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Abstract

Improvements to the precision of measurements of cosmological parameters with Type Ia supernovae (SNe Ia) are
expected to come from large photometrically identified (photometric) supernova (SN) samples. Here we reanalyze
the Sloan Digital Sky Survey (SDSS) photometric SN sample, with roughly 700 high-quality, likely but
unconfirmed SNe Ia light curves, to develop new analysis tools aimed at evaluating systematic uncertainties on the
dark energy equation-of-state parameter w. Since we require a spectroscopically measured host-galaxy redshift for
each SN, we determine the associated selection efficiency of host galaxies in order to simulate bias corrections. We
determine that the misassociation rate of host galaxies is 0.6%; ignoring this effect in simulated bias corrections
leads to a w-bias of Aw = 40.0007, where w is evaluated from SNe Ia and priors from measurements of baryon
acoustic oscillations and the cosmic microwave background. We assess the uncertainty in our modeling of the host-
galaxy selection efficiency and find the associated w uncertainty to be —0.0072. Finally, we explore new core-
collapse (CC) models in simulated training samples and find that adjusting the CC luminosity distribution to be in
agreement with previous Pan-STARRS analyses yields a better match to the SDSS data. The impact of ignoring
this adjustment is Aw = —0.0109; the impact of replacing the new CC models with those used by Pan-STARRS is
Aw = —0.0028. These systematic uncertainties are subdominant to the statistical constraints from the SDSS
sample, but must be considered in future photometric analyses of large SN samples such as those from the Dark
Energy Survey (DES), the Large Synoptic Survey Telescope (LSST), and the Wide Field Infrared Survey
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1. Introduction

The discovery of accelerating cosmic expansion (Riess et al.
1998; Perlmutter et al. 1999) from measurements of 10 s of Type
Ia supernovae (SNe Ia) galvanized a new era in the study of
cosmology. In the time since this discovery, collections of 100 s
of spectroscopically confirmed SNe Ia have been used to
measure the expansion history of the universe up to z =1
(Conley et al. 2011; Betoule et al. 2014; Scolnic et al. 2018;
Abbott et al. 2019). A combination of constraints from SNe Ia
and those from other probes such as baryon acoustic oscillations
(BAO; Eisenstein et al. 2005; Anderson et al. 2014) and the
cosmic microwave background (CMB; Bennett et al. 2003;
Planck Collaboration et al. 2016a) can be used to infer the dark
energy equation-o- state parameter w = P/p ¢?, where P is the
pressure and p is the energy density. The most precise of these
measurements is that of Scolnic et al. (2018; hereafter S18),
which used 1048 spectroscopically confirmed SNe Ia. Measure-
ments of SNe Ia, combined with constraints from Planck
Collaboration et al. (2016b), yield w = —1.026 £ 0.041.

Significant improvements in the constraints on dark energy
from supernovae (SNe) require a large jump in the SN sample
size. Unfortunately, obtaining such a large number of spectro-
scopic confirmations for SNe is unfeasible with expected
resources in the next decade. Time constraints limit single-object
spectroscopy, and the sparse density of SNe (10 yr—' deg ™2 with
R-band magnitude <22) makes the yield for multi-object
spectroscopy similarly low. On the other hand, spectroscopic
classification may not be necessary if one can use photometric
classification of the light-curve sample. The difficulty of

photometric analysis is that it is susceptible to contamination
from core-collapse (CC) SNe and possible contamination from
peculiar SNe Ia and non-SN transients such as active galactic
nucleus (Campbell et al. 2013; Jones et al. 2018a). Significant
effort has been made in classification algorithms (e.g., PSNID—
Sako et al. 2008, SuperNNova—Moller & de Boissiere 2020,
Nearest Neighbour—Kessler & Scolnic 2017, and machine
learning methods—Lochner et al. 2016), spurred on by the
advent of Pan-STARRS (PS1; Jones et al. 2018a), Dark Energy
Survey (DES; Bermnstein et al. 2012), Large Synoptic Survey
Telescope (LSST; Ivezi€ et al. 2019), and other SN surveys.

The first cosmological measurement of w with primarily
photometric classification was done by Campbell et al. (2013).
CC contamination was reduced using the PSNID Bayesian
light-curve classifier (Sako et al. 2011), resulting in a final
sample with 3.9% CC SNe contamination, as predicted by
rigorous simulations. However, no systematic uncertainty
budget was included in their analysis.

To optimally account for this contamination, Kunz et al.
(2007) developed the Bayesian Estimation Applied to Multiple
Species (BEAMS) method to independently model the SNe Ia
and CC Hubble residual distributions. BEAMS samples both Ia
and CC species of SNe and simultaneously fits for the
contribution of each while marginalizing over nuisance
parameters. BEAMS relies on a classifier, such as the
aforementioned PSNID or SuperNNova, to assign SNe Ia
probabilities and bifurcate the distribution into likely Ia and
CC. The first cosmological measurement using BEAMS was
done by Hlozek et al. (2012) on the Sloan Digital Sky Survey
(SDSS) sample, but did not include a systematic uncertainty
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budget. The systematic uncertainties were considered by
Knights et al. (2013), which developed a BEAMS formalism
that gives reliable estimations of cosmological parameters.
Jones et al. (2018a) used their own implementation of BEAMS
and were the first to evaluate the systematic uncertainty budget
for a photometric sample (the PS1 sample).

BEAMS was further improved by Kessler & Scolnic (2017),
incorporating bias corrections and the option of using a
simulated CC sample instead of ad-hoc fit parameters to
describe the CC Hubble residuals. This method, known as
BEAMS with Bias Corrections (BBC), was first applied to a
real photometric sample in Jones et al. (2018b). The bias
correction component was included in S18 for their spectro-
scopic sample and also the DES 3 yr sample (Brout et al. 2018;
Abbott et al. 2019).

Analyzing a sample with contamination relies on accurate
models of CC SNe to simulate training samples for classifiers
and validation. Previous analyses have used spectroscopically
confirmed light curves of non-la SN to develop rest-frame
Spectral Energy Distribution (SED) templates for simulations,
in order to generate CC events at all redshifts. The first
collection of non-la SED templates came from Kessler et al.
(2010b), which released a simulated sample of mixed SNe Ia
and non-la light curves for a classification challenge—SN
Photometric Classification Challenge (SNPHOTCC). Most
recently, the Photometric LSST Astronomical Time-series
Classification Challenge (PLASTiCC; The PLASTICC team
et al. 2018) has gathered a large library of new SED templates
(Kessler et al. 2019) that can be used for simulating training
samples, further expounding upon previous efforts. The SED
templates included in this release span a wider variety of
transient events than those in SNPHOTCC. The PLAsTiCC
SED templates have not yet been used to simulate training
samples as part of the analysis of a real photometric sample;
here we make the first attempt.

Current cosmological analyses with photometric samples use
spectroscopically confirmed host-galaxy redshifts to create a
Hubble diagram. A systematic method of identifying host
galaxies was introduced in Sullivan et al. (2011) with the
concept of directional light radius (DLR), which uses galaxy
orientation and spatial size to determine the most likely host
galaxy for each SN. This DLR method was further explored in
Gupta et al. (2016) and Sako et al. (2018). Gupta et al. (2016)
include other properties in the host assignment, and evaluate
the frequency of misassociation of the host galaxies. This
systematic uncertainty was evaluated in Jones et al. (2018b),
and is evaluated here with an improved technique. The
spectroscopic targeting of galaxies based on their brightness
should cause an additional systematic bias in the cosmological
measurements because host-galaxy properties have been found
to be correlated with SN luminosity (Sullivan et al. 2011); we
assess the impact of this bias.

To examine the impact of CC modeling in simulated training
sets for classifiers, as well as host-galaxy selection, we perform
a reanalysis of the SDSS-II SN Survey (Frieman et al. 2008).
Here, we use models from PLASTICC for the simulated
training sample and the BBC method to construct our Hubble
diagram. This paper is the first of two works. In this work, we
evaluate systematic uncertainties in the photometric analysis of
the SDSS sample that would not be included in a conventional
spectroscopic analysis, e.g., S18. This paper also includes a
broader range of CC models using PLASTiCC, and improved
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methods for evaluating systematic uncertainties arising from
misassociated hosts. SDSS is the only publicly available
photometric sample without previously applied selection cuts.
Therefore, the methods presented here can be checked and
improved by the community.

In the next paper, we will measure nuisance and cosmolo-
gical parameters from this sample and compare to those
from the Pan-STARRS photometric sample. We will also
combine these two photometric samples for a cosmological
measurement.

The layout of this paper is as follows. A review of the data is
presented in Section 2. Our analysis techniques and assignment
of host galaxies are detailed in Section 3. The simulations
for bias corrections and training samples are described in
Section 4. An evaluation of different systematic uncertainties is
explored in Section 5. Finally, Section 6 contains our
conclusions

2. Data Sample

The SDSS began in 2000 as the first wide-area sky survey
using charge-coupled devices (York et al. 2000). A review of
the SDSS SN Survey is given in Frieman et al. (2008). In brief,
Stripe 82 (from R.A. of 20"-04" and 2°5 wide along the
equator in decl.) was repeatedly scanned every four days using
ugriz filters. The processing pipeline for the images is
described in Stoughton et al. (2002) and potential SNe were
identified in subtracted images with the method developed by
Alard & Lupton (1998). Candidate selection and spectroscopic
identification are described by Sako et al. (2008). The
photometry is described in Holtzman et al. (2008). The
spectroscopically confirmed subset of this data was used in
several analyses to measure cosmological parameters (Kessler
et al. 2009a; Betoule et al. 2014; Scolnic et al. 2018).

Through three observing seasons (Fall 2005 through Fall
2007), the SDSS SN program discovered 10,258 new variable
objects (Sako et al. 2018) and measured their ugriz light curves.
Further specifics of the SNe population statistics can be found
within Sako et al. (2018). A component of the SDSS SN survey
included spectroscopic follow-up for a limited number of
identified host galaxies.

A separate SDSS spectroscopic survey (the Baryon Oscilla-
tion Spectroscopic Survey, or BOSS) acquired a significant
fraction of potential host-galaxy redshifts (Dawson et al. 2013).
For 4680 candidates, they obtained accurate spectroscopic
redshifts of the corresponding host galaxies. Since the
conclusion of the SDSS SN Survey in 2008, BOSS has
acquired an additional 1294 host-galaxy spectroscopic red-
shifts. Figure 1 shows the spectroscopic redshift (spec-z)
and photometric redshift (photo-z) distributions for SDSS
and BOSS.

The data release from Sako et al. (2018) has galaxies
assigned using the position of the SNe from the first SN
detection epoch, which typically has a low signal-to-noise ratio
(S/N); here we reassign the host galaxies using the averaged
position of the SNe from all detections. This change in
coordinate calculation is minor—the mean difference in
angular separation values is 071, with a standard deviation
of 1”4.
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Figure 1. Redshift distribution of the SDSS transient sample. In the filled
histogram we show the distribution of spec-z of the host galaxies from Sako
et al. (2018); in the solid histogram we show the distribution including the 1294
host-galaxy spec-z from BOSS. The dashed histogram is the host-galaxy photo-
z distribution found for all SDSS transients.

3. Analysis

Measuring cosmological parameters with SNe Ia requires
modeling and fitting the observed light curves and using the
results to standardize SN brightness for distance measurements.
Distances are evaluated with the Tripp equation, detailed in
Equation (4) in Abbott et al. (2019) and Equation 3 in S18.
Simulations are also needed to correct for distance biases and to
generate training samples for classifiers. We review the main
steps of the analysis here.

To better understand our systematic uncertainties, we
simulated 30,000 events and split them into 40 data-sized
samples so that each simulated subsample is comparable in size
to our real data sample (~700 SNe). The full analysis is
performed on each simulated subsample as well as the true data
sample.

3.1. Host Matching

To match a SN to its most likely host galaxy, the dpir
method is employed. This uses angular separation (Af) and
accounts for the galaxy spatial profile and orientation. The
derivation for dpr is shown in the appendix. Gupta (2013)
also provides a detailed derivation.

For each SN, all galaxies within 30” are selected and sorted
by ascending dpy g values. The galaxy with the smallest dpy  is
considered to the host galaxy.

3.2. Light-curve Fitting

SN light-curve fits are done with the SALT2 light-curve
model (Guy et al. 2010, hereafter G10) using the improved
model from the Joint Light-curve Analysis (Betoule et al.
2014). The light-curve fitting and selection requirements are
implemented with the SuperNova Analysis (SNANA) software
package (Kessler et al. 2009b).

Selection requirements (cuts) are applied to reduce CC
contamination and to define a sample that has distance biases
that can be modeled with a Monte Carlo simulation. SNe
with properties within the SALT2 training range of color
(—0.3<¢<0.3) and stretch (—3 <x; <3 ) are selected. To
ensure well-measured light-curve fit parameters, we apply cuts
on the uncertainties for stretch (o, < 1) and time of maximum
brightness (03, < 2 observer frame days). We also require that
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Table 1

Sequential Selection Requirements on the SDSS Transient Sample
Cut Number Comments
Total Candidates 10,258 Data Release (Sako et al. 2018)
Spec-z and dpy g 4356 Host galaxy redshift
Trest <0 3852 Light-curve sampling
Trest > 10 3518 Light-curve sampling
S/N 2717 Signal-to-Noise Ratio > 5
SALT?2 Fit Parameters 1219 ¢, X1, Oy, Op
NN Classifier 700 Nearest Neighbour classifier

the SALT2 fit probability (based on x> per degree of
freedom) be >0.001. Next, we define a rest-frame age,
Tieq = MID — MIDpea) /(1 + z), where MID is the observa-
tion date, MJD,qx is the date of peak brightness, and z is the
redshift. We require that at least one observation satisfies
Tiest > 10 days, and that at least one observation satisfies
Tiest < 0 days. Finally, we require that at least two bands have
an epoch in which the S/N is >5. A summary of these cuts on
the data are is in Table 1.

3.3. Classification

We use a Nearest Neighbour (NN) classifier developed by
Sako et al. (2018) and Kessler & Scolnic (2017). We simulate a
large training sample of SN (Ia + CC) with the same selection
requirements and light-curve fitting as for the data. The
redshift, color, and stretch (z, ¢, and x;) are used to define a
three-dimensional space for the NN analysis. In this space, each
data point (real or simulated) is the center of a sphere at
{z, ¢, i}. Classification is done by counting the number of Ia
and CC SN within the sphere, and the data point is classified to
be the type that is most frequent inside the sphere. The size of
the sphere is set with a metric determined by maximizing the
product of the efficiency and purity (Kessler & Scolnic 2017).
Data identified as SNe Ia with a probability of less than 0.5 are
rejected.

3.4. BBC and Cosmology Fitting

Cosmological analysis within the BBC framework is done in
three stages. The first stage classifies SNe as Ia or CC using the
NN method, and assigns a probability (Py,) for each event to be
a SNe Ia. The second stage separates the data into redshift bins
and determines a mean distance modulus in each bin, after
accounting for selection biases and CC contamination (Kessler
& Scolnic 2017). Here we use 10 equal sized bins ranging from
z = 0.02 to 0.5. The third stage performs a cosmological fit to
the binned distances using BAO (Eisenstein et al. 2005) and
CMB (Komatsu et al. 2009) priors, similar to Lasker et al.
(2019) who found these priors to be sufficient for systematics
studies.

4. Simulations

Simulated SNe are needed to calculate bias corrections,
create training samples, and assess the impact of our
systematics. We use the SNANA software to simulate SN
light curves using SDSS detection efficiencies, point-spread
function sizes, sky noise, and zero-points. The observing
history has previously been modeled for SDSS in Kessler et al.
(2009b). While Kessler et al. (2009b) modeled the spectro-
scopic selection efficiency of the SNe, here we model the
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Figure 2. Comparison between the data and the Fiduciary simulation for various distributions. The data are shown in points with error bars, the dashed histogram
shows the total simulated SNe (Ia + CC), the solid histogram shows the simulated SNe Ia only, and the dotted histogram shows simulated CC. The simulated CC

contamination is ~4% of the total sample and is discussed further in Section 5.

efficiency of obtaining a spectroscopic redshift from the host
galaxy, as described below. A complete description of how
these simulations are generated for DES is given in Kessler
et al. (2019); for this study we replace the survey description of
DES with that for SDSS. We simulate our SNe with ACDM
cosmology, with a flat universe (k = 0), Qmaner = 0.3 and
w=—1.

For this analysis, we simulate both Type Ia and CC light
curves. For SNe Ia, we use the SALT2 model with population
parameters from Scolnic & Kessler (2016). Simulations were
generated with the stretch luminosity « and color luminosity G
that were measured from the data as input (v =0.14 and
G = 3.2; Sako et al. 2018). We use the “G10” intrinsic scatter
model from Kessler et al. (2013) using the error parameteriza-
tion from Guy et al. (2010). CC modeling is done with SED
templates from Kessler et al. (2010b), Jones et al. (2018a), and
the PLAsTiCC templates from Kessler et al. (2019), further
detailed in Section 5.1. We denote our “Fiduciary” analysis
using PLAsSTiCC CC templates (excluding SNIax) in the
training sample along with an adjusted luminosity function to
match Jones et al. (2018b). Figure 2 shows the distributions of
data are in good agreement with those from the Fiduciary
simulations for redshift, S/N, color, and stretch.

4.1. Host Galaxy Libraries and Comparison of Distributions
between Data and Simulations

To model the potential measurement biases of cosmological
parameters based on selection of host galaxies, we first create a
realistic library of host galaxies (HOSTLIB) with properties

that match those of our data. We evaluate the quality of our
HOSTLIB by comparing the distributions of the smallest and
second smallest dp;r (Section 3.1); these distributions are
sensitive to galaxy spatial profile, survey depth, galaxy photo-z,
and A6.

We evaluated three different HOSTLIBs to use in our
simulations. The first two, the Advanced Camera for Surveys
General Catalog (ACS-GC), and the Marenostrum Institut de
Ciencies de I’Espai Simulations Catalogue, were used in Gupta
et al. (2016). For these two HOSTLIBs, the simulated A6
distribution does not match the SDSS data.

Therefore, we created a third library by compiling observed
galaxies within Stripe 82 from the SDSS DR 14 data release. To
maximize completeness and exclude spectroscopic selection
effects, we selected host galaxies with a photometric redshift.
The HOSTLIB includes Sérsic profile information calculated
from the Stokes values. These profiles are used in simulations
to place SNe near a galaxy and to model Poisson noise from the
host galaxy. The SNANA simulation only calculates the
smallest dp; g value for each SN, so the second smallest values
were calculated separately from the HOSTLIB.

For data and simulation, Figure 3 compares distributions of
A0, DLR, and dp; r. Each distribution is shown separately for
the smallest and second smallest dp; g value. Also shown is the
ratio of the smallest to second smallest dp; g values (iprLr). We
find good agreement in all distributions. Note that a HOSTLIB
with too-large separations between galaxies can result in good
data/sim agreement for the smallest dpyr in Figures 3(a)—(c),
but would result in poor agreement for the second smallest
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Figure 3. Distributions for data (filled circles and open squares) and the Fiduciary SNe Ia-only simulation (histogram) for quantity are indicated in each panel, as
defined in Section 3.1. For panels (a), (b), and (c) the filled circles and solid histogram are for the smallest dp; g value; the open squares and dashed histogram are for
the second smallest value. In (d), rprr is shown by triangles for data and a solid histogram for the simulation.

dprr, and also underpredict misassociations. The good
agreement for the second smallest dpy g and rp g is therefore
an important metric for reliably predicting the misassociation
rate. We also show in Figure 2(e) that there is good agreement
in the r-band magnitude of the host-galaxy distribution between
data and simulations.

Past studies have shown that there is a correlation between
the stretch-and-color-corrected luminosity of SNe Ia and the
host-galaxy stellar mass (Mel1ar). This effect has been found in
the SN Legacy Survey (Sullivan et al. 2010), the SDSS sample
(Lampeitl et al. 2010; Gupta et al. 2011b; Hayden et al. 2013;
Wolf et al. 2016), and the PS1 sample (S18). In this SDSS
analysis, we simulate these correlations to estimate biases
arising from our spectroscopic galaxy selection. For every
galaxy in our HOSTLIB, we calculate Mg, using the
methodology from Taylor et al. (2011),

Mger = 115 + 07 x (g — i — 04 x (i — pige). (1)

where g and i are the host-galaxy magnitudes in the respective
band, and pi.qc is the calculated distance modulus using the
galaxy redshift and the same ACDM cosmology parameters as
in the simulations. Equation (1) is used to calculate masses for
both the data and the HOSTLIB. A comparison of the host-
mass distribution between data and simulations is shown in
Figure 2(f); while the agreement is not as good as that for the
host-galaxy magnitude comparison and could use further study,
it is sufficient to assess systematics.

We introduce a —0.025 mag correction to the luminosity of
SNe in galaxies with stellar mass M., > 10'°, and a +0.025
mag correction to those with M, < 10'°. We do not include
additional correlations of SNe Ia properties (¢ and x;) with
host-galaxy properties; these correlations are discussed in
Smith et al. (2014).

Using simulations generated with input from our HOSTLIB,
we evaluate the selection efficiency of our host galaxy. In our
Fiduciary analysis, we define the efficiency, e, (r), to be a
function of host-galaxy r-band magnitude as follows:

€nost () = Nyata () /]Vsim(r), )

where Ny, (7) is the number of SNe in each host-galaxy r-band
magnitude bin for data, and N;,(r) is the number of SNe in
each host-galaxy r-band magnitude bin for a simulation with
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Figure 4. Measured r-band host magnitude efficiency is shown as the black
dashed line and the measured host spec-z efficiency is shown as the solid black
line. The spec-z efficiency is roughly half at z = 0.3. The r-band host
magnitude efficiency drops off at the faint end.

€nost () = 1. We scale époq () so that the maximum is 1
(Figure 4(a)).

For a systematic test, we follow Jones et al. (2018b) and
parameterize the selection function to depend on host spec-z
(Figure 4(b)):

€host (2) = Naata (2) /Nsim (2), 3)

where z is the host-galaxy spec-z, and Ny, (z) and Ngy(z) are
defined as in Equation (2), but using z bins.

4.2. CC Simulations

An important systematic in cosmological analyses of
photometric samples is the collection of CC models used to
simulate training samples for classifiers. The most recent study
on this systematic was done by Jones et al. (2018b), which used
a compendium of publicly available CC templates and adjusted
the luminosity functions of the library to match the Hubble
residual tail region after selection cuts. Light-curve templates
of SNII were adjusted by 1.1 mag to be more luminous and
SNIb/c were similarly adjusted by 1.2 mag.

Since Jones et al. (2018b), the PLASTiICC library (Kessler
et al. 2019) was released, which has enhanced previous CC
template libraries. Compared with Jones et al. (2018b), here we
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Table 2
w Differences for Systematic Tests

Systematic Test

(HOSO AWsima Wrmsh AWdalac N, ad
Misassociated Host -+0.0007(09) 0.0059 N/A N/A
Host Efficiency —0.0072(37) 0.0237 —0.006 0.050
Systematic Test

(Contamination) AWgim Wrms AWgata N,
No LF adjustment —0.0109(03) 0.0192 —0.041 1.570
Choice of CC model —0.0028(14) 0.0089 —0.002 0.090

Include Iax —0.0022(09) 0.0059 +0.001 2.070

Notes.

4 Mean Aw of the 40 simulated subsamples.

® The rms of the simulated subsamples.

¢ The Aw measured by the data.

9 The number of standard deviations of Aw for data away from Aw for sim,
defined in Equation (6).

include MOSFIiT (Modular Open-Source Fitter for Transients)
for SNIbc (Kessler et al. 2010a; Villar et al. 2017; Guillochon
et al. 2018; Pierel et al. 2018), Nonnegative Matrix Factoriza-
tion (NMF) for SNII (Kessler et al. 2010a; Villar et al. 2017,
Guillochon et al. 2018; Pierel et al. 2018), SNIax (Jha 2017),
and SNe [a-91bg. We included an additional 0.9 mag smear for
SNII-NMF as discussed in Kessler et al. (2019). Our Fiduciary
analysis includes SNII-NMF, SNIbc-MOSFiT, and SNe Ia-
91bg. As we will discuss in the next section, SNlax were
excluded from both the simulated training and data samples.

4.3. SNlax Simulations

The PLAsTiICC models include SNIax, which typically have
lower luminosity, lower ejecta velocity, and greater variation in
photometric parameters than their SNe Ia counterparts. The
SED model used in PLAsSTICC is based on the real SNIax,
2005hk. The SED model was augmented with other spectra and
the luminosity function was inferred from the sample studied in
Jha (2017). Light curves are generated to match the absolute
magnitude (My), rise time (%), and decline rate in the B and R
bands (A mys5(B) and Am;s5(R)) detailed in Stritzinger et al.
(2015) and Magee et al. (2016c¢).

4.4. Simulation Analysis

We apply the analysis (Section 3) to our simulated data
sample, and fit for nuisance parameters «, [, 7, and
cosmological parameter w. The recovered values for these
parameters in our Fiduciary analysis are consistent with their
input values of 0.14, 3.2, 0.05, and —1, respectively. More
precise validation tests with simulations are described in
Section 6 of Brout et al. (2018).

5. Results

Here we assess the impact on our cosmological measure-
ments of the systematics studied in this analysis, such as
different CC templates used in classifier training sets, the
frequency of host-galaxy misassociation, and the modeling of
selection efficiency. A summary of the various cosmological
biases from these uncertainties is presented in Table 2. The
mean bias in w is determined with the 40 simulated subsamples
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Figure 5. Difference between binned distance modulus residuals for each
systematic are shown here, for simulated supernovae. The top panel shows the
effect of host-galaxy selection changes, and the bottom panel shows the
different CC options.

for each systematic listed in Table 2, which has previously been
discussed individually. In addition, the error on the mean and
the scatter, or robust standard deviation, have also been
calculated for the simulations. We define

Aw = WFid — Wsys (4)

as the w-bias. For data, wg;q is the measured w value for the
Fiduciary analysis. For simulations, wgyq is the mean measured
w of our subsamples. The bias in recovered distances as a
function of redshift due to each systematic uncertainty is shown
in Figure 5. We define the statistical error (wgy,) as

Wstat = Wrms /\l N » (5)

where wy, is the rms of Aw and Ny, is the number of
subsamples. With 40 subsamples, the statistical error in our
mean Aw is below 0.004, which is sufficiently small for this
analysis.

Host galaxy misassociation and shifts in the CC luminosity
function result in a w-bias that can be corrected, and the
resulting systematic uncertainty is typically smaller than the
correction. Here we use the size of each correction as a
systematic uncertainty, and in future work will evaluate the
reliability of these corrections along with the associated
systematic uncertainties.

5.1. Galaxy Association and Misassociation

Figure 3 shows the properties used to validate the
simulations from which the misassociation rate was deter-
mined. Comparing each true host galaxy in our simulation to
the dppr-selected galaxy, we determine the host-galaxy
misassociation to be 0.6%.

Figure 6 shows the effect of misassociated hosts on redshifts
(Figure 6(a)), as well as the distributions of A# (Figure 6(b))
and dprr (Figure 6(c)) for those misassociated hosts;
Figure 6(d) is a histogram of rpr for misassociated SN. In
each panel, the distribution for misassociated hosts is much
broader compared to correctly identified hosts.
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Figure 6. For simulated supernovae with misassociated hosts, panel (a) shows
true values of redshift vs. the calculated values, with the black line showing
correct associations for reference. The solid histograms in panels (b)—(d) show
distributions only for the misassociated supernovae, and the dashed—dotted
histogram represents all supernovae (normalized to the misassociated
population). When the galaxy is misassociated, we attribute SNe to higher-
redshift hosts 56% of the time and lower-redshift hosts 44% of the time.

We find that the recovery of w is biased by Aw = 0.0007 by
this misassociation, which is consistent with 0.

5.2. Impact of Host Galaxy Selection Efficiency

We evaluate the bias on w due to our host-galaxy selection
by comparing our recovered distances using epos () to those
using €04 (z). The impact on the binned distances is shown in
Figure 5. For most of the redshift range, the impact is less
than 2 milli-mags and the only significant impact is at the
higher end of our redshift range. This produces a w-bias
of Aw = —0.0072 + 0.0037, significantly smaller than the
statistical uncertainty. The rms around this value is 0.05¢.

5.3. Impact of CC Templates

Figure 7 shows the Hubble residual distributions using five
different CC models in the analysis, and each model is
indicated in the panel. Figure 7 contains our Fiduciary case,
where CC templates used in the simulations are from the
PLASTiCC models with an adjusted luminosity function and
without SNIax; the PLAsTiCC model with neither adjusted
luminosity function nor SNIlax; the PLASTiCC model with
adjusted luminosity function and SNIax; the CC templates from
Kessler et al. (2010b) without luminosity adjustments (K10);
and the CC templates from Jones et al. (2018a) with
adjustments. The smallest contamination (Pcc) is 1% for
K10, and the highest is 5.9% for the Fiduciary with Iax
analysis. Still, we see that the contamination in the data for the
positive tail of the Hubble residual distribution is better
predicted in some cases than others. We find that the
PLASTiCC and K10 models do not match the data well in
this region, confirming the need for luminosity function
corrections to match the high Hubble residual tail suggested
in Jones et al. (2018a).
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For the case of Fiduciary with SNIax, the SNIax make up
40% of the CC contamination. While the SNIax luminosity
distribution is fainter than that of SNe Ia, we also find that
the x; and ¢ values satisfy the selection requirements (see
Section 2), and therefore the NN classification poorly separates
SNe Ia from SNIax. Jones et al. (2018b) do not include SNIax
in the contamination library due to the expectation that they are
too red (c > 0.3), and because the SNIax model was not
available. As discussed in Section 4.3, only a single SN was
used to generate the SNIax model. However, if we perform
SALT?2 light-curve fits on the four known SNlax in SDSS
(including 2005hk), we find that all the SNIax have fitted color
values ¢ > 0.3 and thus fail our selection requirements.
Therefore, these light-curve fits suggest that the SNIlax
contamination is overestimated and further study is needed.

From simulations, the impact on w due to the systematics
related to CC libraries is given in Table 2. We find the mean
bias due to the CC systematics is Aw < |0.01|, with a statistical
uncertainty of ~0.001. The rms in w from the simulations due
to the systematics is 0.01-0.02.

5.4. Data and Simulation Comparison

In the last two columns of Table 2, we show the impact on w
of the systematics studied in this analysis for the real data
sample. This is shown for all the systematics except for the
misassociated host, as there we cannot apply the same
technique on the data as we did for the simulations. To assess
whether the changes seen for the data sample are consistent
with predictions from the simulations, we define the number of
standard deviations (IV,) for each systematic as

N(f = (Awsim - AWdata) /Wris (6)

where Awg, is the Aw recovered in simulations, Awgy, is the
Aw recovered from the data, and w,, is the rms of the Aw
recovered from simulations. We find that the highest deviation
compared to the simulations is seen for the “No LF adjustment”
systematic at 2.1¢0. All other deviations near or below <lo.
Therefore, we conclude that the impacts of the systematics seen
in the simulations are consistent with those seen for the data.

6. Discussion and Conclusions

In this paper, we have presented new methodologies for two
systematic uncertainty contributions unique to analyses of
cosmology with photometric SNe Ia samples: (1) host-galaxy
misassociation and selection efficiency, and (2) CC training
library. For classifier training and bias corrections, we
generated realistic simulations of SN (SNe Ia and CC) and
host galaxies. We validated these simulations with a wide range
of diagnostics. We find the host-galaxy misassociation rate to
be 0.6%, resulting in a w-bias of Aw = 0.0007. We expect the
misassociation rate, and hence the distribution of misassociated
redshifts, to change with the redshift range of a survey. If the
impact of this systematic increases in future analyses, more
rigorous bias correction simulations and possibly new analysis
methods such as z-BEAMS (Roberts et al. 2017) may be
necessary.

The galaxy selection efficiency contributes a w-bias of
Aw = —0.0072 &+ 0.0037. For the first time, the PLAsTiCC
library has been used for assessing systematic uncertainties in a
cosmological analysis. We confirm the Jones et al. (2018a)
finding that CC luminosity function adjustments are needed to
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Figure 7. Hubble residual distribution for data, and for simulations using different CC models as indicated on each panel. ftpeasurea 1S the measured Tripp distance
modulus and fipregiciea i the predicted distance modulus from ACDM cosmology. The training sample is the Fiduciary CC model in all cases. Data are shown with
points, simulated SNe Ia are shown with a red histogram, and simulated CC SNe are shown with a blue dashed histogram. The combined simulated distribution of CC
and Ia SNe is shown with a black dashed histogram. The non-SNe Ia contamination (Pcc) is shown for each panel.

more accurately predict the Hubble residual tail (see Figure 7).
We find that ignoring the CC luminosity function shift results
in a w-bias of Aw = —0.0109 £ 0.0003.

The scale of these systematics is similar to that found in
Jones et al. (2018a), given similar priors, for the contamination
systematics, though they do not explicitly include systematics
for galaxy misassociation or the efficiency of host-galaxy
follow-up. The systematic shifts in the data are well predicted
by the simulations, as shown in Table 2.

The total statistical uncertainty on w from a cosmological fit
to the SDSS sample with the same priors as discussed in
Section 4 is 0.1, larger than the systematics investigated here.
For larger samples, the statistical uncertainty will be smaller
and systematic uncertainties of this size will be more
significant. Here we have developed a framework that can be
used to evaluate these systematic uncertainties in future
analyses of photometric samples.

Appendix

A.l. Discussion of dp;g Values

We start with the radial equation of an ellipse as measured
from the center, with semimajor and semiminor axes a and b
and orientation angle 6:

b
) = < . ©
' \/(a sin#)? + (b cosd)?

We define the SN angle as the angular difference between a
line that goes through the SN position and galaxy center and a
line that passes through north and the galaxy center. Combined
with the orientation of the galaxy as given by the galaxy
position angle we define 6 by subtracting the SN angle from the
position angle of the galaxy. With a, b, and 6, the DLR is
defined from Equation (7) as the effective radius of the galaxy
at angle 6.

The position angle of the galaxy can be found using the
Stokes parameters Q and U given in the SDSS DR14 data
release. DR14 uses a slightly unconventional notation for U;
this is corrected with a factor of 2 in the position angle.

Since these parameters are not fits to a model, but rather
based on pixel data, they are more robust for fainter galaxies.
The position angle ¢ can be expressed as

¢ = %arctan(%). 8)

The ratio of the semimajor and minor axes can also be
computed with the Stokes parameters. Defining & = Q% + U?,
the ratio a/b is then expressed as

a 1+ k+2Jr

Z 1 -k

Following Sako et al. (2018), we set a equal to the Petrosian

half-light radius within the r-band and b is determined using
Equation (9). Finally, we define a distance-weighted dp; r as

€)

Angular separation
r(0) '

It is important to note that DLR and dpr are survey-
dependent quantities and are not easily comparable across
surveys. Of particular note are magnitude cutoffs. Establishing
a magnitude limit does allow for fine-tuned control of A0
density, but does not account for apparent ellipticity. At higher
magnitudes, the apparent ellipticity as measured by the Stokes
parameters begins to increase. At fainter brightness, noise
begins to dominate the signal and leads to unrealistic ellipticity
measurements. But differences in magnitude limits for different
surveys, combined with those in image processing, can alter the
apparent size of a galaxy. Self-consistent DLR measurements
within the survey are more accurate than solely Af determina-
tions, but cross comparison would not be effective.

(10)

dpilr =
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