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Abstract. Traditional and modern compensation devices can increase power flow limit and 
enhance voltage drop in transmission lines. However, these systems can cause to malfunction 
of distance relays utilized to protect transmission lines. While compensation devices can effect 
distance relay operation, some disturbances like power swings are significant risk to ability of 
distance relays to distinguish faults. Power swing blocking (PSB) methods are used to 
discriminate faults from power swings. This study focuses on efficiency of conventional PSB 
methods when transmission lines are compensated with various compensation devices such as 
series capacitor (SC), thyristor-controlled series capacitor (TCSC) and static VAR compensator 
(SVC). A test system is simulated on PSCAD under various operating conditions. 
Conventional PSB methods (swing center voltage, reactive power change and change rate of 
impedance) are tested under these scenarios. The study revealed that compensation devices 
significantly affect the accuracy of PSB algorithms, therefore it is recommended to develop an 
adaptive PSB method to block power swing in the case of various operating conditions. 

1. Introduction 
Generation of electrical energy and delivering this energy to consumer are main subjects in the area of 
power system consisting of generating units, transmission lines and loads. The ever-growing electrical 
energy demands are causing problems for transmission lines such as insufficient power transfer 
capability, low voltage profile and power quality and stability issues. Traditional and modern 
compensation devices like flexible AC transmission system (FACTS) controllers can provide a way of 
solutions to the mentioned problems [1-4]. 
Changes in loading or grid configuration may cause power swing. If power swings cannot be 
discriminated from faults, distance relay may result in undesired operation. To overcome this situation, 
power swing blocking algorithms have been developed. Conventional PSB algorithms may be 
sufficient for uncompensated transmission lines. As compensation devices are integrated into the 
system for enhancement, the behaviour of the system changes therefore may result in affecting the 
operation of protection relays adversely. Especially distance relays may have accuracy problems in 
compensated lines [5-8]. 
This study examines conventional power swing blocking methods [5, 9, 10] under different 
compensation devices with stable and unstable power swing cases. This research focuses if 
conventional PSB methods with estimated threshold values for a test system can operate under 
different compensation devices while the same operating conditions exist. It is expected that when a 
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compensation device malfunction and therefore disconnected from the power system, blocking 
function should still distinguish power swing from faults so the distance relay could operate as 
required. A test system [11] has been simulated at PSCAD with different compensation states such as; 
uncompensated state, series capacitor (SC) with MOV (metal oxide varistor), SVC (static VAR 
compensator) and TCSC (thyristor-controlled series capacitor). Various conventional PSB methods 
are examined at the simulated test system. Conventional PSB methods are given at Section 2 with 
details. The compensation devices used in the scenarios are discussed in Section 3. Test system, 
analyzed results and arguments are given in Section 4, following the conclusion. 

2. Conventional power swing blocking methods 
Power swings are defined as general oscillation problems in the power system owing to large 
disturbances like a fault, separation of a large group of generators/transmission lines/loads, etc. 
According to the system oscillation behavior after large disturbance, power swings are classified stable 
or unstable one. If the oscillation is self-damped, it is called as stable power swings. In the contrary, 
unstable power swings can be damped with power system controllers. If power swings are not blocked 
for distance relay, it could result misoperations and unwanted tripping of circuit breakers even it could 
cause severe damage to the generator. Power swing blocking methods are used for preventing these 
situations. Tested conventional methods are detailed in below. 

2.1. Swing center voltage (SCV) 
Swing center voltage is defined as the voltage whose value is zero at the location of a two bus 
equivalent system when the bus angles are 180 degrees apart [9]. Voltage and current measurements at 
the placement of relay are used for analysis, with these measurements SCV can be described as in; 

 ≈SCV V cosϕ  (1) 

Where V is the locally measured voltage and φ is the angle difference between locally measured 
voltage and current. Both SCV and derivative of SCV can be observed with thresholds for detecting a 
fault and power swings (Figure 1). 

 

 
Figure 1. Example of SCV under fault and power swings. 

 

2.2. Reactive power change  
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When locally available measurement quantities are examined under fault, a significant change occurs 
on reactive power of the line, unlike power swings. This change (dQ/dt) is observed with a threshold 
for identification of faults (Figure 2). 

 
Figure 2. Reactive power change of a system with faults 
and power swings. 

2.3. Change rate of impedance 
Change rate of impedance method is one of the basic and most used methods. When a stable or 
unstable power swing occurs, the change rate of impedance vector is slow, on the other hand during a 
system fault, it is significantly fast. This criterion is used to distinguish power swings from faults with 
a threshold. 

3. Compensation devices for transmission system 
Compensation devices are used in transmission lines for enhancing power system stability, transfer 
capability, voltage stability etc. There are various traditional and modern compensation devices. In this 
chapter, compensation devices integrated into the test system are explained in a basic manner. 

3.1. Series capacitor (SC) with metal oxide varistor (MOV) 
The series capacitor is the most effective traditional way to increase power transfer capability. 
Overvoltage protection of the SC is achieved with parallel connected MOV. The MOV has a nonlinear 
characteristic hence it must be taken into attention in studies having overvoltage cases [12]. 

3.2. Thyristor-controlled series capacitor (TCSC) 
Series capacitors are most simple and economical way to increase power transfer capability however 
series capacitors can cause sub-synchronous resonance [13]. To overcome this problem TCSC is 
developed. TCSC consists of a thyristor controlled inductance and capacitance.  A predetermined 
power system value/values (control modes) are observed to set firing angle of thyristors. 

3.3. Static VAR compensator (SVC) 
In early years, SVC was used for load compensation of fast changing loads. Nowadays, SVC is 
integrated to transmission lines both the above-mentioned purposes and improvements such as 
increase power transfer capability in long lines, improve stability, control dynamic overvoltages, etc 
[13]. Ideal placement for SVC is the middle of the line or electrical middle point of the power system. 

4. Simulated test system and compensation systems details 

4.1. Test system modeling 
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A test system given in figure 3 is simulated with various compensation devices to compare the 
performance of PSB methods. The parameters of the test system are given at table 1. 

 
Figure 3. Test system. 

 
Table 1. Test system details (uncompensated state). 

System Parameters Line Parameters 

Frequency 50Hz Line model π 
H 4.4 MW●s/MVA R1 2.2884e-07 [pu/m] 
Bus voltages 400kV X1 1.7781e-06 [pu/m] 
Angle difference between two 
source equivalent system 25.5° B1 6.5137e-07 [pu/m] 
  R0 1.3307e-06 [pu/m] 
  X0 4.5436e-06 [pu/m] 
  B0 5.1154e-07 [pu/m] 

 
Compensation devices are selected to be SC, TCSC and SVC to be integrated to the test system to 
observe their impact on different fault and swing conditions. This impact has been tested for each 
compensation case.  
Series compensation devices (SC and TCSC) are placed at the midpoint of the protected line (point 
“A”) and capacitor values are chosen to be %40 level of compensation rate at the protected line. The 
ratio between inductance and capacitance is 0.133 at TCSC [14]. 
The TCSC has three different control modes available: active power, current and line impedance. The 
power flow control of the system is mainly focused on mentioned control modes [15, 16]. 
The SVC is placed at bus 2 with a control mode to limit voltage of the connected bus to one (1) per 
unit. Table 2 shows the SVC parameters. 

Table 2. SVC parameters. 

Parameters Values 
Thyristor Controller Reactor 100 MVAr 
Thyristor Controller Capacitor 3x100 MVAr 
Transformer Properties 400kV/16kV (Yg/d) 

 

4.2. Comparison of compensated and uncompensated state effects on power swing conditions  
To compare different compensation situations with fault and power swing scenarios, base conditions 
should be set beforehand. For this scenario, stable power swings are created by a mechanical torque 
disturbance (changing Tm value to 1.35pu) at 1s. After the stable power swing occurrence, a fault is 



2019 12th International Conference on Computer and Electrical Engineering

Journal of Physics: Conference Series 1457 (2020) 012005

IOP Publishing

doi:10.1088/1742-6596/1457/1/012005

5

 
 
 
 
 
 

simulated at 2s (ZL2 line, 3 phase fault, fault at 15. km of the line). Second fault is simulated on ZL1 
line (3 phase fault, fault at 105. km of the line) to cause unstable power swings at 3s. Both faults have 
duration of 75ms. 
Three different control modes, impedance control, active power control and current control, for TCSC 
are considered. Impedance control mode is based on the line impedance and determining the firing 
angle from changes with a delay while current control and active power control modes examine line 
current/active power values for the firing angle deciding factor. 
The conventional PSB methods are usually based on the values of protected line impedance, current, 
voltage and change in power, these values are calculated with voltage and current measurements from 
the relay point. In this scenario, voltage and current values at the measurement point are observed to 
illustrate the effect of compensation devices and control modes (Figure 4). 

 

 
Figure 4. Voltage and current measurements taken from relay 
measurement point for different compensation scenarios. 

 
Compensation devices can make the test system more stable against disturbances as seen in figure 4. 
Voltage and current waveforms are clearly different for each scenario. The some power swings could 
have higher current peak values than fault cases in the TCSC current and active power control modes. 
This situation causes accuracy problems for current or power monitoring based PSB methods.  
Even under same conditions, observed peak values and waveforms have considerable changes 
especially during faults and power swings. The PSB methods utilize the values from these waveforms 
to determine the fault/disturbance cases, based on a fixed threshold value. All compensation devices 
can be disconnected from system due to maintenance/protection purposes therefore PSB methods 
should give high accuracy with same threshold values in both cases. Effects of both mentioned 
situations on PSB methods require further study for the test system as given in section 4.3. 

4.3. Response of PSB methods under various operating conditions 
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As can be seen in figure 4, different compensation devices and different control modes of TCSC could 
change the system behavior significantly. This effect can be obtained by testing critical conditions of 
the test system.  
PSB methods (SCV, reactive power change and change rate of impedance) are tested in various 
compensated scenarios. 
In this scenario, the mechanical torque is changed to 1.35pu in 1s as a disturbance to simulate a stable 
power swing. A three phase fault is occurred on ZL2 line at 15. km of the line at 2s with a 75 ms 
duration. Another fault is simulated at %12.5 and %87.5 of the ZL1, ZL2, ZL3 lines at 3s with a 75ms 
duration. The second fault is considered as three phase and one phase to ground fault. The occurrence 
of unstable power swings are achieved by creating both faults with short time duration.  
The PSB methods aim to distinguish between described two faults from power swings. The thresholds 
of methods are chosen by observing uncompensated state of power system. The success rate of each 
PSB method is given in percentage for various operating scenarios at table 3. 

Table 3. Compensation devices effects on PSB methods. 

PSB Method 
Accuracy rate (percent) 

SC SVC TCSC 
I 

TCSC 
P 

TCSC 
X Uncompensated 

SCV 91.7 91.7 50 91.7 58.3 75 
Reactive Power 

Change 
100 100 58.3 50 83.3 100 

Change Rate of 
Impedance 

58.3 75 33.3 58.3 75 83.3 

 
The effect of compensation systems can be observed more noticeably by results of reactive power 
change method. Reactive power change method has a high accuracy with uncompensated, SC and 
SVC cases however the method accuracy significantly dropped at the TCSC cases. While the method 
has a high accuracy, the threshold value should be changed to increase efficiency of the method at the 
TCSC cases. The change rate of impedance method has an adequate accuracy at uncompensated state 
however the method cannot be used under any compensation, if the compensation system is bypassed, 
the method will cause malfunctions. However SCV method is not effected by this scenario while its 
accuracy is still under reactive power change method, the drop rate of accuracy is minimum, only 
because of φ feature will be affected by compensation and effect on voltage could be only positive or 
minimal. 
PSB methods should have high accuracy at both compensated and uncompensated cases, while SCV 
has overall adequate accuracy, it is clear that there is a need for an improvement on PSB algorithms.  

5. Conclusion 
Effects of compensation devices on PSB are examined under various scenarios. A two source 
equivalent system is used and simulated at PSCAD for this purpose. Compensation devices integrated 
to the test system are selected to be SC, TCSC and SVC cases.  
The compensation significantly changed waveforms of current and voltage taken from distance relay 
measurement point and the response of PSB methods are varied. Due to fixed threshold values on 
conventional PSB methods, any variance of power system parameters affect accuracy of the swing 
blocking. 
Any transition between a compensated to uncompensated situation should have minimum impact on 
accuracy of the PSB method. Incorrect operation of PSB could cause an unwanted tripping signal on 
distance relay. It leads to significant economical and stability problems in the power system.  
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Conventional PSB methods are not sufficient to discriminate faults from power swing depending on 
the type of compensation. From given arguments, requirement of new methods/approaches are 
essential for PSB in dynamic power system circumstances. 
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