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Abstract
Five duality transformations are unveiled for the quantum XYZ model with
arbitrary spin s in one spatial dimension. The presence of these duality trans-
formations, together with an extra Hamiltonian symmetry, drastically reduce the
entire ground-state phase diagram to two finite regimes—the principal regimes,
with all the other ten regimes dual to them. Combining with the determina-
tion of critical points from the conventional order parameter approach and/or
the fidelity approach to quantum phase transitions, we are able to map out the
ground-state phase diagram for the quantum XYZ model with arbitrary spin s.
This is explicitly demonstrated for s = 1/2, 1, 3/2 and 2. As it turns out, all the
critical points, with central charge c = 1, are self-dual for half-integer as well
as integer spin s. However, in the latter case, the presence of the Haldane phase
results in extra lines of critical points with central charge c = 1/2, which are
not self-dual.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum duality is a fundamental concept that offers a powerful means to investigate criti-
cal phenomena in quantum many-body systems [1]. A prototypical example to illustrate the
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importance of duality is the quantum transverse field Ising chain, an adaptation from the
Kramers–Wannier duality in the two-dimensional classical Ising model [2, 3]. An important
lesson learned from this example is that a critical point may be identified as a self-dual point,
which is left intact under the duality transformation. That is, under some physically sensible
assumptions, the duality transformation not only establishes a connection between two distinct
phases, but also offers a practical means to locate a critical point. However, it remains unclear
whether or not quantum duality is ubiquitous in quantum many-body systems. In addition, a
relevant intriguing question is to clarify the connection between a self-dual point and a critical
point.

We aim to address these two related issues with an illustrative example—the quantum XYZ
model with arbitrary spin s, both integer and half-integer. Two special cases have been widely
investigated: one is the spin-1/2 XYZ model, and the other is the SU(2) Heisenberg model
with arbitrary spin s. Historically, the spin-1/2 XYZ model is a fundamental model in statisti-
cal physics, mainly due to the fact that the model is exactly solvable, as shown by Baxter [4]
from its equivalence to the classical two-dimensional eight-vertex model. However, the exact
solvability is lost for the quantum XYZ model if s becomes larger than 1/2. Meanwhile, the
Heisenberg model with arbitrary spin s may be mapped to the nonlinear σ model with a topo-
logical term [5, 6]. As it turns out, the model is gapless for half-integer spin s and gapped for
integer spin s. Generically, only a few results are available in the literature, such as the quantum
XXZ model with spin s = 1 or s = 2 [7–9]. Therefore, it is highly desirable to map out the
ground-state phase diagram for the quantum XYZ model with arbitrary spin s. This is achieved
here by combining quantum duality with the conventional order parameter approach and/or the
fidelity approach to quantum phase transitions [10–12].

Specifically, five different duality transformations are unveiled for the quantum XYZ model
with arbitrary spin s. As it turns out, it is the presence of these duality transformations, together
with an extra Hamiltonian symmetry, that drastically reduce the entire ground-state phase dia-
gram into two finite regimes—the so-called principal regimes, with all the other ten regimes
dual to them, respectively. In other words, we only need to focus on the principal regimes, in
order to map out the ground-state phase diagram. This can be done through, e.g., numerical
simulations by means of the density matrix renormalization group (DMRG) [13, 14] and the
infinite time-evolving block decimation (iTEBD) [15–17]. In this work, the iTEBD algorithm
is exploited to simulate the infinite-size quantum XYZ model with s = 1/2, 1, 3/2 and 2. It
is found that all the critical points, with central charge c = 1, are self-dual under a respective
duality transformation for half-integer as well as integer spin s. However, in the latter case,
the presence of the so-called symmetry protected topological (Haldane) phase, results in extra
lines of critical points with central charge c = 1/2. These are not self-dual under any duality
transformation.

2. Quantum XYZ model

The Hamiltonian for the quantum XYZ model with arbitrary spin s in one spatial dimension
takes the form

H(Δ, γ) =
∑

i

(
1 + γ

2
Sx

i Sx
i+1 +

1 − γ

2
Sy

i Sy
i+1 +

Δ

2
Sz

i S
z
i+1

)
, (1)

where Sβ
i , with β = x, y, z, are the spin matrices for spin s at site i, and γ and Δ are the coupling

parameters describing the anisotropic interactions.
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Figure 1. Twelve regimes generated from the five duality transformations for the quan-
tum XYZ model with arbitrary spin s for γ > 0. Here, the regimes I, III, V, I′, III′ and
V′ are dual to each other. And the regimes II, IV, VI, II′, IV′ and VI′ are dual to each
other. We choose the regimes I and II as the principal regimes.

3. Duality transformations for the quantum XYZ model

Quantum duality is a local or nonlocal nontrivial unitary transformation U, which leaves the
form of the local Hamiltonian density intact. Mathematically, for a Hamiltonian H(Δ, γ),
with Δ and γ being control parameters, H(Δ′, γ ′) is dual to H(Δ, γ), if there is a unitary
transformation U such that H(Δ, γ) = k(Δ, γ)UH(Δ′, γ ′)U†, with Δ′ and γ ′ in turn being
functions of Δ and γ and k(Δ, γ) being positive.

For the quantum XYZ model with arbitrary spin s, there are five distinct duality transfor-
mations:

(a) The Hamiltonian H(Δ, γ) for γ > 1 is dual to the Hamiltonian H(Δ′, γ ′) for
0 < γ < 1 under a local unitary transformation U0: Sx

2i → Sx
2i, Sy

2i → Sy
2i, Sz

2i → Sz
2i,

Sx
2i+1 → Sx

2i+1, Sy
2i+1 →−Sy

2i+1 and Sz
2i+1 →−Sz

2i+1 : H(Δ, γ) = k(Δ, γ)U0H(Δ′, γ ′)U†
0,

with Δ′ = −Δ/γ, γ ′ = 1/γ, and k(Δ, γ) = γ. The Hamiltonian is self-dual if Δ = 0 and
γ = ±1.

(b) Under a local unitary transformation U1: Sx
i →−Sx

i , Sy
i → Sz

i , Sz
i → Sy

i , we have H(Δ, γ) =
k(Δ, γ)U1H(Δ′, γ ′)U†

1, with Δ′ = (2 − 2γ)/(1 +Δ+ γ), γ ′ = (1 −Δ+ γ)/(1 +Δ+
γ), and k(Δ, γ) = (1 +Δ+ γ)/2. The Hamiltonian on the line γ = 1 −Δ is self-dual.

(c) Under a local unitary transformation U2: Sx
2i →−Sx

2i, Sy
2i →−Sz

2i, Sz
2i →−Sy

2i, Sx
2i+1 →

−Sx
2i+1, Sy

2i+1 → Sz
2i+1 and Sz

2i+1 → Sy
2i+1, we have H(Δ, γ) = k(Δ, γ)U2H(Δ′, γ ′)U†

2,
with Δ′ = (−2 + 2γ)/(1 −Δ+ γ), γ ′ = (1 +Δ+ γ)/(1 −Δ+ γ), and k(Δ, γ) = (1 −
Δ+ γ)/2. The Hamiltonian on the line γ = 1 +Δ is self-dual.

(d) Under a local unitary transformation U3: Sx
i → Sz

i , Sy
i →−Sy

i , Sz
i → Sx

i , we have H(Δ, γ) =
k(Δ, γ)U3H(Δ′, γ ′)U†

3, withΔ′ = (2 + 2γ)/(1 +Δ− γ), γ ′ = (−1 +Δ+ γ)/(1 +Δ−
γ), and k(Δ, γ) = (1 +Δ− γ)/2. The Hamiltonian on the line γ = −1 +Δ is self-dual.

(e) Under a local unitary transformation U4: Sx
2i →−Sz

2i, Sy
2i →−Sy

2i, Sz
2i →−Sx

2i, Sx
2i+1 →

Sz
2i+1, Sy

2i+1 →−Sy
2i+1 and Sz

2i+1 → Sx
2i+1, we have H(Δ, γ) = k(Δ, γ)U4H(Δ′, γ ′)U†

4,
with Δ′ = (2 + 2γ)/(−1+Δ+ γ), γ ′ = (−1 −Δ+ γ)/(1 −Δ− γ), and k(Δ, γ) =
(1 −Δ− γ)/2. The Hamiltonian on the line γ = −1 −Δ is self-dual.

Given that the Hamiltonian is symmetric with respect to the mapping γ ↔ −γ: Sx
i ↔ Sy

i and
Sz

i →−Sz
i , we may restrict ourselves to the region γ � 0 in the parameter space. This symmetry
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may be regarded as a duality transformation with k(Δ, γ) = 1, under which the line γ = 0 is
self-dual. Then, as a consequence of the five distinct duality transformations, the whole region
is divided, via five lines described by γ = 1 and γ = ±1 ±Δ, into 12 different regimes, as
shown in figure 1. In addition, these 12 regimes are separated into two groups, with six regimes
in each group dual to each other. Therefore, we only need to consider two of these 12 regimes,
which represent the physics underlying the quantum XYZ model with arbitrary spin s. For our
purpose, it is convenient to choose one finite regime from each group, which is defined as a
principal regime. Here and hereafter, we choose the regimes I and II as the principal regimes.

4. The iTEBD algorithm: numerical simulations

The iTEBD algorithm [15–17] is exploited to simulate the quantum XYZ model in the principal
regimes I and II. The algorithm generates a ground-state wave function in a matrix product state
representation on an infinite-size chain, and provides an efficient means to evaluate various
physical observables.

In order to locate critical points in the principal regimes, we adopt the strategy to evalu-
ate the order parameters for symmetry-breaking ordered phases and the string-order parameter
for the Haldane phase, as explicitly presented below. The same goal may also be achieved
in the context of the fidelity approach to quantum phase transitions [10–12]. Once this is
done, we are able to map out the entire ground-state phase diagram by resorting to the duality
transformations.

For a given critical point, it is necessary to determine the universality class, to which it
belongs. To accomplish this, we perform a finite-entanglement scaling analysis [18, 19] to
extract central charge c, based on the matrix product state representations. At a critical point,
the von Neumann entropy S scales with the bond dimension χ,

S(χ) = c
κ log2 χ

6
+ a. (2)

Here, κ follows from the scaling of the correlation length with the bond dimensionχ: ξ = bχκ,
and a and b are some constants.

The quantum XYZ model also features factorized states. Although this fact has been
known rigorously, we mention that a powerful numerical scheme, based on the geometric
entanglement, is available to identify any possible factorized states [20, 21].

5. Half-integer spin: s = 1/2 and s = 3/2

There are four distinct phases, labeled as AFx, AFy, AFz, and Fz, representing an antiferromag-
netic (AF) phase in the x direction, an AF phase in the y direction, an AF phase in the z direction,
and a ferromagnetic (F) phase in the z direction, respectively. We remark that the AFα phases,
with α = x, y, z, are characterized in terms of a Z2 symmetry-breaking order. More precisely,
these symmetry-breaking ordered phases are characterized in terms of an order parameter:
for the Fz phase, the order parameter is defined by Oz

F = 〈Sz〉; for the AFx phase, the order
parameter is defined by Ox

AF = 〈(−1)iSx
i 〉; for the AFy phase, the order parameter is defined by

Oy
AF = 〈(−1)iSy

i 〉; for the AFz phase, the order parameter is defined by Oz
AF = 〈(−1)iSz

i 〉.
For s = 1/2, our numerical simulations yield the ground-state phase diagram, as shown in

figure 2(a). This is consistent with Baxter’s exact solution [4]. That is, for s = 1/2, we are
able to reproduce the ground-state phase diagram from the duality transformations, with the
minimal knowledge of critical points in the principal regimes I and II.
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Figure 2. Ground-state phase diagram for the quantum XYZ model with half-integer
spin s: (a) s = 1/2 and (b) s = 3/2. Here, the solid lines, i.e., γ = 0 (−1 < Δ � 1), γ =
−1 −Δ (Δ < −1) and γ = −1 +Δ (Δ � 1), denote the phase boundaries between
distinct symmetry-breaking ordered phases, labeled as AFx, AFz and Fz. The self-dual
line, γ = 1 +Δ, with Δ > −1, describes a factorized state.

Figure 3. Scaling of the von Neumann entropy S (main) and the correlation length ξ
(inset) with respect to the bond dimension χ in the quantum XYZ model: (a) s = 1/2; (b)
s = 3/2. This enables us to extract central charge c for chosen critical points (Δc, γc): (a)
c = 1.0005, 0.9942 and 0.9895 for (−0.4, 0), (0, 0), (0.4, 0); (b) c = 0.9876, 0.9849, and
0.9867 for (−0.2, 0), (0, 0) and (0.2, 0). Taking into account the numerical accuracies,
we have c = 1.

A remarkable fact is that, for s = 3/2, the ground-state phase diagram, as plotted in
figure 2(b), is identical to the ground-state phase diagram for s = 1/2. Actually, this is valid for
any half-integer spin s, since there is no other possibility to keep consistency with the Haldane
conjecture [5, 6].

There are five lines of critical points: γ = 0 (−1 < Δ � 1), γ = 1 +Δ (Δ < −1), γ =
1 −Δ (Δ � 1), γ = −1 −Δ (Δ < −1) and γ = −1 +Δ (Δ � 1), which appear as the phase
boundaries separating the symmetry-breaking ordered phases AFx, AFy, AFz, and Fz. We have
depicted three of them as the solid lines in figure 2, with the other two being symmetric under
the mapping γ ↔ −γ. A finite-entanglement scaling is performed, as shown in figure 3, to
extract central charge c at a critical point (in the principal regimes I and II). It is found that
all the critical points are characterized in terms of central charge c = 1. For s = 1/2, this is
consistent with the Bethe ansatz result that a line of critical points exists for −1 < Δ � 1
when γ = 0. If γ = 0, a Kosterlitz–Thouless (KT) phase transition [22, 23] occurs at Δ = 1,
protected by a U(1) symmetry, from a critical regime to the AFz phase for Δ > 1. From the
duality transformations and the mapping γ ↔ −γ, it follows that a KT phase transition occurs
at Δ = 1 along the lines γ = −1 +Δ and γ = 1 −Δ, again protected by a U(1) symmetry.
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Given central charge c = 1, all the other phase transitions are Gaussian, if the phase boundaries
are crossed.

Although the five lines of critical points are self-dual under their respective duality transfor-
mations, the converse is not necessarily true. Actually, the self-dual lines γ = 1 −Δ (Δ < 1),
γ = 1 +Δ (Δ > −1), γ = −1 −Δ (Δ > −1) and γ = −1 +Δ (Δ < 1) represent charac-
teristic lines that enjoy a U(1) symmetry, in contrast to a Z2 symmetry at a point away from
these self-dual lines on the parameter space. In addition, factorized states occur on the two
self-dual lines γ = 1 +Δ (Δ > −1) and γ = −1 −Δ (Δ > −1), as follows from an analysis
of the geometric entanglement [20, 21]. This is in agreement with a previous rigorous result
about factorized states [24].

6. Integer spin: s = 1 and s = 2

In addition to the four distinct symmetry-breaking ordered phases AFx, AFy, AFz, and Fz, exotic
phases—the Haldane phases—emerge surrounding the SU(2) symmetric point (Δ = 1, γ =
0), as anticipated from the Haldane conjecture [5, 6]. The Haldane phases are categorized into
the even/odd Haldane (EH/OH) phase for even/odd integer spin s, due to their characteristic
differences. Both the EH phase and the OH phase are beyond the symmetry-breaking paradigm.
Three typical properties are known for the OH phase—a finite small gap, degenerate edge
states under open boundary conditions and a hidden dilute antiferromagenatic order. For spin
s = 1, the spin configuration for the hidden dilute antiferromagenatic order is that each pairs
of spin states |+〉 and |−〉 are separated by several spin states in |0〉. To unveil the non-local
antiferromagnetic order, a long-range string order parameter [25] is introduced, defined by

Oα
s = − lim

j−i→∞
〈Sα

i exp iπ
∑

i<k< j

Sα
k Sα

j 〉, (3)

with α = x, y and z, respectively.
Another non-local order parameter, OI, which is defined by the bond-centered inversion

symmetry [26], may be used to distinguish the EH phase from the OH phase, which tells us
the cohomology class a ground state belongs to. By definition, the non-local order parameter
OI takes 1/− 1 in the EH/OH phases respectively, which makes a clear distinction between
these two types of quantum states.

For s = 1, our numerical simulations yield the ground-state phase diagram, as plotted in
figure 4(a). If γ = 0, then the phase boundary between the Haldane phase and the AFz phase
is located at Δc1 = 1.185, as determined from the bond dimension χ = 60. This is in good
agreement with a previous DMRG result: Δc1 = 1.186 [7, 8]. In addition, when γ = 0, the
phase boundary between the critical regime and the Haldane phase shifts towards Δc2 = 0.0,
as the bond dimension χ increases from 18 to 300. This agrees with a previous DMRG result:
Δc2 = 0 [7, 8].

For s = 2, the situation is similar. However, the Haldane phase is shrinking with increasing
s. This is sensible, given that the Haldane phase must vanish when the classical limit s →∞
is approached. If γ = 0, then the phase boundary between the Haldane phase and the AFz

phase is located at Δc1 = 1.0035, as determined from the bond dimension χ = 200. This is in
good agreement with a previous DMRG result: Δc1 = 1.0037 [9]. In addition, when γ = 0, the
phase boundary between the critical regime and the Haldane phase is located at Δc2 = 0.98,
as determined from the bond dimension χ = 400. This is comparable to a previous DMRG
result: Δc2 = 0.964 [9].

There are 12 lines of critical points, which appear as the phase boundaries separating the
symmetry-breaking ordered phases, AFx, AFy, AFz, and Fz, and the Haldane phase. These lines
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Figure 4. Ground-state phase diagram for the quantum XYZ model with integer spin
s: (a) s = 1 and (b) s = 2. Here, the solid lines denote the phase boundaries between
distinct symmetry-breaking ordered phases, AFx, AFz, FMz, and the Haldane phase. The
self-dual line γ = 1 +Δ, with Δ > −1, describes a factorized state. Insets: the Haldane
phase for the quantum XYZ model with (a) s = 1 for 0 � γ � 1; (b) s = 2 for 0 � γ <
0.02.

Figure 5. Scaling of the von Neumann entropy S (main) and the correlation length ξ
(inset) with respect to the bond dimension χ in the quantum XYZ model: (a) s = 1;
(b) s = 2. This enables us to extract central charge c for chosen critical points (Δc, γc):
(a) c = 0.515, 0.487, 1.0073, 1.0083 and 1.0071 for (1.14, 0.2), (1.11, 0.18), (−0.6, 0),
(−0.4, 0) and (−0.2, 0); (b) c = 0.9746, 0.9638 and 0.9908 for (−0.8, 0), (−0.5, 0) and
(0.5, 0). Taking into account the numerical accuracies, we have c = 1 or c = 1/2.

of critical points fall into two distinct types: the first type consists of five lines of critical points
separating the symmetry-breaking ordered phases: γ = 0 (−1 < Δ � Δc2), γ = 1 +Δ (Δ <
−1), γ = 1 −Δ (Δ � Δc1), γ = −1 −Δ (Δ < −1) and γ = −1 +Δ (Δ � Δc1), and the
second type consists of seven lines of critical points separating a symmetry-breaking ordered
phase and the Haldane phase. Note that only three lines of critical points of the first type are
depicted as the solid lines in figure 4. A finite-entanglement scaling is performed, as shown in
figure 5, to extract central charge c at a critical point (in the principal regimes I and II). It is
found that the five lines of critical points of the first type are characterized in terms of central
charge c = 1, and the seven lines of critical points of the second type are characterized in terms
of central charge c = 1/2. When γ = 0, a KT phase transition [22, 23] occurs at Δc2 = 0 and
0.98 for s = 1 and s = 2, respectively, protected by a U(1) symmetry, from a critical regime to
the Haldane phase. From the duality transformations and the mapping γ ↔ −γ, it follows that
a KT phase transition occurs at (2, 1) and (2,−1) for s = 1 and at (1.01, 0.01) and (1.01,−0.01)
for s = 2, respectively, along the lines γ = −1 +Δ and γ = 1 −Δ, again protected by a U(1)
symmetry. Given central charge c = 1 or c = 1/2, all the other phase transitions are either
Gaussian or Ising-like, if the phase boundaries are crossed.
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As is well-known, in the Haldane phase, there is a hidden Z2 × Z2 symmetry-breaking order
for odd-integer spin s, but not for even-integer spin s [27, 28]. Actually, for the transformed
Hamiltonian, the phase corresponding to the Haldane phase is four-fold degenerate for s = 1,
but non-degenerate for s = 2 under the Z2 × Z2 symmetry group. This rules out the possibility
that there is any duality transformation between the Haldane phase and the AFα phases, with
α = x, y, z. This implies that the phase boundaries between the Haldane phase and the AFα

phases, with α = x, y, z, are not self-dual under any duality transformation.

7. Outlook

Our discussions about the duality transformations for the quantum XYZ model with arbitrary
spin s in one spatial dimension may be adapted to the quantum XYZ model with arbitrary spin
s on both bipartite and non-bipartite lattices [29]. One may anticipate to map out the ground-
state phase diagram for the quantum XYZ model on a specific lattice in the context of the
infinite projected entangled-pair states (iPEPS) [30–32].
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