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ABSTRACT. Uninterrupted power supply to electric power consumers has increasingly 

become a global necessity. Monitoring the health of distribution network is crucial to provide 

quality service. Traditional monitoring methods based on on-site patrols to detect faults have 

increasingly become labor-intensive and time-consuming, raising demand for new and more 

efficient techniques. To address this issue, we propose faster-RCNN by MXNet for both 

detection and classification tasks.  We utilize convolutional neural network (CNN) for 

detecting and classifying both insulator components and faulty insulator discs from images 

captured on overhead electric power transmission systems. Using a dataset of images acquired 

through UAV (unmanned aerial vehicle) captures, detection and classification is dealt with by 

dividing the picture content of the training set into three classes: background, insulator and the 

defective part of insulator. We achieve target insulator recognition and positioning with 

impressive precision compared to other traditional technologies. Our work could have practical 

integrated implementation solutions for automated inspection of overhead transmission power 

line insulators. The code used can be found at https://github.com/QgZhan/Insulator-Defect-

Detection. 
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1. Introduction 

Power systems strive to ensure high availability and undisrupted flow of Power. However, adverse 

conditions on power distribution lines occur which could result in outage times and also present 

hazardous conditions to humans and the environment. Moreover, prolonged changes in climatic 

conditions, exceeding a certain voltage capacity, vandalism and “spontaneous shattering” [1] of 

toughened glass shell can reduce the strength of the insulators which could possibly cause of an outage. 

Other types of insulator defect possibilities are cited in [1]. One major goal of electric utilities is to 

drop maintenance costs by adopting appropriate inspection strategy to pinpoint, follow-up and to 

repair any significant failures at the earliest possible stage [2] Computer vision technology can be 

utilized to process and extract insulators from the video/image [3] and also to pinpoint defects [4] on 

the insulators. Images of the insulators taken from the power distribution lines using high quality video 

cameras, at regular time intervals can be sent to the control room using remote terminal units (RTUs) 

[5] or UAVs [6] for further processing. This work aims at extracting by localizing and detecting the 
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insulator component of input images, and classifying insulator units (as normal or defective) from 

captured images of UAV photographs utilizing faster R-CNN technique. Most existing work have 

focused on hand crafted feature extraction methods [7] [8] [9]which are influenced by lots of factors. 

These factors finally result in poor generalization. 

The main contribution of our work is the application of relatively new technology of deep learning 

by utilizing CNN to (i) recognize power tower insulators from UAV images (ii) to detect outliers of 

insulator units on power towers, which to the best of our knowledge has not been extensively explored 

in the field of object detection. We also note that most previous efforts have focused on only either 

both insulator location and classification alone or on only fault detection on insulator component. 

The rest of the paper is organized as follows; we present some research trend analysis in section 2, 

then the Faster R-CNN training framework, architecture used, followed by relevant training 

procedures by describing feature extraction and image processing, detection and classification 

essentials in section 3. Next, we present some details of our experiment, classification framework and 

the detection procedure of our study. We present results and evaluation of this study in section 4. We 

conclude our work and present scope for future research in the last section. 

2. Related work 

Due to their ability to learn discriminative features from raw data inputs (e.g., image pixels), CNNs 

have recently gained impressive performance in a number of visual recognition systems  [10]; notably 

in classification [11] and detection [12] Object recognition pipelines have typically involved feature 

extraction, object detection, localization and classification stages. Traditional insulator detection 

methods employed hand engineered feature extraction on images as an initial pre- processing step [10]. 

Recent developments have explored image processing techniques followed by machine learning as 

a feasible option for real time detection implementations. Pattern Histogram Fourier features (LBP-HF) 

[7]is a rotation invariant image descriptor computed from discrete Fourier transforms of local binary 

pattern (LBP) histograms where Insulators are extracted from captured images using k-means 

clustering, SVM  is used as the classifier. A rotation invariant insulator detection approach is 

introduced in [8] where sliding window based local directional pattern (LDP) feature is extracted from 

the image and SVM is used for classing each of those sliding windows. Most of these hand-crafted 

local features including LBP [7] HOG [9] deformable part models (DPM) [9] etc. are very powerful, 

they can hardly capture any information other than what have been defined by prior knowledge [13]. 

Traditional approaches have primarily addressed feature extraction problem by using a single type 

of feature such as color feature, texture feature, or shape feature. Guoxiong et al [14] argues that a 

single type of feature usually leads to poor classification rates and missed detection in identifying 

insulators. Fault detection algorithm that exploits an adaptive learning scheme by combining color and 

the gradient features to locate the insulator, is presented in [15]. 

Insulator detection and localization using a sliding window scheme with the aid of Non Maximum 

Suppression (NMS) algorithm and line fitting method is studied in [16] The methodology effectively 

localizes the insulator with a better precision compared to other traditional methods in [9] [17]. 

However, this study is limited to only insulator detection and not fault detection. More traditional 

insulator recognition pipelines compute hand-engineered features depend on color features and other 

geometric features. These methods would be influenced by lots of factors including illumination and 

background in result, getting poor generalization ability [16]. 

Propelled by GPU implementations which efficiently perform massive parallel computations 

required for learning and inference in large CNNs, these networks have become the most accurate 

method for generic object classification [8]. Our work is inspired by the R-CNN method in [18] which 

effectively extracts features from a deep CNN in a region proposal framework to achieve remarkable 

object detection results on the PASCAL VOC dataset. What differs from [18] is that our 

implementation uses apache MXNet framework [19]. Secondly, we use a different (private) dataset of 

UAV captured images of insulators. We also modify the programming code to better fit our model. 
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We note that this paper does not focus on well-being analysis that provides a means to perceive the 

state of health of an insulator whether it is in a good condition or in a state of risk of damage [4] [20] 

[21] [22] [23]. We therefore define fault (or disc defect) as a missing insulator unit rather than as any 

other abnormal condition of the insulator which results in a reduced performance, or produces 

disruption or failure in power transmission. 

3. Framework of architecture 

The faster RCNN used in this work is based on original Faster RCNN as described in [18]. The faster 

RCNN detection system is composed of four modules. The first module, the base network is a deep 

CNN that generates feature map of input image by using ReLU and max pooling. In the second 

module, a region proposal network (RPN) generates region proposals. Region of Interest pooling (RoI 

pooling) uses feature maps and proposals to generate proposal feature maps in the third module.  

 

Figure 1. Unified Faster R-CNN end-to-end training architecture 

Lastly, the generated proposal features are forwarded to two separate fully connected layers and a 

softmax classifier that classifies them into the respective classes. Moreover, bounding box regression 

is used to regulate the position of predicted bounding box according to the predicted class. The entire 

framework embodies a single, unified network for object detection (Figure 1). In the next subsections 

we describe our dataset, then we discuss detailed role played by each module within the entire 

architecture. 

3.1.  Dataset 

1600 images are collected using UAV equipped with G15 Canon camera in various environments that 

include forests, shrubby vegetation, mountainous terrain, etc. The sample data contains images 

captured from different distances, angles and different gradients of illuminated backgrounds, as well 

as different weather conditions suitable for data collection. Our dataset also contains large images with 

high resolution (5,472 X 3,648 pixels). High resolution images with large surface area situating small 

insulator(s) and defective disc(s) as targets for detection also add some difficulties for object detection 

accuracy. 

In the experiments, we divide the sample into two parts: the training set that contains 1500 samples 

is the insulator, 300 of them contained defective insulators. The test dataset of 100 containing 50 

defective insulators. The original image sizes were narrowed down to 1400*800 to enhance the 

efficiency of feature learning [8] and also to facilitate the training process. 

3.2. Faster R-CNN training 

The original work in [18] discusses the three different approaches by which Faster R-CNN can be 

trained. Our work implements the joint training approach because experiments in [18] proved that 

doing end-to-end, merged training is faster and leads to better results. The training set is denoted as X 
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supervised learning representation learns a mapping function Y = F(X|θ) or the posterior distribution 

P(Y|X). 

3.3. Classification framework 

In the final stage proposals are classified for each output box by utilizing softmax with a category 

label of a non-defective or defective insulator. Each of the different object proposals is forward pass 

through two fully connected layers. This stage also implements a better adjustment of the proposed 

bounding box using bounding box regression for a predicted class. We define the combined training 

set loss for the network as:  

 

*

,

1
ˆ ˆ( , ) ( ) ( , ).i i cls i reg i i

i icls reg

L p t L p y yL t t
N N


                                                 (1) 

where i represents the index of an anchor, pi the predicted probability of i, 
ŷ

 the ground-truth label 

and. ti the vector representing the coordinates of the predicted bounding box, ti* the ground-truth box 

associated with a positive anchor and  the balancing parameter. Lcls is log loss over the two classes 

(defective or non-defective) and Lreg the regression loss. In this work we use 
*( , )reg i iL t t

= R(ti – ti*) 

where R is the robust loss function (smooth L1) defined in [24]. Lreg and Lcls are normalized by the 

mini-batch size Ncls (256) and by the number of anchor location Nreg (~2400). For bounding box 

regression, we adopt the parameterizations of the four coordinates following [25]. 

3.4. Detection procedure 

1) RPN Proposals: During detection, the RPN component serves as the „attention‟ of the unified 

network [18] and instructs the detection module (Fast R-CNN) [24] where to look. RPN predicts the 

possibility that an anchor is a background or foreground (object). It simply produces proposals or 

boxes that will be eventually examined by a classifier and regressor in the detection module to confirm 

the occurrence of objects. We implement a 3 X 3 sliding window scheme to predict a set of dense 

candidate regions or “proposals” of varying sizes; three scales (8, 16, 32) and three aspect ratios (1:1, 

1:2, 2:1). This is attended to by the Fast R-CNN detector which eventually refines the proposals by 

applying regression coefficients generated by the RPN to ultimately improve detection accuracy. 

RPN first takes feature inputs generated from the "conv5" layer of the deep CNN (VGG-16). It 

slides 3 X 3 filters over the feature maps to make class-agnostic region proposals using VGG network. 

We note that RPN stage of Faster R-CNN model is a two-stage process comprising class-agnostic 

proposals and class-specific detections. We set the top N proposals during training to 12,000 and 

reduce it to 2000. During testing, we set the top N proposals to 6000 and eventually reduce it to 300. 

The output for the first stage of RPN proposals is multiple candidate boxes of different sizes, 

generated around insulator ground truth box (Figure 2a). Generally, Non-maxima suppression (NMS) 

is used to suppress bounding boxes that have a significant overlap with each other. The version of 

NMS we use does not merge ROIs but rather tries to identify which ROIs best cover the actual 

locations of an object, then we discard by manually deleting all other ROIs. 

We do this by selecting bounding box proposals with highest foreground scores to add to the final 

output list. NMS does not harm the ultimate detection accuracy, but substantially reduces the number 

of proposals [18] by dropping the proposals which do not meet a certain threshold for intersection of 

union (IoU); in our case ≥ 0.7 for the same class set. We delete predicted boxes that do not have 

intersection with any ground truth or boxes that do not overlap with our object of interest such that 

only a single box is retained to avoid redundancy (Figure 2b). This means boxes labelled as 

background aren't included in the regression, as we don‟t have ground-truth boxes for them. After 

applying NMS, we keep the top N = 2000, sorted by score. 

2) Region of Interest Pooling: At the second stage is a RoI layer that undertakes RoI pooling by taking 

two inputs; (a) A fixed-size feature map obtained from the base network imbedding several 

convolutions and max pooling layers. (b) An N × 5 matrix representing multiple candidate proposals 

or regions of interests, where N indicates the number of RoIs. The other fields of the matrix contain 

the coordinates of the RoIs and the index of the input image. Using max pooling, RoI layer warps all 
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ROIs into a fixed size vector of 7 × 7 × 512 dimension in one single layer. The result of RoI pooling is 

that, multiple rectangular proposals ends up mapping to corresponding feature maps of a particular 

fixed size. 

In summary, RPN simply produces proposals or boxes that will eventually be examined by a 

classifier and regressor in the detection module to confirm the occurrence of objects. 

 

 
(a)                                        (b)  

Figure 2. (a) Predicted proposals after faster R-CNN training. (b) Result of insulator target after NMS 

suppression. An objectness score threshold of 0.7 is used to display these images. 

 
(a)                                             (b) 

Figure 3. (a) Insulator target with correctly predicted defective unit and a missed prediction. (b) 

Insulator targets showing incorrectly predicted defective units. 

3) Classification: The final output of the VGG network is a transformed RoI feature vector, a 512-

dimensional vector, which we feed into 2 fully connected layers to predict a boundary box and 2 

objectness scores using a regressor and softmax classifier respectively. The classifier predicts 2 

possible classes: one for the "insulator target object" category and one for the "defective disc" category. 

RPN makes η guesses for each location of the feature maps, which means RPN outputs 4 × η 

coordinates and 2 × η scores per location. We also perform non-maximum suppression independently 

for each class using the algorithm and settings from R-CNN [26]. 
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Figure 4 shows a plot of the training accuracy of our model. From the plot, our model's learning 

accuracy improves over time as the number of epochs increases. This is reflective on the training log 

loss plot as shown in Figure 6. As expected, the loss minimizes as the number of epochs increases 

indicating that the model learns better over time; a pointer to improved accuracy in classification 

performance of our model. The training L1 loss plot shown in Figure 5 also confirms improvement in 

learning, as error value of the difference between true values and predicted values minimizes with 

increase in number of epochs. 

4. Results and evaluation 

4.1.  Experimental set up 

During the training phase, we use VGG-16 architecture network [26] to train the detection model. The 

base network, a VGG-16 network takes the input image of sizes cropped down to 1400*800. Training 

is done on a Tesla K80 GPU. Learning was stopped after 10 epochs because we found it the best fit for 

our model, beyond which we found no improvements. Manually restricting the epoch to this number 

in our work is also key to avoid overfitting. We use a momentum of 0.9. We start with a base learning 

rate of 0.001 and gradually decrease it to 0.0001 after 59 iterations. We follow other implementation 

details as defined in [18]. 

To the best of our knowledge, there is currently no publicly available dataset for insulator detection 

or insulator fault detection to date. We deploy our own private evaluation set. For the evaluation of the 

insulator (or defective disc) detection, to the best of our knowledge, there hasn't been any published 

work that has employed any standard evaluation metrics which could be referenced as a baseline. 

Classification and detection results are evaluated based on the true positive rate (TPR) and 

Precision of prediction by our model. Here, TPR may be defined as the fraction of correctly identified 

insulators for the target category or as the fraction of correctly identified defective discs for the 

defective disc category; precision, a measure of prediction accuracy by our model. 

4.2. Sensitivities to Hyper-parameters 
Table 1 shows the detection results for different anchor settings on our test set.  We note that 94.1% 

and 83.7% TPR detection rates were achieved on our test set using an anchor settings of 1 scale (with 

3 aspect ratio) and 3 scales (with 1 aspect ratio) for insulator target and defective disc respectively as 

shown in Table 2. This represents the highest TPR rates for insulator and defective disc detection. This 

proves that considering anchors of multiple sizes as the regression references could be an effective 

solution.  

Using one scale with three aspect ratios (94.1% TPR rate) is as good as using three scale with three 

aspect ratio settings (94.0% TPR rate) on this dataset for target insulator detection. This is a possible 

indication that scales and aspect ratios are not linked dimensions to influence insulator target detection 

accuracy. 

   
Figure 4. Training Accuracy             Figure 5. Train L1 Loss 
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Figure 6. Train Log Loss 

Table 1. Detection Results for Different Settings of Anchors on Our Test Set Using Faster R-CNN. 

Settings Anchor Scales Aspect Ratios 
Insulator Target Defective Discs 

TP Miss Rate FD TP Miss Rate FD 

1 Scale, 1 Ratio 
8 1:1 91 7 80 35 16 1 

16 1:1 101 8 65 5 47 0 

1 Scale, 3 Ratio 
8 [2:1, 1:1, 1:2] 96 6 81 40 9 12 

16 [2:1, 1:1, 1:2] 92 6 84 10 41 3 

3 Scale, 1 Ratio [8, 16, 32] 1:1 91 10 83 41 8 4 

3 Scale, 3 Ratio [8, 16, 32] [2:1, 1:1, 1:2] 94 6 81 39 11 5 

Table 2. Average Classification Rates Based on TP Obtained Using Faster R-CNN Detection Module 

at Different Anchor Settings. 

Settings Anchor Scales Aspect Ratios 
Insulator Target Defective Discs 

TPR (%) TPR (%) 

1 Scale, 1 Ratio 
8 1:1 92.9 68.6 

16 1:1 92.7 9.6 

1 Scale, 3 Ratio 
8 [2:1, 1:1, 1:2] 94.1 81.6 

16 [2:1, 1:1, 1:2] 93.9 19.6 

3 Scale, 1 Ratio [8, 16, 32] 1:1 90.1 83.7 

3 Scale, 3 Ratio [8, 16, 32] [2:1, 1:1, 1:2] 94.0 78.0 

Table 3. Classification Accuracy Determined by Our Model 

 
Insulator Target Defective Discs 

Ratio % Ratio % 

TP 165/169 97.6 41/44 93.2 

FDR
1 11/176 6.2 9/53 16.9 

Miss Rate 4/169 2.3 3/44 6.8 

Precision - 93.75 - 82.0 
                                                    1 – False Discovery Rate 

4.3. Challenges 

The relatively higher miss rate for the defective insulator unit detection task could possibly be due to 

(a) Limited number of defective insulator training set examples necessary to improve the feature 

learning representation. (b) The presence of overlapping views among insulator discs or an adjacent 

disc in a photographic image. (c) micro-views of defective insulator discs as a result of photographic 

distances of some insulator images. 
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Some functional insulator discs were wrongly classified as defective insulator discs (Figure 3b). 

Most of these were typically, replacement defective insulator discs that showed either some structural 

difference or color difference from the other discs that makes up the whole insulator component. This 

is also further proof that the model is able to identify minimal changes in insulator structure during 

object detection. 

5. Conclusion 

In this paper, we approach the detection of the insulator component and the defective part of the 

insulator (outlier) of power line transmission systems by utilizing convolutional neural network in 

Faster-RCNN model. By utilizing a sliding window scheme, the RPN component of the Faster R-CNN 

serves as the „attention‟ of the unified network and instructs a detection module where to focus to 

improve detection accuracy. Our model also demonstrates high robustness by detecting target 

insulators and outliers from images taken from various distances, angles and background. We achieve 

precision of 93.75% and 82.0% (Table 3) on insulator component detection and defective insulator 

unit detection tasks respectively. The results achieved with this work is a promising feat for object 

detection in computer vision field, and good generalization with a large-scale dataset is expected. 

Future work considerations will involve combining transfer learning with spiking neural network to 

improve detection accuracy of target insulator and defective insulator units. 
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