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1 Introduction

The study of a quantized scalar field in de Sitter space is a mature endeavour [1–4] possessing
well-known difficulties when the field is light [5–8]. Light spectator scalars in de Sitter space
are not just of formal interest, but rather they can have a variety of cosmological implications
such as generation of dark matter [9–11] or triggering electroweak vacuum decay [12–14].
The stochastic approach presented in refs. [15, 16] is a powerful way of addressing this
problem; it is analytically tractable yet it provides accurate results that are often superior to
more traditional resummation methods. The approach is based on the realization that the
ultraviolet part of the field may to a good approximation be treated as white noise allowing
one to express all results via classical stochastics. For other techniques, see refs. [17–29]

The stochastic approach has become increasingly popular in recent years, likely due to
its great efficacy, and in this vein we note the recent works [30–46]. Often the focus is on
the local probability distribution of the field or on local expectation values, even though the
correlation of fluctutations over space is arguably the more relevant object physically. The
spatial correlators have been addressed for example in refs. [9, 11, 35, 47–59]. Specifically, in
ref. [59] it was shown how correlators at noncoincident points can be effectively calculated
with numerical techniques in conjunction with the spectral expansion based on eigenfunctions
and -values already discussed in ref. [15].

The focus of ref. [59] was on a single spectator scalar φ with quadratic and quartic
terms in its potential while limiting the parameters to only include positive mass terms i.e.
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potentials possessing a single minimum at the origin. In this work we extend this analysis to
include potentials with two possibly non-degenerate minima. Namely, we focus on a potential
of the form

V (φ) = µ3φ+
1

2
m2φ2 +

λ

4
φ4 , (1.1)

with m2 ≤ 0 and µ ≥ 0. Throughout we will make use of the parametrization1

ᾱ ≡ −m2

√
λH2

; β ≡ µ3

λ1/4H3
; m̄2 ≡ −m2 . (1.2)

This potential has two minima if ᾱ > 3(β/2)2/3. In typical perturbative treatments, the
field is assumed to fluctuate near the minimum of the potential, but the stochastic spectral
expansion does not require that assumption. As we will show, in many cases the dominant
contributions to the correlators come from large-amplitude fluctuations that are not visible
in perturbation theory.

This paper is organised as follows: in section 2 we summarise the stochastic spectral
expansion and the numerical technique we used to find the terms in the expansion. In sec-
tions 3 and 4, we apply these techniques to calculate the spectral expansion in the symmetric
and asymmetric cases, respectively. In section 5 we discuss the physical interpretation and
implications of our results, and in section 6 we summarise our conclusions.

2 The stochastic spectral expansion

2.1 The eigenvalue equation

In the stochastic formalism one may express any correlator involving noncoincident spacetime
points as a spectral expansion [16, 59], by solving the eigenvalues and eigenfunctions, Λn and
ψn, from the eigenvalue equation

Dφψn = −4π2Λn
H3

ψn , (2.1)

with

Dφ =
1

2

∂2

∂φ2
− 1

2
W (φ) ; v(φ) =

4π2

3H4
V (φ) ; W (φ) = v′(φ)2 − v′′(φ) . (2.2)

Since the input in the eigenvalue equation (2.1) is W (φ) (and not V (φ)) it is the W (φ)
that will turn out to be the fundamental quantity providing a qualitative understanding of
the behaviour of the eigenfunctions and -values. The behavior of v(φ) and W (φ) for the
potential (1.1) is illustrated in figure 1. In most cases solving equation (2.1) needs numerical
methods.

2.2 Correlators and the power spectrum

If Gf (t2, t1; x2,x1) is the general correlator for some function of the field f(φ), the autocor-
relation function

Gf (t; 0) = 〈f(φ(0))f(φ(t))〉, (2.3)

1This is related to the definition in ref. [59] as ᾱ ≡ −α.
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ᾱ = 0

−1 0 1
φ

0

5

10
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Figure 1. The v(φ) and W (φ) potentials as defined in (2.2) with the choice λ = 1 given in the units
H = 1.

can via the stochastic formalism be expressed as a spectral expansion [16, 59] making use
of the eigenfunctions and -values from eq. (2.1). Specifically, in terms of eigenvalues Λn and
spectral coefficients fn one may write

Gf (t; 0) =
∑
n

f2
ne
−Λnt , (2.4)

where the spectral coefficients are specific to the form of f(φ)

fn ≡
∫
dφψ0f(φ)ψn . (2.5)

By making use of the de Sitter invariance of the equilibrium quantum state, from (2.4) one
may infer the form of the equal time correlator between two spatially separated points

Gf (0; x) =
∑
n

f2
n

(|x|H)2Λn/H
, (2.6)

where x is physical.

2.3 A numerical approach

Following we solve the eigenfunctions and eigenvalues of eq. (2.1) numerically with the ‘over-
shoot/undershoot’ or otherwise known as ‘wag the dog’ method. For a potential with Z2
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symmetry this problem reduces to a systematic iteration of just one unknown variable, the
eigenvalue Λn. This is due to the general feature that for a symmetric potential the wave
functions are either even or odd, which fixes one of the two initial conditions required for a
second order differential equation and the remaining one is irrelevant as the functions must
be normalized. The essentials of the method are well-known and can be found for example in
section 2.3 of ref. [60]. This special case is encoutered in the symmetric double-well potential,
which is addressed in section 3. A major shortcoming is that modifications are required when
two eigenvalues are (almost) degenerate, which is encountered at the limit of a large barrier,
or equivalently, deep wells. However as we will show, this is precisely the limit for which one
may easily derive accurate analytic approximations and with a combination of analytics an
numerics the entire eigenvalue spectrum may be covered.

When there is no Z2 symmetry, for example as in eq. (1.1) with β 6= 0 that is discussed in
section 4, the ‘overshoot/undershoot’ needs to be performed with respect to two unknowns:
in addition to the eigenvalue one must iterate over the value or derivative of the function at
a point giving rise to a two dimensional iteration problem. This however amounts to only a
small increase in complexity of the algorithm or the expensiveness of the computation.

To facilitate a numerical analysis of the eigenfunctions and -values very similarly to
ref. [59] for the potential (1.1) it is convenient to introduce the following dimensionless quan-
tities

z ≡ λ1/4Ω

H
φ, Ω ≡

(
1 +

m̄

Hλ1/4
+

µ3

λ1/4H3

)
≡
(

1 +
√
ᾱ+ β

)
, (2.7)

Λ̃n ≡
Λn

λ1/2H + m̄2/H + µ6/H5
≡ Λn

λ1/2H(1 + ᾱ+ β2)
, (2.8)

so that the eigenvalue equation (2.1) may be written in terms of dimensionless numbers as{
∂2

∂z2
− 4π2 ᾱ+ 4π2

3 β2

3Ω2
+

32π4ᾱβz

9Ω3
+ 4π2 1− 4π2

9 ᾱ2

Ω4
z2 − 32π4βz3

9Ω5
+

32π4ᾱz4

9Ω6
− 16π4z6

9Ω8

+
8π2
(
1 + ᾱ+ β2

)
Λ̃n

Ω2

}
ψn = 0 , (2.9)

with the ᾱ and β given in (1.2). Furthermore and precisely as in ref. [59] we also introduce
scaled eigenfunctions

ψn ≡
√
λ1/4Ω

H
ψ̃n ⇒

∫ ∞
−∞

dφ |ψn|2 =

∫ ∞
−∞

dz |ψ̃n|2 = 1 . (2.10)

There are two reasons why the redefinitions we introduced are very useful for numerical
work. First, as one can see from eq. (2.9), unlike the potential that is a function of µ, m
and λ there are only two unknown parameters, ᾱ and β. Second, there are no terms in the
equation that would grow without bound at any of the limiting cases ᾱ→ 0, ᾱ→∞, β → 0
and β →∞, so broadly speaking all numerical factors are of the same order throughout the
parameter space of interest.

3 The symmetric double-well potential

3.1 The first five eigenfunctions/-values

Before addressing the general situation, let us first focus on the important special case of a
symmetric double-well potential with two degenerate minima i.e. with β = 0. The first four

– 4 –



J
C
A
P
0
3
(
2
0
2
0
)
0
4
9

(φ̃1)1

(φ̃2)2

(φ̃1)3

(φ̃2)4

n = 1

n = 2

n = 3

n = 4

10−2 10−1 100 101 102

ᾱ
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Figure 2. The lowest eigenvalues (left) and spectral coefficients for f(φ) = φ and f(φ) = φ2

(right) in the symmetric case, β = 0. The red dotted lines show the analytic approxima-
tions (3.9), (3.10), (3.11), (3.13) and (3.14).

non-trivial eigenvalues are plotted in figure 2. For ᾱ & 2.5 the eigenvalues Λ3 and Λ4 become
degenerate, complicating the numerical analysis, but by this point analytic approximations
derived in section 3.2 (depicted with red dotted lines) are already very accurate.

The eigenfunctions ψ̃n for n ≤ 4 are shown in figure 3. For ᾱ & 1 the system separates
into linear combinations of solutions centered at the three minima of W (φ), which can be
seen in figure 1. Importantly, there are solutions that do not vanish close to the origin, even
when ᾱ � 1 which corresponds to a double-well potential with a very large barrier. The
clearest example of this is ψ̃2 at ᾱ = 2.5, which is localised around the top of the potential
barrier. As discussed in section 5, these solutions can be interpreted as a contribution from
transitions between the two minima, during which the field can spend a significant amount of
time near the top of the barrier. The existence of such solutions was apparently not noticed
in ref. [16].

3.2 The large barrier limit

As can be seen from figure 1, in the limit a large ᾱ the potential W (φ) in the eigenvalue
equation (2.1) will possess three minima separated by large barriers, which can be shown to
occur at

z0 = 0 ; z± = ±
√
ᾱ+ 1√

3

(√
ᾱ2 +

27

4π2
+ 2ᾱ

)1/2

. (3.1)

Hence, at the limit ᾱ → ∞, the system separates into three quadratic pieces, which can be
obtained from (2.9) by expanding around a large ᾱ with β = 0.
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Figure 3. The dimensionless eigenfunctions ψ̃n from eq. (2.10) for the symmetric potential (1.1) with
β = 0 as a function of ᾱ ≡ m̄2/(H2

√
λ) The blue dashed lines indicate the locations of the minima of

the potential V (φ).

For completeness2 we first write the eigenvalue equation for V (φ) = 1
2M

2φ2

{
∂2

∂x2
−
(

4π2

3

)2

x2 +
4π2

3
+ 8π2Λ̃n

}
ψn = 0 ; x =

M

H2
φ ; Λ̃n =

Λn
M2/H

, (3.2)

with the eigenfunctions and -values

ψn =

√
M

H

1√
2nn!

(
4π

3

)1/4

e−
2π2x2

3 Hn

(
2πx√

3

)
; Λn =

n

3

M2

H
. (3.3)

2See ref. [59] for more discussion and plots.
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Close to the origin at the limit of large barriers i.e. taking ᾱ → ∞ we then get the
approximate eigenvalue equation for the potential (1.1){

∂2

∂z2
−
(

4π2

3

)2

z2 +
4π2

3
+ 8π2

(
Λ̃n −

1

3

)}
ψ0
n = 0 ; z =

m̄

H2
φ ; Λ̃n =

Λn
m̄2/H

, (3.4)

where the eigenfunctions and -values can be read off from the quadratic results (3.3)

ψ0
n =

√
m̄

H

1√
2nn!

(
4π

3

)1/4

e−
2π2z2

3 Hn

(
2πz√

3

)
; Λn =

n+ 1

3

m̄2

H
. (3.5)

At z± for large barriers one gets the approximate equation{
∂2

∂y2
−
(

4π2

3

)2

y2 +
4π2

3
+8π2

(
Λ̃n
2

)}
ψ±n = 0; y=

√
2
(
z−z±

)
; Λ̃n =

Λn
m̄2/H

, (3.6)

with the eigenfunctions and -values

ψ±n =

√
m̄

H

1√
2nn!

(
8π

3

)1/4

e−
2π2y2

3 Hn

(
2πy√

3

)
; Λn =

2n

3

m̄2

H
. (3.7)

By making use of the approximate solutions close to the origin and/or z±, (3.5) and (3.7)
respectively, and using figure 3 as a guide is it possible to understand qualitatively the large
ᾱ behaviour and often write analytic approximations for the eigenfunctions and -values.

Suppose an analytic function Φn(φ) that approximates the full solution. Then, by
calculating the expectation value of the eigenvalue equation (2.1) one gets an approximation
for the eigenvalue as ∫

dφΦnDφΦn ≈ −
4π2Λn
H3

. (3.8)

For example, from figure 3 we see that for large ᾱ the n = 1 eigenfunction approaches
an antisymmetric combination of two quadratic n = 0 solutions centered at z± (3.7). The
eigenvalues of the quadratic n = 0 solutions are zero at z± as given by (3.7), which implies
that the first exited state has a neglibigle eigenvalue at this limit. As derived in [16], for any
large but finite ᾱ the n = 1 eigenvalue is exponentially small.

Similarly, we see that the eigenfunction for n = 2 approaches the quadratic n = 0
solution at the origin, which as (3.5) shows does not result in a vanishing eigenvalue, even at
ᾱ� 1. The analytic estimate for the eigenvalue is obtained by∫

dφψ0
0Dφψ

0
0 ≈ −

4π2Λ2

H3

⇒ Λ̃2 ≈
32π2

(
8π2ᾱ2 − 9

)
ᾱ2 + 135

768π4ᾱ3(ᾱ+ 1)
=

1

3

(
1− 1

ᾱ
+

1− 9
8π2

ᾱ2

)
+O(ᾱ−3) . (3.9)

The n = 3 case can be seen from figure 3 to approach a linear combination of three
quadratic n = 1 solutions centered at the origin and at z±. From (3.5) and (3.7) we see that
the solutions are degenerate so we can derive an analytic approximation for the eigenvalue
by simply using only the solution at z0 giving∫

dφψ0
1Dφψ

0
1 ≈ −

4π2Λ3

H3

⇒ Λ̃3 ≈
512π4ᾱ4 − 1152π2ᾱ2 + 945

768π4ᾱ3(ᾱ+ 1)
=

2

3

(
1− 1

ᾱ
+

1− 9
4π2

ᾱ2

)
+O(ᾱ−3) . (3.10)
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Finally, the n = 4 eigenfunction clearly approaches a symmetric combination of two
quadratic n = 1 solutions centered at z±, with then the eigenvalue at the large ᾱ limit
approximated by∫

dφψ±1 Dφψ
±
1 ≈ −

4π2Λ4

H3
⇒ Λ̃4 ≈

2

3

(
1− 1

ᾱ
+

1 + 1341
256π2

ᾱ2

)
+O(ᾱ−3) . (3.11)

In the above for n = 4 we have only included the leading terms as the full result is quite
complicated.

The analytic approximations of this section are depicted by the red dashed curves in
the left panel in figure 2. As one may see, they are in very good agreement with the full
results for ᾱ & 1.

3.3 The spectral coefficients

In addition to the eigenvalues, the spectral coefficients are the other ingredient needed for
calculating correlators as given by eq. (2.4) and (2.6). As an illustration in the following we
analyse the leading and next-to-leading spectral coefficients for f(φ) = φ and f(φ) = φ2. A
useful dimensionless definition comes via (see eq. (2.10))

(φ̃j)n ≡
(
λ1/4Ω

H

)j
(φj)n =

(
λ1/4Ω

H

)j ∫ ∞
−∞

dφψ0φ
jψn =

∫ ∞
−∞

dz ψ̃0z
jψ̃n . (3.12)

Much like for the eigenvalues, the spectral coefficients can in some circumstances be approxi-
mated with analytic results at the large barrier limit, which may be deduced from section 3.2
and in particular figure 3.

Let us focus on f(φ) = φ first. Because it is an odd function, only odd n contribute.
Because the ground state and the first exited state approach symmetric and antisymmetric
combinations of the ground state of a harmonic oscillator located at z±, we may approximate
the (φ1)1 coefficient as

|(φ1)1| ≈ |
∫ ∞
−∞

dφ
1√
2

(
ψ+

0 + ψ−0
)
φ

1√
2

(
ψ−0 − ψ+

0

)
| ≈ |

∫
dφφ

(
ψ±0
)2 |

⇒ |(φ̃1)1| ≈ |
∫
dzz
(
ψ̃±0
)2| = (√

ᾱ+ 1
)√√

4π2ᾱ2 + 27 + 4πᾱ√
6π

. (3.13)

The third excited state is for large ᾱ approximately a linear combination of ψ0
1 and

−ψ+
1 − ψ−1 . For this case in our approximative prescription there is an ambiguity as there

is no a priori way to determine the relative size between ψ0
1 and −ψ+

1 − ψ−1 .

The analytic approximations (3.13) and (3.14), as well as the numerical results for the
leading and next-to-leading spectral coefficients are shown in figure 2 . The |(φ̃1)3| term,
shown by the dashed green line, is cut short by our inability to extend the numerical method
to cases with almost degenerate eigenvalues, which occurs for n = 3. However, it is clearly
subleading to |(φ̃1)1| denoted with green that does not suffer from this issue.

Correspondingly, because f(φ) = φ2 is even, only even values of n contribute to its
correlator. Since there is virtually no overlap with the n = 0 and n = 2 solutions at the large
barrier limit, |(φ̃2)2| is expected to vanish up to exponentially small terms. In contrast, (φ2)4
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Figure 4. The eigenvalues Λ̃n (left) and the spectral coefficients for f(φ) = φ (right) in the asym-
metric case with β = 0.5, as functions of ᾱ.

has the approximation

|(φ2)4| ≈ |
∫ ∞
−∞

dφ
1√
2

(
ψ+

0 + ψ−0
)
φ2 1√

2

(
ψ+

1 − ψ−1
)
| ≈ |

∫
dφφ2ψ±0 ψ

±
1 |

⇒ |(φ̃2)4| ≈ |
∫
dzz2ψ̃±0 ψ̃

±
1 | =

(√
ᾱ+ 1

)2√
8π + 2

√
4π2ᾱ2+27
ᾱ

4π3/2
. (3.14)

This, together with the numerical results for |(φ̃2)2| and |(φ̃2)4| are shown in figure 2 . The fact
that |(φ2)4| can dominate over |(φ2)2| as seen in figure 2 has important physical consequences,
which are discussed in section 5.

4 The asymmetric double-well potential

Let us now move to the more general asymmetric case, with β > 0. Now, the potential V (φ)
has a single minimum if ᾱ < 3(β/2)2/3, and two non-degenerate minima if ᾱ > 3(β/2)2/3.
On the hand, the function W (φ), which appears in the eigenvalue equation (2.1), seems to
always have several minima. Depending on its specific form, some of the lowest eigenfunctions
may be localised at the other minima of W (φ), rather than the vacuum state located at
the minimum of the potential V (φ). These contributions would not be visible in typical
perturbation theory calculations. They can also give rise to non-trivial hierarchies between
the spectral coefficients (2.5).

As an illustrative example, figure 4 shows the lowest eigenvalues for β = 0.5 as well as
the corresponding spectral coeffients for f(φ) = φ. At ᾱ = 0, the lowest eigenvalue Λ1 is
localised around the vacuum state and therefore it corresponds to perturbative fluctuations.
However, when ᾱ becomes larger, it is overtaken by other eigenvalues which are localised
around the other minima of W (φ).
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Figure 5. The n ≤ 4 eigenfunctions and their respective eigenvalues from (2.9) with ᾱ = 1 and
β = 0.5. The blue dashed line indicates the location of the minimum of the potential.

This can be seen in figure 5, which shows the five lowest eigenfunctions for ᾱ = 1 and
β = 0.5. Even though the potential V (φ) actually has only one minimum for these parameters
(see figure 1), the lowest excited state localised at the minimum of the potential is n = 4.
The asymptotic form of the correlator is therefore determined by the shape of the potential
away from its minimum. However, because such states have a very small overlap with the
ground state ψ0, their spectral coefficients are very small. This is discussed more in section 5.
The eigenfunctions and -values up to n = 4 for some representative choices for ᾱ and β are
shown in figures 8–12 in appendix A.

5 Discussion

5.1 Length scales

In cosmology, the observable length scales correspond to comoving distances that were many
orders of magnitude longer than the Hubble length during inflation. We are therefore often
interested in the correlator at distances that are very long but still finite.

The asymptotic long-distance behaviour of the correlator Gf (0, r) is given by the first
term in the spectral expansion (2.6) with a non-zero spectral coefficient fn. The behaviour
is simplest if the lowest state, n = 1, has the largest spectral coefficient, because then the
correlator is well approximated by a single power-law at all length scales,

Gf (0, r) ≈ f2
1

(rH)2Λ1/H
. (5.1)

However, this is not always the case, and more generally, the correlator can be dominated by
a higher term n = d in the expansion at the distances of interest,

Gf (0, r) ≈ f2
d

(rH)2Λd/H
. (5.2)

In particular, the short-distance behaviour of the correlator can be very different from its
asymptotic long-distance form. To characterise that, following ref. [16] we define a correlation
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radius to be the distance where the correlator has fallen to half of its value at r = 1/H,

Gf (0, Rf ) =
1

2
Gf (0, 1/H) . (5.3)

When a single coefficient n = d dominates the correlator, this simply gives

Rf ≈ H−12
H

2Λd . (5.4)

The non-trivial hierarchies between different terms in the spectral expansion can be important
for cosmological observations. If there is a change in the behaviour of the correlator within
the observable scales, it can potentially be detected providing useful information about the
fields responsible for it.

5.2 Symmetric potential

In the symmetric case (β = 0) discussed in section 3, there are two examples of this non-
trivial behaviour. The first is that, because the lowest eigenstate n = 1 has odd parity,
the corresponding spectral coefficient vanishes for all even functions. The asymptotic long-
distance behaviour of any even correlator, such as those of φ2 or the energy density, is
therefore given by the second-lowest eigenvalue Λ2. When ᾱ & 1, the difference between
them can be large, as we can see from the left panel in figure 2. Because Λ1 is small, the field
itself is correlated over massively superhorizon scales, but its energy density is not, because
its correlations are determined by Λ2. The physical reason for this behaviour is that on
superhorizon scales, the system consists of domains of the two vacua, which contribute to
the field correlator, and the correlation radius Rφ gives the typical size of these domains.
However, because both vacua have the same energy density, these domains do not give any
contribution to correlators of even quantities such as the energy density.

The second example is that, as we can see from the right panel of figure 2, the spectral
coefficient of φ2 for the second-lowest state n = 2 falls rapidly when ᾱ & 1. This means that
although the asymptotic long-distance behaviour of any even correlator is indeed given by
Λ2, it only starts to dominate at very long superhorizon distances, and at shorter distances
the dominant contribution is given by Λ4. To understand why this happens, it is useful
to look at the corresponding eigenfunctions in figure 3. The higher state ψ4 is localised at
the minima of the potential, and therefore it corresponds to small-amplitude perturbative
fluctuations around either vacuum state. The lower state ψ2, on the other hand, is localised
on top of the barrier, φ = 0, which shows that this contribution comes from the boundaries
between the domains. The eigenvalue Λ2 characterises the thickness of these domain walls,
and the spectral coefficient is small because their volume is small compared with the volume
of the domains.

The different behaviour of odd and even correlators is illustrated by figure 6, which
shows the correlation radii of φ and δφ2. As Λ1 becomes small, the field correlation radius
grows to massively superhorizon scales. In contrast, when ᾱ & 1, the correlation radius of
δφ2 starts to decrease, first because Λ2 grows, and then because Λ4 starts to dominate it.

If any variable has significant correlations at distances much longer than the current
Hubble length 1/H0, they would appear as a homogeneous background value. In the case of
a symmetric potential, this happens when the domain size is larger than 1/H0, in which case
the current observable Universe would most likely be inside single domain. In that case the
observed field correlator would be determined by the second-lowest odd eigenvalue Λ3.
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ᾱ

100

101

102

103

104

105

106

107

f(φ) = δφ2

10−2 10−1 100

ᾱ
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Figure 6. The correlation radii for f(φ) = φ and f(φ) = δφ2 ≡ φ2 − 〈φ2〉 for three values of λ.

5.3 Asymmetric potential

In the asymmetric case discussed in section 4, we can see further examples of these non-trivial
hierarchies. When ᾱ is small, the lowest state n = 1 corresponds to perturbative fluctuations
around the true vacuum. However, as ᾱ increases, other states overtake it one by one, as we
can see from figure 4.

Figure 5 shows the eigenfunctions for ᾱ = 1 and β = 0.5, and illustrates that for these
parameters the lowest excited state that has significant overlap with the vacuum is n = 4.
Because of this, this state continues to have the highest spectral coefficient, and therefore it
dominates the correlator at short distances. On the other hand, the asymptotic long-distance
behaviour is given by the lowest state Λ1. Because the corresponding spectral coefficient is
very small, it only starts to dominate the correlator at extremely long super-horizon distances.

When the potential V (φ) has two non-degenerate minima separated by a high barrier,
the lowest state n = 1 is localised in the false vacuum state, and therefore we can interpret
it as the contribution from the domains of false vacuum which are occasionally formed. The
eigenvalue Λ1 represents the size of these domains, and the spectral coefficient is suppressed
because of their rarity.

However, in the example shown in figure 5 this behaviour occurs even though the poten-
tial V (φ) has only one minimum and there is therefore no false vacuum state (see figure 1).
In that case the lowest state n = 1 corresponds to excursions of the field into high field values
far away from the minimum.

As in the asymmetric case, it is possible that Λ1 is so small that the false vacuum
domains are larger than 1/H0. Then, because the true and false vacuum have different
physical properties, the observables we would measure would depend on the vacuum we are
in. This would not affect the eigenvalues in the spectral expansion (2.6), but the spectral
coefficients fn would have to be computed using the false vacuum ground state ψ1 rather
than the true ground state ψ0.
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Figure 7. The wavenumber k∗ at which the P(2)
δφ2(k) term starts dominating the power spectrum (5.5)

over P(4)
δφ2(k). Above the gray line the distances are sub-horizon and hence not amendable to a

stochastic treatment.

5.4 Power spectrum

For cosmological observations, the power spectrum is often a more relevant quantity than the
coordinate-space correlator. Therefore it is useful to calculate the power spectrum by taking
the Fourier transform of (2.6)

Pf (k) =
∑
n

2

π
f2
n Γ

(
2− 2

Λn
H

)
sin

(
Λnπ

H

)(
k

H

)2Λn/H

≡
∑
n=1

P(n)
f (k) , (5.5)

where k is the physical momentum.
Assuming that a single n = d term dominates the expansion, the spectral index nf can

then be written in a simple form

nf − 1 ≡ lnPf (k)

ln k
≈

lnP(d)
f (k)

ln k
=

2Λd
H

. (5.6)

When there are non-trivial hierarchies between the spectral coefficients, the spectral
index nf can be different on different scales. As an example, consider the power spectrum
of δφ2 ≡ φ2 − 〈φ2〉 in the symmetric case. At asymptotically small wave number k, the
spectral index is given by the lowest state n = 2, but because its spectral coefficient is very
small, the higher state n = 4 dominates at higher k. Comparing these two terms, we can
straightforwardly solve for the wavenumber k∗ at which they cross as

P(2)
δφ2(k∗)

P(4)
δφ2(k∗)

= 1 ⇔ k∗
H

=

{[
(φ2)2

]2
Γ
(
2− 2Λ2

H

)
sin
(

Λ2π
H

)
[(φ2)4]2 Γ

(
2− 2Λ4

H

)
sin
(

Λ4π
H

)} H
2(Λ4−Λ2)

, (5.7)

which is plotted in figure 7. When ᾱ . 1, k∗/H & 1, and therefore the first term n = 2
dominates on all scales and the spectral index is therefore constant to a good approximation.
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However, when ᾱ & 1, we can see that k∗/H rapidly becomes very small, which means the
crossover happens at scales that were massively superhorizon during inflation. What this
shows is that the scale at which the spectral index changes can for some parameter values
occur at scales that are visible in the cosmic microwave background or other cosmological ob-
servations, possibly providing an important observational signature of early Universe models
involving decoupled spectator scalars.

6 Conclusions

In this work we have studied spectator scalar fields in de Sitter space with a potential of the
double-well form (1.1) by means of the stochastic spectral expansion [16]. The terms in the
expansion are determined by eigenvalues and eigenfunctions which we solve numerically. This
work is a continuation of ref. [59] where only potentials with manifest Z2 symmetry and a
single minimum were considered. Our calculations show that also asymmetric potentials with
multiple minima can be efficiently studied with simple numerical methods to high precision,
implying the technique to be rather powerful and suitable for a large class of potentials. In
this vein we note two interesting possibilities that are yet unexplored: models with more
than one scalar and/or potentials with periodic boundary conditions such as for the axion.

The double-well potential has unsurprisingly a much richer structure in terms of eigen-
functions and -values than the quartic or quadratic cases. In particular, the spectrum has
states that are not localised near the minimum of the potential and which are therefore
not visible in perturbation theory. In most cases these non-perturbative states dominate
the correlation function especially at long distances. The spectral coefficients of the terms
can also be very different, which can lead to non-trivial behaviour such as a change of the
spectral index at very long distances. If this happens at cosmologically relevant scales, it
can be observable. Interestingly, this behaviour persists even when the potential has only
one minimum. In the symmetric case, the behaviour of odd quantities (such as the field) is
also very different from the behaviour of even quantities (such as energy density). Together,
these effects demonstrate that the naive intuition based perturbation theory is, in general,
not applicable.

Based on our analysis we conclude that spectator fields with a double-well potential
have many possibly observable and currently unexplored cosmological consequences.
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A Eigenfunctions and -values

Figures 8–12 show the lowest eigenfunctions and eigenvalues for some representative choices
for ᾱ and β. The various values for ᾱ and β have been specifically chosen as to in include as
many qualitatively different cases as possible. The blue dashed lines indicate the locations of
the minima. Note that in the non-degenerate case with β 6= 0 the global minimum is located
left of the origin.
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0.6 ᾱ = 1.6 β = 0.1

−3−2−1 0 1 2 3
z

−1.2
−0.6

0.0
0.6
1.2
1.8

ψ̃1
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0.6 ᾱ = 1.6 β = 0.5

10−2 10−1 100

ᾱ
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ᾱ = 0.35
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ᾱ = 1.4 β = 0.2

−3−2−1 0 1 2 3
z

−1.2
−0.6

0.0
0.6
1.2
1.8

ψ̃2
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Figure 10. The dimensionless n = 2 eigenfunctions and -values from eq. (2.9).
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ᾱ = 1.5 β = 0

−3−2−1 0 1 2 3
−1.2
−0.6

0.0
0.6
1.2
1.8

ψ̃3
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Figure 11. The dimensionless n = 3 eigenfunctions and -values from eq. (2.9).
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Figure 12. The dimensionless n = 4 eigenfunctions and -values from -values from eq. (2.9).
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