
A New Method to Classify Type IIP/IIL Supernovae Based on Their Spectra

Shihao Kou, Xingzhuo Chen, and Xuewen Liu
College of Physics, Sichuan University, Chengdu, 610064, People’s Republic Of China; liuxuew@scu.edu.cn, chenxingzhuo@tamu.edu

Received 2018 September 5; revised 2019 December 27; accepted 2019 December 28; published 2020 February 26

Abstract

Type IIP and Type IIL supernovae are defined on the basis of their light curves, but the spectral criteria for
distinguishing these two types of supernovae (SNe) remain unclear. We propose a spectral classification method.
First, we subtract the principal components of different wavelength bands in the spectra based on the functional
principal components analysis method. Then, we use support vector machine and artificial neural network to
classify these two types of SNe. The best F1_Score of our classifier is 0.871 for SNe IIL, and 0.974 for SNe IIP.
We found that by only using the Hα line at 6150–6800Å for classification, the F1_Score up to 0.961 for Type IIP,
and 0.818 for Type IIL SNe can be obtained. These results indicate that the profile of the Hα spectral line is the key
to distinguishing the two types of SNe.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Supernovae (1668)

1. Introduction

Originating from massive stars (8∼20Me), hydrogen-rich,
core-collapse supernovae, also known as Type II Supernovae
(SNe II), are one kind of supernova (SN) with a conspicuous
hydrogen spectral line at 6335Å (Gal-Yam 2017). Some SNe
II are generally divided into four subtypes, IIP, IIL, IIb, and IIn,
while some SNe with peculiar spectroscopic or light-curve
features are divided into SNe II-pec, such as SN1987A
(McCray 2017). Helium spectral lines at the wavelengths of
5876, 6678, and 7065Å are characteristic lines observed in
SNe IIb, while SNe IIn usually have a narrow Hα line at
6563Å. Because of similar spectral features, SNe IIP/IIL are
defined by their light curves.

The light curves of SNe are generally produced by four
different mechanisms (Arcavi 2017): shock breakout; shock
cooling and ejecta recombination; radioactive decay; and
circumstellar material interaction. The main feature of SNe IIP
are their plateau-like light curves, which quickly rise to the
peak (∼15 days) after explosion and follow a plateau phase
(∼90 days) that is powered from the cooling of ejecta. After the
plateau phase, the luminosity declines linearly (>1.4 Mag/100
day) because of the nickel decay chain  Ni Co Fe56 56 56 .
In contrast, the cooling phase of SNe IIL (typically less than 10
days) is much shorter than that of SNe IIP, and its luminosity
linearly decreases as ∼0.3Mag/15 day after the peak (Gal-Yam
2017). Unlike the simple shape of SNe IIP/IIL, SNe IIb have
versatile light curves, some of which even show a double-peak
light curve. The first peak is originated from the fast cooling
effect after the explosion, and the second one links to the high-
energy photon escaping the relatively small-mass envelope
(Richmond et al. 1994; Li et al. 2011; Arcavi 2017).

Many studies indicates that the progenitors of SNe IIP are
red super giants (RSG) with a mass range of 8.5–16.5Me
(Smartt 2015), whereas SNe IIb are believed originated from
yellow super giants (YSG; Anderson et al. 2012). Some studies
suggest SNe IIn progenitors are luminous blue variables
(Schlegel 1990). The progenitor of SNe IIL is still on debate.
Only one observational evidence of SN2009kr suggests that an
RSG or YSG could be its progenitor (Fraser et al. 2010; Elias-
Rosa et al. 2011).

Previous studies of SNe IIP/IIL showed that the absorption–
emission ratio of a Hα P-Cygni profile in SNe IIL is relatively
smaller than that of SNe IIP after the luminosity peak, which is
possibly because of their different envelope mass and density
(Patat et al. 1994; Gutiérrez et al. 2014). Moreover, a study of
Hα and O(I)7774 equivalent width (EW) indicates that SNe IIP
have a smaller spectral ratio aEW EWOI7774 H (Faran et al.
2014). In addition, the absolute peak luminosities of SNe IIL/
IIP are −17.44±0.22 and −15.66±0.16, respectively
(Li et al. 2011). However, unlike the classification of SNe I,
no adequate spectroscopic criteria are presented to distinguish
SNe IIP from SNe IIL (Sun & Gal-Yam 2017).
The current classification scheme of SNe, including

numerous types and subtypes according to their spectra and
photometric properties, is universally recognized, even though
there are controversies regarding the definitions and specific
progenitor stars (Gal-Yam 2017). In the coming era, existing
and upcoming wide-field optical surveys and facilities, e.g., the
Large Synoptic Survey Telescope (Ivezic et al. 2019), the Dark
Energy Survey (Abbott et al. 2016), the All-Sky Automated
Survey for Supernovae (Kochanek et al. 2017), the Panoramic
Survey Telescope & Rapid Response System (Pan-STARRS;
Chambers & Pan-STARRS Team 2017), and the Zwicky
Transient Facilities (Wozniak et al. 2014) will quickly expand
the SNe number from a few thousand to millions of events. It is
becoming possible to find the direct observational evidence to
clarify the controversies in classification by analyzing the large
amount of forthcoming data, which needs new effective
automatic classification methods. Since the launch of the
Supernova Photometric Classification Challenge (SPCC) in
2010 (Kessler et al. 2010), several machine-learning algorithms
were proposed for SN classification by using the features of
light curves extracted from the SPCC data set, including either
parametric fits to the light curves, template fitting, or model-
independent wavelet decomposition of the data. Lochner et al.
(2016) found that the boost decision trees performed most
effectively. Besides photometric features, spectral information
is also applied to SN classification. Sasdelli et al. (2016)
combined the principal component analysis method with
K-means algorithms to use spectral features to classify
subtypes of SNe Ia. Muthukrishna et al. (2019) has constructed
a 4-layered neural network to automatically estimate the
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redshift and classify the type of SNe based on spectra, which
perform quite well on general-type classification (SNe Ia, Ib
and Ic, II) but failed in the classification on the subtypes.

Based on spectra of SNe IIP/IIL for the first time, in this
paper, we apply the Functional Principal Component Analysis
(FPCA) to extract a series of principle components from SNe
IIP/IIL spectra, then feed into the machine-learning algorithm
such as the support vector machine (SVM) and artificial neural
network (ANN) to classify these two type of SNe. In Section 2,
we will introduce the data source and the algorithms (FPCA,
SVM, and ANN) used in the paper. In Section 3, we will
discuss the performance of our classifiers. The prospective
and the summary will be presented in Section 4. All the codes
used in the analysis are uploaded ontohttps://github.com/
GeronimoChen/IIL-IIP-SNe.

2. Methods

2.1. Data Overview

The data set includes all spectra of SNe II downloaded
from the Weizmann Interactive Supernova Data Repository
(WISeREP), which served as an archive of SN spectra and
photometry (Yaron & Gal-Yam 2012). To expand the data set,
we use the spectra of another six SNe IIL from the literature as
shown in Table 1. The number of different Type of SNe and
their spectra are shown in Figure 1.

We discuss in detail the preprocessing of the spectra in
Appendix A, which entails removing redshift, Savitz–Golay

filtering, and normalizing the spectral flux (Savitzky &
Golay 1964). The resulting spectra are divided into nine small
wavelength windows as shown in Figure 2. The wavelength
windows include the major spectral lines in SN identification as
shown in Table 2. (Marcaide et al. 2002; Maguire et al. 2010;
Smith et al. 2010; Taddia et al. 2016; Anderson et al. 2018;
de Jaeger et al. 2018; Gutiérrez et al. 2018; Singh et al. 2018).
We carefully select the Hα and Hβ windows to include all
possible absorption and emission lines, because hydrogen lines
are the key lines in defining SNe II. Except for the wave window
of “Gap,” all other wave windows are denoted by the dominating
spectral lines, such as FeMg, Hβ, FeOMgSi, S, Na, Hα, NaMg,
and Ca. As the “Gap” window may be contaminated by the
telluric H2O spectral line at 7165Å. However, some SNe II may
embody calcium spectral lines (Ca(II)7291,7323) in this region
(Maguire et al. 2010; Faran et al. 2014; de Jaeger et al. 2018).
But we exclude the wave window of 6800–7000Å and
7400–7700Å due to the telluric O26867 and O27620 contam-
ination. The numbers of the available spectra in each of the
wave windows is listed in Table 2. Every individual spectra in
different wave windows are normalized with its average value
being equal to zero.

2.2. FPCA Algorithm

Now, we can use FPCA algorithm to extract a series
of principal components from every single spectrum. The
principal components are a set of orthogonal functions that
could recover the spectra via their linear combination (Jones &
Rice 1992; Hall et al. 2006; Peng & Paul 2007). A specific
spectrum Xn(λ) can be represented as

( ) ( ) ( ) ( )ål m l b f l= +
=

¥

X , 1n
m

m n m
1

,

where fm(λ) is the m-th basis functions, βm is the m-th
functional principal components scores (Scores), and μ(λ) is
the average of the spectra. The bilinear orthogonal form of the
basis functions is the integral of the product of functions over
the interval of the wave window [λmin, λmax]:

( ) ( ) ( )ò f l f l l d=
l

l
d . 2j k jk

min

max

Table 1
Extra Spectra of Six SNe IIL from Other Literature

Supernovae
Name

Number of
Spectra

Type in
WISeREP Reference

SN1980K 6 II (Eldridge &
Tout 2004)

SN1979C 4 II (Ray et al. 2001)
SN2013hj 5 II (Bose et al. 2016)
SN2013by 18 II (Valenti et al. 2015)
SN2013ej 112 II (Yuan et al. 2016)
SN2009kr 2 IIn (Anderson et al.

2012)

Figure 1. Number of different SNe and their spectra in our analysis.
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The convolution form of the m-th Score is

( )( ( ) ( ) ( )òb f l l m l l= -
l

l
X d , 3m n m n,

min
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which is sorted by its variance among all spectra:
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The basis function is selected by the following equation:
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which ensures that the most information is extracted from the
spectrum X(λ).

In this paper, we use the R language package fpca to get
the best set of basis functions (Peng & Paul 2007). Because of
the limitation of our computational resource, we extract only
30 basis functions from each wave window of every single
spectra. Then, we use these basis functions to reconstruct
the spectra of SN1990E (SNe IIP, WISeREP ID: 1194) and

SN2014G (SNe IIL, WISeREP ID: 30101), the shape of which
match their normalized spectra quite well, as shown in
Figure 3. The variance distribution and the fidelity of the basis
functions are discussed in Appendix B.

2.3. Classification

Then, a series of FPCA Scores extracted from spectra of SNe
II are ready for classification. In Figure 4, we show the
correlations of the first and second Scores in the Hα wave
window of different type of SNe IIP/IIL/IIb/IIn. Although
different patterns appear, it is still impossible to tell the
boundaries between different SNe by using only two Scores.
To use all of the Scores information, we apply SVM (Chen
et al. 2005; Cristianini & Ricci 2008; Chang & Lin 2011) and
ANN (LeCun et al. 2015) for the classification of SNe IIP/IIL.

2.3.1. Support Vector Machine

SVM is a popular machine-learning method for classification
that aims to find the optimal hyperplane to separate two sets of
dots with largest margin distance, as shown in Figure 5. This
method was first proposed by Boser et al. (1992).

Figure 2. Nine wave windows shown in the spectrum of SN2018bl (Type II, WISeREP Id: 45232).

Table 2
Wave-window Name, Wavelength Ranges, Major Spectral Lines, and the Number of the Available SNe Spectra in Each Window

Name Wavelength Range (Å) Elements and Spectral Lines Available SNe IIL/IIP Spectra

FeMg 4200–4600 Hγ4340, Hδ4102, Ba(II)4554 170/667
Hβ 4600–4900 Hβ4861 181/717
FeOMgSi 4900–5250 Fe(II)4924,5018,5108,5169. O(III)4959,5007. 176/733
S 5250–5800 S(II)5454,5433. O(V)5597. 154/700
Na 5800–6150 Na(I)5876,5896. He(I)5876. Ba(II)6142. 168/722
Hα 6150–6800 Hα 6563. He(I)6678, O(I)6300,6364. N(II)6548. Sc(II)6247 177/735
Gap 7000–7400 Fe(II)7155. He(I)7065. O(II)7319,7330. Ca(II)7291,7323 159/672
NaMg 7700–8200 Na(I)8183,8195 111/491
Ca 8200–8900 Ca(II)8498,8542,8662. O(I)7774. 113/440
All 9 4200–8900 All of the abovementioned lines 73/337
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Consider two kinds of nodes in a hyperspace; the target of
SVM is to find a hyperplane that could separate the data, which
is written in the form

· ( )w= +X b0 , 6

where X is the coordination on the hyperplane, ω is the weight
of each dimension, and b is the bias. The dots closest to the
hyperplane are denoted as support vectors; the distance
between the support vector and the hyperplane is

·
∣∣ ∣∣

( )
⎛
⎝⎜

⎞
⎠⎟

w
w
+X b

Min , 7i
i

where Xi is the coordination of the nodes. The minimal is
reached if the Xi is the support vector. To construct an

optimized hyperplane, the distances between the support
vectors and the hyperplane should be as large as possible; the
optimization target is

·
∣∣ ∣∣

( )
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

w
w
+

w
X b

Max Min . 8b i
i

,

If the distance between the support vector and the hyperplane is
denoted to 1, then the optimization target is

∣∣ ∣∣
( · ) ( )

⎛
⎝⎜

⎞
⎠⎟w

w + >y X bMax
1

, subject to: 1 , 9i i

where yi=±1 is the sign of the nodes, which marks their tags
(IIP or IIL). Because the nodes may not been intrinsically

Figure 3. Normalized spectra and the 30-order FPCA reconstructed results of SN1990E (SNe IIP, WISeREP ID: 1194) and SN2014G (SNe IIL, WISeREP ID:
30101).

Figure 4. First and second FPCA Scores in the Hα wave window for different types of SNe.

Figure 5. Illustration of how Kernel SVM works. Alisneaky:https://commons.wikimedia.org/w/index.php?curid=47868867.
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separated, an slack variable is introduced to gauge the
misclassification,

( · ) ( )x w x- = + > =y X b1 , 0. 10i i i i

The cost function for the optimization is written as

( ) ∣∣ ∣∣ ( )åw x w x= +L b C, ,
1

2
, 11

i
i

2

where C is a penalty parameter which defined before. In this
paper, we use python.sklearn.svm for SVM classifica-
tion, radial basis function is used for nonlinear classification,
and the kernel function and the distance are written as

( ) ∣∣ ∣∣ ( )
⎛
⎝⎜

⎞
⎠⎟g

s
¢ = -

- ¢
K x x

x x
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2

2
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⎛
⎝⎜

⎞
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s
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- ¢
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x x
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2
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2.4. Artificial Neural Network

A simple ANN is composed of three parts: the input layer,
hidden layers, and the output layer, as shown in Figure 6
(LeCun et al. 2015). Nodes in adjacent layers are linked with
different weights. In the ANN, data are propagated from the
input layer to the output layer with the equations

· ( )= +z W y b 14i i i i

and

( ) ( )=+ +y f z , 15i i i1 1

where Wi is the weight matrix, bi is the bias, and fi+1(zi) is the
activation function within the i-th layer. The output layer will
give the probabilistic classification upon a certain input data. In
this paper, we use the rectified linear unit (ReLU) function
f (z)=max(0, z) as the hidden layer’s activation function,
which performs well in many supervised deep-learning
paradigms. Because it is a dichotomy problem, we choose
sigmoid function ( f (z)=1/(1+exp(−x))) rather than ReLU

as the output layer’s activation function, as it constrains the
output in the region (0, 1) and allows us to predict the positive
and negative. Unlike SVM, we set 1 and 0 for SNe IIP and IIL
separately for the application of ANN.
The weight and bias parameters are trained using the back

propagation procedure. In this paper, we choose binary cross
entropy as the loss function, which is written as

( ) [ ( ) ( ) ( )] ( )å= - + - -L y y y y y y, ln 1 ln 1 , 16r p
i

r p r p

where yr is the true probability of 0 or 1, and yp is the
probability given by the neural network (Shannon 2001). The
training target of ANN is to modify the weights and bias to
minimize the loss function, which make the prediction of
“positive” data close to 1 and “negative” data close to 0. In the
basic stochastic gradient descent algorithm, the update of
weights and bias are following the equation

( )q q a= - qg , 17new old

where α is the learning rate, and θ is the weights or bias. In
each training epoch, the update of weights and biases are
uploaded upon the gradient of the loss functions: =w w

¶
¶

g L and

= ¶
¶

gb
L

b
. In this paper, we use the Adam algorithm (Kingma &

Ba 2014) for optimization, in which the weights and biases are
updated with

( ) ( )b b= + - q-m m g1 , 18t t1 1 1

( ) ( )b b= + - q-v v g1 , 19t t2 1 2

ˆ ( ) ( )b= +m m 1 , 20t t
t
1

ˆ ( ) ( )b= +v v 1 , 21t t
t
2

ˆ ( ˆ ) ( )q q a= - + m v , 22t tnew old

where mt and vt are the t-th epoch first and second momentum,
ò=10−8 is set to avoid overflow. In this paper, we choose the
decay parameters β1=0.9, β2=0.999 and the learning rate
α=0.001, following the original paper of Adam (Kingma &
Ba 2014). To avoid the over fitting problem, we add L1 and L2
penalties into the loss function which is written as

( ) [ ( ) ( ) ( )]

( ∣ ∣) ( ∣ ∣ ) ( )

å

q q

=- + - -

+ å + å

L y y y y y y

l l

, ln 1 ln 1

. 23

r p
i

r p r p

1 2
2 0.5

2.5. Performance Evaluations

Because the number of the available spectra of SNe IIL/IIP
are small, as is shown in Table 2 and Figure 1, we adopt a cross
validation method to evaluate the performance. The whole data
set is divided into a training set (80%) and a testing set (20%).
We use the training set to train the classifier. We evaluate the
performances of our classifiers using the F1_Score, which is
defined as

( )=
+

Precision
True Positive

True Positive False Positive
, 24

( )=
+

Recall
True Positive

True Positive False Negative
, 25

Figure 6. Structure of the artificial neural network.
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( )=
+

F1_Score
2

, 26
1

Precision

1

Recall

where True Positive is the number of “positive” spectra
retrieved by the classifier; True Negative is the number of
“negative” spectra that did not retrieved by the classifier; False
Positive is the number of “negative” spectra wrongly retrieved
by the classifier; and False Negative is the number of “positive”
spectra did not retrieved by the classifier (Olson & Delen
2008).

The training and testing processes will be repeated 200 times
for SVM algorithm and 20 times for ANN algorithm, and the
data set is separated randomly in each iteration. When the
training and testing processes are finished, we calculated
the average F1_Score to evaluate the classifier. In addition, the
standard errors of F1_Score are also calculated to evaluate the
stability of our classifiers.

3. Results and Discussion

First, we only use one wave-window information for the
classification including 30 FPCA Scores and two normalization
factors. We use keras to construct a three-layered ANN, and
apply Adam algorithm as the optimizer. We set the number of
nodes in the middle layer to be 40, 100, 400, 600, 800, 1000,
2000, 4000, 6000, and 8000, respectively. Initially, we tried the

model with 40, 400, and 4000 hidden nodes, then chose the
number of nodes around the best-performance model. When
the best number of middle layer nodes that produces the most
optimal F1_Score is determined, we then add the L1 and L2
penalty into the models. The parameters are shown in Table 3.
In the SVM, the parameter γ is automatically generated by the
program. We set the penalty parameter C to be 300, 1000,
3000, 10,000, 30,000, 100,000, 300,000, 1,000,000, and
3,000,000, respectively. Initially, we calculated the F1_Score
when C is 3000, 30,000, and 300,000, then choose the C
around the best-performed model to further increase the
F1_Score. The highest F1_Scores and their standard errors
are plotted in Figure 7. The parameters of the best-performed

Table 3
ANN Parameters for One-window Classification

Items Keys

Input layer 32
Hidden layer See Table 5
Activation function ReLU
Output layer 1
Activation function Sigmoid
Optimization method Adam
Regularization None

Figure 7. Upper panel: the F1_Score of SVM and ANN for SNe IIL. Lower panel: the F1_Score of SVM and ANN for SNe IIP. Red bars are the F1_Score from ANN
and blue bars are the F1_Score from SVM. The standard error are plotted with black lines on top of the bar.

6

The Astrophysical Journal, 890:177 (11pp), 2020 February 20 Kou, Chen, & Liu



model are shown in Tables 4 and 5. We notice that the Hα wave
window has the highest F1_Score in all of the wave windows,
which reaches 0.961(IIP) and 0.818 (IIL) when using ANN,
while reaching 0.930 (IIP) and 0.724 (IIL) when using SVM.
Moreover, ANN performs better than SVM in every wave
window. It is also found that the F1_Score of SNe IIP is higher
than that of SNe IIL by 0.1∼0.2, which is probably due to the
data size of SNe IIP is larger than SNe IIL.

Because the ANN performs betters in the Hα wave window
than in other wave windows, we consider adding the penalty to
further increase the F1_Scores in this Hα window. We try
different combinations of L1 and L2: (0.1, 0), (0, 0.1), (0.01, 0),
(0, 0.01), (0.001, 0), (0, 0.001), (0.1, 0.1), (0.01, 0.01), and
(0.001, 0.001), but none of them performs better than the model
without regularization as shown in Table 6.

Now, to maximize the performance, we want to use the
overall data with 288 dimensions: 30 FPCA Scores and two
normalization factors in each wave window. We applied

the same strategies to increase the model performance by
modifying the hyperparameters (for example, C in SVM, L1
penalty, L2 penalty, and number of middle layer nodes in
ANN). In Table 7, we show the F1_Score of the best-
performance SVM and ANN with different parameters. In
contrast to the trials in the Hα wave window, adding L2 penalty
in all of the nine wave windows increases the performance of
the ANN significantly. We obtain the best performance to our
knowledge with the F1_Score of 0.871 (IIL) and 0.974 (IIP).
Whether more FPCA Scores in the ANN will increase the

accuracy remains a question. We calculate F1_Scores for
different number of FPCA Scores with 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 14, 17, 20, and 25 as shown in Table 8. We adopt 800
nodes in the middle layer for the Hα window, 2000 nodes for
the nine wave windows, and L2=0.01 for penalty. As shown
in Figure 8, the F1_Score increases quickly when the
dimension of FPCA Scores is less than 10 for Hα window,
while it does not change too much for the overall nine wave

Table 4
SVM Performance in a Single Wave Window

Wave Window C IIL F1_Score IIP F1_Score IIL F1_Score 1σ IIP F1_Score 1σ

FeMg 3000 0.678 0.904 0.057 0.017
Hβ 3,000,000 0.691 0.917 0.055 0.015
FeOMgSi 100,000 0.638 0.899 0.064 0.018
S 3,000,000 0.661 0.918 0.068 0.017
Na 300,000 0.681 0.919 0.054 0.018
Hα 300,000 0.724 0.930 0.049 0.013
Gap 10,000 0.669 0.912 0.047 0.017
NaMg 300,000 0.585 0.898 0.068 0.018
Ca 3000 0.698 0.918 0.078 0.022

Table 5
ANN Performance in a Single Wave Window

Wave Window Middle Layer Units IIL F1_Score IIP F1_Score IIL F1_Score 1σ IIP F1_Score 1σ

FeMg 1000 0.732 0.936 0.063 0.013
Hβ 400 0.756 0.942 0.043 0.011
FeOMgSi 2000 0.696 0.930 0.034 0.011
S 4000 0.730 0.944 0.052 0.012
Na 400 0.728 0.941 0.083 0.018
Hα 800 0.818 0.961 0.059 0.016
Gap 4000 0.703 0.934 0.064 0.013
NaMg 2000 0.663 0.927 0.058 0.012
Ca 4000 0.753 0.944 0.061 0.017

Table 6
ANN Performance in the Hα Wave Window with Different L1 and L2 Penalties

L1 Penalty L2 Penalty IIL F1_Score IIP F1_Score IIL F1_Score 1σ IIP F1_Score 1σ

0 0 0.818 0.961 0.059 0.016
0.1 0 0.500 0.920 0.092 0.016
0.01 0 0.696 0.930 0.034 0.011
0.001 0 0.787 0.955 0.038 0.009
0 0.1 0.687 0.939 0.050 0.013
0 0.01 0.818 0.961 0.059 0.016
0 0.001 0.779 0.950 0.041 0.010
0.1 0.1 0.745 0.941 0.069 0.015
0.01 0.01 0.766 0.949 0.055 0.011
0.001 0.001 0.793 0.953 0.066 0.015

Note. The bold parameters obtain the best performance.
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windows. Therefore, 30 FPCA Scores is enough for our
analysis.

4. Summary

We decompose SNe IIP/IIL spectra into different basis
functions via FPCA algorithm. Based on the FPCA scores, we

have trained SVM and ANN to classify SNe IIP and SNe IIL,
two types of supernovae that are believed to have no adequate
spectroscopic discrepancies in previous research. The three-
layered ANN has a better performance for the classification.
The spectra are divided into nine small-size wave windows for
FPCA analysis; the best F1_Score we got is 0.871 for SNe IIL,

Figure 8. Relation between the F1_Score and the number of FPCA Scores. Left panel: SNe IIL. Right panel: SNe IIP.

Table 7
The Performance of SVM and ANN in the Hα and All Nine Wave Windows

Classifier Wave Window C (SVM) Middle Layer L1 (ANN) L2 (ANN) IIL F1 IIP F1 IIL F1 1σ IIP F1 1σ

SVM Hα 300,000 / / / 0.724 0.930 0.049 0.013
SVM 9 3000,000 / / / 0.810 0.962 0.073 0.015
ANN Hα / 800 0 0 0.818 0.961 0.059 0.012
ANN 9 / 2000 0 0 0.836 0.968 0.090 0.015
ANN 9 / 2000 0 0.01 0.871 0.974 0.066 0.013

Note. The bold parameters obtain the best performance.

Table 8
Performance in Different Dimension of FPCA

Basis
Functions

IIL F1
Hα

IIP F1
Hα

IIL F1 Nine
Wave Windows

IIP F1 Nine
Wave Windows

30 0.818 0.961 0.871 0.974
25 0.806 0.958 0.831 0.968
20 0.809 0.956 0.835 0.971
17 0.810 0.959 0.837 0.964
14 0.786 0.952 0.814 0.964
11 0.782 0.953 0.864 0.970
10 0.777 0.954 0.851 0.973
9 0.740 0.944 0.844 0.970
8 0.714 0.941 0.814 0.967
7 0.686 0.942 0.831 0.967
6 0.680 0.939 0.836 0.968
5 0.653 0.934 0.835 0.968
4 0.614 0.930 0.818 0.964
3 0.511 0.920 0.842 0.967
2 0.332 0.910 0.810 0.964
1 0.274 0.910 0.790 0.958

Note. For the Hα wave window, the input dimension is the number of basis function plus two normalization factors. For the nine wave-window situation, the input
dimension is the number of basis function multiplied by nine and plus two normalization factors for each nine wave windows. Columns from left to right: the number
of basis functions in each wave window; the F1_Score of Type IIL when using Hα for classification; the F1_score of Type IIP when using Hα for classification; the
F1_Score of Type IIL when using nine wave windows for classification; the F1_Score of Type IIP when using nine wave windows for classification.
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and 0.974 for SNe IIP. It is the first quantitative classification of
SNe IIP/IIL through spectral data. We show that compared
with other eight wave windows, a better score is obtained in the
narrow wave window at 6150–6800Å, which covers the
P-Cygni profile of Hα line. Thus we suggest that FPCA
analysis directly on spectral line of a specific element could be
a new approach in SNe classification.

In a future study, we will investigate the relationship
between the principal components in spectra and the explosion
profile of SNe, and expand the classification method to include
other Type of SNe.

X.C. would like to thank Prof. Avishay Gal-Yam (Weiz-
mann Institute of Science) and Prof. Lifan Wang (Purple
Mountain Observatory) for supportive discussions. We thank
Lei Hu (Purple Mountain Observatory) and Tianrui Sun (Purple
Mountain Observatory) for support on calculations. We thank
Weizmann Interactive Supernova data REPository (WISeR-
EP)https://wiserep.weizmann.ac.il/ and Transient Name Ser-
ver (TNS)https://wis-tns.weizmann.ac.il/ for the data.

Software:python,keras,scikit-learn,R-fpca (Peng & Paul
2007).

Appendix A
Preprocessing

We first remove the redshift of the raw spectrum by using the
equation λRF=λobs/(1+z) to transform the wavelength λobs
in the observer frame to the rest frame of λRF. Then the spectra
in the rest frame are normalized by dividing the average flux, as
the absolute flux of a spectrum in each pixel strongly depends
on the telescope and the apparent magnitude. Finally, we use a
Savitzky–Golay filter that has been widely used to reduce the
noise in SNe spectra (Sun & Gal-Yam 2017). Tucker et al.
(2019) smoothed the spectra of SNe Ia by using a two-order
Savitzky–Golay filter with a smoothing width of 3000 km s−1,
which is broader than the noise. By considering the narrow-line
feature in SNe II, we adopt a smaller width of 1000 km s−1 for
our two-order Savitzky–Golay filter. In the next step, each
spectrum in the selected wave window is subtracted with its
average flux, and divided by the standard deviation. Such a
process removes the blackbody component of the spectra.
Finally, we resample the spectra to the resolution of 1Å using
linear interpolation method. The whole process is illustrated in
Figure 9.

Figure 9. Illustrative flow chart of the data-processing steps.
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Appendix B
FPCA Fidelity Discussion

We can use the function principal component, average flux,
and standard derivative to reconstruct the spectra by the
equation

( ) ( )
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where An is the average flux, and Sn is the standard derivation.
We choose all SNe IIP/IIL spectra for FPCA calculation in the
Hα, Ca, S, Na, NaMg, and “Gap” wave windows, but only 20%
spectra in the Hβ, FeOMgSi, and FeMg wave windows, due to
our computational capability. To evaluate the information loss,
we calculate the variance of every FPCA basis function by
using the equation
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where Vm is the variance of the m-th order basis function, βm,n
is the m-th Score of the n-th spectra, b̄m is the average of the
m-th order Score of all spectra. We show the contribution of
different wave windows to the variance in Figure 10. The first
10-order FPCA contribute more than 99% to the variance.

Appendix C
Possible Data Leak Hazard

Our data set includes 73 spectra of SNe IIL and 337 spectra
of SNe IIP, in which 39 are from SN2013ej and 36 are from
SN2004et. Because some SNe have more spectra, while other
SNe have fewer, we split the total 73 or 337 spectra into the
training set (80%) and the testing set (20%). This strategy will
lead to the situation where some spectra of a specific SN are in
the training set, while the others are in the testing set. Because
the spectra from the same SN share similar features, it may
lead the deep-learning model to favor the Type of SNe with

more spectra. This effect is called ”data leak” in the deep-
learning field. To investigate this effect our result, we divide all
SNe into two groups with roughly same number of spectra: the
frequently observed group and the less-observed group. For SN
IIP, the frequently observed group contain 165 spectra from
nine SNe that have at least 12 spectra in 4200–8900Å:
SN2004et, SN2009N, SN2005cs, SN2013am, SN2013K,
iPTF13dqy, SN2012aw, SN2006bp, and SN1999em. The rest
of the 172 type IIP spectra are in the less-observed group. For
SN IIL, 39 spectra of SN2013ej constitute the frequently
observed group, and rest IIL SNe are in less-observed group.
We then apply the neural network with the best performance to
train and test the ANN for 200 times; the accuracy of each
groups are shown in Table 9. This result indicates that more
data will improve this effect.
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