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Abstract.  The most probable escape path can reveal the optimal fluctuation 
with overwhelming probability for vanishing noise during escape. However, it 
fails to oer information for the feature of the nearby paths, while the dispersion 
of the prehistory distribution does. For gradient systems, the dispersion can 
be obtained via a relaxation method which takes the advantage of the time 
reversibility of the fluctuation-dissipation relation. For non-gradient systems, 
due to the breaking of the time-reversal symmetry, the traditional relaxation 
method cannot be applied. In this paper, we investigate the dispersion of the 
exit phenomena in the Maier–Stein system for three sets of parameters. For the 
gradient case, the traditional relaxation method is extended to the 2D situation. 
For the non-gradient case, we propose a revised version of the relaxation method 
which relies on the computation of quasipotential. The results are compared with 
those of Monte Carlo simulation which shows the eciency of the algorithms.
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1.  Introduction

Stochasticity is an essential feature of nature, wherein noise could play a nontrivial 
role, e.g. the cultural evolution of vocalizations in animals [1], the expression of the spa-
tiotemporal patterns in brains [2], rumor spreading in complex social networks [3] and 
population fitness [4]. For dynamical systems, noise has surprised the researchers by its 
constructive functions. Among them, stochastic resonance [5] and coherence resonance 
[6] have been investigated extensively in theory and experiments.

Considering the long-term behaviors of dynamical systems, noise could drive the 
state to an arbitrary range away from its initial stationary position even if the noise 
strength approaches zero. This phenomenon has been investigated in the framework 
of the large deviation theory [7], which opens up a new perspective on the stochastic 
dynamical behaviors of noise-perturbed systems. The core of this theory is the action 
functional defined by Freidlin and Wentzell. The path with the least value of the action 
functional renders the most probable escape path (MPEP) or the minimum action path 
(MAP) or the optimal path, which is the path with overwhelming probability over 
other exit paths for vanishing noise. The MPEP can reveal the details of stochastic 
transitions out of oscillatory states as is investigated by Cruz et al in biochemical reac-
tions [8], capture the wave-number selection in nonequilibrium systems [9] and show 
the competence behavior in B. subtilis under the influence of stable Lévy noise [10], etc. 
Due to the importance of the MPEP, numerous methods have been proposed, such as 
the geometric minimum action method (gMAM) [11], action plot method [12], ordered 
upwind method (OUM) and its improved versions [13–16].

The MPEP captures the most probable exit behavior for vanishing noise while fails 
to uncover the nearby fluctuational feature for finite noise. The prehistory probability 
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distribution [17] provides a way of observing nearby fluctuational paths around the 
MPEP. The dispersion of the prehistory problem reflects the sensitivity of the fluctuation 
along the MPEP, showing a relative width of the ‘WKB tube’ [18]. Traditional Monte 
Carlo simulation takes exponentially large time for obtaining the escape paths for 
small noise, which is revealed by computing the mean first passage time. Fortunately, 
for gradient systems, the MPEP follows the time-reversed path of the relaxation [17]. 
Therefore, Morillo et al proposed a relaxation method for 1D gradient system [19, 20]. 
This method starts the initial point from the end point of the exit process and let it 
evolve along the relaxational path. However, for non-gradient systems, due to the lack 
of detailed balance, the time-reversal symmetry of the fluctuation-dissipation relation 
will be broken [21, 22], which results in the failure of the relaxation method.

In this paper, we investigate the dispersion of the prehistory distribution for the 
Maier–Stein system. It is a well-studied model which describes noise-induced escape 
of a particle from a metastable state in a non-linear field. Three sets of parameters 
are considered for both gradient and non-gradient cases. For the gradient case, the 
relaxation method proposed by Morillo et al is verified for 2D situation. For the non-
gradient case, we proposed a revised relaxation method. The results by these methods 
are compared with those of the Monte Carlo simulations.

2. Maier–Stein model

To investigate the dispersion of the prehistory distribution, the well-known Maier–Stein 
system is applied. This model is proposed by Maier and Stein [23–27] to study the exit 
phenomena for systems lacking detailed balance, which goes:

ẋ = x− x3 − αxy2+ξ1 (t) ,

ẏ = −µ (1 + x2) y + ξ2 (t)

〈ξi (t)〉 = 0, 〈ξi (t) ξj (t− τ)〉 = Dδijδ (τ)
� (1)

where α and µ are parameters and D is the strength of the noise. For the deterministic 
version of the system, there are three equilibrium points: (±1, 0) and (0, 0) regardless 
of the choice for the parameters. The first two are stable and the origin is an unstable 
saddle point. The vector field is a classic double-well model which is gradient if and 
only if α = µ [28]. Figure 1 illustrates the potential landscape for α = µ = 1. It can be 
seen from figure 1 that the potential energy is symmetric along the x-axis and y -axis. 
The symmetry will have some impacts on the exit phenomena, as we will see later. For 
α �= µ, the condition of detailed balance will be broken which means the time-revers-
ibility of the fluctuational and relaxational paths does not hold anymore.

Before we uncover the characteristics of the dispersion for the exit process, the 
fluctuational paths and MPEPs will be discussed briefly.

Freidlin and Wentzell defined the following action functional [7]:

S (ϕ) =

ˆ tf

t0

L (ẋ,x)dt =

ˆ tf

t0

1

2
(ẋ− F (x))T (ẋ− F (x))dt =

1

2

ˆ tf

t0

λTλdt

� (2)
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where L (ẋ,x) is the Lagrangian in classical mechanics, which is the Legendre transfor-
mation of the Hamiltonian. The variable λ = ẋ− F (x) are momenta which represent 
the action of noise during the fluctuation process. The path corresponding to the mini-
mal value of the action functional renders the MPEP. The fluctuational paths satisfy 
the following auxiliary Hamiltonian system [12]:

ẋ =


ẋ
ẏ


 = F (x) + λ =

[
x− x3 − αxy2

−µ (1 + x2) y

]
+


λ1

λ2


 ,

λ̇ =


λ̇1

λ̇2


 = −

î
∂F
∂x

óT
λ =

[
(αy2 + 3x2 − 1)λ1 + 2µxyλ2

2αxyλ1 + µ (1 + x2)λ2

]
.

� (3)

We choose three sets of parameters: (1) α = µ = 1; (2) α = 6.67, µ = 2; (3) α = 6.67, µ = 1. 
The fluctuational paths and MPEPs for these parameters are shown in figure 2. To 
compare the fluctuation behavior for them, the initial conditions are set the same as 
in figure 2(d). For parameter set (1), which satisfies the condition of detailed balance, 
the fluctuational paths in figure 2(a) also exhibit the relaxational paths back to the 
equilibrium point (1, 0). The MPEP is the straight line which connects (1, 0) and (0, 0). 
For α = 6.67, µ = 2, the MPEP is the same as the previous parameter sets where the 
symmetry remains unbroken. However, the feature of the fluctuational paths changes 
dramatically. The inset of figure 2(b) shows the local behavior of the fluctuation near 
the stable point (1, 0). For the last case, the Lagrangian manifold exhibits the topologi-
cal singularity [27, 29] which is displayed by the intersection of the fluctuational paths. 
The MPEP bifurcates into two curves symmetric along the x-axis.

In the following, the dispersion of the prehistory distribution along the exit process 
will be studied for the three cases discussed above.

Figure 1.  Landscape of the potential energy of system (1). Parameters 
are: α = µ = 1. The representative potential can be readily computed as 
U (x, y) = − (x2 − y2 − x4/2− x2y2) /2.

https://doi.org/10.1088/1742-5468/ab6b16
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3. Results

3.1. Case α = µ = 1

In this case, the dispersion can be investigated similarly as the relaxation method pro-
posed by Morillo et al applied in 1D Langevin equation [19, 20]. It is realized by starting 
from the end point xf , and letting it evolve back to the initial position. The dispersion 
can be readily computed along the relaxational paths. To verify the eciency of this 
method in our 2D case. Monte Carlo simulation results will be compared with those of 
the relaxation method. The prehistory distribution near the MPEP is approximately 
Gaussian for weak noise [17]:

ph (x, t;xf , 0) =

[
1

2π|Σ|1/2

]
exp

®
−1

2
[x− xopt (t;xf )]

TΣ−1 [x− xopt (t;xf )]

´

�

(4)

where ph (x, t;xf , 0) denotes the prehistory distribution at time t for the given final 
point xf. The subscript opt represents the optimal path or the MPEP. And Σ is the 
covariance matrix for the noise. Because of the independence of the isotropic noise in 

 

Figure 2. Optimal fluctuational paths (thin black lines) and MPEPs (thick red 
lines) for the Maier–Stein system with dierent parameters. (a) α = µ = 1; (b) 
α = 6.67, µ = 2; (c)α = 6.67, µ = 1; (d) 100 black dots distributed equally on the 
circle (R = δ = 10−6) represent the initial conditions for fluctuational paths.
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system (1), the covariance matrix Σ is diagonal. So the marginal distribution can be 
readily obtained as:

ph (u, t;xf , 0) = [2πDσu (t;xf )]
− 1

2 exp

{
− [u− uopt (t;xf )]

2

2Dσu (t;xf )

}
� (5)

where u  =  x or y . The dispersion of the prehistory distribution ph (u, t;xf , 0) is charac-
terized by the value of σu (t;xf ). The dispersion can be further expressed as:

{
σx (t;xf ) ≡ σ̃x (xopt (t;xf ) ;xf ) = σ̃x (x;xf )

σy (t;xf ) ≡ σ̃y (xopt (t;xf ) ;xf ) = σ̃y (x;xf )
.� (6)

To simplify the notation, we will use σx (x;xf ) and σy (x;xf ) to represent the right hand 
side of equation (6) throughout this paper without further clarification. The results of 
the dispersion of the prehistory distribution along the MPEP are shown in figure 3 
(noise strength D  =  0.1). The non-monotonic behavior of the dispersion σx (x;xf ) or 
σy (x;xf ) can be observed which is consistent with the results of the 1D situation. The 
results of the Monte Carlo simulation show relatively good agreements with the results 
of the relaxation method. The mismatches, e.g. the peak in figure 3(a), are caused by 
the finite noise strength.

For small enough noise strength, the fluctuations or escapes to a certain position 
become extremely rare, which is determined by the mean first passage time. Traditional 
Monte Carlo simulation becomes hopeless. With the relaxation method, we can still 
investigate the dispersion of the exit process without waiting for the realization of the 
real exit path as the traditional Monte Carlo simulation.

The dispersions for dierent final positions by the relaxation method are illustrated 
in figure 4. As we can see from figures 4(a) and (c), with the final position approaching 
the saddle point, the dispersion σx (x;xf ) explodes, while the initial dispersion keeps 
constant as 1/4. This can be explained by the calculation of the extremal position of 
the dispersion σx (x;xf ). Because of the independence of the dispersions σx (x;xf ) and 
σy (x;xf ), the extremal value of the dispersion σu (x;xf ) can be obtained by solving the 
following equation [19, 20]:

σu (x;xf ) =
1

2U ′′
u (x, y)

� (7)

where u  =  x or y . For σx (x;xf ), variable y  will be considered constant. Thus, by sub-
stituting the potential energy U(x, y ) into equation (7), we have:

σx (x;xf ) =
1

2U ′′
x (x, y)

=
1

2 (3x2 − 1− y2)
≈ 1

6x2 − 2� (8)

where we have used the fact y � x along the MPEP away from the saddle point (0, 0). 
The extremal curve is illustrated in figures 4(a) and (c) as the black dashed line, which 
shows the tendency of the left shift of the maximal position of σx (x;xf ) and also the 
explosion of it when xf  approaches the saddle.

The dispersion σy (x;xf ) is shown in figures 4(b) and (d). It can be seen that σy (x;xf ) 
does not explode as σx (x;xf ). The extremal position can be similarly obtained as:

https://doi.org/10.1088/1742-5468/ab6b16
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σy (x;xf ) =
1

2U ′′y (x, y)
=

1

2 + 2x2� (9)

which accurately predicts the initial dispersion σy (x = 1;xf ) = 1/4. The maximal posi-
tion gradually shifts left as xf  approaches the saddle. Figure 4(d) shows a dramatic 
decrease which is a direct result of the choice of the final position. If we choose x  =  0 
as the exit boundary, the exit location distribution will be a Gaussian distribution [30]:

p (y) =
Å µ

πD

ã1/2
exp

Ç
−µy2

D

å
� (10)

So σy (x = 0;xf = 0) = 1/ (2µ) = 0.5, which is consistent with our result.

3.2. Case α = 6.67 µ = 2

In this case, the MPEP remains the straight line along the x-axis. However, due to 
α �= µ, despite that the MPEP follows the time reversed path of the relaxation pro-
cess, the nearby optimal fluctuational paths do not obey the time reversibility [see 
figure  2(b)]. As has been discussed previously, for small noise, direct Monte Carlo 
simulations will take considerable large time for obtaining even one realization of an 
exit sample. Inspired by the relaxation method for gradient systems which satisfies 
the condition of detailed balance, we hope to find a similar relaxation method for non-
gradient system.

3.2.1. VG relaxation method.  Recall that the reason for the eciency of the relax-
ation method in gradient systems is ensured by the reversed vector field for the MPEP 
in contrast to the original system. Specifically, if the original gradient system yields 
ẋ = −∇U (x), the vector field for the MPEP will be ẋopt = ∇U (xopt). For non-gradient 
systems, the vector field for the MPEP no longer satisfies the reversibility of the origi-
nal one. As the vector field admits the decomposition [7]:

Figure 3.  Dispersion of the prehistory distribution along the MPEP. (a) Dispersion 
along the x-axis σx (x;xf ); (b) dispersion along the y -axis σy (x;xf ). The black line 
represents the result by the relaxation method and the blue dashed line and the 
red pluses are the results of the Monte Carlo simulation. The final point xf  is set 
as (0.4, 0). Noise strength D  =  0.1.

https://doi.org/10.1088/1742-5468/ab6b16
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F (x) = −1

2
∇ψ (x) + l (x)� (11)

where ∇ψ (x) is the gradient of the quasipotential and l (x) represents the rotational 
component, the vector field G (x) = F (x) +∇ψ (x) gives out the MPEP [13]. The 
reverse of the vector field G (x), which we denote as  −VG, could serve as the vector 
field for the relaxation simulation of the dispersion for non-gradient systems. Thus we 
name the method VG relaxation method.

Therefore, the method goes as: first, compute the quasipotential and its gradient 
∇ψ (x). Second, calculate the vector field G (x) and its reverse  −VG. Finally, start 
the samples from the final point and obtain the sampling paths. The dispersion can be 
calculated via the sampling paths.

3.2.2. The calculation of quasipotential.  Therefore, the core problem would be the 
calculation of the quasipotential. In this paper, we apply the ordered line integral meth-
ods (OLIMs) [14] proposed by Dahiya and Cameron to compute the quasipotential. 
The quasipotential of system (1) for α = 6.67, µ = 2 are shown in figure 5. The starting 

 

Figure 4.  Dispersions for dierent final positions for α = µ = 1. (a) and (b) 
xf   =  (0.3, 0), (0.2, 0), (0.1, 0); the noise strength for them is D  =  10−6. (c) and 
(d) xf   =  (0.001, 0), the noise strength is D  =  10−9. The black dashed lines in the 
figures are theoretical extremal positions of the dispersion: equations (8) and (9).

https://doi.org/10.1088/1742-5468/ab6b16
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point of OLIMs program is selected as (1, 0) which accounts for the asymmetry of the 
landscape.

3.2.3. Case test.  With the result of quasipotential, the vector field  −VG can be eas-
ily computed. This vector field will be used as the revised relaxation method (denoted 
as VG relaxation method) for the dispersion of the non-gradient system. To verify the 
feasibility of this method, we test it for noise strength D  =  0.1 and xf   =  (0.4, 0). For 
comparison, we will denote the application of the vector field −F (x) as the old relax-
ation method. The results of the dispersions are shown in figure 6. From figure 6(a) we 
can see that the dispersion σx (x;xf ) via VG relaxation method is close to the result via 
old relaxation method and Monte Carlo simulation. It could be explained by the sym-
metry of the vector field in system (1), where the vector field along the MPEP parallels 
to the x-axis. For σy (x;xf ), the result of the old relaxation method has a significant 
dierence from the Monte Carlo simulation. In contrast, the dispersion obtained by VG 
relaxation method agrees relatively well with the numerical results. This is because the 
vector field for the optimal fluctuational paths near the MPEP diers severely from the 
deterministic vector field. Thus, the dynamical behaviors transverse to the MPEP will 
have dierent properties between the fluctuational and relaxational processes.

One may observe that the results by VG relaxation method still have some errors 
compared with those of the Monte Carlo simulation. There could be two ways to reduce 
the errors. First, the influence of the noise strength considered in this case cannot be 
ignored. The application of quasipotential for weak noise situation will be more favor-
able. Second, the size of the mesh grid for computing the quasipotential will aect the 
precision of its gradient, thus the vector field  −VG. The refinement of the mesh will 
make the result by VG relaxation method more accurate. The former is more dominant 
in the errors, and the results are more accurate by reducing the noise strength.

For dierent final positions, the dispersions are studied by VG relaxation method 
as in figure 7. The tendency of the dispersion curves show a similar behavior as the 

Figure 5.  (a) The 3D plot and contour plot of the quasipotential of system (1). 
Parameters are: α = 6.67, µ = 2. The mesh is 2048  ×  2048 with update factor 
K  =  26. (b) The black arrows represent the vector field G (x) and the red line 
denotes the MPEP computed by shooting a flow line of the vector field −G (x) 
from the final point xf   =  (0, 0).

https://doi.org/10.1088/1742-5468/ab6b16
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gradually shifts left. The initial dispersion for σx (x;xf ) is σx (x = 1;xf ) ≈ 0.267 and 
for σy (x;xf ) is σy (x = 1;xf ) ≈ 0.128.

3.3. Case α = 6.67 µ = 1

For this case, the MPEP no longer follows the x-axis which is a manifestation of sym-
metry breaking. Two dierent paths have the same action value, i.e. either one is the 
MPEP as in figure 2(c). The quasipotential landscape and the vector field G (x) are 
illustrated in figure 8. To investigate the dispersion in this case, we limit the exit paths 
close to the upper branch (see the red curve in figure 8(b)). In this case, the relaxational 
path will not coincide with the fluctuational path as can be seen in figure 9. The errors 
between Monte Carlo simulation and VG relaxation method can be explained similarly 
as above.

Figure 6. Comparison of the results of the dispersions between VG relaxation method 
and old relaxation method. (a) Dispersion along the x-direction; (b) dispersion along 
the y-direction. The noise strength D  =  0.1 and the final point xf   =  (0.4, 0).

Figure 7.  Dispersions for dierent final positions for α = 6.67 µ = 2. xf   =  (0.1, 0),  
(0.08, 0), (0.06, 0), (0.04, 0) and (0.02, 0), the noise strength D  =  10−3. (a) Dispersion 
along the x-direction; (b) dispersion along the y-direction.

https://doi.org/10.1088/1742-5468/ab6b16
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The results of the dispersion via VG relaxation method and Monte Carlo simulation 
are shown in figure 10. The final point xf   =  (0.4, 0.1825) and noise strength D  =  0.03. 
The error of these two methods is within the tolerable range since the averaged paths 
have a visible dierence as is in figure 9. The precision can be improved by reducing 
the noise strength and refining the mesh grid for the quasipotential.

For small noise strength D  =  10−4, the dispersions are studied via VG relaxation 
method. The results are shown in figure 11. The final points are selected along the 
MPEP illustrated in figure 8(b). For the dispersion σx (x;xf ), the peak gradually shift 
left for the final point approaches the saddle. The initial dispersion σx (x = 1;xf ) ≈ 0.267 
which is the same as the previous case. Recall that the initial dispersion is related to 
the marginal stationary probability distribution around the stable equilibrium (1, 0). 
Because α = 6.67 in both cases, the marginal stationary probability distribution should 
be the same, which in turn makes the initial dispersion σx (x = 1;xf ) the same. For 
σy (x;xf ), as xf  is more close to the saddle point, two peaks will emerge and the valley 

Figure 8.  (a) The 3D plot and contour plot of the quasipotential of system (1). 
Parameters are: α = 6.67, µ = 1. The mesh is 2048  ×  2048 with update factor 
K  =  26. (b) The black arrows represent the vector field G (x) and the red curve 
denotes the MPEP computed by shooting a flow line of the vector field −G (x) 
from the final point xf   =  (0, 0).

Figure 9.  Averaged paths for three dierent methods. The final point xf   =  (0.4, 
0.1825). Noise strength D  =  0.03.
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between the peaks becomes more apparent. The valley is around 〈x〉 ≈ 0.53 which 
shows nearby exit paths accumulate more tightly in this site. Thus, one can predict the 
exit process on this site more accurately.

4. Discussions and conclusions

The dispersions of the exit phenomena in the Maier–Stein system for three sets of 
parameters are studied in this paper. For the gradient case, the dispersion is com-
puted via the traditional relaxation method extended to the 2D situation. For the non- 
gradient case, a revised version of the relaxation method is proposed which involves the 
calculation of the quasipotential of the system (the quasipotential is also called the rate 
function in statistical mechanics [31]). The results of the two relaxation methods are 
compared with those of Monte Carlo simulation, which show a relatively good agree-
ment. In all those cases, the dispersion shows a non-monotonic behavior during the 

Figure 10.  Dispersions for VG relaxation method and Monte Carlo simulation. 
The noise strength D  =  0.03 and the final point xf   =  (0.4, 0.1825).

Figure 11.  Dispersions for dierent final positions for α = 6.67 µ = 1. xf   =  (0.039 38, 
0.041 62), (0.062 40, 0.064 61), (0.079 83, 0.081 69) and (0.1, 0.1), the noise strength 
D  =  10−4.
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exit process. Moreover, the initial dispersion keeps constant as the final point changes. 
This can be explained that the initial dispersion is related to the stationary probability 
distribution around the stable equilibrium. It should be noted that in Case 2, because 
of the symmetry of the system, the MPEP follows the time-reversed path of the relax-
ation in spite of the breaking of the time-reversal symmetry. However, the dispersion 
can be wrong if it is computed via traditional relaxation method, which is caused by 
the changed fluctuation behaviors near the MPEP. It should be noted that the method 
described in this paper is applicable to other non-gradient systems without detailed 
balance.

The MPEP determines the most probable behavior for vanishing noise. While for 
finite noise strength in real physical systems, the sampling paths will not completely 
follow the MPEP. The dispersion during the exit process reveals the sensitivity of the 
paths near the MPEP. The smaller the dispersion, the more accurate for an observer 
to determine exit location.

The proposed algorithm is an initial attempt in computing the dispersion in non-
gradient systems. The accuracy depends largely on the calculation of the quasipotential, 
which is still a dicult task for high-dimensional systems. With the fast development 
of the computer science, it can be inferred that our algorithm can be extended to high-
dimensional systems.
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