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On rainbow antimagic coloring of some special graph
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Abstract. Let G = (V, E) be a connected and simple graphs with vertex set V and edge
set E. A coloring of graph G is rainbow connected if there is a rainbow path that connects
each two vertices of graph G. The minimum k such that G has a rainbow-connected using k
colors of the edges of G is the rainbow connection number r¢(G) of G. A graph with a bijective
mapping f : E — {1,2,...,|E|}. The sums of each paired vertex has distinct value, defined
as Ze ee@w)f(e). Thus, the function of G clearly an antimagic labeling if the sums of each
paired vertex has distinct value. It is clear that rainbow antimagic connection number is the
smallest number of colors which are needed to make G rainbow connected, denoted by rca(G).
A bijection function f : E — {1,2,...,|E|} is called a rainbow antimagic labeling if there is
a rainbow path between every pair of vertices and for each edge e = uv € E(G), the weight
w(e) = f(u) + f(v). A graph G is rainbow antimagic if G has a rainbow antimagic labeling. In
this paper, we will analyze the rainbow antimagic coloring of related book graph.

1. Introduction
We study about the rainbow antimagic coloring. Every graph considered in this paper are
connected and simple graph. Let G = (V, E) be a connected and simple graphs with vertex set
V and edge set E.

Suppose G is a nontrivial connected graph on which an edge coloring ¢ : (E(G) —
{1,2,3,...,s},s € N, where adjacent edges may have the same color. We could say rainbow
path if there are no two edges with the same coloring on the u — v path in G. A coloring of
graph G is rainbow connected if there is a rainbow path that connects each two vertices of graph
G. The minimum k such that G has a rainbow-connected using k colors of the edges of G is the
rainbow connection number which is denoted by rc¢(G) of G. The complete concept of rainbow
connection can see in Chartrand et al [3]. Furthermore, there are further research about rainbow
can be found in Agustin et al [1], Dafik et al [4], Fauziah et al [5], and Hasan et al [7].

There is study in graph about magic labeling. The opponent of magic labeling, it is known as
an antimagic label. Hartsfield and Ringel [6] was proposed the antimagic labeling in graphs with
two conjecture. Then, Jackanich [8] defined it. Furthermore, another studies about antimagic
are as follows [9], [10], [12]. Let G = (V(G),E(G)) be a graph with a bijective mapping
f:+ E — {1,2,...,|E|} so that the sums of each paired vertex has distinct value, which is
the sums of each paired vertex is defined as >°, eg(y)f(e). Thus, the function of G clearly an
antimagic labeling if the sums of each paired vertex has distinct value.
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Figure 1. Triangular Book with 2 rainbow connection

Now, we study the rainbow antimagic coloring in this paper. It is clear that rainbow
antimagic connection number is the smallest number of colors which are needed to make G
rainbow connected, denoted by rcs(G). A bijection function f : E — {1,2,...,|E|} is called
a rainbow antimagic labeling if there is a rainbow path between every pair of vertices and for
each edge e = uv € E(G), the weight w(e) = f(u)+ f(v). A graph G is rainbow antimagic if G
has a rainbow antimagic labeling, then G is rainbow antimagic.

2. Result
In this paper, we determine the rainbow antimagic coloring of book (B,,), triangular book (7'b,,),
and generalized of book.

Theorem 1. Suppose that G is a triangular book graph with n > 2. The rainbow connection

number
2, if2<n<4
"T13, ifn>5

Proof. The proof of this theorem proofed by Alfarisi in [2]

Lemma 2. Suppose that a,b,c;,i = 1,2,...,n with n = poitive integers and a # b # ¢;, Vi.
Wi={a+c¢li=1,2,3,...n}; Wo={b+¢li =1,2,3,...,n}; so, Wy UWs| >n+ 1.

Proof. Suppose |W; UWs| < n, because |W1| = [Wa| = n, so |IW; UWs| = n. it consequent
W1 = Ws, or a 4+ ¢; = b+ ¢, the result is a = b, which is contradiction with a # b Thus,
’W1UW2‘ >n—+ 1.

Theorem 3. Let Tb,, be a triangular book graph with n > 3. The rainbow antimagic connection
number rca(Tb,) =n + 2.

Proof.  Triangular book has vertex set is {x1z2} U {y;,1 < j < n} and the edge set is
{x122} U {yjz1,yj22,1 < j < n}. Cardinality of vertex is |[V/(Th,)| = n + 2 and the cardinality
of edge is |E(Tb,)| = 2n + 1.

Based on Lemma 2, it is clear that the lower bound has been proved. Afterwards, we prove
the upper bound in this graph. Based on definition of antimagic labeling, define a bijective
mapping f: E — {1,2,...,|E|}, we define f(z1) =2; f(z2) =1; f(y;) =j+2,1 <j<n. The
weight (W) of triangular book in Figure 2 are as follows:

w(z1z2) = 3
w(zy) =7+4, f1<j<n
w(zay;) =7+3, f1<j<n

w(e) =

Theorem 4. Suppose that B, with n > 3, clearly rc(B,,) = 4.
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Table 1. Rainbow path antimagic in Triangular Book
Edge Color of Edge
T1X2 3
T1Y1
T1Y2
r1Ys3

N O Ot

T2y; J
T2Y1
r1Y2
r1Ys3

o Ot %.+:

T2y 7+3

Bl 5 3
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Figure 2. Triangular Book with 5 rainbow antimagic coloring

2
Figure 3. Book with 3 rainbow connection

Proof. This theorem has been proofed by Syafrizal in [11].
Lemma 5. Suppose that a;,b;,i = 1,2,...n with n = positive integers and a; # b;, Vi.
Wi ={a+ai=1,2,3,....,n}; Wo={b+b;|i =1,2,3,...,n}; W3 ={a; + b;]i =1,2,3,...,n} so,
’W1UW2UW3| >n+1.

Proof. Suppose |WUWoUW3| < n, because |Wy| = |Wa| = |W3| = n, so [WiUWLUW3| = n.
it consequent Wy = Wy = W3, or a+a; = b+b; = a;+b;, the result is a = b, which is contradiction
with a # b Thus, |W, UWa| > n + 1.

Theorem 6. Suppose that By, with 3 < n < 7. The rainbow antimagic connection number

[ n+2; n=odd
rea(Bn) = { n+1; n=even
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Proof. Book graph has vertex set {ab}U{a;,1 < i < n} U{b;,1 < i < n} and the edge
set is {ab}U{aai, 1 <i <n}U{bb;,1 <i<n}U{ab;,1 <i<n}. The cardinality of vertex is
|V (Bp)| = 2n + 2 and the cardinality of edge is |E(By)| = 3n + 1.

It is easy to see that the lower bound has been proved in lemma 5. Then, we are going to
proof the upper bound. Based on definition of antimagic labeling, define a bijective mapping
f:E—{1,2,...,|E|}, we define the function of = is defined as follows

zv, i=1
f(””i):{ D1 iz

For book graph n = 3, the function of y is defined as follows:

i+ (Zv—-1); i
f(yi):{ i+ 2

i
1—1; i

1
2
n

For book graph n = 4, the function of y is defined as follows:

F(Sv-1); =l
i+ (B 41); =2
1+ 1; i=n-1
1 — 2; i=n

flyi) =

For book graph n = 5, the function of y is defined as follows:

+ (Zv-1); i=1

i + (? +2); =2

flyi) = + (5 -1); i=3
i i=n-1

1 —1; i=n

For book graph n = 6, the function of y is defined as follows:

i+ (Xv—-1) i=1

i + (22 +3);  i=2

Ny — +(5); =3

f(yl) - 7/ + 2’ 1:4
1 —1; i=n-1

1 —4; i=n

For book graph n = 7, the function of y is defined as follows:

i + Zv-1); i=1
(Ev +4)7 1=2
i —|— (ﬁ’ +1); i=3
fa) =1 i+ (2 -2)  i=a
i + 1; i=5
71— 2; i=n-1
71— 9; i=n



ICOPAMBS 2019

IOP Publishing

Journal of Physics: Conference Series

1465(2020) 012030  doi:10.1088/1742-6596/1465/1/012030

For book graph n = 4, the function of z is defined as follows:

1;

1+ 1;
V42
Yv—1;

f(zi) =

i=1
i=2
i=n-1
i=n

For book graph n = 5, the function of z is defined as follows:

L
1+ 1;
f(zi) = ?— ;
5 +3;
Y —1;

For book graph n = 6, the function of z is defined as follows:

1; i=1

v+ 1; i=2

v :

=0 — 2 1=3
J(zi) = g” +2; i=4

2 4+4;  i=n-1

Yv—1; i=n

For book graph n = 7, the function of z is defined as follows:

1; i=1
1+ 1 i=2
% —-3; i=3
fe)=q -1 =t
2L +3;  i=b
% +5; i=n-1
Yv—1; i=n

We define the weight (w) of book in Figure 4 that for book graph n = 3, the weight is defined
as follows:

w(e) :Zv-i-l{ €T e
€ =VYizi

_ 3 e =11y

w(e) = 521} { e = 1oz,

w(e) =Xv+2; e=x1y2
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We define the weight (w) of book in Figure 4 that for book graph n = 4, the weight is defined
as follows:

wle) =Zo1{ 20
€= Wiz

3 =
N
2 e = Tz

w(e) ZZU+3{ €T
(& Ioz3

v e=T1y3
w(e) = 2+4{ e = w29

v e = T1Yn
w(@)—2+2{e:$221
We define the weight (w) of book in Figure 4 that for book graph n = 5, the weight is defined

as follows:

e =T1T2

w(e):Ev—f—l{
€ =Yizi

_3 e =Ty
w(e) = 521} { e = 1oz,

o) =30 4] 2T
e = T924

w(e) =Xv+2; e=x1y3
w(e) = Xv; e=xoz3

b)) =
)= 20 4] e
2 e = T229

_ 2w e=T1Yn
w(e)—7 2{ e =221

We define the weight (w) of book in Figure 4 that for book graph n = 6, the weight is defined
as follows:

B

€= VYizi
3 e =11y
w(e) = 521} { ¢ = oz

w(e) :Ev+5{ cT e
€ = TI225

w(6)22v+3{ €= s
€ = T224
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; S, s
Figure 4. Book graph n = 3 with 5 rainbow antimagic coloring

w(e) = so-1 { £
€ = I2%23

v e = T1Ys
w(e)_2+4{ € = Ty

_ v e=I1Yn
w(e)—7 2{ ¢ = 1921

We define the weight (w) of book in Figure 4 that for book graph n = 7, the weight is defined
as follows:

w(e):Ev—i-l{ €T e

€ =Yz
3 e =1y
w(e) = 521} { e = 1oz,

w(e):Ev—i-G{ €T b
€ = TI2%¢

w(e):Ev+4{ e M

€ = TI225

w(e) =Xv+2; e=x1y

w(e) = Yv; e=xg24
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Figure 5. Generalized Book Graph with 6 rainbow antimagic coloring

Lemma 7. Suppose that a,b,z;1,%;2,7;3,¢ = 1,2,....n with n = poitive integers and a #
b 7é xi’1 7é a;i,g 7é 33@3, V3. W1 = {a—i—a:i,l]i = 1,2,3,...,n}; WQ = {.%'M —i—mm]i = 1,2,3,...,n};
Wy = {xi’2+$i73”i =1,2,3, ...,n}; Wy = {b+$i73”i =1,2,3, ...,n}; so, |W1UW2UW3UW4‘ > n+1.

Proof. Suppose |Wy U Wy U W3 U Wy| < n, because |W;| = |[Wa| = |W3| = |Wy| = n, so
|W1UWs| = n. It consequent Wy = Wy = W3 = Wy, or a+x1 = i1 +xi2 = Ti2+2;3 = b+, 3,
the result is @ = b, which is contradiction with a # b Thus, |[IW; U Wy U W3 U Wy| > n + 1.

Theorem 8. Suppose that G be a generalized of book graph with n > 3. The rainbow antimagic
connection number rca(G) =n + 5.

Proof. The graph has vertex set {zy}U{z,1,1 < a < n}U{zq2,1 <a <n}U{z,3,1<
a < n} and the edge set is {zy}U{zz,1,1 < a < n}U{yzes,1 <a<n}U{z,12.2,1 <a<
n}U{zq2%q3,1 < a <n}. The cardinality of vertex is |V(G)| =3n+2 and |E(G)| =4n+1is
cardinality of edge.

In Lemma 7, it is clear that the lower bound has been proofed. Afterwards, we are going to
prove the upper bound. Based on definition of antimagic labeling, define a bijective mapping
[+ E — {1,2,..,|E|}, we define f(z) = 2; f(y) = 1; f(ze1) =3n+3—a,1 < a < n;
f(xa2) =a+2,1<a<mn; f(ze3) =a+5,1<a<n. The weight (W) of this graph in Figure
5 that.

w(zy) =

w(mmal)—3n+5—a ifl1<a<mn
w(e) =< w(yzes) =a+6, ifl1<a<n

w(Za1Ta,2) = 30+ 5, ifl1<a<n

w(Ta2Ta3) =2a+7, ifl<a<n

3. Conclusion
We have obtained the exact value of rainbow antimagic of triangular book graph (7'b,), book
graph (B,,), and generalized of book graph.

Open Problem 1. Let G be a special graph, determine the rainbow antimagic coloring of G.
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