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Abstract
Using multi-scale beyond all order methods, we investigate stationary 
spatially localized solutions of a Schnakenberg system, a prototype reaction–
diffusion system, near the onset of a subcritical Turing bifurcation. These 
solutions are homoclinic orbits to a homogeneous solution and passing near 
a periodic solution. In bifurcation diagrams, branches of these solutions 
commonly show two interwining snaking curves. Here we calculate the 
maximal range of existence for these solutions and compare our findings 
with numerical computations. We derive and optimally truncate a (divergent) 
asymptotic series of a front solution. The remainder of the truncated series 
is exponentially small if and only if a specific parameter range is met. This 
complements work on Swift–Hohenberg equations where similar results have
been obtained.
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1. Introduction

Homoclinic snaking refers to the existence of a continuum of localized stationary solutions, 
homoclinic orbits to a homogeneous solution and passing near a periodic solution, in a param-
etrized partial differential equation, which commonly forms a snaking structure in bifurcation 
diagrams. This has been investigated in a variety of theoretical and experimental contexts, see 
e.g. [Daw10, Des11, Kno15, Kno08] for overviews and e.g. [MYG07,  RAB+13] for some 
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concrete examples. An equation which is often used as a generic model for homoclinic snak-
ing is the Swift Hohenberg equation:

∂tu = λu − (1 +∆)2u + N(u,σ)� (1)

with u = u(x, t) ∈ R, x ∈ R, and parameters λ,σ ∈ R. Typical choices for the nonlinearity N 
are f (u) = σu2 − u3 and g(u) = σu3 − u5. The trivial solution u ≡ 0 loses stability at λc = 0 
and for σ > σ0 � 0 with σ0 =

√
27/38 for N  =  f  and σ0 = 0 for N  =  g a periodic solution 

with wavenumber 1 bifurcates subcritically. In [CK09], equation  (1) with nonlinearity f  is 
analyzed with beyond all order methods to compute the existence range for localized patterns 
near the onset of the subcritical Turing bifurcation, and it is shown that the existence range 
is exponentially small in parameter space. The work in [CK09] is extended in [DMCK11], 
where the same method is used to investigate (1) with the nonlinearity g, and λ as the bifurca-
tion parameter. In detail, constants µ and ν  are derived such that

|λ− λM| < µ

σ
e−

ν
σ if 0 < σ � 1� (2)

describes the existence range in λ, where λM is the so called Maxwell point. The constant ν  
is calculated analytically while µ is computed numerically only, but it is shown that µ is the 
limit of a recursive series. To achieve (2), an asymptotic expansion is derived by a multi-scale 
ansatz. Even though the calculation of the whole expansion and an estimate for the remain-
der is necessary to justify (2), it turns out that the result can essentially be computed with 
the knowledge of the leading order solution only. In detail, the pattern wavenumber and the 
behavior of the amplitude singularities closest to the real line determine ν  up to an integer 
constant, which incorporates the lowest order nonlinearity, see also [KC13]. This indicates 
that beyond all order methods can be a strong tool to calculate snaking widths as the results 
can be established quite easy at least in the one dimensional case, even though the justification 
needs heavy computation.

The aim of this paper is to transfer the results of [CK09] and [DMCK11] to the Schnakenberg 
system

∂tU = D∆U + N(U,λ,σ), N(U,λ,σ) =
(
−u+u2v
λ−u2v

)
+ σ

(
u−1

v

)2 ( 1
−1

)

�

(3)

with U = (u, v)(t, x) ∈ R2, x ∈ R and diffusion matrix D =

(
1 0
0 d

)
. The original 

Schnakenberg model [Sch79] (σ = 0) is widely used to understand the distribution of a 
morphogen, see, e.g. [GT85]. It was investigated for Turing pattern in 2D–3D, and recently 
[UW14] also investigated localized patterns in 2D not only on a homogeneous background, 
but also localized hexagon pattern on a background of stripes. In [UW14] the modification 
(σ �= 0) was made to allow localized patterns between a homogeneous solution and stripes, 
and thus localized patterns in 1D.

We are interested in localized steady patterns, i.e. we aim for localized solutions of the 
equation

0 = D∆U + N(U,λ,σ).� (4)

The homogeneous solution Uh ≡
(
λ, 1

λ

)
T  loses stability at λ � λc =

√
d
√

3 −
√

8 and 
a periodic solution with wavelength 2π/kc, kc =

√√
2 − 1 bifurcates subcritically for 

σl < σ < σr < 0 with σr ≈ −2.4d− 1
2 and σl ≈ −16d− 1

2. The exact values for σr and σl are 
computed, but omitted, as they are lengthy, see remark 2.3. We restrict ourself to d  >  d0 with 
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d0 = 3 +
√

8, which is the condition for Turing instabilities at the homogeneous solution Uh. 
Figure 1 shows bifurcation diagrams for (3) for different values of σ, including a snaking 
branch of localized patterns.

Under the numerically confirmed assumption that localized patterns exist, we show that 
near σr and σl there is at most an exponentially small (in σ) λ-range, in which this localized 
patterns can exist. A numerical comparison will show that our formula approximates the exact 
range for localized pattern for σ close to σr and σl, respectively.

The calculations needed for this result are cumbersome, but in many parts similar to those 
in [CK09] and [DMCK11]. In contrast to [CK09] and [DMCK11] we investigate a two comp
onent system of reaction–diffusion type, which is non-variational and where the available 
numerical and analytical information is limited. The non-variational nature of the system does 
not have effects on the calculus itself, as non-variational effects are of smaller scale, but the 
definition of objects like the Maxwell point, in a variational system the point where the energy 
of both investigated solutions is the same, is less intuitive and requires the derivation of ampl
itude equations. The system case however complicates the analysis a lot, as e.g. the nonlin-
earities need to be understood as k-linear forms now and tend to have a complicate structure. 
We cope with these problems by calculating in a quite universal fashion, i.e. mostly treat the 
nonlinearities as arbitrary k-linear forms. This allows one to understand our calculation as a 
generalizations of these from [CK09] and [DMCK11]. We do not give general criteria for the 
calculation of ranges of localized patterns in arbitrary systems, but we have set up a Matlab 
symbolic toolbox script for the crucial computations, which can be adapted for arbitrary two 
component systems in a few steps. We also give a theorem-proof scheme, which supports 
further investigations of localized patterns in general systems.

The paper is organized as follows. In section  2 we state our main result, linearize the 
system around the homogeneous solution Uh and introduce some notations along with a new 
parameter ε in which we scale the equation. Then we derive the leading order front solution 
in an amplitude equation of order five in section 3 as the starting point for the beyond all 
order methods. In section 4 we construct the snaking width formula through beyond all order 
asymptotics, and in section 5 we give a set of equations for the snaking bifurcation diagram. 
In section 6 we compute the analytically undetermined constant µ numerically and compare 
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Figure 1.  Homogeneous branch (black), periodic branch with wavelength 2πkc
 (blue), and 

in (b) a branch of localized patterns (red). The solutions are computed on the domain (
− 15π

kc
, 15π

kc

)
 with Neumann boundary conditions. (Numerically) stable branches as 

thick lines in (a), (b), while stability is not plotted in (b) to achieve better visualization 
and as we do not concern about the stability in the whole calculus. (a) σ = −2.  
(b) σ = −1. (c) σ = 0.

H de Witt﻿Nonlinearity 32 (2019) 2667



2670

the findings with numerical computations of the model on a large, but finite domain, using 
pde2path [URW14].

2.  Main result and first steps into the analysis

We investigate localized patterns at the onset of the subcritical bifurcation with wavelength 
2π/kc. Lemma 2.1 describes this bifurcation, which is of particular interest, as the homoge-
neous solution loses stability here.

Lemma 2.1.  Let d > 3 +
√

8 . The trivial stationary solution 
(
λ, 1

λ

)
T  of (3) is stable for 

λ > λc =
√

d
√

3 −
√

8 and at λ = λc a Turing instability occurs. The critical wavenumber 
is kc =

√√
2 − 1.

Proof.  Calculus, following e.g. [Mur89, section 14.3].� □ 

It is such a Turing instability where fronts and localized patterns are expected, and by the 
introduction of a new parameter ε we make the ansatz

Uasymp(x, X) =
(
λ,

1
λ

)T

+

N∑
n=1

εnUn(x, X) + RN(x, X),� (5)

where X = ε2x is a slow scale, to expand possible fronts in an asymptotic manner. This ansatz 
leads to amplitude equations, and to allow leading order front solutions a solvability condition 
for the amplitude of U1 must not rise before O(ε5). This forces the scaling σ = σ0 + ε2σ2, 
where two values (σr and σl) for σ0  are valid and describe the minimal resp. maximal σ for 
which a subcritical bifurcation and thus snaking can be observed. W.l.o.g. one can restrict 
σ2 ∈ {−1, 1}, which we use for our hypothesis 2.2, while we keep σ2  arbitrary in most calcul
ations to track the σ dependence.

Our method, to expand the fronts with (5), does not give rigorous proof for the existence of 
these, as the remainder can not be uniformly controlled in higher orders, and thus we formally 
assume the existence of fronts in advance in hypothesis 2.2. The validity of hypothesis 2.2 is 
convincingly supported by numerical investigations.

Hypothesis 2.2 (Existence of stationary fronts).  For d  >  d0 and (σ0,σ2) = (σr,−1), 
σr ≈ −2.4d− 1

2 (case 1) respectively (σ0,σ2) = (σl, 1), σl ≈ −16d− 1
2 (case 2) there exist ε0 > 0 

and λM(ε), kM(ε) ∈ C ((0, ε0) ,R) with lim
ε→0

kM(ε) = kc  and lim
ε→0

λM(ε) = λc such that the fol-
lowing holds:

∀ε ∈ (0, ε0) ∃Cloc > 0 ∀ |λ− λM(ε)| < Cloc ∃! U f
ε  solution1 of (3) with σ = σ0 + ε2σ2 

and with

	 1.	� lim
x→−∞

U f
ε (x) = Uh(x)

	 2.	�limx→∞
∣∣U f

ε (x)− Uper
ε (x)

∣∣ = 0, where Uper
ε (x) = Uh(x) + εU1(x) with ‖U1‖∞ = O(1) 

and minimal period 2π/kM(ε), i.e. U1(x + 2π/kM(ε)) = U1(x).

1 Where uniqueness is modulo symmetries, i.e. reflection and translation, only.
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Remark 2.3. 

	 1.	�σ0  is computed exactly, but we only give approximate values, as the exact expressions are 
lengthy. If not stated otherwise, this holds for all constants and ≈ describes approximated 
values for notational reasons only. Calculations are always done with the exact values.

	 2.	�The point λM, describing the center of the range for localized patterns, is the non-
variational analog of the Maxwell point in a variational system where the energy of the 
homogeneous and periodic solution is the same. It is determined via a series in ε, with 
coefficients that are determined by solvability conditions for amplitude equations  for 
fronts, which we derive later.

The introduction of kM rather than the constant wavenumber kc is necessary because the 
amplitude of the front derived with (5) is complex and thus will shift the wavenumber by 
O
(
ε2
)
. As a consequence we do not construct fronts which connect a periodic solution with 

wavenumber kc with the homogeneous solution for |σ − σ0| > 0. This is in accordance with 
the numerical simulations where the branch of localized patterns bifurcating from the periodic 
branch with wavenumber kc immediately changes its periods and connects to the most sub-
critical wavenumber, see figure 2. Also the wavenumber breathing within the snake, see e.g. 
[BD12], forces the introduction of kM.

Theorem 2.4, which is a simplified version of the main result of this work, gives an upper 
bound for the constant Cloc near σl respectively σr.In section 4.4, theorem 4.5 we give the 
more precise version, which however needs the introduction of additional notations, and con-
clude its proof.

Theorem 2.4 (An upper bound for Cloc).  Under hypothesis 2.2 there exists an 
0 < ε1 � ε0 and constants µ, ν > 0 such that for 0 < ε < ε1 we have

Cloc <
µ

|σ − σ0|
e
− ν

|σ−σ0| ,

where ν ≈ 18.550d− 1
2 in case 1 and ν ≈ 69.721d− 1

2 in case 2.

Figure 2.  (a) Bifurcation diagram for σ = −0.5. The branch of localized patterns 
bifurcating from the periodic branch with wavelength 2π/kc connects back to a 
periodic branch with wavelength 2π/0.515. The precise wavelength depends on the 
domain of computation, and is highly inaccurate in this picture, as the domain size was 
reduced to 10 · 2π/kc to give a full view on the branch of localized patterns. The general 
phenomenon however is described by the analysis. (b), (c) Solutions on the periodic 
branches and the branch of localized patterns and a zoom on an interval of length 2π/kc. 
The difference in the period for point 100 and 30 is due to wavenumber variations 
inside the snake, see e.g. [BD12].

H de Witt﻿Nonlinearity 32 (2019) 2667



2672

Remark 2.5. 

	 1.	�ν = kcπ/ε
2b2(σ2), where b2 will be introduced in section 3 and scales the amplitudes 

speed. The formula for b2 is (very) lengthy and thus omitted here. kc is the critical wave-
number, π is model independent and a scalar factor, here 1, is determined by the power of 
the lowest order nonzero nonlinearity (quadratic or cubic).

	 2.	�µ can only be given as a limit of a recursive series with nested sums and thus has to be 
investigated numerically. For this, the recursion can be used, which is computationally 
expensive, see [DMCK11], or µ can be found by a best fit with the numerical snaking 
width, see section 6.

To derive theorem 2.4 we do not only need the proper scaling of σ = σ0 + ε2σ2, but also a 
proper scaling for λ which is

λ = λc +

� N
4 �∑

n=0

ε4nλ4n + ε4λδ = λM(ε) + ε4λδ ,� (6)

where λ4s, s ∈ N will be determined by the calculus and we will show that λδ can be chosen 
arbitrarily in a certain range. This range will then describe the constant Cloc. For the further 
calculus, i.e. the proof of theorem 2.4, we expand (4) at the homogeneous solution, so that for 
solutions Uh  +  U (4) takes the form

0 = L[∆,λ]U +

∞∑
k=2

Fk[λ,σ](Uk),

where L[∆,λ] = J(λ) + D∆ with J(λ) =
(

1 λ2

−2 −λ2

)
 and Fk(Uk), Uk = (U, . . . , U), are 

k-linear forms. With the scaling λ = λc + ε4λ4 + . . . and σ = σ0 + ε2σ2 these forms have a 
natural expansion in ε, namely

Fk
j [λ,σ](Uk) = Fk

0[λc,σ0](Uk) + ε2Fk
2[λc,σ2](Uk) + ε4Fk

4[λc,λ4](Uk) + · · · =
∑

j∈2N0

ε jFk
j [λ,σ](Uk).

This notation let us reformulate the expansion of (4) at the homogeneous solution and, by 
Λ = ∂2

x + 2ε2∂x∂X + ε4∂2
X, as U = U(x, X(x)), we have

0 =
(
L0[∂x,λc] + ε2L2[∂x, ∂X ,λc] + ε4L4[∂X ,λc,λ4] + ε4(∂λJ) (λc)λδ + O

(
ε8))U

+
∑

j∈{0,2}

5−j∑
k=2

ε jFk
j [λ,σj](Uk) + . . . ,

� (7)

where L0[∂x,λc] = J(λc) + ∂2
x D, L2[∂x, ∂X ,λc] = 2∂x∂XD and L4[∂X ,λc,λ4] =  (∂λJ) (λc)λ4 + ∂2

XD.
The O

(
ε8
)
 terms are from the expansion of the linear part L by the scaling of λ, the … are 

higher order nonlinearities respectively higher order expansion of the nonlinearities in σ and 
will be O(ε6) in the subsequent computations, as ansatz (5) scales every non homogeneous 
addend with factor ε. They both play no role in the subsequent calculations. For this reason it 
is the system without the higher order nonlinearities, which we investigate in section 6, and 
call it the ’truncated system’. The calculations are valid for both the full and the truncated 
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system, as the higher order nonlinearities are only incorporated in the constant µ, which we 
do not calculate analytically.

The further calculations to prove theorem 2.4 are structured by additional theorems. These 
aim to give an overview of the whole method rather than to depict every underlying result in 
detail. We end this section by the introduction of some abbreviations.

Definition 2.6.  Some commonly used abbreviations are:

	 •	�ek = ek(x) = eikck(x+ω), where ω  is a constant describing the phase shift and will be arbi-
trary until the control of the remainder of the asymptotic expansion.

	 •	�c.c. denotes the complex conjugated.
	 •	�h.o.t. is used in combination with asymptotic equivalents and denotes higher order terms 

in the corresponding variable.

	 •	�a(x, z) ∼
x→y

b(x, z), where (x, z) ∈ R× Ω ⊂ R× Cn and y ∈ R ∪ {−∞,∞}, is defined by

∀ε > 0 ∀z ∈ Ω ∃δ > 0 : |x − y| < δ ⇒ |a(x, z)− b(x, z)| < ε

		 and the analog for y ∈ {−∞,∞}.
	 •	�Integration in the complex plane is always from a point X0 on the imaginary axis to a 

point X on the real line, and the starting point is only chosen to have no constant terms. A 
possible path of integration is always the direct connection from X0 to 0 to X and thus we 

only write 
∫ X

X0
dT .

Furthermore, many constants are defined in the Theorems and their proofs. Some of these 
constants are necessary in later steps of the calculation, but as these can not be motivated be-
fore their introduction we refrain from a list here.

3.  Amplitude equation

As stated in the introduction, the exponential factor in the snaking width can be expressed in 
terms of the leading order amplitudes complex singularities closest to the real line. We derive 
this leading order amplitude now and summarize the result in theorem 3.1. For clarity we only 
give the results for case 1 of hypothesis 2.2 here. The resulting constants for case 2 are given 
at the end of this section.

Theorem 3.1.  Let (5) be an asymptotic expansion of a front solution U f
ε  as in hypothesis 

2.2 with λ scaled by (6). Then λ4 ≈ 0.0042d
3
2 σ2

2 and

U1(x, X) = A(X)Φe1(x) + c.c.

where e1(x) = eikc(x+ω) with an arbitrary constant ω , Φ = (1,ϕ2) with ϕ2 ≈ −3.414/d , and

A(X) = R0(X)eiΘ0(X) =
b1e−b2

X
2

(1 + e−b2X)
1
2 +iβ

with constants b2 < 0 < b1,β > 0.

Proof.  We insert ansatz (5) in (7) and sort for powers of ε. This yields
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ε1 : − L0U1 =0

ε2 : − L0U2 = F2
0(U

2
1)

ε3 : − L0U3 = L2U1 + 2F2
0(U1, U2) + F3

0(U
3
1)

ε4 : − L0U4 = L2U2 + 2F2
0(U1, U3) + F2

0(U
2
2) + 3F3

0(U
2
1 , U2) + F4

0(U
4
1) + F2

2(U
2
1)

ε5 : − L0U5 = L2U3 + L4U1 + 2F2
0(U1, U4) + 2F2

0(U2, U3)

+ 3F3
0(U

2
1 , U3) + 3F3

0(U1, U2
2) + 4F4

0(U
3
1 , U2) + F5

0(U
5
1)

+ F3
2(U

3
1) + 2F2

2(U1, U2).
. . .

�

(8)

The equations at εk, k � 4, can be solved without assumptions on the leading order amplitude. 
Via a solvability condition the equation at ε5 results in the amplitude equation for the leading 
order solution. In detail the equation at O(ε1) yields

U1 = A(X)Φeik0(x+ω) + c.c.,

where A(X) and ω  are arbitrary for now while Φ and k0 are determined by the equation

0 =
(
J(λc)− k2

0D
)
Φ.� (9)

In the following we write x for x + ω, as the phase shift does not influence most calculations. 
In the end we however have to reverse this notation, as it is a locking of the phase shift, which 
allows us to construct an (in leading order) exponentially small remainder for λδ �= 0, and 
thus ω  is crucial for the calculation of the snaking width.

Following [Mur89, 14.3], as for the proof of lemma 2.1, there is a unique (up to a scalar 
factor) nontrivial solution for (9) if and only if k0 =

√√
2 − 1 =: kc and λc =

√
d
√

3 −
√

8. 
We fix such a solution Φ ≈ (1,ϕ2)

T  with ϕ2 ≈ −3.414/d  as the kernel vector.

The set of equation  (8) yields Un =
∑n

k=−n An,kΦn,keikkcx, where w.l.o.g. we assume 

An,k(X) scalar and Φn,k ∈ C2, see remark 3.2 for details. Of course A1,1  =  A, A1,−1 = Ā and 
Φ1,1 = Φ1,−1 = Φ here. Furthermore, we introduce L(s,λc) := J(λc)− s2k2

cD and see that 
L(s,λc) has a nontrivial kernel for s  =  1 only, as mentioned above. Thus it is invertible for 
s �= 1, and by doing so one can calculate An,kΦn,k for n � 4 and k �= ±1. For k = ±1 one 
has to ensure that the right hand side of the equations is orthogonal to the one dimensional 
kernel of L(±1,λc) i.e. that the solvability condition 〈′right hand side′,Φ⊥〉 = 0 for some 
Φ⊥ ∈ Ker(L(1,λc)

T) is met. At ε1, ε2 this is always satisfied, i.e. A2,±1 is arbitrary, but at ε3 
this is true if and only if

2F2
0(Φ,Φ2,0) + 2F2

0(Φ̄,Φ2,2) + 3F3
0(Φ

3) = 0.� (10)

This is the equation, which fixes σ0 ≈ −2.4d− 1
2 for case 1 and σ0 ≈ −16d− 1

2 for case 2. Fix-

ing one case, the equation  at ε3 yields A3,±1Φ3,±1 = i∂XA1,±1Φ̃3,1 + AΦ
3,±1Φ with arbitrary 

AΦ
3,±1. For the loose notation see remark 3.2. Here AΦ

3,±1Φ can w.l.o.g. be set zero, as it does 
not contribute to any results. Also the equation for A4,±1Φ4,±1 is solvable without additional 
restrictions and as the results are not relevant for the calculation of A1,±1 we will not discuss 
them here.
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The solvability condition arises at ε5e±1 and results in an equation for A of the form

0 = c0∂
2
XA + c1A + c2|A|2A + c3|A|4A + ic4A2∂XĀ + ic5|A|2∂XA� (11)

with real constants c0(σ0,σ2,λ4), . . . , c5(σ0,σ2,λ4). The ansatz A = R0eiΘ0 with real func-
tions R0,Θ0 splits this complex equation into two real ones where the equation for Θ0

0 = 2c0R0Θ
′
0 + c0R0Θ

′′
0 + (c5 + c4)R2

0R′
0� (12)

has the particular solution of interest Θ′ = c5+c4
4c0

R2
0, see remark 3.3. This yields

0 = c0R′′
0 + c1R0 + c2R3

0 +

(
c3 −

(c5 + c4)
2

16c0
+

c2
5 − c2

4

4c0

)
R5

0,� (13)

as the equation for R0.
As stated in theorem 3.1 we look for a front solution, i.e. a heteroclinic orbit from zero to 

a nonzero state. For this we investigate

E(R0, R′
0) = −c0

2
R′2

0 +
c1

2
R2

0 +
c2

4
R4

0 +
c6

6
R6

0

with c6 = c3 − (c5+c4)
2

16c0
+

c2
5−c2

4
4c0

, the energy of equation (13), i.e. solutions lie on the level set 

of E. As E(0, 0) = 0 is a local maximum this implies that for the existence of localized pat-
terns a maximum ( f , f ′) �= (0, 0) with E( f , f ′) = 0 must exist. This is the case if and only 
if 3c2

2 − 16c1c6 = 0 and c1, c6 < 0 < c2. Furthermore, sign(c2) = −sign(σ2) for case 1 and 
thus the condition c2  >  0 implies σ2 < 0, which is also the condition for the bifurcation to 
be subcritical. For fixed σ0 < 0 all conditions are fulfilled if and only if λ4 = cλ4 d

3
2 σ2

2 with 
cλ4 ≈ 0.0042 and a front solution can be found via separation of variables. Such a solution 
combined with the solution for Θ0, gives the full solution

A(X) = R0(X)eiΘ0(X) =
b1e−b2

X
2

(1 + e−b2X)
1
2 +iβ

,

with b1 ≈ 0.148d
3
4
√
|σ2|, b2 ≈ 0.109

√
dσ2 and β ≈ 0.119.� □ 

For case 2, i.e. σ0 ≈ −15.894d− 1
2, the corresponding constants are

b1 ≈ 0.0373d
3
4
√
σ2, b2 ≈ 0.029

√
dσ2, β ≈ −1.174, λ4 ≈ 0.000 29d

3
2 σ2

2

and σ2 > 0 is the condition for the existence of a front.

Remark 3.2.  It is Un =
∑n

k=−n An,kΦn,keikkcx with scalar An,k(X) and Φn,k ∈ C2 for n � 2 

only, but for n � 3 we still can express the contribution of Un at each ek with a finite sum of 

scalar functions A j
n,k(X) and Φ j

n,k ∈ C2 and in further calculations one summand for each tuple 

(n, k) is crucial only, i.e. the others can w.l.o.g. be set to zero. Thus we stick to the loose but 

simpler notation Un =
∑n

k=−n An,kΦn,keikkcx.
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Remark 3.3.  The solution for the homogeneous part of (12) is γ 1
R2

0
 with γ ∈ R, but γ �= 0 

is in contradiction to R0(X) → 0 for either X → −∞ or X → ∞.

4.  Beyond all orders calculation

The leading order solution, established in section 3, gives a basic estimate for the form of 
localized patterns, but the existence range remains undetermined, even though λ4 is fixed and 
gives a first approximation where localized patterns or more precisely the Maxwell point can 
be found. The calculation of further algebraic terms in the asymptotic expansion (5) yields 
higher order λ4s, but is unable to determine an existence range.

In fact the series diverges and thus has to be truncated. To construct an uniformly exponen-
tially small remainder, e.g. a remainder ’beyond all (algebraic) orders’, the truncation has to 
be done optimally and certain conditions on λδ, the deviation from the Maxwell point, have 
to be met.

The error terms contributing to the remainder are the error by deviation from the Maxwell 
point λM, which is independent on the truncation point and thus denoted by Rλδ, and the error 
by truncation RT

N . For the truncation error we need to calculate the behavior of Un for n → ∞, 
which we do next in section 4.1. In section 4.2 we calculate the error by the deviation of the 
Maxwell point and in section 4.3 the error by truncation. By the linearity of the asymptotic 
calculations the final remainder RN can then be constructed as the sum of both remainders 
along with higher order terms, i.e. it is RN = RT

N + Rλδ + h.o.t.. We will see, that RT
N  domi-

nates for X = O(ε), i.e. in the front’s interface, and Rλδ dominates for X → ±∞. The match-
ing of both errors yields that the full remainder is uniformly exponentially small (in σ − σ0) 
in leading order, if and only if ε4λδ, the deviation from λM, is exponentially small in σ − σ0.

4.1.  Behavior of the amplitude for n large

In section 3 we derived the exact form of U1, see theorem 3.1. The next step is to derive the 
form of Un for n → ∞. In detail we prove the following theorem

Theorem 4.1.  Let (5) be an asymptotic expansion of a front solution U f
ε  as in hypothesis 

2.2. Then

Un ∼
n→∞

p1

(
ei π4
√

kc

)n
Γ( n

2 + α)

(X0 − X)
n+1

2 +α
(1 + (−1)n) (I2(X)Φ + I1(X)Φe2)

+ p2

(
ei 3π

4

√
kc

)n
Γ( n

2 + ᾱ)

(X0 − X)
n+1

2 +ᾱ
(1 + (−1)n) (I1(X)Φ + I2(X)Φe−2) + c.c. + h.o.t.

� (14)

where α = 3 + iβ, X0 = −iπ/b2, p1, p2 are (undetermined) real constants, and

I1(X) =

(
R′

0

∫ X

X0

1
R′2

0
dT + iR0

∫ X

X0

R0R′
0

∫ S

X0

1
R′2

0
dTdS

)
eiΘ0 ,

I2(X) =

(
R′

0

∫ X

X0

1
R′2

0
dT + iR0

∫ X

X0

R0R′
0

∫ S

X0

1
R′2

0
dTdS

)
e−iΘ0 .
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This theorem shows that for n → ∞ the series diverges due to Γ
( n

2 + α
)
, but for X large 

the divergence is slow due to the factor (Xj − X)−
n+1

2 +α and one can already see here that the 
error by truncation will decrease rapidly for |X| → ∞.

Proof.  Pursuing the calculation in (8) the equation for Un at εn is

0 =

� n−1
4 �∑

s=0

L4sUn−4s + L2Un−2 +

� n−1
2 �∑

s=0

∞∑
m=2

∑
s1+...+sm=n−2s

0<si

Fm
2s(Us1 , ..., Usm).� (15)

W.l.o.g., this results, see remark 3.2, in Un =
∑∞

k=−∞ An,k(X)Φn,kek(x) with almost all 
An,k ≡ 0 and (15) can be transformed into a recurrent set of equations for An,kΦn,k. As these 
equations need to be solved in the limit n → ∞ we need a simplification to get rid of the 
nested sum. The key idea is to make an ansatz for An,kΦn,k in such a way, that we can derive its 
leading order form by an expansion of inverse powers of n. The ansatz we use reads

An,kΦn,k ∼
n→∞

∑
j∈Z

κnΓ( n
2 + αk)

(Xj − X)
n+1

2 +αk

(
h0

k(X) +
1
n

h1
k(X) + ...

)
=:

∑
j∈Z

Hn,k(X)

(Xj − X)
n+1

2 +αk
,� (16)

with αk,κ ∈ C to be determined, Xj = i(2j + 1)π/b2, for a fixed j ∈ Z, and hl
k : C → C2, l ∈ N0 

are functions independent of n. This is motivated by the fact that An,k should have the same 
singularities Xj  as A1,1, which has the asymptotic behavior

A1,1 ∼
X→Xj

H̃1,1

(Xj − X)
1
2 +iβ

with a constant H̃1,1. The power of (Xj − X) in (16) is necessary, because the second derivative 
of An−2,k and forth derivative of An−4,k are used to determine An,k. The independence of Hn,k(X) 
from Xj  is not imposed, but a natural consequence of the 2πi periodicity of the exponential 
function. The linear nature of all calculations allows us to compute the behavior separately for 
each singularity and add these contributions in the end. In detail we will only need to add the 
contributions of X0 and X−1 in the limit n → ∞ as these are the dominant ones on the real line 
for n → ∞ by the factor (Xj − X)

n+1
2 +αk. Thus our ansatz reads for now

An,kΦn,k ∼
n→∞

κnΓ( n
2 + αk)

(X0 − X)
n+1

2 +αk

(
h0

k(X) +
1
n

h1
k(X) + ...

)
=:

Hn,k(X)

(X0 − X)
n+1

2 +αk
.

�

(17)

The calculations will show, that the contribution of An,kΦn,k|X−1
 is equal to Ān,−kΦn,−k

∣∣
X0

, and 
as explained above we can add that later.

Inserting (17) in the recurrent set of equation  (15) and multiplying the result by 
(X0 − X)

n+1
2 +αk we get
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0 = L0Hn,k + i2kkc
n − 2 + αk

2
DHn−2,k

+
n − 4 + αk

2
n − 2 + αk

2
DHn−4,k

+

∞∑
m=2

∑
s1+...+sm=n

0<si

∑
k1+...+km=k

Fm
0 (Hs1,k1 , ..., Hsm,km)(X0 − X)−

m−1
2 −

∑m
j=1 αk0+αk

+ O
(
Γ
(n

2
− 1 + αk

))
.

�

(18)

We divide this by Γ( n
2 + αk) and can start an asymptotic expansion of Hn,k in inverse powers 

of n. The nested sum also contains different magnitudes of n, and so there are no infinite sums 

in the leading orders equations. The factors (X0 − X)−
m−1

2 −
∑m

j=1 αkj+αk will vanish for the 

interesting values of k, which are the dominant modes and which we investigate now. These 
are the modes with maximal real part of αk =: α. We will see that the imaginary part of α is 
not constant, and thus the notation αk = α for all dominant αk seems to be misleading, but in-
deed there is an α such that all dominant contributions can be expressed with α and ᾱ, which 
then justifies the loose notation. The restriction to dominant modes does not imply any extra 
assumptions, as we do not restrict the total number of dominant modes.

At the dominant modes the leading order equation in (18) is

0 =
(
κ4L0(k,λc) + i2kkcκ

2D + D
)

h0
k .

We seek solutions h0
k �≡ 0 as h0

k ≡ 0 would be equivalent to a reduction of α. Thus we need 
L :=

(
κ4L0(k,λc) + i2kkcκ

2D + D
)
 to be singular. As L0(k,λc) = J(λc)− k2k2

cD this is the 
case if and only if

−k2k2
cκ

4 + i2kkcκ
2 + 1 = −k2

cκ
4,� (19)

and L then has the nontrivial kernel vector h0
k(X) = h̃0

k(X)Φ with a scalar function h̃0
k , which 

we denote by h0
k  again. The solutions to (19) are κ2 = i/kc(k ± 1) for k �= ±1, for k  =  −1 we 

have the double root κ2 = i/kc(k − 1) and for k  =  1 we have the double root κ2 = i/kc(k + 1). 
This shows that k = 0,±2 are the dominant modes, as κ has the biggest absolute values for 
these. Hence we use the ansatz α0 = α±2 = α, α±1 = α±3 = α− 1

2 , α±4 = α− 1, . . . 
with still unknown α, to get the right balance between the modes, i.e. to eliminate the 

(X0 − X)−
m−1

2 −
∑m

j=1 αkj+αk factor in (18). Formally we would need to differ between κ2 = i/kc 
and κ2 = −i/kc, as either k  =  2 or k  =  −2 is the only dominant mode along with k  =  0, but 
our ansatz above will give the same results with clearer calculations and just yields, depending 
on k, either h0

2 = 0 or h0
−2 = 0.

The calculation of αk and h0
k  for the dominant modes is cumbersome and does not yield 

additional insights, and thus we only describe the method briefly and state the results. The 
basic calculus is to investigate (18) in higher powers of 1n. At O

( 1
n

)
 there is exact cancellation 

for arbitrary αk and h0
k , thus no information is gathered. At O

( 1
n2

)
 there are two cases. For 

κ2 = i/kc the modes 2 and 0 are dominant and h0
0, h0

2 have to satisfy
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0 = η0∂
2
Xh0

2 + η1h0
2 + η2|A|2h0

2 + η3A2
1,1h0

0 + η4|A|4h0
2 + η5|A|2A2

1,1h0
0 + iη6A2∂Xh0

0 + iη7Ah0
2∂XĀ

+ iη8|A|2∂Xhk20 + iη9h0
0A∂XA + iη10h0

2Ā∂XA,

and its complex conjugated equation, which are the linearized amplitude equations which will 
be derived in section 4.2, see (23), where we also explain the constants ηj. For κ2 = −i/kc the 
same equations have to hold for h0

−2 and h0
0. We derive the solutions to this equation in sec-

tion 4.2 as well, and obtain

h̄0
0 = h0

2 = K2A′ + iK4A +

(
R′

0

∫ X

X0

K1R2
0 + K3

R′2
0

dT + i2ĉK1R0

∫ X

X0

1
R2

0
dT

+i2ĉR0

∫ X

X0

R0R′
0

∫ S

X0

K1R2
0 + K3

R′2
0

dTdS

)
eiΘ0

with A, R0,Θ0 from theorem 3.1, ĉ = − c4+c5
4c0

, c0, c4, c5 from the proof of theorem 3.1 and yet 
unknown constants Ki in the case κ2 = i/kc. The solutions to h0

−2, h0
0 for κ2 = −i/kc are given 

by the map 
(
h0

0, h0
2

)
→

(
h0
−2, h0

0

)
. To examine the dominant contributions we investigate these 

solutions in the limit X → X0 and find

A′ ∼
X→X0

const.(X0 − X)−
3
2 +iβ ,

A ∼
X→X0

const.(X0 − X)−
1
2 +iβ ,

(
R′

0

∫ X

X0

R2
0

R′2
0

dT + i

(
R0

∫ X

X0

R0R′
0

∫ S

X0

R2
0

R′2
0

dTdS + R0

∫ X

X0

1
R2

0
dT

))
eiΘ0 ∼

X→X0
const.(X0 − X)

3
2 +iβ ,

(
R′

0

∫ X

X0

1
R′2

0
dT + iR0

∫ X

X0

R0R′
0

∫ S

X0

1
R′2

0
dTdS

)
eiΘ0 ∼

X→X0
const.(X0 − X)

5
2 +iβ .

Thus the solution with maximal possible α is the solution with constant K3, as for X → X0 the 

ansatz (17) implies for example An,2 ∼
X→X0

const.(X0 − X)−
n+1

2 −α+ 5
2 +iβ  for κ2 = i/kc and we 

already argued that An,k ∼
X→X0

const.(X0 − X)−
n
2 +ikβ. This yields α = 3 + iβ. For κ2 = −i/kc 

we obtain α = 3 − iβ with the same argument. For convenience we set α = 3 + iβ and write 
ᾱ for the other value. In summary we have

h̄0
0 = h0

2 = K3

(
R′

0

∫ X

X0

1
R′2

0
dT + iR0

∫ X

X0

R0R′
0

∫ S

X0

1
R′2

0
dTdS

)
eiΘ0 + h.o.t.

for κ2 = i/kc, and

h̄0
−2 = h0

0 = K3

(
R′

0

∫ X

X0

1
R′2

0
dT + iR0

∫ X

X0

R0R′
0

∫ S

X0

1
R′2

0
dTdS

)
eiΘ0 + h.o.t.

for κ2 = −i/kc. Note that κ2 = ±i/kc implies four solutions κ = ±
√
±i/kc  which have to be 

investigated, but, besides the arbitrary constants, the solutions to the same κ2 result in a (−1)n 
difference only. Furthermore we can choose A2,1  =  0, as there is no inhomogeneous term if we 
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continue (8) to ε6, and thus every An,k with n  +  k odd is zero and the arbitrary constants of both 
solutions for κ2 = i/kc and for κ2 = −i/kc respectively, must match to ensure this symmetry. 
We call the remaining arbitrary constant p 1 for κ2 = i/kc and p 2 for κ2 = −i/kc. All in all this 
yields the large n behavior

Un ∼
n→∞

p1

(
ei π4
√

kc

)n
Γ( n

2 + α)

(X0 − X)
n+1

2 +α
(1 + (−1)n) (I2(X)Φ + I1(X)Φe2)

+ p2

(
ei 3π

4

√
kc

)n
Γ( n

2 + ᾱ)

(X0 − X)
n+1

2 +ᾱ
(1 + (−1)n) (I1(X)Φ + I2(X)Φe−2) + c.c.

with I1 =
(

R′
0

∫ X
X0

1
R′2

0
dT + iR0

∫ X
X0

R0R′
0

∫ S
X0

1
R′2

0
dTdS

)
eiΘ0 and

I2 =
(

R′
0

∫ X
X0

1
R′2

0
dT + iR0

∫ X
X0

R0R′
0

∫ S
X0

1
R′2

0
dTdS

)
e−iΘ0 . The complex conjugated must be add-

ed by the influence of the singularity X−1 by symmetry.� □ 

As mentioned above theorem 4.1 shows that the series has to be truncated and we now discuss 
its remainder. Before talking about the remainder by truncation, we take a look at the remain-
der by deviation from the Maxwell point λM. Here we also derive the linearized version of the 
amplitude equation and its solutions, already used to derive I1,2.

4.2.  Contribution to the remainder by the deviation from the Maxwell point

We deal with the estimation of the error of the asymptotic expansion (5) now. As noted earlier, 
this has two contributions: the error RT

N  by truncation, and the error Rλδ by ε4λδ, the devia-
tion from the Maxwell point. The full error is given by RT

N + εRλδ
N  in leading order, where the 

rescaling is for convenience only. The aim of this section is to estimate the error RT
N , i.e. to 

prove the following theorem.

Theorem 4.2.  Let (5) be an asymptotic expansion of a front solution U f
ε  as in hypothesis 

2.2. If 
∣∣RT

N

∣∣ � ∣∣Rλδ
∣∣, then Rλδ, i.e. the error by a change in λδ, satisfies

Rλδ(x, X) ∼
ε→0

Rλδ

1,1(X)Φe1(x) + c.c. + h.o.t.

where

Rλδ

1,1(X) = K2A′ + iK4A +

(
R′

0

∫ X

X0

K1R2
0 + K3

R′2
0

dT

+i2ĉK1R0

∫ X

X0

1
R2

0
dT + i2ĉR0

∫ X

X0

R0R′
0

∫ S

X0

K1R2
0 + K3

R′2
0

dTdS

)
eiΘ0

+

(
2
√

15
c0

λδR′
0

∫ X

0

R2
0

R′2
0

dT + i2ĉ
2
√

15
c0

λδR0

∫ X

0
R0R′

0

∫ S

X0

R2
0

R′2
0

dTdS

)
eiΘ0

�

(20)

with real constants ĉ, c0 and (yet arbitrary) constants K1, . . .K4 .

Note that R0 does not denote any error term, but the modulus of the leading order amplitude 
A, which is calculated in section 3.
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Proof.  Under the assumption of theorem 4.2 and with the λ-scaling (6) equation (7), which 
was derived in the leading order calculation, reduces to

− ε5(∂λJ) (λc)λδ (U1 + ...) = εL(∂x, ε2∂X ,λc)Rλδ

+

∞∑
k=2

εkFk
0[λc,σ0](Uk−1

0 , Rλδ) + ε2
∞∑

k=2

εkFk
2[λc,σ0](Uk−1

0 , Rλδ) + . . .
�

(21)

where L(∂x, ε2∂X ,λc) denotes all linear parts. Higher order terms in ε along with O(Rλδ
2
) 

terms are denoted as ’…’. We want to examine the remainder in regions where it is expo-
nential small, and thus get a good approximation for Rλδ

N  with the leading order solution of 
another multi-scale ansatz. Thus we write

Rλδ
N (x, X) = Rλδ

1 (x, X) + εRλδ

2 (x, X) + . . . .� (22)

With ansatz (22) the equations  at εl, l < 5 in (21) are the linearized versions of the equa-

tions derived in section 3 and yield Rλδ

1 = Rλδ

1,1e1 + Rλδ

1,−1e−1 with arbitrary Rλδ

1,±1. At ε5 the 
leading order of the inhomogeneous addend −ε5(∂λJ) (λc)λδ (U1 + ...) arises and at ε5e1 we 
have

−A1,1 〈(∂λJ) (λc)λδΦ,Φ⊥〉 = η0∂
2
XRλδ

1,1 + η1Rλδ

1,1 + η2|A|2Rλδ

1,1 + η3A2
1,1Rλδ

1,−1 + η4|A|4Rλδ

1,1

+ η5|A|2A2
1,1Rλδ

1,−1 + iη6A2∂XRλδ
1,−1 + iη7ARλδ

1,1∂XĀ

+ iη8|A|2∂XRλδ
1,1 + iη9Rλδ

1,−1A∂XA + iη10Rλδ
1,1Ā∂XA,

�

(23)

where ηj are real constants which can be expressed through the cj  of section 3, see (11), by

c0 = η0, c1 = η1, 3c2 = η2, 2c2 = η3, 3c3 = η4, 2c3 = η5,
c4 = η6, 2c4 = η7, c5 = η8, c5 = η9, c5 = η10.

At e−1 the complex conjugated equation  arises with Rλδ

1,1 and Rλδ

1,−1 being exchanged and 
thus Rλδ

1,−1 = R̄λδ

1,1. For the homogeneous equation one can immediately spot the two solu-
tions A and A′. Further solutions can be derived by reduction of order for which the complex 

equation needs to be transformed into real ones via the ansatz Rλδ

1,1 = (R1 + iR0Θ1) eiΘ0 with 
unknown real functions R1,Θ1. The solution Rλδ

1,1 = A′ corresponds to R1 = R′
0, Θ1 = Θ′

0  
and Rλδ

1,1 = iA corresponds to Θ1 = 1, R1 = 0. The full solution of the homogeneous equa-
tion thus is given by

(R1 + iR0Θ1) eiΘ0 = K2A′ + iK4A +

(
R′

0

∫ X

X0

K1R2
0 + K3

R′2
0

dT

+ i2ĉK1R0

∫ X

X0

1
R2

0
dT + i2ĉR0

∫ X

X0

R0R′
0

∫ S

X0

K1R2
0 + K3

R′2
0

dTdS

)
eiΘ0

with real constants Kj  and ĉ = − c4+c5
4c0

. One specific solution of the inhomogeneous equa-
tion can then be found as

�

(
2
√

15
c0

λδR′
0

∫ X

0

R2
0

R′2
0

dT + i2ĉ
2
√

15
c0

λδR0

∫ X

0
R0R′

0

∫ S

X0

R2
0

R′2
0

dTdS

)
eiΘ0 .

□ 
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The term which is proportional to λδ is exponential growing for X → ∞. Thus 
K1, . . . , K4 = 0 is no appropriate choice. For X → ∞ the choice K3 = O(λδ) would bound 
the remainder, as R0  =  O(1) for X → ∞. But the factor of K3 is unbounded for X → −∞. 
Thus there is no global choice of constants to bound the remainder uniformly, and indeed we 
will see that the error is non dominant in an X = O(ε) regime, where the error by truncation 
dominates, which allows a switching from K3  =  0 for X → −∞ to K3 = O(λδ) for X → ∞. 
This way a uniformly exponentially small remainder (in leading order) can be established via 
a matching of the two errors for λδ sufficiently small.

4.3. Truncation error terms in the remainder

We derive the truncation error now, which is determined up to some arbitrary real constants 
just like the deviation error. The arbitrary constants of both errors are then determined by a 
matching process in section 4.4. To establish the truncation error RT

N  an appropriate truncation 
order N has to be determined.

Lemma 4.3.  Let (5) be an asymptotic expansion of a front solution U f
ε  as in hypothesis 2.2. 

Then the optimal truncation point N, for which consecutive terms are of the same magnitude, 
is given by

N = N(X, ε) ∼
ε→0

2kc |X − X0|
ε2 − 2α.

Proof.  At first glance we have to find n such that ε
n+1Un+1
εnUn

= 1, but if we assume that the 

truncation point N → ∞ for ε → 0, which is a natural assumption, theorem 4.1 can be ap-
plied, and shows that Un ≡ 0 in leading order for n odd. Thus we consider the equation

εn+2Un+2

εnUn
= 1.� (24)

instead. We also w.l.o.g. choose N + 1 ∈ 2Z for this reason. Evaluating (24) by the use of 
(14) we have

N + 1 ∼
N→∞

2kc|X0 − X|
ε2 − 2α,� (25)

what had to be proven and is in accordance with our assumption, as indeed N → ∞ for 
ε → 0.� □ 

With the optimal truncation point we can formulate theorem 4.4, which describes RT
N , the 

error by truncation.

Theorem 4.4.  Let (5) be an asymptotic expansion of a front solution U f
ε  as in hypothesis 

2.2, with N from lemma 4.3, and let X0 − X = rei(π
2 +εθ̂), r ∈ R+, θ̂ ∈ R. Then the truncation 

error RT
N  at λδ = 0 is given by

RT
N(x, X) = RT

N(x, r, θ̂) ∼
ε→0

S0(r, θ̂)e1(x) + c.c. + h.o.t.

with

S0(r, θ̂) ∼
ε→0

−π
√

2|p1|r−
1
2 k3

ceikc
X0
ε2 e−

1
2 πβe−kcrθ̂2

I1(X0−ir) erf(
√

kcrθ̂) sin(ln(kc)β+arg( p1)+ω)(C1+C̄−1),
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where erf(x) = (2/
√
π)

∫ x
0 e−t2

dt  is the error function, ω  is the phase shift, already introduced 
in theorem 3.1, and C1, C̄−1 are (yet arbitrary) constants.

Proof.  The ansatz U =
∑N

k=1 ε
kUk + RT

N  yields the equation

0 = εN+12D∂x∂XUN−1 + εN+1D∂2
XUN−3 + εN+3D∂2

XUN−1 + εN+1nonlinearities in U+

(J(λc) + ∂2
x D)RT

N + ε22D∂x∂XRT
N + ε4D∂2

XRT
N +

∞∑
k=2

Fk[λ,σ](Uk−1, RT
N) + O(RT

N
2
).

� (26)

Neglecting the O(RT
N

2
) terms, this again can be solved with a multi scales ansatz for RT

N  for 
which we need to find the leading order in ε first. As N = O

( 1
ε2

)
 we have ∂X = O( 1

ε2 ) and 
Un−1 = O(ε2Un+1). Thus the leading order terms are given by

εN+12∂x∂XDUN−1 + εN+1∂2
XDUN−3 + εN+3∂2

XDUN−1.� (27)

The next step is to use the asymptotic for N. As all calculations will be linear we can assume 
that we have

UN ∼
N→∞

p1

(
ei π4
√

kc

)N
Γ(N

2 + α)

(X0 − X)
N
2 +α

(1 + (−1)N) (I2Φ+ I1Φe2)

by theorem 4.1 and add the contributions of p 2 and the complex conjugated later. More 
precisely we will see that there is no contribution of p 2 at leading order and we have 
to add the complex conjugated only. Then, to prepare for a multi scales ansatz, we write 

εN+1UN−1 ∼
N→∞

η (I2Φ+ I1Φe2), where η depends on N, X and ε, and factor out η in all 

contributions. We have

εN+12∂x∂XDUN−1 ∼
N→∞

i4kc

N−1
2 + α

X0 − X
ηI1e2DΦ,

εN+1∂2
XDUN−3 ∼

N→∞

(
ei π4
√

kc

)−2 N−1
2 + α

X0 − X
η (I2 + I1e2)DΦ,

εN+3∂2
XDUN−1 ∼

N→∞
ε2

(N−1
2 + α

) (N+1
2 + α

)

(X0 − X)2 η (I2 + I1e2)DΦ.

We write

X0 − X = reiθ+iπ = rei(−π
2 +εθ̂)+iπ ,� (28)

with r ∈ R+ and θ̂ ∈ R, where it will be motivated to write θ = −π
2 + εθ̂ by the investigation 

of the factor η later. With this and by applying the asymptotic for N → ∞ we obtain

εN+12∂x∂XDUN−1 ∼
N→∞

i4k2
cε

−2(−i)e−iεθ̂ηI1e2DΦ+ O(η),

εN+1∂2
XDUN−3 ∼

N→∞
k2

cε
−2(−i)(−i)e−iεθ̂η (I2 + I1e2)DΦ+ O(η),

εN+3∂2
XDUN−1 ∼

N→∞
k2

cε
−2(−i)2e−i2εθ̂η (I2 + I1e2)DΦ+ O(η).
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As ε → 0 implies N → ∞ by (25) we can apply the above results in the limit ε → 0 and use 
eiεθ̂ = 1 + iεθ̂ + O(ε2) to obtain

εN+12∂x∂XDUN−1 ∼
ε→0

4k2
cε

−2
(

1 − iεθ̂ + O(ε2)
)
ηI1e2DΦ+ O(η),

εN+1∂2
XDUN−3 ∼

ε→0
−k2

cε
−2

(
1 − iεθ̂ + O(ε2)

)
η (I2 + I1e2)DΦ+ O(η),

εN+3∂2
XDUN−1 ∼

ε→0
−k2

cε
−2

(
1 − i2εθ̂ + O(ε2)

)
η (I2 + I1e2)DΦ+ O(η).

� (29)

It remains to determine η in the limit ε → 0. We have

η = εN+1p12
(

ei π4
√

kc

)N−1
Γ(N−1

2 + α)

(X0 − X)
N−1

2 +α
= εN+1p1

−2ikc (X0 − X)
N−1

2 + α

(
ei π4
√

kc

)N+1
Γ(N+1

2 + α)

(X0 − X)
N+1

2 +α
.

Applying Stirling’s approximation for N → ∞ respectively ε → 0, we obtain

η ∼
ε→0

εN+1p1
−2ikc (X0 − X)

N−1
2 + α

(
ei π4
√

kc

)N+1
√

2π
N+1

2 +α

( N+1
2 +α

e

) N+1
2 +α

(X0 − X)
N+1

2 +α
.

With (25) and (28) this results in

η ∼
ε→0

εN+1p12iε2eiθ
(

ei π4
√

kc

) 2kcr
ε2 −2α √

2πε2 1
kcr

( kcr
ε2

) kcr
ε2 e−

kcr
ε2

(−r)
kcr
ε2 (eiθ)

kcr
ε2

= εN+1p12iε2eiθi
kcr
ε2 −αk

−( kcr
ε2 −α)

c
√

2πε(kcr)−
1
2
(
kcrε−2) kcr

ε2 e−
kcr
ε2 (−r)−

kcr
ε2

(
eiθ)− kcr

ε2

= p12iε3−2α
√

2πi−αkαc (kcr)−
1
2 (−i)

kcr
ε2 e−

kcr
ε2 e−iθ( kcr

ε2 −1).

Using (28) again, this finally yields

η ∼
ε→0

p12ε3−2α
√

2πi−αkαc (kcr)−
1
2 e−

kcr
ε2 e−iεθ̂( kcr

ε2 −1).� (30)

The same calculation is valid for eiθ = ei(π
2 +εθ̂) = ieiεθ̂, but as we are interested in the be-

havior on the real line and X0 is in the upper half plane, only the contribution of θ = −π
2 + εθ̂ 

matters. At first glance the previous calculation suggests that the remainder is globally expo-
nential small by the factor e−

kcr
ε2 . But indeed

eikcx = eikc
X
ε2 eiω = eikc

X−X0
ε2 eikc

X0
ε2 eiω = eikc

reiθ

ε2 eikc
X0
ε2 eiω

= ekc
reiεθ̂

ε2 eikc
X0
ε2 eiω = ekc

reiεθ̂

ε2 e−kc
|X0|
ε2 eiω ,

� (31)

and for θ̂ = 0 the exponential small factor can thus be canceled. Indeed the error RT
N , as de-

rived below, is of the form S̃0(X)eikcx + c.c. + O(ε), i.e. we have to rewrite eikcx in terms of X 
for the contribution of p 1, but e−ikcx for the contribution of p 2. Thus the exponential smallness 
is only canceled for p 1 and the contribution of p 2 is not of leading order. In summary, for θ ≈ 0 
and λδ sufficient small the error by truncation is dominant, while for |θ| � 0 the error derived 
in section 4.2 is dominant, and a matching of both terms will yield the condition for localized 
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pattern. This matching will be made possible with the multi scales ansatz

RT
N = ε−2α

(
RN(x, θ̂) + εRN+1(x, θ̂) + ε2RN+2(x, θ̂) + . . .

)

in x and θ̂. To keep the notation simple and as we do not need the abstract form of the expan-
sions terms outside of this paragraph we named them RN , RN+1, . . . again, even though this 
is ambivalent with our notation for the whole error term. We can treat r as constant here, as 
derivatives of r do not occur in leading order. As we seek for the dependence of ∂θ̂, we have 
to rewrite ∂X in terms of this, i.e.

∂X = (∂θX)∂θ =
−i
r

e−iθ∂θ =
e−iεθ̂

εr
∂θ̂ =

1 − iεθ̂ − ε2θ̂ + . . .

εr
∂θ̂,

∂2
X =

(
e−iεθ̂

εr
∂θ̂

)2

=
e−iεθ̂

εr

(
e−iεθ̂

εr
∂2
θ̂
− i

e−iεθ̂

r
∂θ̂

)
=

1
ε2r2 ∂

2
θ̂
+ O

(
1
ε

)
.

Next we sort (26) for powers of ε. For this we rewrite the leading order inhomogeneity (27) as 
εT1 + ε2T2 + O(ε3), where the scaling is given by (29) and ( 30), to obtain

ε0 : 0 =
(
J(λc) + ∂2

x D
)

RN

ε1 : T1 =
(
J(λc) + ∂2

x D
)

RN+1 +
2
r

D∂x∂θ̂RN+1 + 2F2
0 [λc,σ0](U1, RN)

ε2 : T2 =
(
J(λc) + ∂2

x D
)

RN+2 +
2
r

D∂x∂θ̂RN+1 + 2F2
0 [λc,σ0](U1, RN+1)

− i2
θ̂

r
D∂x∂θ̂RN +

1
r2 D∂2

θ̂
RN + 2F2

0 [λc,σ0](U2, RN) + 3F3
0 [λc,σ0](U1, U1, RN).

�

(32)

At ε0 this yields RN = S0Φe1 + Ŝ0Φe−1, while T1, T2 are nonzero at e0, e2 only, and thus we 
need to express the factor eikcx in U through X, as done in (31). T1, T2 are calculated by (27), 
(29), (30), (31) and we have

T1 = −p12
√

2πi−αkαc (kcr)−
1
2 e−

kcr
ε2 e−iεθ̂( kcr

ε2 −1)k2
cekc

reiεθ̂

ε2 eikc
X0
ε2 eiω (2I2e−1 − 2I1e1)DΦ,

T2 = 2p1
√

2πi−αkαc (kcr)−
1
2 e−

kcr
ε2 e−iεθ̂( kcr

ε2 −1)k2
c θ̂ekc

reiεθ̂

ε2 eikc
X0
ε2 eiω (3I2e−1 − 1I1e1)DΦ.

As T1, T2 ∈ span (DΦ), i.e. 〈T1,Φ⊥〉 = 〈T2,Φ⊥〉 = 0, there is no solvability condition at ε1, 
and T2 does not occur in the solvability condition at ε2, i.e. in the calculation of S0. Also note 
that (10) holds and thus

2F2
0 [λc,σ0](U2, RN) + 3F3

0 [λc,σ0](U1, U1, RN)
∣∣
e±1

= −2F2
0 [λc,σ0](U1, R̃N+1)

∣∣
e±1

,

where R̃N+1 denotes the e0, e±2 parts of RN+1. In summary (32) is solvable if and only if

0 =
(
J(λc) + ∂2

x D
)

RN+2 +
2
r

D∂x∂θ̂RN+1 − i2
θ̂

r
D∂x∂θ̂RN +

1
r2 ∂

2
θ̂
DRN ,

which itself is solvable if and only if

0 =

〈
2
r

D∂x∂θ̂RN+1

∣∣∣∣
e±1

,Φ⊥

〉
,� (33)
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as again 〈DΦ,Φ⊥〉 = 0. To solve (33) we need the orthogonal projection of RN+1|e±1 onto 

span {Φ}⊥, which is
(

i
r
∂θ̂S0 +

〈T1, DΦ〉
2kc‖DΦ‖

∣∣∣∣
e1

)
Φ3,1e1 + c.c..

Thus the equation for S0 is

0 =

(
−kc

2
r2 ∂

2
θ̂
S0 + ikc

2
r
∂θ̂

〈T1, DΦ〉
2kc‖DΦ‖

∣∣∣∣
e1

)
〈DΦ3,1,Φ⊥〉 .

⇔∂2
θ̂
S0 = ir∂θ̂

〈T1, DΦ〉
2kc‖DΦ‖

∣∣∣∣
e1

.

Obviously S0 can be calculated by integrating twice, but before that we derive the θ̂ depend

ence of r 〈T1,DΦ〉
2kc‖DΦ‖ at e1:

r
〈T1, DΦ〉
2kc‖DΦ‖

∣∣∣∣
e1

=− ip1
√

2πi−αkαc (kcr)
1
2 e−

kcr
ε2 e−iεθ̂( kcr

ε2 −1)ekc
reiεθ̂

ε2 eikc
X0
ε2 2eiωI1(X)e1

=− p1
√

2πi1−αkα+
1
2

c r
1
2 e−

kcr
ε2 e−iεθ̂( kcr

ε2 −1)e
kcr
ε2 (1+iεθ̂−ε2θ̂2+O(ε3))eikc

X0
ε2 2eiωI1(X)e1

∼
ε→0

− p1
√

2πi1−αkα+
1
2

c r
1
2 e

kcr
ε2 (−ε2θ̂2)eikc

X0
ε2 2eiωI1(X0 − ir)e1

=− p12
√

2πi1−αkα+
1
2

c r
1
2 e−kcrθ̂2

eikc
X0
ε2 eiωI1(X0 − ir)e1,

�
(34)

where I1,2(X) = I1,2(X0 − ir) + O(ε) by the Taylor series in θ̂, as X = X0 − reiεθ̂. This then 
finally yields

S0 =− p12
√

2πi1−αkα+
1
2

c r
1
2 eikc

X0
ε2 eiωI1(X0 − ir)

(∫ θ̂

0
e−kcrx2

dx + C1

)

=− p1π
√

2i1−αkαc eikc
X0
ε2 eiωI1(X0 − ir)

(
erf(

√
kcrθ̂) + C1

)
,

with constants C1, C−1 and where we set the first constant of integration to zero, as we always 
seek a bounded solution. At ε2e−1 a solvability condition for Ŝ0 arises in exactly the same 
matter and yields Ŝ0 = −S̄0.

Now recall that we simplified the calculation by ignoring the c.c. in Un, and thus for the 
real S0 we have to add that again. As mentioned above, the linearity of the calculations yields 
that we just have to add the complex conjugate, i.e. the full solution at e1 is given by S0 + S̄0, 
and as I1 = Ī2 for real X, see theorem 4.1, the full contribution at e1 on the real line is given by

�
(
−p1π

√
2i1−αkαc eikc

X0
ε2 eiω

)
I1(X0 − ir)

(
erf(

√
kcrθ̂) + (C1 + C̄−1)

)

=− π
√

2ε−6|p1|k
5
2
c eikc

X0
ε2 e−

1
2 πβI1(X0 − ir)

sin(ln(kc)β + arg( p1)− 2ln(ε)β + ω)
(

erf(
√

kcrθ̂) + (C1 + C̄−1)
)

,
� (35)
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as α = 3 + iβ. Remember that ω  was the arbitrary phase shift in the leading order, which we 
reintroduced here, because it is crucial for the upcoming matching process.� □ 

4.4.  Matching of the remainder terms and the snaking width formula

The leading order forcing by truncation, calculated in (34), is exponential decaying in θ̂. As 
X − X0 = −ireiεθ̂ the forcing by truncation thus is relevant in an X = O(ε) range, the Stokes 
layer, only. Thus the error of truncation is the leading order error outside of the Stokes layer, 
and both errors have to match at this border.

The matching progress leads to the following theorem, from which theorem 2.4 is a direct 
corollary, and thus yields our main result.

Theorem 4.5.  Let (5) be an asymptotic expansion of a front solution U f
ε  as in hypoth-

esis 2.2. Then the leading order remainder RT
N + εRλδ is uniformly exponentially small in 

ε2σ2 = σ − σ0 if and only if

|λ− λM| =
∣∣ε4λδ

∣∣ < µ

|σ − σ0|
e
− ν

|σ−σ0|� (36)

where ν ≈ 18.550 1√
d
 and σ0 ≈ −2.4

√
d in case 1, while ν ≈ 69.721 1√

d
 and σ0 ≈ −16

√
d  in 

case 2.

The linear nature of the method makes it unable to determine µ, which will thus be deter-
mined by a numerical fit in section 6. Indeed (18) can be used to establish µ via an recurrent 
limit, but it is cumbersome to approximate this limit, see [DMCK11], why we omit this step 
here.

Proof.  Now that we found the error by truncation RT
N  and the Maxwell point deviation 

error Rλδ we can match both at the Stokes layer borders, i.e. for θ̂ = O( 1
ε ). Afterwards we 

investigate the remainder in the limit X → ∞ and derive conditions for uniform exponential 
smallness. In section 4.2 we showed

Rλδ

1,1 = K3I1 +

(
2
√

15
c0

λδR′
0

∫
R2

0

R′2
0
+ i2ĉ

2
√

15
c0

λδR0

∫
R0R′

0

∫
R2

0

R′2
0

)
eiΘ0 =: K3I1 + λδIλδ

,

� (37)

where we already set the constants K1, K2 and K4 to zero, as a nonzero factor K1 would yield 
an unbounded solution and nonzero factors K2 or K4 correspond to infinitesimal translations 
in X resp. x. As I1 → ∞ and Iλδ

→ 0 for X → −∞ we have K3  =  0 for X  <  0. Furthermore 
Iλδ

(0) = 0 and S0 → const. ·
(
C1 + C̄−1 − 1

)
 for θ̂ → −∞ which yields C1 + C̄−1 = 1 to 

match at the left hand side of the Stokes layer.
At the right hand side of the Stokes layer we thus require

K3 = −ε−54|p1|
√

2k3
c eikc

X0
ε2 e−

1
2 πβ sin(ln(kc)β − 2 ln(ε)β + arg( p1) + ω),

to match S0, see (35) with (37). The missing ε factor is due to our scaling RT
N + εRλδ for the 

leading order remainder. Continuity is recovered by adding both error terms and subtracting 
matched parts. For conditions on λδ we only need to investigate the limit X → ∞ where 
I1, Iλδ

→ ∞. Therefore, recall that
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I1 =

(
R′

0

∫ X

X0

1
R′2

0
dt + i2ĉR0

∫ X

X0

R0R′
0

∫ s

X0

1
R′2

0
dtds

)
eiΘ0 and R0 =

b1√
1 + eb2X

with b2 < 0 < b1 from theorem 3.1. For X → ∞ we have

R0 ∼
X→∞

b1

(
1 − eb2X

2

)

and thus

I1 ∼
X→∞

(
1

b1b2
2

e−b2X − i2ĉ
b1

b3
2

e−b2X
)

eiΘ0 =
1

b1b2
2

(
1 − i2ĉ

b2
1

b2

)
eiΘ0 e−b2X ,

and

2
√

15
c0

λδ

(
R′

0

∫ X

0

R2
0

R′2
0

dT + i2ĉR0

∫ X

0
R0R′

0

∫ X

X0

R2
0

R′2
0

)
eiΘ0 ∼

X→∞

2
√

15
c0

λδ
b1

b2
2

(
1 − i2ĉ

b2
1

b2

)
eiΘ0 e−b2X .

This yields the exponentially growing term
(
−ε−6π|p1|

√
2k3

ceikc
X0
ε2 e−

1
2 πβ sin(ln(kc)β − 2 ln(ε)β + arg( p1) + ω)

1
b1b2

2
+

2
√

15
c0

λδ
b1

b2
2

)(
1 − i2ĉ

b2
1

b2

)
eiΘ0 e−b2X .

� (38)

Thus, there is only a small range of λδ for which we can find ω  to cancel the exponential fac-
tor, i.e. where we have a uniform exponentially small remainder and thus a front. The precise 
range for case 1 is

|λδ| �
ε−6π|p1|

√
2k3

ceikc
X0
ε2 e−

1
2 πβ

b1b2
2

2
√

15
c0

b1
b2

2

=
const.
ε4

1
ε−2b2

1
eikc

X0
ε2

=
const.
ε4

1
|σ − σ0|

e−kc
|X0|
ε2 ≈ const.

ε4|σ − σ0|
e
− 18.550√

d|σ−σ0| .

Importantly, most constants in the exponential decay, namely X0 and kc are determined direct-
ly by the leading order solution A and thus can be calculated without the heavy computations 
of the beyond all order methods, as already noted in the introduction. Besides justification the 
beyond all order calculations also yield the dominant wavenumbers in Un for n → ∞, which 
results in an integer factor in the exponential decay (which is 1 here), and is determined by the 
lowest order nonlinearity in the underlying model, i.e. can be guessed without the calculations 
as well.� □ 

5.  Construction of the snakes

The Schnakenberg model is local and invariant under translation and the symmetry x → −x , 
which together implies that the existence of fronts is in a one to one correspondence to the 
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existence of localized patterns with sufficient width. Still the actual gluing of two fronts to 
form a localized pattern yields some additional insights. We therefore give a brief summary of 
this method and discuss its consequences for the snaking branch. This is not formulated in a 
theorem, as we skip some details and thus do not derive the gluing rigorously.

A localized pattern, constructed by the gluing of two fronts, is—for a sufficient pattern 
length—approximated well by front solutions at the borders, and a matching of these gives the 
existence range and the asymptotics of the snaking branch for σ → σ0. By (38) the remainder 
has the two exponential terms e−ikc

X0
ε2 and e−b2X. As X0 = iπ/kc, exponential growing terms 

are switched on for X = O
( 1
ε2

)
. Thus a matching of an up- and down-front is possible, i.e. 

growing terms are of the same size, if the patterns length is O
( 1
ε4

)
. We denote the patterns 

length by L/ε4, L ∈ R.
An asymptotic expansion for the up-front was constructed in the previous sections. By the 

reflection (x, X) → (−x,−X) we have a down-front solution as well. To construct a local-
ized pattern p(x, X) centered at L/2ε4 we shift the down-front by L/ε4. For 1 � X � 1/ε2 
we can approximate p  by εU1 + RN  and simplify this in the limit X → ∞, as we match at 
X = O

( 1
ε2

)
. Precisely we have

p(x, X) ∼
X→∞

b1eib2βXeikc(x+ω)

(
1 −

(
1
2
+ iβ

)
eb2X + (1 − i2β)

1
b2

Ξ(ω)e−b2X
)
+ c.c.� (39)

with

Ξ(ω) =

(
−ε−6π|p1|

√
2k3

ceikc
X0
ε2 e−

1
2 πβ sin(ln(kc)β − 2 ln(ε)β + arg( p1) + ω)

1
b1b2

2
+

2
√

15
c0

λδ
b1

b2
2

)
.

This approximates p  at the left border of the pattern, i.e. the up-front. By symmetry the right 
border, i.e. the down-front, is approximated well for 1 � L/ε2 − X � 1/ε2 by

p(x, X) ∼
X→∞

b1eib2β( L
ε2 −X)eikc(( L

ε4 −x)+ω̂)
(

1 −
(

1
2
+ iβ

)
eb2( L

ε2 −X) + (1 − i2β)
1
b2

Ξ(ω̂)e−b2( L
ε2 −X)

)
+ c.c.

= b1e−ib2β( L
ε2 −X)e−ikc(( L

ε4 −x)+ω̂)
(

1 −
(

1
2
− iβ

)
eb2( L

ε2 −X) + (1 + i2β)
1
b2

Ξ(ω̂)e−b2( L
ε2 −X)

)
+ c.c.

� (40)
where we introduced ω̂  as the phase-shift of the down-front, because both fronts are not 
enforced to have the same phase-shift, and indeed we find precise matching conditions 
between both phase shifts for different snaking branches.

Following [CK09], a substantially better approximation would be given by 
p ∼ εU1 + ε2U2 + RN  in the up-front region and similarly in the down-front region, because 
U2 yields the term C = ε2Xeb2X, and ε2X = O (1) in the matching regime X = O

( 1
ε2

)
, i.e. 

C has to be included in the matching process. This would then stop the approximations (39) 
and (40) from being uniformly valid at X = O

( 1
ε2

)
 and therefore require to recalculate the 

asymptotic expansion of the front with a super slow scale ξ = ε4x . Additionally, one would 
need to derive a series for the periodic solution itself and treat the fronts as borders. But, as 
the amplitude to the periodic solution can, in view of (39), be expected to be a constant plus 
an exponential small correction in X, i.e. to be of the form

b1e−ib2βXeikc(x+ˆ̂ω)
(

a0 + a±e±(b2X+γψ)
)
+ c.c.

with constants a0, a± and γ , this would result in negligible corrections only.
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The matching itself is done by equating like terms in (39) and (40). The constant terms in 
X yield

ω = b2β
L
ε2 − kc

L
ε4 − ω̂ + 2πZ.� (41)

Equating the exponential terms then yields

1
2
=

1
b1

Ξ(ω̂)e−b2
L
ε2 ,

1
b1

Ξ(ω) =
1
2

eb2
L
ε2 .

Thus Ξ(ω) = Ξ(ω̂) is required. This has the two solution branches

	Case 1:	� ω = ω̂ + 2πZ,
	Case 2:	� ω = −ω̂ + π − 2 (ln(kc)β − 2 ln(ε)β + arg( p1)) + 2πZ,

and requires

b1

2
eb2

L
ε2 = ε−4p̃1e

− kcπ
b2ε

2 sin( p2 − 2β ln(ε) + ω) + λδ ,� (42)

where p̃1(|σ − σ0|) and p 2 now condense the angular respectively absolute value of the 
numerically determined constant p 1 along with some further constants for clarity.

Suppose that case 1 holds now. Then

ω =
b2β

2
L
ε2 − kc

2
L
ε4 + πZ

by (41) and thus (42) yields

λδ =
b1

2
eb2

L
ε2 − ε−4p̃1e

− kcπ
b2ε

2 sin( p2 − 2β ln(ε) +
b2β

2
L
ε2 − kc

2
L
ε4 + kπ)

� (43)
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Figure 3.  (a) Excerpt of the numerical snaking branch of localized patterns for the 
truncated system (7) with d  =  100 and σ = −0.5. Stability is not plotted for clarity; 
computations show that every second winding is stable. (b) Some solution plots on the 
snake. Only the first component of U = (u, v) is shown. (c) As (b) for the fold points, 
which are continued to compute the snaking width. The parameter σ = −0.5 is far 
away from the range where our method is expected to give good results, which is also 
indicated by the O(1) amplitudes of the solutions and was chosen for visual reasons, as 
even here the snaking width is of magnitude 10−3 only, also see figure 4.
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with k ∈ {0, 1}. This corresponds to the two snaking curves, one with a maximum at the pat-

terns center and one with a minimum. As b2  <  0 the term b1
2 eb2

L
ε2  is negligible for L � kcπ 

and (42) transforms into the formula for the width of existence again. Additionally one can 
observe in (43) that a change of L by 4πε4/kc  roughly, i.e. in leading order, implies the snake 

to go up one turn. More precise, as b2 ≈ 0.029
√

dσ2 = 1
ε2 0.029

√
d (σ − σ0) the increase of 

L by 4πε4/
(

kc + 0.029
√

d |σ2 − σ0|β
)

 will give the snake another turn and corresponds to 

two bumbs being added to the pattern, as the wavenumber is manipulated by the complex 
amplitude.

If case 2 holds, (41) fixes L while ω  stays arbitrary and thus for all λδ in an exponentially 
small range one can find ω  to solve (42). For large L one can again ignore the e−b2

L
ε2  factor and 

see that this case describes the ladders, horizontal branches of asymmetric solutions connect-
ing the two snaking curves close to their fold points. However, these are expected to slowly 
travel in time in non-variational systems, see e.g. [BD12, BKL+ 09, BK07], which is an effect 
on an even slower scale, and thus ladders can not be observed in this system.

6.  Numerics and comparison with the analysis

The numerical results for all calculations are computed with pde2path [URW14] on the 

interval I =
(
−25 2π

kc
, 25 2π

kc

)
 with Neumann boundary conditions. For plots the domain is 

sometimes reduced, but for computations like the fit of µ the domain I is used. Front solutions 

Figure 4.  (a) Fold point continuation of fpt19 (blue) and fpt20 (black) in σ. (b) 
Numerically estimated snaking width (black) and analytical predictions (blue, red 
lines) with a best fit for µ. Numerical snaking widths in the regimes σ < −1.2 and 
σ > −0.342 have not been taken into account, as the computed widths are below 
numerical resolution. (c) Relative errors with regard to the numerical estimate of the 
snaking width, where the turning point for the range of localized patterns is roughly at 
σ = −0.6.
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on this domain with interface size smaller than 50 periods can then, by mirroring and gluing 
together, be identified with localized patterns on the real line. While boundary effects for 
localized patterns are rapidly decreasing the huge domain size is necessary to track localized 
patterns for |σ − σ0| small, because the slow scale of the interface yields a very large interface 
section. The diffusion parameter d was set to 100, as there is a trade-off between the existence 
range of localized patterns and thus non-linear forcing on the snaking width and the number 
of unstable wavelengths for λ = λc + O

(
ε4
)
, which makes the numerics somewhat delicate. 

Another difficulty for small d is the high exponential forcing, which scales with d− 1
2 , see theo-

rem 4.5, and results in snaking widths below numerical resolution for σ − σ0 = O(1).
We present the numerics for the truncated system (7) as it contains every information used 

in our analysis. Figure 3 shows the snaking branch of localized patterns for σ = 0.5 along 
with some solutions on that branch. The fold points fpt19 and fpt20 are tracked by a fold 
continuation in σ, which results in figure 4(a), and the snaking width is determined by the 
difference of both fold positions. The numerical snaking width and the analytical estimate 
are shown in figure 4(b), where µ is chosen as a best fit in the regime, where the differential 
of the numerical snaking width increases, respectively decreases. The calculations show that, 
even though the snaking width differs from our estimate, the relative error is small for width 
variations of order 104.

Similar results are obtained for the full system, with different µ, which incorporates the 
higher order nonlinearities, and we omit plots for the sake of brevity.
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