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Abstract

Interior-boundaryconditions (IBCs) are boundary conditions onwave functions

for Schrödinger equations that allow that probability can �ow into (and thus

be lost at) a boundary of con�guration space while getting added in another

part of con�guration space. IBCs are of particular interest because they allow

for de�ning Hamiltonians involving particle creation and annihilation (as used

in quantum �eld theories) without the need for renormalization or ultraviolet

cut-off. For those Hamiltonians, the relevant boundary has codimension 3. In

this paper, we develop (what we conjecture is) the general form of IBCs for the

Laplacian operator (or Schrödinger operators), but we focus on the simpler case

of boundaries with codimension 1.

Keywords: regularization of quantum �eld theory, Laplacian operator, particle

creation, probability current

1. Introduction

Interior-boundary conditions (IBCs) are a type of boundary condition for wave functions in

Schrödinger equations that allows the loss of probability at a boundary ∂Q due to �ux into ∂Q
while at the same time the probability gets added in another part of con�guration space Q. In

contrast, ordinary boundary conditions (such as Dirichlet or Neumann boundary conditions)

re�ect all waves that reach ∂Q, with the consequence that no probability can get lost at ∂Q.

IBCs come up in particular in the context of theories with particle creation and annihilation, in

which probability needs to get shifted from the n-particle sector of con�guration space to the

n+ 1-particle sector and vice versa [1–6]. IBCs have attracted interest recently for providing
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Hamiltonians with particle creation without the need for renormalization or ultraviolet cut-off

[7–10]. For a gentle introduction to IBCs, see [11]. Other recent works about IBCs include

[12–14].

Our goal in this paper is to develop the general form of an IBC that conserves probability

(and thus can lead to a self-adjointHamiltonian) for Schrödinger operators (i.e., non-relativistic

Hamiltonians whose kinetic part is the negative Laplacian) for a boundary of codimension 1.

This form is similar to certain IBCs on codimension-3 boundaries considered in [5, 7, 8]. IBCs

for the Dirac equation with codimension-1 boundaries are studied in [15]. Particular such IBCs

are used in a model of particle creation in one space dimension, involving a codimension-1

boundary, that is studied in [16]. Preliminary considerations in the direction of this paper were

described in [6].

The IBC we propose, see (26), should be the most general in the following sense. We do not

consider boundary conditions that will be re�ecting for some components of ψ and IBCs for

others, but focus on pure IBCs. Moreover, we do not consider conditions that force amounts

of probability that have �own into the boundary to reappear out of other parts of the boundary;

rather, we focus on the case that all probability lost at the boundary reappears in the interior

of con�guration space. On the basis of our attempts to set up IBCs, we conjecture that (26)

is the general form, and in particular that an IBC for a self-adjoint Hamiltonian can involve

derivatives normal but not tangential to the boundary.

Codimension-1 boundaries form a natural framework for considering boundary conditions,

including IBCs, although applications often have codimension-3 boundaries. To put things into

perspective, we mention that in the application to particle creation, the con�guration space

consists of con�gurations of a variable number of particles,

Q =

∞
⋃

n=0

Qn =

∞
⋃

n=0

(

R
nd\∆n

)

, (1)

where n means the particle number, d the dimension of physical space, and ∆n the set of

collision con�gurations,

∆n =
{

(x1, . . . , xn) ∈ R
nd: xi = x j for some i 6= j

}

. (2)

The boundary ∂Q is then ∪n∆n, and the IBC relates values (or limits) of ψ on∆n to values of

ψ on Qn−1, the n− 1-particle sector of Q. In this case, the codimension of the boundary is d,

so the physical case has codimension 3. Still, in spherical relative coordinates, the boundary

corresponds to r = 0, which in coordinates is a surface of codimension 1, and this allows us to

carry over some considerations for codimension 1 to the case of codimension 3.

This paper is organized as follows. In section 2, we begin by discussing a simple example.

After that, we turn to the general case: the con�gurationandHilbert space are set up in section 3,

the IBC and Hamiltonian are written down in section 4, and the conservation of probability is

veri�ed in section 5. In section 6, we apply the IBC to an unusual kind of ultraviolet cut-off, in

which the electron is smeared out not over a ball but over a sphere. In section 7, we summarize.

2. Simple example

We begin with a special case that features many elements of the general discussion that will

follow. Let the con�guration space Q = Q(1) ∪ Q(2) be the union of Q(1) = Rd−1 (where d

is any natural number, not related to the dimension of physical space) and a half-spaceQ(2)

= {(x1, . . . , xd) ∈ R
d: xd > 0}. The boundary ∂Q = ∂Q(2) = {(x1, . . . , xd) ∈ R

d: xd = 0}

2
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has codimension 1. A volume measure µ on Q is de�ned by

µ(S) = vold−1(S ∩ Q(1))+ vold(S ∩Q(2)) . (3)

Wave functions are complex-valued functions on Q belonging to

H = L2(Q,C,µ) = L2(Q(1))
⊕

L2(Q(2)) (4)

The IBC demands that for every q ∈ R
d−1,

(α(q)+ β(q)∂d)ψ(q, 0) =
2m

~2
ψ(q) , (5)

where α and β are functionsRd−1 → C, and ∂d means the partial derivative with respect to the

last coordinate in Q(2). The Hamiltonian is de�ned by

Hψ(q) = − ~2

2m
∆ψ(q)+ V(q)ψ(q)+ (γ(q)+ δ(q)∂d)ψ(q, 0) (6)

Hψ(q, qd) = − ~2

2m
∆ψ(q, qd)+ V(q, qd)ψ(q, qd) (7)

for any q ∈ Rd−1 and any qd > 0. Here, V :Q→ R is a potential function, and the coef�cients

γ and δ (not to be confused with a Dirac delta function) are functions Rd−1 → C required to

satisfy the conditions

α(q)∗ γ(q) ∈ R (8)

β(q)∗ δ(q) ∈ R (9)

α(q)∗ δ(q)− γ(q)∗ β(q) = −1 (10)

at every q ∈ Rd−1. Thus, of the 4 complex (or 8 real) degrees of freedom in the choice of coef-

�cients α, β, γ, δ at every q, only 4 real degrees of freedom can actually be chosen freely, while

the others are determined by the conditions (8)–(10). A slightly more restricted choice of IBCs

was considered in [[11], equation (25)]. Analogous IBCs for codimension-3 boundaries with

coef�cients satisfying the same relations (8)–(10) were considered in [5], ([7], remark 5), ([8],

section 4). However, at codimension-3 boundaries, ψ diverges like 1/r at the boundary, where
r is the distance from the bounda; in contrast, ψ stays bounded at codimension-1 boundaries.

We now verify the conservation of probability on the non-rigorous level. From the

Schrödinger equation for the Hamiltonian H, we obtain that for every q ∈ R
d−1 and

qd > 0,

∂|ψ(q)|2
∂t

= −div j (q)+
2

~
Im

[

ψ(q)∗ (γ(q)+ δ(q)∂d)ψ(q, 0)
]

(11)

∂|ψ(q, qd)|2
∂t

= −div j (q, qd) , (12)

where j means the usual probability current in either Q(1) or Q(2) and div the divergence. For

each q ∈ R
d−1, the last term in (11) can be written, by virtue of the IBC (5), as

3
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2

~
Im

[

~2

2m

(

α(q)∗ + β(q)∗∂d
)

ψ(q, 0)∗ (γ(q)+ δ(q)∂d)ψ(q, 0)

]

=
~

m
Im

[

ψ(q, 0)∗α(q)∗ γ(q)ψ(q, 0)
]

+
~

m
Im

[

ψ(q, 0)∗α(q)∗ δ(q) ∂dψ(q, 0)
]

− ~

m
Im

[

ψ(q, 0)∗ γ(q)∗ β(q) ∂dψ(q, 0)
]

+
~

m
Im

[

∂dψ(q, 0)
∗ β(q)∗ δ(q) ∂dψ(q, 0)

]

,

(13)

where the �rst and the last term vanish by virtue of (8) and (9). What remains is

~

m
Im

[

ψ(q, 0)∗
(

α(q)∗ δ(q)− γ(q)∗ β(q)
)

∂dψ(q, 0)
]

, (14)

which agrees, by virtue of (10), with

− ~

m
Im

[

ψ(q, 0)∗∂dψ(q, 0)
]

= − jd(q, 0) , (15)

i.e., the negative of the last component of j on ∂Q(2). Thus, the gain in Q(1) compensates the

loss in Q(2), so that ‖ψ‖2 =
∫

Q|ψ(q)|2 µ(dq) is conserved.
After this simple example, we now turn to the general discussion of IBCs on codimension-1

boundaries.

3. General setting

We take the con�guration spaceQ to be a �nite or countable union of disjoint manifolds with

boundary, Q = ∪nQ(n). (By de�nition, in a manifold with boundary, a neighborhood of an

interior point looks like a piece of Rd , while a neighborhood of a boundary point looks like

a piece of a half-space in R
d. In particular, the boundary has codimension 1, i.e., dimension

d − 1. The boundarymay be empty.)We write ∂Q(n) for the boundary ofQ(n), ∂Q = ∪n∂Q(n),

and Q◦ = Q\∂Q for the interior of Q. We take Q to be equipped with a Riemann metric gi j,

which also de�nes a volume measure µ(n) on Q(n), and thus a measure µ onQ,

µ(S) =
∑

n

µ(n)(S ∩ Q(n)) . (16)

Likewise, the metric de�nes a surface area measure λ on ∂Q.

Wave functions can be complex-valued functions on Q. However, we can also be more

general and allow cross-sections of vector bundles. Readers unfamiliar with vector bundles

may ignore this further generality and think of complex-valued wave functions. So, for every

n, let E(n) be a Hermitian vector bundle overQ(n) of �nite rank (dimension of the �ber spaces)

rn = r(q) = dimC E
(n)
q , (17)

i.e., a complex vector bundle equipped with a positive de�nite Hermitian inner product (, )q
in every �ber E(n)

q , q ∈ Q(n), and a metric connection (i.e., a connection relative to which the

inner product is parallel, or, equivalently, a connection such that the parallel transport it de�nes

along any path from q to q′ is a unitary isomorphismE(n)
q → E

(n)

q′ ). We write E for∪nE
(n) and Eq

4
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for E(n)
q if q ∈ Q(n). The wave function will be a cross-section of E, i.e., a mapping ψ:Q→ E

such that ψ(q) ∈ Eq for every q ∈ Q.

The Hilbert space H = L2(Q,E,µ) consists of the square-integrable cross-sections of E

and is equipped with the inner product

〈ψ|φ〉 =
∫

Q
µ(dq) (ψ(q),φ(q))q . (18)

Note that
∫

Q means the same as
∑

n

∫

Q(n) , and that H = ⊕nL
2(Q(n),E(n),µ(n)).

4. IBC and Hamiltonian

The IBC will be so constructed that the amount of probability per time that �ows out of the

boundary at q′ ∈ ∂Q gets added to |ψ|2 at an interior point

q = f (q′) (19)

in a different sector, f : ∂Q→Q◦. We suppose that

r( f (q)) 6 r(q) (20)

(recall that r(q) = dimC Eq) and further that the derivative of f has full rank, i.e., that the

image of f in Q(n) does not have lower dimension than Q(n); in particular, if q′ ∈ ∂Q(n′) and

q = f (q′) ∈ Q(n) then dim Q(n) 6 dim ∂Q(n′) = dim Q(n′) − 1. Since many boundary points

q′ can be mapped to the same interior point q, the set of which will be denoted

f −1(q) = {q′ ∈ ∂Q : f (q′) = q} , (21)

we will need to make use of a measure over f −1(q). The appropriate (unnormalized) measure

for our purpose is

νq(·) = weak- lim
dq→{q}

λ( · ∩ f −1(dq))

µ(dq)
, (22)

or, equivalently, the measure characterized by

∫

Q
µ(dq) νq

(

M ∩ f −1(q)
)

= λ(M) (23)

for anyM ⊆ ∂Q. For example, if S = f −1(q) ∩ ∂Q(n′) is a submanifold of ∂Q(n′) of dimension

k and ∂Q(n′) has dimension ℓ, then the density of νq relative to the volumemeasure arising from

the Riemann metric on S is

∣

∣

∣

∣

∣

det
(

g
∂Q(n′)(ei, e j)

)

i, j6ℓ

det
(

gS(ei, e j)
)

i, j6k
det

(

gQ(n)

(

d f (ei), d f (e j)
))

k<i, j6ℓ

∣

∣

∣

∣

∣

1/2

, (24)

where d f : Tq′∂Q→ TqQ is the derivative (tangentmapping) of f , and ei are any linearly inde-

pendent vectors in Tq′∂Qwith the �rst k in Tq′S; the quantity (24) does not depend on the choice

5
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of ei.
1 In particular, if f −1(q) is a �nite or countable set (say, f is a local diffeomorphism), then

for any q′ ∈ f −1(q),

νq({q′}) = lim
dq′→{q′}

λ(dq′)

µ( f (dq′))
=

∣

∣

∣
det

(

gQ(n)

(

d f (ei), d f (e j)
))

i, j6ℓ

∣

∣

∣

−1/2

(25)

for any orthonormal basis {ei} of the tangent space Tq′∂Q.

We now set up the Hamiltonian and IBC. We may include a potential, either as a function

V :Q→ R ormore generally as a cross-section ofE ⊗ E∗ that is pointwise self-adjoint; here,E∗
q

denotes the dual space of Eq, so an element V(q) of Eq ⊗ E∗
q corresponds to an endomorphism

Eq → Eq that we also denote by V(q), and V being pointwise self-adjoint means that V(q) is

self-adjoint on Eq relative to (,)q.

To formulate the IBC, we need an auxiliary Hermitian vector bundle F on ∂Q such that

dimC Fq = r(q)− r( f (q)). (For example, if q is an n-particle con�guration and f (q) an n− 1-

particle con�guration, and if Eq is a spin space of dimension 2n and dimE f (q) = 2n−1, then

the auxiliary space Fq will have 2
n−1 dimensions and serve the purpose of us having as many

equations in the IBC as ψ(q) has components, and keeping track of those components that are

set to 0 by the IBC.) The IBC demands that for every boundary point q,

(α(q)+ β(q)∂n)ψ(q) =
2

~2
ι ψ ( f (q)) , (26)

where α(q) and β(q) are given complex-linear mappings Eq → E f (q) ⊕ Fq (where ⊕ means

orthogonal sum), ι is the inclusion E f (q) → E f (q) ⊕ Fq, ι(χ) = χ⊕ 0, and ∂n means the nor-

mal derivative, i.e., the directional covariant derivative in the inward normal direction to the

boundary at q (normal in terms of the Riemann metric gi j).
2 Note that the IBC (26) consists of

r(q) equations, which is the number of components of ψ(q). Of the mappings α(q) and β(q)
we require that

[α(q)|β(q)] has full rank r(q), (27)

where the notation [α(q)|β(q)] (indicating the juxtaposition of two matrices) means the

mapping Eq ⊕ Eq → E f (q) ⊕ Fq that maps χ⊕ φ to α(q)χ+ β(q)φ.
The Hamiltonian is, for any interior point q:

Hψ(q) = −~2

2
∆ψ(q)+ V(q)ψ(q)+

∫

f−1(q)

νq(dq
′)
(

γ(q′)+ δ(q′)∂n
)

ψ(q′) .

(28)

Here,∆ is the Laplace operator associatedwith the Riemannianmetric ofQ and the connection

of E (see, e.g., [17] for a detailed de�nition), and the coef�cients γ(q′) and δ(q′) are given

1Alternatively, νq can be expressed as a differential form ν̂q of maximal degree on S, ν̂q(q
′)(v1, . . . , vk) =

λ̂(q′)(v1, . . . , vk , e1, . . . , eℓ) for any q
′ ∈ S and v1, . . . , vk ∈ Tq′S, where λ̂ is the differential form corresponding to

the measure λ (i.e., the Riemannian volume form on ∂Q(n′ )), and the ei are any vectors such that d f (e1), . . . , d f (eℓ)
is an orthonormal basis of TqQ.
2With the form (26) we assume that all components of ψ( f (q)) occur in the IBC. One could set up more general

boundary conditions by using only some components of ψ( f (q)) or a certain projection of ψ( f (q)). Such a variant

would amount to a kind of combination of a re�ecting boundary condition and an interior-boundary condition and will

not be considered here.

6
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complex-linear mappings Eq′ → E f (q′). The functions α, β, γ, δ are required to satisfy at every
q ∈ ∂Q the conditions

α(q)† ι γ(q) :Eq → Eq is self-adjoint relative to ( , )q (29)

β(q)† ι δ(q) :Eq → Eq is self-adjoint relative to ( , )q (30)

α(q)† ι δ(q)− γ(q)† PE f (q) β(q) = −IEq , (31)

where IEq means the identity operator on Eq, PE f (q) the projection E f (q) ⊕ Fq → E f (q), and

S† means, for any linear mapping S :X → Y between spaces with inner products, the adjoint

mapping Y → X, i.e.,

(

χ, S†φ
)

X
= (Sχ,φ)Y (32)

for any χ ∈ X and φ ∈ Y .

We think of the masses as incorporated into the metric gi j, as in, e.g.,

ds2 = m1dx
2
1 + m1dy

2
1 + m1dz

2
1 + m2dx

2
2 + m2dy

2
2 + m2dz

2
2 (33)

for two particles of different mass in Euclidean space (see [17] for further discussion). Then

the mass need not be put into the prefactor of the Laplacian (in the Hamiltonian H as in (28)

above) or the gradient (in the current j as in (36) below)3.

This completes the de�nition of the Hamiltonian.

5. Conservation of probability

Here is a formal (non-rigorous) derivation of the conservation of |ψ|2, i.e., a check of self-

adjointness of H on the non-rigorous level. By |ψ|2, we mean |ψ(q)|2 = (ψ(q),ψ(q))q, which
is the density relative to µ of the probability distribution in Q associated with ψ ∈ H with

‖ψ‖ = 1. It evolves in general according to the balance equation

∂|ψ(q)|2
∂t

=
2

~
Im(ψ(q),Hψ(q))q . (34)

It is known (e.g., [17]) that for H = −~
2

2
∆ in a Hermitian vector bundle over a Riemannian

manifold,

2

~
Im(ψ(q),Hψ(q))q = −div j (q) (35)

with the probability current vector �eld

j(q) = ~ Im(ψ(q),∇ψ(q))q (36)

3This convention has the possibly undesirable consequence that, when different sectors correspond to different particle

number, the Riemannian volume µ is weighted in different sectors with different powers of the mass (such as m3n);

however, this can easily be compensated by reweighting ψ(n) by a factor of m−3n/2, which in turn requires, if f (q)

contains one particle less than q, a further factor of m−3/2 in α, β, γ, δ.

7
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onQ. Here, div j denotes the divergence of the vector �eld j; in coordinates, div j =
∑

aDa j
a,

where Da is the covariant derivative operator arising from the Riemann metric on Q. The gra-

dient ∇ψ is the E-valued vector �eld obtained from the E-valued 1-form that is the covariant

derivative of ψ by ‘raising the index’ using the Riemann metric.

Now for the Hamiltonian (28), the balance equation (34) becomes

∂|ψ(q)|2
∂t

= −div j (q)+

∫

f −1(q)

νq(dq
′)
2

~
Im

(

ψ(q),
[

γ(q′)+ δ(q′)∂n
]

ψ(q′)
)

q
.

(37)

For each q′, the integrand can be written, by virtue of the IBC (26), as

2

~
Im

(

~2

2
PEq

[

α(q′)+ β(q′)∂n
]

ψ(q′),
[

γ(q′)+ δ(q′)∂n
]

ψ(q′)

)

q

= ~ Im
(

ψ(q′),α(q′)†ιγ(q′)ψ(q′)
)

q′

+ ~ Im
(

ψ(q′),α(q′)†ιδ(q′)∂nψ(q
′)
)

q′

− ~ Im
(

ψ(q′), γ(q′)†PEqβ(q
′)∂nψ(q

′)
)

q′

+ ~ Im
(

∂nψ(q
′), β(q′)†ιδ(q′)∂nψ(q

′)
)

q′ ,

(38)

where the �rst and the last term vanish by virtue of (29) and (30). What remains is

~ Im
(

ψ(q′),
[

α(q′)†ιδ(q′)− γ(q′)†PEqβ(q
′)
]

∂nψ(q
′)
)

q′ , (39)

which agrees, by virtue of (31), with

−~ Im
(

ψ(q′), ∂nψ(q
′)
)

q′ = − jn(q
′) , (40)

where jn(q
′) means the component of j(q′) normal to the boundary, or

jn = ji n j gi j (41)

with n the inward-pointing unit normal vector to the boundary. Thus, in total,

∂|ψ(q)|2
∂t

= −div j(q)−
∫

f −1(q)

νq(dq
′) jn(q

′) . (42)

Now, if jn(q
′) < 0 then − jn(q

′)λ(dq′)dt is the amount of |ψ|2 weight lost in the sector con-
taining q′ due to current into the boundary region dq′ around q′ within duration dt. Likewise,

if jn(q
′) > 0 then jn(q

′)λ(dq′)dt is the amount of |ψ|2 weight gained in the sector containing

q′ due to current coming from dq′ within duration dt. That is, jn(q
′)λ(dq′)dt is the net gain,

positive or negative. Now the second term on the right-hand side of (42) represents a gain in

the amount of |ψ|2 weight (while the div j term represents transport of |ψ|2 weight within one

sector); in fact, the gain in the region dq around q within duration dt is

−µ(dq) dt
∫

f −1(q)

νq(dq
′) jn(q

′) = −dt

∫

f −1(dq)

λ(dq′) jn(q
′) . (43)

Thus, the net gain in dq exactly compensates the net loss in f −1(dq), and ‖ψ‖2 =
∫

Q|ψ(q)|2µ(dq) is conserved.

8
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Equation (42) can be regarded as a transport equation for the |ψ|2 weight, with two types of
transport: continuous motion within a sector of Q, and transport between sectors of Q (either

from q′ to f (q′) or from f (q′) to q′). Equation (42) actually is a probability transport equation
for the |ψ|2-distributed stochastic process in Q described in [18].

It also seems clear from the above derivation of (42) that the conditions (29), (30), and (31)

cannot be weakened within our scheme without losing (42) and thus the self-adjointness of H.

(Except that (29)–(31) may fail on a λ-null set of boundary con�gurations, or α, β, γ, δ may

be unde�ned on such a set.) After all, if ψ(q′) and ∂nψ(q′) can be chosen independently, then

the only way in which can always be equal to (40) is if (29), (30), and (31) are true. Now ψ(q′)
and ∂nψ(q

′) can be chosen independently by appropriate choice of initial data for ψ—despite

the IBC (26), which can be satis�ed by appropriate choice of ψ( f (q′)). To be sure, (42) can be
true for all ψ satisfying the IBC also if the integrals in (37) and (42) agree while the integrands

are not equal. For example, this happens when γ = 0 = δ (so (31) is violated), f −1(q) contains

two boundary points, say q′ and q′′, and the loss at q′ always compensates the gain at q′′ and
vice versa (e.g., if jn(q

′) = − jn(q
′′) and νq({q′}) = νq({q′′})). However, such possibilities lie

outside our scheme, according to which the weight lost at q′ is added to f (q′), and will not be
considered here.

6. Application: cut-off radius

IBCs on a codimension-1 boundary can be used for implementing an unusual kind of UV cut-

off, in which the source is smeared out, but not over a ball but over a sphere of small radius

ρ > 0.

For the sake of de�niteness, let us consider a model quantum �eld theory in R3 with two

kinds of particles, called x-particles and y-particles in the following, in which x-particles can

emit and absorb y-particles. Suppose there is only one x-particle, which is �xed at the origin,

whereas the y-particles are non-relativistic spinless bosons of mass my and can move in R3;

the model is adapted from the ‘scalar �eld model’ in ([19], chapter 12) and the Nelson model

[20], and is called ‘Model 2’ in [7]. The con�guration space is Q = ∪∞
n=0R

3n.

Let us turn to the cut-off. While an x-particle smeared out over a ball can emit and absorb

y-particles anywhere within that ball, an x-particle smeared out over a sphere can only emit

and absorb y-particles at a distance from its center that is exactly ρ. That is, a y-particle gets
absorbed as soon as it reaches distance ρ from an x-particle, and gets created on the sphere of

radius ρ. We exclude the possibility that any y-particle is ever closer than ρ to the x-particle.

This kind of UV cut-offwas �rst described, as far as we know, in [6]; we will call it a ‘ρ-cut-off’
in the following.

When we apply this cut-off to the aforementioned model, the con�guration space becomes

Q =

∞
⋃

n=0

{

(y1, . . . , yn) ∈ R
3n : |y j| > ρ ∀ j

}

, (44)

whose boundary

∂Q =
{(

y1, . . . , yn
)

∈ Q : |y j| = ρ for some j
}

(45)

has codimension 1 almost everywhere. The Hilbert space H is the subspace of L2(Q) of

functions that are permutation invariant on each sector. Let Bρ denote the open ρ-ball around
the origin, Bρ = {y ∈ R3 : |y| < ρ}. We will write yn for a con�guration of ny-particles,

yn = (y1, . . . , yn).
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The IBC of Dirichlet type demands the following: for everyω ∈ S2, n ∈ {0, 1, 2, . . .}, yn ∈
(R3\Bρ)n,

ψ(n+1)(yn, ρω) = − gmy

2π~2ρ
√
n+ 1

ψ(n)(yn) . (46)

The associated Hamiltonian is de�ned by

(Hψ)(n)(yn) = − ~2

2my

n
∑

j=1

∇2
y j
ψ(n)(yn)+ nE0ψ

(n)(yn)

+
g
√
n+ 1

4π

∫

S2

d2ω
∂

∂r

∣

∣

∣

∣

r=ρ

(

rψ(n+1)(yn, rω)
)

(47)

at any yn ∈ Q\∂Q.

In the language of sections 3–5, gi j = myδi j, f (y
n) = yn\Bρ, the Hermitian vector bundle E

is the trivial rank-1 bundle E = Q× C, µ is the volume as in (16),

∂Q(n)
=

n
⋃

j=1

(R3\Bρ) j−1 × S
2
ρ × (R3\Bρ)n− j , (48)

λ is locally vol3( j−1) × area× vol3(n− j),

f −1(yn) =

n
⋃

j=1

{(y1, . . . , y j−1, ρω, y j, . . . , yn) :ω ∈ S
2} , (49)

νyn (d
2
ω) = ρ2 d2ω on any of the n spheres in (49), and

α(yn) = −4πρ
√
n+ 1/gmy (50)

β(yn) = 0 (51)

γ(yn) = 0 (52)

δ(yn) = gmy/4πρ
√
n+ 1 . (53)

7. Summary

We have formulated a general version of IBCs in the non-relativistic case for boundaries of

codimension 1, along with the appropriate additional term in the Hamiltonian. This formu-

lation applies also to con�guration spaces that are Riemannian manifolds with boundary, to

spinor-valued wave functions, and to spin spaces that form a vector bundle. We have pre-

sented a calculation verifying that total probability is conserved. We have argued that this is

the most general form of IBC unless we allow that probability lost in some part of the bound-

ary comes out of another part of the boundary. It would be of interest to have rigorous results

showing that this form of IBC is the most general one, and that it de�nes a self-adjoint Hamil-

tonian. A similar study for the Dirac equation can be found in [15]. As an example, we have

described a model of particle creation from a source that is neither a point nor a ball but a

sphere.
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