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Abstract
Variants of collective behavior can materialize in large ensembles of coupled
dynamical systems, and synchronization is one of the most significant among
them due to its enormous applicability from neuronal networks to finance. At
the same time, current study of long-range interactions is attracting researchers’
attention mainly because interactions among dynamical units in a network may
not be present only in the form of short-range direct communications, but also
through the long-range connections arising along the long-distant paths among
the nodes. Despite a few recent works on synchronization in long-range inter-
acting systems, there are still a lot of areas regarding the influences of long-
range communications on top of non-regular complex networks that remain
unexplored. Here we derive local and global asymptotic stability conditions
for complete synchronization manifold with k-path Laplacian matrices. Impor-
tantly, we show that the analytical findings are in excellent agreement with
the numerical results. For the numerical illustrations, we contemplate with the
Erdös–Rényi random network by means of a long-range connection governed
by the power-law and demonstrate the emergence of complete synchronization.
We particularly examine the synergy between the coupling strength and the
power-law exponent.
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1. Introduction

Oscillatory dynamical systems in nature are rarely isolated and interactions among these
dynamical units often give rise to new phenomena. Reserches of past two decades on macro-
scopic behavior of coupled oscillators’ network have enhanced our perception of various nat-
ural, man-made and social systems. Among those collective dynamical behaviors, the vibrant
phenomenon of synchronization [1–3] has been in the focus of intense research in diverse
area of science. At the same time, complex networks have been very competent in describing
the underlying interactional framework and hence the universal properties of many complex
systems. In this context, it has been demonstrated that the correlation between the network
architecture and the local dynamics is really crucial as far as the emergence of synchrony is
concerned.

In recent times, the process of synchronization has been studied in networks under different
forms of structural complexities, e.g., in weighted networks [4, 5], time-varying networks [6,
7], multiplex networks [8, 9], and time-varying multiplex networks [10–12] etc. On the other
hand, long-range interacting systems [13–19] have come up to be one of the most promis-
ing areas of research in complex systems ranging from mechanical to biological oscillatory
networks [20]. To be precise, long-range interaction owing to power-law decay has been stud-
ied in biological networks [21], ferromagnetic spin models [22], hydrodynamic interaction of
active particles [23, 24]. Power-law interactions arise in many other systems like nuclear spins
in solid-state systems [25], Rydberg atoms [26], plasmas [27] etc. Nevertheless, except only a
few notable attempts [28–36], the effect of indirect communications in the form of long-range
interactions on the synchronization phenomenon has rather been ignored. Although the refer-
ences [28, 30, 31] studied synchronization in a population of phase oscillators over a lattice
with decaying coupling, whereas Anteneodo et al [29] investigated the influence of long-range
interactions for coupled-map lattices. Diverse chimeric patterns including that in juxtaposi-
tion with oscillation death state are studied in the reference [32]. Enhancement in persistence
of metapopulation via asynchrony due to long-range dispersal has been discussed lately [33].
Network synchronizability due to long-range interaction for Mellin and Laplace transformed
is reported recently [34, 35]. Sathiyadevi et al [36] have come up with their results on various
collective behaviors including synchronization, oscillation death and solitary states because
of long-range interaction with repulsive and symmetry breaking coupling functions. But, in
most of the cases either only phase oscillator models have been dealt with or the underlying
network framework has been presumed to be regular networks with ring structures. Further-
more, a thorough analysis of the stability of the synchronization manifold is still missing in the
literature.

Motivated by these key facts, we consider long-range interactions among the constituents
(nodes in the form of chaotic dynamical systems) of a network built upon a non-regular (com-
plex) network. In contrast to the earlier works considering completely regular networks, mostly
the one-dimensional rings of nodes, we here construct a general mathematical framework for
complete synchronization state using long-range interactions. Then we mathematically derive
the existence condition on the network topology to derive synchronization. We investigate local
stability analysis through the master stability function (MSF) approach [37] that shows excel-
lent match with the numerically obtained results. The MSF approach serves as an effective tool
for analyzing local stability of the synchronization phenomena in complex networks. Basically,
it reduces the synchronization problem of the coupled systems to a fixed point problem of an
uncoupled system. Lastly, we also derive the condition of global stability for complete syn-
chronization state with the help of an appropriate Lyapunov function. This Lyapunov function
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is made upon a differential framework for analyzing the convergence of the trajectories of non-
linear system toward each other. It belongs to a class of incremental stability method, leading
to global results. For numerical simulations, as an exemplar, we consider paradigmatic chaotic
Lorenz system as the dynamics of each node and Erdös–Rényi (ER) random network [38,
39] as the underlying network. Rigorous parameter regions are drawn for synchronization as a
function of random connectivity probability p, coupling strength ε and power-lay exponent α.
The numerical results are in excellent agreement with our analytical findings.

The rest of the paper is assembled as follows. Some basic graph theoretical and mathemat-
ical preliminaries are recalled in section 2. In section 3, we then introduce the mathematical
network model in terms of the k-path adjacency or Laplacian matrices that assumes long-range
connections together with direct short-range couplings. The local stability condition for syn-
chronization state is analyzed in section 4. Numerical illustrations of our theoretical findings
are discussed in section 5. Section 6 deals with the global stability of the state of synchrony
and numerical explanations. Finally, we provide conclusion on our findings in section 7.

2. Graph theoretical and mathematical preliminaries

In this section, some useful graph theoretical and mathematical preliminaries are described.
Consider a graph G = (V , E) with N number of vertices, i.e., V = {v1, v2, . . . , vN}, and

E ⊂ V × V is the set of undirected edges. The length of a shortest path between vi and v j

is called the distance between the nodes vi and v j, which is denoted by d(vi, v j). Then the
diameter of the graph can be defined as dmax = max {d(vi, v j) : i, j = 1, 2, . . . , N}.

The k-path adjacency matrix A [k] of the underlying network is then defined as the square
symmetric N × N matrix whose entries are given by

A [k]
i j =

{
1 if d(i, j) = k,
0 otherwise.

(1)

This k-path adjacency matrix exists up to k = dmax, since no path exists of length greater than
the diameter dmax. Therefore, the range of k is k = 1, 2, . . . , dmax.

In order to explain the definition of k-path networks, we consider a small exemplary net-
work consisting of N = 6 nodes with dmax = 3 and plot the corresponding k-path (k = 1, 2, 3)
networks along with the associated adjacency matrices in figure 1. Figure 1(a) depicts the
underlying network, more specifically the one-path network, with the adjacency matrix A [1].
In this one-path network (v1, v2) ∈ E and (v2, v3) ∈ E, but (v1, v3) /∈ E, thus d(v1, v3) = 2 and
A [2]

13 = 1. In this way, the two-path network is formed in figure 1(b). Observe that, the two-
path network is also connected. Now (v3, v6) ∈ E, so there is a path of length three from the
vertex v1 to the vertex v6, namely (v1, v2) → (v2, v3) → (v3, v6). But in this network there is no
such path from v1 to v6 which is of length less than three. Therefore, d(v1, v6) = 3, this yields
A [3]

16 = 1. Also there is another one path of length three, from v6 to v4. Hence, the three-path
network comprises of only two edges (v1, v6) and (v6, v4). Remaining three vertices v2, v3 and
v5 are isolated in this network. The pictorial view of this network is delineated in figure 1(c),
with corresponding adjacency matrix A [3].

In general, the k-path Laplacian matrix L [k] of the underlying network can be expressed as

L [k]
i j =

⎧⎪⎨
⎪⎩
−A [k]

i j if i �= j,
N∑

j=1

A [k]
i j if i = j,

(2)
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Figure 1. Examples of k-path networks (upper panel) and their corresponding adjacency
matrices (lower panel): (a) k = 1, i.e., the original network, (b) k = 2, i.e., the two-path
network extracted from (a), and (c) k = 3, i.e., the three-path network extracted from
(a).

for all k = 1, 2, . . . , dmax. These k-path Laplacians are zero-row sum matrices. Thus all of
them has a zero eigenvalue. For disconnected network, the multiplicity of this eigenvalue is
more than one for these matrices. If the underlying network is connected then the zero eigen-
value is simple for L [1]. But there is no certainty that it will remain simple for all L [k],
k = 2, 3, . . . , dmax. In our schematic diagram (cf figure 1), for connected one-path network, the
two-path network is also connected. But, the three-path network does not remain connected. It
has four components, so for this case, the multiplicity of the zero eigenvalue of L [3] is four.

Let γ[k]
i (i = 1, 2, . . . , N) be the eigenvalues of L [k] for k = 1, 2, . . . , dmax. Then L [k] has

at least one zero eigenvalue, say γ[k]
1 corresponding to the eigenvector 𝟙N = [1, 1, . . . , 1]tr.

If the one-path network is undirected then all the k-path Laplacians L [k] become sym-
metric matrices. Thus, all of them can be orthogonally diagonalizable by their individual
basis of eigenvectors. Therefore, if V [k] is the corresponding matrix of orthogonal eigenvec-
tors of the real symmetric matrix L [k], then we get L [k] = V [k]D[k]V [k]−1

, where D[k] =

diag
{
γ[k]

1 , γ[k]
2 , . . . , γ[k]

N

}
.

Notations: Throughout our manuscript, Op×q denotes p× q order zero matrix, Ip denotes
the identity matrix of order p, while 𝟙p is a column matrix with each element one. ⊕ denotes
the matrix direct sum and ⊗ denotes the matrix Kronecker product. ‖x‖ denotes the Euclidean

norm of x and defined by ‖x‖ =
√∑d

i=1 |xi|2, where d is the dimension of x.

3. The network model

Now, we assume that each node in the network is associated with a d-dimensional dynam-
ical system. Then the nodal dynamics of the ith node in the network possessing long-range
interaction can be described as follows,

ẋi = f (xi) +
dmax∑
k=1

εk

N∑
j=1

A [k]
i j Γ(x j − xi), (3)
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where xi represents the d-dimensional state variable of the ith node, f :Rd → R
d is a suffi-

ciently smooth vector field describing the dynamics of each isolated node, εk is the coupling
strength between the ith and jth nodes if d(i, j) = k, which determines how the information
propagates among these two nodes depending on their shortest distance. That is, the ith and
jth nodes are k-path connected, where k = 1, 2, . . . , dmax with dmax is the diameter of the
network. A [k] is the k-path adjacency matrix and Γ is the inner coupling matrix determining
the state variables through which the nodes are interacting with each other.

When complete synchronization occurs in the dynamical network (3), then all the nodes
evolve in unison, i.e., with the identical trajectory. Then, there exists a trajectory x0 ∈ R

d, such
that, for each ε > 0 (however small) there exists T > 0 (however large), ‖xi(t) − x0(t)‖ < ε
whenever t � T .

Observation 1. The state variable x0 of the complete synchronization manifold obeys the
evolution equation ẋ0 = f (x0).

We call the subset S =
{

x0 ⊂ R
d : xi = x0, ∀ i = 1, 2, . . . , N

}
as the complete synchro-

nization manifold. Our aim of this paper is to determine the local and global stability of S in
terms of the coupling and network parameters.

Here we note that we are considering bidirectional coupled network. So, A [k] is a symmet-
ric matrix and hence L [k] is also symmetric for all k. Therefore, L [k] (k = 1, 2, . . . , dmax) is
orthogonally diagonalizable by its basis of eigenvectors.

4. Local stability analysis

At first, we will analytically determine the local stability condition of the synchronization state
for the coupled system (3). For this, we adopt the seminal MSF approach [37]. Our entire
theoretical analysis is associated with all the k-path Laplacians. In this purpose, we need the
following assumptions.

Assumption 1. The individual nodal dynamics f is continuously differentiable with respect
to its argument.

The above assumption confirms us about the Taylor series expansion of the nodal evolution
function f about the synchronization trajectory with respect to small perturbations.

Theorem 2 (Linear stability analysis). The parallel and transverse components along the
synchronous solution respectively satisfy the system of equations,

η̇P(t) = J f (x0)ηP(t),

η̇Ti (t) =
[
J f (x0) − ε1γi

[1]Γ
]
ηTi −

dmax∑
k=2

εk

N−1∑
j=1

Ui j
[k]ΓηT j , i = 2, 3, . . . , N. (4)

Here, J f denotes the Jacobian of the function f . ηP(t) ∈ R
d and ηT(t) ∈ R

d(N−1) are the state
vectors which evolve parallel and transverse to the synchronization solution, respectively.

Proof of Theorem 2. In the state of complete synchronization, each individual oscillator
exhibits identical time evolution for appropriate interaction among the dynamical units. Let,
at the state of complete synchrony, the entire network evolves according to xi(t) = x0(t), ∀i =
1, 2, . . . , N. Here x0(t) is the state variable corresponding to the synchronization manifold sat-
isfying ẋ0 = f (x0). Perturbing the ith node from the synchronized solution x0(t) with amount
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δxi(t), the current state of the ith node becomes xi(t) = x0(t) + δxi(t), i = 1, 2, . . . , N. Lin-
earizing each oscillator about the synchronization trajectory x0, the dynamics of the perturbed
system can be written as,

δẋi = J f (x0)δxi −
dmax∑
k=1

εk

N∑
j=1

Li j
[k]Γδx j. (5)

Thus the dynamics of the error system in vectorial form yields

δẋ(t) =

[
IN ⊗ J f (x0) −

dmax∑
k=1

εkL
[k] ⊗ Γ

]
δx, (6)

where δx(t) is the stack of the vectors δx1, δx2, . . . , δxN , and J is the Jacobian operator, i.e.,
J f (x0) = ∂ f (x)

∂x

∣∣
x=x0

.
The linearized set of equation (6) can be decomposed into two components, one that evolves

along the synchronization manifold and the other transverse to it. If the latter components
are asymptotically stable, then the set of oscillators (equation (3)) exhibits stable complete
synchronization solution. To find the transverse error system, we spectrally decompose δx(t)
of the equation (6) and project it onto the basis of the eigenvectors V [1] corresponding to the
one-path Laplacian matrix L [1]. Under the Schur transformation onto the space spanned by
the basis of eigenvector of L [1], let δx(t) transforms to η(t) = [η1

tr(t), η2
tr(t), . . . , ηN

tr(t)]tr,
where η = [V [1] ⊗ Id]−1δx. Using this Schur transformation, the linearized equation (6) then
becomes,

η̇(t) =

[
IN ⊗ J f (x0) −

dmax∑
k=1

εk{V [1]−1
L [k]V [1]} ⊗ Γ

]
η. (7)

Since all the k-path Laplacians L [k] are real symmetric matrices, so they are orthogonally
diagonalizable, and L [k] = V [k]D[k]V [k]−1

, where D[k] is the diagonal matrix consisting of the
eigenvalues of L [k] and V [k] is the corresponding matrix of orthogonal eigenvectors. This
yields,

V [1]−1
L [k]V [1] = V [1]−1

V [k]D[k]V [k]−1
V [1]. (8)

Here each L [k] is positive semi-definite matrix with at least one zero eigenvalue and the cor-

responding eigenvector is
[

1√
N

, 1√
N

, . . . , 1√
N

]tr
. Then we consider the form of the matrix V [k]

as,

V [k] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1√
N

V12
[k] · · · V1N

[k]

1√
N

V22
[k] · · · V2N

[k]

· · · · · · · · · · · ·
1√
N

VN2
[k] · · · VNN

[k]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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which is an orthogonal matrix so that V [k]−1
= V [k]tr

. Thus we can obtain,

V [1]−1
V [k] =

⎡
⎢⎢⎣

1 0 · · · 0
0 V22

[1,k] · · · V2N
[1,k]

· · · · · · · · · · · ·
0 VN2

[1,k] · · · VNN
[1,k]

⎤
⎥⎥⎦ , and

V [k]−1
V [1] =

⎡
⎢⎢⎣

1 0 · · · 0
0 V22

[k,1] · · · V2N
[k,1]

· · · · · · · · · · · ·
0 VN2

[k,1] · · · VNN
[k,1]

⎤
⎥⎥⎦ .

Without loss of generality, we assume that the first eigenvalue of L [k] is zero and D[k] =
diag

[
0, γ2

[k], γ3
[k], . . . , γN

[k]
]
. In order to achieve the complete synchronization state, the

underlying one-path network should be connected. For disconnected one-path underlying net-
work, emergence of complete synchronization is impossible (detail analytical proof are in the
appendix). Thus, L [1] has exactly one zero eigenvalue, i.e., γ1

[1] = 0 and γi
[1] > 0 for all

i � 2. Henceforth, from equation (8), we have

V [1]−1
L [k]V [1] =

[
0 O1×(N−1)

O(N−1)×1 U[k]

]
, (9)

where U[k] ∈ R
(N−1)×(N−1) is a symmetric matrix.

Also we decompose the transformed variable η(t) = [ηP(t), ηT(t)], where ηP(t) ∈ R
d and

ηT(t) ∈ R
(N−1)d are the components parallel and transverse to the synchrony manifold S,

respectively. Incorporating this decomposition in equation (7) and with the help of equation (9),
the transformed error dynamics becomes,

[
η̇P(t)
η̇T(t)

]
=

N⊕
i = 1

J f (x0)

[
ηP(t)
ηT(t)

]
−

dmax∑
k=1

εk

[
0 O1×(N−1)

O(N−1)×1 U[k]

]
⊗ Γ

[
ηP(t)
ηT(t)

]

=

[
J f (x0)ηP(t)

IN−1 ⊗ J f (x0)ηT(t)

]
−

dmax∑
k=1

εk

[
Od Od×(N−1)d

O(N−1)d×d U[k] ⊗ Γ

] [
ηP(t)
ηT(t)

]
.

(10)

Now from the above equation, decomposing the parallel and transverse terms, one can write,

η̇P(t) = J f (x0)ηP(t),

η̇T(t) =

[
IN−1 ⊗ J f (x0) −

dmax∑
k=1

εk U[k] ⊗ Γ

]
ηT(t). (11)

Note that the first equation of equation (11) is the linearized equation of the synchronization
solution ẋ0 = f (x0). Thus ηP(t) corresponds to the projected perturbations within the syn-
chronization manifold, while the second coupled equation is the dynamics of the projected
error component transverse to the synchronization manifold. Thus, ηT(t) is the transverse error
dynamics. Now we make this equation into more simplified form. Since, V [1]−1

L [1]V [1] = D[1]

and U[1] = diag
{
γ2

[1], γ3
[1], . . . , γN

[1]
}

, then
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η̇Ti (t) =
[
J f (x0) − ε1γi

[1]Γ
]
ηTi −

dmax∑
k=2

εk

N−1∑
j=1

Ui j
[k]ΓηT j , i = 2, 3, . . . , N.

(12)

This completes the proof. �

Remark 1. The eigenspaces of all the k-path Laplacian matrices form N equivalent bases of
R

N . Therefore, we are free to choose any one k-path Laplacian eigenspace. Without loss of any
generality, here we chose the one-path Laplacian eigenspace.

The above equation (12) is our required transverse master stability equation (MSE) for the
complete synchronization solution. It is (N − 1)d-dimensional coupled equation. In general,
the transverse error system (12) cannot be further reduced to low-dimensional form. Also,
generally, it is not directly dependent on the eigenvalues of the k-path Laplacians. But, in our
case, we can decoupled the MSE (equation (12)) with the help of following corollary.

Corollary 3. If there exists at least one k-path Laplacian which commutes with all other
k-path Laplacians, then the dynamics of the transverse error system can be decoupled as

η̇Ti (t) =

[
J f (x0) −

dmax∑
k=1

εkγi
[k]Γ

]
ηTi(t), i = 2, 3, . . . , N. (13)

Proof of corollary 3. Without loss of any generality, we first assume that the one-path
Laplacian matrix commutes with all other Laplacian matrices. Additionally, we have the k-
path Laplacian matrices for k = 2, 3, . . . , dmax which are real-symmetric. Therefore, L [1] and
L [k] share a common eigenspace, for k = 2, 3, . . . , dmax, i.e., they have a common basis of
eigenvectors. This yields V[1] = V [k] for k = 2, 3, . . . , dmax.

Thus, L [k] can be simultaneously diagonalizable by V [1]. Then equation (8) expounds

V [1]tr
L [k]V [1] = diag

{
γ[k]

1 , γ[k]
2 , . . . , γ[k]

N

}
. (14)

This immediately implies that

U[k] = diag
{
γ[k]

2 , γ[k]
3 , . . . , γ[k]

N

}
. (15)

Incorporating the above expression (15), the summation term of equation (12) over j becomes

N−1∑
j=1

U[k]
i j ΓηT j = γ[k]

i ΓηTi . (16)

Hence, all the coupling terms of the transverse equation (12) become block-diagonal. So,
the stability of synchronization is equivalent to the stability of the uncoupled variational
equation (13). Thus, the proof is done. �

From the structure of the transverse system, in this way we can able to decouple the effect
of coupling term. Here, the Jacobian functions are identical for each block, since they are
evaluated on the synchronization state. For each i, the decoupled transverse error systems differ
by the scalar multiplier εkγ

[k]
i , beyond that the form of the entire equations is same.
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Figure 2. Diagram of the line network with three vertices and corresponding one-path
(left panel) and two-path (right panel) networks.

The next remark shows a practical example of such network for which the hypothesis of
corollary 3 satisfies.

Remark 2. Consider a line network with number of vertices three. Figure 2 (left panel)
depicts the corresponding one-path network. The diameter of this network is 2. The two-path
network looks like figure 2 (right panel).

Its two k-path Laplacian matrices are

L [1] =

⎡
⎣ 1 −1 0
−1 2 −1

0 −1 1

⎤
⎦ and L [2] =

⎡
⎣ 1 0 −1

0 0 0
−1 0 1

⎤
⎦ .

It is clear that L [1] and L [2] commute with each other. For this network, the transverse error
dynamics can be diagonalized according to corollary 3.

Corollary 4. Let the diameter of the underlying network is two, i.e., dmax = 2. Among the
two k-path Laplacian matrices, one matrix has eigenvalue 0 with algebraic multiplicity 1 and
γ[1] with algebraic multiplicity N − 1. Then the transverse error dynamics can be decoupled
as N − 1 number of d-dimensional systems.

Proof of corollary 4. Since dmax = 2, so there are two k-path Laplacian matrices for k = 1
and k = 2. Without loss of any generality, let us assume that the one-path Laplacian matrix
L [1] has one eigenvalue 0 with algebraic multiplicity 1 and γ[1] with algebraic multiplicity
N − 1. Thus γ[1]

i = γ[1] for all i = 2, 3, . . . , N.
After decomposing the transformed perturbed variable, the transverse MSE of the complete

synchronization solution can be written as

η̇Ti (t) = J f (x0)ηTi (t) − ε1γΓηTi (t) − ε2

N−1∑
j=1

U[2]
i j ΓηT j(t). (17)

Here, U[2] satisfies V [1]−1
L [2]V [1] =

[
0 O1×N−1

ON−1×1 U[2]

]
. Also, L [2] is symmetric matrix,

and it can be orthogonally diagonalizable by its basis of eigenvector V [1]. Thus, we have
V [1]−1

= V [1]tr
. These results yield

(
V [1]−1

L [2]V [1]
)tr

= V [1]tr
L [2]V [1]. (18)

9
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So,

[
0 O1×N−1

ON−1×1 U[2]

]
is a symmetric matrix and therefore U[2] is also so. Hence, U[2] can

be orthogonally diagonalizable by its basis of eigenvectors W (say).
Again, considering a Schur transformation ξ(t) = [W ⊗ Id]−1ηT(t), we have the dynamics

of the projected error components as,

ξ̇(t) = [W ⊗ Id]−1η̇T(t)

=
[
IN−1 ⊗ J f (x0) − ε1γIN−1 ⊗ Γ− ε2W−1U[2]W ⊗ Γ

]
ξ(t). (19)

As W−1U[2]W = diag{γ[3]
1 , γ[3]

2 , . . . , γ[3]
N−1}, where

{
γ[3]

i : i = 1, 2, . . . , N − 1
}

is the set of

eigenvalues of U[2]. We have our required master stability equation of the transverse error
components as,

ξ̇i(t) =
[
J f (x0) − ε1γΓ− ε2γ

[3]
i Γ

]
ξi(t). (20)

Which are uncoupled N − 1 number of d-dimensional systems. �
But, probably this type of networks for which the hypothesis of the above corollary 3 satis-

fies are very few. Especially for our ER random network with N = 200 number of nodes, the
k-path Laplacian matrices become non-commutative, for which the transverse error dynamics
remains coupled.

We can measure the exponential contraction or expansion of the linearized variational
equation by calculating its Lyapunov exponents. Among all the Lyapunov exponents, the max-
imum one (say Λ) plays a key role. If Λ is less than zero, the complete synchronization state
turns out to be locally stable, while its positive value indicates the instability of the synchro-
nization state. By adjusting the tuning parameters (coupling as well as network parameters),
we can trace-out the synchronization region where the value of Λ is negative.

5. Emergence of complete synchrony: numerical results

This section is devoted to the discussion of our principal results obtained through numerical
simulations. Here, our main emphasis is to verify the above analytical findings. For this, without
loss of generalization, we choose the chaotic Lorenz system [40] described as the following:

f (x) =

⎡
⎣ σ(y − x)

x(ρ− z) − y
xy − βz

⎤
⎦ , (21)

where x = [xyz]tr. We fix the system parameters at σ = 10, ρ = 28 and β = 8
3 for which the

system remains in chaotic state. We also choose Γ = diag[1, 1, 1]tr, i.e., coupling through all
the three state variables. Here we note that although for the numerical computations, we have
chosen Lorenz systems as the local dynamical units, our entire theoretical results have been
carried out while considering a general networked system with arbitrary dynamical system
over any underlying network topology. The only criteria for our theoretical analysis are that the
local dynamics should be continuously differentiable (for local stability analysis) and Lipschitz
(for global stability analysis). Hence our analysis remains valid for all the situations in which
dynamical systems are interacting through long-range connections.

As mentioned earlier, we here scrutinize the impact of power-law decay of the interaction
strength with respect to the distance between the concerned nodes. Specifically, if εk is the cou-
pling strength between the nodes having shortest distance k (k = 1, 2, . . . , dmax), then εk =

ε
kα

10
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Figure 3. Variation of (a) the synchronization error E and (b) the largest Lyapunov
exponent Λ of the transverse error system with respect to the coupling strength ε for dif-
ferent combinations of α and p. Here the pairs (α = 2.5, p = 0.05), (α = 2.0, p = 0.05),
(α = 2.5, p = 0.1) and (α = 2.0, p = 0.1) are chosen and are shown by the blue circle,
red square, green diamond, and magenta triangle lines, respectively.

where α is the power-law exponent governing the decay rate. Here we consider the underlying
network as the ER random network architecture. Specifically, we choose the G(N, p) graph
model [38] with N = 200 as the number of nodes and p as the connection probability. To draw
all the numerical figures, we have taken ten network realizations at each grid point.

For this type of network, dmax will depend on p. When p = 1, each node of the network is
directly connected to all the other nodes, as a result of which the value of dmax will also be
1. However, as p decreases dmax will monotonically increase (may not be strictly). Finally, at
a certain value of p, dmax will reach its maximum value. Beyond that critical value of p, the
underlying network becomes disconnected and dmax is undefined, as the distance between two
nodes from two different network components is not defined.

The network of coupled system given in equation (3) together with the isolate dynamics
equation (21) is integrated using the Runge–Kutta–Fehlberg method with an integration time
step Δt = 0.01. The time interval for our entire numerical simulations is taken over 1 × 105

iterations after an initial transient of 2 × 105 iterations. The initial conditions for each local
dynamical unit are chosen randomly from the phase space in which the chaotic attractor resides.
We first define the synchronization error as the following

E = lim
T→∞

1
T

∫ t+T

t

N∑
i, j=1(i �= j)

‖xi(t) − x j(t)‖
N(N − 1)

dt. (22)

For the numerical simulation we have chosen t = 2000 and T = 1000. As conspicuous from its
definition, in the state of complete synchronization, E necessarily becomes zero, and remains
non-zero for the states of desynchrony.

11
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Figure 4. Phase diagram in the (ε,α) coupling parameters’ plane in terms of the syn-
chronization error E for ER random network with (a) p = 0.035, (b) p = 0.05, and (c)
p = 0.1.

First, we initiate our results with looking at the variation in the synchronization error E
as a function of the interaction strength ε for different values of the power-law exponent α
and connection probability p in figure 3(a). The blue curve is plotted for α = 2.5 and p =
0.05. For ε = 0.0, starting with non-zero value, E decreases and eventually drops down to
zero for ε = 0.1333. Basically this signifies the emergence of complete synchronization in the
network for chosen values of α and p. Next, we decrease α to α = 2.0 and observe that E (red
curve) becomes zero comparatively at lower ε = 0.1067. This enhancement of the synchrony
occurs due to the lower decaying rate. Then we deal with higher values of p = 0.1. For α =
2.5, the transition from desynchrony to synchrony occurs at ε = 0.0733 (presented in green
curve). Actually the increment in p leads to a higher connection probability, i.e., higher link
density and hence lower diameter of the network so that lower ε is required to achieve complete
synchrony. Then we deal with a different value of α, namely α = 2.0 by magenta curve. This
results in stronger decay in the coupling strength with respect to the shortest distance among the
nodes. For this α, we see that even lower ε values are sufficient for acquiring synchronization,
e.g., E turns into zero near ε = 0.06. However, in the error plots strong fluctuations are present
due to the randomness in a finite-sized system.

Now, we investigate the stability of synchronization state in terms of the maximum trans-
verse Lyapunov exponent. The existence criterion for synchronization manifold is analytically
derived by a linear stability analysis in terms of the MSF approach. We will verify the tran-
sition point from desynchronization to synchronization by plotting the transverse Lyapunov
exponent. For our network model, we can write the traverse error dynamics equation (12) as

η̇(x)
Ti

= σ(η(y)
Ti

− η(x)
Ti

) − ε1γ
[1]
i η(x)

Ti
−

dmax∑
k=2

εk

N−1∑
j=1

U[k]
i j η

(x)
T j

,

η̇(y)
Ti

= (ρ− z0)η(x)
Ti

− η(y)
Ti

− x0η
(z)
Ti

− ε1γ
[1]
i η(y)

Ti
−

dmax∑
k=2

εk

N−1∑
j=1

U[k]
i j η

(y)
T j

, (23)

η̇(z)
Ti

= y0η
(x)
Ti

+ x0η
(y)
Ti

− βη(z)
Ti

− ε1γ
[1]
i η(z)

Ti
−

dmax∑
k=2

εk

N−1∑
j=1

U[k]
i j η

(z)
T j

, i = 2, 3, . . . , N.
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Figure 5. Variation of the synchronization error in the (ε, p) parameter space for (a)
α = 1.5, (b) α = 2.0, (c) α = 2.5, and (d) α = 3.0.

Here (x0, y0, z0) is the state variable of the synchronized manifold whose equation of motion
is: ẋ0 = σ(y0 − x0), ẏ0 = x0(ρ− z0) − y0, ż0 = x0y0 − βz0. We compute N − 1 number of Lya-
punov exponents by solving the linearized equation (5) along with the above synchronized
manifold equation. The maximum among these Lyapunov exponents (i.e., master stability
function Λ) as a function of ε,α and p gives the necessary condition for the stability of the
synchronous state. By adjusting these tuning parameters so that Λ is less than zero signify the
emergence of synchronous trajectory.

In figure 3(b), the transition from desynchrony to synchrony is characterized by the max-
imum transverse Lyapunov exponent Λ with respect to ε. The curves are plotted for the four
different values of α and p as of figure 3(a). For these four cases, Λ crosses zero exactly at
that point where the synchronization error becomes zero in figure 3(a), which indicates that
our analytical local stability condition agrees well with our numerical simulations of the syn-
chronization error plot. However, for a close inspection, there might be slight differences in
the critical values due to the initial conditions.

Figure 4 depicts the synchronization error E as a result of simultaneous variation in the
coupling strength ε ∈ [0, 0.2] and the power-law exponent α ∈ [0, 3], for three exemplary
values of p. In figure 4(a), we plot E for an ER random network with low probability p = 0.035
of connection among the nodes. As discernible from the figure, an increment in the interac-
tion strength ε leads to the emergence of complete synchrony, but this scenario essentially
depends upon the value of the exponent α. As long as α is small enough, i.e., when the decay
rate of the coupling strength for long-range interaction is small, then synchrony appears for
small coupling strength ε. But increasing α needs higher ε for the network to be in com-
plete synchrony. Therefore, long-range interaction enhances the synchrony compare to the
short-range interaction. Detail discussions regarding the comparison of the short-range and
long-range interactions are in the appendix. However, synchrony is achieved for each value of

13
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Figure 6. Variation of the synchronization error in the (α, p) parameter space, where the
values of ε are (a) ε = 0.03, (b) ε = 0.06, and (c) ε = 0.09.

α ∈ [0, 3] for an appropriate value of ε. Next we increase the value of p to p = 0.05 and plot
E (cf figure 4(b)) in order to portray the similar scenario for higher probability of connection
among the nodes. In this case, again higher α demands higher ε for synchronization, but the
critical transition curve shifts toward left, and helps enlarging the region of synchrony. For a
further increment in the value of p to 0.1, similar tendency in the (ε,α) parameter plane per-
sists, but for this case the region of synchrony enlarges further as well and the critical curve
shifts toward more left.

Now, we investigate the phase diagram in the (ε, p) parameter plane, which is depicted in
figure 5 in terms of the synchronization error E (color bar) for several values of α. For these
four sub-figures, the underlying one-path network becomes disconnected for p < 0.0263. For
such a network any kind of adjustment of rhythm among the nodes is impossible, that is why the
synchronization error E remains non-zero for those p values. The figures 5(a)–(d) are respec-
tively plotted for α = 1.5, α = 2.0, α = 2.5 and α = 3.0. For all these four cases, increasing
either ε or p always leads to the monotonical enhancement of the complete synchronization. On
the other hand, as long-range decaying rate α gradually increases, the synchronization region
gets shrinked. Here, larger values of the probability p cause gradual decrease in the critical
synchrony threshold of ε. As we previously observed from figure 3 that the higher values of p
yields lower diameter, hence lower coupling strength is required for the emergence of complete
synchrony.

In order to reveal the combined effect of the long-rangedecaying rateα and the network con-
nection probability p on the transition to complete synchrony, we have drawn phase diagrams
in the (α, p) plane in figure 6 for three different values of ε. Similar to figure 5, no synchrony
is observed below p = 0.0263 due to the disconnectedness of the network. Here, we observe
a significant variation of the synchronization region against change in the tuning parameters
α and p. Figures 6(a)–(c) are respectively plotted for ε = 0.03, ε = 0.06 and ε = 0.09. As
we gradually increase the value of ε, the synchronization region enlarges significantly. For all
these three plots, the critical threshold of synchrony in terms of (α, p) enhances by increasing
p, but decreasing α. Thus, complete synchronization enhances with respect to the long-range
interactions.

In the next section, we devote our study to the investigation of the global stability of the
complete synchronization state arising in the network (3). By using Lyapunov function and
eigenvalue analysis, we analytically derive the global stability criterion.

14
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6. Global stability analysis

It will strengthen the findings if the condition under which the synchronization solution is
globally stable could be derived. For the theory of synchronization, a typical task is to find the
condition for its global stability. Before illustrating the main global stability result, we need the
following assumptions and lemma based on the dynamics of the isolated node and the topology
of the interconnections among the nodes.

Assumption 5. The isolate evolution function f :Rd → R
d satisfies the global Lipschitz

condition. So there exists a non-negative constant M such that for any two vectors x, y ∈ R
d ,

‖ f (x) − f (y)‖ � M ‖x − y‖. (24)

Here, we prove the global stability using Lyapunov-based methods, for which we are assum-
ing the vector-filed of node to be Lipschitz. This assumption gives us an upper bound of the
rate of change of the vector field in the phase space.

Assumption 6. The inner coupling matrixΓ is a symmetric positive definite matrix. That is,
if {μ1,μ2, . . . ,μd} be the set of eigenvalues of Γ then μ j > 0 for all j = 1, 2, . . . , d. Moreover,
assume that μ1 is the smallest among the eigenvalues of Γ.

Lemma 7. The Kronecker product
[
L [k] ⊗ Γ

]
of the k-path Laplacian matrix and the inner

coupling matrix satisfies the following properties.

(a)
[
L [1] ⊗ Γ

]
has zero eigenvalues with algebraic multiplicity d, and all the other eigenval-

ues are positive if and only if the one-path network is connected.
(b) All the eigenvalues of

[
L [k] ⊗ Γ

]
are non-negative for all k = 2, 3, . . . , dmax.

(c) For all k = 1, 2, . . . , dmax, the smallest non-zero eigenvalue of
[
L [k] ⊗ Γ

]
satisfies

λ2
[
L [k] ⊗ Γ

]
= min

{
etr
[
L [k] ⊗ Γ

]
e

etre
: e ∈ R

dN , etr𝟙dN = 0, and e �= 0

}
.

(25)

Proof.

(a) First assume that
[
L [1] ⊗ Γ

]
has a zero eigenvalue with algebraic multiplicity d. Now the

set of eigenvalues of L [1] ⊗ Γ is
{
γ[1]

i μ j : i = 1, 2, . . . , N and j = 1, 2, . . . , d
}

.

Since, L [1] is positive semi-definite and zero-row sum thus γ[1]
1 = 0 and γ[1]

i � 0 for
i = 2, 3, . . . , N. Thus γ[1]

1 μ j = 0 for j = 1, 2, . . . , d. Now as the algebraic multiplicity of
the eigenvalue zero of L [1] ⊗ Γ is d, therefore γ[1]

i μ j > 0 for all i = 2, 3, . . . , N and j =
1, 2, . . . , d.

This yields γ[1]
i > 0 for all i = 2, 3, . . . , N. So the algebraic multiplicity of the eigenvalue

zero of L [1] is one, hence the one-path network is connected.
Conversely, suppose that the one-path network is connected. Then, we may assume γ[1]

1 = 0
and γ[1]

i > 0 for all i = 2, 3, . . . , N.
Thus, γ[1]

1 μ j = 0 for all j = 1, 2, . . . , d and γ[1]
i μ j > 0 for all i = 2, 3, . . . , N and j =

1, 2, . . . , d. Therefore, the algebraic multiplicity of the zero eigenvalue of L [1] ⊗ Γ is d.

(b) For k = 2, 3, . . . , dmax, the k-path Laplacian L [k] is by default positive semi-definite.
Thus, γ[k]

i � 0 for all i = 1, 2, . . . , N. Thus, γ[1]
i μ j � 0 for all i = 1, 2, . . . , N and j =

1, 2, . . . , d.
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(c) Since, Γ is a symmetric matrix so it is orthogonally diagonalizable. Then there exist an
orthogonal matrix Q such that QtrΓQ = diag{μ1,μ2, . . . ,μd} = DΓ (say).

The k-path Laplacian matrix L [k] is also symmetric positive semi-definite for all k =
1, 2, . . . , dmax. Then, there also exist an orthogonal matrix V [k] such that V [k]tr

L [k]V [k] =
diag{γ[k]

1 , γ[k]
2 , . . . , γ[k]

N } = D[k] (say). Without loss of any generality, we assume that the first
column of V [k] is 𝟙N .

Now,
[
V [k] ⊗ Q

]tr [
L [k] ⊗ Γ

] [
V [k] ⊗ Q

]
=
(

V [k]tr
L [k]V [k]

)
⊗
(
QtrΓQ

)
= D[k] ⊗ DΓ. It

is a diagonal matrix with non-negative diagonal elements with at least d number of zero
diagonal elements.

Consider the matrix V [k] in the form V [k] = [𝟙N v[k]
2 . . . v[k]

N ]. Then for any e ∈ R
dN , we

have,

etr
[
L [k] ⊗ Γ

]
e = etr

[
V [k] ⊗ Q

] [
D[k] ⊗ DΓ

] [
V [k] ⊗ Q

]tr
e. (26)

If we assume e = [etr
1 etr

2 . . . etr
N]tr, where ei ∈ R

d for all i = 1, 2, . . . , N, then

etr
[
V [k] ⊗ Q

]
= etr

[
𝟙N v[k]

2 . . . v[k]
N

]
⊗ Q =

[
O1×d etrv[k]

2 ⊗ Q . . . e[k]vtr
N ⊗ Q

]
. (27)

Similarly, we can derive,

[
V [k] ⊗ Q

]tr
e =

⎡
⎢⎢⎢⎣

Od×1

v[k]tr

2 ⊗ Qtre
...

v[k]tr

N ⊗ Qtre

⎤
⎥⎥⎥⎦ . (28)

Also, one can write, D[k] ⊗ DΓ = diag{Od×d, γ[k]
2 DΓ, . . . , γ[k]

N DΓ}. Thus with the help of
equations (27) and (28), the equation (26) becomes

etr[L ⊗ Γ]e = [O1×d etrv[k]
2 ⊗ Q · · · e[k]vtr

N ⊗ Q]

×

⎡
⎢⎢⎢⎣

Od×d Od×d · · · Od×d

Od×d γ[k]
2 DΓ · · · Od×d

...
...

...
...

Od×d Od×d · · · γ[k]
N DΓ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

Od×1

v[k]tr

2 ⊗ Qtre
...

v[k]tr

N ⊗ Qtre

⎤
⎥⎥⎥⎦ .

(29)

This is equivalent to

etr[L ⊗ Γ]e =
N∑

i=2

γ[k]
i etr(v[k]

i ⊗ Q)DΓ(v[k]tr

i ⊗ Qtr)e. (30)

As γ[k]
2 � γ[k]

i for all 2 < i, and μ1 is smallest among all the eigenvalues of Γ, we then have,

etr[L ⊗ Γ]e � γ[k]
2 μ1

N∑
i=2

etr(v[k]
i ⊗ Q)(v[k]tr

i ⊗ Qtr)e. (31)

Since, v[k]
1 = 𝟙N and etr𝟙dN = 0, therefore

etr[L ⊗ Γ]e � γ[k]
2 μ1

N∑
i=i

etr(v[k]
i ⊗ Q)(v[k]tr

i ⊗ Qtr)e = γ[k]
2 μ1etre. (32)
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Finally we obtain, the smallest non-zero eigenvalue of L [k] ⊗ Γ is λ2[L [k] ⊗ Γ] =
γ[k]

2 μ1 � etr[L⊗Γ]e
etre for all e ∈ R

dN and k = 1, 2, . . . , dmax.
To prove the expression (25), it is sufficient to show that the above inequality is tight. For

this, consider e = [v[k]
2 ⊗ vΓ1 ], where v[k]

2 is the orthogonal eigenvector of L [k] corresponding
to the eigenvalue γ[k]

2 , and vΓ1 is for Γ corresponding to the eigenvalue μ1. Then we get,

etr[L [k] ⊗ Γ]e = [v[k]
2 ⊗ vΓ1 ]tr[L [k] ⊗ Γ][v[k]

2 ⊗ vΓ1 ]

= (v[k]tr

2 L [k]v[k]
2 ) ⊗ (vΓ

tr

1 ΓvΓ1 ) = γ[k]
2 μ1.

The lemma is then proved. �

The next theorem deals with the global stability condition of the complete synchronization
state.

Theorem 8 (Global stability analysis). Given a connected one-path network of N nodes
described by (3). Consider the vector field f of the isolate node is Lipschitz with Lipschitz
constant M > 0. Then, if the k-path coupling strength εk satisfies the following condition

dmax∑
k=1

εkλ2[L [k] ⊗ Γ] > M, (33)

the complete synchronization state of the dynamical network (3) will be globally stable.

Proof. Let us first define a new quantity x̄ = 1
N

∑N
l=1 xl(t), and let ei = xi − x̄. Then the

dynamics of this average can be written as,

˙̄x =
1
N

N∑
l=1

ẋl

=
1
N

N∑
l=1

f (xl) −
1
N

N∑
l=1

dmax∑
k=1

εk

N∑
j=1

Ll j
[k]Γx j (34)

=
1
N

N∑
l=1

f (xl) −
1
N

dmax∑
k=1

εk

N∑
j=1

N∑
l=1

Ll j
[k]Γx j.

But, since each L [k] is zero-row sum and symmetric, so
∑N

l=1 Ll j
[k] = 0 for all j =

1, 2, . . . , N. Thus ˙̄x = 1
N

∑N
l=1 f (xl).

Again, L [1] is the one-path Laplacian matrix or simply the Laplacian matrix of the under-
lying network, so L [1] has a simple zero eigenvalue and all the other eigenvalues are positive.
Moreover, the k-path Laplacian matrix L [k](k = 2, 3, . . . , dmax) is also symmetric and posi-
tive semi-definite. But it may have more than one zero eigenvalue. From lemma 7, the second
smallest eigenvalue λ2[L [k]] of L [k](k = 2, 3, . . . , dmax) satisfies

λ2[L [k]] = min
vtr𝟙N=0,v �=0

vtrL [k]v

vtrv
, (35)

where 𝟙N = [1, 1, . . . , 1]tr.
We assume that the vector field of the uncoupled nodes is Lipschitz, i.e., ‖ f (x) − f (y)‖ �

M‖x − y‖, where M is the Lipschitz constant.
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Let us now consider the Lyapunov function V = 1
2

∑N
i=1 ei

trei. Its time derivative along the
network dynamics can be written as

V̇(t) =
N∑

i=1

ei
trėi =

N∑
i=1

ei
tr[ẋi − ˙̄x] =

N∑
i=1

ei
tr

⎡
⎣ f (xi) −

dmax∑
k=1

εk

N∑
j=1

Li j
[k]Γx j −

1
N

N∑
l=1

f (xl)

⎤
⎦ .

(36)

Now, notice that
∑N

i=1 ei
tr
[

f (x̄) − 1
N

∑N
l=1 f (xl)

]
= 0, due to

∑N
i=1 ei = 0. So, we get∑N

i=1 ei
tr f (x̄) =

∑N
i=1 ei

tr 1
N

∑N
l=1 f (xl). Using this equality, the aforementioned equation (36)

becomes

V̇(t) =
N∑

i=1

ei
tr

⎡
⎣ f (xi) −

dmax∑
k=1

εk

N∑
j=1

Li j
[k]Γx j − f (x̄)

⎤
⎦

=

N∑
i=1

ei
tr [ f (xi) − f (x̄)] −

dmax∑
k=1

εk

N∑
i=1

ei
tr

N∑
j=1

Li j
[k]Γ(x j − x̄). (37)

Recall now that f is a Lipschitz function. This implies that for any two vectors xi and x̄ ∈ R
d ,

we have

V̇(t) � M
N∑

i=1

ei
tr(xi − x̄) −

dmax∑
k=1

εk

N∑
i=1

ei
tr

N∑
j=1

Li j
[k]Γe j. (38)

If e denotes the stack of ei, then in vectorial form the above inequality can be written as

V̇(t) � Metre −
dmax∑
k=1

εketr[L [k] ⊗ Γ]e. (39)

Now, etr𝟙N =
∑N

j=1 e j =
∑N

j=1 (x j − x̄) = 0, thus by lemma 7, we have,

min
e�=0

[etr(L [k] ⊗ Γ)e] = λ2[L [k] ⊗ Γ]etre. (40)

Incorporating the expression (40) in the inequality (39), we have

V̇(t) � Metre −
dmax∑
k=1

εkλ2[L [k] ⊗ Γ]etre =

[
M −

dmax∑
k=1

εkλ2[L [k] ⊗ Γ]

]
etre.

(41)

So the complete synchronization state will be globally stable if V̇ is negative definite, i.e.,(
M −

∑dmax
k=1 εkλ2[L [k] ⊗ Γ]

)
< 0.

Now since the one-path network is connected, so by lemma 7, at least λ2[L [1] ⊗ Γ] is pos-
itive. Thus we obtain suitable coupling strengths εk, k = 1, 2, . . . , dmax for which the required
condition is satisfied.

This completes the proof. �
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Figure 7. (a) Global stability curve in the (ε,α) parameter space for two different values
of p : p = 0.05 (red line) and p = 0.1 (blue line). (b) Variation of the critical coupling
strength εc in the (α, p) parameter plane (from our global stability results).

Above theorem provides a sufficient condition for the global stability of the complete syn-
chronization state in terms of appropriate coupling strength. This global stability result depends
directly on the eigenvalues of L[k] for k = 1, 2, . . . , dmax. Below we derive this condition for
our coupling architecture.

Remark 3. For power-law decaying rate, the coupling strength for shortest-distance k is
εk =

ε
kα . Then the global stability condition becomes

ε >
M∑dmax

k=1
λ2[L [k]⊗Γ]

kα

. (42)

Therefore, the global stability condition depends on the Lipschitz constant M, minimum
non-zero eigenvalue of L [k] ⊗ Γ and the power-law exponent α. From the expression (42), it
is clear that as α increases, larger coupling strength is needed for the global stability. Thus by
considering long-range interactions, global stability of the synchronization also enhances.

Additionally, we have assumed that the inner coupling matrix Γ to be the identity matrix of
order 3. Thus all of its three eigenvalues are 1, so λ2[L [k] ⊗ Γ] = λ2[L [k]]. Therefore, the
global stability condition of equation (3) is

ε >
M∑dmax

k=1
λ2[L [k]]

kα
(43)

Beyond this coupling strength, all the oscillators in the network converge toward the identical
trajectory, irrespective of the initial conditions. The left-hand side of the inequality (43) is
termed as the critical coupling threshold for the global stability, and denoted by εc. Next we
look at the variation of εc with respect to α and p.

Now, we validate numerically the aforementioned global stability results. The Lipschitz
constant of the Lorenz system for the chosen parameter values is M = 11.5.

The global stability curves in the (ε,α) parameter plane are depicted in figure 7(a) for two
different values of p. The red curve is for p = 0.05 and the blue is for p = 0.1. For each curve,
its upper region corresponds to the global stability region of the synchronization state. Both the
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two curves illustrate that the critical coupling for the global stability monotonically increases
for gradually increasing α. But the critical values decrease for increasing connection probabil-
ity p. For a better visualization, we have plotted the critical coupling strength εc in the (α, p)
parameter plane in figure 7(b). The color bar represents the variation of εc, where deep blue
color recounts the critical coupling strength is approximately equal to 1.5 and white color for
εc near to zero. This sub-figure illustrates more clearly the monotonic enhancement of εc with
respect to p, and de-enhancement with respect to α. A prominent variation of εc is delineated
here.

Since this critical threshold is based upon the Lyapunov stability criterion, more accurate
global stability threshold may be found by assuming more optimal Lyapunov function or by
any another method. This numerical illustration also verifies our analytical predictions that the
long-range interactions enhances the synchronization.

7. Conclusion

There exists a large volume of results in the literature related to the analysis of the syn-
chronization process in coupled systems, even in coupled systems’ networks having diverse
complex yet realistic architectures. But, comparatively much lesser attention has been paid to
the exploration of this phenomenon in systems undergoing long-range interaction. Long-range
interaction is characterized as the one that generalizes the conventional direct communication
among the nodes based on one-path Laplacian matrix. Rather, such an interaction incorporates
all the possible k-path couplings between all the pairs of nodes expressed in terms of k-path
Laplacian matrices. In this work, we have presented our results on the manifestation of com-
plete synchronization in ER random network subject to long-range interactions. In order to
describe the impact of long-range couplings, we have chosen the decaying interaction strength
among the nodes with reference to the power-law, while considering the paradigmatic Lorenz
systems for casting the nodes in the network. We have shown how the appearance of syn-
chrony depends on the variation of the coupling strength and the power-law exponent. More
importantly, we have provided comprehensive analysis on the stability of the obtained syn-
chronization solution. Besides a thorough investigation of local stability based on the master
stability function approach, we also presented global stability analysis for appropriate choice of
Lyapunov function. Note that the local stability results give the exact critical coupling strength
only for considerably small perturbations. While the critical coupling strength obtained from
the global stability analysis is larger then the local case, but irrespective of the perturbations
(whether small or large).

Appendix A

In this appendix, we discuss the results for disconnected one-path Laplacian matrix and
also discuss the comparision between short-range and long-range interations for complete
synchronization.

A.1. Disconnected one-path Laplacian matrix

In this subsection, we prove that the adjustment of rhythm among the nodes is impossible if
the network is disconnected, even if we consider long-range interaction.

Proposition 9. If the underlying one-path is disconnected, then complete synchronization
is impossible to occur in the network of coupled system (3).
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Proof of proposition 9. By hypothesis, underlying one-path network is disconnected. For
the time being, assume that the one-path network has g components, each one is connected.
Then the corresponding Laplacian matrix becomes reducible, and it can be written as the direct
sum of g matrices. Hence, we can write L [1] as L [1] = ⊕g

l=1
L [1,l], where each L [1,l] is a

zero-row sum positive definite matrix. Actually they are the Laplacian matrices of the g disjoint
components.

Also assume that the lth component has nl number of nodes for l = 1, 2, . . . , g and∑g
l=1 nl = N.
Now it is clear that all the k-path networks will have at least g components for k =

2, 3, . . . , dmax. Therefore, this k-path Laplacian can also be written as L [k] = ⊕g

l=1
L [k,l].

While L [k,l] is also zero-row sum positive semi-definite matrix, but it may be again
reducible. In other words, the k-path network may have more than g components. Conse-
quently the algebraic multiplicity of the zero eigenvalue in L [k] may be greater than g for
some k = 2, 3, . . . , dmax.

For each L [k,l], we can get an orthogonal matrix V [k,l] such that L [k,l]−1
L [k,l]V [k,l] is a

diagonal matrix. This yields,

⎛
⎝ g⊕

l=1
V [k,l]

⎞
⎠

−1

L [k]

⎛
⎝ g⊕

l=1
V [k,l]

⎞
⎠ =

g⊕
l=1

(
V [k,l]−1

L [k,l]V [k,l]
)

= diag
{
γ[k]

1 , γ[k]
2 , . . . , γ[k]

N

}
.

(44)

So, ⊕g

l=1
V [k,l] becomes the orthogonal basis of eigenvectors of L [k]. Which splits the error

components into transverse and parallel directions.
Proceeding with the same argument as of equation (9), one can get

V [1,l]−1
L [k,l]V [1,l] =

[
0 O1×nl−1

Onl−1×1 U[k,l]

]
, (45)

for all l = 1, 2, . . . , g, where U[k,l] ∈ R
nl−1×nl−1. Right away we can get

V [1]−1
L [k]V [1] =

g⊕
l=1

[
0 O1×nl−1

Onl−1×1 U[k,l]

]
. (46)

With the help of the above matrix equation, we can write the entire variational equation as

[
η̇P(t)
η̇T(t)

]
=

N⊕
l=1

J f (x0)

[
ηP(t)
ηT(t)

]
−

dmax∑
k=1

εk

g⊕
l=1

[
0 O1×nl−1

Onl−1×1 U[k,l]

]
⊗ Γ

[
ηP(t)
ηT(t)

]
. (47)

From the above equation eliminating one d-dimensional parallel component, the transverse
error dynamics can be written as

η̇T(t) =

⎧⎨
⎩

N−1⊕
l=1

J f (x0) −
dmax∑
k=1

εkU[k,1] ⊕ g⊕
l=2

[
0 O1×nl−1

Onl−1×1 U[k,l]

]
⊗ Γ

⎫⎬
⎭ ηT(t). (48)
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Figure A1. Variation of the synchronization error E with respect to ε by considering
short-range interactions (black curve) and long-range interactions with different values
of power-law exponent α = 5.0 (blue circle curve), α = 4.0 (red square curve), α = 3.0
(green diamond curve), α = 2.0 (magenta triangle curve) and α = 1.0 (cyan star curve).
Other parameter: p = 0.1.

If we consider ηT(t) is the stack of g vectors ζ1(t), ζ2(t), . . . , ζN(t), corresponding to each
component, then the above equation is equivalent to g equations as follows,

ζ̇1(t) =

⎧⎨
⎩

n1−1⊕
l=1

J f (x0) −
dmax∑
k=1

εkU[k,1] ⊗ Γ

⎫⎬
⎭ ζ1(t), (49a)

ζ̇ l(t) =

⎧⎨
⎩

nl⊕
i = 1

J f (x0) −
dmax∑
k=1

εk

[
0 O1×nl−1

Onl−1×1 U[k,l]

]
⊗ Γ

⎫⎬
⎭ ζl(t), l=2, 3, . . . , g. (49b)

The above two equations governs the entire transverse subspace. But equation (49b)
yields at least (g − 1) number of d-dimensional equations whose equation of motion are
η̇Ti = J f (x0)ηTi , which will definitely not get stabilized whatever the coupling strength is.

Hence we get our required result. �

A.2. Comparison between short-range and long-range interactions

Here we briefly compare the emergence of synchronization among short-range and long-range
interactions. Short-range interaction can only leads to the direct communications among the
nodes, while the long-range interactions enable the nodes to interact with other nodes through
all possible paths of different lengths.

Figure A1 depicts the synchronization error E as a function of coupling strength ε, where the
ER network probability is fixed at p = 0.1. Blue curve represents by considering only short-
range interactions among the coupled oscillators. For this case the complete synchronization
emerges at ε � 0.1667. By considering also the long-range interactions, this critical coupling
strength enhances depending on the power-law exponent α. The blue circle, red square, green
diamond, magenta triangle and cyan star curves are respectively for α = 5.0, 4.0, 3.0, 2.0, and
1.0, for which the respective critical coupling strengths are ε = 0.1467, 0.12, 0.0933, 0.06,
and 0.0333. In the limiting case α = 0, we have checked that the critical coupling strength
enhances to ε = 0.0267. A significant enhancement of synchrony can be observed for long-
range connections. The results say that lesser the value of α higher the enhancement in the
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emergence of synchrony. Finally, if one considers α = 0, then the network becomes globally
connected and hence the enhancement of synchrony will be maximum. In this context, it is
to be noted that the short-range interaction also a limiting case of long-range interaction for
which α→∞.
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