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Abstract

Traveling across several orders of magnitude in distance, relativistic jets from strong gravity regions to asymptotic
flat spacetime regions are believed to consist of several general relativistic magnetohydrodynamic (GRMHD)
processes. We present a semianalytical approach for modeling the global structures of a trans-fast magnetosonic
relativistic jet, which should be ejected from a plasma source near a black hole in a funnel region enclosed by dense
accreting flow and a disk corona around the black hole. Our model consistently includes the inflow and outflow
part of the GRMHD solution along the magnetic field lines penetrating the black hole horizon. After the rotational
energy of the black hole is extracted electromagnetically by the negative energy GRMHD inflow, the huge
electromagnetic energy flux propagates from the inflow to the outflow region across the plasma source, and in the
outflow region, the electromagnetic energy converts to the fluid kinetic energy. Eventually, the accelerated outflow
must exceed the fast magnetosonic wave speed. We apply the semianalytical trans-fast magnetosonic flow model to
the black hole magnetosphere for both parabolic and split-monopole magnetic field configurations and discuss the
general flow properties, that is, jet acceleration, jet magnetization, and the locations of some characteristic surfaces
of the black hole magnetosphere. We have confirmed that, at large distances, the GRMHD jet solutions are in good
agreement with the previously known trans-fast special relativistic magnetohydrodynamic jet properties, as
expected. The flexibility of the model provides a prompt and heuristic way to approximate the global GRMHD
trans-fast magnetosonic jet properties.

Unified Astronomy Thesaurus concepts: Rotating black holes (1406); Relativistic jets (1390); Magnetic fields
(994); Magnetohydrodynamics (1964); Galaxy jets (601); Jets (870); Black hole physics (159); Astrophysical
black holes (98); Kerr black holes (886); Accretion (14)

1. Introduction

Black holes with accreting matter are believed to be the
central engines of the observed relativistic jets from micro-
quasars (Fender et al. 2004; Miller-Jones et al. 2012; Rushton
et al. 2017), active galactic nuclei (AGNs; Homan et al. 2015;
Hada et al. 2016; Bruni et al. 2017; Pushkarev et al. 2017;
McKinley et al. 2018), and presumably gamma-ray bursts
(Chang et al. 2012; Nava et al. 2017; Ryde et al. 2017).
Traveling across several orders of magnitude in distance from
the black hole horizon ( ~r rg, where =r GM cg •

2 is the
gravitational radius and M• is the black hole mass) to large
distances, a relativistic jet formulated in the magnetosphere of a
black hole is among the most efficient ways to accelerate
particles and redistribute energy and angular momentum from
small to large scales. For example, jets from AGNs can extend
to a scale larger than the Bondi radius (~ - r105 6

g; e.g., Algaba
et al. 2017) and even larger than the size of the host galaxy
(> - r108 9

g), providing mechanical feedback to the galaxy
clusters (e.g., Fabian 2012).

Supported by much observational evidence (e.g., Hovatta
et al. 2012; Kino et al. 2014; Asada et al. 2014), it is believed
that a large-scale magnetic field plays an important role in
extracting the energy from the central region and accelerating
and collimating the jet. The current understanding of the
relativistic jets in the magnetohydrodynamical framework,
including both the special relativistic magnetohydrodynamics
(SRMHD; excluding the effect of gravity) and the general
relativistic magnetohydrodynamics (GRMHD; including
the effect of gravity), provides the following picture. At the
footpoint region of the jet, where the strong gravity of the

central black hole must be considered, a large-scale magnetic
field penetrates the black hole horizon at least near the funnel
region of accreting gas, and the rotational energy of the black
hole would be electromagnetically extracted outward by the
GRMHD flow (e.g., Blandford & Znajek 1977; Takahashi et al.
1990; Koide 2003; Hawley & Krolik 2006; McKinney 2006).
At a far region from the central black hole, where spacetime
becomes almost flat and SRMHD becomes a good approx-
imation, the magnetic energy gradually converts to particle
kinetic energy, and the flow accelerates to its terminal velocity
(Camenzind 1986a, 1986b, 1987; Fendt et al. 1995; Fendt &
Camenzind 1996; Beskin et al. 1998; Takahashi & Shibata 1998;
Fendt & Greiner 2001; Vlahakis 2004; Beskin & Nokhrina 2006;
Tchekhovskoy et al. 2008, 2009, 2010; Komissarov et al. 2009;
Lyubarsky 2009, 2010).
More specifically, a full and consistent model of black hole

jet formation across several orders of magnitude in distance,
from the near zone ( ~r rg) to the far zone ( > -r r10 g

4 5 ), is
challenging due to at least the following three reasons. The first
is the configuration of the magnetic fields. The equation of
motion for the MHD flow,

( )=n
mnT 0, 1;

where the stress energy tensor = +mn mn mnT T TEM FL consists of
the electromagnetic part mnTEM and the fluid part mnTFL , can
be decomposed into the force-balance equation between
magnetic field lines (the Grad–Shafranov equation) and the
wind equation along a magnetic field line (the relativistic
Bernoulli equation). The former describes the magnetic field
configuration, while the latter describes the jet acceleration
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(Nitta et al. 1991; Beskin 2009). However, in general, solving
the force-balance equation analytically is complicated and
usually computationally demanding (e.g., Fendt et al. 1995;
Fendt & Camenzind 1996; Nathanail & Contopoulos 2014; Pan
et al. 2017; Huang et al. 2019). The second reason is the
condition at the fast magnetosonic surface (FMS) of the jet,
where the jet velocity becomes the fast magnetosonic wave
speed. The FMS should be located at a finite radius on the way
to a distant region in the black hole magnetosphere (Fendt
1997; Beskin et al. 1998; Tomimatsu et al. 2001; Beskin &
Nokhrina 2006). Generally, a complicated critical-condition
analysis at the FMS is required. The third reason is related to
the plasma source region of the jet. In the black hole
magnetosphere, due to the dominant gravity near the black
hole and the dominant centrifugal force by the Lorentz force
away from the black hole, the inflow and outflow regions, and
therefore a stagnation surface, must coexist (Takahashi et al.
1990; McKinney & Gammie 2004; McKinney 2006), where
the stagnation surface separates the inflow/outflow regions. At
the stagnation surface, a matching condition for the two zones
is necessary (Pu et al. 2015), where additional discussion of the
state of the plasma source should be required (e.g., the electron-
position pair creation, etc.). With these difficulties, to date,
exploring GRMHD jet properties in both near and far regions
was mostly possible by performing a large-scale GRMHD
simulation (e.g., McKinney 2006; Liska et al. 2018; Chatterjee
et al. 2019). Furthermore, in the funnel region close to the black
hole axis that we are interested in here, the radially self-similar
approach (Blandford & Payne 1982; Vlahakis et al. 2000;
Polko et al. 2013, 2014) is not applicable, while the meridional
self-similarity can provide a more suitable alternative (Sauty &
Tsinganos 1994; Meliani et al. 2006; Tsinganos 2010; Globus
et al. 2014; Chantry et al. 2018).

In this paper, we present a semianalytical approach, an
attractive alternative, to include the key features of the
abovementioned physical processes. We especially focus on
magnetic energy-dominated flows that are capable of extract-
ing the black hole rotational energy near the plasma source
and kinetic energy-dominated jet structure at a far distant
region. The presented model provides a prompt, flexible, and
heuristic way to investigate the trans-fast magnetosonic jet
structures and properties semianalytically. Our model is an
application of solving the relativistic Bernoulli equation along
magnetic field lines in an algebraic way via prescriptions
of the poloidal and toroidal (azimuthal) magnetic fields
(Tomimatsu & Takahashi 2003; Takahashi & Tomimatsu
2008, hereafter TT03 and TT08, respectively) and of
consistently matching the inflow/outflow flow solutions
(Pu et al. 2015). In contrast to the standard approaches for
transmagnetosonic flow, which employ the regularity condi-
tion on the FMS to solve the relativistic Bernoulli equation
(e.g., Takahashi et al. 1990; Takahashi 2002), the novel
approach provided by the former works, TT03 and TT08, is to
solve the jet’s Bernoulli equation by introducing a regular
function of the poloidal electric-to-toroidal magnetic field
amplitude ratio, ξ, in all regions of the jet. This allows us to
obtain easily trans-fast magnetosonic flow solutions for
relativistic jets without the regularity condition analysis.
The function ξ has sophisticated constraints on the
magnetic field components at several characteristic surfaces,

such as the particle injection surface, Alfvén surface, event
horizon, etc. (see also Section 2.2). The idea that the outflow
along the magnetic field lines in a magnetosphere can be
determined by the distribution of poloidal and toroidal
fields has also been discussed in Contopoulos (1995) and
Contopoulos et al. (1999).
The purpose of this paper is to demonstrate that the basic

GRMHD jet structure can actually be well approximated from
the abovementioned approaches. The underlying physical
motivation is to mimic the GRMHD flow solution of
Equation (1) with the knowledge of GRMHD theory, including
some solutions of the force-balance equation and how the
magnetosonic points are related to the solution of wind
equations (see Section 2). We ignore the gas pressure in
the flow, which is minor for the global flow structure
(Camenzind 1986b), and adopt the cold limit in our computa-
tions. Under such a limit, the stagnation surface can be solely
determined by the locus across field lines where the force
balance between gravity force and magnetocentrifugal force,
provided that the flow has vanishing initial velocity (or very
slow sub-Alfvénic velocity). As the plasma loading is
conserved along each field line (see Section 2), the stagnation
surface is treated as the plasma source region. The plasma
source in the jet funnel region, which is beyond the scope of the
current paper, is currently poorly understood (e.g., Takahashi
et al. 1990; Levinson & Rieger 2011; Mościbrodzka et al.
2011; Broderick & Tchekhovskoy 2015; Hirotani & Pu 2016;
O’Riordan et al. 2018). Nevertheless, comparison of the flow
velocity and magnetic field configuration between the numer-
ical simulation3 and the semianalytical solution along a large-
scale magnetic field line in the funnel region shows similar
properties (Pu et al. 2015), indicating that the GRMHD flow
velocity is not significantly affected by the plasma source.
We do not solve the force-balance equation for the configura-

tion of the magnetic field but instead assume a likely magnetic
field shape. We are especially interested in the parabolic and
split-monopole poloidal magnetic fields, because there are
extensive SRMHD studies for the trans-fast magnetosonic flow
in these two magnetic configurations (e.g., Beskin et al.
1998; TT03; Beskin & Nokhrina 2006), and we can compare
our GRMHD flow solutions with the SRMHD flow features.
Note also that a parabolic magnetic field geometry is commonly
indicated by very long baseline interferometry observations of
AGN jets (e.g., Algaba et al. 2017; Hada et al. 2013; Nakamura
et al. 2018), and it is a common scene of GRMHD numerical
simulations of an accreting black hole system (e.g., McKinney &
Gammie 2004; Hawley & Krolik 2006; McKinney 2006).
Therefore, we choose to apply our model to these magnetic fields
and explore the general flow properties near the black hole, the jet
acceleration of the outflow, and the characteristic surfaces,
together with their dependence on black hole spin, field angular
velocity, and outflow energy. In the region far away from the
black hole, the resulting semianalytical GRMHD outflow
acceleration is in good qualitative and quantitative agreement
with previous analyses of semianalytical MHD flow acceleration
properties (TT03; Beskin et al. 1998; Beskin & Nokhrina 2006).
The remainder of the paper is organized as follows. In

Section 2 we describe the details of the model. The model

3 In numerical simulation, to avoid numerical issues, a density floor is usually
set to ensure a minimum density in the simulation; materials are therefore
arbitrarily injected into the funnel region, which usually takes place close to the
central black hole.
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parameters considered in this paper are given in Section 3. We
then present the results and GRMHD flow properties in a black
hole magnetosphere with parabolic and split-monopole magn-
etic field lines in Sections 4 and 5, respectively. Comments on
the limitations of the model are given in Section 6. Finally, the
summary and future applications of the model are given in
Section 7.

2. Trans-fast Magnetosonic Flows in a Black Hole
Magnetosphere

Our goal is develop a semianalytical approach to model a trans-
fast magnetosonic flow with a very large total specific energy
along magnetic field lines attached to the horizon and include all
related key physics. While it is well known that mild plasma
loading can result in a slight deformation of the magnetic field
lines and the existence of the FMS by carefully solving both the
trans-field and wind equations, the following working compro-
mise is adopted. First, a poloidal force-free magnetic field
configuration is applied (i.e., the deformation of the magnetic
fields due to the perturbation via plasma loading is ignored).
Second, to preserve the existence of the FMS for an MHD flow, a
sophisticated relation between the poloidal and toroidal compo-
nents of the magnetic field is prescribed a priori (TT08).

As the model is an extension of the method presented
in TT08, in the following, we adopt the same signature [+, −,
−, −] for the Boyer–Lindquist metric, with = =c G 1. The
dimensionless black hole spin parameter is denoted by a.

2.1. Basic GRMHD Flow Properties

We assume a cold ideal GRMHD flow where the gas
pressure is negligible. Then, there are four conserved quantities
along the magnetic field line given by the magnetic stream
function ( )qY =r, constant (Camenzind 1986a, 1986b, 1987;
Takahashi et al. 1990): the angular velocity of the field line

( )W YF , the particle number flux per unit electromagnetic flux
(mass loading) ( )h Y , the total energy of the flow ( )YE , and the
total angular momentum ( )YL ,

( ) ( )W Y = - q

qf

F

F
, 2F

t

( ) ¯ ( )mh
m

Y =
n u

B
, 3

p

p

ˆ ( ) ( ) ( )
m pmh

Y º
Y

= -
W f

E
E

u
B

4
, 4t

F

ˆ ( ) ( ) ( )
m pmh

Y º
Y

= - -f
f

L
L

u
B

4
, 5

where mnF is the electromagnetic tensor, the magnetic field
( )ºa abgd

b gdB k F1 2 is defined by the time-like Killing vector
( )=ak 1, 0, 0, 0 , and abgd is the Levi–Civita tensor. The hat

symbols for Ê and L̂ represent the physical quantities per
specific enthalpy, μ, which is given by m = m cp

2 (the speed of
light c is momentarily recovered here), where mp is the particle’s
rest mass. In addition, the poloidal velocity and magnetic
field are respectively defined by ( )º - + q

qu u u u up
r

r
2 and

( )º - + q
qB B B B Bp

r
r

2 , and the rescaled poloidal magnetic
field is defined by

¯ ( )rºB B , 6p p w
2 2 2

where r = -f ffg g gw t tt
2 2 . Similarly, we define the rescaled

toroidal magnetic field by

( )/rºf fB B . 7w

Along the large-scale magnetic field immersed in the black
hole, there must exist inflow and outflow regions, divided by
the location of the stagnation surface ( )Yrs . In the cold limit, the
conservative quantities ( ˆ ˆE L, ) can be alternatively determined
by (r r,s A), where ( )= Yr rA A is the location of the Alfvén
surface, where the flow velocity equals the poloidal Alfvén
speed (Takahashi et al. 1990). Hereafter, we denote the inflow
(or outflow) properties by the superscript “−” (or “+”) and use
the unsigned parameters for the base for both inflow and
outflow. We focus on cases where black hole rotational energy
is extracted outward as the energy budget of the GRMHD flow,
and the model applies for all rotating black holes ( >a 0), with
< W < W0 F H (i.e., the “type II” flow defined in Takahashi

et al. 1990), where WH is the angular velocity of the black hole.

2.2. Overview of TT08

For a given streamline function and therefore the poloidal
magnetic field configuration, a typical procedure for solving the
wind equation along a streamline function then requires fine-
tuning of the set of conserved quantities, ˆ ˆhW E L, , ,F , such that
a physical cold flow solution passes both the Alfvén surface
and the FMS, where the so-called critical condition should be
satisfied. When the physical flow solution is obtained, the
toroidal magnetic field structure is uniquely determined that
should be regular in all regions of the flow. Note that, without
the critical condition at the FMS, the toroidal magnetic field
diverges there; i.e., such a solution is unphysical.
To always get a physical trans-fast magnetosonic solution,

we focus on the regularity of the toroidal magnetic field. Now
we introduce a regular function by relating the ratio between
the poloidal and toroidal magnetic field to the parameter β,

( )
¯
¯ ( )b Y º =f f

r
B

B

B

B
; . 8

p p

A regular transmagnetosonic flow solution can therefore be
obtained; such a new analytical method without the critical
conditions is proposed in TT08. The parameter β can be
interpreted as the inverse of the pitch angle or the bending
angle of the magnetic field line. Alternatively, related to β, the
poloidal electric-to-toroidal magnetic field amplitude ratio seen
by a zero angular momentum observer can be defined by

( ) ( ) ( )x
w

b
Y =

W -
ffr g; , 9F2

2

2

where w º - f ffg gt .
As a result, by defining the Alfvén Mach number,

¯ ¯ ( )pm pmh= =M n
u

B

u

B
4 4 , 10

p

p

p

p

2
2

2 2

the wind equation can be rewritten with the quadratic equation

( )- + =  M M2 0, 114 2

where the coefficients , , and  are just functions of the
conserved quantities WF , Ê , and L̂; the magnetic field pitch
angle, β; and the background metric, mng . Readers can refer

3
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to TT08 for details. The location of the Alfvén surface and
FMS4 of the flow can be found where the Mach number equals

( )a= ºM M , 122
AW
2

( )a b= º +M M , 132
FM
2 2

where a = + W + Wf ffg g g2tt t F F
2 . The poloidal velocity is

ˆ ( )a
a b

=
-
+

u
e

, 14p
2

2

2

with the Jacobian constant ˆ ˆ ˆº - We E LF .
By solving the wind equation in terms of β (or, alternatively,

ξ), the restriction for β and ξ when FMS exists in the solution is
found. For our interest, < W < W0 F H, the conditions are
summarized in Table 1 (see also Appendix A of TT08). Along
a magnetic field line Ψ=constant, the function ( )x Yr;2 would
have a different form in the inner and outer region of the
separation surface (the plasma source). For the outflow, by
considering the reasonable shape of the magnetic field at a
distant region, we apply the function form

( )
( ˆ )

( )x z= - ++
+E

1
1

, 152
2 0

where z0 is a constant associated with the flow acceleration in
the superfast-magnetosonic regime. Previous extensive studies
of the SRMHD flow acceleration indicate a dependence on
different magnetic field geometry (e.g., Beskin et al. 1998;
Beskin & Nokhrina 2006; Tchekhovskoy et al. 2008, 2009;
Komissarov et al. 2009). We explored different choices of z0
and identified that z @ 00 corresponds to a linear acceleration
regime of the flow (in contrast to a slower, logarithmic
acceleration; see more details in Appendix B). We therefore
adopt

( )z = 0 160

as the default value throughout the paper. Although we
consider a constant ( )x+ 2 along a flow, it is not generally
necessary. Note that a constant ( )x+ 2 along a magnetic field line
recovers that the ratio of the poloidal to toroidal field is well fit
by ( )W ffg1 F (see also Section 4.1 for examples), as
expected in the SRMHD jet studies (e.g., Lyubarsky 2009)

and also found in previous GRMHD simulations (McKinney
2006).
For the inflow from both the requirement at the horizon and

the corotation point listed in Table 1, a sophisticated form of ξ
was suggested in TT08,

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟( ) ( )x

w
= +

D
S

- W
W - W

- C1 , 17F

F

2

H

2

where C is a constant. For our interest, C is to be determined by
a smooth connect for x+ and x- (see also Section 2.5 for the
matching condition for outflow and inflow). Unlike ( )x+ 2, ( )x- 2

cannot be a constant along the magnetic field line, as can also
be seen in Table 1.

2.3. Magnetic Field Configurations

We focus on magnetically dominated flow, at least in the jet
formation region, and therefore assume the force-free magneto-
sphere is a good approximation for the magnetic field
configuration.5 A simple approximation of the force-free
magnetic field is found in Tchekhovskoy et al. (2008),

( ) ( ) ( )q qY = -r p r, ; 1 cos , 18p

where  p0 1.25. When p=1 (p= 0), the magnetic field
has a parabolic (split-monopole) configuration. In general, the
magnetosphere depends on parameters like black hole spin.
Recent GRMHD numerical simulations imply that a single p
value for the outmost streamline may apply to simulation
results of different black hole spin (Nakamura et al. 2018), and
that the resulting opening angle of the magnetosphere is closely
related the total magnetic flux finally accumulated on the event
horizon (e.g., Narayan et al. 2012), suggesting treating the
black hole spin and magnetosphere as independent parameters
for possible combinations.
One of the features of the abovementioned force-free

magnetic field is the absence of the FMS of the outflow. The
resulting magnetic flux ¯F º B Rp

2 of Equation (18) is roughly
constant at large distances, which is against the condition
F <d dR 0 for an efficient MHD acceleration and the

existence of FMS (Takahashi & Shibata 1998; Tchekhovskoy
et al. 2009). As a result, the outflow along the force-free
magnetic field will remain sub-fast magnetosonic if we simply
solve the Bernoulli equation and obtain the toroidal field from
the solution. We therefore overcome the nonexistence of an
FMS for the poloidal magnetic field described in Equation (18)
by prescribing a relation between the poloidal and toroidal
magnetic fields of the resulting flow, a method introduced
in TT03 and TT08, to mimic the effect of efficient acceleration
for the outflow. By using this method, the solution for the trans-
fast magnetosonic flow equation can be easily obtained without
the critical-condition analysis. However, as a cost for this
approach, it is expected that B̄p computed directly from
Equation (18) would not be consistent with the solution of the
force-balance equation due to the reason mentioned before. We
will therefore obtain B̄p from the trans-fast magnetosonic flow
solution, as will be described in Section 2.7.

Table 1
Restrictions on the Regular Function ξ at Several Characteristic Locations for a

Physical Solution of the Wind Equation that Passes an FMS

Characteristic Location x2

Event horizon 1
Corotation pointa 0
Alfvén point Finite
Separation point Finite

Note.
a Where wW = .F

4 It is expected that, close to the axis (θ→0), β→0 and hence
=M MFM

2
AW
2 , resulting a closer distance between the Alfvén surface and

FMS (see also Beskin et al. 1998; Beskin 2009; Tchekhovskoy et al. 2009).
Such an effect is caused by the modification of the force-free magnetosphere
due to plasma effects, and our approach can at most provide only an artificial
mimic to such an effect, since the poloidal magnetic field configuration is
prescribed and fixed in the computation, as explained and described in
Section 2.3.

5 Nevertheless, the semianalytical method described in this section can be
applied to any given physical magnetic configuration Ψ.

4
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2.4. Boundary Condition

The energy of the outflow ˆ+E is assigned for each magnetic
field line as the outer boundary. Across the black hole
magnetosphere, ˆ ( )Y+E is a free function, which is not
necessary a constant across the magnetosphere. For each
streamline with known WF , specified flow energy ˆ+E , and
location of flow launching with zero velocity rs, the location of
the Alfvén surface, +rA , can be solved by Equation (11).
Subsequently, the angular momentum for the outflow ˆ+L are
also determined6 (e.g., see Equations (43) and (44) of
Takahashi et al. 1990; see also Appendix A for a flowchart).

2.5. Matching Condition

Two criteria are required to be satisfied in order to match the
inflow and outflow solutions along each magnetic field line.

First, to ensure that = + fB B Bp
2 2 2 is continuous across the

stagnation surface rs, the constant C is determined by

( ) ( ) ( )x xY = Y- +r r; ; . 19s s

Second, in addition to the continuity of the magnetic field
strength, it is also expected that the outward electromagnetic
energy flux is continuous across rs. However, such a condition
is degenerate and leaves an undetermined ratio (Pu et al. 2015),

ˆ
ˆ ( )d

h
h

= =
+

-

-

+

E

E
; 20EM

EM

note that ˆ >
+

E 0EM and ˆ <
-

E 0EM (i.e., negative energy
GRMHD inflows) have different signs. The nature of the
degeneracy of the choice of δ lies in the fact that the inflow
velocity is not sensitive to δ, provided that the flow is
magnetically dominated. In the above notation, ÊEM is the
electromagnetic part of the total energy Ê (and the fluid part
is ˆ ˆ ˆ= - =E E E utFL EM ).

At the stagnation surface, it is a good approximation to adopt
ˆ ( )= = »E u r r 1tFL s (the specific fluid energy is roughly
equal to its rest-mass energy); therefore, we have

ˆ ( ) ˆ ( )Y = + <- -
E E1 0 21EM

and

ˆ ( ) ˆ ( )Y = + >+ +
E E1 0 22EM

for the inflow and outflow solutions near =r rs, respectively.
For the simple and straightforward case d = 1 and ˆ »

+
EEM

ˆ-
-

EEM (Pu et al. 2015), the following useful matching condition
for the outflow and inflow solutions is obtained:

ˆ ( ) ˆ ( ) ( )Y = - Y- +E E2 . 23

To satisfy Equation (19), the value of C in Equation (17) can
then be specified by Equations (15), (17), and (23). The
extraction of black hole rotational energy (by the ˆ ( )Y <-E 0
flows) implies a minimal outflow energy

ˆ ( ) ( )Y >+E 2. 24

With known -E and x-, similar to the outflow case, it is
sufficient to solve the Mach number and the poloidal velocity
of the inflow, as described in Equation (11). A flowchart for the
above procedure is presented and discussed in Appendix A.

2.6. Flow Velocity

The approximate flow velocity components u r and qu can be
obtained by the relation

( )=
qf

q

f

u

F

u

F
, 25

r

r

together with the definition of the poloidal velocity up.
The rest of the components of the four-velocity, u t and fu ,

are obtained by the relation of
ˆ ˆ ( )+ W = - Wfu u E L, 26t F F

together with

( )=a
au u 1. 27

Once the four-velocity of the flow is obtained, the
magnetization parameter

( )
ˆ
ˆ

ˆ ( ) ˆ
ˆ

ˆ ( ) ( )s Y º =
Y -

=
Y -

r
E

E

E E

E

E u

u
; 28t

t

EM

FL

FL

FL

is also determined with ˆ =E utFL . The profile of ( )s Y r; is
associated with the energy conversion from ÊEM to ÊFL and
therefore the flow acceleration efficiency. The initial magne-
tization at the stagnation surface has a good approximation with
the flow energy of the outflow by

( ) ˆ ˆ ( ) ( )s sº Y » » Y+r E E; , 29s s EM

because ˆ ( )= »E r r 1sFL .
For an efficient acceleration, at large scale, ( )s  ¥ =r

s »¥ 0, and the terminal Lorentz factor of the jet ( )g  ¥ =r
ˆ ( )g » Y¥
+E . Here we define the jet Lorentz factor, including

the gravitational redshift factor of the outflow, by (e.g.,
McKinney 2006)

( )g º g u . 30tt
t

It is intriguing to note that, from Equations (8)–(15), for a
specific field line, a faster outflow (a large value of γ and
therefore ˆ+E ) corresponds to a increase of pitch angle (a
smaller value of β) at the stagnation surface.

2.7. Field Strength

As the deformation of the magnetic field due to mass loading
is ignored, the flow solution is constructed by only three of the
four streamline conserved quantities, ( )W YF , ˆ ( )YE , and ˆ ( )YL
(see also Appendix A), and the fourth conserved quantity, ( )h Y ,
does not affect the resulting flow solution. For a given free
function ( )h Y , the magnetic field components have the form

¯ ( ) ( ) ( )hY = YB r b
u

M
; , 31p

p
0 2

¯ ( ) ( ) ¯ ( ) ( )bY = Y YfB r r B r; ; ; , 32p

where b0 is a free normalization parameter. Equations (31) and
(32) also provide another way to understand our matching
condition for the inflow and outflow solutions along the same

6 Recall that ( ˆ ( ) ˆ ( )Y YE L, ) can be alternatively determined by ( ( ) ( )Y Yr r,s A )
in the cold limit. If any two of the four parameters in these pairs are known, the
other two parameters are also known.
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magnetic field line. Provided that both poloidal and toroidal
magnetic fields are smooth and continuous at the stagnation
surface rs, we simply require a smooth and continuous behavior
of β and η there. Accordingly, we have ( ) ( )x xY = Y- +r r; ;s s ,
Equation (19), and ( ) ( )h hY @ Y- + (i.e., d @ 1) at rs, as
described in Section 2.5. To avoid the singular behavior

u 0r as r rs, in practice, an interpolation of ¯ ( ) YB r r ;p s

near =r rs can be applied to obtain the ratio between ( )h Y- and
( )h Y+ . One can also numerically verify that d @ 1 can be

consistently obtained when the energy matching condition,
Equation (23), is adopted.

The number density in both the inflow and outflow regions
can be obtained by the continuity relation

¯
( ) ¯ ( ) ( )h

h
= Y =

Y
n n

B

u
n

M
, 33

p

p
0 0

2

2

where ¯ pm=n n40
2

0 is a constant for the normalization.

3. Model Parameters

Our semianalytical model provides a flexible way to explore
the parameter space of the black hole spin a, magnetic field
configuration ( )Y p , field angular velocity ( )W YF , and outflow
energy ˆ ( )Y+E .

We consider two qualitatively different functions of ( )W YF .
The first is a constant field angular velocity, which is applied to
both the parabolic and monopole fields,

( )W
W

= 0.5, 34F

H

where ( )W = a r2H H is the magnetic field angular velocity and

= + -r a1 1H
2 is the horizon radius. The second is a

nonconstant distribution of the magnetic field angular velocity
WF (Blandford & Znajek 1977; McKinney & Narayan 2007;
Beskin 2009) applied to the parabolic fields,

[ ]
[ ]

( )q
q q

W
W

=
+

+ + -


 

sin 1 ln

4 ln 2 sin sin 2 ln
, 35F

H

2
H

2
H

2
H

where ( )q= + 1 cos H . The profiles of the two field angular
velocities as a function of penetrated horizon latitudes
are plotted in Figure 1. For the nonconstant field angular
velocity, the value varies from W = W0.5F H for q = 0H to
W » W0.265F H for q p= 2H .

In the following, we present flow solutions along parabolic
magnetic field lines (p= 1) in Section 4 and split-monopole
magnetic field lines (p= 0) in Section 5.

4. Trans-fast Magnetosonic Flow along Parabolic Magnetic
Field Lines

4.1. Example of Solutions along a Magnetic Field Line

To demonstrate our semianalytical approach, let us start with
flow solutions along one single magnetic field line. In Figure 2,
the solutions for the flow along a magnetic field line with
W = W0.5F H and q = 85H of a spinning black hole a=0.95
are shown. The solid and dashed profiles corresponds to two
different boundary conditions, ˆ =+E 10 and 100, respectively.
Note that the corresponding ˆ+L are uniquely determined with
the given ˆ+E and WF (see Section 2.4). For this specific setup,
ˆ +L 52.2 for ˆ =+E 10, and ˆ +L 549.4 for ˆ =+E 100.

The square of the Mach number M2, which is a solution of
Equation (11) for ˆ ( )=E 10, 100 , is shown in the top panel of
Figure 2. The resulting pitch angles by the matching condition
introduced in Section 2, as plotted in the second panel, roughly
follow the criteria of the kink instability, ( ) ( )» Wf

ffB B g1r
F

(Tomimatsu et al. 2001), consistent with the results of the
GRMHD simulation (McKinney 2006) and semianalytical
computations (Pu et al. 2015). For the outflow, the poloidal and
toroidal components of the magnetic field become comparable
(b » 1) near the outer light surface (yellow vertical line in
the outflow region). This is a well-known property of a
magnetically dominated MHD flow. The components of the
flow four-velocity are shown in the bottom panel of Figure 2.
Note that the flow four-velocity of the two solutions has
noticeable differences only at the larger scale ( >r r100 g in the
plot). For the inflow, as discussed in Pu et al. (2015), the four-
velocity of a magnetically dominated inflow is not sensitive to
the flow energy because the Alfvén surfaces are always located
close to the inner light surface and the FMS is always located
close to the horizon, as will be shown in Section 4.3. These
characteristic surfaces will be shown later in this section.
The physical reason for the existence of the outer and inner

light surfaces can also be recognized from the flow solution. To
satisfy the requirement of causality, the outer surface marks the
boundary beyond which the flow motion must be mostly
poloidal, as can be seen by that > fu ur beyond the outer light
surface. The inner light surface, on the other hand, marks the
boundary beyond which the flow is close enough to the central
rotating black hole and must rotate faster due to the gravitational
redshift effects. As we will also see in Section 4.3, close to the
horizon, the flow corotates with the black hole.

4.2. Jet Acceleration and Energy Conversion

We now focus on the outflow region and examine the jet
acceleration via the evolution of the jet Lorentz factor. Results
of different black hole spin ( =a 0.1, 0.5, 0.95) and the total
energy of the outflow ( ˆ =+E 10, 100, 500) are shown in
Figure 3. Again, we focus on a field line that penetrates the
black hole at q = 85H and assume W = W0.5F H. The cases for
ˆ =+E 10, 100 and a=0.95 therefore correspond to the
solutions shown in Figure 2. The Lorentz factor versus the

Figure 1. Possible profiles of the angular velocity of magnetic fields ΩF vs.
polar angle on the black hole event horizon θH in terms of the angular velocity
of the hole ΩH: constant field angular velocity (solid line; Equation (34)) and
nonconstant field angular velocity (dashed line; Equation (35)).
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distance away from the black hole is computed only for
the outflow solution; therefore, the profile starts from the
stagnation surface (the cyan vertical line). The location of the

stagnation surfaces moves further away from the black hole as
the black hole spin becomes lower due to the resulting smaller
WF and therefore weaker magnetocentrifugal force applied to
the plasma loading onto the magnetic field line. The location of
the FMS for each flow solution is indicated by the vertical

Figure 2. Example flow solutions of different outflow energy ˆ+E along a
parabolic magnetic field line (θH=85°) in the magnetosphere of a rotating
black hole. Top panel: Mach number square M2. Middle panel: pitch angle,
which is well approximated by the profile (1/gffΩF), below which the kink
instability takes place (Tomimatsu et al. 2001). Bottom panel: flow four-
velocity uα. The locations of the stagnation surface (cyan vertical line) and the
inner/outer light surfaces (yellow vertical lines) are indicated. The shaded gray
area indicates the inflow region, and the hatched area indicates the black hole.

Figure 3. Lorentz factor of the GRMHD outflow γ vs. the distance away from
the rotational axis (θH=85°) for cases of different outflow energy ˆ+E and
dimensionless black hole spin a. At large distances, ˆg »¥

+E due to
the efficient conversion from electromagnetic to kinetic energy. The
vertical dashed lines indicate the locations of the corresponding location
of the FMS for each solution. The theoretical predicted location
(( ) ( ˆ )q » W+r Esin FFMS

SRMHD 1 3 ) and Lorentz factor ( ( ˆ )g » +EFMS
SRMHD 1 3) at

the FMS for an SRMHD flow (TT03; Beskin & Nokhrina 2006) is overlapped
by the colored circles, which roughly fits our GRMHD solution for the outflow.
The inflow region is indicated by the shaded gray area. The hatched gray area
indicates the black hole. See Section 4.2 for more discussion.
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dashed lines. For all cases, the γ profiles linearly grow
(g qµ r sin ) in the superfast-magnetosonic region until the
flow reaches a value ˆg » +E .

By examining the perturbation on the equation of motion
for the plasma outflow in a parabolic force-free field line7

( )qY µ -r 1 cos0 in flat spacetime, Beskin & Nokhrina
(2006) found that the flow Lorentz factor grows with the
distance q=z r cos from the equatorial plane with8 g µ z1 2

until the flow converts all of its electromagnetic energy
into kinetic energy. In addition, the FMS is located at
( )q s» Wr sin FF

SRMHD
0
1 3 , and the Lorentz factor there is

g s»F
SRMHD

0
1 3, where s0 is Michel’s magnetization parameter

(Michel 1969). The same conclusion is also obtained
in TT03 (2003).

To compare with SRMHD theory in the distant flat
spacetime, the above predicted location and Lorentz factor at
the FMS are overlapped in Figure 3 (colored circles) by
considering the magnetization at the stagnation surface, where
the outflow starts: ˆs » +Es (see also Equation (29)). A good
agreement of the jet acceleration between SRMHD and
GRMHD flows for all different black hole spins is found.
Such interesting features seem to result from the fact that the
outflow region is far enough away from the black hole.

To show the energy conversion from the electromagnetic
component ÊEM to the fluid component ÊFL along the flow, the
ratio of the two components, σ, is shown in Figure 4. The
inflow part is also shown in the plot, but note that ˆ <E 0EM

(and ˆ >E 0FL ) in the inflow region (see also Pu et al. 2015), and
the black hole rotational energy is extracted by an outgoing
Poynting flux-dominated GRMHD inflow that has a negative
total energy ( ˆ ˆ ˆ= + <E E E 0EM FL ; Takahashi et al. 1990). The
energy conversion for the outflow starts from ˆs » +Es at the
stagnation surface and gradually decreases when the ÊEM

component converts to ÊFL. It is clearly shown that the flow
remains Poynting flux-dominated at the FMS. The energy
conversion efficiency at the FMS is again consistent with the
predicted value from magnetically dominated SRMHD flows
(TT03 2003; Beskin & Nokhrina 2006), ( ˆ )s » +EFMS

SRMHD 1 3, as
indicated by the colored circles in Figure 4.

We further consider cases of different field angular velocity
in Figure 5, with fixed outflow energy ˆ =E 100 and black hole
spin a=0.5. While the decrease of the angular velocity results
in closer stagnation surfaces (indicated by stars) and location of
the FMS (indicated by dashed vertical lines), the resulting flow
solutions are also in good agreement with the predicted values
from magnetically dominated SRMHD flows (TT03; Beskin &
Nokhrina 2006).

4.3. Jet Properties near the Black Hole

The global properties of a GRMHD jet near a black hole can
be examined by solving the trans-fast magnetosonic solutions
for the whole magnetic field lines within the funnel region. The

Figure 4. Conversion from the electromagnetic energy ÊEM to the fluid energy
ÊFL of both the outflow solutions shown in Figure 3 and their corresponding
inflow solutions. The vertical dashed lines indicate the locations of the
corresponding location of the FMS for each solution. The theoretical predicted
location and the energy conversion efficiency ( ( ˆ )s » +EFMS

SRMHD 2 3) at the FMS
for an SRMHD flow are overlapped by the colored circles, which roughly fits
our GRMHD solution for the outflow. The inflow region is indicated by the
shaded gray area, and the hatched gray area indicates the black hole. In the
hatched blue area, ˆ ˆ<E EEM FL.

7 The unperturbed field Ψ0 considered in Beskin & Nokhrina (2006) has the

form [ ( ) ]Y µ W + W +X Xln 1F F0
2 , where ( )q= -X r 1 cos . By using the

relation ( ) ( )= + +- x x xsinh ln 11 2 , the dominant form of Ψ0 is found to
be ( )q-r 1 cos .
8 For a magnetic field ( )qY µ -r 1 cosp , the magnetic field line shape

( ) ( )qµ -z r sin p2 2 (see, e.g., Tchekhovskoy et al. 2008). For p=1, the
relation g µ z1 2 is consistent with our outflow solutions shown in Figure 3,
which satisfy g qµ r sin .
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GRMHD jet solutions in the black hole magnetosphere with a
constant magnetic field angular velocity are shown in Figure 6
for the case ˆ ( )Y =E 10 and black hole spins a=0.5 (top) and
0.95 (bottom). The flow boundary shown here corresponds to
the flow along the magnetic field line that penetrates the event
horizon at θH=90°. For all panels, the stagnation surface
(dashed white line), outer light surface (solid white line), outer
Alfvén (dashed red line), and outer FMS (solid red line) are
plotted. As shown in the inset of the left panels, the inner Alfvén
and FMSs are located inside the static limit surface, satisfying the
necessary condition to extract black hole rotational energy
outward (Takahashi et al. 1990). For a Poynting flux-dominated
flow, the Alfvén surfaces almost coincide with the light surfaces,
and the inner FMS almost coincides with the event horizon, as
seen in both the top and bottom panels. As also seen in Figure 3,
the stagnation surface of a faster-spinning black hole is located
closer to the central black hole.

The ratio of the toroidal and poloidal components of the
magnetic field are shown in the left panels of Figure 6. As
shown in the plot, the poloidal field dominates in the inflow

region and close to the rotational axis and becomes comparable
to the toroidal magnetic field near the outer Alfvén surface.
In the middle panels of Figure 6, the poloidal three-velocity

square, ( )ºv u up p
t2 2, is shown. The stagnation surface

( =u 0r and =qu 0) separates the inflow region ( <u 0r and
>qu 0) and the outflow region ( >u 0r and u θ<0). Along the

magnetic field line, for the inflow, vp is not monotonic; the flow
three-velocity gradually increases after they departure from the
stagnation surface, but drops quickly before they enter the
black hole due to the rapid increase of u t near the black hole
(see also the bottom panel of Figure 2). For the outflow, vp
continuously increases.
We show the angular velocity of the flow, W = fu ut, in the

right panels of Figure 6. Note that ( ) ( )W Y » W YF at the
stagnation surface due to the vanishing poloidal velocity there.
For the inflow, Ω gradually increases when it streams toward to
the black hole; finally, ( )W Y » WH due to the black hole
rotation.
In Figure 7, we plot the properties of the GRMHD jet with

the magnetic field with the nonconstant angular velocity. In
addition to the fact that the flow also shares the above-
mentioned general flow features shown in Figure 6, the
locations of the stagnation surfaces in Figure 7 move further
away from the black hole due to a slower field angular velocity
profile (see also Figure 1). It is interesting to note that a more
rapid decrease of ( )W YF near the jet boundary results in the “V
shape” of the stagnation surfaces, with its valley located close
to the jet boundary. Such a V shape of the stagnation surfaces
in turn modifies the profile of the outer light surface and
therefore the outer Alfvén surface. Note how the resulting
constant vp

2 contours (middle panels) also have a V-shaped
profile, indicating a nonmonotonic “slow–fast–slow” structure
of the jet Lorentz factor across the jet. The outer slow layer
adjacent to the funnel results from the differential rotation in
the magnetosphere of a spinning black hole instead of a slower
wind region emerging from the corona of the accretion flow.
The resulting effect on the radiative transfer from the noticeable
difference in velocity between a constant and nonconstant field
angular velocity (while keeping all other parameters the same),
as seen in the insets of Figures 6 and 7, may, in principle, be
distinguishable by horizon-scale black hole images or movies
(e.g., Jeter et al. 2018). The first black hole image was recently
obtained by the Event Horizon Telescope (Event Horizon
Telescope Collaboration et al. 2019a, 2019b, 2019c, 2019d,
2019e, 2019f). In addition, if energetic electrons are con-
tinuously or intermittently injected from the stagnation surface,
its location could be constrained by horizon-scale observations
(e.g., Pu et al. 2017).

4.4. Characteristic Surfaces

To present the distribution of characteristic surfaces—
stagnation, inner/outer Alfvén, and inner/outer FMS—we plot
in Figure 8 the result of three different outflow energies,

ˆ ( ) ( )g » Y =¥
+E 10, 100, 500 , in a constant (left panel) and

differential (right panel) black hole magnetosphere with
a=0.95. The case for ˆ =+E 10 corresponds to the solutions
shown in the bottom panels of Figures 6 and 7. The location of
the stagnation surface (cyan) and inner/outer light surfaces
(yellow) are strongly related to ΩF(Ψ) and independent of ˆ+E .
Because the resulting locations of the inner FMSs (which
almost coincide with the event horizon) and inner/outer Alfvén

Figure 5. Lorentz factor of the outflow (top) and energy conversion (bottom) of
flows along magnetic fields with different field angular velocities. The locations
of the stagnation surfaces are indicated by stars. See also Figures 3 and 4 for
explanations of the plot.
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surfaces (which almost coincide with the inner/outer light
surfaces) are all similar for all different ˆ+E considered here, we
only show the locations of these surfaces for the case of
ˆ ( )Y =+E 10 (red). The outer FMSs for different ˆ ( )Y+E , which

relate closely to the jet acceleration process (as discussed in
Section 4.2), are shown by the solid lines in different colors. In
general, the location of the FMS of the outflow moves further
away from the black hole for a larger ˆ+E . The resulting V

Figure 6. GRMHD flow structure of a parabolic magnetosphere with a constant field angular velocity ΩF(Ψ)=0.5ΩH for cases of different dimensionless black hole
spin a. The total energy of the outflow is assumed to be E+(Ψ)=10. Left panels: β, the ratio between the toroidal and poloidal magnetic fields. Middle panels: square
of the poloidal flow velocity ( )ºv u up p

t2 2 2. Right panels: angular velocity of the flowW º fu ut , in terms of black hole angular velocity ΩH. For all panels, the outer
FMS (solid red line), outer light surface (solid white line), outer Alfvén surface (dashed red line), and stagnation surface (dashed white line) are shown. The static limit
surface is indicated by the green dashed line in the insets. The inner light surface (solid white line), inner Alfvén surface (dashed red line, which almost coincides with
the solid white line), and inner FMS (solid red line) are shown in the inset of the left panels. The central shaded area indicates the black hole. See Section 4.3 for more
discussion.
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Figure 7. Same as Figure 6 but for the cases of the nonconstant field angular velocity profile ΩF(Ψ) shown in Figure 1.
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shapes of the stagnation surface and outer Alfvén and FMS for
a differential ΩF(Ψ) (right panel) are also clearly shown.

While the surfaces shown in Figure 8 correspond to constant
ˆ ( )Y+E , the case for nonconstant ˆ ( )Y+E distribution can be
qualitatively inferred by the combination of the locus of
different ˆ ( )Y+E at different Ψ. For example, for the GRMHD
simulation of an accreting black hole system with a=0.9375
presented in McKinney (2006), the velocity at the jet core is
slower compared to the jet boundaries. By linking the surfaces
with a higher outflow energy ˆ ~+E 100 near the jet boundary
to a lower outflow energy ˆ <+E 100 toward to the core (the jet
axis direction), the resulting profiles of the Alfvén and FMSs
thus have a concave profile bending toward to the jet axis,
qualitatively explaining the result of McKinney (2006), in
which the locus of the FMS gradually becomes horizontal
near the pole region in a log–log plot (Figure 11 of
McKinney 2006).

Recently, notes have been added to the result of McKinney
(2006). Chatterjee et al. (2019) performed a number of large-
scale simulations with a=0.9375 and compared with the
result of McKinney (2006). In general, the overall characteristic
surfaces shown in Figure 14 of Chatterjee et al. (2019) are
similar to those in Figure 11 of McKinney (2006). Intriguingly,
the surfaces show V shape–like profiles, a similar feature as
shown in the right panel of Figure 8. They also found that the
pinch instabilities of the magnetic field developed around the
boundary layer region between the jet and the surrounding
wind/corona region play an important role in converting
electromagnetic energy into heat energy. Although we assume
the magnetic field configuration by the parameter p, the
GRMHD simulations indicate that the field geometry mildly
deviates from the parabolic magnetic field line of p=1 (e.g.,
Figure 11 of McKinney 2006 and Figure 14 of Chatterjee et al.
2019). Note that, in our model of cold GRMHD flow, the

slow-magnetosonic speed is zero everywhere. In contrast, the
pressure of the flow is properly considered in the GRMHD
simulation, and therefore the slow-magnetosonic surface
appears. The location of the stagnation surface would vary
from the cold fluid limit we considered here, depending on the
thermodynamical properties of the plasma (e.g., the electron
temperature). Nevertheless, as the thermodynamical properties
have little effect on jet acceleration, except when the pitch
effect takes place, our semianalytical model for the cold flow is
capable of providing qualitative and (rough) quantitative
insights into a magnetically dominated GRMHD flow structure
from the horizon to a large distance. Observationally, for a
black hole system with known jet acceleration across the jet
cross section at a different radius, the black hole spin and the
characteristic surfaces may therefore be constrained (see, e.g.,
Nakamura et al. 2018, for the case of M87).

5. Trans-fast Magnetosonic Flow along Split-monopole
Magnetic Field Lines

We now explore the split-monopole magnetosphere (p= 0).
Motivated by the SRMHD flow for different plasma loading
across field lines (Tchekhovskoy et al. 2009), here we also
release the assumption of a constant ˆ ( )Y+E and choose three
representative different profiles by

ˆ ( ) ˆ ( ) ˆ ( )q kqY = +c+E E E; sin , 36H max H min

where Êmax and Êmin are the maximum and minimal energy,
and χ and κ are the parameters controlling the corresponding
angle when ˆ ( ) ˆqY =E E; H max. Here we adopt ˆ =E 460max

and ˆ =E 10min .
We consider three different energy distributions of ˆ ( )Y+E , as

shown in Figure 9. For case A, for reference, we adopt a
constant ˆ ( )Y+E across the magnetosphere, with χ=0. For

Figure 8. Characteristic surfaces of a parabolic magnetosphere with constant and nonconstant field angular velocities (Figure 1) around a fast-spinning black hole,
a=0.95. The inner and outer light and stagnation surfaces are shown by the yellow and cyan lines, respectively. The outer FMSs for the total energy of outflow
E+(Ψ)=(10, 100, 500) are shown by the solid lines in different colors. The black hole is indicated by the gray shaded region. The inner fast surfaces of all different
E+(Ψ) almost coincide with the event horizon. In this plot, the outermost and innermost field lines attach to the horizon at θH=90° and 5°, respectively. See
Section 4.4 for more discussion.
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case B, by adopting χ=4 and κ=1, a monotonically
increasing ˆ ˆ=+E Emin from the pole region then reaches Êmax at
the funnel region of the accreting gas (the jet boundary). For
case C, the ˆ+E reaches Êmax at around θH∼70°, then deceases
toward the jet boundary, as described by using χ=5 and
κ=1.3. The constant field angular velocity, Equation (34), is
applied for the split-monopole magnetic configuration con-
sidered here (Blandford & Znajek 1977; Phinney 1983).
However, among the three representative cases, A, B, and C,
the last case seems more physical (see also Tchekhovskoy et al.
2009).

As in Tchekhovskoy et al. (2009), it seems convenient to
show the Lorentz factor γ in the “logarithmic” spherical
coordinate. In Figure 10, we consider a black hole with a=0.5
and present the Lorentz factor of the GRMHD outflows. The
shapes of the stagnation surface (cyan lines), inner and outer
light surfaces (yellow lines), and outer Alfvén surface and FMS
(dashed and solid red lines, respectively) are all elongated in
the direction toward the polar direction. We should note that
the efficient energy conversion is not efficient for a split-
monopole configuration (see Tchekhovskoy et al. 2009), and
the efficient jet acceleration (i.e., ˆ ( )g  Y+E ) far away from
the FMSs is artificial due to the assumption for the parameter ζ0
(see also Section 3 and Appendix B). Therefore, the region far
away from the outer FMS for a split-monopole configuration is
beyond our interest and approach.

The perturbation on the equation of motion for the plasma
loading onto a split-monopole force-free magnetic field line

( )qY µ -1 cos in flat spacetime was well studied in Beskin
et al. (1998). The authors found that the FMS is located at9

( )q s» Wr sin FFMS
SRMHD

0
1 3 and the Lorentz factor there is

g s»FMS
SRMHD

0
1 3, where σ0 is Michel’s magnetization parameter

(Michel 1969). The comparison between our GRMHD
solutions and the above predicted properties is shown in
Figure 11. The green circles represent the location computed by

( ) ( ˆ )q » W+r Esin FFMS
SRMHD 1 3 , which shows good agreement

with the FMS locations of the GRMHD outflow solutions
(solid red lines). It is also clear that, for a given magnetic field
line, the location of the outer FMS is further away for a larger
ˆ+E . Therefore, different choice of ˆ ( )Y+E correspondingly
result in different profiles of the FMS. The color map in
Figure 11 shows the magnetization. It is verified by the contour

( ˆ )s =+E 12 3 that ( ˆ )g » +EFMS
SRMHD 1 3 is a good approx-

imation of the energy conversion ratio at the FMS of the
outgoing GRMHD flow.

6. Limitation of the Model

Although the presented semianalytical model provides a fast
and intuitive way to explore the steady trans-fast magnetosonic
outflow along magnetic field lines in the black hole magneto-
sphere, there are some limitations to this approach. Here we
enumerate several cautions for the utility of our model.
In our outflow model, we assume a magnetically dominated

black hole magnetosphere at the jet formation region, so that
we apply the solution of force-free magnetic fields there by
construction. The obtained trans-fast magnetosonic flow
solution becomes fluid kinetic energy-dominated at the radius
about 10 times the radius of the FMS, so that the effect of
plasma inertia on the magnetic field shape cannot be ignored
(e.g., TT03). In this case, it is necessary to evaluate the force-
balance equation of the magnetic field lines, and our presented
approach cannot be applied.
Another limitation is the flow solution close to the pole

region, θ→0. Such a region requires more cautions for several
reasons. First, our model scheme applies for flow that passes
the outer light surface. However, close to the rotational axis of
the magnetosphere, the location of the outer light surface
moves toward infinity (rL?1 for θL=1, where L denotes
the outer light surface). Second, field lines near the pole tend
to bunch up around the axis due to mass loading (e.g.,
Tchekhovskoy et al. 2009, 2010), which is beyond the
application of our working assumption, since the deformation
of the force-free field is completely ignored. In general, the
flow energy, mass loading, and deformation of the magnetic
field lines are all related (e.g., Pu et al. 2015).

7. Summary and Outlook

A semianalytical approach for modeling the global stationary
trans-fast magnetosonic jet structure is presented in this paper
by the following working assumptions: (i) adopting a
prescribed poloidal force-free magnetic field configuration
and ignoring the deformation of the fields due to the plasma
loading and (ii) prescribing a sophisticated relation between the
poloidal and toroidal components of the magnetic field (TT08)
to preserve the key physics that resulted from the plasma
inertia, including the jet acceleration and the existence of the
FMS. The trans-fast magnetosonic outflow model by introdu-
cing a regular function ( )b Yr; thus easily integrates all the key
processes for a black hole–powered jet acceleration at different
scales from horizon (≈rg) to large (> - r10 ;4 5

g ∼pc scale). We
discuss GRMHD jet acceleration and magnetization along
magnetic field lines in black hole magnetospheres. Then we
show their dependence on the black hole spin a, magnetic field
geometry Ψ, angular velocity of the magnetic field line ΩF(Ψ),
and total energy of the outflow ˆ ( )Y+E .

Figure 9. Three different cases of the outflow energy ˆ ( )Y+E along a split-
monopole magnetic field line that penetrates the event horizon at different polar
coordinates θH. See Section 5 for more details.

9 Although the transverse distance to the FMS, ( )q s» Wr sin FFMS
SRMHD

0
1 3 , is

the same for the split-monopole case (Beskin et al. 1998) and the parabolic field
line case (Beskin & Nokhrina 2006), the radial distance to the FMS, ( )r FMS

SRMHD,
is much shorter for the former case compared to the latter due to different field
geometry.

13

The Astrophysical Journal, 892:37 (17pp), 2020 March 20 Pu & Takahashi



Figure 11. Corresponding magnetization, rescaled by ( ˆ )+E 2 3, for both
the outflow and inflow regions of Figure 10. Regions for ( ˆ )s <+E 12 3 are
not shown in order to highlight that contours of ( ˆ )s =+E 12 3 roughly fit
the outer FMS (outer red lines), consistent with the theoretical prediction
for an SRMHD flow along a split-monopole case (Beskin et al. 1998).
The green circles indicate the theoretical prediction location for selected
field lines, which is also in good agreement with the location of the
outer FMS.

Figure 10. Lorentz factor of the GRMHD outflow along a split-monopole
magnetosphere of a modest spinning black hole, a=0.5, for the different flow
energy choices shown in Figure 9: cases A (top panel), B (middle panel), and C
(bottom panel). A “logarithmic” spherical coordinate (rl, θl) defined by
( ( ) )q q= + =r r1 log ,l l10 is adopted. The light surfaces (yellow lines, which
almost overlap with the red dashed lines) and stagnation surface (cyan lines)
are shown. The central shaded area indicates the black hole. The inner dashed
and outer solid red lines are the Alfvén surface and FMS of the outflow.
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The solution of our models includes the extraction of black
hole rotational energy via the inflow, a continuous propagation
of Poynting energy flux where the inflow and outflow matches
the plasma source (i.e., the stagnation region), and the
conversion from electromagnetic energy to plasma kinetic
energy, which becomes effective beyond the light surface and/
or FMS. A simple relation of the inflow energy ( )Y-Ê and
the outflow energy ( )Y+Ê is assumed by matching the
conditions of the ingoing and outgoing trans-fast magnetosonic
flow solution. We find that a minimal outflow energy is
required for the extraction of the rotational energy of a rotating
black hole.

With flexible parameter choices, together with assumed
electron heating, cooling, and distribution, our model is
applicable for confronting theoretical GRMHD jet properties
with observations at different scales, such as polarized jet
emission (e.g., Broderick & McKinney 2010; Porth et al. 2011)
and jet morphologies at large (e.g., Takahashi et al. 2018;
Ogihara et al. 2019) and horizon (e.g., Broderick & Loeb 2009;
Dexter et al. 2012; Chan et al. 2015; Mościbrodzka et al. 2016;
Pu et al. 2017; Ryan et al. 2018; Chael et al. 2019; Event
Horizon Telescope Collaboration et al. 2019e; Mościbrodzka &
Falcke 2013) scales. With a prompt model construction for a
given set of parameters, our model is also suitable for
constraining preferred parameters in accreting black hole
systems by systematically exploring the parameter space
(e.g., Broderick et al. 2009, 2011, 2016).
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Appendix A
Flowchart for the Semianalytical Model

A flowchart for the semianalytical approach described in
Section 2 is summarized in Figure 12. By describing the black
hole magnetosphere with black hole spin a, field configuration
Ψ(p), and magnetic field angular velocity Ω(Ψ), we can
determine the stagnation surface ( )Y Wr a, , Fs , which separates
the regions of the inflow (indicated by the superscript “−”) and
the outflow (indicated by the superscript “+”). We then use the
specific flow energy of the outflow ˆ ( )Y+E , a streamline
conserved quantity, as the boundary condition of the GRMHD
solution, with which the location of the Alfvén surface ( )Y+rA

and the angular momentum of the flow ˆ ( )Y+L , another
streamline conserved quantity, are simultaneously determined,
and the Alfvén Mach number ( )Y+M r; and poloidal velocity

( )Y+u r;p of the outflow can be algebraically solved by using
Equation (11). Along each magnetic field line, the inflow
solution is consistently solved by applying the matching
condition for the flow energy ˆ ( )Y-E and pitch angle ( )x Y- r; .
The relativistic jet powered by a rotating black hole should
satisfy the following conditions: < W < W0 F H and ˆ >+E 2.
Note that this procedure is for the case of a stationary solution,
so it is also easy to reverse (B→A).

Appendix B
Flow Acceleration and Its Dependence on the Field

Configuration

The relation of the efficiency of SRMHD flow acceleration
and the magnetic field geometry has been extensively discussed
in previous works. It is shown that for an infinite magnetically
dominated plasma, the flow velocity is similar to the drift
velocity (Narayan et al. 2007; Tchekhovskoy et al. 2008), and
the Lorentz factor γ can be decomposed into (Tchekhovskoy
et al. 2008, 2009; Komissarov et al. 2009)

( )
g g g

= +
1 1 1

, 37
2

1
2

2
2

where

( )g =
B

B
, 38

p
1
2

2

2

( )g =
-f

B

B E
, 39

p
2
2

2

2 2

where Ep is the strength of the poloidal electric field and Bp and
Bf are the poloidal and toroidal components of the magnetic
field B. Two types of acceleration regime exist: the first term in
Equation (37) corresponds to a linear (faster) acceleration, and
the second term in Equation (37), which is related to the field
configuration and the poloidal radius of the curvature of the
field lines, corresponds to a logarithmic (slower) acceleration.
In the detailed analysis in Tchekhovskoy et al. (2008), it is
shown that for a field configuration ( )qY µ -r 1 cosp , the
second term is negligible, p�1, and all of the electromagnetic
energy will eventually convert to the kinetic energy of the flow.
It is further pointed out in Tchekhovskoy et al. (2009) that,
while the first term is always dominant close to the compact
object, the second term becomes dominant beyond a “causality
surface” introduced in Tchekhovskoy et al. (2009). While the
FMS marks the boundary beyond which the flow can no longer

Figure 12. Overview of modeling Poynting flux-dominated trans-fast
magnetosonic flow powered by a rotating black hole, as described in Section 2.
The flow structure is semianalytically computed after assigning four parameters
in the model: black hole spin a, magnetic field configuration Ψ, magnetic field
angular velocity ( )W YF , and total energy of the outflow ˆ ( )Y+E across the
magnetic field lines Ψ. The solid boxes indicate the input parameters, and the
dashed boxes indicate the output GRMHD flow solution. The symbol A B
indicates that B can be computed from A. See Appendix A for details.

15

The Astrophysical Journal, 892:37 (17pp), 2020 March 20 Pu & Takahashi



communicate with its upstream along a streamline, the
acceleration is also related to the communication across
the streamlines. The causality surface is therefore defined
as the area beyond which the jet can no longer communicate
with the jet rotation axis. However, the causality surface is
always located beyond the FMS. Therefore, including the
consideration of the causality surface effect and the transition
of the two different acceleration regime would only modify the
acceleration properties beyond the FMS.

In our model, the acceleration properties are associated with
the term ζ0 in Equation (15). To demonstrate the effect of
nonzero ζ0, we compare the parabolic outflow solution for the
case ˆ =+E 100 shown in Figure 3 with different choices of ζ0
in Figure 13. The right panel shows the energy conversion
efficiency from electromagnetic part to the particle part. The
vertical dashed lines (which are almost overlapped with each
other) indicate the location of the FMSs for different choices of
ζ0. A choice of ζ0=0 actually guarantees the linear
acceleration (the first term in Equation (37)), and therefore
efficient energy conversion is obtained (∣ ˆ ˆ ∣ <+ +

E E 1EM FL )
far beyond the outer FMS, while for ζ0<0, the flows
remain magnetically dominated (∣ ˆ ˆ ∣ >+ +

E E 1EM FL ). Note that for
ζ0>0, the flow velocity (or the Alfvén Mach number)
becomes infinitely large at a critical radius (see TT03).
We therefore ignore the effect of the second term in
Equation (37) and adopt ζ0=0 as the default value, which
ensures that ( )g g q» µr sin1 (Tchekhovskoy et al. 2008, 2009;
Komissarov et al. 2009) can be properly realized (see Figures 3
and 5).

It is possible to include the transition from linear to
logarithmic growth by further fine-tuning of ζ0 with a
generalized function ( ) ( ˆ ( ) ( ))z z hY = Y Y+p E, ,0 0 , depending
on the location of the causality surface for a specific black hole
magnetosphere. Nevertheless, as explained before, including
the consideration of the causality surface effect and the
transition of two different accelerations would only modify
the acceleration properties beyond the FMS. This is shown by

the fact that the flow solutions of different choice of ζ0 are
similar before passing the cyan circle. Thus, consideration of
where the FMS will occur will be key in estimating the jet
acceleration region.
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