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Abstract. Let G be a graph with vertex set V and edge set E. Total labeling f :
V (G) ∪ E(G) → {1, 2, 3, ..., l} called a total l-labeling of a graph G. The total l-labeling
is a total H-irregular l-labeling of graph G if for H ⊆ G, the total H-weights wtf (H) =∑

v∈V (H)
f(v) +

∑
e∈E(H)

f(e) are distinct. The irregularity strength s(G) of a graph G is

known as the minimum k for which G has an irregular assignment using labels at most k.
The total H−irregular a−labeling from the minimum where the graph G is called the total
H−irregularity strength of G, is denoted by tHs(G). In this paper, we have obtained tHs from
linegrid, buttrefly, hexagonal and diamond graphs. To obtain the tHs, we begin to study the
total irregularity strength of graph G with subgraph H.

1. Introduction
The graphs that we discussed in this paper are mainly plane graphs which are simple, connected
and limited graphs. Let G be a graph that has a set of vertex V (G) and a set of edge E(G). The
assignment of integration into vertices or edges, or both is subject to certain conditions called
graph labeling [4]. Map that contain vertices and edges until positive integers to the number l
are called total labeling [11]. Graph G contains a H-cover if each subgraph of Hj is isomorphic,
which conditions each vertex E(G) is included in at least one of the subgraphs Hj, j = 1, 2, ...s
[2] For each of the two different edge l1 and l2, it holds w(l1) 6=w(l2) the total a labeling is said
to be the irregular edge of total a-labeling on graph G. Total edge H−irregularity strength G,
symbolized by the tes(G) is a minimum where graph G has an irregular total edge labeling [3].
The total a-labeling is said to be a total H-irregular a-labeling of the graph G if for HG, the
total H-weights W (H) =

∑
v∈V (H) ϕ(v) +

∑
e∈E(H) ϕ(e), are distinct.

If the domain is the vertex-set or the edge-set, the labelings are called respectively vertex
labelings or edge labelings. If the domain is V (G)E(G) then we call the labeling total labeling.
The most complete recent survey of graph labelings is [12]. The assignment of positive label
integers 1, 2, ..., l for both of vertices and edges is called a label l number of irregular so that the
weight is calculated on a different vertices [1].

The edge irregular total k−labelling of the graph G is the total k−labelling for every two
different edges e and f of G there is wt(e)wt(f). And vertex irregular total k−labelling of G is
the total k−labelling if for every two distinct vertices x and y of G there is wt(x)wt(y).

The irregular assignments and the irregularity strength of graphs is the definition of the
total edge irregularity strength introduced by Chartrand et.al.[5]. The k−labeling of the edges
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: : E1, 2, ..., k such that the sum of the labels of edges incident with a vertex is different for all
the vertices of G and the smallest k for which there is the an irregular assignment, an irregular
assignments is the irregularity strength, s(G) [7].

The irregularity strength was introduced in [5] by Chartrand et al. . The irregularity strength
of regular graphs was considered by Faudree and Lehel in [9]. The total edge irregularity strength
of G, tes(G) is the minimum k for which the graph G has an edge irregular total k−labeling.

The total H-irregular a-labeling from the minimum where the graph G is called the total
H-irregularity strength of G, is denoted by tHs(G). The minimum k where G has an edge
labeled k is an irregular total k is the definition of the total irregularity, tes(G). The irregularity
strength of the edge G, denoted by es(G) is a minimum K where graph G has an irregular
labeled k [12]. The minimum where graph G has an irregular total labeling subgraph is the
total Irregularity strength of G, tHs(G).

The minimum positive integer k for which graph G has an edge-irregular k-labelling is called
the irregularity strength of the graph G, denoted by s(G). An edge-irregular klabelling of G is
the edge labelling : : E(G)1, 2, ..., k if every two distinct x and y in V (G) satisfy wt(x)wt(y).
The total l−labeling (ϕ) which has different weights in every two disparate subgraphs is called
total H-irregular labeling, where H1 and H2 are isomorphic to H there is wtϕ(H1) = wtϕ(H2).

Slamin et al. [11] prove that the strength of the total vertex irregularity of the merge is
separate from the sun’s graph Rajasingh et al. [8].

The total l-labeling V (G) ∪ E(G)→ {1, 2, . . . , l} to the total irregular l-label is the labeling
of the irregular l-total edge on the graph G if each two different edges have different weights
[12]. Rajasingh et al. [8].

The total l-labeling (ϕ) which has different weights in every two disparate subgraphs is called
total H-irregular labeling, where H1 and H2 are isomorphic to H there is wtϕ(H1) 6= wtϕ(H2).
We determine H-weight as

wtϕ(H) =
∑

v∈V (H)

ϕ(v) +
∑

e∈E(H)

ϕ(e),

for the subgraph H ⊆ G under the total l-labeling (ϕ).
The total Irregularity strength of the graph G (tHs(G,H)). To find the total H−irregularity

strength (tHs(G,H)) We use plane graphs such as grid graph and triangular ladder graph [10].
The smallest value of l that is owned by graph G has the total l-labeling H-irregular is the total
H-irregularity strength graph G (tHs(G,H)). We use theorem 1 as the lower bound of the total
H-irregularity strength.

Theorem 1. [2]Let G be a graph that accepts the H-covering given by t isomorphic subgraphs
to H. Then

tHs(G,H) ≥
⌈

t− 1

|V (H)|+ |E(H)|

⌉

In this paper, we study about the total H−irregularity strength of several graphs, namely
the line grid graph, the butterfly graph, the hexagonal graph and the diamond graph. From this
paper, we study the tHs(G) with H-covering irregularity strength (tHs(G,H)) of each of these
different graphs. Line grid graphs is a denoted by GLn.

2. Results
In this segment, we present the results of the total H-irregularity strength in our graph research
field, as follows.
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Theorem 2. Let GLn(3, n), n ≥ 2, be a line grid graph admitting a C4-covering. The total

H−irregularity strength of GLn(3, n) is
⌈
n+7
11

⌉
.

Proof. Let GLn(3, n), n ≥ 2, be a line grid graph with the vertex set V (L(Gn(3, n))) =
{xij ; 1 ≤ i ≤ n− 1, 1 ≤ i ≤ n, i = odd} ∪ xij ; 1 ≤ i ≤ n, 1 ≤ i ≤ n, i = even}and the cardinality

is |V (L(Gn(3, n)))| = 3(n− 1)− 2(n). The set of edges is E(L(Gn)) = {xijx
i+1
j , ; 1 ≤ i ≤ n, 1 ≤

j ≤ n ∪ {xijx
i+1
j+1, ; 1 ≤ i ≤ n, i odd,1 ≤ j ≤ n − 1} ∪ {xijx

i+1
j−1; 1 ≤ i ≤ n, i even, 2 ≤ j ≤ n}

and the cardinality is |E(L(Gn(3, n)))| = 8n − n. The line grid graph G(3, n)n ≥ 2, contains
a C4-covering with exactly 2n − 2 cycles C4. The lower bound that we get from the theorem

2, tHs(L(Gn), C4) ≥
⌈
n+7
8

⌉
. Put l tHs(L(Gn), C4) ≥

⌈
n+7
8

⌉
. We define C4-irregular total

l-labeling ϕ4 : V (L(Gn(3, n)))∪E(L(Gn(3, n)))→ {1, 2, . . . , l} with aim the indicating tof that
l is the upper bound for total C4-irregular strength L(Gn).

A C4-irregular total l-labeling ϕ4 : V (L(Gn)) ∪ E(L(Gn)) → {1, 2, . . . , l} is as follows: for
j = 1, 2, . . . , l,

f(x1
i ) =


1 ; i = 1
3t− 1 ; 8t− 6 ≤ i ≤ 8t− 4
3t ; 8t− 3 ≤ i ≤ 8t− 1
3t+ 1 ; 8t ≤ i ≤ 8t+ 1

f(x2
i ) =


1 ; i = 1
3t− 2 ; i = 8t− 6
3t− 1 ; 8t− 5 ≤ i ≤ 8t− 4
3t ; 8t− 3 ≤ i ≤ 8t− 1
3t+ 1 ; 8t ≤ i ≤ 8t+ 1

f(x3
i ) =


1 ; i = 1
3t− 1 ; 8t− 6 ≤ i ≤ 8t− 4
3t ; 8t− 3 ≤ i ≤ 8t− 2
3t+ 1 ; 8t− 1 ≤ i ≤ 8t+ 1

f(x4
i ) =


1 ; i = 1
3t− 2 ; i = 8t− 7
3t− 1 ; 8t− 6 ≤ i ≤ 8t− 4
3t ; 8t− 3 ≤ i ≤ 8t− 1
3t+ 1 ; 8t− 4 ≤ i ≤ 8t+ 1

f(x5
i ) =


1 ; i = 1
3t− 1 ; 8t− 6 ≤ i ≤ 8t− 5
3t ; 8t− 4 ≤ i ≤ 8t− 2
3t+ 1 ; 8t− 1 ≤ i ≤ 8t+ 1

f(x1
ix

2
i ) =


1 ; i = 1
3t− 2 ; 8t− 6 ≤ i ≤ 8t− 5
3t− 1 ; 8t− 4 ≤ i ≤ 8t− 2
3t ; 8t− 1 ≤ i ≤ 8t
3t+ 1 ; i = 8t+ 1

f(x1
ix

2
i+1) =


13t− 2 ; 8t− 7 ≤ i ≤ 8t− 6
3t− 1 ; 8t− 5 ≤ i ≤ 8t− 3
3t ; 8t− 2 ≤ i ≤ 8t
3t+ 1 ; i = 8t+ 1

f(x2
ix

3
i ) =


1 ; i = 1
3t− 2 ; 8t− 7 ≤ i ≤ 8t− 5
3t− 1 ; 8t− 4 ≤ i ≤ 8t− 3
3t ; 8t− 2 ≤ i ≤ 8t
3t+ 1 ; i = 8t+ 1 ≤ i ≤ 8t+ 2

f(x2
i+1x

3
i ) =


1 ; i = 1
3t− 2 ; i = 8t− 6
3t− 1 ; 8t− 5 ≤ i ≤ 8t− 3
3t ; 8t− 2 ≤ i ≤ 8t− 1
3t+ 1 ; 8t ≤ i ≤ 8t+ 1

f(x3
ix

4
i ) =


1 ; i = 1
3t− 2 ; 8t− 7 ≤ i ≤ 8t− 6
3t− 1 ; 8t− 5 ≤ i ≤ 8t− 3
3t ; 8t− 2 ≤ i ≤ 8t
3t+ 1 ; i = 8t+ 1

f(x3
ix

4
i+1) =


1 ; i = 1
3t− 2 ; 8t− 7 ≤ i ≤ 8t− 6
3t− 1 ; 8t− 5 ≤ i ≤ 8t− 3
3t ; 8t− 2 ≤ i ≤ 8t
3t+ 1 ; i = 8t+ 1

f(x4
ix

5
i ) =


1 ; i = 1
3t− 2 ; 8t− 7 ≤ i ≤ 8t− 6
3t− 1 ; 8t− 4 ≤ i ≤ 8t− 3
3t ; 8t− 2 ≤ i ≤ 8t− 1
3t+ 1 ; 8t ≤ i ≤ 8t+ 2
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f(x4i+1x
5
i ) =


1 ; i = 1
3t− 2 ; 8t− 7 ≤ i ≤ 8t− 6
3t− 1 ; 8t− 5 ≤ i ≤ 8t− 4
3t ; 8t− 3 ≤ i ≤ 8t− 1
3t+ 1 ; 8t ≤ i ≤ 8t+ 1

For each vertex and edge label under the ϕ4-labeling is almost l. We can see and observe
that every vertex and edge under ϕ4-labeling are almost l. We get the C4-weight of C l

4,
l = 1, 2, . . . , 2m− 2, under the total labeling ϕ4, we get

wtϕ4(C l
4) =

∑
v∈V (Cl

4)

ϕ(v) +
∑

e∈E(Cl
4)

ϕ(e),

From the wtϕ4(C l
4) that the amount of label vertexs and edges, we obtain the sequence

increases. And it is enough to prove that wtϕ4(C l
4) < wtϕ4(C l+1

4 ), l = 1, 2, . . . , n.
The function label of vertex and edge wtϕ4 point are variable periodic functions n. For each

positive integer l, l = 1, 2, 3, ...., the wtϕ4 function is used to label the vertex and edge of the
graph G(Ln). For each weight G(Ln):

w1 = ϕ4(x
1
i ) + ϕ4(x

2
i ) + ϕ4(x

3
i ) + ϕ4(xi+

2
1) + ϕ4(x

1
i )(x

2
i ) + ϕ4(x

2
i )(x

3
i ) + ϕ4(xi+

2
1)(x

3
i ) +

ϕ4(x
1
i )(xi+

2
1)

w2 = ϕ4(xi+
2
1) + ϕ4(x

3
i ) + ϕ4(xi+

4
1) + ϕ4(xi+

3
1) + ϕ4(xi ++ 12)(x3i ) + ϕ4(xi+

2
1)(xi+

3
1) +

ϕ4(x
3
i )(xi+

4
1) + ϕ4(xi+

3
1)(xi+

4
1)

w3 = ϕ4(x
3
i ) + ϕ4(x

4
i ) + ϕ4(xi+

4
1) + ϕ4(x

5
i ) + ϕ4(x

3
i )(x

4
i ) + ϕ4(x

3
i )(xi+

4
1) + ϕ4(x

4
i )(x

5
i ) +

ϕ4(xi+
4
1)(x

5
i )

for each value s, weights are obtained

w1 = 8, 11, 14, ...., 3n+ 5

w2 = 10, 13, 16, ...., 3n+ 7

w3 = 9, 12, 15, ...., 3n+ 6

The based on the equation obtained wtϕL(Gn) = 1 + wtϕL(Gn). total weight of L(Gn) is

wtϕL(Gn) =wtϕ4(C l
4) =

∑
v∈V (Cl

4)
ϕ(v) +

∑
e∈E(Cl

4)
ϕ(e) = 8, 9, 10, 11, 12, ..., 3n+ 7.

we respect to wtϕ3(C l
nl) < wtϕ3(C l+1

n ), l = 1, 2, . . . , n then wtϕ3(C l+1
n ) = 2 + wtϕ3(C l

n) we
can observed the illustration of total C3-irregularity strength of line grid graph on Figure 1.

Theorem 3. Let Wd(3, n), n ≥ 2, be a butterfly graph recognizing a C3-covering. The total
H−irregularity strength of Wd(3, n) is

tHs(Wd,C3) =

⌈
n+ 5

6

⌉
Proof. let Wd(3, n), n ≥ 2, be a butterfly graph with the vertex set V (Wd, c3) = {xi; 1 ≤ i ≤
n + 1} ∪ {yi; 1 ≤ i ≤ n} ∪ {zi; 1 ≤ i ≤ n + 1} and the cardinality is |V (Wd, c3)| = 3n + 2.
The set of edges is E(Wd,C3) = {xiyi; 1 ≤ i ≤ n} ∪ {yixi+1, ; 1 ≤ i ≤ n} ∪ {xizi; 1 ≤ i ≤
n + 1} ∪ {ziyi, ; 1 ≤ i ≤ n} ∪ {yizi+1, ; 1 ≤ i ≤ n} and the cardinality is |E(Wd,C3)| = 5n + 1.
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Figure 1. Illustration of line grid graph L(Gn)(3, 4)

The butterfly graph (Wd,C3), contains a C3-covering with exactly 2n− 2 cycles C3. The lower

bound that we get from the theorem 3, tHs(Wd,C3) ≥
⌈
n+5
6

⌉
. Put l tHs(Wd,C3) ≥

⌈
n+5
6

⌉
.

We specify a C3-irregular total l-labeling ϕ3 : V (Wd,C3) ∪ E(Wd,C3) → {1, 2, . . . , l} is prove
that α as an upper bound for the total Wd-irregularity strength of Wd.

A C3-irregular total l-labeling ϕ3 : V (L(Gn)) ∪ E(L(Gn))→ {1, 2, . . . , l} is as follows:

f(xi) =
⌈
i+2
3

⌉
f(yi) =

⌈
i+ 2

3

⌉
f(zi) =

⌈
i+1
3

⌉
f(yizi) =

⌈
i

3

⌉
f(xiyi) =

⌈
i+1
3

⌉
f(xi+1yi) =

⌈
i+ 1

3

⌉
f(xizi) =

⌈
i
3

⌉
f(yizi+1) =

⌈
i

3

⌉

We get the upper bound from the function of C3−irregular total Wd(3, n)-labelling. We get

to present to the upper bound of the graph in the theorem 3, tHs((Wdn), C3) ≤
⌈
i+2
3

⌉
Based on the labeling above, we can show the all weights are different by the following

equation:

wtϕn(Wdj+2
n )− wtϕn(Wdjn) = ϕ3(xi+1) + ϕ3(yi+1) + ϕ3(zi+1) + ϕ3(xizi+1) + ϕ3(xiyi+1) +

ϕ3(ziyi+1)− ϕ3(xi)− ϕ3(yi)− ϕ3(zi)− ϕ3(xizi)− ϕ3(xiyi)−
ϕ3(ziyi)

= 2

for every w odd

wtϕn(Wdj+3
n )− wtϕn(Wdj+1

n ) = ϕ3(xi+2) + ϕ3(yi) + ϕ3(zi+2) + ϕ3(xi+1yi+1) + ϕ3(zi+1yi+1)

+ϕ3(xizi+2)− ϕ3(xi+1)− ϕ3(yi)− ϕ3(zi+1)− ϕ3(xi+1yi)−
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Figure 2. Illustration of butterfly graph (Wd)

ϕ3(zi+1yi)− ϕ3(xizi+1)

= 2

We respect to wtϕ3(C l
n) < wtϕ3(C l+1

n ), l = 1, 2, . . . , n then wtϕ3(C l+1
n ) = 2 + wtϕ3(C l

n) The

all H-weights are distinct. This matter concludes that tHs(Wdn) =
⌈
n+5
6

⌉
. The example of

total C3-irregularity of butterfly graph labeling, we can see on Figure 2, and we get tHs(Wd,C3)
= 2
Theorem 4. Let Hn(3, n), n ≥ 2, be a Hexagonal graph recognizing a C6-covering. The total
H−irregularity strength of Hn(n) is

tHs(Hn,C6) =

⌈
n+ 11

12

⌉
Proof. let Hn(6, n), n ≥ 2, be a cycle graph with the vertex set V (C6) = {xi; 1 ≤ i ≤
n} ∪ {yi; 1 ≤ i ≤ n + 1} ∪ {zi; 1 ≤ i ≤ n + 1} ∪ {ki; 1 ≤ i ≤ n} and the cardinality is
|V (C6)| = 4n+2. The set of edges is E(C6) = {xiyi; 1 ≤ i ≤ n}∪{xiyi+1, ; 1 ≤ i ≤ n}∪{yizi; 1 ≤
i ≤ n+1}∪{ziki, ; 1 ≤ i ≤ n}∪{zi+1k1, ; 1 ≤ i ≤ n} and the cardinality is |E(Hn,C6)| = 5n+1.
The cycle graph (Hn,C6), contains a C6-covering with exactly 2n−2 cycles C6. The lower bound

that we get from the theorem 4, tHs(Hn) ≥
⌈
n+11
12

⌉
. Put l tHs(Hn) ≥

⌈
n+11
12

⌉
. We specify a

C6-irregular total l-labeling ϕ6 : V (Hn,C6) ∪E(C6)→ {1, 2, . . . , l} is prove that α as an upper
bound for the total Hn-irregularity strength of Hn.

A C6-irregular total l-labeling ϕ6 : V (C6) ∪ E(C6)→ {1, 2, . . . , l} is as follows:

f(xi) =

⌈
i+ 10

12

⌉
f(yi) =

⌈
i+7
12

⌉
f(zi) =

⌈
i+ 8

12

⌉
f(ki) =

⌈
i+6
12

⌉
f(xiyi) =

⌈
i+ 5

12

⌉
f(yixi+1) =

⌈
i+4
12

⌉
f(xizi) =

⌈
i

12

⌉
f(ziki) =

⌈
i+3
12

⌉
f(kizi+1) =

⌈
i+ 2

12

⌉
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Figure 3. Illustration of Hexagonal graph (C6)

We get the upper bound from the function of C6−irregular total Hn-labelling. We get to

present to the upper bound of the graph in the theorem 3, tHs((Hn), C6) ≤
⌈
i+10
12

⌉
Based on the labeling above, we can show the all weights are different by the following

equation:

wtϕn(Hj+1
n )− wtϕn(Hj

n) = ϕ6(xi + 1) + ϕ6(yi + 1) + ϕ6(xi + 2) + f(xiyi + 1) +

ϕ6(yix1 + 1 + 1) + ϕ6(zi + 1)− ϕ6(xi)− ϕ6(yi)− ϕ6(xi+1)−
ϕ6(zi)− ϕ6(ki)− ϕ6(zi+1)− ϕ6(xiyi)− ϕ6(yix1+1)

= 1

We respet to wtϕ6(C l
n) < wtϕ6(C l+1

n ), l = 1, 2, . . . , n then wtϕ6(C l+1
n ) = 2 + wtϕ6(C l

n). The

all H-weights are distinct. This matter concludes that tHs((Hm), Hn) =
⌈
n+11
12

⌉
. The example

of total Hn-irregularity of diamond ladder graph labeling, we can see on Figure 3, and we get
tHs(Hn,C6) = 2.

Theorem 5. Let Dn(3, n), n ≥ 2, be a diamond graph recognizing a C4-covering. The total
H−irregularity of Dn(n) is

tHs(Dn,C4) =

⌈
n+ 8

9

⌉
Proof. let Dn(4, n), n ≥ 2, be a diamond graph with the vertex set V (Dn,C4) = {xi; 1 ≤ i ≤
n} ∪ {yi; 1 ≤ i ≤ n + 1} ∪ {zi; 1 ≤ i ≤ n + 1} and the cardinality is |V (Dn,C4)| = 3n + 1.
The set of edges is E(Dn,C4) = {xiyi; 1 ≤ i ≤ n} ∪ {xiyi+1, ; 1 ≤ i ≤ n} ∪ {yizi; 1 ≤ i ≤
n} ∪ {yizi+1, ; 1 ≤ i ≤ n} ∪ {yiyi+1, ; 1 ≤ i ≤ n} and the cardinality is |E(Dn,C4)| = 5n. The
diamond graph (Dn,C4), contains a C4-covering with exactly 2n−2 cycles C4. The lower bound

that we get from the theorem 5, tHs(Dn,C4) ≥
⌈
n+8
9

⌉
. Put l tHs(C4) ≥

⌈
n+8
9

⌉
. We specify

a C4-irregular total l-labeling ϕ4 : V (Dn,C4) ∪ E(Dn,C4)→ {1, 2, . . . , l} is prove that α as an
upper bound for the total Dn−irregularity strength of Dn.

A C4-irregular total l-labeling ϕ4 : V (C4) ∪ E(C4)→ {1, 2, . . . , l} is as follows:

f(xi) =
⌈
i+6
9

⌉
f(yi) =

⌈
i+ 7

9

⌉
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Figure 4. Illustration of Total C4-Irregularity strength of diamond graph (Dn)

f(zi) =
⌈
i+5
9

⌉
f(xiyi) =

⌈
i+ 4

9

⌉
f(xiyi+1) =

⌈
i+3
9

⌉
f(yiz1) =

⌈
i+ 2

9

⌉
f(yi+1zi) =

⌈
i+1
9

⌉
f(yiyi+1) =

⌈
i+ 2

9

⌉
We get the upper bound from the function of C4−irregular total Dn-labelling. We get to

present to the upper bound of the graph in the theorem 3, tHs((Dn), C4) ≤
⌈
i+6
9

⌉
Based on the labeling above, we can show the all weights are different by the following

equation:

wtϕn(Dj+1
n )− wtϕn(Dj

n) = ϕ4(xi + 1) + ϕ4(yi + 1) + ϕ4(yi + 2) + ϕ4(zi + 1) + ϕ4(xiyi + 1) +

ϕ4(xiyi+1 + 1)− ϕ4(xi)− ϕ4(yi)− ϕ4(yi + 1)− ϕ4(zi)− ϕ4(xiyi)−
ϕ4(xiyi+1)− ϕ4(yizi)− ϕ4(yi+1zi)− ϕ4(yiyi+1)

= 1

We respect to wtϕ4(C l
n) < wtϕ4(C l+1

n ), l = 1, 2, . . . , n then wtϕ4(C l+1
n ) = 2 + wtϕ4(C l

n). The

all H-weights are distinct. This matter concludes that tHs(Dn) =
⌈
n+8
9

⌉
. The example of total

C4-irregularity of diamond graph labeling, we can see on Figure 4, and we get tHs(Dn,C4) = 2.

3. Conclusion
In this paper, We have given the result of total H-irregularity strength of linegrid graphs, but-
terfly graphs, hexagonal graphs and diamond graphs. We recognize H-covering on all graphs in
this discussion that H is a cycle and fan graph.

Open Problem 1. Find the total H−irregularity strength of the graphs with H 6= C.
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