.27 22 886.83
5P1/2 4 121.51 4 968.22 4 101.57 4 961.91 4 115.24 4 961.00
5P3/2 636.20 824.43 634.22 825.76 636.29 823.99
5D3/2 149.73 215.04 149.54 215.87 149.72 214.98
5D5/2 62.61 89.70 62.57 90.12 62.62 89.71

Table 7. Transition rates (Aik) with the power of 10 in brackets (in s−1), absorption oscillator strengths fki (in a.u.) and transition wavelengths
λ (in Å) for the transition from upper level i to lower level k are presented. The values of the oscillator strengths reported by Biswas et al [27]
using the RCCSD method, and Safronova et al [24] using the RMBPT method, are also given along with the other literature values.

Transition This work fki

i level k level λ Aik fki [27] [24] Others

5P1/2 5S1/2 1 437.527 8.235 5(8) 0.255 14 0.259 0.248 9 0.258 [21], 0.243 [20]
6P1/2 5S1/2 505.431 2.832 4(8) 0.010 85 0.01
5P3/2 5S1/2 1 314.539 1.087 1(9) 0.563 27 0.572 0.550 8 0.567 [21] , 0.538 [20]
6P3/2 5S1/2 499.923 1.479 0(8) 0.011 08 0.01
6S1/2 5P1/2 956.252 1.165 5(9) 0.159 78 0.163 0.165 [20]
6P1/2 6S1/2 4 217.256 1.651 7(8) 0.440 41 0.445
6S1/2 5P3/2 1 019.716 2.313 2(9) 0.180 30 0.182 0.185 [20], 0.180 [31]
6P3/2 6S1/2 3 862.197 2.125 7(8) 0.950 74 0.96
7S1/2 5P1/2 595.055 4.892 7(8) 0.025 97 0.025
7S1/2 6P1/2 2 514.787 2.726 8(8) 0.258 53 0.257
7S1/2 5P3/2 619.029 9.434 1(8) 0.027 10 1.354
7S1/2 6P3/2 2 660.643 5.432 3(8) 0.288 26 0.285
5D3/2 5P1/2 1 044.487 2.984 2(9) 0.976 17 0.986 0.957 7 0.972 [20]
6D3/2 5P1/2 605.210 6.084 0(8) 0.066 82 0.036
5D3/2 5P3/2 1 120.669 5.234 4(8) 0.098 56 0.111 0.096 8 0.095 [64], 0.088 [20]
6D3/2 5P3/2 630.027 9.017 7(7) 0.005 37 0.661
5D5/2 5P3/2 1 119.338 3.136 2(9) 0.883 64 1.005 0.873 6 0.885 [20]
6D5/2 5P3/2 628.712 5.794 1(8) 0.051 50 5.945
6P1/2 5D3/2 3 072.555 3.172 7(8) 0.224 52 0.231
6D3/2 6P1/2 2 706.741 5.831 2(8) 1.280 97 1.360
6P3/2 5D3/2 2 879.678 3.590 3(7) 0.044 63 0.046
6D3/2 6P3/2 2 876.464 1.063 1(8) 0.131 87 0.139
6P3/2 5D5/2 2 888.504 3.297 6(8) 0.274 99 0.278
6D5/2 6P3/2 2 849.254 6.473 5(8) 1.181 82 1.256
4F5/2 5D3/2 2 221.556 8.033 0(8) 0.891 54 0.914 0.875 1 1.036 [28]
4F5/2 5D5/2 2 226.804 5.748 4(7) 0.042 73 0.044 0.041 3
4F7/2 5D5/2 2 229.809 8.584 1(8) 0.853 15 0.861 0.825 1 0.977 [28]
6D3/2 4F5/2 4 085.385 7.037 9(7) 0.117 40 0.138
6D5/2 4F5/2 4 030.714 3.400 0(6) 0.008 28 0.010
6D5/2 4F7/2 4 020.909 6.799 6(7) 0.123 61 0.141
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vector component (q= 1) does not contribute. To carry out
computations conveniently, each component ( )av

q of the states
whose electronic configurations can be described as a closed
core and a valence orbital, like in the present case, can be
expressed as [58, 59]

( )( ) ( ) ( ) ( )a a a a= + + , 28v
q

v c
q

v cv
q

v v
q

, , ,

where the notations c, cv, and v in the subscript correspond to
core, core-valence, and valence correlations, respectively. The
core contributions to the tensor component of polarizability is
zero. The scalar component contributes to all the atomic states
whereas the tensor component contributes to the states with
total angular momentum j>1/2. It should be noted that ( )av v

q
,

contributes the most in the evaluation of ( )av
q in the considered

states of Sn3+. This contribution can be estimated to a very high
accuracy in the sum-over-states approach using the formula

∣ ∣∣ ∣∣ ∣ ( )( ) ( )åa =
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2 , 29v v

k N k v
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v k
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,
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with Nc as the number of occupied orbitals and the coefficients

as
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+
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In the above approach, we break the valence contribution
into two parts: contributions from low-lying k states up to
which we can determine ∣∣ ∣∣áY Y ñDv k matrix elements using the
RCCSD method and experimental energies Eis from the
Moore energy table [23], which are labeled as ‘main( ( )av v

q
, )’,

and contributions from higher excited states, denoted as ‘tail
( ( )av v

i
, )’, are estimated using the DHF method. Similarly, the

core-valence contributions ( )av cv,
0 are also obtained using the

DHF method using the expression

∣ ∣∣ ∣∣ ∣ ( )( ) ( )åa
y y

=
á ñ
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D
2 , 33v cv
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v k
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2c
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y y

=
á ñ

- 
W

D
2 . 34v cv

k

N

v k
v k

v k
,
2

,
2

2c

In the above expressions, ψ and ò are the single particle DHF
wave functions and energies, respectively. The ( )av c,

0 contrib-
ution to the scalar polarizability is determined by applying the
relativistic random phase approximation (RPA method) as
discussed in [60].

3. Results and discussion

In table 1, we have provided the calculated excitation energy
values (in cm−1) of many states of Sn3+ from the DHF and
RCCSD methods. The fourth and fifth columns, respectively,
represent the corrections in the excitation energy values due
to the Breit interaction and QED effects. The final results
along with uncertainties are quoted as ‘total’ in the same
table. The uncertainties are estimated by analyzing contribu-
tions from the neglected triple excitations in the perturbative
approach. From the present calculations, we see that the Briet
interaction corrections to energies in Sn3+ are large as com-
pared to the QED contributions, especially for the S P,1 2 1 2
and P3/2 states. The contributions from these two corrections,
however, have a comparable influence for the other states.
This could be due to the fact that the wave functions of these
states penetrate less inside the nucleus. A comparison of our
theoretical EE values obtained using the RCCSD method is
presented with other available theoretical calculations from
the FSCC method [19] and RMBPT [24] in the same table. A
reasonable agreement between our and other theoretical
values is found. We compare our results for the energy levels
of the considered states with the experimentally available
energy data from [19] in the second last column of the same

Table 8. Lifetimes for a few excited states (in ns) calculated in the
present work and from other available literature data. The numbers
in parentheses represent uncertainties. The theoretical calculations
used are as follows: [24] uses RMBPT, [27] uses the RCCSD
method, [28] uses the relativistic Hartree–Fock method and [31] uses
Coulomb approximation, whereas the experimental results are
obtained using the beam foil technique.

Theory Experiment

State Present Others [31] [30] [31]

6S1/2 0.29 0.4 0.29(4)
7S1/2 0.44
8S1/2 0.71
9S1/2 1.01
5P1/2 1.21 1.2 [27],0.95

[28],1.26 [24]
1.03 0.73(40) 1.29(20)

5P3/2 0.92 0.9 [27],0.74
[28],0.95 [24]

0.93(23) 0.81(15)

6P1/2 1.31 2.2 1.41(15)
6P3/2 1.38 1.9 1.40(15)
7P1/2 1.90
7P3/2 2.13
8P1/2 4.89
8P3/2 4.89
5D3/2 0.29 0.28 [27],0.26

[28],0.34 [24]
0.3 0.35(3) 0.34(4)

5D5/2 0.32 0.28 [27],0.29
[28],0.32 [24]

0.3 0.41(3) 0.45(5)

6D3/2 0.69 0.7 1.20(25)
6D5/2 0.77 0.8 1.26(20)
4F5/2 1.12 1.0 [28],

1.13 [24]
1.1 1.05(9) 1.25(20)

4F7/2 1.17 1.1 [28],
1.38 [24]

1.1 1.06(9) 1.30(20)
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table. The values in parentheses are only due to the statistical
uncertainties in their measurements, so it would be inap-
propriate to compare our results without actual experimental
error bars. On the other hand, we notice that the other
experimental measurements by Ryabtsev et al [22] and Moore
[23] endorse our theoretical calculations very well. However,
we noticed some discrepancies in the theoretical and exper-
imental results. In table 1, the fine structure splitting of the 5D
state is 733 cm−1 using our method, whereas the experimental
value is approximately 100 cm−1. There are two possible
reasons for such large discrepancies. First, it is known that the
QED corrections contribute significantly to the fine structure
splitting. The QED corrections are estimated using an
approximated expression in our work. Secondly, we had
observed very large contributions to the energies of the D
states from the electron correlation effects through triple
excitation configurations through the RCC theory [61, 62].
Due to the lack of computational resources, we were unable to
include these contributions in the present work. We anticipate
that the inclusion of full triple excitation configurations will
bring our theoretical calculations of the energies in the 5D
states of Sn3+ closer to the experimental results. It should be
noted that exclusive-principle-violating diagrams are con-
sidered to carry out the calculations in our approach. In a
complete theory, unphysical contributions arising through
these diagrams are canceled through the direct and exchange
terms [41]. However, these cancellations cannot be exact in
an approximated method resulting in some uncertainties to the
calculated quantities. These uncertainties can be minimized
by considering higher level excitations in the calculations.
From this point of view, we strongly believe that the inclusion
of triple excitations will bring down the differences between
the experimental and our calculated energy values.

The Ahyf values for 115Sn3+, 117Sn3+ and 119Sn3+ are
presented in tables 2, 3 and 4, respectively, for all the above
mentioned states. We give these values from the DHF and

RCCSD methods along with the relativistic corrections
from the Breit interaction and lower-order QED effects
explicitly in all three isotopes. We have used gI=−1.837 66,
gI=−2.002 14 and gI=−2.094 56 for 115Sn, 117Sn and
119Sn, respectively, to combine with our calculated A ghyf I
values to obtain the above results. As can be noticed from
these tables, there are large differences between the DHF
values and RCCSD values, implying quite large electron
correlation contributions in the determination of these quan-
tities. We have also quoted a rough estimation of uncertainties
to some of these quantities from valence triple excitations
adopting the perturbative approach. We propose experiments
for the measurement of hyperfine levels of 115,117,119Sn3+

ions in the future to validate our calculations. These results
can be further improved by considering full triple excitations
in RCC theory. The Ahyf values for 115,117,119Sn3+ are theo-
retically provided for the first time in the present work. Sahoo
et al has performed hyperfine structure constant calculations
for Cd+ using the RCCSD method [37, 63], which has a
similar electronic configuration to Sn3+. The calculated Ahyf

results for Cd+ using the RCCSD method agree very well
with the available experimental as well as other theoretical
data. Thus, we believe the same method should give reliable
results for Sn3+ as well.

We also intend to demonstrate the roles of different
correlation effects arising through various RCCSD terms in
the evaluation of =O A ghyf I values in Sn

3+. Results only for
the low-lying states S P5 , 51 2 1 2,3 2 and D5 3 2,5 2 are given in
table 5 for illustration. It is worth stating here that the OS1v
and OS2v RCCSD terms along with their complex conjugates
(c.c.) incorporate pair-correlation and core-polarization
effects to all-orders [32, 33]. In the above table, it can be seen
that the DHF values (given as O) are the largest followed by
the contributions from the OS1v and OS2v terms. It can also be
noticed that contributions from the pair-correlation effects are
slightly higher than the core-polarization effects in the 5S and

Table 9. The scalar and tensor contributions (in a.u.) to the static dipole polarizabilities for the ground state and few excited states. The RPA
value for the core contribution to the scalar polarizability αv, c

(0) is estimated to be 2.264 a.u. The core valence contributions are estimated to be
approximately zero. αv

(q) values include contributions from the first few dominant transitions labeled as ‘main( ( )av v
q
, )’, higher excited states

denoted as ‘tail( ( )av v
i
, )’ and core correlations ( )av c,

0 .

State Main( ( )av v,
0 ) Tail( ( )av v,

0 ) ( )av
0 Main( ( )av v,

2 ) Tail( ( )av v,
2 ) ( )av

2

5S1/2 7.27 0.02 9.53 — — —

6S1/2 103.57 0.03 105.85 — — —

7S1/2 620.25 0.02 622.58 — — —

8S1/2 2 078.72 0.23 2 081.20 — — —

9S1/2 5 866.38 0.96 5 869.59 — — —

5P1/2 3.48 0.04 5.78 — — —

6P1/2 −3.56 0.254 −1.04 — — —

7P1/2 161.53 1.60 −157.66 — — —

5P3/2 4.670 0.03 6.97 0.77 −0.026 0.74
6P3/2 10.25 0.23 12.74 20.58 −0.15 20.43
7P3/2 −78.75 1.51 −74.97 145.39 0.96 144.44
5D3/2 30.32 0.52 33.11 −11.05 −0.11 −11.16
6D3/2 286.75 1.36 290.38 −110.02 −0.31 −110.33
5D5/2 29.30 0.56 32.12 −13.82 −0.18 −13.99
6D5/2 283.18 1.54 286.98 −141.44 −0.52 −141.96

10

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 065002 M Kaur et al



5P states, while it is the other way around in the 5D states.
We find that contributions from the non-linear terms, which
are computationally expensive to account for, are also quite
significant. Earlier studies of hyperfine structure constants in
the D5/2 states of singly-charged alkaline earth-metals [34]
and of alkali atoms (for example, the Fr atom in [35]) show
unusual behavior in contrast to the other states. For instance,
it shows a large contribution from OS2v, even larger than the
DHF value with an opposite sign. However, the correlation
trend in the evaluation of A ghyf I in the D5 5 2 state follows a
similar pattern as the other states in Sn3+.

To demonstrate changes in the contributions of the Breit
and QED interactions in the calculated quantities due to the
electron correlation effects, we present the BE and A ghyf I
values of the above five selected states in table 6 from the
DHF and RCCSD methods considering DC, DCB, and DCQ
Hamiltonians. As can be seen, the electron correlation effects
change these relativistic effects significantly to both the above
quantities.

Transition probabilities for as many as 155 transition
lines are obtained for Sn3+ in our present work. A few of
these transitions, for which a comparison from previous lit-
erature is available, are listed in column 4 of table 7. The
transition probabilities for other transitions are tabulated in
the supplementary material (available online at stacks.iop.
org/JPB/53/065002/mmedia). In the same table, we also
present the corresponding absorption oscillator strengths ( fki)
from the present work and previously reported theoretical
values from [27] in columns 5 and 6 respectively. Our cal-
culated values of oscillator strengths are also compared with
the previously reported theoretical results by Safronova et al
[24] and other literature in the last two columns of the same
table. The oscillator strengths calculated by Biswas and co
workers [27], who also use the RCCSD method, are generally
in good agreement with our results, but unusually large dis-
crepancies were found among a few transitions. For instance,
the oscillator strength values for the -D P5 5j 3 2 transition by
them differ from our calculations by approximately 12% and
14% respectively. A similar inconsistency is observed for

- ¢D P6 5j j oscillator strengths. These discrepancies are
attributed to the disagreement in the matrix element values for
these transitions (see table 1 in the supplementary material for
a comparison of matrix elements). A close inspection of the
oscillator strengths of transitions -S P7 51 2 1 2,3 2 and

-S P7 61 2 1 2,3 2 given by Biswas et al [27] points out that
results for the -S P7 61 2 3 2 transition are not correct due to
the following simple reason. Assuming that the radial
component of the wave functions between the 5P1/2 and
5P3/2 states and also between the 6P1/2 and 6P3/2 states are
almost similar, the E1 matrix elements between the

-S P7 51 2 1 2 and -S P7 51 2 3 2 transitions and also between
the -S P7 61 2 1 2 and -S P7 61 2 3 2 transitions should differ
mainly because of the angular factors. As seen, both we and
Biswas et al [27] have obtained similar matrix elements
between the -S P7 61 2 1 2 and -S P7 61 2 3 2 transitions,
which differ by one and half times approximately. Therefore,
a similar factor difference between the E1 matrix elements of
the transitions -S P7 51 2 1 2 and -S P7 51 2 3 2 is expected.

We believe that our results are more reliable as they have
been improved recently [53, 54] and our calculations match
well with the other available literature. For the - ¢D P5 5j j

transitions, the oscillator strengths are in agreement with the
values given in [20], which are evaluated using the core-
potential in the Dirac–Fock (DFCP) method. In [21], oscil-
lator strengths for the -P S5 5j 1 2 transitions are calculated
employing the CI method and our values are in good agree-
ment with their numbers. We notice a remarkable agreement
between our results and the values calculated in [24] using
RMBPT. Our oscillator strengths for the -F D4 55 2 3 2 and

-F D4 57 2 5 2 transitions are not in agreement with the
results from the calculations of Cheng and Kim [28]. They
used the relativistic Hartree–Fock method whereas our cal-
culations are based on the RCC method which includes cor-
relation corrections to all orders. Our oscillator strength for
the -S P6 51 2 3 2 transition is very close to the experimental
result of Pinnington et al [31], which is measured using the
beam foil technique.

In table 8, the estimation of the lifetimes for the ground
and few excited states along with a comparison with other
available literature is presented. The theoretical calculations
for the lifetimes of various states are available in
[24, 27, 28, 31]. In [27], the authors use the RCCSD method,
whereas the RMBPT and DFCP methods are employed for
the calculations in [24] and [28] respectively. Theoretical
calculations from [31] are obtained assuming LS coupling
and Coulomb-approximation radial wave functions. In
general, Coulomb approximation is only strictly valid for
highly excited states with non-penetrating wave functions.
Hence, it is not a match for our sophisticated calculations
using the RCCSD method. Our calculations match very
well with these theoretical results. Experimental lifetime
measurements for some states of Sn3+ using the beam foil
technique are available in the literature [30, 31]. Our cal-
culations mostly show agreement with the experimental
results within the experimental uncertainties except for dis-
crepancies in a few places. We notice discrepancies between
our lifetime calculations and measurements from Pennington
[31] for the 5D and 6D states. Similarly, our results for the
5P1/2 and 5D states are not consistent with the measure-
ments in [30], but they match well with other theoretical and
experimental investigations. Perhaps including correlation
corrections from the triple excitations can remove these
discrepancies. Therefore, it calls for more theoretical and
experimental investigations for the lifetimes of these states
in Sn3+.

In table 9, the calculated values of the static scalar dipole
polarizabilities for nS1/2 (n=5–9), nP1/2, 3/2 (n=5–7) and
nD3 2,5 2 (n=5, 6) are listed. In the same table, the values of
the static tensor dipole polarizabilities for nP3 2 (n=5–7)
and nD3 2,5 2 (n=5, 6) are also tabulated. The dominant
‘main’ contributions to the valence correlation for the scalar
and tensor dipole polarizabilities are presented along with the
‘tail’ parts. The core contribution has been calculated using
RPA and is found to be 2.264 a.u. The contributions of the
valence core correlations are found to be very small and thus
they have been excluded from the table. It is found in our
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calculations that Sn3+ in its ground state will not respond
much to the electric field as shown by a small value of static
scalar polarizability ( ( )a = 9.53v

0 a.u.). This small ( )av
0 value is

owing to the very large energy differences between the
ground and 5P states leading to much less contribution to the
polarizability from the primary -S P5 51 2 1 2,3 2 transitions.

4. Conclusion

In summary, the theoretical results of the energies, magnetic
dipole hyperfine structure constants and electric dipole matrix
elements of many low-lying states of the Sn3+ are presented.
Transition probabilities and oscillator strengths of 155 spectral
lines arising from the ( ) (= - = -nS n nP n5 9 , 51 2 1 2,3 2

)9 , ( )= -nD n 5 93 2,5 2 and nF5 2,7 2 (n=4,5) states along
with radiative lifetimes for the 18 levels and static dipole
polarizabilities of the 15 states have been determined. These
values were obtained by employing relativistic couple-cluster
theory with single and double excitation approximation. The
estimated transition probabilities, oscillator strengths, and
radiative lifetimes are generally found to be in good agreement
with the available experimental data. The reported polarizability
results for Sn3+ can be useful in estimating systematics for
carrying out high precision spectroscopic measurements in
this ion.
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