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Abstract. Let G be a simple, connected and undirected graph that has a set of vertex and
edge. The degree of v ∈ V (G) is denoted by d(v). The maximum and minimum degree of G
respectively are ∆(G) and δ(G). The r-dynamic color of the graph G is calculated as a map
c from V to a color set such that if u, v ∈ V (G) is adjacent, then c(u) 6= c(v), and for each
v ∈ V (G), |c(N(v))| ≥ min{r, d(v)}. The number of r-dynamic coloring of G denoted by χr(G)
is minimum color k in G. In this paper, we have obtained the r-dynamic vertex coloring of line,
middle, total of lobster graph Ln(2, 1).

1. Introduction
Suppose G = (V,E) is a simple graph. The vertex and edge set G are given as V (G) and E(G),
respectively. The maximum degree denoted by ∆(G) and the minimum degree denoted by δ(G).
For each v ∈ V (G), d(v) represents the degree of v, N(v) represents the relative set of V , and
c(v) represents the color of v. The vertex coloring of graph G by k color is a surjective fuction
of c : V (G) → {1, 2, ..., k} with this character: if u, v ∈ V (G) and u, v ∈ E(G), then c(u) and
c(v) are different. The r-dynamic coloring of graph G, introduced by Montgomery [13] exactly
k implementation G coloring of graph for each of v expected only min{r, d(v)} different color.
The chromatic number of r-dynamic, χr(G) is the minimum k so the graph G has r-dynamic k
colors. The following observation is useful for our study, proposed by Montgomery [13]:

Observation 1. Let ∆(G) be the maximum degree of G. It holds χr(G) ≥ min{∆(G), r}+ 1.

Montgomery [13] explains the r-dynamic color of the graph G is calculated as a map c
from V to a color set such that if u, v ∈ V (G) is adjacent, then c(u) 6= c(v), and for each
v ∈ V (G), |c(N(v))| ≥ min{r, d(v)}. The lobster graph is a caterpillar graph without pendant
vertices from tree graph, it is denoted by Ln(l,m) [12].

A line graph of G denoted by L(G) is obtained by associating vertices with each edge of G
and connecting two vertices with edges if the corresponding edges of G have the same node [6].
In [16] the middle graph denoted by M(G) of the connected graph G is a graph whose node-set
is V (G) ∪ E(G) where two vertices are close together if they are edges which border G or one
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is the node of G and the other is an edge incident with it. The total graph denoted by T (G)
of the connected graph G is a graph whose node-set is V (G) ∪ E(G) and two adjacent vertices
each time that border or events in G [4].

Montgomery [13] is uncovered the lower bound of the r-dynamic chromatic number, χr(G) ≥
min{r,∆(G)}+ 1. Kang et.al [8] are discovered the r-dynamic chromatic number of the m-by-n
grid for all r,m, n. Kristiana et.al [9] are uncovered the lower bound of the r-dynamic chromatic
number of the coronation of path as well as the several graphs. The r-dynamic chromatic number
has been inquired by several authors, it can be seen in [1, 2, 3, 5, 7, 10, 11, 14, 15].

An important application of r-dynamic vertex coloring is coloring the map. The coloring of
map is not arbitrary, the type of color is used must be minimal. In this study, the r-dynamic
vertex coloring will be examined on lobster graphs. In addition, the development of the graph
will become a new graphs (line graph, middle graph, and total graph).

2. Result
In this research, we have obtained the exact value of r-dynamic vertex coloring of line, middle,
and total of lobster graphs Ln(2, 1).
Theorem 1. Let Ln(2, 1) be a lobster graph for n ≥ 2, the r-dynamic chromatic number of
Ln(2, 1) is

χr(Ln(2, 1)) =


2, r = 1
r + 1, 2 ≤ r ≤ 3
5, r ≥ 4

Proof. The vertex set of Ln(2, 1) is V (Ln(2, 1)) = {as; 1 ≤ s ≤ n} ∪ {xs; 1 ≤ s ≤
n} ∪ {xs,1; 1 ≤ s ≤ n} ∪ {ys; 1 ≤ s ≤ n} ∪ {ys,1; 1 ≤ s ≤ n} and the edge set of Ln(2, 1) is
E(Ln(2, 1)) = {xsxs,1; 1 ≤ s ≤ n} ∪ {xsas; 1 ≤ s ≤ n} ∪ {asys; 1 ≤ s ≤ n} ∪ {ysys,1; 1 ≤ s ≤
n}∪{asas+1; 1 ≤ s ≤ n−1}. The vertex and edge cardinality of Ln(2, 1) are |V (Ln(2, 1))| = 5n,
|E(Ln(2, 1))| = 5n − 1 respectively. We define three cases, namely for r = 1, 2 ≤ r ≤ 3, and
r ≥ 4.

Figure 1 is the illustration of r-dynamic vertex coloring of Ln(2, 1)

Figure 1. The r-dynamic vertex coloring of Ln(2, 1) for r = 1

Case 1: For r = 1
Based on Observation 1, since χr(G) ≥ min{r,∆} + 1 = min{1, 4} + 1 = 1 + 1 = 2, then the
lower bound of Ln(2, 1) is χr(G) ≥ 2. We need to prove the upper bound of r-dynamic vertex
coloring of Ln(2, 1) is χr(Ln(2, 1)) ≤ 2. Define the function c : V (G)→ {1, 2, ..., k} as follows:
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c(as) =

{
1; s ≡ 1 mod 2
2; s ≡ 0 mod 2

c(xs) =

{
1; s ≡ 0 mod 2
2; s ≡ 1 mod 2

c(xs,1) =

{
1; s ≡ 1 mod 2
2; s ≡ 0 mod 2

c(ys) =

{
1; s ≡ 0 mod 2
2; s ≡ 1 mod 2

c(ys,1) =

{
1; s ≡ 1 mod 2
2; s ≡ 0 mod 2

It is clear that χr(Ln(2, 1)) ≤ 2. We can conclude that χr(Ln(2, 1)) = 2 for r = 1.

Case 2: For 2 ≤ r ≤ 3
Based on Observation 1, since χr(G) ≥ min{r,∆}+ 1 = min{r, 4}+ 1 = r + 1, then the lower
bound of Ln(2, 1) is χr(G) ≥ r + 1. We need to prove the upper bound of r-dynamic vertex
coloring of Ln(2, 1) is χr(Ln(2, 1)) ≤ r + 1. Define the function c : V (G) → {1, 2, ..., k} as
follows:

c(as) =

{
1; s ≡ 1 mod 2; 2 ≤ r ≤ 3
2; s ≡ 0 mod 2; 2 ≤ r ≤ 3

c(xs) =


1; s ≡ 0 mod 2; r = 2
2; s ≡ 1 mod 2; r = 2
4; 1 ≤ s ≤ n; r = 3

c(xs,1) =
{

3; 1 ≤ s ≤ n; 2 ≤ r ≤ 3

c(ys) =
{

3; 1 ≤ s ≤ n; 2 ≤ r ≤ 3

c(ys,1) =


1; s ≡ 0 mod 2; r = 2
2; s ≡ 1 mod 2; r = 2
4; 1 ≤ s ≤ n; r = 3

It is clear that χr(Ln(2, 1)) ≤ r + 1. We can conclude that χr(Ln(2, 1)) = r + 1 for 2 ≤ r ≤ 3.

Case 3: For r ≥ 4
Based on Observation 1, since χr(G) ≥ min{r,∆} + 1 = min{r, 4} + 1 = 4 + 1 = 5, then the
lower bound of Ln(2, 1) is χr(G) ≥ 5. We need to prove the upper bound of r-dynamic vertex
coloring of Ln(2, 1) is χr(Ln(2, 1)) ≤ 5. Define the function c : V (G)→ {1, 2, ..., 5} as follows:

c(as) =


1; s ≡ 2 mod 3
2; s ≡ 1 mod 3
3; s ≡ 0 mod 3

c(xs) = 5; 1 ≤ s ≤ n

c(xs,1) = 4; 1 ≤ s ≤ n

c(ys) = 4; 1 ≤ s ≤ n
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c(ys,1) =


1; s ≡ 1 mod 3
2; s ≡ 0 mod 3
3; s ≡ 2 mod 3

It is clear that χr(Ln(2, 1)) ≤ 5. We can conclude that χr(Ln(2, 1)) = 5 for r ≥ 4.

Theorem 2. Let L(Ln(2, 1)) be a line graph of lobster graph for n ≥ 5, the r-dynamic chromatic
number of L(Ln(2, 1)) is

χrL(Ln(2, 1)) =


2, r = 1
r + 1, 2 ≤ r ≤ 3
5, r ≥ 4

Proof. The vertex set of L(Ln(2, 1)) is V L(Ln(2, 1)) = {as; 1 ≤ s ≤ n − 1} ∪ {xs; 1 ≤ s ≤
n} ∪ {xs,1; 1 ≤ s ≤ n} ∪ {ys; 1 ≤ s ≤ n} ∪ {ys,1; 1 ≤ s ≤ n} and the edge set of L(Ln(2, 1)) is
EL(Ln(2, 1)) = {xsxs,1; 1 ≤ s ≤ n} ∪ {xsys; 1 ≤ s ≤ n} ∪ {xsas; 1 ≤ s ≤ n − 1} ∪ {xsas−1; 2 ≤
s ≤ n} ∪ {ysas; 1 ≤ s ≤ n− 1} ∪ {ysas−1; 2 ≤ s ≤ n} ∪ {ysys,1; 1 ≤ s ≤ n}. The vertex and edge
cardinality of L(Ln(2, 1)) are |V L(Ln(2, 1))| = 5n− 1, |EL(Ln(2, 1))| = 7n− 4 respectively. We
define three cases, namely for r = 1, 2 ≤ r ≤ 3, and r ≥ 4.

Figure 2 is the illustration of r-dynamic vertex coloring of L(Ln(2, 1))

Figure 2. The r-dynamic vertex coloring of L(Ln(2, 1)) for r = 1

Case 1: For r = 1
Based on Observation 1, since χr(G) ≥ min{r,∆} + 1 = min{1, 4} + 1 = 1 + 1 = 2, then the
lower bound of L(Ln(2, 1)) is χr(G) ≥ 2. We need to prove the upper bound of r-dynamic
vertex coloring of L(Ln(2, 1)) is χrL(Ln(2, 1)) ≤ 2. Define the function c : V (G)→ {1, 2, ..., k}
as follows:

c(as) = 1; 1 ≤ s ≤ n− 1

c(xs) = 2; 1 ≤ s ≤ n
c(xs,1) = 1; 1 ≤ s ≤ n
c(ys) = 2; 1 ≤ s ≤ n
c(ys,1) = 1; 1 ≤ s ≤ n

It is clear that χrL(Ln(2, 1)) ≤ 2. We can conclude that χrL(Ln(2, 1)) = 2 for r = 1.
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Case 2: For 2 ≤ r ≤ 3
Based on Observation 1, since χr(G) ≥ min{r,∆}+ 1 = min{r, 4}+ 1 = r + 1, then the lower
bound of L(Ln(2, 1)) is χr(G) ≥ r + 1. We need to prove the upper bound of r-dynamic vertex
coloring of L(Ln(2, 1)) is χrL(Ln(2, 1)) ≤ r + 1. Define the function c : V (G) → {1, 2, ..., k} as
follows:

c(as) = 2; 1 ≤ s ≤ n− 1; 2 ≤ r ≤ 3

c(xs) =


1; 1 ≤ s ≤ n; r = 2

s ≡ 0 mod 2; r = 3
4; s ≡ 1 mod 2; r = 3

c(xs,1) =


1; s ≡ 1 mod 2; r = 3
2; 1 ≤ s ≤ n; r = 2
3; s ≡ 0 mod 2; r = 3

c(ys) =


3; 1 ≤ s ≤ n; r = 2

s ≡ 1 mod 2; r = 3
4; s ≡ 0 mod 2; r = 3

c(ys,1) =


1; s ≡ 1 mod 2; r = 3
2; 1 ≤ s ≤ n; r = 2
3; s ≡ 0 mod 2; r = 3

It is clear that χrL(Ln(2, 1)) ≤ r+1. We can conclude that χrL(Ln(2, 1)) = r+1 for 2 ≤ r ≤ 3.

Case 3: For r ≥ 4
Based on Observation 1, since χr(G) ≥ min{r,∆} + 1 = min{r, 4} + 1 = 4 + 1 = 5, then the
lower bound of L(Ln(2, 1)) is χr(G) ≥ 5. We need to prove the upper bound of r-dynamic
vertex coloring of L(Ln(2, 1)) is χrL(Ln(2, 1)) ≤ 5. Define the function c : V (G)→ {1, 2, ..., k}
as follows:

c(as) =


1; s ≡ 1 mod 5
2; s ≡ 2 mod 5
3; s ≡ 3 mod 5
4; s ≡ 4 mod 5
5; s ≡ 0 mod 5

c(ys) =


1; s ≡ 3 mod 5
2; s ≡ 4 mod 5
3; s ≡ 0 mod 5
4; s ≡ 1 mod 5
5; s ≡ 2 mod 5

c(xs) =


1; s ≡ 0 mod 5
2; s ≡ 1 mod 5
3; s ≡ 2 mod 5
4; s ≡ 3 mod 5
5; s ≡ 4 mod 5

c(ys,1) =


1; s ≡ 4 mod 5
2; s ≡ 0 mod 5
3; s ≡ 1 mod 5
4; s ≡ 2 mod 5
5; s ≡ 3 mod 5

c(xs,1) =


1; s ≡ 4 mod 5
2; s ≡ 0 mod 5
3; s ≡ 1 mod 5
4; s ≡ 2 mod 5
5; s ≡ 3 mod 5

It is clear that χrL(Ln(2, 1)) ≤ 5. We can conclude that χrL(Ln(2, 1)) = 5 for r ≥ 4.
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Theorem 3. Let M(Ln(2, 1)) be a middle graph of lobster graph for n ≥ 3, the r-dynamic
chromatic number of M(Ln(2, 1)) is

χrM(Ln(2, 1)) =


3, 1 ≤ r ≤ 2
r + 1, 3 ≤ r ≤ 5
7, r ≥ 6

Proof. The vertex set of M(Ln(2, 1)) is VM(Ln(2, 1)) = {xs,t; 1 ≤ s ≤ n; 1 ≤ t ≤ m}∪{ys; 1 ≤
s ≤ n − 1} and the edge set of M(Ln(2, 1)) is EM(Ln(2, 1)) = {xs,txs,t+1; 1 ≤ s ≤ n ; 1 ≤ t ≤
m−1}∪{xs,txs,t+2; 1 ≤ s ≤ n ; 2 ≤ t ≤

⌊
m
2

⌋
−1}∪{xs,

⌈
m
2

⌉
ys; 1 ≤ s ≤ n−1}∪{ysxs+1,

⌈
m
2

⌉
; 1 ≤

s ≤ n−1}∪{xs,
⌈
m
2

⌉
−1ys; 1 ≤ s ≤ n−1}∪{ysxs+1,

⌈
m
2

⌉
−1; 1 ≤ s ≤ n−1}∪{xs,

⌈
m
2

⌉
+1ys; 1 ≤

s ≤ n− 1} ∪ {ysx1+1,
⌈
m
2

⌉
+ 1; 1 ≤ s ≤ n− 1}. The vertex and edge cardinality of M(Ln(2, 1))

are |VM(Ln(2, 1))| = mn+n−1, |EM(Ln(2, 1))| = mn+n
⌊
m
2

⌋
+3n−6 respectively. We define

three cases, namely for 1 ≤ r ≤ 2, 3 ≤ r ≤ 5, and r ≥ 6.
Figure 3 is the illustration of r-dynamic vertex coloring of M(Ln(2, 1))

Figure 3. The r-dynamic vertex coloring of M(Ln(2, 1)) for 1 ≤ r ≤ 2

Case 1: For 1 ≤ r ≤ 2
Based on Observation 1, since χr(G) ≥ min{r,∆} + 1 = min{2, 6} + 1 = 2 + 1 = 3, then
the lower bound of M(Ln(2, 1)) is χr(G) ≥ 3. We need to prove the upper bound of r-dynamic
vertex coloring of M(Ln(2, 1)) is χrM(Ln(2, 1)) ≤ 3. Define the function c : V (G)→ {1, 2, ..., k}
as follows:

c(xs,1) = 2; 1 ≤ s ≤ n

c(xs,2) = 1; 1 ≤ s ≤ n

c(xs,3) = 3; 1 ≤ s ≤ n

c(xs,4) = 2; 1 ≤ s ≤ n

c(xs,5) = 3; 1 ≤ s ≤ n

c(xs,6) = 2; 1 ≤ s ≤ n

c(xs,7) = 3; 1 ≤ s ≤ n

c(xs,8) = 1; 1 ≤ s ≤ n
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c(xs,9) = 2; 1 ≤ s ≤ n

c(ys) = 1; 1 ≤ s ≤ n− 1

It is clear that χrM(Ln(2, 1)) ≤ 3. We can conclude that χrM(Ln(2, 1)) = 3 for 1 ≤ r ≤ 2.

Case 2: For 3 ≤ r ≤ 5
Based on Observation 1, since χr(G) ≥ min{r,∆}+ 1 = min{r, 6}+ 1 = r + 1, then the lower
bound of M(Ln(2, 1)) is χr(G) ≥ r+ 1. We need to prove the upper bound of r-dynamic vertex
coloring of M(Ln(2, 1)) is χrM(Ln(2, 1)) ≤ r + 1. Define the function c : V (G) → {1, 2, ..., k}
as follows:

c(xs,1) =

{
1; 1 ≤ s ≤ n; 4 ≤ r ≤ 5
4; 1 ≤ s ≤ n; r = 3

c(xs,6) =

{
1; 1 ≤ s ≤ n; r = 3
4; 1 ≤ s ≤ n; 4 ≤ r ≤ 5

c(xs,2) =

{
2; 1 ≤ s ≤ n; r = 3
5; 1 ≤ s ≤ n; 4 ≤ r ≤ 5

c(xs,7) =


3; 1 ≤ s ≤ n; r = 3
5; 1 ≤ s ≤ n; r = 4
6; 1 ≤ s ≤ n; r = 5

c(xs,3) =


1; 1 ≤ s ≤ n; r = 3
2; s ≡ 0 mod 2; r = 5
4; 1 ≤ s ≤ n; r = 4
6; s ≡ 1 mod 2; r = 5

c(xs,8) =


2; 1 ≤ s ≤ n; 3 ≤ r ≤ 4

s ≡ 0 mod 2; r = 5
5; s ≡ 1 mod 2; r = 5

c(xs,4) =


2; 1 ≤ s ≤ n; r = 4

s ≡ 1 mod 2; r = 5
3; 1 ≤ s ≤ n; r = 3
6; s ≡ 0 mod 2; r = 5

c(xs,9) =

{
1; 1 ≤ s ≤ n; 4 ≤ r ≤ 5
4; 1 ≤ s ≤ n; r = 3

c(xs,5) =


1; s ≡ 0 mod 3; 4 ≤ r ≤ 5
2; 1 ≤ s ≤ n; r = 3
3; s ≡ 1 mod 3; 4 ≤ r ≤ 5
5; s ≡ 2 mod 3; 4 ≤ r ≤ 5

c(ys) =


1; s ≡ 1 mod 3; 4 ≤ r ≤ 5
3; s ≡ 2 mod 3; 4 ≤ r ≤ 5
4; 1 ≤ s ≤ n; r = 3
5; s ≡ 0 mod 3; 4 ≤ r ≤ 5

It is clear that χrM(Ln(2, 1)) ≤ r+1. We can conclude that χrM(Ln(2, 1)) = r+1 for 3 ≤ r ≤ 5.

Case 3: For r ≥ 6
Based on Observation 1, since χr(G) ≥ min{r,∆} + 1 = min{r, 6} + 1 = 6 + 1 = 7, then
the lower bound of M(Ln(2, 1)) is χr(G) ≥ 7. We need to prove the upper bound of r-dynamic
vertex coloring of M(Ln(2, 1)) is χrM(Ln(2, 1)) ≤ 7. Define the function c : V (G)→ {1, 2, ..., k}
as follows:

c(xs,1) = 1; 1 ≤ s ≤ n c(xs,6) =

{
4; s ≡ 1 mod 2
7; s ≡ 0 mod 2

c(xs,2) =

{
4; s ≡ 0 mod 2
7; s ≡ 1 mod 2

c(xs,7) =

{
2; s ≡ 0 mod 2
7; s ≡ 1 mod 2

c(xs,3) =

{
2; s ≡ 0 mod 2
6; s ≡ 1 mod 2

c(xs,8) =

{
4; s ≡ 0 mod 2
6; s ≡ 1 mod 2

c(xs,4) =

{
2; s ≡ 1 mod 2
6; s ≡ 0 mod 2

c(xs,9) = 1; 1 ≤ s ≤ n

c(xs,5) =


1; s ≡ 0 mod 3
3; s ≡ 1 mod 3
5; s ≡ 2 mod 3

c(ys) =


1; s ≡ 1 mod 3
3; s ≡ 2 mod 3
5; s ≡ 0 mod 3
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It is clear that χrM(Ln(2, 1)) ≤ 7. We can conclude that χrM(Ln(2, 1)) = 7 for r ≥ 6.

Theorem 4. Let T (Ln(2, 1)) be a total graph of lobster graph for n ≥ 6, the r-dynamic chromatic
number of T (Ln(2, 1)) is

χrT (Ln(2, 1)) =


3, 1 ≤ r ≤ 2
r + 1, 3 ≤ r ≤ 7
9, r ≥ 8

Proof. The vertex set of T (Ln(2, 1)) is V T (Ln(2, 1)) = {xs,t; 1 ≤ s ≤ n; 1 ≤ t ≤ m} ∪ {ys; 1 ≤
s ≤ n − 1} and the edge set of T (Ln(2, 1)) is ET (Ln(2, 1)) = {xs,txs,t+1; 1 ≤ s ≤ n ; 1 ≤ t ≤
m−1}∪{xs,txs,t+2; 1 ≤ s ≤ n ; 1 ≤ t ≤ m−2}∪{xs,

⌈
m
2

⌉
−1ys; 1 ≤ s ≤ n−1}∪{xs,

⌈
m
2

⌉
+1ys; 1 ≤

s ≤ n−1}∪{xs+1,
⌈
m
2

⌉
−1ys; 1 ≤ i ≤ n−1}∪{xs+1,

⌈
m
2

⌉
+1ys; 1 ≤ s ≤ n−1}∪{xs,

⌈
m
2

⌉
ys; 1 ≤

s ≤ n− 1} ∪ {xs+1,
⌈
m
2

⌉
ys; 1 ≤ s ≤ n− 1} ∪ {xs,

⌈
m
2

⌉
xs+1

⌈
m
2

⌉
; 1 ≤ s ≤ n− 1}. The vertex and

edge cardinality of T (Ln(2, 1)) are |V T (Ln(2, 1))| = nm+n− 1, |ET (Ln(2, 1))| = 2nm+ 4n− 7
respectively. We define three cases, namely for 1 ≤ r ≤ 2, 3 ≤ r ≤ 7, and r ≥ 8.

Figure 4 is the illustration of r-dynamic vertex coloring of T (Ln(2, 1))

Figure 4. The r-dynamic vertex coloring of T (Ln(2, 1)) for 1 ≤ r ≤ 2

Case 1: For 1 ≤ r ≤ 2
Based on Observation 1, since χr(G) ≥ min{r,∆} + 1 = min{2, 8} + 1 = 2 + 1 = 3, then the
lower bound of T (Ln(2, 1)) is χr(G) ≥ 3. We need to prove the upper bound of r-dynamic
vertex coloring of T (Ln(2, 1)) is χrT (Ln(2, 1)) ≤ 3. Define the function c : V (G)→ {1, 2, ..., k}
as follows:

c(xs,1) = 2; 1 ≤ s ≤ n

c(xs,2) = 3; 1 ≤ s ≤ n

c(xs,3) = 1; 1 ≤ s ≤ n

c(xs,4) = 2; 1 ≤ s ≤ n

c(xs,5) = 3; 1 ≤ s ≤ n
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c(xs,6) = 2; 1 ≤ s ≤ n

c(xs,7) = 1; 1 ≤ s ≤ n

c(xs,8) = 3; 1 ≤ s ≤ n

c(xs,9) = 2; 1 ≤ s ≤ n

c(ys) = 1; 1 ≤ s ≤ n− 1

It is clear that χrT (Ln(2, 1)) ≤ 3. We can conclude that χrT (Ln(2, 1)) = 3 for 1 ≤ r ≤ 2.

Case 2: For 3 ≤ r ≤ 7
Based on Observation 1, since χr(G) ≥ min{r,∆}+ 1 = min{r, 8}+ 1 = r + 1, then the lower
bound of T (Ln(2, 1)) is χr(G) ≥ r + 1. We need to prove the upper bound of r-dynamic vertex
coloring of T (Ln(2, 1)) is χrT (Ln(2, 1)) ≤ r + 1. Define the function c : V (G)→ {1, 2, ..., k} as
follows:

c(xs,1) =



1; s ≡ 1 mod 2; r = 4
s ≡ 0 mod 2; r = 5

2; s ≡ 0 mod 2; r = 4
s = 1; 6 ≤ r ≤ 7

3; s ≡ 1 mod 2; r = 5
4; 1 ≤ s ≤ n; r = 3

s ≡ 2 mod 3; 6 ≤ r ≤ 7
5; s ≡ 0 mod 3; 6 ≤ r ≤ 7
6; s ≡ 1 mod 3; 6 ≤ r ≤ 7; s 6= 1

c(xs,6) =



1; s ≡ 1 mod 2; s 6= 1; r = 7
2; s ≡ 0 mod 2; 4 ≤ r ≤ 5
3; 1 ≤ s ≤ n, r = 3

s ≡ 1 mod 2; 4 ≤ r ≤ 5
4; s ≡ 3 mod 6; r = 6
5; s ≡ 1 mod 6; r = 6

s = 1; r = 7
6; s ≡ 5 mod 6; r = 6
7; s ≡ 0 mod 2; 6 ≤ r ≤ 7

c(xs,2) =


2; s ≡ 0 mod 3; 6 ≤ r ≤ 7
3; 1 ≤ s ≤ n; r = 3

s ≡ 1 mod 2; r = 4
s ≡ 0 mod 2; 6 ≤ r ≤ 7

4; s ≡ 0 mod 2; 4 ≤ r ≤ 5

c(xs,7) =



1; 1 ≤ s ≤ n; r = 4
s ≡ 0 mod 2; r = 7

2; 1 ≤ s ≤ n; r = 3
s ≡ 1 mod 2; s 6= 1; r = 6

3; s ≡ 0 mod 2; r = 6
4; s ≡ 0 mod 2; r = 5
5; s ≡ 1 mod 2; r = 5
6; s = 1; r = 6
7; s ≡ 1 mod 2; r = 7

c(xs,3) =



1; 1 ≤ s ≤ n; r = 3
s ≡ 0 mod 2; r = 4, 6

3; s ≡ 0 mod 2; r = 5
5; s ≡ 1 mod 2; r = 4
6; s ≡ 1 mod 2; r = 5
7; s ≡ 1 mod 2; r = 6
8; 1 ≤ s ≤ n; r = 7

c(xs,8) =



1; 1 ≤ s ≤ n; r = 3
s ≡ 0 mod 2; r = 6

2; s ≡ 1 mod 2; s 6= 1; r = 7
3; s ≡ 0 mod 2; r = 5, 7
4; s ≡ 0 mod 2; r = 4
5; s ≡ 1 mod 2; r = 4
6; s ≡ 1 mod 2; r = 5

s = 1; r = 7
7; s ≡ 1 mod 2; r = 6
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c(xs,4) =



1; s ≡ 3 mod 4; r = 6
2; 1 ≤ s ≤ n; r = 3

s ≡ 1 mod 2; 4 ≤ r ≤ 5
3; s ≡ 0 mod 2; r = 4

s ≡ 1 mod 4; r = 6
s = 1, r = 7

4; s ≡ 0 mod 6; r = 6
s ≡ 0 mod 3; r = 7

5; s ≡ 4 mod 6; r = 6
s ≡ 1 mod 3; s 6= 1; r = 7

6; s ≡ 0 mod 2; r = 5
s ≡ 2 mod 6; r = 6
s ≡ 2 mod 3; r = 7

c(xs,9) =



1; s ≡ 0 mod 2; r = 5
2; s ≡ 1 mod 2; 4 ≤ r ≤ 5

s = 1; 6 ≤ r ≤ 7
3; s ≡ 0 mod 2; r = 4
4; 1 ≤ s ≤ n; r = 3

s ≡ 2 mod 3; 6 ≤ r ≤ 7
5; s ≡ 0 mod 3; 6 ≤ r ≤ 7
6; s ≡ 1 mod 3; 6 ≤ r ≤ 7; 1 6= 1

c(xs,5) =



1; s ≡ 1 mod 4; 6 ≤ r ≤ 7
2; s ≡ 0 mod 2; 6 ≤ r ≤ 7
3; s ≡ 3 mod 4; 6 ≤ r ≤ 7
4; 1 ≤ s ≤ n; r = 3

s ≡ 1 mod 2; 4 ≤ r ≤ 5
5; s ≡ 0 mod 2; 4 ≤ r ≤ 5

c(ys) =


1; 1 ≤ s ≤ n; 3 ≤ r ≤ 5
4; s ≡ 1 mod 3; 6 ≤ r ≤ 7
5; s ≡ 2 mod 3; 6 ≤ r ≤ 7
6; s ≡ 0 mod 3; 6 ≤ r ≤ 7

It is clear that χrT (Ln(2, 1)) ≤ r+1. We can conclude that χrT (Ln(2, 1)) = r+1 for 3 ≤ r ≤ 7.

Case 3: For r ≥ 8
Based on Observation 1, since χr(G) ≥ min{r,∆} + 1 = min{r, 8} + 1 = 8 + 1 = 9, then the
lower bound of T (Ln(2, 1)) is χr(G) ≥ 9. We need to prove the upper bound of r-dynamic
vertex coloring of T (Ln(2, 1)) is χrT (Ln(2, 1)) ≤ 9. Define the function c : V (G)→ {1, 2, ..., k}
as follows:

c(xs,1) =


3; s ≡ 2 mod 3
5; s ≡ 0 mod 3
6; s ≡ 1 mod 3; s 6= 1
7; s = 1

c(xs,6) =

{
5; s = 1
7; 1 ≤ s ≤ n, s 6= 1

c(xs,2) =


1; s ≡ 2 mod 3
2; s ≡ 0 mod 3
3; s ≡ 1 mod 3; s 6= 1
6; s = 1

c(xs,7) =
{

9; 1 ≤ s ≤ n

c(xs,3) = 8; 1 ≤ s ≤ n c(xs,8) =


1; s ≡ 2 mod 3
2; s ≡ 0 mod 3
3; s ≡ 1 mod 3; s 6= 1
6; s = 1

c(xs,4) =


3; s = 1
4; s ≡ 0 mod 3
5; s ≡ 1 mod 3; s 6= 1
6; s ≡ 2 mod 3

c(xs,9) =


3; s ≡ 2 mod 3
5; s ≡ 0 mod 3
6; s ≡ 1 mod 3; s 6= 1

c(xs,5) =


1; s ≡ 1 mod 3
2; s ≡ 2 mod 3
3; s ≡ 0 mod 3

c(ys) =


4; s ≡ 1 mod 3
5; s ≡ 2 mod 3
6; s ≡ 0 mod 3

It is clear that χrT (Ln(2, 1)) ≤ 9. We can conclude that χrT (Ln(2, 1)) = 9 for r ≥ 8.
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3. Conclusion
In this study, we obtained of the r-dynamic vertex coloring of line, middle, total of lobster graph
Ln(2, 1).
Open Problem 1. Find the r-dynamic chromatic number of Ln(l,m) for l ≥ 3 and m ≥ 2.
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