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Abstract
We investigate possible finite-volume effects on baryon number suscept-
ibilities of strongly interacting matter. Assuming that a hadronic and a
deconfined phase both contribute to the thermodynamic state of a finite system
due to fluctuations, it is found that the resulting shapes of the net-baryon
number distributions deviate significantly from the infinite volume limit for a
given temperature T and baryochemical potential μB. In particular, the con-
straint on color-singletness for the finite quark–gluon phase contribution leads
to a change of the temperature dependence of the susceptibilities in finite
volumes. According to the model, the finite-volume effect depends qualita-
tively on the value of μB.

Keywords: heavy-ion collisions, baryon number susceptibility, quark–gluon
plasma, phase transition

(Some figures may appear in colour only in the online journal)

Made open access 24 March 2020 
Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 46 (2019) 025101 (12pp) https://doi.org/10.1088/1361-6471/aaf82f

5 Author to whom any correspondence should be addressed.

0954-3899/19/025101+12$33.00 © 2019 IOP Publishing Ltd Printed in the UK 1

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

https://orcid.org/0000-0001-6225-4485
https://orcid.org/0000-0001-6225-4485
https://orcid.org/0000-0003-2926-642X
https://orcid.org/0000-0003-2926-642X
mailto:spieles@fias.uni-frankfurt.de
mailto:bleicher@th.physik.uni-frankfurt.de
mailto:carsten.greiner@th.physik.uni-frankfurt.de
mailto:carsten.greiner@th.physik.uni-frankfurt.de
https://doi.org/10.1088/1361-6471/aaf82f
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6471/aaf82f&domain=pdf&date_stamp=2019-01-03
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6471/aaf82f&domain=pdf&date_stamp=2019-01-03
https://creativecommons.org/licenses/by/4.0


1. Introduction

In recent years considerable attention has been devoted to event-by-event fluctuations and
correlations of conserved quantities in relativistic heavy-ion collisions (see [1] for an over-
view of the beam energy scan program at RHIC and the theoretical background). One
important goal of this endeavour is to experimentally probe the phase structure of strongly
interacting matter and possibly identify its critical point. Direct comparisons of measured net-
baryon cumulants with the corresponding thermodynamic susceptibilities from lattice QCD
calculations [2, 3] appear very promising in this respect. These observables are believed to
provide rather robust signatures of the underlying thermodynamics in the case of heavy-ion
experiments. However, in order to relate experimental measurements and theoretical equili-
brium properties, several complications have to be considered: one practical problem is the
finite phase space acceptance and the limited efficiency of any real experiment which may
obscure relevant signatures in the data. Necessary corrections have been addressed theore-
tically, e.g. in [4–7]. A fundamental and obvious issue is the fact that conserved charges do
not fluctuate globally. Therefore, one has to restrict the statistical analysis to a part of the total
phase space of the heavy-ion reaction. The acceptance window of such an analysis must be
chosen sufficiently small, so that the observables can be considered as reflecting a subsystem
in thermodynamic contact with a heat bath. Only then, the grand canonical ensemble can be
applied to the theoretical description of this subsystem. The potential influence of a finite
volume of the source has been explored in [8–11]. At the same time, however, the subsystem
must be large enough to allow the relevant particle correlations to show in the first place, see
e.g. [12]. Finally, one has to take into account initial state (e.g. volume) fluctuations in heavy-
ion experiments, which overlay the possibly critical fluctuations under investigation [13].

In the following, we want to draw the attention to an aspect, which has not been
addressed yet: even under ideal circumstances and with complete control over all the
beforementioned issues, a heavy-ion experiment can only probe finite volumes of strongly
interacting matter, while lattice QCD calculations generally refer to the infinite volume case.
In a finite volume, the partition function of the system is subject to additional constraints
which may lead to changes in the thermodynamic properties like the baryon number sus-
ceptibilities. Firstly, in a finite volume we expect fluctuations of the phase composition that
are suppressed in the infinite volume case: i.e. admixtures of unfavorable macroscopic con-
figurations of the system can be realized with finite probability and can have an effect on the
thermodynamics of the system. Secondly, when the finite hadronic system of a heavy-ion
reaction is forced to undergo a phase transition to a deconfined phase by the collision
dynamics, we expect the finite quark–gluon plasma phase to be suppressed—as compared to
the case of infinite matter—due to the requirement of color-singletness, i.e. an explicit volume
dependence of the quark–gluon plasma equation of state. In this letter, we present an
exploratory study of these effects and their implications with respect to net-baryon fluctua-
tions for scenarios with different baryochemical potentials.

2. The model

We extend the model proposed in [14] to allow for the investigation of finite-volume effects
on baryon number susceptibilities as function of temperature and chemical potential. The
basic assumption of the schematic model is a first order phase transition between a hadronic
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phase and a quark–gluon plasma phase, which is justified for sufficiently high values of the
baryochemical potential6. In a finite volume, it presumes coexistence of the two phases due to
fluctuations: as a consequence of the finite (fixed) volume of the total system, any macro-
scopic configuration x contributes with a probability p(x)∼exp [−Φ(x)/T], where Φ(x) is the
grand canonical potential of the system [15]. In the present simplified set-up, the macroscopic
configuration is the composition of the total system in terms of the partial volumes of the
individual phases, which are assumed to be microscopically uncorrelated, i.e. the partition
function factorizes. In this picture, all intensive thermodynamic quantities of the total mac-
roscopic system are given as expectation values based on the weight of all possible
configurations.

The equations of state of the subsystems are a relativistic ideal quantum gas of non-
strange hadron resonances (with eigenvolume correction) on the one hand, and a relativistic
ideal quantum gas of two massless quark flavors and gluons confined in an MIT bag on the
other hand.

For further details we refer the reader to the appendix.

3. Susceptibilities of baryon number in the finite system

The susceptibilities of the baryon number in the finite system are calculated as

, 1i
B

i

B
i

c
j
m

= -
¶
¶

ˆ
ˆ

( )

from the dimensionless density of the grand canonical potential T V V T, ,B
1 4j m= F - -ˆ ( ) ,

where TB Bm m=ˆ is the reduced baryochemical potential.
The first order susceptibility is proportional to the expectation value of the net-baryon

number,

V VT N . 2B
B1

3c =( ) ⟨ ⟩ ( )

For μB=0 this quantity has a value of zero, which, of course, is reflected by the model
outcome. Let us consider the second order susceptibility, which is proportional to the variance
of the net-baryon number:

V VT N . 3B
B B2

3 2c s d= =( ) ⟨( ) ⟩ ( )

Figure 1 shows this quantity as a function of temperature at μB=0 for different system
volumes. The quark–gluon plasma phase is constructed without color-singlet and zero-
momentum constraint, i.e. there is no explicit volume dependence. The model calculations
show a softening and broadening of the phase transition which is more pronounced for small
volumes. As was discussed in [14], this can be understood as a consequence of the admixture
of the ‘unfavorable’ phase in the finite system at any given temperature. Although suppressed
exponentially, the presence of the quark–gluon phase below the critical temperature TC

¥ and
the presence of the hadronic phase above TC

¥ has a finite probability (TC
¥ marks the first order

phase transition for infinite matter). The effect presented in figure 1 should in principle be
relevant in any realistic model-treatment of strongly interacting matter in finite volumes. The
basic infinite matter equations of state of the phases used in our model and the resulting

6 For μB=0, it is not in accordance with lattice QCD calculations. However, we expect that the qualitative behavior
of the addressed effects will also be present—although less pronounced—in the case of a crossover.
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equation of state of the two-phase system are of course only schematic approximations to
study the finite size effects, as can be seen from the comparison with lattice QCD results7.
However, the model calculation gives an indication of how strong the deviation from a given
baseline—the true properties of infinite matter—can be due to the finite volume. In this
respect one would conclude from figure 1 that the finite volume effect considered here should
in principle affect the observed slope of the crossover curve of TB

2c ( ). But the effect seems
too small to be relevant for the analyses of heavy-ion experiments at present.

Figure 2 (top) shows the same quantity as figure 1 for the two-phase model, now
explicitly taking into account the color-singlet constraint in the quark–gluon equation of state.
The picture now changes completely. The softening of the step in the second order sus-
ceptibility is reduced, while the temperature of the sudden rise is shifted drastically with
decreasing volume. Both effects are a consequence of the fact that a smaller volume of the
quark–gluon phase gives rise to larger grand canonical potential density, corresponding to a
smaller pressure. For a given temperature the quark–gluon phase is thus less favorable (more
suppressed) in a finite volume as compared to the infinite volume limit. The effective critical
temperature TC

eff which can be thought of as the temperature where the effective number of
degrees of freedom increases substantially, is strongly volume dependent (as was shown in
[14]; see [16] for qualitatively contrary findings within a different phenomenological model).

The suppression of small quark–gluon droplets—due to the color-singlet constraint—
also implies that quark–gluon admixtures relevant for the total system stem predominantly
from relatively large droplets at T TC

eff . Any contribution of the quark–gluon phase to the
total equation of state must therefore be a relatively strong contribution. This is why the
softening of the phase-transition is reduced. As a result, one finite-size effect cancels the other
finite-size effect.

Figure 1. Second order baryon number susceptibilities B
2c as function of temperature at

μB=0. For the individual phases the equations of state without explicit volume effects
are employed.

7 For μB=0, lattice QCD does not exhibit a discontinuity of TB
2c ( ) for infinite matter as our simple model, but

rather a smooth transition.
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The influence of the explicit finite-size effect of the quark–gluon equation of state on the
second order baryon number susceptibility is certainly not negligible according to the model
and should be addressed in analyses of experimental observables. This is especially true if the
reaction volume as a hidden parameter implicitly changes in a series of measurements, e.g. in
centrality dependence, while only T or μB is supposed to vary.

Both model calculations of, with and without explicit color-singlet constraint of the
quark–gluon plasma equation of state, approach the value 2/9 expected for an ideal gas of
massless quarks and gluons with two quark flavors.

In figure 2 (bottom), the influence of a finite baryochemical potential is depicted. The
qualitative behavior with respect to system size variations appears to be similar to the μB=0
case, i.e. one observes a significant shift of the effective critical temperature TC

eff with
decreasing volume. The transition region around TC

eff is characterized by strong variations of
B
2c in a narrow temperature range, which is much more pronounced at finite μB than at

μB=0. For a given volume, the discontinuity of B
2c as a function of T occurs at lower

temperatures at finite μB as compared to μB=0. This reflects the decreasing TC with
increasing μB already present in the infinite matter case.

Figure 2. Second order baryon number susceptibilities B
2c as function of temperature

for different system volumes at μB=0 (top) and μB=300 MeV (bottom). For the
QGP phase the equation of state with explicit volume effects is employed.

J. Phys. G: Nucl. Part. Phys. 46 (2019) 025101 C Spieles et al

5



Another quantity currently discussed extensively is the ratio of the fourth to second order
susceptibility, which is connected to the excess kurtosis

N
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3, 4B
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This quantity is of particular interest since it is experimentally observable, while there
also exist lattice QCD results to compare with [1, 2]. Moreover, the volume and temperature
terms cancel out, when the ratio of the susceptibilities is used. Figure 3 shows the fourth to
second order baryon number susceptibility ratio B B

4 2c c as function of temperature at μB=0
for the two-phase model. Again, we consider first the scenario without color singlet-constraint
for the quark–gluon phase. The two-phase model exhibits a strong divergence of the sus-
ceptibility ratio with increasing volume at the critical temperature (of infinite matter) TC

¥. This
translates to extreme net-baryon number fluctuations on an event-by-event basis in a small
temperature range. However, the critical behavior exhibited by this model scenario comes
along with the assumption of a first order phase transition for the infinite matter limit, which
is, as was stated above, not characteristic of strongly interacting matter according to lattice
QCD at μB=0. In any case, the divergence of B B

4 2c c is damped for smaller volumes
according to the model calculations. This is plausible since the absolute effect of the system
fluctuating between the two phases (or the maximum correlation length, respectively) is
limited by the finite system size.

Consistent with figure 1, the ratio of fourth to second order susceptibility drops from ≈1
(expected for an ideal hadron gas) to ≈2/(3π2) (expected for a gas of free, massless u/d
quarks and gluons) in a relatively small temperature range around TC

¥ even for small total

Figure 3. Fourth to second order baryon number susceptibility ratio B B
4 2c c as function

of temperature at μB=0. For the QGP phase the equation of state without explicit
volume effects is employed.
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volumes. This picture changes as soon as a more realistic ansatz for the quark–gluon phase is
chosen, i.e. the color-singlet constraint is preserved in the partition function.

Figure 4 shows the fourth to second order baryon number susceptibility ratio B B
4 2c c as

function of temperature at μB=0 with the color singlet-constraint for the quark–gluon phase.
In line with figure 2 we observe a temperature shift of the sudden decrease of the ratio for

Figure 4. Fourth to second order baryon number susceptibility ratio B B
4 2c c as function

of temperature at μB=0 for different volume sizes. For the QGP phase the equation of
state with explicit volume effects is employed. The green dots show the infinite volume
limit of the model.
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small system volumes. The total system seems to behave as if it was infinite matter, however
with a higher critical temperature marking a first order phase transition. For a system size of
V=100 fm3 there is a temperature range above TC

¥ between 155MeV<T<165MeV,
where the observable susceptibility ratios reflect the properties of a ‘superheated’ hadron gas,
not that of a quark–gluon plasma. For even smaller volumes of V=50 fm3, this region
extends to T≈175MeV. Moreover, according to the model, the sudden change of the
thermodynamic bulk properties in a relatively small temperature range around TeffC gives rise
to a near-divergent behavior, i.e. very large negative and positive values of B B

4 2c c . Note that
for a typical volume encountered at RHIC energies (V≈1000 fm3 in one unit of rapidity) the
finite-size effect is still very weak, and the effective critical temperature is shifted only by

T 2 MeVC
effD » . Thus, for such a volume a direct comparison to lQCD is reliable.
Figure 5 shows the fourth to second order baryon number susceptibility ratio B B

4 2c c as
function of temperature for different values of μB for V=50 fm3 in comparison to infinite
matter. We consider the case with color singlet-constraint for the quark–gluon phase. In the
infinite volume case, finite baryochemical potentials change the susceptibility ratio as a
function of temperature as compared to a system at μB=0. This is mainly due to the
hadronic phase which shows strongly reduced values of B B

4 2c c with increasing bar-
yochemical potential, while the susceptibility ratio of the pure quark–gluon phase is only

Figure 5. Fourth to second order baryon number susceptibility ratio B B
4 2c c as function

of temperature at different values of baryochemical potential μB. For the QGP phase the
equation of state with explicit volume effects is employed. The results for system size
of V=50 fm3 (red dots) are compared with the infinite volume limit (green dots).
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weakly dependent on μB. The critical temperature according to the two-phase model is
lowered from T 0 155 MeVC Bm = »¥( ) to T 450 MeV 147 MeVC Bm = »¥( ) . At TC Bm

¥( ),
the susceptibility ratio of the two-phase system switches from the hadron gas to the quark–
gluon plasma value. Thus, generally, it exhibits a sudden increase or decrease of its value,
depending on μB. Only for μB=300MeV, the values of TB B

C4 2c c ¥( ) happen to be the same
for the hadron and the quark–gluon phase, leading to a smooth transition. At higher values of
μB, infinite matter exhibits a negative susceptibility ratio in a certain temperature range below
TC

¥, because the values of the hadronic phase are sufficiently low.
Now we consider a system of size V=50 fm3. At a finite, but moderate baryochemical

potential of μB=150MeV, one recognizes a reduction of the susceptibility ratio in the
temperature range of the ‘superheated’ hadron gas, T T TC C

eff< <¥ , as compared to the
μB=0 case. Still, the value of B B

4 2c c is higher in the finite system as compared to infinite
matter. In the same temperature range (where the quark–gluon contribution is suppressed),

B B
4 2c c drops to negative absolute values at μB=300MeV. Here, the finite volume creates

an effect contrary to the one predicted for small baryochemical potentials, as the observable
susceptibility ratios are considerably lower than for infinite matter. At μB=450MeV, this
effect is even more pronounced.

4. Summary

We have presented the first study on a novel finite size effect on baryon number suscept-
ibilities. According to our schematic model, the expected change of the reaction volume in
heavy-ion collisions at different beam energies and centralities should lead to non-trivial
effects concerning B B

4 2c c even though one naively expects a canceling of the (average)
volume dependence in these ratios. In order to make connections between experimental
observables and the actual thermodynamic properties of strongly interacting matter, one has
to be very careful with respect to the finite volumes of the reactions under investigation. In
real experiments one does not probe the phase diagram in the shape of the classic T−μ plane
but in the T−μ−V space. From our model we infer that the effective equation of state of
strongly interacting matter in a finite volume is necessarily different from the infinite matter
equation of state (which can be theoretically explored with lattice QCD calculations).

We concede that the results presented here provide only a first exploratory study within a
simplified model and can hardly be considered as quantitative predictions. However, they
point to a possibly significant complication in the analyses of experimental observables which
are aimed at comparisons with lattice QCD predictions. It seems that more theoretical work in
this respect needs to be done.
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Appendix A. The grand canonical potential of the two-phase system

As described in [14], it is assumed that the partition function of the total system factorizes into
the partition functions of the two individual phases for fixed ξ, where ξ characterizes the
macroscopic configuration: the volume of the hadronic phase and the quark–gluon phase are
Vh=ξV and Vq=(1−ξ) V, respectively. The grand canonical potential Φ of the total
system in configuration ξ is then given by

T V T V

T V V

, , , ,

, , 1 1 , A1
B h B

q B

m j m x x
j m x x

F =
+ - -

x( ) [ ( )
( ( ) )( )] ( )

where jh and jq are the densities of the grand canonical potential of the individual phases8.
The normalized probability for the total system being in configuration ξ must then be

p T V
T V T

T V T
; , ,

exp , ,

exp , , d
. A2B

B

B0

1
ò

x m
m

m x
=

-F

-F

x

x

( )
[ ( ) ]

[ ( ) ]
( )

Any intensive thermodynamic quantity of the total system Atot(T, μB, V )–including the
density of the grand canonical potential jtot—can then be expressed as

A T V p T V A T V

A T V

, , ; , , , ,

, , 1 1 d . A3

B B h B

q B

0

1

òm x m m x x

m x x x

=

+ - -

( ) ( )[ ( )

( ( ) )( )] ( )

Appendix B. The grand canonical potential of the hadronic phase

The model equation of state of the hadronic phase is constructed as an ideal relativistic
quantum gas of experimentally established non-strange baryon and meson resonances up to
masses of 2GeV. We calculate the density of the grand canonical potential (which equals the
negative pressure) as

g p

E

p

E T6

d

exp 1
, B1h

i

i

i i i
2 0

4

òåj
p m

= -
- 

¥

[( ) ]
( )

where ‘+’ stands for fermions and ‘−’ for bosons, gi denotes the degeneracy of particle
species i. E p mi i

2 2= + is the energy of particle species i and μi its chemical potential.
In order to take into account repulsive short-range interactions (or eigenvolumes) of the

hadrons, all thermodynamic quantities are corrected by the Hagedorn factor 1/(1+ò/4B)
[17], where ò is the energy density of point particles and B is the bag constant (its value is
chosen consistent with appendix C). Note that jh is a function of T and μB only, it does not
depend on the subsystem’s volume V.

Appendix C. The grand canonical potential of the quark–gluon plasma phase

The model equation of state of a color-singlet quark–gluon plasma of volume V, temperature
T and quark-chemical potential μq=μB/3 has been derived in [18]. The deconfined phase is

8 For μB=0—as was the case in [14]—the grand canonical potential Φ can be replaced by the free energy F in all
basic formulas of the model.
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thought of as a gas of non-interacting quarks and gluons in a cavity, held together by a
phenomenological vacuum pressure B. The color neutrality and total momentum constraints
on all many-particle states involved are accounted for with a group-theoretical projection
method: starting with a Fock space representation of free quarks and gluons, a group-inte-
gration over the generating function (using an appropriate Haar measure) effectively projects
out a canonical partition function with respect to color and momentum quantum numbers. The
method consistently takes into account the discreteness of the single-particle states and thus
includes average shell effects in quark–gluon plasma droplets of finite size. In the case of two
flavors of massless quarks and fixed total momentum of zero the resulting grand canonical
partition function reads (according to [18]):

Z T R C D BV T Z, ,
1

2

1

3
exp , C1q

4 3 2
0m p= -- -( ) ( ) ( )

where Z0 is the unprojected partition function including shell corrections. It is given by

Z T R X Yln , , , C2q0 m = -( ) ( )

with

X VT
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Y RT
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The parameters for the finite-size corrections in (C1) are given by

D X Y2
1

3
C4= - ( )

and

C VT
T

RT2
4

3

20

3
, C5

q3
2m

p p
= + +⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
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where R V3

4

1 3
=

p( ) is the radius of a spherical droplet. The phenomenological bag pressure
has been fixed to the value B1/4=215MeV in order to recover a critical temperature of
T 155 MeVC »¥ at μB=0 within the simple model (for infinite volumes), which matches the
current estimates of the chiral transition temperature from lattice calculations (see [2] and
references therein).

The density of the grand canonical potential of the quark–gluon plasma phase is then
calculated from the grand canonical partition function as jq (T, μq, V )=−T/VlnZ. This
quantity depends explicitly on the subsystem’s volume V.
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