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Abstract
Dynamical features of tagged particles are studied in a one dimensional 
A + A → kA system for k  =  0 and 1, where the particles A have a bias ε 
(0 � ε � 0.5) to hop one step in the direction of their nearest neighboring 
particle. ε = 0 represents purely diffusive motion and ε = 0.5 represents 
purely deterministic motion of the particles. We show that for any ε, there 
is a time scale t* which demarcates the dynamics of the particles. Below 
t*, the dynamics are governed by the annihilation of the particles, and the 
particle motions are highly correlated, while for t � t∗, the particles move 
as independent biased walkers. t* diverges as (εc − ε)−γ , where γ = 1 and 
εc = 0.5. εc  is a critical point of the dynamics. At εc , the probability S(t), that 
a walker changes direction of its path at time t, decays as S(t) ∼ t−1 and the 
distribution D(τ) of the time interval τ  between consecutive changes in the 
direction of a typical walker decays with a power law as D(τ) ∼ τ−2.

Keywords: reaction diffusion system, scaling, crossover phenomena, biased 
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1.  Introduction

Reaction diffusion systems in their simplest form with diffusion and annihilation of particles 
have been studied over the years [1–4]. These are nonequilibrium systems of diffusing parti-
cles undergoing certain reactions. Depending on the nature of the problem, the particles could 
be molecules, chemical or biological entities, opinions in societies or market commodities. 
Such systems are frequently used to describe various aspects of wide varieties of chemical, 
biological and physical problems. In the lattice version of the single species problem, the 
lattice is filled with particles (say A) with some probability initially and at each time step, 
the particles are allowed to jump to one of the nearest neighbouring sites (diffusion) with a 
certain probability. The simplest form of particle reaction is when a certain number l of the 
particles meet: lA → kA with k  <  l. It is well known that annihilating random walkers with 
l  =  2 and k  =  0 corresponds to the Ising-Glauber kinetics while the coalescing case with l  =  2 
and k  =  1 describes the dynamics of the q state Potts model with q → ∞, both at zero temper
ature and in one dimension [5]. Such systems have been studied in one dimension [6–13] as 
well as in higher dimensions [14–17]. Depending on the initial condition, whether one starts 
with even or odd number of particles, the steady state will contain no particles or one particle 
respectively. The focus in all these analyses is how the system approaches the steady state. In 
particular, one intends to know how the number of particles decays with time and the distribu-
tion of the intervals between the particles evolves with time.

Various reaction diffusion systems have been studied with different values of k and l in the 
past for different dynamical processes like ballistic annihilation [18–20], Levy walks [21, 22] 
and of course simple diffusion. However, what happens if the dynamical process is intrinsi-
cally stochastic and diffusive is an important question which has not been studied much. The 
idea behind all these studies is to find any universal behaviour in these systems and the key 
factors which determine the universality. Here we ask the same question by introducing a bias 
which does not alter the existing features like conservation, range and nature of the interaction 
or the diffusional dynamics in the model.

We have studied the model A + A → kA where the particle A diffuses with a preference 
towards its nearest neighbour. Both the annihilating case (k  =  0) and the coalescing case 
(k  =  1) have been considered. It is important to note that this bias does not affect the anni-
hilation process and retains the Markovian property of the dynamics. This simple extension, 
indeed, leads to drastic changes in the bulk dynamical features. For k  =  0, the fraction of 
walkers ρ(t) at time t was found to decay as ρ(t) ∼ t−α, where α ≈ 1 when the bias, however 
small, is introduced [23, 24]. In the absence of the bias, it is known that α = 1/2. The value 
of α suggests that in the presence of the bias, the walkers, in the long time limit, behave as 
ballistic walkers. For the coalescing case with bias, the bulk behaviour is identical, i.e. α ≈ 1 
(reported in the present paper). It may be added here that the bulk properties of some variants 
of the A + A → kA model with the above mentioned bias were recently studied in [25, 26].

The model considered in [23, 24] may thus appear to be equivalent to the system of anni-
hilating ballistic walkers at large times. But several features (e.g. persistence, domain growth 
etc) of the dynamics show that it is actually not the same. Hence, to get a better understanding 
we study the dynamics of a tracer walker in the biased case for both (k  =  0 and 1), specifically 
to check whether they perform ballistic motion or not.

In the following we briefly introduce the models and mention the different features studied 
and also the main results obtained. We have a bunch of walkers on a one dimensional ring. 
At every time step, the walker hops one step to its left or right with a bias ε to move in the 
direction of its nearest neighbour. ε = 0 implies no bias so that the walkers are purely random 
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walkers and ε = εc = 0.5 implies full bias so that the walker always moves towards its nearest 
neighbour. Except for this point, the motion is always stochastic.

For the annihilating case with k  =  0, we have a more detailed presentation of the results. 
First, the probability P(x, t) that a particle is at a distance x from its origin after time t is esti-
mated. We then calculate the probability that a walker changes its direction as a function of 
time. The distribution of the time intervals over which the walk continues in the same direc-
tion is also obtained. A change in the direction of motion can occur either due to diffusion or 
annihilation of the nearest particle(s). We find that the dynamics of the walkers are controlled 
by two time regimes. For time t  <  t*, the dynamics are controlled by the annihilation of the 
particles. The motion of the walkers, in this regime, is highly correlated and the process is crit-
ical in the sense that there is no time scale in it. As a result, the probability S(t) of the change 
in the direction of the motion of the walker at time t decays with a power law; S(t) ∼ 1/t. 
Similarly, the distribution D(τ) of the time interval τ  spent between two changes in the direc-
tion of the motion of the walkers is scale free as D(τ) ∼ 1/τ 2. We have found the full scaling 
behavior and arguments for the values of the exponents. The crossover time t∗ ∼ (εc − ε)−1, 
so εc  can be interpreted as a dynamical critical point where a diverging time scale exists.

We have also studied the coalescing model (k  =  1) with similar bias, i.e. A + A → A 
model. Without the bias, it is equivalent to the A + A → ∅ model as far as the decay of parti-
cles in time is concerned. In presence of bias, the scaling of the fraction of surviving particles,  
ρ(t) ∝ t−1 (details in section 4), shows that it is similar to the annihilating model. The dynam-
ics of the particles are indeed different in the coalescing model as the distances between the 
particles are not much affected by a reaction, except for the surviving particle that remains 
after the reaction. Here we have focussed on the behaviour of S(t) and D(τ) and find that 
the qualitative features of the dynamics of the tagged particle are again the same as in the 
A + A → ∅ model. However, here the crossover to the diffusion behaviour occurs at later 
times, so that t* is higher in the A + A → A model. This is consistent with our inference that 
the early time regime is annihilation dominated as for k  =  1, the annihilation continues for a 
longer time.

2. The model, dynamics and simulation details

The model consists of walkers denoted by A, undergoing the reaction A + A → kA. At each 
update, a site is selected randomly and if there is a particle on it, it moves towards its nearest 
neighbour with probability ε+ 0.5 (0 � ε � 0.5) and otherwise in the opposite direction. For 
k  =  0, if there is already another walker located on this neighbouring site, then both particles 
are annihilated and for k  =  1, one of them survives. Suppose, a walker is at site i and its near-
est neighbours are at i  +  x and i  −  y  on its right and left respectively; the walker will hop one 
step towards right with probability 0.5 + ε and to left with probability 0.5 − ε if x  <  y . In the 
rare cases where the two neighbours are equidistant, the walker moves in either direction with 
equal probability.

When the bias ε = 0.5, the k  =  0 case corresponds to the spin model introduced in [27] 
(see appendix for details). Hence, the dynamical updating scheme used here for k  =  0 has a 
one to one correspondence with the original spin dynamics used in [27]. As the spin system in 
[27] was considered to be highly disordered initially, we start with a high density of walkers 
in this problem; specifically the number of walkers is chosen to be L/2 on a one dimensional 
lattice of size L. To maintain the correspondence with spin dynamics, the walkers are updated 
asynchronously and at each update a site is chosen randomly, rather than a walker, for updat-
ing. One Monte Carlo step (MCS) comprises of L such updates. The same dynamical scheme 
was used in [23, 24] where the bulk properties of the walker model were studied.
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The dynamical scheme allows the possibility that a walker’s state may not be updated 
at all. This is because if a site is not selected, the position of the corresponding walker will 
not be updated. It may also happen that a walker is updated more than once in the following 
manner: if a walker moves to the site j  and the site j  is selected later, then the position of the 
same walker is updated again. This signifies that the net displacement of a particular walker 
may even be zero when it performs more than one movement in the same MCS. For all calcul
ations, the final positions of the walkers after the completion of one MCS are considered. 
The results reported here are for simulations done on lattices of size 12000 or more and the 
maximum number of configuration studied was 2000. Periodic boundary condition has been 
used for all the simulations.

In the A + A → A model (k  =  1), the same dynamical scheme is used. Here, once two 
walkers meet, one of them will survive. In order to study the tagged particle dynamics, we 
need to label the surviving particle. We use the convention that the particle which makes the 
last movement survives. We have checked that the random convention (either of the two parti-
cles is taken to be the survivor randomly) leads to the same results qualitatively.

3.  Results for A + A → ∅ (k = 0) model

To check the movement of individual walkers we took snapshots of the system at different 
times. Figures 1(a) and (b) show the world lines of the motion of the particles for ε = 0 and 
ε = 0.5. It clearly shows that the motion of the individual particles in the two extreme cases 
are remarkably different. Annihilation dominates for ε = 0.5 while for ε = 0 the walk is dif-
fusive as expected. For the intermediate values of ε, both the mechanisms of diffusion and 
annihilation will be important and thus, as we will see later, give rise to the crossover effect 
for the system. To probe the dynamics of the particles, we have studied the following three 
quantities: (i) the probability distribution P(x, t) of finding a particle A at distance x from its 
origin at time t, (ii) the probability S(t) of the change in the direction in the motion of a walker 
at time t and (iii) the distribution D(τ) of the time interval τ  between two successive changes 
in the direction of the motion of a walker. The results for each of these quantities are described 
in the following three subsections.

3.1.  Probability distribution P(x , t)

For ε = 0, the single particle motion is diffusive and the corresponding probability distribu-
tion P(x, t) is known to be Gaussian. This remains true even in the presence of annihilation.

For ε �= 0, P(x, t) changes drastically. The distributions are still symmetric as the motion of 
individual particles can occur in both directions (left and right). However, there is no peak at 
the origin (x  =  0) and instead a double peak structure emerges with a dip at x  =  0. To obtain 
a collapse of the data at different times, we note that the scaling variable is x/εt for all values 
of ε.

We find that the collapsed data can be fit to the form

P(x, t)εt = f (
x
εt
) ∝ exp[−β{(γx

εt
)2 − 1}2].� (1)

The data collapse in the early time regime is shown in figure 2(a). However, the data collapse 
as well as the above scaling form seems to be less accurate at later times. On investigating 
further, we find that while we attempt to fit the data individually for each ε and t by the form 
given in equation (1), only in the early regime (εt � 100), both β and γ  are constants. While 
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Figure 1.  Snapshots of the system at different times for ε  =  0 (a) and ε  =  0.5 (b) for 
A + A → ∅ model. Lower panel show the snapshots for A + A → A model for ε  =  0 (c) 
and ε  =  0.5 (d). The trajectories in different colors represent different particles.
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Figure 2.  (a): Data collapse of P(x, t)εt  against x/εt for ε = 0.2 and 0.3 are shown 
at early time regime, (b): Data collapse of P(x , t)εt  against x/εt  are shown for 
ε = 0.1, 0.2, 0.5 at late time regime. These data are for the A + A → ∅ model.
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γ  shows negligible dependence on ε and t, β strongly depends on εt ; beyond εt = 100 it is no 
longer a constant but increases sharply as a function of εt . Hence the distribution scaled in the 
above manner shows a dip at the center which goes down with time while the peak heights 
increase such that the data do not collapse well as shown in figure 2(b).

The above study suggests that at vary late stages, the scaled distribution will assume a 
double delta functional form and a universal scaling function exists only in the early time 
regime (εt � 100). We can relate the breakdown of the universal behaviour to the crossover 
phenomena that is revealed more clearly in the following subsections.

3.2.  Probability of change in direction

The probability of direction change at time t is obtained by estimating the fraction of walk-
ers that change direction at that time. For ε = 0, as the system is diffusive, the probability 
of direction change S(t)  =  p 0, a constant independent of time. For a purely diffusive random 
walk, p 0  =  0.5. But here asynchronous dynamics have been used and this updating scheme 
allows the walkers to remain in the same state within a MCS as already discussed in the pre-
vious section. This dynamics can only decrease the probability of change in direction. p 0 for 
ε = 0 actually turns out to be ≈0.27 numerically.

For 0 < ε < 0.5, the change in direction of a walker occurs due to two reasons; either due 
to the annihilation of a neighbouring walker or because of the diffusive component which is 
large for small ε. At earlier times, the walker density is large and so the number of annihila-
tion is considerable. Therefore the change in direction of the walkers is dominated by the 
annihilation process. However, as time progresses, annihilation becomes rarer and therefore 
the diffusive component becomes the dominating factor. So a saturation value Ssat of S(t) is 
reached at a later time, typically after a time t*. The data for S(t) is shown in figure 3 and the 
inset shows the variation of Ssat with εc − ε where εc = 0.5. As expected, Ssat decreases as ε is 
made larger. In fact, we find that unless ε is very close εc , the saturation is reached very fast, 
typically within one hundred MC step. Ssat shows a linear variation with εc − ε, shown in inset 
of figure 3.

One can obtain a data collapse by plotting S(t)t against t(εc − ε), shown in figure 4. This 
indicates that one can write S(t) as

S(t) =
1
t

g(z),� (2)

where z = t(εc − ε) and g(z) is a scaling function. g(z) is fairly a constant for z  <  1 and 
g(z) ∼ z for large z. Therefore, pε ≡ S(t → ∞) ∝ (εc − ε), which is consistent with the varia-
tion of Ssat with (εc − ε) (see inset of figure 3). Hence one can argue that t∗ ∝ (εc − ε)−1 acts 
as a timescale, below which S(t) ∝ t−δ with δ = 1. As t* diverges at εc , there is no saturation 
region for ε = εc and S(t) shows a power law decay, S(t) ∼ t−1 for all times as shown in fig-
ure 3. The divergence of t* as ε → εc justifies that εc  is the dynamical critical point.

One can argue that the value of δ is unity for the deterministic case ε = 0.5, where the 
walker always moves towards its nearer neighbour. A direction change can occur only if an 
adjacent walker is annihilated (however, this is a necessary but not sufficient condition). Let 
A(t) be the number of annihilation taking place at time t. If N(t) is the number of walkers at 
time t, A(t) is given by − dN

dt ∝ t−α−1 = t−2. Since N(t) is proportional to t−1 and S(t) is pro-
portional to A(t)/N(t), therefore S(t) ∼ t−1. It may be added here that A(t) and N(t) have the 
same behaviour for all ε �= 0, however, for ε �= 0.5, direction change may occur even when 
there is no annihilation. The above argument is valid only for ε = 0.5 for which there is no 
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diffusive component. However, the fact that S(t) ∝ t−1 in the early time regime for ε �= 0.5 
also, shows that the annihilation plays the key role in the dynamics here; the diffusive comp
onent is virtually ineffective. Clearly a crossover behaviour occurs in time. The crossover 
occurs at a time when annihilation becomes rare. This depends on two factors: the density of 
the walkers and the strength of the bias. In time, the density decreases and beyond the crosso-
ver time t*, the bias is not strong enough to cause two particles to come close enough and 
cause an annihilation. The motion effectively becomes uncorrelated. Obviously, the crossover 
occurs at later times as ε, representing the bias, becomes larger and the inherent diffusive 
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component becomes weaker making annihilations more probable. Therefore, at ε = 0.5, the 
fully biased point, S(t) ∝ t−1 and the crossover time diverges.

The nature of the walk remains ballistic in all regimes due to the bias, however small, to 
move towards the nearest neighbours. This is consistent with the conjecture that the probabil-
ity distribution assumes a double delta form at large times mentioned in the last subsection.

3.3.  Distribution of time intervals between consecutive change in direction

Another interesting quantity is D(τ), the interval of time τ  spent without change in direction 
of motion. For random walkers with ε = 0, the probability that in the time interval τ , there is 
no direction change is given by

D(τ) = p0
2(1 − p0)

τ .� (3)

This reduces to an exponential form: D(τ) ∝ exp[−τ ln{1/(1 − p0)}]. Figure 5(a) shows the 
data for D(τ) for ε = 0. From the numerical simulation, we find D(τ) ∼ exp(−τ ln 1.38) for 
ε = 0, which is consistent with p0 ≈ 0.27.

For general values of ε �= 0, we note that D(τ) obeys the following form

D(τ) =
1
τ 2 φ(z),� (4)

where z = τ(εc − ε) is the scaling argument and φ(z) is the scaling function. φ(z) is fairly a 
constant for z  <  1 and decays exponentially with z for z � 1. The data are shown in figure 5(b).

Thus it is indicated that here also a crossover behaviour occurs at τ = τ∗ with 
τ∗ ∝ (εc − ε)−1, beyond which the exponential decay is observed and below which there will 
be a power law behaviour. Obviously for ε = 0.5, τ∗ diverges such that only the power law 
decay will be observed with an exponent 2 which is indeed the case as shown in figure 5(c).

It can be argued why the exponent is 2 for ε = 0.5. Suppose the walker moves without 
direction change in the interval t0  +  1 to t0 + τ . This means it changes direction at times t0 
and t0 + τ + 1. Hence, D(t0, τ) is given by

D(t0, τ) = S(t0)S(t0 + τ + 1)
τ∏

x=1

[1 − S(t0 + x)].

Using the variation of S(t) ∝ 1/t obtained in the last subsection,

D(t0, τ) ∝ (t−1
0 )(t0 + τ + 1)−1

τ∏
x=1

(1 − 1
t0 + x

).� (5)

Taking logarithm of both sides of equation (5) and converting summation into an integral, 
one gets

lnD(t0, τ) = −2 ln(t0 + τ),

apart from a constant factor. One can always choose the origin t0 to be zero, such that

D(τ) ∼ τ−2� (6)

showing consistency with the numerical results. (figure 5(b)).
One can also justify the crossover behaviour for 0 < ε < 0.5. Here, the crossover behav-

iour in S(t) found in section 3.2, should be taken into account while calculating D(τ). S(t) 
decays in a power law manner at short times to a constant value in the late time regime. 

R Roy et alJ. Phys. A: Math. Theor. 53 (2020) 155002



9

The relatively larger value of S(t) will be responsible for the behaviour of D(τ) for small 
τ . Hence, for small τ , the power law behaviour of S(t) will be relevant for which it has 
been already shown that D(τ) ∝ τ−2. On the other hand, the constant (lower) value 
of S(t) will be responsible for contribution to D(τ) for large values of τ . For t  >  t*, 
S(t) = pε = a0(εc − ε), where a0 is a constant less than unity (see figure 3). Using this value, 
one gets therefore D(τ) = ( pε)

2(1 − pε)
τ ∼ exp(τ ln(1 − a0(εc − ε))). As a0(εc − ε) is less 

than unity, the expression for D(τ) simplifies to

D(τ) ∼ exp(−a0(εc − ε)τ).� (7)

D(τ) can indeed be fit to an exponential form for large values of τ  (see figure  5(d)): 
D(τ) ∼ exp(−bτ) (as long as ε is not very close to εc  for reasons that will be clarified later) 
and b can be fitted to the form

b = b0(εc − ε),� (8)

where b0  =  0.5, shown in figure 6. This agrees with the expectation that b should be varying 
linearly with (εc − ε) as indicated by equation (7). It is also observed that b approaches the 
value ln 1.38 as ε → 0 and b → 0 as ε → εc = 0.5 (figure 6).
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for D(τ) against τ  for ε = 0.41, 0.45, 0.5, where power law decay exists over a small 
time interval and power law region decreases with the decrease of ε. (d) shows the 
variation of D(τ) against τ  for ε = 0.2 and the data is fitted according to equation (4) 
for τ � τ∗ for A + A → ∅ model.
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Figure 5(b) shows that for large values of the argument, beyond the crossover, the data 
collapse is not of very good quality. This is because as ε approaches 0.5 the crossover time 
increases and the exponential behaviour exists only for very large values of τ  where the statis-
tics is obviously poorer. This is the reason for which the estimation of b for ε → εc becomes 
less reliable as mentioned before. On the other hand, to show the power law region one has to 
use values of ε fairly close to 0.5.

4.  Results for A + A → A (k  =  1) model

For the A + A → A model, the ε = 0 case is known to have the scaling form for the fraction 
of surviving particles as ρ(t) ∝ t−1/2 [18]. In the biased case, with any ε �= 0 we find that the 
scaling is again like the A + A → 0 case (with bias) as ρ(t) ∝ t−1 shown in figure 7. Typical 
snapshots of the walk are shown in figures 1(c) and (d).

For the motion of the tagged particles in the A + A → A model, we restrict the study to 
the probability of direction change and distribution of the time interval of motion executed 
without direction change. Again we find no significant change from the behaviour for the 
A + A → 0 case., i.e. here also S(t) ∝ t−1 for ε = 0.5 while for other values of ε, there is a 
crossover to a diffusive behaviour. In fact, when S(t)t is plotted against t(εc − ε), we again 
find that the scaling function has a constant part and a linear variation at larger values of the 
scaled variable (figure 4).

One can, in fact, use the same argument to justify the scaling behaviour S(t) ∝ t−1 for 
ε = 0.5. This is because in this case also, the only way the direction change can take place is 
through annihilation. However, there is a subtle difference. For the A + A → ∅ model, when 
two particles are annihilated, direction change can take place for their neighbouring particles. 
On the other hand, in the A + A → A case, the direction change may occur for the surviving 
particle while its neighbouring particles usually remain unaffected (see figure  1). Another 
important point to note is that in the scaling function for S(t)t, the linear fitting is appropriate 
beyond a larger value of the scaled variable, i.e. the crossover to diffusive behaviour takes 
place later in the A + A → A model in comparison (see figure  4). This is consistent with 
our inference that the early time regime is annihilation dominated as the annihilations in the 
A + A → A continue for a longer time.

 0.015

 0.03

 0.05

 0.02  0.05  0.1

ε

b,
b′

εc-ε

b

b′
0.5 (εc-ε)

 0.1

 0.3

0  0.25  0.5

b,
b′

b
b′

Figure 6.  Variation of b and b′ with εc − ε shown in a log-log plot when ε is very close 
to 0.5 and inset shows the variation with ε for the full range.

R Roy et alJ. Phys. A: Math. Theor. 53 (2020) 155002



11

The distribution for the time intervals of motion without change in direction again shows 
similar scaling. In figure 5(b), we show the comparative behaviour for the two models. The tail 
of the scaling function is obtained once again as exp(−b′τ), where b′ shows a linear variation 
with (εc − ε) (figure 6).

5.  Discussions

We have studied the motion of the tagged particles A, in one dimension, undergoing the reac-
tion A + A → kA with k  =  0 and 1 with the additional feature that a particle walks with a 
probability 0.5 + ε towards its nearest neighbour and with a probability 0.5 − ε in the other 
direction. This is perhaps one of the simplest models which exhibits critical dynamics.

The particles, when ε = 0, perform normal random walk, so their motions are not cor-
related. The reaction makes the fraction ρ  of particles decay with time t as N(t) ∼ t−α with 
α = 1/2. For any non-zero ε, the value of α has been found to be altered to 1. The value of 
α = 1 suggests that the particle motion is not random anymore but is ballistic. However, it has 
to be remembered that A + A → ∅ model with ballistic walkers A do not correspond to α = 1 
and the results depend on the distribution of initial velocities of the particles [18, 19].

Studying the tagged particles reveal that the effect of ε in conjunction with the annihila-
tion reaction makes the dynamics of the particles correlated over a large time scale. This time 
scale depends on ε and diverges at ε = 0.5. Consequently, the dynamics become critical, in the 
sense that, the probability S(t) of the particles to change the direction of their motions reduces 
with time as 1/t and the distribution D(τ) of time interval τ  over which the particles on aver-
age move along the same direction follows power law: D(τ) ∼ 1/τ 2.

Detailed study of S(t) and D(τ) shows that there is a crossover from the annihilation domi-
nated regime to a (partially) diffusive regime at time t∗ ∝ (εc − ε)−1. Beyond t*, S(t) is a con-
stant for 0 < ε < 0.5, although the actual value is less compared to the unbiased case ε = 0. 
However, the overall motion is still ballistic, 〈|x|〉 ∼ t, for any ε > 0 because of the presence 
of the bias. This is supported by the behaviour of the distribution P(x, t) tending towards a 
double delta function (studied for the k  =  0 model) at very late times while for ε = 0, the 
distribution is always Gaussian.

10-4

10-3

10-2

10-1

100

1  10  100  1000

ρ(
t)

t

ε=0, A+A → ϕ
ε=0.5, A+A → ϕ

ε=0, A+A → A
ε=0.3, A+A → A
ε=0.5, A+A → A

x- 0.5

x-1

Figure 7.  Variation of ρ(t) with t is shown in a log-log plot for different values of ε for 
A + A → ∅ and A + A → A models.
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It may be mentioned here that the change in the behaviour of the probability distribution 
from a Gaussian for ε = 0 to a bimodal form for ε �= 0 is reminiscent of the order parameter 
distribution above and below the critical temperature for Ising like systems; the form in equa-
tion (1) is also similar to the case for continuous spins.

In conclusion, we have shown how the bias to move towards nearest neighbours gener-
ates correlation in the motion of the particles in a simple A + A → kA reaction process. Also, 
we conclude that the divergences in the timescales and power law behaviour in the relevant 
dynamical variables indicate that εc = 0.5 is a dynamical critical point. In the present study 
we have detected a crossover from a correlated to a individual motion scenario in the pres-
ence of the bias. Simultaneously we obtain two new dynamical exponents using Monte Carlo 
simulation and simple arguments and calculation. The reaction is not dependent on the bias 
and except for the point ε = 0.5, the motion is still stochastic. The present study is able to 
manifest at the individual level the precise role of the bias and how the dynamics are different 
from simple ballistic motion.
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Appendix

Here we argue that the spin model proposed in [27] has a one to one correspondence with the 
particle/walker model when ε = 0.5 for k  =  0. In [27], spins with state ±1 are considered on a 
one dimensional lattice. A spin flips when it sits at the boundary of two domains of oppositely 
oriented spins. At subsequent times, the state of the spins is determined by the size of the two 
neighbouring domains; it is simply changed to the sign of the spins in the larger domain. Thus 
the smaller domain shrinks further and one can have an equivalent picture of a particle which 
moves towards its nearest neighbour. The scheme is illustrated in figure A1.
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Figure A1.  A schematic picture of the dynamics taking place in the model proposed in 
[27]. (a) Case I: Here, the highlighted spin changes its state as the neighbouring domain 
of down spins is of size two while the size of the other neighbouring domain of up spins 
is five. Equivalently, in the walker picture, the interface A moves towards B, which is 
closer to it compared to C. (b) Case II: When a down (up) spin is sandwiched between 
up (down) spins, it will always flip which leads to annihilation of A and B.

ORCID iDs

Reshmi Roy  https://orcid.org/0000-0001-6922-6858
Parongama Sen  https://orcid.org/0000-0002-4641-022X

References

	 [1]	 Privman  V (ed) 1997 Nonequilibrium Statistical Mechanics in One Dimension (Cambridge: 
Cambridge University Press)

	 [2]	 Ligget T M 1985 Interacting Particle Systems (New York: Springer)
	 [3]	 Krapivsky P L, Redner S and Ben-Naim E 2009 A Kinetic View of Statistical Physics (Cambridge: 

Cambridge University Press)
	 [4]	 Odor G 2004 Rev. Mod. Phys. 76 663
	 [5]	 Derrida B 1995 J. Phys. A Math. Gen. 28 1481
	 [6]	 Racz Z 1985 Phys. Rev. Lett. 55 1707

R Roy et alJ. Phys. A: Math. Theor. 53 (2020) 155002

https://orcid.org/0000-0001-6922-6858
https://orcid.org/0000-0001-6922-6858
https://orcid.org/0000-0002-4641-022X
https://orcid.org/0000-0002-4641-022X
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1088/0305-4470/28/6/006
https://doi.org/10.1088/0305-4470/28/6/006
https://doi.org/10.1103/PhysRevLett.55.1707
https://doi.org/10.1103/PhysRevLett.55.1707


14

	 [7]	 Amar J G and Family F 1990 Phys. Rev. A 41 3258
	 [8]	 ben-Avraham D, Burschka M A and Doering C R 1990 J. Stat. Phys. 60 695
	 [9]	 Alcaraz F C, Droz M, Henkel M and Rittenberg V 1994 Ann. Phys. 230 250
	[10]	 Krebs K, Pfannmuller M P, Wehefritz B and Hinrinchsen H 1995 J. Stat. Phys. 78 1429
	[11]	 Santos J E, Schutz G M and Stinchcombe R B 1996 J. Chem. Phys. 105 2399
	[12]	 Schutz G M 1997 Z. Phys. B 104 583
	[13]	 de Oliveira M J 2000 Braz. J. Phys. 30 128
	[14]	 Kang K and Redner S 1984 Phys. Rev. A 30 2833
		  Kang K and Redner S 1985 Phys. Rev. A 32 435
	[15]	 Peliti L 1986 J. Phys. A: Math. Gen. 19 L365
	[16]	 Zumofen G, Blumen A and Klafter J 1985 J. Chem. Phys. 82 3198
	[17]	 Droz M and Sasvari L 1993 Phys. Rev. E 48 R2343
	[18]	 Krapivsky P L and Ben-Naim E 1997 Phys. Rev. E 56 3788
	[19]	 Ben-Naim E, Redner S and Leyvraz F 1993 Phys. Rev. Lett. 70 1890
	[20]	 Krapivsky L and Sire C 2001 Phys. Rev. Lett. 86 2494
	[21]	 Albano E V 1991 J. Phys. A: Math. Gen. 24 3351
	[22]	 Ben-Naim E, Krapivsky P L and Randon-Furling J 2016 J. Phys. A: Math. Theor. 49 205003
	[23]	 Biswas S, Sen P and Ray P 2011 J. Phys.: Conf. Ser. 297 012003
	[24]	 Sen P and Ray P 2015 Phys. Rev. E 92 012109
	[25]	 Daga B and Ray P 2019 Phys. Rev. E 99 032104
	[26]	 Mullick P and Sen P 2019 Phys. Rev. E 99 052123
	[27]	 Biswas S and Sen P 2009 Phys. Rev. E 80 027101

R Roy et alJ. Phys. A: Math. Theor. 53 (2020) 155002

https://doi.org/10.1103/PhysRevA.41.3258
https://doi.org/10.1103/PhysRevA.41.3258
https://doi.org/10.1007/BF01025990
https://doi.org/10.1007/BF01025990
https://doi.org/10.1006/aphy.1994.1026
https://doi.org/10.1006/aphy.1994.1026
https://doi.org/10.1007/BF02180138
https://doi.org/10.1007/BF02180138
https://doi.org/10.1063/1.472107
https://doi.org/10.1063/1.472107
https://doi.org/10.1007/s002570050493
https://doi.org/10.1007/s002570050493
https://doi.org/10.1590/S0103-97332000000100012
https://doi.org/10.1590/S0103-97332000000100012
https://doi.org/10.1103/PhysRevA.30.2833
https://doi.org/10.1103/PhysRevA.30.2833
https://doi.org/10.1103/PhysRevA.32.435
https://doi.org/10.1103/PhysRevA.32.435
https://doi.org/10.1088/0305-4470/19/6/012
https://doi.org/10.1088/0305-4470/19/6/012
https://doi.org/10.1063/1.448218
https://doi.org/10.1063/1.448218
https://doi.org/10.1103/PhysRevE.48.R2343
https://doi.org/10.1103/PhysRevE.48.R2343
https://doi.org/10.1103/PhysRevE.56.3788
https://doi.org/10.1103/PhysRevE.56.3788
https://doi.org/10.1103/PhysRevLett.70.1890
https://doi.org/10.1103/PhysRevLett.70.1890
https://doi.org/10.1103/PhysRevLett.86.2494
https://doi.org/10.1103/PhysRevLett.86.2494
https://doi.org/10.1088/0305-4470/24/14/021
https://doi.org/10.1088/0305-4470/24/14/021
https://doi.org/10.1088/1751-8113/49/20/205003
https://doi.org/10.1088/1751-8113/49/20/205003
https://doi.org/10.1088/1742-6596/297/1/012003
https://doi.org/10.1088/1742-6596/297/1/012003
https://doi.org/10.1103/PhysRevE.92.012109
https://doi.org/10.1103/PhysRevE.92.012109
https://doi.org/10.1103/PhysRevE.99.032104
https://doi.org/10.1103/PhysRevE.99.032104
https://doi.org/10.1103/PhysRevE.99.052123
https://doi.org/10.1103/PhysRevE.99.052123
https://doi.org/10.1103/PhysRevE.80.027101
https://doi.org/10.1103/PhysRevE.80.027101

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Tagged particle dynamics in one dimensional ﻿﻿ models with the particles biased to diffuse towards their nearest neighbour﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿The model, dynamics and simulation details
	﻿﻿3. ﻿﻿﻿Results for ﻿﻿ ﻿￼﻿ model
	﻿﻿3.1. ﻿﻿﻿Probability distribution ﻿﻿
	﻿﻿3.2. ﻿﻿﻿Probability of change in direction
	﻿﻿3.3. ﻿﻿﻿Distribution of time intervals between consecutive change in direction

	﻿﻿4. ﻿﻿﻿Results for ﻿﻿ (﻿k﻿  ﻿=﻿  1) model
	﻿﻿5. ﻿﻿﻿Discussions
	﻿﻿﻿Acknowledgment
	﻿﻿Appendix
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


