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Abstract
We consider the scattering problems of a quantum particle in a system with 
a single Y-junction and in ring systems with double Y-junctions. We provide 
new formalism for such quantum mechanical problems. Based on a path 
integral approach, we find compact formulas for probability amplitudes in the 
ring systems. We also discuss quantum reflection and transmission in the ring 
systems under scale-invariant junction conditions. It is remarkable that perfect 
reflection can occur in an anti-symmetric ring system, in contrast with the 
one-dimensional quantum systems having singular nodes of degree 2.

Keywords: one-dimensional quantum wires, Y-junctions, quantum 
transmission, quantum reflection

1.  Introduction

It is truly interesting that the variety of junction conditions appears when the number of space 
dimension is reduced in quantum mechanics. This feature becomes apparent in one-dimen-
sional quantum systems. For example, when we consider a node (i.e. a point interaction) on 
a one-dimensional quantum wire, the two adjacent one-dimensional spaces are completely 
separated by the node. This situation leads to various non-trivial junction conditions. The 
characteristics of the non-trivial junction conditions in one-dimensional quantum systems 
have comprehensively been studied by mathematical works [1–4].

We shed light on quantum problems in a system of a Y-junction. The Y-junction is composed 
of three one-dimensional quantum wires. These wires intersect at one point. The intersection 
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of degree 3 has a point interaction parametrized by U(3) [1–4]. Such a system was originally 
investigated by pioneer works (e.g. [5, 6]) with a simplified S-matrix, which was inspired by 
realized nano-rings. Some mathematical features of transmission of a quantum particle in the 
system with a Y-junction were investigated in [7] and also in the context of a star graph etc 
[8–11]. However, the thorough investigation of the system has not yet been completed.

In the present work, we provide new formalism for the quantum mechanical problems in 
the system with a single Y-junction and ring systems with double Y-junctions. In particular, by 
focusing on scale-invariant junction conditions, we investigate quantum reflection and trans-
mission in such systems. This paper is organized as follows. In section 2, we formulate the 
system with a single Y-junction. We also formulate the ring systems with double Y-junctions 
in section 3. In section 4, we discuss quantum reflection and transmission on the ring systems 
under the scale-invariant junction conditions. Finally, we provide a summary in section 5.

2.  Formulation of a system with a single Y-junction

2.1. The Schrödinger equation

We consider a quantum system with a single Y-junction, in which three one-dimensional quantum 
wires intersect at one point. Let us assume that the three axes are given by x1, x2 and x3 and 
directed to the node as shown in figure 1(a) (inward axes). We also assume that the node locates 
at xi = ξ (i = 1, 2, 3). Note that the angle between any two axes has no effect on the physical 
states. On each wire (xi < ξ), a quantum particle with mass m obeys the Schrödinger equation

i�
∂

∂t
Φi (t, xi) = − �2

2m
∂2

∂x2
i
Φi (t, xi) ,� (1)

where Φi  denotes the wave function on the xi-axis. Thus we assume a free particle on the wire.

2.2.  Junction conditions

Let us discuss the expression of a junction condition. The junction condition at the node is 
provided by the conservation of the probability current

j1(t, ξ) + j2(t, ξ) + j3(t, ξ) = 0,� (2)

where the probability current ji(t, xi) on the xi-axis is given by

ji(t, xi) := − i�
2m

{
Φ∗

i (t, xi)Φ
′
i(t, xi)− Φ∗

i
′(t, xi)Φi(t, xi)

}
,� (3)

and we implicitly assume the limit

ji(t, ξ) := lim
xi→ξ

ji(t, xi).� (4)

Here the prime (′) denotes the partial differentiation with respect to the spatial coordinate. 
Equation (2) can be expressed by

Ψ′†Ψ−Ψ†Ψ′ = 0,� (5)

where

Ψ :=



Φ1(t, ξ)
Φ2(t, ξ)
Φ3(t, ξ)


 , Ψ′ :=



Φ′

1(t, ξ)
Φ′

2(t, ξ)
Φ′

3(t, ξ)


 .� (6)
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Equation (5) is equivalently expressed as [4]

|Ψ− iL0Ψ
′| = |Ψ+ iL0Ψ

′| ,� (7)

where L0 (∈ R) is an arbitrary non-vanishing constant with dimension of length (see appendix 
A for the role of L0). Hence Ψ− iL0Ψ

′ is connected to Ψ+ iL0Ψ
′ via a unitary transforma-

tion. Thus, we obtain the junction condition [4]

(U − I3)Ψ + iL0 (U + I3)Ψ
′ = 0,� (8)

where I3 is the 3 × 3 identity matrix, and U is a 3 × 3 unitary matrix, i.e. U ∈ U(3). Therefore 
the junction condition is characterized by the unitary matrix U.

Figure 1.  A quantum system with a Y-junction. The three axes are labeled by x1, x2 and 
x3. The node is given by xi = ξ (i = 1, 2, 3). (a) All axes are directed to the node. (b) 
The axes are taken in the opposite direction in comparison with (a).
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Next, we discuss parametrization of the unitary matrix U. For this discussion, it is useful to 
recall that any unitary matrix U can be diagonalized by a unitary matrix W as

W†UW = D :=




eiθ1 0 0
0 eiθ2 0
0 0 eiθ3


� (9)

where θi ∈ R (i = 1, 2, 3). Since U(3) = U(1)× SU(3) holds locally [12], the unitary matrix 
W can always be expressed by an element V ∈ SU(3) multiplied by a complex factor eiη, i.e. 
W = eiηV , where η ∈ R. When we adopt the Euler angle parametrization [13] for V , we have

W = eiηeiαλ3 eiβλ2 eiγλ3 eiδλ5 eiaλ3 eibλ2 eicλ3 eidλ8� (10)

where λ1,λ2, · · · ,λ8 are the Gell-Mann Matrices (see appendix B for the definition), and 
α,β, γ, δ, a, b, c, d ∈ R. Then we derive

U = WDW† = V DV †,� (11)

where

V = eiαλ3 eiβλ2 eiγλ3 eiδλ5 eiaλ3 eibλ2 .� (12)

Thus the unitary matrix U, which provides the junction condition, is specified by the nine real 
parameters: θ1, θ2 , θ3, α, β, γ , δ, a and b.

2.3. The scattering matrices

Let us consider the scattering of a single mode with wave number k by a Y-junction. We assume 
that incoming waves and outgoing waves are provided by φieikxi and ψie−ikxi  (i = 1, 2, 3), 
respectively, as shown in figure 1(a). Here φi,ψi ∈ C. Then, we have

Φi (t, xi) = e−i E
� t (φieikxi + ψie−ikxi

)
,� (13)

and

Ψ = e−i E
� t


eikξ



φ1

φ2

φ3


+ e−ikξ



ψ1

ψ2

ψ3




 ,� (14)

Ψ′ = e−i E
� t


ikeikξ



φ1

φ2

φ3


− ike−ikξ



ψ1

ψ2

ψ3





 ,� (15)

where E := �2k2/2m. Substituting equations (14) and (15) into equation (8) and using equa-
tion (11), we can rewrite the expression (8) into the form



ψ1

ψ2

ψ3


 = S(ξ)



φ1

φ2

φ3


 .� (16)

Based on the inward axes as shown in figure 1(a), we derive the S-matrix as

S(ξ) = S(in)(ξ) := e2ikξV S(in)
0 V †,� (17)
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5

where

S(in)
0 :=




ikL1+1
ikL1−1 0 0

0 ikL2+1
ikL2−1 0

0 0 ikL3+1
ikL3−1


 ,� (18)

and

Li := L0 cot
θi

2
.� (19)

Here the superscript ‘(in)’ denotes the result derived on the inward axes. Note that the diagonal 
component Sii (i = 1, 2, 3) represents the probability amplitude for the reflection from xi-axis 
to xi-axis, while the non-diagonal component Sij (i �= j) represents the probability amplitude 
for the transmission from xj -axis to xi-axis. The S-matrix (17) is not symmetric in general, 
because the junction conditions do not necessarily satisfy the time-reversal symmetry (see 
appendix C for the condition of the time-reversal symmetry).

It should also be noted that when we take the axes in the opposite direction as shown in 
figure 1(b) (outward axes), we have to replace the wave number k with  −k. In this case, we 
derive the S-matrix in the form

S(ξ) = S(out)(ξ) := e−2ikξV S(out)
0 V †,� (20)

S(out)
0 :=




ikL1−1
ikL1+1 0 0

0 ikL2−1
ikL2+1 0

0 0 ikL3−1
ikL3+1


 .� (21)

Here the superscript ‘(out)’ denotes the result derived on the outward axes. This expression is 
also useful to discuss a ring system with double Y-junctions in the next section.

3.  Formulations of a ring system with double Y-junctions

3.1.  Preliminary

We consider a ring system made of double Y-junctions as shown in figure 2. In this system, 
the Y-junction on the left has the inward axes of x1, x2 and x3, while the Y-junction on the 
right has the outward axes of x2, x3 and x4. The nodes are given by x1 = x2 = x3 = ξ1 and 
x2 = x3 = x4 = ξ2, where ξ1 > ξ2. We also assume that the node on the Y-junction (x1x2x3) 
has the same parameters as the node on the Y-junction (x4x2x3) symmetrically, as shown in fig-
ure 3(a). We call this type of a ring a symmetric ring. (We also discuss an anti-symmetric ring 
below.) When we consider a scattering problem, we take the wave functions on the wires as

Φ1(t, x1) = e−i E
� t (eikx1 + Ae−ikx1

)
,� (22)

Φ2(t, x2) = e−i E
� t (Be−ikx2 + Ceikx2

)
,� (23)

Φ3(t, x3) = e−i E
� t (De−ikx3 + Eeikx3

)
,� (24)

Φ4(t, x4) = e−i E
� tFeikx4 ,� (25)

Y Fujimoto et alJ. Phys. A: Math. Theor. 53 (2020) 155302
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where A, B, C, D, E, F ∈ C. Applying these expressions to equation (16), we have the relations



A
B
D


 = S(in)

1 (ξ1)




1
C
E


 ,� (26)




F
C
E


 = S(out)

2 (ξ2)




0
B
D


 ,� (27)

where S1 denotes the S-matrix on the Y-junction (x1x2x3), and S2 denotes the S-matrix on 
the Y-junction (x4x2x3). By solving equations (26) and (27), we can derive the coefficients 

A, B, C, D, E  and F as functions of the components of S(in)
1 (ξ1) and S(out)

2 (ξ2) (see appendix D).

3.2.  Path integral description

Let us derive the solution for the coefficients A, B, C, D, E  and F in equations (22)–(25) based 
on a path integral approach. Our approach is similar to the method of a path decomposition 
expansion developed in [14] (see [10, 15, 16] for general treatments). The path integral makes 
physical interpretation clear.

First, we obtain the solution for F. We now consider all possible paths from x1 to x4. Each 
path can be characterized by the number of scattering at the nodes. Let us assume that Fn denotes 
the contribution from the path having n times scattering to F. Here n = 2�1 (�1 = 1, 2, 3, · · · ) 
is only permitted. Thus, we have

F = F2 + F4 + F6 + · · · .� (28)

For example, F2 is composed of two paths: (x1 → x2 → x4) and (x1 → x3 → x4). Hence, when 
we write the components of S(in)(ξ1) and S(out)(ξ2) as

S(in)
1 (ξ1) :=




s11 s12 s13

s21 s22 s23

s31 s32 s33


 ,� (29)

Figure 2.  A ring system with double Y-junctions.

Y Fujimoto et alJ. Phys. A: Math. Theor. 53 (2020) 155302
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S(out)
2 (ξ2) =




s̃11 s̃12 s̃13

s̃21 s̃22 s̃23

s̃31 s̃32 s̃33


 ,� (30)

we have

F2 = s̃12s21 + s̃13s31 =
∑
i=2,3

s̃1isi1.� (31)

Similarly, we derive

F4 =
∑

in=2,3

s̃1i1 si1i2 s̃i2i3 si31,� (32)

F6 =
∑

in=2,3

s̃1i1 si1i2 s̃i2i3 si3i4 s̃i4i5 si51,

...

� (33)

F2�1 =
∑

in=2,3

s̃1i1 si1i2 s̃i2i3 si3i4 s̃i4i5 · · · si2�1−11.� (34)

When we define 2 × 2 matrices

s :=
(

s22 s23

s32 s33

)
,� (35)

Figure 3.  (a) A symmetric ring system. (b) An anti-symmetric ring system.

Y Fujimoto et alJ. Phys. A: Math. Theor. 53 (2020) 155302



8

s̃ :=
(

s̃22 s̃23

s̃32 s̃33

)
,� (36)

then we derive

F2 =
(

s̃12 s̃13

)(
s21

s31

)
,� (37)

F4 =
(

s̃12 s̃13

)
ss̃
(

s21

s31

)
,� (38)

F6 =
(

s̃12 s̃13

)
(ss̃)2

(
s21

s31

)
,

...

� (39)

F2�1 =
(

s̃12 s̃13

)
(ss̃)�1−1

(
s21

s31

)
.� (40)

Therefore, we obtain the amplitude F as

F =
(

s̃12 s̃13

){
I2 + ss̃ + (ss̃)2

+ · · ·
}(

s21

s31

)
,� (41)

where I2 is the 2 × 2 identity matrix.
Next, we obtain the solution for A. We consider all possible paths from x1 to x1. Let us 

assume that An denotes the contribution from the path having n times scattering to A. Here 
n = 2�2 + 1 (�2 = 0, 1, 2, · · · ). Then we have

A = A1 + A3 + A5 + · · · .� (42)

For example, A1 is composed of the one path: (x1 → x1), and A3 is composed of four paths: 
(x1 → x2 → x2 → x1), (x1 → x2 → x3 → x1), (x1 → x3 → x2 → x1) and (x1 → x3 → x3 → x1). 
Thus we derive

A1 = s11� (43)

A3 =
(

s12 s13

)
s̃
(

s21

s31

)
,� (44)

A5 =
(

s12 s13

)
s̃ss̃

(
s21

s31

)
,

...

� (45)

A2�2+1 =
(

s12 s13

)
s̃ (ss̃)�2−1

(
s21

s31

)
(�2 � 1).� (46)

Therefore we obtain

A = s11 +
(

s12 s13

)
s̃
{

I2 + ss̃ + (ss̃)2
+ · · ·

}(
s21

s31

)
.� (47)

Y Fujimoto et alJ. Phys. A: Math. Theor. 53 (2020) 155302
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The coefficient A is expressed by the sum of a series of ss̃ in the same manner as F.
Finally, in a similar way, we obtain the other coefficients B, C, D and E as

B = s21 +
(

s22 s23

)
s̃
{

I2 + ss̃ + (ss̃)2
+ · · ·

}(
s21

s31

)
,� (48)

C =
(

s̃22 s̃23

){
I2 + ss̃ + (ss̃)2

+ · · ·
}(

s21

s31

)
,� (49)

D = s31 +
(

s32 s33

)
s̃
{

I2 + ss̃ + (ss̃)2
+ · · ·

}(
s21

s31

)
,� (50)

E =
(

s̃32 s̃33

){
I2 + ss̃ + (ss̃)2

+ · · ·
}(

s21

s31

)
.� (51)

Thus the coefficients B, C, D and E are also expressed by the sum of a series of ss̃.
The above expressions can be simplified. Since |sij| < 1 and |̃sij| < 1 (i, j = 2, 3), we have

lim
n→∞

(ss̃)n
= O2,� (52)

where O2 is the 2 × 2 zero matrix. Hence the series of ss̃ converges as

I2 + ss̃ + (ss̃)2
+ · · · = (I2 − (ss̃))−1 .� (53)

Therefore we can rewrite the above results as

A = s11 +
(

s12 s13

)
s̃ (I2 − (ss̃))−1

(
s21

s31

)
,� (54)

B = s21 +
(

s22 s23

)
s̃ (I2 − (ss̃))−1

(
s21

s31

)
,� (55)

C =
(

s̃22 s̃23

)
(I2 − (ss̃))−1

(
s21

s31

)
,� (56)

D = s31 +
(

s32 s33

)
s̃ (I2 − (ss̃))−1

(
s21

s31

)
,� (57)

E =
(

s̃32 s̃33

)
(I2 − (ss̃))−1

(
s21

s31

)
,� (58)

F =
(

s̃12 s̃13

)
(I2 − (ss̃))−1

(
s21

s31

)
.� (59)

By straightforward calculations, we can confirm that the above results coincide with the 
results derived by solving equations (26) and (27) algebraically (see appendix D). Using equa-
tions (54) and (59), we can calculate the probability for reflection |A|2 and that for transmission 
|F|2.

Y Fujimoto et alJ. Phys. A: Math. Theor. 53 (2020) 155302
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4.  Systems under scale-invariant junction conditions

In this section, we restrict our attention to the cases of scale-invariant junction conditions for 
explicit examples.

4.1.  A system with a single Y-junction

We consider a system with a single Y-junction. Under the scale-invariant junction conditions, 
the eigen values of U take  +1 or  −1, that is, θi takes 0 or π (see appendix E for the details). 
Then, the diagonal matrix D is given by

D = DS :=



ε(θ1) 0 0

0 ε(θ2) 0
0 0 ε(θ3)


 ,� (60)

where

ε(θi) =

{
+1 (θi = 0)
−1 (θi = π)

.� (61)

Substituting equations (11) and (60) into equation (8), we find that the junction condition is 
divided into two conditions

(U − I3)Ψ = 0,� (62)

(U + I3)Ψ
′ = 0.� (63)

Thus the dimensional parameter L0 is dropped in the junction conditions. Furthermore, from 
equation (19), we have

Li → ±∞ as θi = 0,� (64)

Li = 0 as θi = π.� (65)

Hence we derive

S(in)
0 = S(out)

0 = DS.� (66)

It should be noted that the k-dependence of S(in)
0  and S(out)

0  disappears under the scale-invariant 
junction conditions. Thus, we obtain the S-matrix

S(in)(ξ) = e2ikξV DSV †,� (67)

S(out)(ξ) = e−2ikξV DSV †.� (68)

Since the three parameters θi (i = 1, 2, 3) are fixed, six parameters remain in the S-matrices. 
From equations (67) and (68), we find the probability for reflection from the xi-axis to the 
xi-axis

P (i → i) =
∣∣(V DSV †)

ii

∣∣2 ,� (69)

and the probability for transmission from the xi-axis to the xj -axis

P (i → j) =
∣∣∣(V DSV †)

ji

∣∣∣
2

.� (70)

Y Fujimoto et alJ. Phys. A: Math. Theor. 53 (2020) 155302
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In these expressions, k does not appear. Therefore, when we consider the scale-invariant junc-
tion conditions, the probabilities for reflection and transmission become constant with respect 
to k.

4.2.  A symmetric ring system with double Y-junctions

We consider a symmetric ring system with double Y-junctions described in section 3.1 (see 
also figure 3(a)). From equations (67) and (68), we have the S matrix at ξ1 and that at ξ2 as

S(in)
1 (ξ1) = e2ikξ1 V DSV †,� (71)

S(out)
2 (ξ2) = e−2ikξ2 V DSV †.� (72)

We drop the superscripts ‘(in)’ and ‘(out)’ in what follows. From these equations, we find the 
relations

S1(ξ1)S1(ξ1)
† = S1(ξ1)

†S1(ξ1) = I3,� (73)

S2(ξ2)S2(ξ2)
† = S2(ξ2)

†S2(ξ2) = I3,� (74)

S1(ξ1)S1(ξ1) = e4ikξ1 ,� (75)

S2(ξ2)S2(ξ2) = e−4ikξ2 ,� (76)

S2(ξ2) = e2ik(ξ1−ξ2)S1(ξ1)
†.� (77)

From equations (73) and (77), we can derive

s̃ = e2ik(ξ1−ξ2)

(
s∗22 s∗32

s∗23 s∗33

)
,� (78)

and

ss̃ = e2ik(ξ1−ξ2)

(
|s22|2 + |s23|2 −s21s∗31

−s∗21s31 |s32|2 + |s33|2

)
.� (79)

Furthermore, we obtain

ss̃
(

s21

s31

)
= e2ik(ξ1−ξ2) |s11|2

(
s21

s31

)
.� (80)

Thus an eigen value and an eigen vector of ss̃ are given by e2ik(ξ1−ξ2) |s11|2 and 
(

s21

s31

)
, respec-

tively. Substituting equation (80) into equations (47)–(51) and (41), we derive the simplified 
results

A =
(1 − e2ik(ξ1−ξ2))s11

1 − e2ik(ξ1−ξ2) |s11|2
,� (81)

B =
s21

1 − e2ik(ξ1−ξ2) |s11|2
,� (82)

Y Fujimoto et alJ. Phys. A: Math. Theor. 53 (2020) 155302
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C =
−e2ik(ξ1−ξ2)s11s∗12

1 − e2ik(ξ1−ξ2) |s11|2
,� (83)

D =
s31

1 − e2ik(ξ1−ξ2) |s11|2
,� (84)

E =
−e2ik(ξ1−ξ2)s11s∗13

1 − e2ik(ξ1−ξ2) |s11|2
,� (85)

F =
e2ik(ξ1−ξ2)

(
1 − |s11|2

)

1 − e2ik(ξ1−ξ2) |s11|2
.� (86)

Consequently, from equations  (81) and (86), we find that the perfect transmission (A  =  0) 
occurs if and only if the condition

e2ik(ξ1−ξ2) = 1� (87)

holds except the trivial case of s11  =  0. On the other hand, the perfect reflection (F  =  0) does 
not occur except the trivial case of |s11|  =  1.

4.3.  An anti-symmetric ring system with double Y-junctions

We also discuss an anti-symmetric ring system in which the x2-components in the S-matrix 
are replaced with the x3-components and vice versa on the Y-junction (x4x2x3) on the right, as 
shown in figure 3(b). That is, we replace S2(ξ2) with S2(ξ2), where

S2(ξ2) := PS2(ξ2)P−1.� (88)

Here P is defined by

P :=




1 0 0
0 0 1
0 1 0


 .� (89)

Under the scale-invariant junction conditions, from equation (77), we derive

S2(ξ2) = e2ik(ξ1−ξ2)PS1(ξ1)
†P−1

= e2ik(ξ1−ξ2)




s∗11 s∗31 s∗21

s∗13 s∗33 s∗23

s∗12 s∗32 s∗22


 .

� (90)

Thus, we have

s̃ = e2ik(ξ1−ξ2)

(
s∗33 s∗23

s∗32 s∗22

)
,� (91)

and

ss̃ = e2ik(ξ1−ξ2)

(
s22s∗33 + s23s∗32 s22s∗23 + s23s∗22

s32s∗33 + s33s∗32 s32s∗23 + s33s∗22

)
.� (92)
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Substituting the last result into equations (54)–(59), we obtain

A =
1
D

[
s11 + s11e4ik(ξ1−ξ2) + e2ik(ξ1−ξ2)Λ

]
� (93)

B =
1
D

[
s21 + e2ik(ξ1−ξ2)

{
− s21(s32s∗23 + s33s∗22)

+ s31(s22s∗23 + s∗22s23)
]
,

� (94)

C =
e2ik(ξ1−ξ2)

D

[
(s∗33s21 + s∗23s31) + s11s∗12e2ik(ξ1−ξ2)

]
,� (95)

D =
1
D

[
s31 + e2ik(ξ1−ξ2)

{
− s31(s22s∗33 + s23s∗32)

+ s21(s32s∗33 + s33s∗32)
]
,

� (96)

E =
e2ik(ξ1−ξ2)

D

[
(s∗32s21 + s∗22s31) + s11s∗13e2ik(ξ1−ξ2)

]
,� (97)

F =
e2ik(ξ1−ξ2)

D
(s∗31s21 + s∗21s31)

(
1 − e2ik(ξ1−ξ2)

)
,� (98)

where

D := 1 − e2ik(ξ1−ξ2) (s22s∗33 + s23s∗32 + s32s∗23 + s33s∗22)

+ |s11|2 e4ik(ξ1−ξ2),
� (99)

Λ := −s11(s22s∗33 + s23s∗32 + s32s∗23 + s33s∗22)

+ s12(s∗33s21 + s∗23s31) + s13(s∗32s21 + s∗22s31).
� (100)

From equation (93), we can find a condition for perfect transmission (A  =  0). From A  =  0, 
we derive

cos (2k(ξ1 − ξ2)) = − Λ

2s11
.� (101)

Hence, if the condition

− Λ

2s11
∈ R and

∣∣∣∣
Λ

2s11

∣∣∣∣ � 1� (102)

holds, then the perfect transmission occurs repeatedly as k increases. Furthermore, from equa-
tion (98), we find that the perfect reflection (F  =  0) occurs if and only if the condition

e2ik(ξ1−ξ2) = 1� (103)

holds except the trivial cases of s21  =  0 or s31  =  0. It should be emphasized that this phenom
enon never happen when we consider one-dimensional quantum systems with double point 
interactions of degree 2 (see [17, 18]).
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5.  Summary

We have newly formulated the system with a single Y-junction and the ring systems with 
double Y-junctions. For the ring systems, we found the compact formulas for probability 
amplitudes based on the path integral approach. We have also discussed quantum reflection 
and transmission on the ring systems. Restricting our attention to the ring systems under the 
scale-invariant junction conditions, we found the conditions for perfect transmission and/or 
perfect reflection. It is remarkable that perfect reflection can occur in the case of the anti-
symmetric ring system, in contrast to the one-dimensional quantum systems having singular 
nodes of degree 2. This phenomena might be related to the possible switching of the supercur
rent through a ring-shaped Josephson junction, which was investigated by [19]. This probable 
relation would be investigated elsewhere. General cases beyond the scale-invariant junction 
conditions should also be investigated. This will be provided in the future works.

Appendix A. The property of L0 in the junction condition

As shown in [4], the parameter L0 does not provide any additional freedom for all possible 
junction conditions characterized by the unitary matrix U ∈ U(3). To make the present paper 
self-contained, we explicitly show this fact in the case of U(3), following the discussion of 
U(2) in [4]. When we use W satisfying equation (9), equation (8) can be written as

(D − I3) Ψ̃ + iL0 (D + I3) Ψ̃
′ = 0,� (A.1)

where

Ψ̃ =



Φ̃1

Φ̃2

Φ̃3


 := W†Ψ, Ψ̃′ =



Φ̃′

1

Φ̃′
2

Φ̃′
3


 := W†Ψ′.� (A.2)

Equation (A.1) is reduced to

Φ̃j + L0 cot
θj

2
Φ̃′

j = 0 ( j = 1, 2, 3) .� (A.3)

We consider an infinitesimal transformation of L0 as

L0 −→ L0 = L0 + δL0.� (A.4)

Under this transformation, if we consider infinitesimal transformations of θj as

θj −→ θj = θj +
δL0

L0
sin θj� (A.5)

then equation (A.3) becomes invariant. Hence, the change of L0 can always be absorbed by 
the changes of parameters (θ1, θ2, θ3). In other words, the parameters (L0, θ1, θ2, θ3) give the 
same junction condition as that of (L0, θ1, θ2, θ3). Thus, the transformation given by (A.4) and 
(A.5) can be considered to be a kind of a gauge transformation. Therefore, we can regard the 
parameter L0 as a gauge freedom.
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Appendix B.  Gell-Mann matrices

The Gell-Mann matrices are defined as

λ1 :=




0 1 0
1 0 0
0 0 0


 ,� (B.1)

λ2 :=




0 −i 0
i 0 0
0 0 0


 ,� (B.2)

λ3 :=




1 0 0
0 −1 0
0 0 0


 ,� (B.3)

λ4 :=




0 0 1
0 0 0
1 0 0


 ,� (B.4)

λ5 :=




0 0 −i
0 0 0
i 0 0


 ,� (B.5)

λ6 :=




0 0 0
0 0 1
0 1 0


 ,� (B.6)

λ7 :=




0 0 0
0 0 −i
0 i 0


 ,� (B.7)

λ8 :=
1√
3




1 0 0
0 1 0
0 0 −2


 .� (B.8)

These eight matrices give bases in SU(3).

Appendix C. The condition of the time-reversal symmetry

We discuss the condition of the time-reversal symmetry for the unitary matrix U. When we 
consider the time-reversal transformation

t −→ t = −t,� (C.1)
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we find the transformation of the wave function from equation (1),

Φi(t, xi) −→ Φi(t, xi) = Φ∗
i (t, xi).� (C.2)

Then we also have

Ψ −→ Ψ = Ψ∗, Ψ′ −→ Ψ′ = Ψ′∗.� (C.3)

Under the time-reversal transformation, the junction condition (8) is transformed as

(U − I3)Ψ + iL0(U + I3)Ψ
′ = 0

−→
(
U − I3

)
Ψ∗ + iL0

(
U + I3

)
Ψ′∗ = 0,

� (C.4)

where we assumed the transformation U → U. The complex conjugate of equation (8) multi-
plied by (−UT) from the left-hand side, where T denotes transposition, becomes

(
UT − I3

)
Ψ∗ + iL0

(
UT + I3

)
Ψ′∗ = 0.� (C.5)

Here we have used the property that U is unitary. Comparing equation (C.4) with (C.5), we 
derive

U −→ U = UT .� (C.6)

Thus, the time-reversal symmetry requires the condition

U = UT .� (C.7)

Therefore, if U is a symmetric matrix, then the boundary condition satisfies the time-reversal 
symmetry as well as the Schrödinger equation (1) does.

Next, we discuss the parameter space which satisfies the condition (C.7) for the time-
reversal symmetry. From equations (11) and (C.7), we derive the condition

V = V ∗,� (C.8)
where V  is given by equation (12). In this case, the S-matrix also becomes symmetric, i.e. 
S  =  ST. Note that while iλ2 and iλ5 are real, iλ3 is imaginary. From the requirements that eiαλ3, 
eiγλ3, and eiaλ3 should be real, we find the conditions for the time-reversal symmetry,

α = 0 or π,� (C.9)

γ = 0 or π,� (C.10)

a = 0 or π.� (C.11)

Therefore, when the above conditions (C.9)–(C.11) hold, the Y-junction satisfies the time-
reversal symmetry, in which the six remaining parameters β, δ, b, θ1, θ2, θ3 are still free.

Finally, we relate our expression of the S-matrix with the symmetric S-matrix in the previ-
ous works [5, 6]. If we adopt the parameters

α = 0, β =
3π
2

, γ = π, δ =
π

4
,

a = 0, θ1 = 0, θ2 = θ3 = π,
� (C.12)

then we obtain

S =




− cos 2b 1√
2
sin 2b 1√

2
sin 2b

1√
2
sin 2b 1

2 (cos 2b − 1) 1
2 (cos 2b + 1)

1√
2
sin 2b 1

2 (cos 2b + 1) 1
2 (cos 2b − 1)


 .� (C.13)
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It should be noted that this matrix also corresponds to a scale-invariant junction condition. 
When 0 � b � π

4 , we introduce new variables

ε̃ :=
1
2
sin2 2b,� (C.14)

ã :=
1
2

(√
1 − 2ε̃− 1

)
=

1
2
(cos 2b − 1) ,� (C.15)

b̃ :=
1
2

(√
1 − 2ε̃+ 1

)
=

1
2
(cos 2b + 1) .� (C.16)

Then we find that the S-matrix is reduced to

S =



−(ã + b̃) ε̃1/2 ε̃1/2

ε̃1/2 ã b̃
ε̃1/2 b̃ ã


 .� (C.17)

This is the same expression as the S-matrix in [5, 6].

Appendix D. The solution of the amplitude A, B, C, D, E and F

By solving equations (26) and (27) algebraically, we obtain the solution for A, B, C, D, E  and 
F as

A = s11 +
1
∆

{s12 (A12(1 − A33) + A13A32)

+s13 (A13(1 − A22) + A12A23)} ,
�

(D.1)

B =
1
∆

{s31B32 + s21(1 − B33)} ,� (D.2)

C =
1
∆

{A12(1 − A33) + A13A32} ,� (D.3)

D =
1
∆

{s21B23 + s31(1 − B22)} ,� (D.4)

E =
1
∆

{A13(1 − A22) + A12A23} ,� (D.5)

F =
1
∆

{s̃12 (s31B32 + s21(1 − B33))

+s̃13 (s21B23 + s31(1 − B22))} ,
�

(D.6)

where

Aij :=
∑

k=2,3

skis̃jk,� (D.7)

Bij :=
∑

k=2,3

s̃kisjk,� (D.8)
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∆ := (1 − A22)(1 − A33)− A23A32

= (1 − B22)(1 − B33)− B23B32.
� (D.9)

Appendix E.  Scale-invariant junction conditions

We discuss the Weyl scaling transformation of the wave function (see also [4]), which is given 
by

Φi(t, xi) −→ Φi(t, xi) = AΦi(t,λxi),� (E.1)

where λ is a positive constant, and A  is a normalization factor. Note that the condition for the 
normalization of the probability is provided by

3∑
i=1

∫ ξ

−∞
|Φi(t, xi)|2 dxi = 1� (E.2)

in a system with a single Y-junction (figure 1(a)). This normalization condition becomes, 
under the Weyl scaling transformation,

3∑
i=1

∫ ξ/λ

−∞
|AΦi(t,λxi)|2 dxi

=

3∑
i=1

∫ ξ

−∞
|AΦi(t, yi)|2

1
λ

dyi = 1.

�

(E.3)

Hence, we derive

Φi(t, xi) −→ Φi(t, xi) = λ1/2Φi(t,λxi).� (E.4)

We also have

Ψ −→ λ1/2Ψ, Ψ′ −→ λ3/2Ψ.� (E.5)

From these results, we find that the junction condition (8) is transformed, under the Weyl scal-
ing transformation, to

λ1/2(U − I3)Ψ + iL0λ
3/2(U + I3)Ψ

′ = 0.� (E.6)

It follows that the junction condition is not invariant in general under the Weyl scaling trans-
formation. If we impose the Weyl scaling invariance, then we obtain

(U − I3)Ψ = 0, (U + I3)Ψ
′ = 0.� (E.7)

The last equation means that the eigen values of U take  +1 or  −1. In this case, we call the 
junction condition scale invariant.
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