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Abstract.  In a quantum many-body system that possesses an additive 
conserved quantity, the entanglement entropy of a subsystem can be resolved into 
a sum of contributions from dierent sectors of the subsystem’s reduced density 
matrix, each sector corresponding to a possible value of the conserved quantity. 
Recent studies have discussed the basic properties of these symmetry-resolved 
contributions, and calculated them using conformal field theory and numerical 
methods. In this work we employ the generalized Fisher–Hartwig conjecture to 
obtain exact results for the characteristic function of the symmetry-resolved 
entanglement (‘flux-resolved entanglement’) for certain 1D spin chains, or, 
equivalently, the 1D fermionic tight binding and the Kitaev chain models. These 
results are true up to corrections of order o (L−1) where L is the subsystem size. 
We confirm that this calculation is in good agreement with numerical results. 
For the gapless tight binding chain we report an intriguing periodic structure 
of the characteristic functions, which nicely extends the structure predicted 
by conformal field theory. For the Kitaev chain in the topological phase we 
demonstrate the degeneracy between the even and odd fermion parity sectors of 
the entanglement spectrum due to virtual Majoranas at the entanglement cut. 
We also employ the Widom conjecture to obtain the leading behavior of the 
symmetry-resolved entanglement entropy in higher dimensions for an ungapped 
free Fermi gas in its ground state.
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1.  Introduction

The importance of entanglement to the analysis of quantum systems can hardly be 
exaggerated. In the context of many-body systems, the study of entanglement can 
help to identify important phenomena such as quantum phase transitions [1–5], to 
point out systems that can provide ecient resources for quantum information pro-
cessing [6–11], and to determine the applicability of methods that are based on tensor 
networks [12, 13].
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The main quantitative measure of entanglement in a many-body system is the 
entanglement entropy (EE) [5]. For a many-body system in a pure state |ψ〉, we define 
the density matrix of the system as

ρ = |ψ〉〈ψ|.� (1)
Let A be a subsystem, while the rest of the system will be denoted by B. The reduced 
density matrix (RDM) of subsystem A will then be defined as

ρA = TrB (ρ) ,� (2)
where TrB is the partial trace over the degrees of freedom of subsystem B. We define 
the nth moment of the reduced density matrix of A, which we will subsequently refer 
to as the nth Rényi entanglement entropy (REE), as

Sn = Tr (ρnA) .� (3)

Note that this definition of the REE is dierent than the usual one, Sn = 1
1−n

log (Tr (ρnA)). 
We further define the von-Neumann entanglement entropy (vNEE) of A [14] as

S = −Tr (ρA log ρA) = − lim
n→1

∂nSn.� (4)

The quantities defined in (3) and (4) are the two fundamental types of EE, and they 
constitute important tools for understanding entanglement, in particular in the field of 
quantum information [15–18].

We consider the case where the entire system is characterized by some fixed value 

of a conserved charge Q̂, so that the density matrix ρ commutes with Q̂. We assume 
that the total charge Q̂ can be written as Q̂ = Q̂A + Q̂B, where Q̂i is the contribution 

of subsystem i to the total charge. Applying the partial trace over subsystem B to the 

equation 
[
Q̂, ρ

]
= 0, we obtain[

Q̂A, ρA

]
= 0,� (5)

which means that ρA is block-diagonal with respect to the eigenbasis of Q̂A. In such a 
representation, each block (charge sector) corresponds to an eigenvalue QA of Q̂A, and 

we can therefore denote this block by ρ
(QA)
A , and define for each such eigenvalue [19–23]

Sn (QA) = Tr
((

ρ
(QA)
A

)n)
,

S (QA) = −Tr
(
ρ
(QA)
A log ρ

(QA)
A

)
= − lim

n→1
∂nSn (QA) ,

�
(6)

which are named the symmetry-resolved REE and the symmetry-resolved vNEE, respec-

tively. It is evident that these quantities satisfy S =
∑

QA
S (QA) and Sn =

∑
QA

Sn (QA). 
Note that some works normalize each block by each trace [21–23] before calculating 
the entropies, which thus quantify the entanglement after a projective charge mea-
surement. We prefer not to do so and instead use (6), following [19, 20], because the 
resulting resolved entropies, while not entanglement measures by themselves, are not 
only more accessible to calculations, but are also directly experimentally measurable, 
using either the replica trick [20, 24, 25], or random time evolution which conserves the 
charge [26, 27]. Let us note that S1 (QA) is simply the distribution P (QA) of charge 
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in subsystem A. Using this, one may easily employ our results to find the normalized 
versions of the REE and vNEE, whose roles and limitations as entanglement measures 
are discussed in [23].

When Q̂ can assume any integer value (e.g. when particle number or total Sz are 
conserved), we define the flux-resolved REE as

Sn (α) = Tr
(
ρnAe

iαQ̂A

)
.� (7)

The importance of this quantity arises from the fact that it is the characteristic func-
tion related to the symmetry-resolved REE via Fourier transform [20]:

Sn (QA) =

π∫

−π

dα

2π
Sn (α) e

−iαQA .� (8)

The flux-resolved and charge-resolved REEs have previously been approximately cal-
culated for 1D many-body systems using conformal field theory (CFT) and numerical 
techniques [19–23].

The flux-resolved REE has an analog for discrete symmetries, i.e. when the quantity 
conserved is Q mod p where p  is some natural number (e.g. fermion parity for p   =  2) 
[20]. In this case we define

Sn (α) = Tr
(
ρnAe

i 2πα
p

Q̂A

)
, α = 0, 1, . . . , p− 1,� (9)

and then

Sn (QA) =
1

p

p−1∑
α=0

e−i 2πα
p

QASn (α) , QA = 0, 1, . . . , p− 1.� (10)

The study of the symmetry-resolved entanglement also sheds light on the attri-
butes of the entanglement spectrum. The latter is the spectrum of the entanglement 
Hamiltonian HA of subsystem A, defined through ρA = exp (−HA). It is especially 
interesting in topological systems, which are often characterized by a bulk gap and 
topologically-protected gapless edge excitations [28]. The entanglement Hamiltonian 
generically possesses ‘low energy’ modes at its virtual edge (the boundary between 
the subsystem and the rest of the system) similar to those the physical Hamiltonian 
possesses at a physical edge [5, 29]. In particular, starting with the seminal work of 
Kitaev [30], a lot of theoretical and experimental eort is currently directed at realiz-
ing systems with topologically-protected Majorana zero-modes in 1D [31, 32] or above  
[33, 34], which could serve as a resource for topological quantum computation [35]. 
Similar Majorana zero-modes should show up in the entanglement spectrum [36–38].

This work presents a calculation of the asymptotic behavior of the flux-resolved and 
the symmetry-resolved EE for a (large) subsystem of an infinite 1D spin chain in its 
ground state, or of equivalent fermionic chains, as well as the leading order behavior 
for free fermions in higher dimensions, using the generalized Fisher–Hartwig [39] and 
Widom [40] conjectures, respectively. Section 2 presents the 1D model and summarizes 
the main results pertaining to it. Section 3 is a summary of previously obtained results 
for the non-resolved entanglement, upon which our calculations will rely. In section 4 
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we discuss the asymptotics of the flux-resolved REE in a 1D spin chain with rotational 
symmetry in the plane perpendicular to the magnetic field, or in a gapless tight-binding 
chain with conserved fermion number, and show that the result has a periodic struc-
ture that is a natural extension of the CFT results. In section 5 we derive analytical 
results for the symmetry-resolved REE and vNEE in the case where the system has no 
such rotational symmetry, but the parity of the number of up spins is still maintained. 
This maps into the fermionic Kitaev chain, where fermion number is not conserved but 
parity is. We find that the fermion parity even and odd entanglement spectra become 
degenerate due to the appearance of Majorana entanglement zero-modes in the topo-
logical phase, but not in the trivial phase. At the critical point separating these phases 
a power law arises, in agreement with CFT results. Section 6 addresses the leading 
behavior of the charge-resolved REE in an ungapped free Fermi gas in a general dimen-
sion. Finally, section 7 presents our conclusions and an outlook for the future.

2. Model and main results for 1D

The 1D model discussed in this work is that of a spin chain in a transverse magnetic 
field. This system is described by the Hamiltonian

H = −J

N/2−1∑
m=−N/2

[
(1 + γ) σx

mσ
x
m+1 + (1− γ) σy

mσ
y
m+1

]
− Jh

N/2∑
m=−N/2

σz
m,

�

(11)

where σx
m, σy

m and σz
m are Pauli matrices for a spin-1

2
 at lattice site m = −N

2
, . . . , N

2
, 

N  +  1 being the total number of sites (N is assumed to be even), J is the exchange inter-
action scale, h is the dimensionless magnetic field, and γ is the dimensionless anisotropy 
parameter. Without loss of generality we may assume J  >  0 and γ � 0. For γ = 0 the 
system is isotropic, i.e. has rotational symmetry in the XY plane; the isotropic case is 
called the XX model, while the general case γ �= 0 is named the XY model. We focus 
on an infinite chain (N → ∞), and on asymptotic results that are valid for a subsystem 
of L contiguous sites where L � 1.

The treatment of the system relies on the Jordan–Wigner transformation of H [41]. 
We introduce two Majorana operators for each site on the spin chain:

c2l−1 =

(
l−1

Π
n=−N/2

σz
n

)
σx
l and c2l =

(
l−1

Π
n=−N/2

σz
n

)
σy
l .� (12)

We then define for each −N/2 � m � N/2

am =
1

2
(c2m−1 − ic2m) .� (13)

The operators am obey fermionic anti-commutation relations (i.e. 
{
am, a

†
n

}
= δmn and 

{am, an} = 0), and in the terms of these operators H is written as

H = 2J

N/2−1∑
m=−N/2

[
a†mam+1 + a†m+1am + γ

(
a†ma

†
m+1 + am+1am

)]
− 2Jh

N/2∑
m=−N/2

(
a†mam − 1

2

)
.

� (14)

https://doi.org/10.1088/1742-5468/ab7753
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Now the Hamiltonian is described in terms of a quadratic chain of spinless fermions, 
the Kitaev chain [30]. The system can be solved exactly using a Fourier transform of am 
followed by a Bogoliubov transformation. This allows us to show that the system has 
a unique1 ground state |GS〉, and also to obtain its spectrum at the limit N → ∞ [42]:

εθ = 4J

√(
cos θ − h

2

)2

+ γ2 sin2 θ, 0 ≤ θ ≤ 2π.� (15)

We assume that the system is at its ground state, i.e. ρ = |GS〉〈GS|.

In the case of the XX model, the system satisfies the conservation of the total fer-

mionic number (total spin in the z direction): Q =
N/2∑

m=−N/2

a†mam =
N/2∑

m=−N/2

1
2
(σz

m + 1). 

We can therefore define Sn (α) for a subsystem of L sites using the definition for non-
discrete symmetries in (7). In this case, for |h| � 2, the system is also gapless with the 
Fermi points being at ±kF, where

kF ≡ arccos

(
h

2

)
.� (16)

In the case of the XY model, however, Q is no longer a conserved quantity of the 
system. Nevertheless, the system is still characterized by a discrete symmetry: since 
the total fermionic number can only change by even numbers, its parity (−1)Q is in 
fact conserved. Thus the RDM of subsystem A can be decomposed into two sectors, 
corresponding to odd and even values of QA. Following the definition of the analog of 
the flux-resolved REE for discrete symmetries in (9), we define

S(−)
n ≡ Tr

(
ρnA (−1)Q̂A

)
,� (17)

and decompose the REE by writing

Sn = S(even)
n + S(odd)

n ,� (18)

where

S(even)
n ≡ 1

2

[
Sn + S(−)

n

]
and S(odd)

n ≡ 1

2

[
Sn − S(−)

n

]
,� (19)

with similar definitions for the vNEEs S(−), S(even) and S(odd).
For the XY model, the system is gapped for |h| �= 2, while at h = ±2 the gap closes 

and a phase transition occurs. For |h| < 2 the system is in a topologically nontrivial 
phase with Majorana edge-modes at its real edges, while for |h| > 2 it is found in a 
topologically trivial phase with no Majorana edge-modes [30].

2.1. Results for the XX model

Assuming |h| � 2, we write L ≡ 2L |sin kF | and define a natural number 
mc = mc (n) ≡ �n

4
�+ 1. We will show that for L � 1,

1 The ground state is unique (up to edge effects, which are discussed below) as long as h �= 2
√

1− γ2; for h = 2
√

1− γ2 

it is doubly degenerate [42].

https://doi.org/10.1088/1742-5468/ab7753
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Sn (α) = exp

[
i
kF
π
αL+

[
1

6

(
1

n
− n

)
− α2

2π2n

]
lnL+Υ0 (n,α) + Υ1 (n,α,L, kF ) + o

(
L−1

)]
,

� (20)
where

Υ0 (n,α) ≡ − 1

π2

∞∫

0

ln

[
2 cosα + 2 cosh (nu)(

2 cosh
(
u
2

))2n
]
du

∞∫

0

[
e−t

t
−

cos
(
ut
2π

)

2 sinh
(
t
2

)
]
dt,

� (21)
and

Υ1 (n,α,L, kF ) ≡
mc∑
m=1

ln

[
1 + L− 2

n(2m−1−α
π )e−2ikFLΓ

(
1
2
+ 1

2n

(
2m− 1− α

π

))2
Γ
(
1
2
− 1

2n

(
2m− 1− α

π

))2
]

+
mc∑
m=1

ln

[
1 + L− 2

n(2m−1+α
π )e2ikFLΓ

(
1
2
+ 1

2n

(
2m− 1 + α

π

))2
Γ
(
1
2
− 1

2n

(
2m− 1 + α

π

))2
]
.

�

(22)

The term 
[
1
6

(
1
n
− n

)
− α2

2π2n

]
lnL in the exponent has been already found before, using 

CFT techniques [20, 21], and our calculation not only derives it rigorously, but also 
completes the picture up to corrections of order o (L−1).

Furthermore, in 4.3 we will see that this result can be written as

Sn (α) =
mc∑

j=−mc

S̃n (α + 2πj) + o
(
L−1

)
,� (23)

where S̃n is an analytic function that is defined on the entire real line. This shows that 
Sn (α) has a structure that is natural in the context of CFT, as we explain below.

2.2. Results for the XY model

We will use the notations k ≡ γ/
√

(h/2) 2 + γ2 − 1 and k′ ≡
√
1− k2 , and denote by kn 

the positive solution to the equation qn = exp
[
−πI

(√
1− k2

n

)
/I (kn)

]
, where

I (k) =

1∫

0

dx√
(1− x2) (1− k2x2)

� (24)

is the complete elliptic integral of the first kind and q ≡ exp [−πI (k′) /I (k)] is the nome 
[43]. Assuming that 0 � h �= 2, we will find that as L → ∞,

lim
L→∞

(−1)L S(−)
n =





0, h < 2[
(k·k′)2n(1−k2n)

2

16n−1k2n

] 1
12

, h > 2
,� (25)

and

lim
L→∞

(−1)L S(−) =

{
0, h < 2
√
k′

3

[
ln 2− 1

2
ln (k · k′)− I(k)I(k′)

π
(1 + k2)

]
, h > 2

.� (26)

https://doi.org/10.1088/1742-5468/ab7753
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For finite L, the corrections to these expressions are exponentially small in L. We are 
not aware of extensions of the Fisher–Hartwig conjecture which allow to calculate 
these corrections, but we verify numerically that they are negligible even for relatively 

small values of L. For h  <  2 we get in particular that lim
L→∞

[
S(even) − S(odd)

]
= 0, due 

to a degeneracy between the spectra of the even charge sector and the odd charge sec-
tor. This degeneracy stems from the appearance of Majorana zero-modes at the virtual 
edges of the entanglement Hamiltonian.

For the critical field h  =  2, S
(−)
n  and S(−) still vanish as L → ∞, but only as a power 

law, rather than exponentially. We will find that in this case there is a positive factor 
A (n, γ) such that we can write the following leading order approximation for large L:

(−1)L S(−)
n ≈ A (n, γ)L− 1

6n
− n

12 ,� (27)

and

(−1)L S(−) ≈ −A (1, γ)

12
L− 1

4 lnL,� (28)

in accordance with the CFT results of [20].
These results can be extended to h  <  0 by plugging in the corresponding result for 

|h|, only in this case the (−1) L factor that appears in (25)–(28) is absent.

3. Asymptotics of the spectrum of the RDM in 1D

For the convenience of the reader, this section summarizes results from previous works 
that will be instrumental to the calculations that follow, and were originally presented 
in [42, 44–47].

3.1. The subsystem correlation matrix

The Jordan–Wigner transformation constitutes the basis for the calculation of the EE 
for a subsystem A of L sites [44, 45]. One can show that the Majorana operators cn that 
belong to subsystem A obey

〈GS|cn|GS〉 = 0, 〈GS|cmcn|GS〉 = δmn + i (BL)mn ; m,n = 1, . . . , 2L.� (29)
Here BL is a 2L× 2L matrix defined as

BL =




Π0 Π−1 · · · Π1−L

Π1 Π0
...

... . . . ...
ΠL−1 · · · · · · Π0




, Πm ≡ 1

2π

2π∫

0

dθe−imθG (θ) ,� (30)

where

G (θ) ≡
(

0 g (θ)

−g−1 (θ) 0

)
, g (θ) ≡

cos θ − iγ sin θ − h
2∣∣cos θ − iγ sin θ − h
2

∣∣ .� (31)

https://doi.org/10.1088/1742-5468/ab7753
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Using an orthogonal matrix V  we can transform BL into the form

V BLV
T = ⊕L

m=1νm

(
0 1

−1 0

)
,� (32)

where νm are real numbers which satisfy −1 < νm < 1. We use V  to transform the 
Majorana operators as well by defining

dm =
2L∑
n=1

Vmncn, m = 1, . . . , 2L.� (33)

Similarly to the transformation of cn into fermionic operators in (13), one can obtain 

a set of L fermionic operators by introducing bm ≡ 1
2
(d2m + id2m−1). In [44, 48] it was 

shown that the reduced density matrix of subsystem A in the ground state of the entire 
system can be represented by a quite simple expression involving the fermionic opera-
tors bm:

ρA = TrB (|GS〉〈GS|) =
L

Π
m=1

[(
1 + νm

2

)
b†mbm +

(
1− νm

2

)
bmb

†
m

]
.� (34)

3.2. Fisher–Hartwig conjecture

Since the values νm in (34) determine the spectrum of the RDM ρA, considerable 
eorts were invested in estimating them under certain conditions. The general assump-
tion upon which we will rely is that L � 1. This allows us to use special cases of the 
Fisher–Hartwig conjecture [39] in order to obtain asymptotic expressions for the EE.

3.2.1. XX model.  We first consider the isotropic case γ = 0, assuming that |h| � 2 
(ungapped chain). In this case, further simplification of the expression for the correla-
tion matrix BL in (30) can be achieved by noticing that

BL = GL ⊗
(

0 1

−1 0

)
,� (35)

with

GL =




φ0 φ−1 · · · φ1−L

φ1 φ0
...

... . . . ...
φL−1 · · · · · · φ0




, φm ≡ 1

2π

2π∫

0

dθe−imθφ (θ) ,� (36)

where we have defined

φ (θ) ≡
{
1 −kF < θ < kF
−1 kF < θ < 2π − kF

and kF ≡ arccos

(
h

2

)
.� (37)

The required values νm are therefore just the eigenvalues of the matrix GL, or equiva-
lently the zeros of the determinant DL (λ) ≡ det (λIL −GL). In [44] it was shown that 
for large L, DL (λ) can be written asymptotically as

https://doi.org/10.1088/1742-5468/ab7753


Symmetry resolved entanglement: exact results in 1D and beyond

10https://doi.org/10.1088/1742-5468/ab7753

J. S
tat. M

ech. (2020) 033106

DL (λ) ∼ D
(0)
L (λ) ≡ L−2β2(λ)

[
(λ+ 1)

(
λ+ 1

λ− 1

)−kF /π
]L

[G (1 + β (λ))G (1− β (λ))]2 .� (38)

Here β (λ) ≡ 1
2πi

ln
(
λ+1
λ−1

)
, L ≡ 2L |sin kF | and G is the Barnes G-function [43]. Subleading 

corrections may be obtained from the generalized Fisher–Hartwig conjecture [46]:

DL (λ) =

[
(λ+ 1)

(
λ+ 1

λ− 1

)−kF /π
]L ∑

m∈Z

e−2imkFLL−2(β(λ)+m)2 [G (1 + β (λ) +m)G (1− β (λ)−m)]2 .

� (39)

3.2.2. XY model.  We now consider the more general case γ �= 0, i.e. the anisotropic 
spin chain. We assume that h � 0 and focus first on the gapped case h �= 2. The system 
exhibits a quantum phase transition at h  =  2, and therefore we must separate the cases 
h  <  2 and h  >  2. We define a number σ such that σ = 1 for h  <  2 and σ = 0 for h  >  2. 
Following [42], we also define

k ≡





√(
1− (h/2)2 − γ2

)
/
(
1− (h/2)2

)
, h2 < 4 (1− γ2)√

(h/2)2 + γ2 − 1/γ, 4 (1− γ2) < h2 < 4

γ/
√
(h/2)2 + γ2 − 1, h > 2

,� (40)

and

τ0 ≡ I
(√

1− k2
)
/I (k) ,� (41)

where I (k) is the complete elliptic integral of the first kind,

I (k) =

1∫

0

dx√
(1− x2) (1− k2x2)

.� (42)

In the XY model, a calculation of a dierent determinant than that of the XX 
model is required. Let us define the determinant

D̃L (λ) ≡ det (iλI2L − BL) =
L

Π
m=1

(
ν2
m − λ2

)
,� (43)

the zeros of which are simply ±νm. It was shown in [45] that in the large L limit, the 

following asymptotic expression for D̃L (λ) is obtained:

D̃L (λ) ∼
(1− λ2)

L

Θ2
3

(
iστ0
2

)Θ3

(
β (λ) +

iστ0
2

)
Θ3

(
β (λ)− iστ0

2

)
.� (44)

Here we have defined Θ3 (s) ≡ ϑ3 (πs, e
−πτ0), where ϑ3 (z, q) =

∞∑
m=−∞

qm
2
e2izm is the third 

Jacobi theta function [49]. The asymptotic expression for D̃L (λ) in (44) has a double 
zero at each of the points
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λl = tanh

[(
l +

1− σ

2

)
πτ0

]
, l ∈ Z.� (45)

This shows that as L → ∞, the values ±νm are divided into pairs ν̃2l−1, ν̃2l such that 
for every l ∈ Z, ν̃2l−1, ν̃2l → λl. Corrections to the asymptotic expression (44) vanish 
exponentially as L → ∞ [47].

The asymptotics of D̃L (λ) in the gapless case h  =  2 diers considerably, due to a 
discontinuity of the symbol G (θ) that was defined in (31). Based on a general conjecture 
presented in [50, 51] and verified there numerically for several cases, we can predict the 

two leading terms in the large L approximation of ln D̃L (λ):

ln D̃L (λ) ∼ ln
(
1− λ2

)
L− 2β2 (λ) lnL.� (46)

We present the derivation of the above expression in appendix A.1.

4. Symmetry-resolved EE for the XX model

Throughout this section we assume that γ = 0 and |h| � 2, which corresponds to the 
gapless XX model.

4.1. Leading order approximation for flux-resolved EE

From the expression for ρA in (34) we can deduce that the flux-resolved REE may be 
written as

Sn (α) =
L

Π
m=1

[(
1 + νm

2

)n

eiα +

(
1− νm

2

)n]
,� (47)

where νm are the eigenvalues of the matrix GL defined in (36) [20].
Following [44], we calculate lnSn (α) for −π < α < π using integration in the com-

plex plane. We write

lnSn (α) = i
α

2
L+

L∑
m=1

e(α)n (1, νm) = i
α

2
L+ lim

ε,δ→0+

1

2πi

∫

c(ε,δ)

e(α)n (1 + ε,λ)
d

dλ
lnDL (λ) dλ,� (48)

where DL (λ) ≡ det (λIL −GL) as before, c (ε, δ) is the contour presented in figure 1(a), 
and

e(α)n (x, ν) ≡ ln

[(
x+ ν

2

)n

ei
α
2 +

(
x− ν

2

)n

e−iα
2

]
.� (49)

We begin by omitting subleading contributions to the asymptotic expression for 
DL (λ), substituting for it the leading order approximation (38). We will accordingly 
obtain a leading order approximation for lnSn (α) at large L; this approximation will 

be denoted by lnS
(0)
n (α). One can show that
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d

dλ
lnD

(0)
L (λ) =

(
kF/π

λ− 1
+

1− kF/π

λ+ 1

)
L− 4i

π
· β (λ)

(λ+ 1) (λ− 1)
[lnL+ (1 + γE) + Υ (λ)] ,� (50)

where

Υ(λ) ≡
∞∑
k=1

k−1β2 (λ)

k2 − β2 (λ)
.� (51)

Substituting (50) into (48) we get

lnS(0)
n (α) = i

α

2
L+ lim

ε,δ→0+

1

2πi

∫

c(ε,δ)

e(α)n (1 + ε,λ)

(
kF/π

λ− 1
+

1− kF/π

λ+ 1

)
Ldλ

+ lim
ε,δ→0+

1

2πi

∫

c(ε,δ)

e(α)n (1 + ε,λ)

(
−4i

π
· β (λ)

(λ+ 1) (λ− 1)
[lnL+ (1 + γE) + Υ (λ)]

)
dλ.

� (52)
Calculating the integrals, we obtain

lnS(0)
n (α) = i

kF
π
αL+

[
1

6

(
1

n
− n

)
− α2

2π2n

]
lnL+Υ0 (n,α) (−π < α < π) ,

� (53)
where we have defined

Υ0 (n,α) ≡ − 1

π2

∞∫

0

ln

[
2 cosα + 2 cosh (nu)(

2 cosh
(
u
2

))2n
]
du

∞∫

0

[
e−t

t
−

cos
(
ut
2π

)

2 sinh
(
t
2

)
]
dt.

�

(54)

Figure 1.  (a) The integration contour c (ε, δ) used in (48). (b) The integration 

contour for the calculation of I+k  in (64). The broken vertical lines represent 

segments which are infinitely far from the imaginary line. (c) The deformed 
integration contour used in the calculation of Υ0,a (n,α + 2π) in (71).
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An equivalent expression for Υ0 (n,α), which will be of use later on, is

Υ0 (n,α) =
in

2π

∞∫

−∞

[
tanh

(nu
2

+ i
α

2

)
− tanh

(u
2

)]
ln

Γ
(
1
2
+ u

2πi

)

Γ
(
1
2
− u

2πi

)du.� (55)

It is important to note that the α2 term in (53) arises from a Fourier series, 

α2 = π2

3
+ 4

∞∑
k=1

(−1)k

k2
cos (kα), and therefore it should actually be continued periodically 

outside the interval [−π, π]. The calculation of (53) is detailed in appendix A.2.
It is noteworthy that the term Υ0 (n,α) is independent of L and kF, and that it is 

real and even with respect to α. We can therefore write

Υ0 (n,α) = c0 (n) + c2 (n)α
2 +O

(
α4

)
.� (56)

Knowing the values c0 (n) and c2 (n) lets us write lnS
(0)
n (α) as a quadratic polynomial 

in α:

lnS(0)
n (α) ≈ c0 (n) +

1

6

(
1

n
− n

)
lnL+ i

kF
π
Lα− 1

2

(
lnL
π2n

− 2c2 (n)

)
α2 ≡ lnS(G)

n (α) .� (57)

In such a way the flux-resolved REE is approximated (up to a phase and a normaliza-

tion constant) as a density function of a Gaussian distribution S
(G)
n (α), which implies 

that under this approximation its Fourier transform — the charge-resolved REE — 
represents a Gaussian distribution as well:

Sn (QA) ≈ ec0(n)L
1
6(

1
n
−n)

√
1

2 lnL
πn

− 4πc2 (n)
exp

[
−
π
(
QA − kF

π
L
)2

2 lnL
πn

− 4πc2 (n)

]
.� (58)

The deviation of S
(G)
n (α) from S

(0)
n (α) is obviously small as long as |α| � π. If we 

demand that lnL/n � 1, subleading corrections to S
(0)
n (α) do not spoil this (for 

|α| � π these subleading corrections, which we obtain below, vanish exponentially 

as lnL/n → ∞), meaning that Sn (α) ≈ S
(G)
n (α) constitutes a decent approximation 

in the |α| � π regime. Furthermore, the condition lnL/n � 1 guarantees that the 
main contribution to the integral in (8) will come from the |α| � π regime, due to the 

fast decay of the exp
[
−1

2

(
lnL
π2n

− 2c2 (n)
)
α2

]
 term away from α = 0. We can therefore 

deduce that the Gaussian approximation (58) is valid as long as lnL/n � 1. We will 
test the quality of this approximation in the next subsection.

The value of c2 (n) for the case n  =  1 is of special interest: since S1 (QA) is the charge 

distribution in subsystem A, the expression 
(
lnL
π2 − 2c2 (1)

)
 corresponds to the charge 

variance. Substituting n  =  1, the value c2 (1) = −1+γE
2π2  is obtained (a detailed proof is 

presented in appendix A.3). This agrees with [52], where it was proven that for a half-

filled chain (kF = π
2
, and accordingly L = 2L) the charge variance is ln 2L+1+γE

π2 .
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4.2. Corrections up to the order of O (L−1)

Corrections to the leading order approximation (53) can be calculated by taking into 
account subleading contributions that appear in (39). Following [46], we use the fact 
that G (1 + x) /G (x) = Γ (x) and, omitting terms which will contribute corrections of 
order O (L−4), we rewrite (39) as

DL (λ) = D
(0)
L (λ)

[
1 + e2ikFLL−2+4β(λ)Γ (1− β (λ))2

Γ (β (λ))2
+ e−2ikFLL−2−4β(λ)Γ (1 + β (λ))2

Γ (−β (λ))2

]

≡ D
(0)
L (λ) [1 +H (λ)] .

� (59)

Substituting this into the integral expression for lnSn (α) (48), we obtain

lnSn (α) = lnS(0)
n (α) + lim

ε,δ→0+

1

2πi

∫

c(ε,δ)

e(α)n (1 + ε,λ)
d

dλ
ln [1 +H (λ)] dλ+O

(
L−4

)

= lnS(0)
n (α)− lim

ε,δ→0+

1

2πi

∫

c(ε,δ)

de
(α)
n (1 + ε,λ)

dλ
ln [1 +H (λ)] dλ+O

(
L−4

)
.

�
(60)

Using the fact that for every  −1  <  x  <  1,

β
(
x+ i0±

)
= −iW (x)∓ 1

2
,� (61)

where W (x) ≡ 1
2π

ln 1+x
1−x

, we obtain that

H
(
x+ i0±

)
= e±2i(2 lnLW (x)−kFL)Γ

(
1
2
∓ iW (x)

)2
Γ
(
1
2
± iW (x)

)2 +O
(
L−4

)
.� (62)

Now we write ln [1 +H (λ)] =
∞∑
k=1

(−1)k+1

k
H (λ) k and take the limit ε, δ → 0+, omitting 

terms of order O (L−4), so that we get

lnSn (α)− lnS(0)
n (α) =

1

2πi

∞∫

−∞

du
∞∑
k=1

(−1)k+1 n

2k

[
tanh

(nu
2

+ i
α

2

)
− tanh

(u
2

)]

×

{
e2ik(

lnL
π

u−kFL) Γ
(
1
2
+ u

2πi

)2k

Γ
(
1
2
− u

2πi

)2k − e−2ik( lnL
π

u−kFL)Γ
(
1
2
− u

2πi

)2k

Γ
(
1
2
+ u

2πi

)2k
}
.

�

(63)

Let us define a natural number mc = mc (n) ≡ �n
4
�+ 1, so that mc � n

4
+ 1, and thus 

2
n

(
2mc − 1± α

π

)
� 1 for every −π < α < π. For each k � 1 and every −π < α < π, we 

can estimate the integral

I+k ≡ 1

2πi

∞∫

−∞

du
(−1)k+1 n

2k

[
tanh

(nu
2

+ i
α

2

)
− tanh

(u
2

)]
e2ik(

lnL
π

u−kFL) Γ
(
1
2
+ u

2πi

)2k

Γ
(
1
2
− u

2πi

)2k� (64)

by enclosing the mc poles of tanh
(
nz
2
+ iα

2

)
 that are in the upper half-plane (at 

z = iπ
n

(
2m− 1− α

π

)
 for m ∈ N) and are closest to the real line using a rectangular con-

tour, the vertical sides of which are infinitely far from the imaginary line, and whose 
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upper horizontal side crosses the imaginary line through the segment between the mcth 

and the (mc + 1)th pole of tanh
(
nz
2
+ iα

2

)
 (see figure 1(b)). Thus we make sure that the 

integral over the upper horizontal side of the contour is of order O
(
L−1− 4

n

)
 at most. 

Ignoring the poles of tanh
(
z
2

)
, considering that the contribution of their residues is only 

of order O (L−2), we can write

I+k =
mc∑
m=1

(−1)k+1

k
L− 2k

n (2m−1−α
π )e−2ikFLkΓ

(
1
2
+ 1

2n

(
2m− 1− α

π

))2k

Γ
(
1
2
− 1

2n

(
2m− 1− α

π

))2k +O
(
L−1− 4

n + L−2
)
.� (65)

In a similar way, we define

I−k ≡ − 1

2πi

∞∫

−∞

du
(−1)k+1 n

2k

[
tanh

(nu
2

+ i
α

2

)
− tanh

(u
2

)]
e−2ik( lnL

π
u−kFL)Γ

(
1
2
− u

2πi

)2k

Γ
(
1
2
+ u

2πi

)2k ,� (66)

and sum over the residues of tanh
(
nz
2
+ iα

2

)
 at its poles in the lower half-plane up to 

m  =  mc, so that we get

I−k =
mc∑
m=1

(−1)k+1

k
L− 2k

n (2m−1+α
π )e2ikFLkΓ

(
1
2
+ 1

2n

(
2m− 1 + α

π

))2k

Γ
(
1
2
− 1

2n

(
2m− 1 + α

π

))2k +O
(
L−1− 4

n + L−2
)
.� (67)

The summation over m is truncated due the fact that infinite summation will not 
converge. Further corrections of order o (L−1) that are not captured by the general-
ized Fisher–Hartwig conjecture, and stem from a calculation related to random matrix 
theory, were found in the calculation of the total REE in [46].

Summing over k, we finally get

lnSn (α) = lnS(0)
n (α) + Υ1 (n,α,L, kF ) + o

(
L−1

)
(−π < α < π) ,� (68)

where

Υ1 (n,α,L, kF ) ≡
mc∑
m=1

ln

[
1 + L− 2

n(2m−1−α
π )e−2ikFLΓ

(
1
2
+ 1

2n

(
2m− 1− α

π

))2
Γ
(
1
2
− 1

2n

(
2m− 1− α

π

))2
]

+
mc∑
m=1

ln

[
1 + L− 2

n(2m−1+α
π )e2ikFLΓ

(
1
2
+ 1

2n

(
2m− 1 + α

π

))2
Γ
(
1
2
− 1

2n

(
2m− 1 + α

π

))2
]
.

�

(69)

Figure 2(a) shows the dependence of the flux-resolved REE on α in a half-filled 
system (kF = π

2
), for dierent values of n. The numerical evaluation of (47) is compared 

to the analytical results, and it can be seen that while the leading order approximation 

S
(0)
n (α) exhibits an O (1) deviation from the numerical values as α → ±π, this devia-

tion practically vanishes after we include corrections up to order O (L−1). Figure 2(b) 
shows a more detailed comparison between the analytical result up to order O (L−1) 
and the numerical result, for the case of half-filling. In this figure we denote the ana-

lytical result by lnS
(1)
n (α) ≡ lnS

(0)
n (α) + Υ1 (n,α,L, kF ), while the numerical result is 

denoted by lnSn (α). The negligible dierence between the two calculations indicates 

that lnS
(1)
n (α) provides a very good approximation even for a subsystem of relatively 

moderate length.
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We can now use the analytical results for Sn (α) in order to calculate the charge-
resolved REE through (8), and then the charge-resolved vNEE. Figure 3 shows that 

when we use the analytical approximation S
(1)
n (α), these calculations are in good agree-

ment with numerical results. On the other hand, the Gaussian approximation derived 
from (58) exhibits a discernible deviation from numerical results for both S1 (QA) and 
S (QA), since lnL is not large enough.

4.3. Periodic structure up to the order of O (L−1)

lnS
(0)
n (α) in (53) was defined for −π < α < π, and its real part is 2π-periodic in α 

(remember that the α2 term originated from a Fourier series). Nevertheless, its periodic 
continuation is not analytic (nor is it even dierentiable), so we would like to define the 

analytic continuation of S
(0)
n (α) for α ∈ R. For this purpose, we will construct a natural 

continuation of lnS
(0)
n (α) so that the corresponding continuation of S

(0)
n (α), which will 

be denoted by S
(0)
a,n (α), would turn out analytic. The linear and quadratic terms in (53) 

naturally remain as before, so we need only to construct an appropriate continuation 
Υ0,a (n,α) of the term Υ0 (n,α), and then obtain for α ∈ R

S(0)
a,n (α) = exp

{
i
kF
π
αL+

[
1

6

(
1

n
− n

)
− α2

2π2n

]
lnL+Υ0,a (n,α)

}
.� (70)

Regarding the term Υ0 (n,α) as it is written in (55), note that as α approaches 

π− or −π+, a pole of the function tanh
(
nz
2
+ iα

2

)
 approaches the real line. A shift of 

α → α + 2π maintains the positions of all poles of tanh
(
nz
2
+ iα

2

)
 in the upper half-

plane (at z = iπ
n

(
2m− 1− α

π

)
, m ∈ N), but during a continuous shift of such kind 

the pole that was originally at z = iπ
n

(
1− α

π

)
 crosses the real line, and ends up at 

z = iπ
n

(
−1− α

π

)
. We can now think of Υ0,a (n,α + 2π) as the value obtained by calcu-

lating the integral in (55) while deforming the contour of integration (originally just 

Figure 2.  (a) Flux-resolved REE in a subsystem of length L  =  1000 of a half-
filled gapless XX chain, computed numerically according to (47) (dots), using the 
analytical leading order approximation (53) (broken lines), and using the analytical 
approximation up to O (L−1) (68) (continuous lines). (b) The absolute deviation 
of the analytical result up to order O (L−1) from the numerical result for the flux-
resolved REE, for a half-filled gapless XX chain.
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the real line) so that it also encircles the pole that crossed the real line, thus counting 

the residue of the integrand at z = iπ
n

(
−1− α

π

)
 (see figure 1(c)). In such a way we get 

for every −π < α < π,

Υ0,a (n,α + 2π)−Υ0 (n,α) = Res

{
−n

[
tanh

(nz
2

+ i
α

2

)
− tanh

(z
2

)]
ln

Γ
(
1
2
+ z

2πi

)

Γ
(
1
2
− z

2πi

) , z =
iπ

n

(
−1− α

π

)}

= 2 ln
Γ
(
1
2
+ 1

2n

(
1 + α

π

))

Γ
(
1
2
− 1

2n

(
1 + α

π

)) .
�

(71)

By the same logic, for every natural number m � 1 we can deform the integration con-
tour so that it encircles the m poles which cross the real line from the upper half-plane 
to the lower half-plane during the shift α → α + 2πm, so that for every −π < α < π,

Υ0,a (n,α + 2πm)−Υ0 (n,α)

=
m∑
j=1

Res

{
−n

[
tanh

(nz
2

+ i
α

2

)
− tanh

(z
2

)]
ln

Γ
(
1
2
+ z

2πi

)

Γ
(
1
2
− z

2πi

) , z =
iπ

n

(
−2j + 1− α

π

)}

=
m∑
j=1

2 ln
Γ
(
1
2
+ 1

2n

(
2j − 1 + α

π

))

Γ
(
1
2
− 1

2n

(
2j − 1 + α

π

)) .
�

(72)

For a shift of α → α− 2πm (this time encircling poles that cross the real line from the 
lower half-plane to the upper half-plane), we get for every −π < α < π,

Υ0,a (n,α− 2πm)−Υ0 (n,α) =
m∑
j=1

2 ln
Γ
(
1
2
+ 1

2n

(
2j − 1− α

π

))

Γ
(
1
2
− 1

2n

(
2j − 1− α

π

)) .� (73)

For fixed n, the terms Γ
(
1
2
− 1

2n

(
2j − 1± α

π

))
 might diverge for certain val-

ues of j  and α, in which case (72) or (73) diverge, respectively. This however does 
not pose a problem, since we are eventually interested in the exponents of (72) and 

Figure 3.  Charge-resolved REE and vNEE in a subsystem of length L  =  1000 of a 
half-filled gapless XX chain, computed numerically according to (47) and (8) (dots), 
using the analytical Gaussian approximation (58) (broken lines), and using the 
analytical approximation up to O (L−1) according to (68) and (8) (continuous lines).
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(73), and when Γ
(
1
2
− 1

2n

(
2j − 1± α

π

))
 diverge for some 1 � j � m it just means that 

exp (Υ0,a (n,α± 2πm)) = 0, respectively. Both the periodic and the analytic contintua-
tions of expΥ0 are presented in figure 4.

Defining Υ0,a (n,α) this way and substituting it into the analytic continuation of 

S
(0)
n (α) in (70), we obtain for each m ∈ N and every −π < α < π,

S
(0)
a,n (α± 2πm)

S
(0)
n (α)

= L− 2
n(m2±α

π
m)e±2imkFL

m

Π
j=1

Γ
(
1
2
+ 1

2n

(
2j − 1± α

π

))2
Γ
(
1
2
− 1

2n
(2j − 1± α)

)2 ,� (74)

and in particular

S
(0)
a,n (α + 2πm)

S
(0)
a,n (α + 2π (m− 1))

= L− 2
n(2m−1+α

π )e2ikFLΓ
(
1
2
+ 1

2n

(
2m− 1 + α

π

))2
Γ
(
1
2
− 1

2n

(
2m− 1 + α

π

))2 ,

S
(0)
a,n (α− 2πm)

S
(0)
a,n (α− 2π (m− 1))

= L− 2
n(2m−1−α

π )e−2ikFLΓ
(
1
2
+ 1

2n

(
2m− 1− α

π

))2
Γ
(
1
2
− 1

2n

(
2m− 1− α

π

))2 .
�

(75)

Let us now define σm (α) ≡ S
(0)
a,n (α + 2πm) for every m ∈ Z and −π < α < π. We 

can rewrite (68) as

lnSn (α) = ln σ0 (α) +
mc∑
m=1

{
ln

[
1 +

σm (α)

σm−1 (α)

]
+ ln

[
1 +

σ−m (α)

σ−m+1 (α)

]}
+ o

(
L−1

)
,� (76)

and therefore, up to o (L−1) corrections,

Sn (α) =

[
mc

Π
m=1

(
σ−m (α)

σ−m+1 (α)
+ 1

)]
σ0 (α)

[
mc

Π
m=1

(
1 +

σm (α)

σm−1 (α)

)]
.� (77)

We could have formally represented the result in (68) as an asymptotic (divergent) series 
had we not defined the cuto index mc. Such a representation would have brought us 
to the asymptotic (divergent) product

Sn (α) =

[
∞
Π

m=1

(
σ−m (α)

σ−m+1 (α)
+ 1

)]
σ0 (α)

[
∞
Π

m=1

(
1 +

σm (α)

σm−1 (α)

)]
,� (78)

which for any arbitrary j ∈ Z can be written as

Sn (α) =

[
∞
Π

m=1

(
σj−m (α)

σj−m+1 (α)
+ 1

)]
σj (α)

[
∞
Π

m=1

(
1 +

σj+m (α)

σj+m−1 (α)

)]
.� (79)

This result is just Sn (α + 2πj) = Sn (α), as long as we ignore o (L−1) corrections and 
treat it as an asymptotic product.

Note that the result in (77) can also be written as

Sn (α) =
mc∑

j=−mc

S(0)
a,n (α + 2πj) + o (1) ,� (80)

a structure which is natural from the CFT perspective. Indeed, there one writes the 
flux-resolved entropy Sn (α) as a correlation function over n copies of space-time of 
TV = T × V, twist fields (appearing in the calculation of the total entropies) T  modified 
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by fusion of vertex operators V , which assign a phase α to every particle encircling 
them [20]. In a bosonized language it can be written in terms of the appropriate boson 
field φ as V0 (α) = ei

α
2π

φ. However, the periodicity in α implies that V  could actually be 
taken as a sum over all possible shifts of α by integer multiples of 2π, that is

TV =
∑
j

aj(n,α)T × V0(α + 2πj),
� (81)

with some coecients aj(n,α). Computing the entropies as in [20] would then lead to 
the form of (80). Our exact results allow one to go beyond CFT and find the coecients 
for the XX system, which take the values aj (n,α) = expΥ0,a (n,α + 2πj).

Interestingly, this structure is maintained even when we include all terms up to an 
order of O (L−1). Let us define for every −π < α < π

σright (α) ≡ σ0 (α)

[
mc

Π
m=2

(
1 +

σm (α)

σm−1 (α)

)]
.� (82)

First, note that (77) can be also written as

Sn (α) = σ−mc (α)

[
mc

Π
m=−mc+1

(
1 +

σm (α)

σm−1 (α)

)]
=

mc∑
j=−mc

σj (α)
mc

Π
m=j+2

(
1 +

σm (α)

σm−1 (α)

)
.� (83)

By definition of mc, for any m  >  mc and every −π < α < π it is true that σm(α)
σm−1(α)

= o (L−1), 

and therefore for every 0 � j � mc,

σj (α)
mc

Π
m=j+2

(
1 +

σm (α)

σm−1 (α)

)
= σj (α)

mc−j

Π
m=2

(
1 +

σj+m (α)

σj+m−1 (α)

)

= σj (α)
mc

Π
m=2

(
1 +

σj+m (α)

σj+m−1 (α)

)
+ o

(
L−1

)

= σright (α + 2πj) + o
(
L−1

)
.

�

(84)

Figure 4.  Continuation of exp (Υ0 (n,α)) for n  =  3. Inset shows a zoomed-in view 
of the tail of the analytic continuation exp (Υ0,a (n = 3,α)).
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It is also evident from the relations in (75) that for m1,m2 � 1 such that m1 +m2 > mc,

σ−m1 (α)

σ−m1−1 (α)
· σm2 (α)

σm2−1 (α)
= o

(
L−1

)
.� (85)

We can thus conclude that for every −mc � j < 0,

σj (α)
mc

Π
m=j+2

(
1 +

σm (α)

σm−1 (α)

)
= σj (α)

mc+j

Π
m=j+2

(
1 +

σm (α)

σm−1 (α)

)
+ o

(
L−1

)

= σright (α + 2πj) + o
(
L−1

)
.

� (86)

From (83), (84) and (86) we can now derive that

Sn (α) =
mc∑

j=−mc

σright (α + 2πj) + o
(
L−1

)
.� (87)

The symmetry of the expression for Sn (α) in (77) obviously enables us to equiva-
lently write

Sn (α) =
mc∑

j=−mc

σleft (α + 2πj) + o
(
L−1

)
,� (88)

where we have defined

σleft (α) ≡ σ0 (α)

[
mc

Π
m=2

(
1 +

σ−m (α)

σ−m+1 (α)

)]
.� (89)

This means that we can define

S̃n (α) ≡
σleft (α) + σright (α)

2
=

σ0 (α)

2

[
mc

Π
m=2

(
1 +

σ−m (α)

σ−m+1 (α)

)
+

mc

Π
m=2

(
1 +

σm (α)

σm−1 (α)

)]
,� (90)

and obtain the desired structure, namely

Sn (α) =
mc∑

j=−mc

S̃n (α + 2πj) + o
(
L−1

)
.� (91)

5. Symmetry-resolved EE for the XY model

We now derive the asymptotic behavior of the analog of the flux-resolved REE for the 

ground state of the XY model, namely the parity-resolved S
(−)
n ≡ Tr

(
ρnA (−1) Q̂A

)
. We 

assume for simplicity that h � 0. Using (34), we can write

S(±)
n =

L

Π
m=1

[(
1− νm

2

)n

±
(
1 + νm

2

)n]
,� (92)

where we also denoted S
(+)
n ≡ Sn. Note that in particular we can immediately deduce 

that S
(−)
1 = S

(−)
2 .
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5.1. Gapped XY model

We first estimate S
(−)
n  at the limit L → ∞ assuming that the system is gapped, i.e. 

h �= 2. As was explained in 3.2.2, as L → ∞ the values ±νm converge in pairs to the 
values λl defined in (45), which in turn depend on h.

The case h  <  2 is simple: since λ0 = 0, we obtain S
(−)
n → 0. For h  >  2, on the other 

hand, the asymptotic expression for S
(−)
n  does not vanish. Indeed, we can write

lim
L→∞

L

Π
m=1

∣∣∣∣
(
1− νm

2

)n

−
(
1 + νm

2

)n∣∣∣∣ =
∞
Π

m=−∞

∣∣∣∣
(
1− λm

2

)n

−
(
1 + λm

2

)n∣∣∣∣ ,
� (93)

and writing q ≡ e−πτ0 (τ0 was defined in (41)) we get

∞
Π

m=−∞

∣∣∣∣
(
1− λm

2

)n

−
(
1 + λm

2

)n∣∣∣∣ =
∞
Π

m=0

[(
1

1 + q2m+1

)n

−
(

q2m+1

1 + q2m+1

)n]2
,

� (94)
so that eventually we obtain

lim
L→∞

∣∣S(−)
n

∣∣ = ∞
Π

m=0

[(
1

1 + q2m+1

)n

−
(

q2m+1

1 + q2m+1

)n]2
=




∞
Π

m=0

[
1− qn(2m+1)

]
∞
Π

m=0
[1 + q(2m+1)]

n




2

.

� (95)
In order to further simplify this result for lim

L→∞

∣∣∣S(−)
n

∣∣∣, we remind the reader of the 

definition of the Jacobi theta functions [49]:

ϑ2 (z, q) =
∞∑

m=−∞

q(m+ 1
2)

2

e2iz(m+ 1
2),

ϑ3 (z, q) =
∞∑

m=−∞

qm
2

e2izm,

ϑ4 (z, q) =
∞∑

m=−∞

(−1)m qm
2

e2izm.

�

(96)

We write θj (q) ≡ ϑj (0, q) and

k (q) ≡ θ22 (q)

θ23 (q)
, k′ (q) ≡

√
1− k2 (q) =

θ24 (q)

θ23 (q)
.� (97)

This definition of k implies that q = exp
[
−π I(k′)

I(k)

]
 (I was defined in (42)) [49], and 

thus it agrees with the definition of k previously presented in (40). We also write 
kn (q) ≡ k (qn) and k′

n (q) ≡ k′ (qn), and rely on the following identities from [49] that 
hold for every 0  <  q  <  1:

∞
Π

m=0

[
1 + q(2m+1)

]
=

(
16q

k2k′2

) 1
24

,

∞
Π

m=0

[
1− q(2m+1)

]
= k′ 1

4

∞
Π

m=0

[
1 + q(2m+1)

]
=

(
16qk′4

k2

) 1
24

.

�
(98)
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We then obtain that for h  >  2,

lim
L→∞

∣∣S(−)
n

∣∣ =
[
(kk′)2n k′4

n

16n−1k2
n

] 1
12

.

� (99)
Since S

(−)
n  is real by definition we can only have S

(−)
n = ±

∣∣∣S(−)
n

∣∣∣, but this still leaves 

us with an ambiguity regarding the sign of S
(−)
n . To resolve this ambiguity we turn 

to the large h limit of the above expression. The definition of k in (40) implies that as 
h → ∞, k → 0 and therefore k′ → 1 and q → 0. Furthermore, one can show that as 
q → 0, k ∼ 4q

1
2 [49] and consequently

lim
h→∞

[
(kk′)2n k′4

n

16n−1k2
n

] 1
12

= 1.� (100)

On the other hand, as can be easily seen from the Hamiltonian in (14), in the large h 
limit the system in question is ferromagnetic, and we therefore expect that as h → ∞ 
all L fermion sites of subsystem A will be occupied in the ground state (i.e. ρA has a 
non-vanishing eigenvalue only for the state that corresponds to QA  =  L). This, in turn, 

suggests that for every finite L, as h → ∞ we obtain S
(−)
n → 1 for even L and S

(−)
n → −1 

for odd L. By continuity, the sign should remain the same for finite h  >  2.
This finally brings us to

lim
L→∞

(−1)L S(−)
n =



0, h < 2[
(kk′)2nk′4n
16n−1k2n

] 1
12
, h > 2

.� (101)

Figure 5(a) shows a comparison between the asymptotic analytical result for S
(−)
n  

and the numerical result. It indicates a very good agreement between the two calcul
ations, and in particular confirms two conspicuous properties of the analytical result 

in the large L limit: that S
(−)
n → 0 in the h  <  2 regime, and that 

∣∣∣S(−)
n

∣∣∣ → 1 as h → ∞. 

A numerical calculation of S
(−)
2  for several values of L has previously appeared in [37].

We use our calculation of S
(−)
n  in order to calculate S(−) = −lim

n→1
∂nS

(−)
n  at the large 

L limit. Relying on (92), we can obtain an explicit expression for S(−):

S(−) = (−1)L
L∑

m=1

(
Π

j �=m
νj

)
·
[
1− νm

2
ln

(
1− νm

2

)
− 1 + νm

2
ln

(
1 + νm

2

)]
.

� (102)
This expression can be used for numerical estimates of S(−).

From (101) we can now calculate S(−) as L → ∞:

lim
L→∞

(−1)L S(−) =

{
0, h < 2
√
k′

3

[
ln 2− 1

2
ln (k · k′)− I(k)I(k′)

π
(1 + k2)

]
, h > 2

.� (103)

The details of this calculation appear in appendix A.4. S(−) is plotted in figure 5(b), 
where again good agreement between the analytical estimate and the numerical result 
is evident. Figures 6(a) and (b) show the dierence between the analytical limit for 
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L → ∞ and the numerical results for finite L. They demonstrate that away from the 
vicinity of h  =  2, where the phase transition occurs, corrections to the asymptotic result 
vanish rapidly as L grows, and it is apparent that e.g. for γ = 0.5 these corrections turn 
negligible even for a relatively short subsystem. As h nears h  =  2, we need a larger value 
of L in order for the deviation to be small.

Both S
(−)
n  and S(−) illustrate a striking property of the phase in which the system 

is found for h  <  2: since S
(−)
n = S(−) = 0, we obtain that for h  <  2, the system satisfies 

S
(even)
n = S

(odd)
n  and S(even) = S(odd). This property stems from the fact that we can write 

the RDM as ρA = exp (−HA) where the entanglement Hamiltonian HA is quadratic [38, 
48], and treat HA as the Hamiltonian of an eective system of a 1D open fermionic 
chain with L sites. HA is expected to have the same modes at the virtual edges of the 
subsystem as the original system (the Kitaev chain) would host at a physical edge [29]. 
Thus the phase h  <  2 corresponds to a topologically non-trivial phase of HA where two 
Majorana zero-modes — one at each end of the system — remain decoupled, provided 
that the virtual chain is long enough [53]. Combining these two Majorana operators 
yields a fermionic operator whose occupancy does not change the eigenvalues of HA, 
and thus induces a two-fold degeneracy in the system: every eigenstate of HA with an 
even total fermionic number has a corresponding eigenstate with the same eignevalue 
but with an odd total fermionic number, and vice versa. This degeneracy persists as 
long as h  <  2. This explains why in the large L limit, the contributions to the entropy 
from the block that corresponds to an even QA and the block that corresponds to an 
odd QA are exactly the same. Our work provides a rigorous proof of this behavior for 
the system considered. These observations allow us to explain the finite L corrections 
to our results, which become noticeable for L � 50, as depicted in figures 6(a) and (b).

Since for h �= 2 the system is gapped, the correlations vanish exponentially as 

L → ∞ [54], and therefore so do the corrections to the limiting values of S
(−)
n  and 

Figure 5.  (a) (−1) LS
(−)
n  in a subsystem of L sites of a gapped XY chain, for 

anisotropy factor γ = 0.5. The results were computed numerically for L  =  200 
using (92) (dots) and analytically for L → ∞ using (101) (continuous lines). (b) 
(−1) LS(−) in a subsystem of L sites of a gapped XY chain, computed numerically 
for L  =  200 using (102) (dots) and analytically for L → ∞ using (103) (continuous 
lines).
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S(−). For h  <  2 the corrections are dominated by the hybridization of the entanglement 
Majorana edge-modes: though they are localized exponentially at the ends of the vir-
tual chain [53], for finite L the virtual edge Majorana fermions exhibit some overlap, 
and therefore a true degeneracy is not achieved [53] for most values of h  <  2, resulting 
in a finite nonzero value of the lowest eigenvalue |ν1| ≡ min |νm|. Yet for certain values 
of h  <  2 the virtual Majorana wave functions interfere destructively, and this creates 

the minima apparent in figures 6(a) through (d) in both 
∣∣S(−)

∣∣ and |ν1|. This in fact sug-

gests that the finite size corrections to S(−) are dominated by ν1,

∣∣S(−)
∣∣ ≈

∣∣∣∣
1− ν1

2
ln

(
1− ν1

2

)
− 1 + ν1

2
ln

(
1 + ν1

2

)∣∣∣∣ .� (104)

The accuracy of this relation can serve as a quantitative test for the above arguments. 

And indeed, calculating the ratio between this approximation and 
∣∣S(−)

∣∣ for the cases 
that appear in figures 6(a) and (b), we get that for h  <  1.9 (outside the vicinity of the 
critical point h  =  2), the contribution of ν1 to S(−) is always above 85% for γ = 0.5, and 
always above 65% for γ = 0.1.

Considerations similar to those detailed above allow the extension of our main 

results (101) and (103) to 0 > h �= −2. The limit lim
L→∞

∣∣∣S(−)
n

∣∣∣ is symmetric in h, and there-

fore, in particular, it tends to 1 as h → −∞. However, the sign ambiguity is resolved in 
a dierent way than in the h  >  0 case: for finite L we expect that in the h → −∞ limit, 
all sites of A become unoccupied such that QA  =  0 with probability 1. We thus obtain 

Figure 6.  Upper panels: absolute deviation of the analytical estimate (103) of 

S(−) as L → ∞ (denoted by S(−)
ana) from the numerical estimate (102) for finite L 

(denoted by S(−)
num), for (a) γ = 0.5 and (b) γ = 0.1. Lower panels: |ν1| as a function 

of the magnetic field, for (c) γ = 0.5 and (d) γ = 0.1. The minima that appear for 

h  <  2 in all of the graphs correspond to points where |ν1| vanishes and therefore 

S(−)
num vanishes as well.
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that as h → −∞, S
(−)
n → 1 both for even and odd L, and so for 0 > h �= −2 the limit 

lim
L→∞

S
(−)
n  exists and is also positive.

The extensions of (101) and (103) to 0 > h �= −2 are therefore symmetric, apart 
from the absence of the (−1) L prefix, namely

lim
L→∞

S(−)
n

∣∣∣
h
= lim

L→∞
(−1)L S(−)

n

∣∣∣
−h

(0 > h �= −2) ,� (105)

and

lim
L→∞

S(−)
∣∣∣
h
= lim

L→∞
(−1)L S(−)

∣∣∣
−h

(0 > h �= −2) .� (106)

5.2. Gapless XY model

Here we calculate the asymptotics of S
(±)
n  for the case where the system is gapless, i.e. 

h  =  2. Following [45] we write

ln
∣∣S(±)

n

∣∣ = Re





lim
ε,δ→0+

1

4πi

∫

c(ε,δ)

e(±)
n (1 + ε,λ)

d

dλ
ln D̃L (λ) dλ





,� (107)

where c (ε, δ) is the contour shown in figure 1(a), and

e(±)
n (x, ν) ≡ ln

[(
x− ν

2

)n

±
(
x+ ν

2

)n]
.� (108)

Using the asymptotic approximation for D̃L (λ) in (46), we obtain that

d

dλ
ln D̃L (λ) ∼

(
1

λ+ 1
+

1

λ− 1

)
L− 4i

π
· β (λ)

(λ+ 1) (λ− 1)
lnL.� (109)

This expression is reminiscent of (50) from the calculation of the REE in the gapless 
XX model, and we can therefore carry out the integration along the same lines of argu-
ment, so that eventually we get

ln
∣∣S(±)

n

∣∣ ∼
[
1

12

(
1

n
− n

)
− η±

4n

]
lnL,� (110)

where η+ = 0 and η− = 1. Since S
(+)
n =

∣∣∣S(+)
n

∣∣∣, we have in particular obtained that for 

the gapless XY model

lnS(+)
n ∼ 1

12

(
1

n
− n

)
lnL,� (111)

a special case of a result which was derived and verified numerically in [50]. The 
coecient of the logarithm is halved as compared to (53) with α = 0, since a Majorana 
mode rather than a complex fermion is gapless here, in accordance with CFT predic-
tions [4].
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S
(−)
n  is again determined only up to a sign,

∣∣S(−)
n

∣∣ ≈ A (n, γ)L− 1
6n

− n
12 ,� (112)

where A (n, γ) is some positive factor independent of L, assuming that the largest sub-
leading contribution not appearing in the approximation (46) does not depend on L. 
We have verified this assumption numerically by fitting to the results a function of L 
that scales as L−1/6n−n/12, while the proportionality constant remained a free param
eter. An example is shown in figure 7(a), where good agreement between numerical and 
analytical results is evident. Lead by similar considerations as in the case of the gapped 

XY model, we can determine the sign of S
(−)
n  to be (−1) L, so that

(−1)L S(−)
n ≈ A (n, γ)L− 1

6n
− n

12 .� (113)

Specific attributes of the factor A (n, γ) are generally not captured by known theorems 
or conjectures we are aware of, and its analysis is beyond the scope of this work. We 
show its typical behavior, as extracted from numerical results, in figure 7(b). The result 
(113) confirms a previous prediction based on CFT considerations [20].

The parity-resolved vNEE S(−) for h  =  2 is therefore

(−1)L S(−) ≈ −A (1, γ)

12
L− 1

4 lnL.� (114)

As before, we can extend the results for S
(−)
n  and S(−) to h  =  −2 by simply omitting 

the (−1) L prefix.

6. Generalization to higher dimensions

In order to find the leading asymptotic behavior of the charged-resolved REE in a 
d-dimensional gapless free Fermi gas, we rely in this section on a formula conjectured 
by Widom [40] and proven for several particular cases [55–57]. A result similar to that 
which we are about to present was derived in a recent work [22], which discussed a 
dierent but related quantity, the accessible EE defined there.

Let us describe the physical scale of subsystem A in terms of a typical linear dimen-
sion L � 1 (made dimensionless by e.g. normalizing by the lattice constant), so that A 
contains Ld sites. We denote by ΩA the bounded region in real space that is occupied 
by A, and by Γ the region in momentum space that is occupied by the Fermi sea. We 
further denote by P and Q the operators which represent projections into Γ and ΩA, 
respectively. Following [20], we can write

lnSn (α) = Tr ln
[
Cneiα + (1− C)n

]
,� (115)

where Cij = 〈a†iaj〉 (i, j = 1, . . . ,Ld) is the fermionic correlation matrix, restricted to 
subsystem A. In the ground state C  =  QPQ, and therefore lnSn (α) = Trfn,α (QPQ), 

where fn,α (t) = ln
[
tneiα + (1− t) n

]
.
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We now introduce the notations

c1 =
1

(2π)d Ld

∫

ΩA

∫

Γ

dxdp and c2 =
1

(2π)d+1 Ld−1

∫

∂ΩA

∫

∂Γ

|nx · np| dSxdSp,� (116)

where nx,np are unit vectors that are normal to ∂ΩA, ∂Γ, respectively, and the units 
of x are set by the lattice constant such that the volume of a lattice unit cell equals 
unity. The normalization by powers of L was chosen so that the scaling with L of the 
final results becomes apparent. Note that in previous works [22, 56, 58, 59] this was 
achieved by a dierent convention of measuring x in units of L. A function f  is said to 
obey the Widom formula [56, 58, 59] if for L � 1,

Trf (QPQ) = c1f (1)Ld + c2U ( f)Ld−1 lnL+ o
(
Ld−1 lnL

)
,� (117)

where we have defined

U ( f) ≡
1∫

0

f (t)− tf (1)

t (1− t)
dt.� (118)

Note that the formula (117) was proven rigorously only for regions ΩA, Γ which satisfy 
certain regularity conditions, detailed in [56].

In [56] it was shown that f : R → R satisfies the Widom formula in two specific 
cases:

	Case (a)	� f  is infinitely dierentiable and f (0) = 0.
	Case (b)	� f  is infinitely dierentiable on R \ {0, 1} and there exist real constants 

K, β > 0 so that for every t ∈ [0, 1], |f (t)| � Ktβ (1− t) β.

Figure 7.  (a) (−1) LS
(−)
n  in a subsystem of L sites of a gapless XY chain (h = 2), 

for anisotropy factor γ = 0.4. The results were computed numerically using (92) 
(dots) and analytically using (113) (continuous lines). For the analytical results, 
the unknown factor A (n, γ) was extracted from a fit to the numerical results. (b) 
The factor A (n, γ) for several values of anisotropy factor γ, as extracted from fits 
to numerical results.
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Let us define Fn,α (t) = fn,α (t)− fn,α (1) t for every n  >  0 and −π < α < π. Both 
the real and the imaginary parts of Fn,α satisfy the requirements of Case (b)2 with 
β = min {n, 1}, and we can therefore apply the Widom formula (117) to Fn,α. Using the 
fact that Fn,α (1) = 0 and U (Fn,α) = U ( fn,α), we obtain that

TrFn,α (QPQ) = c2U ( fn,α)L
d−1 lnL+ o

(
Ld−1 lnL

)
.� (119)

The LHS of the last equality can be written as TrFn,α (QPQ) = Trfn,α (QPQ) −  
fn,α (1) Trg (QPQ), where g (t) = t. g obeys the Widom formula because it fulfills the 
requirements of Case (a), so by applying the Widom formula to Trg (QPQ) as well we 
can thus conclude that

Trfn,α (QPQ) = TrFn,α (QPQ) + fn,α (1) Trg (QPQ)

= c1fn,α (1)L
d + c2U ( fn,α)L

d−1 lnL+ o
(
Ld−1 lnL

)
,

�

(120)

which shows that fn,α itself obeys the Widom formula.
Consequently, we have for every −π < α < π

lnSn (α) = ic1L
dα + c2U ( fn,α)L

d−1 lnL+ o
(
Ld−1 lnL

)
.� (121)

Substituting fn,α into (118) and using the change of variables u = ln t
1−t

, we get

U ( fn,α) =

∞∫

−∞

[
ln

(
1 + enu+iα

(1 + eu)n

)
− iα

1 + e−u

]
du =

π2

6

(
1

n
− n

)
− α2

2n
.� (122)

We can therefore write

Sn (α) ≈ exp

[
ic1L

dα− 1

2
· c2L

d−1 lnL

n
α2 +

π2

6

(
1

n
− n

)
c2L

d−1 lnL

]
,� (123)

and finally conclude from (8) that in d dimensions, the charge-resolved REE satisfies

Sn (QA) ≈
√

n

2πc2Ld−1 lnL
exp

[
−n

(
QA − c1L

d
)2

2c2Ld−1 lnL
+

π2

6

(
1

n
− n

)
c2L

d−1 lnL

]
.

� (124)
For d  =  1, c1L

d = 〈QA〉 and c2L
d−1 = 1/π2, and therefore

Sn (QA) ≈ Sn ·
√

πn

2 lnL
exp

[
−nπ2 (QA − 〈QA〉)2

2 lnL

]
(d = 1) ,� (125)

which is in complete agreement with the approximation (58) to leading order in lnL/n.

2 For α = 0 we should define Fn,0 such that Fn,0 (t) = fn,0 (t) for t ∈ [0, 1] and Fn,0(t)  =  0 for t /∈ [0, 1], as was done in 
[56].
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7. Conclusions and future outlook

In this work we have obtained analytically the asymptotic behavior of the flux-resolved 
REE in a 1D spin (fermion) chain, both for a gapless XX (tight binding) chain and for 
the XY (Kitaev) chain, as well as in higher dimensions. In 1D, these analytical results 
have been shown in general to be in very good agreement with numerical results, even 
for a subsystem of moderate length.

For the gapless XX model our results agree with previous CFT arguments, and 
extend them beyond leading order in L. While the Gaussian approximation and the 
leading order approximation of Sn (α) deviate considerably from numerical results, the 
approximation that includes all terms up to order O (L−1) has been extremely accurate 
in the cases we have examined. We were also able to provide a meaning to the cor-
rections beyond the leading order approximation, by showing that they arise from a 
periodic structure, in line with CFT arguments. In higher dimensions, we derived an 
approximated expression for the symmetry-resolved REE in a gapless gas of free fer-
mions. Under such an approximation the symmetry-resolved EE is proportionate to a 
Gaussian distribution of the charge, akin to the equipartition property noted in [21].

For the gapped XY model, our results provide a way to obtain analytical expres-
sions for the parity-resolved decomposition of both the REE and the vNEE. These 
expressions are, on the face of it, limiting expressions that apply to a subsystem of 
infinite length, but our calculations have shown that they match the numerical results 
even for relatively short subsystems, due to the exponential decay of the correlations. 
We have also detected a topologically non-trivial phase in the virtual chain described 
by the entanglement Hamiltonian, which explains why for |h|  <  2 there is an equal 
contribution to the EE from states where QA is odd and states where QA is even. At the 
critical points, h  =  ±2, we have found a power-law behavior matching previous CFT 
predictions [20].

The use of the generalized Fisher–Hartwig (or, in higher dimensions, the Widom) 
conjecture was thus proven to be a powerful method for producing accurate estimates 
of symmetry-resolved EE. This suggests several prospects of future research, apply-
ing similar methods of calculation to questions such as the symmetry-resolved EE in 
topological systems [37, 60, 61], or in systems out of equilibrium, for example following 
a quench [62]. Another possible direction of research is the study of the symmetry-
resolved EE of a bipartition into disconnected subsystems [63].

Note added: When this work was close to completion a related work appeared online 
[64] which employs Fisher–Hartwig techniques to calculate the resolved entropy of the 
XX chain to order O (L0). Our results go further in (i) performing the XX calculations 
to order O (L−1), which is especially important in the vicinity of α = ±π; (ii) studying 
the XY (Kitaev) case; (iii) treating higher-dimensional gapless fermionic systems.
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Appendix. Details of the calculations

A.1. Asymptotics of the correlation matrix determinant (gapless XY model)

We derive here the leading order asymptotic approximation for the determinant D̃L (λ) 
defined in (43), for the case of a gapless XY chain (h  =  2). A generalized version of the 
Fisher–Hartwig formula was conjectured in [50, 51], regarding the determinant of a 
block Toeplitz matrix of the form

TL [M] =




Π̃0 Π̃−1 · · · Π̃1−L

Π̃1 Π̃0
...

... . . . ...
Π̃L−1 · · · · · · Π̃0




, Π̃m ≡ 1

2π

2π∫

0

dθe−imθM (θ) ,� (A.1)

where M (θ) is a piecewise continuous d× d matrix with jump discontinuities at the 

points θr, r = 0, . . . ,R. We define for each discontinuity M±
r ≡ lim

θ→θ±r

M (θ), and assume 

that for each r, M+
r  and M−

r  commute. This allows us to find a joint diagonalizing basis 

for M±
r , and we denote the corresponding eigenvalues by µ±

r,j, j = 1, . . . , d. According 
to the conjecture [51], for the first two leading terms of the large L approximation of 
ln detTL [M] we then have

ln detTL [M] =
L

2π

2π∫

0

dθ ln (detM (θ)) +
lnL

4π2

R∑
r=0

d∑
j=1

(
ln

(
µ−
r,j

µ+
r,j

))2

+ · · · .

�

(A.2)

For h  =  2, D̃L (λ) is of the form described above, i.e. D̃L (λ) = detTL [M] for 
M (θ) = iλI2 − G (θ). Now M has a single discontinuity at θ0 = 0, with

M±
0 =

(
iλ ±i

±i iλ

)
,� (A.3)

from which we obtain that µ±
0,1 = iλ± i and µ±

0,2 = iλ∓ i. Since detM (θ) = 1− λ2 is 
independent of θ, we finally arrive at

ln D̃L (λ) = ln
(
1− λ2

)
L− 2β2 (λ) lnL+ · · · .� (A.4)

A.2. Leading order approximation of the flux-resolved REE (XX model)

From the Fisher–Hartwig conjecture we have derived the leading order approximation 
for the asymptotic expression for Sn (α):
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lnS(0)
n (α) = i

α

2
L+ lim

ε,δ→0+

1

2πi

∫

c(ε,δ)

e(α)n (1 + ε,λ)

(
kF/π

λ− 1
+

1− kF/π

λ+ 1

)
Ldλ

+ lim
ε,δ→0+

1

2πi

∫

c(ε,δ)

e(α)n (1 + ε,λ)

(
−4i

π
· β (λ)

(λ+ 1) (λ− 1)
[lnL+ (1 + γE) + Υ (λ)]

)
dλ.

� (A.5)
Regarding the first integral, it is easily shown that

lim
ε,δ→0+

1

2πi

∫

c(ε,δ)

e(α)n (1 + ε,λ)

(
kF/π

λ− 1
+

1− kF/π

λ+ 1

)
Ldλ = i

(
−1 +

2kF
π

)
α

2
L.

� (A.6)
As for the second integral, we use the fact that for every  −1  <  x  <  1,

β
(
x+ i0±

)
= −iW (x)∓ 1

2
,� (A.7)

where W (x) ≡ 1
2π

ln 1+x
1−x

. It can be shown that the contribution from the circular arcs 
of the contour c (ε, δ) vanishes as ε, δ → 0+, and therefore we get

lim
ε,δ→0+

1

2πi

∫

c(ε,δ)

e(α)n (1 + ε,λ)

(
−4i

π
· β (λ)

(λ+ 1) (λ− 1)
[lnL+ (1 + γE) + Υ (λ)]

)
dλ

=
(lnL+ (1 + γE))

π2
lim
ε→0+

1− ε
2∫

−1+ ε
2

2e
(α)
n (1 + ε, x)

1− x2
dx

+ lim
ε→0+

∞∑
k=1

1

π2k

1− ε
2∫

−1+ ε
2

[ (
1
2
− iW (x)

)3
k2 −

(
1
2
− iW (x)

)2 +

(
1
2
+ iW (x)

)3
k2 −

(
1
2
+ iW (x)

)2
]
2e

(α)
n (1 + ε, x)

1− x2
dx

=
lnL
π2

lim
ε→0+

1− ε
2∫

−1+ ε
2

2e
(α)
n (1 + ε, x)

1− x2
dx− 1

π2
lim
ε→0+

1− ε
2∫

−1+ ε
2

[
ψ

(
1

2
+ iW (x)

)
+ ψ

(
1

2
− iW (x)

)]
e
(α)
n (1 + ε, x)

1− x2
dx.

� (A.8)
Here we denoted by ψ (x) the Digamma function, ψ (x) = Γ′(x)

Γ(x)
, and used the identity 

[44]
∞∑
k=1

1

k

[ (
1
2
+ iw

)3
k2 −

(
1
2
+ iw

)2 +

(
1
2
− iw

)3
k2 −

(
1
2
− iw

)2
]
= −1− γE − 1

2

[
ψ

(
1

2
+ iw

)
+ ψ

(
1

2
− iw

)]
.�

(A.9)
Using a change of variables u = ln 1+x

1−x
, and taking the limit ε → 0+, we have

lim
ε→0+

1− ε
2∫

−1+ ε
2

2e
(α)
n (1 + ε, x)

1− x2
dx = −n

∞∫

−∞

u

eu + 1
· e

nu+iα
2 − eu−iα

2

enu+iα
2 + e−iα

2

du

= −π2

6
n+

2

n

∞∑
k=1

(−1)k+1

k2
cos (αk) .

�

(A.10)
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Recalling the Fourier series of α2 in (−π, π), we can now write for every −π < α < π

lnL
π2

lim
ε→0+

1− ε
2∫

−1+ ε
2

2e
(α)
n (1 + ε, x)

1− x2
dx =

[
1

6

(
1

n
− n

)
− α2

2π2n

]
lnL.� (A.11)

Changing variables and taking the limit ε → 0+ as before, the second part of the int
egral turns out to be

− 1

π2
lim
ε→0+

1− ε
2∫

−1+ ε
2

[
ψ

(
1

2
+ iW (x)

)
+ ψ

(
1

2
− iW (x)

)]
e
(α)
n (1 + ε, x)

1− x2
dx

= − i

π

∞∫

−∞

ln

[
2 cosh

(
nu
2
+ iα

2

)
(
2 cosh

(
u
2

))n
]

d

du
ln

Γ
(
1
2
+ u

2πi

)

Γ
(
1
2
− u

2πi

)du

= − 1

π2

∞∫

0

ln

[
2 cosα + 2 cosh (nu)(

2 cosh
(
u
2

))2n
]
du

∞∫

0

[
e−t

t
−

cos
(
ut
2π

)

2 sinh
(
t
2

)
]
dt.

�

(A.12)

Finally, we arrive at

lnS(0)
n (α) = i

kF
π
αL+

[
1

6

(
1

n
− n

)
− α2

2π2n

]
lnL+Υ0 (n,α) ,

where

Υ0 (n,α) ≡ − 1

π2

∞∫

0

ln

[
2 cosα + 2 cosh (nu)(

2 cosh
(
u
2

))2n
]
du

∞∫

0

[
e−t

t
−

cos
(
ut
2π

)

2 sinh
(
t
2

)
]
dt.

� (A.13)

A.3. Gaussian approximation of the charge distribution (XX model)

We write

Υ0 (n,α) = − 1

π2

∞∫

0

ln

[
2 cosα + 2 cosh (nu)(

2 cosh
(
u
2

))2n
]
du

∞∫

0

[
e−t

t
−

cos
(
ut
2π

)

2 sinh
(
t
2

)
]
dt = c0 (n) + c2 (n)α

2 +O
(
α4

)
,

� (A.14)
and prove that c2 (1) = −1+γE

2π2 . Indeed, substituting n  =  1,

ln

[
2 cosα + 2 cosh (u)(

2 cosh
(
u
2

))2
]
= ln

[
2 + 2 cosh (u)(
2 cosh

(
u
2

))2
]
− 1

4 cosh2
(
u
2

)α2 +O
(
α4

)
,

� (A.15)
and so

c2 (1) =
1

4π2

∞∫

0

1

cosh2
(
u
2

)du
∞∫

0

[
e−t

t
−

cos
(
ut
2π

)

2 sinh
(
t
2

)
]
dt.� (A.16)
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We use
∞∫

0

cos
(
ut
2π

)

cosh2
(
u
2

)du =

∞∫

−∞

ei
t
π
x

cosh2 (x)
dx,� (A.17)

where the complex integral can be calculated using a rectangular contour with infinite 
horizontal sides at �z = 0 and �z = iπ, so that we get

∞∫

0

cos
(
ut
2π

)

cosh2
(
u
2

)du =
2te−

t
2

1− e−t
.� (A.18)

We can therefore write

c2 (1) =
1

2π2

∞∫

0


e−t

t
− te−

t
2

(1− e−t)
(
e

t
2 − e−

t
2

)

 dt

=
1

2π2

∞∫

0

[
1− e−t − t

t (et − 1)
+

1

et − 1
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d
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(
t

et − 1
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= −γE + 1

2π2
,
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where we have used the identity γE =
∞∫
0

e−t+t−1
t(et−1)

dt [49].

A.4. Decomposition of the vNEE (gapped XY model)

We present here a detailed calculation of S(−) = −lim
n→1

∂nS
(−)
n  as L → ∞, based on the 

result for S
(−)
n  in (101). For h  <  2 we obviously have S(−) → 0. For h  >  2, we can cal-

culate the derivative of the expression for S
(−)
n  by rewriting it in terms of the Jacobi 

theta functions:

(−1)L S(−)
n →

[
(kk′)2n k′4

n

16n−1k2
n

] 1
12

=

[
θ4n2 (q) θ4n4 (q) θ84 (q

n)

16n−1θ8n3 (q) θ42 (q
n) θ43 (q

n)

] 1
12

.� (A.20)

After some elementary steps, we arrive at

(−1)L S(−) →
√
k′

3

[
ln 2− 1

2
ln (k · k′) + q ln q ·

(
θ′3 (q)

θ3 (q)
+

θ′2 (q)

θ2 (q)
− 2θ′4 (q)

θ4 (q)

)]
,

� (A.21)
where θ′j (q) ≡ d

dq
θj (q). For further simplification, we use the fact that

θ′3 (q)

θ3 (q)
+

θ′2 (q)

θ2 (q)
− 2θ′4 (q)

θ4 (q)
=

d

dq
ln

(
θ2θ3
θ24

)
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d
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ln

(
k

1
2

k′

)
,� (A.22)
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along with the identity [49]

k
1
2

k′ = 2q
1
4

∞
Π

m=1
(1 + qm)6 ,� (A.23)

in order to obtain that

q

(
θ′3 (q)

θ3 (q)
+

θ′2 (q)

θ2 (q)
− 2θ′4 (q)

θ4 (q)

)
=

1

4
+ 6

∞∑
m=1

mqm

1 + qm
.� (A.24)

To calculate the sum of the remaining series, we use [65]

θ43 (q) = 1 + 8
∞∑

m=1

mqm

1 + (−q)m
,� (A.25)

and also θ4 (q) = θ3 (−q) and θ42 + θ44 = θ43, in order to arrive at

1

24

(
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1

24

(
2θ43 − θ44 − 1
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1

3
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[
2mqm

1 + (−q)m
− m (−q)m

1 + qm

]
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m=1

mqm

1 + qm
.

�

(A.26)

Additionally, we note that the following identity holds [43]:

I (k) =
π

2
θ23 (q) .� (A.27)

We can therefore write

1

4
+ 6

∞∑
m=1

mqm

1 + qm
=

1

4

(
θ43 (q) + θ42 (q)

)
=

I2 (k)

π2

(
1 + k2

)
,� (A.28)

and consequently we obtain for h  >  2 that

(−1)L S(−) →
√
k′

3

[
ln 2− 1

2
ln (k · k′)− I (k) I (k′)

π

(
1 + k2

)]
.� (A.29)
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