
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

1

 A Side-Channel Attack Resistive ECDSA

A.Samir Abo-Taleb
1
, M. Shalaby

2
, M. Nabil

3
and Salwa Elramly

1

1
Ain Shams University, Egypt

2
Egyptian Armed Forces, Arab Academy for Science Technology and Maritime

Transport, Egypt
3
Armed Forces Research and Development Center, Egypt

10271@eng.asu.edu.eg, myousef73@hotmail.com, m_nabil1974@yahoo.com and

salwahelramly@gmail.com

Abstract. Elliptic curve plays an important role in securing critical software applications as it

is one of the most powerful and widely utilized encryption algorithms. It is used in many

applications such as digital signature schemes. Elliptic curve algorithms are hard to break,

however, attackers find another indirect and more efficient methods to estimate secret

information behind any secured systems with the help of information leakages so that they can

successfully reconstruct critical objects like private keys. These methods are called side-

channel attacks. In this paper we propose a software implementation of ECDSA which can

counteract cache memory side-channel attack using three techniques, namely, “Fisher Yates”

algorithm, volatile memory objects, and thread locking.

Keywords: Elliptic curve cryptography, Digital Signatures, Side-Channel Attack

1. Introduction

Elliptic curves are used as an extension to other cryptosystems such as elliptic curve Diffie-Hellman

key exchange (ECDH) which is a key agreement, pseudo-random generators and, elliptic curve digital

signature algorithm (ECDSA). The advantage of ECC is it requires a smaller keys compared with

other cryptographic algorithms to provide equivalent security [1][2]. Because of increasing usage of

online authentications, digital signatures are developed to represent (in real-world) human being in his

absence. There are many applications rely on digital signatures such as signing and message

authentication [3]. Banking transactions are one of the most important processes that can take place

between two parties far from each other and hence authentication is required. In this paper we present

a secured authentication method based on ECDSA that can resist cache memory side-channel attacks.

2. Elliptic curve overview

In this section we present an overview of elliptic curve and some topics that are related to it.

2.1. Elliptic curve cryptography

Elliptic curve cryptography (ECC) is a public key encryption algorithm that can provide asymmetric

cryptographic keys. ECC generates keys based on the properties of the elliptic curve equation and its

input parameters including the selected prime fields, GF(p), which can yield a level of security with a

smaller key compared with other systems that require a bigger one to achieve the same level of

security. Furthermore, ECC establishes security with less computing power and battery resource usage

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

2

than its counterparts, and hence it is widely used for mobile applications [4]. EC was defined by Neal

Koblitz and Victor Miller over Z_P, where Z_P= {0, 1,…,p-1}, as the set of points (x, y) including an

imaginary point O which satisfy equations (1) and (2) [5].

𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑(𝑝) (1)

4𝑎3 + 27𝑏2 ≠ 0 𝑚𝑜𝑑(𝑝) (2)

2.2. EC mathematics

EC mathematics are based on finite fields and modular arithmetic which make the operation easy to

calculate and hard to reverse. There are many methods to generate points on elliptic curve [6][7].

Given two points on elliptic curve P and Q, there are two mathematical group operations, first one is

point adding R = P + Q where P ≠ Q and the second is point doubling R = P + P = 2P. The calculated

point R yield to the following:

𝑥3 = 𝑠2 − 𝑥1 − 𝑥2 𝑚𝑜𝑑 𝑝 (3)

𝑦3 = 𝑠(𝑥1 − 𝑥3) − 𝑦1 𝑚𝑜𝑑 𝑝 (4)

Where the calculation of 𝑠 depends on the type of operation as follows:

1. For point addition:

𝑠 =
𝑦2−𝑦1

𝑥2−𝑥1
 𝑚𝑜𝑑 𝑝 (5)

2. For point doubling:

𝑠 =
3𝑥1

2

2𝑦1
 𝑚𝑜𝑑 𝑝 (6)

2.3. Discrete logarithm problem

The EC is based on the hardness of a discrete logarithm problem (ECDLP) [5] to generate the public

point. Given an elliptic curve E defined over a finite field 𝐹𝑝 with order n and public point P = dG

where d is the private key and G is the curve base point, it's very hard to calculate d from P & G since

we deal with very big integers. One way to do so is to perform brute force attack that scans all

generated points from the base point G and compares the results with the public key P. This operation

takes many years and it depends on the key length and the number of instructions executed per second

(IPS). ECDLP can be solved for small curve parameters so NIST defined some domain parameters

which are standard and recommended to work with [8].

2.4. Elliptic curve digital signature algorithm (ECDSA)

In 1998, ECDSA was standardized by the American National Standards Institute (ANSI) in US. The

ECDSA is defined for EC over prime fields 𝑍𝑝 and Galois fields GF(2𝑚). The signature of a message

x is created by the following steps:

1. Choose a random integer d that represents the private key in which 0 < d < q where q is the

curve order.

2. Calculate P = dG where P:is the curve public point, G: is the curve base point.

3. Set the generated point x-coordinate to a variable denoted by r and if it was equal to zero, one

has to choose another private key.

4. Calculate 𝑆 ≡ [ℎ(𝑥) + 𝑑. 𝑟]𝑑−1 𝑚𝑜𝑑 𝑞.

5. The generated signature for the message is (r, s).

The signed message along with its signature is sent to the recipient and the verification process is

conducted as shown in the following steps:

1. Calculate 𝑊 ≡ 𝑠−1 𝑚𝑜𝑑 𝑞.

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

3

2. Perform hashing to the message content with the same hash algorithm used in signing it, then

convert the hash value from hexadecimal form to integer.

3. Calculate 𝑈1 ≡ 𝑊. ℎ(𝑥) 𝑚𝑜𝑑 𝑞 .

4. Calculate 𝑈2 ≡ 𝑊. 𝑟 𝑚𝑜𝑑 𝑞 .

5. Calculate 𝑃 = 𝑈1𝐴 + 𝑈2𝐵.

6. Integrity check:

If 𝑋𝑃 ≡ 𝑟 𝑚𝑜𝑑 𝑞 then, the signature is valid. Otherwise, signature is not valid.

3. The Related work

There are many researches that implement digital sinature using elliptic curve. In [9], the authors

proposed an implementation of ECDSA using P-192 elliptic curve. They provided a multi-server

authentication scheme that has a low cost for both computation and communication. In [10], the

authers studied different set of elliptic curves, and presented a performance and security analysis of

using these sets in cryptography.

However, [9, 10] did not address the attacks that might exploit the cache memory side-channel

attack (SCA) or man-in-the-middle attack (MITM) to inspect the transferred packets and then analyze

them to gain illegal access to personal computers.

4. The proposed work

In this section we propose our work as follows:

1. Random private key generation.

2. Performing a mitigation technique against SCA while signing a document.

3. Use case implementation.

4.1. Random private key generation

Here, we randomly generate private keys using "fisher-yates" algorithm which is used to shuffle array

elements regardless its length. For example, if we want to generate a random integer number that

consists of two digits then, we have to create two arrays with length 10 each (figure 1). Each array

holds elements with value range from 0 to 9. These primitive elements can create any number by

appending another array that contains shuffled elements. The output is an integer value of 2 digits

including zero element. The proposed generation function takes the curve order as a parameter in

which 0 < d < n where d is the generated private key and n is the curve order.

Figure 2 illustrates the random generation technique of private key that yield to the selected elliptic

curve prime field parameters. The array that is responsible for most significant digit creation, is

contains only 9 elements instead of 10 elements. This is why that the most left digits can't be 0. After

shuffled each array elements we have 9 distinct private keys then we choose a random number from 1

to 9 to select the random private key from the set. The generation technique is then, a random of

random choices.

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

4

Figure 1. Integer number construction

Figure 2. Random private key generation

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

5

4.2. Performing a mitigation technique against SCA while signing a document

Assume that we have an elliptic curve 𝐸1 of order 19, where 𝐸1 = 𝑥3 + 2𝑥 + 2 𝑚𝑜𝑑 17. The points

generated from the base point G = (5,1) are shown in table 1.

Table 1. All EC points including the neutral point

1P (5,1) 11P (13,10)

2P (6,3) 12P (0,11)

3P (10,6) 13P (16,4)

4P (3,1) 14P (9,1)

5P (9,16) 15P (3,16)

6P (16,13) 16P (10,11)

7P (0,6) 17P (6,14)

8P (13,7) 18P (5,16)

9P (7,6)
19P (infinity)

10P (7,11)

We can get 5P using two different ways.

1. Add G = (5, 1) to itself 5 times.

2. Convert 5 to binary form which is "0101" then we observe the next bit to the right of MSB

and continue to reach the last bit (LSB). Finally apply the mathematical operation according

to table 2.

Table 2. Mathematics representation in binary

0 1

Double Only Double and Add

Table 3. Mathematical operation associated with each bit

Binary input (5) Steps Calculations # of steps

0 negligible - -

1
We observe next bit to the

right
- -

0 Double only 2P 1

1 Double and Add 2(2P)+P 2

Total no. of steps = 3 steps

Method (2) has fewer steps than method (1), and hence it is strongly considered when we deal with

massive numbers. When the number 5 is converted into binary form the 0s and 1s can reveal the

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

6

mathematical operations to get the final point. By concatenation of those bits, one can construct the

private key by appending 0s & 1s and convert them back to large decimal value. In figure 3, we

propose a new method in the light of side-channel attack countermeasure to perform signing

operations using an alternative technique but without changing the math behind elliptic curve

algorithms (addition and multiplication). The private key is randomly generated with respect to curve

order. We specify the number of digits allowed to form a large decimal number (private key, PK)

which satisfies the following:

0 < 𝑃𝐾 < ℎ where h is the curve order.

Assume that we choose 5 digits. The software is then starting to shuffle one dimensional array of

length 10 (from 0 to 9) 5 times and each time we have the next 10 different bits for 10 different private

keys. For example, in the first iteration (i = 0), the MSBs for all private keys are created. In the last

iteration index (i = 4), the LSBs for all private keys are created. Finally, we have 10 different private

keys, each of them is 5 digits. The "fisher-yates" algorithm starts to choose random key from the set.

The private key representation with 0s and 1s is defined by a random truth table as the system chooses

whether the (Double only) and (Double & Add) are presented as "0" and "1", respectively or vice

versa. This can be done by performing random complementary to bits many random times and the

final results judge the bit representation (bit "1" may represent [Double only] or may represent

[Double & Add]).

The idea behind this work is changing the truth table that represents which mathematical operation

to perform. The attacker may append millions of bits as a side-channel attack, and then construct the

private key however he/she does not know which operation "1" represents in this instance (Double

only or Double & Add). The choice of double operation and double & add operation depends on

random choice at runtime and hence this technique can countermeasure side-channel attack. Random

binary complementary is used to randomly change the bitwise representation. "0" may represent

"Double only" in an instance and in another instance may represent "Double and Add".

The single operation of doubling a point has approximately the same execution time as a single

operation of adding a point. The "Double and Add" for a single point processing take delay time as

"Double only", "Double and Add" combined. Table 4 illustrates the execution time of mathematical

operations on point.

The only way to distinguish such current operation is to know two parameters:

1. Current bit wise representation ("0" represents "Double Only", "1" represents "Double and

Add").

2. Bit wise itself.

Table 4. Average time for different mathematical operations

Mathematical operation on point Average execution time (ms)

Doubling 0.0403654315349213

Adding 0.0405499200749979

Double and Add 0.0843728591517129

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

7

The current bitwise representation is handled randomly by side channel countermeasure (SCC)

model shown in figure 3. The private key is stored in binary format. If we have a PK = 5, it is stored in

memory as 0101. The private key then can be constructed by sequences of ("Double only" + "Double

and Add") respectively. Attackers may use one of the following two pieces of information to construct

the PK:

1. integer binary representation.

2. execution time delay ("Double and Add" take more time than "Double only").

We overcome the first attack by SCC model, and we overcome the second attack as follows:

1. The randomly generated private key in string format is converted into a sequence of binary

characters.

2. each character has a random mathematical representation which is equivalent to the original

conventional PK.

3. We perform segmentation on string sequences for scaler multiplications.

4. The execution time delay may be equivalent to 0110 or 1001 or for the rest of its

permutations as we don’t use any integer representations.

Figure 3. Secured generation of public key

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

8

By preventing PK of being stored in cache memory in either decimal or binary representation, the

attacker cannot identify whether the current operation is point addition or point doubling. This will

confuse the attacker as "Double and Add" operation may be thought as "Double and Double" or "Add

and Add" because they have same execution time and PK has not any integer representation in cache

memory. Also, the changes in the critical object cannot be monitored because it is stored as a volatile

object [11, 12]. Moreover, we prevent the attacker from manipulating or even accessing the critical

object address by applying thread lock to make the main thread exclusively access such memory

address and after finishing all processes, we set the critical object value to null to be handled by the

automated garbage collector then release the thread lock afterwards.

4.3. Use case implementation

Assume that Bob wants to transfer an amount of money to Alice. Bob has an account in Bank(A)

which holds his personal information such as name, secret key and his biometric. Bob wants to

transfer money to Alice so, he asks Alice about her account number which is represented by her finger

print biometric. Bob has to send a message to his bank informing it to transfer money to Alice. He has

to use a secured application which counteract SCA and perform the following steps:

1. Write the message including amount of money to transfer.

2. Take Alice account number (biometric).

3. Send the message with its signature to his bank.

The message is divided into segments of characters. Let the message Bob wants to send be

"Transfer 1000$". The critical object in memory that hold the message is denoted by D and equal to

{'T', 'r', 'a', 'n', 's', 'f', 'e', 'r', ' ', '1', '0', '0', '0', '$'}. Alice's biometric data is converted into hexadecimal

form which is A= {'0xA', '0x3', '0x2', '0x2', '0x1', '0x3', '0xF', '0xB', '0x1', '0x3'}. The application

performs mixing A and D based on Bob secret key (SK) which is stored safely in bank's database, for

example SK= 14265. SK is converted into binary (S), so S = {'1', '1', '0', '1', '1', '1', '1', '0', '1', '1', '1', '0',

'0', '1'}. The application scans Bob secret key in binary format (S) from MSB to LSB. Let M be an

empty string, if the current bit is '1', then concatenate the first character from the message (‘T’) and the

first hexadecimal digit of Alice biometric to M. If the current bit is '0', append the current message

character to M, and so on. Therefore, the output is {'TAr3an2s2f1e3r F1B0100$3}. The expiration

date might be added in the format {"dd":"mm":"yy"} to M. Then we convert M into a hash digest

using SHA3-512bit hash algorithm. Finally, the hash digest is encrypted using ECDSA which we

discussed earlier in section 2.4. The digital signature of the message content is "invalid" unless the

bank has Bob SK and the receiving date of the sent message so the bank can authenticate the message

properly.

5. Experimental results

We apply the proposed work to sign a document using different EC parameters. The proposed work

has been implemented using Microsoft Visual C# Compiler version 4.6.1586.0, and personal computer

with the following specs:

1. Processor: Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

2. RAM: 16.0 GB.

Table 5 and table 6 illustrates the performance Analysis using different elliptic curves which are

standard and recommended by NIST [8] without the countermeasure technique and with

countermeasure technique respectively.

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

9

Table 5. Performance analysis using standard elliptic curves without

SCC

Recommended

EC by NIST

Selected

PK

of PK

digits

Without SCC

Public key avg.

calculation

time (ms)

Signing Avg.

calculation

Time (ms)

Verifying Avg.

calculation Time

(ms)

secp192r1
Pk = n 58 15.58942214 Not applicable for PK = curve order n

random 54 12.33396952 12.7450389 28.0736595

secp224r1
Pk = n 68 22.30538886 Not applicable for PK = curve order n

random 64 18.29680023 18.6045201 38.0255423

secp256r1
Pk = n 78 28.15783606 Not applicable for PK = curve order n

random 74 23.17655532 23.7189029 53.3353985

secp384r1
Pk = n 116 73.43531671 Not applicable for PK = curve order n

random 112 59.83796577 61.5190690 128.077664

secp521r1
Pk = n 157 143.0427442 Not applicable for PK = curve order n

random 153 122.3799083 123.993550 249.852664

Table 6. Performance analysis using standard EC with SCC

Recommended

EC by NIST

Selected

PK

of PK

digits

Without SCC

Public key avg.

calculation

time (ms)

Signing Avg.

calculation

Time (ms)

Verifying Avg.

calculation Time

(ms)

secp192r1
Pk = n 58 15.68294931 Not applicable for PK = curve order n

random 54 12.62165712 12.8436590 12.8436590

secp224r1
Pk = n 68 22.60133937 Not applicable for PK = curve order n

random 64 18.49350565 18.9132195 18.9132195

secp256r1
Pk = n 78 28.38364508 Not applicable for PK = curve order n

random 74 23.44312591 24.2913875 24.2913875

secp384r1
Pk = n 116 74.06295258 Not applicable for PK = curve order n

random 112 60.49855714 63.2077771 63.2077771

secp521r1
Pk = n 157 145.8600671 Not applicable for PK = curve order n

random 153 123.0986465 124.897239 124.897239

Table 7 shows the time consumed to generate random private keys with respect to elliptic curve

standards.

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

10

Table 7. PK average calculation time with different curves

Recommended EC by NIST
Random PK generation Avg.

calculation Time (ms)

secp192r1 0.0599556987660316

secp224r1 0.071962462937078

secp256r1 0.0844619972092386

secp384r1 0.115521537058114

secp521r1 0.167619956467968

Using Intel VTune Amplifier 2019, we measured the cache memory bound and last level cache

(LLC) miss count for the critical objects used for generating the random private key and for the object

that holds PK binary string representation during the processes of public key generation, signing and

verification. These results are illustrated in table 8.

Table 8. Volatile objects, no. of locks, memory bound and LLC miss

count for different processes

No. of volatile

objects

No. of

locks

Memory

bound
LLC miss count

Random

PK

generation

1 1 0.9% 160,000

0 0 45.6% 0

Public

Key

generation

1 1 18.5% 40,000

0 0 31.2% 0

Signing

1 1 11.2% 80,000

0 0 25.8% 0

Finally we Comparing our results to the related works in [9] and [10] with different types of elliptic

curve domain parameters over a prime field 𝐹𝑃 which is recommended by National Institute of

Standards and Technology (NIST) [8].

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

11

Table 9. Comparison between related work in [9, 10] and proposed work.

Related work [9]

Type of curve P-192 P-224 P-256 P-384 P-521

Sign generation (ms) 47 79 110 251 542

Sign Verification

(ms)
516 689 876 2123 4454

Proposed work

Type of curve P-192 P-224 P-256 P-384 P-521

Sign generation (ms) 12.843 18.913 24.291 63.207 12.843

Sign Verification

(ms)
28.77 39.417 51.69 131.07 28.77

Related work [10]

Type of curve P-192 P-224 P-256 P-384 P-521

Sign generation N/A
5.27

(μs)

10.03

(μs)

5.77

(μs)
N/A

Sign Verification

(ms)
N/A 26.6 29.9 44.7 N/A

Proposed work

Type of curve P-192 P-224 P-256 P-384 P-521

Sign generation N/A 18.913 (ms) 24.291 (ms) 63.207 (ms) N/A

Sign Verification

(ms)
N/A 39.417 51.69 131.07 N/A

6. Conclusion

In this work, we propose a method for creating secure digital signature that can countermeasure cache

memory side-channel attacks. To achieve our goal, we use three techniques, first, we use “Fisher

Yates” algorithm to randomly generate 10 private keys then randomly select one of them. Second, we

use volatile memory objects to hold critical data and hence it is unlikely for attackers to get access to

them. Third, we use thread locking so that only one thread (the administrator thread) can access the

volatile objects while they are processed in cache memory, again this prevents attacker from accessing

these critical objects. We analyze the performance of our proposed method using different parameters

(the elliptic curve order and the number of private key digits) before and after applying SCC. Also, we

make a comparative study between our proposed method and the related work against different elliptic

curve domain parameters.

References

[1] D. Kleidermacher and M. Kleidermacher, Embedded Systems Security: Practical Methods for

Safe and Secure Software and Systems Development. Elsevier Science, 2012.

[2] A. J. Menezes, Elliptic Curve Public Key Cryptosystems. Springer US, 2012.

2019 International Conference on Advanced Information Systems and Engineering

Journal of Physics: Conference Series 1454 (2020) 012003

IOP Publishing

doi:10.1088/1742-6596/1454/1/012003

12

[3] H. Jahankhani, K. Revett, and D. Palmer-Brown, Global E-Security: 4th International

Conference, ICGeS 2008, London, UK, June 23-25, 2008, Proceedings. Springer Berlin

Heidelberg, 2008.

[4] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Second Edition. CRC

Press, 2008.

[5] D. Hankerson, Guide to Elliptic Curve Cryptography. 2006.

[6] G. Wang, I. Ray, D. Feng, and M. Rajarajan, Cyberspace Safety and Security: 5th International

Symposium, CSS 2013, Zhangjiajie, China, November 13-15, 2013, Proceedings. Springer

International Publishing, 2013.

[7] D. Husemoller, Elliptic Curves. Springer New York, 2013.

[8] N. Telephone, T. Corporation, T. Kobayashi, A. Nagai, and W. Draft, “STANDARS FOR

EFFICIENT CRYPTOGRAPHY SEC X . 2 : Recommended Elliptic Curve Domain

Parameters,” vol. 2, no. Sec 2, 2008.

[9] S. Manickam and D. Kesavaraja, “Secure multi server authentication system using elliptic curve

digital signature,” Proc. IEEE Int. Conf. Circuit, Power Comput. Technol. ICCPCT 2016, pp.

0–3, 2016.

[10] J. R. Shaikh, M. Nenova, G. Iliev, and Z. Valkova-Jarvis, “Analysis of standard elliptic curves

for the implementation of elliptic curve cryptography in resource-constrained E-commerce

applications,” 2017 IEEE Int. Conf. Microwaves, Antennas, Commun. Electron. Syst.

COMCAS 2017, vol. 2017–Novem, pp. 1–4, 2018.

[11] R. C. Seacord, The CERT®C Coding Standard, Second Edition: 98 Rules for Developing Safe,

Reliable, and Secure Systems. Pearson Education, 2014.

[12] G. R. Gao, D. Qian, X. Gao, B. Chapman, and W. Chen, Network and Parallel Computing: 13th

IFIP WG 10.3 International Conference, NPC 2016, Xi’an, China, October 28-29, 2016,

Proceedings. Springer International Publishing, 2016.

