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Abstract
When two identical balls collide with equal inital speed on a horizontal
groove, one can observe three trajectory types depending on the groove width.
To explain this observation, we derive velocity diagrams of the balls’ motions
from Newton’s laws of translation and rotation and kinematics of rigid bodies
in a three-dimensional vectorial representation and compare them with
experimental results. The velocity diagrams and an introduced determinant
allow one to discriminate between the trajectory types and to understand the
interplay between translation and rotation after the collision of the balls.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The motion of a single ball as well as the collision of balls influenced by impulsive, frictional
or gravitational forces on flat or inclined surfaces have been extensively analysed. Studies can
be roughly categorized by their theoretical treatment of ball motions mainly by treatments
with conservation principles (e.g. [1, 2]) or Newtonʼs laws of translation and rotation (e.g.
[3, 4]), or a mixture of these principles and laws (e.g. [5]).

Keeping this in mind, we pick up an artificial laboratory phenomenon from [6], which
can be performed with simple equipment as a qualitative freehand as well as a quantitative
experiment (figure 1). Two identical balls of uniform mass distribution, radius R and mass m
are released from the same height on both inclined parts of a groove. The groove width

( )Îb R0, 2 is adjustable. One can observe three trajectory types after the first impact of the
balls on the horizontal part of the groove (figure 2):

• if ( )Îb b0, * is below a critical groove width b*, the balls move away from each other;
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• for =b b*, the balls come to rest at a certain distance from each other; and
• if ( )Îb b R, 2* is above the critical groove width b*, the balls move away from each
other, then move towards each other and collide again. This motion can appear several
times with decreasing maximal distances of the balls.

The observation of these trajectory types is surprising in comparison with the seemingly
similar experiment of carts colliding purely translationally on an air track. This raises the question
why the balls move in such a manner. The answer requires an understanding of the connection
between causes (forces and torques) and effects (translational and rotational acceleration). There-
fore, we perform here a theoretical treatment of the experiment with Newtonʼs laws of translation
and rotation and not with conservation principles [6], which consider only initial and final states.

2. Derivation of the balls motion

2.1. Assumptions, particle velocities and motion states

In the following, we assume that the rolling and air friction forces acting on the balls are
negligible and that the balls’ collision is short, central and ideal-elastic. Moreover, we neglect

Figure 1. Setting of the experiment. Two inclined groove parts of the same inclination
are used to generate equal initial ball speeds.

Figure 2. Trajectory types of the left ball (radius R) after the first impact for different
groove widths b in respect to the critical groove width b*.
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tangential sliding forces between the balls during the impact. Before the first impact, the balls
perform pure rolling, i.e. rolling without slipping, with the same center-of-mass speed.

Generally, the velocity

vP of a particle in a point P of a ball in an inertial reference

frame is

( ) ( )      w= + ¢ = + ´ -v v v v r r , 1P cm P cm P cm

where

vcm denotes the center-of-mass velocity in the inertial reference frame,

¢vP the velocity
of the particle P relative to the center of mass,


w the angular velocity and

 
-r rP cm the

connecting vector from the center of mass to P.
In particular, the particles in A and B, which are currently in contact with the groove and

which have the identical velocity

( ) ( )      w= + ¢ = + ´ -v v v v r r , 2A B cm A B cm A B cm

allow one to categorize the balls’ motion states (figure 3): if one of the three velocities in (2) is
zero, the magnitudes of the other two velocities are equal and we get the motion states of pure
rotation (


=v 0cm , rotation without translation), pure translation (


w = 0, translation without

rotation) and pure rolling (


=v 0A B , translation and rotation without slipping) [7]. In all other
cases we get intermediate motion states of translation and rotation. If the ball does not
perform pure rolling, i.e. the particles in A and B move relative to the groove (

 
¹v 0A B ),

equal kinetic friction forces

FA B act on the balls in the opposite direction to the velocity


vA B.

Figure 3.Motion states of (a) pure rotation, (b) pure translation and (c) pure rolling of a
ball in a groove with center-of-mass velocity


vcm, velocity


vA B of particles in A B with

respect to an inertial reference frame, velocity

¢v A B with respect to the center of mass,

angular velocity

w and kinetic friction forces


FA B.
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Specifically, for the fixed coordinate system in figure 4, the connecting vectors are

( )   =r re e 3y
b

zA B 2

(minus for A and plus for B). Inserting (3) in (2) yields

( ) ( ) ( ) ( )     w w= + ´ = -v v e re e v r e . 4x z z y
b

z x z xA B cm, 2 cm,

In (4), the tangential velocity w=v rzt of the particles A and B on the circle of effective
radius r can be positive or negative, depending on the sign of wz and the direction of rotation,
respectively.

In the following, due to symmetry, we consider only the motion of the left ball. The
origin of the coordinate system is at the position of the center of mass of the left ball at a time
=t 00 , when the balls collide (figure 4). Before the first impact (t<t0) the ball performs pure

rolling with center-of-mass velocity >v 0xcm, and angular velocity ωz>0, i.e.


=v 0A B and
from (4) follows the rolling condition

( )=v v . 5xcm, t

Due to the assumptions, right after the impact the center-of-mass velocity changed only in
direction whereas the angular velocity and the tangential velocity vt remain unchanged, i.e.

( ) ( ) ( )- =v t v t . 6xcm, 0 t 0

The rolling condition is no longer fulfilled and kinetic friction forces act on the ball.

2.2. Center-of-mass and angular acceleration

To determine the center-of-mass acceleration

acm and the angular acceleration

a of the ball
after the first impact, we apply Newtonʼs laws of translation and rotation:

( )
 =F ma 7net cm

( ) t a= Iand . 8net

Figure 4. Fixed coordinate system and groove width b, radius R and effective radius r.
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
Fnet denotes the net force on the ball,

tnet the net torque with respect to the center of mass and
=I mR2

5
2 the moment of inertia of the ball with respect to an axis passing through the center

of mass.
For both laws, we need to identify all forces exerted on the ball. The groove exerts

normal forces

NA and


NB on the ball at the contact points A and B, respectively. Because the

ball moves only in or against the x-direction, the y- and z-componenst of the net force is zero.
Therefore, the normal forces and the weight force in the y–z plane compensate each other, i.e.

( )
  + = -N N mge . 9yA B

Due to symmetry, the y-components of the normal forces are

( )= -N mg
1

2
. 10yA B,

According to figure 5, we get

∣ ∣
∣ ∣

( ) = =
N

N

r

R
k, 11

yA B,

A B

Figure 5. Torques t t,A B and tnet due to the kinetic friction forces

FA and


FB, normal

forces

NA and


NB and weight force


G for a (a) small and (b) greater groove width b. In

(b) the magnitude of the kinetic friction forces is greater.
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with the ratio

⎜ ⎟⎛
⎝

⎞
⎠ ( )= = -k

r

R

b

R
1

2
, 12

2

derived from figure 4. From (10) and (11) we get

∣ ∣ ( )


=N
k

mg
1

2
. 13A B

The normal forces produce kinetic friction forces

FA and


FB at the A and B contact points,

respectively. These forces point in the x-direction, because they are opposed to the velocity

( ) ( ) ( ) ( ) ( )w= - = <v t v t r t v t2 0 14x x z xA B, 0 cm, 0 0 cm, 0

in the x-direction. Application of the kinetic friction law yields

∣ ∣ ( )
   m m= =F N e

k
mge

1

2
, 15x xA B k A B k

where mk is the coefficient of kinetic friction. Overall, the net force on the ball is

( )
     

  



m= + + + + =

=

F F F N N G
k

mge
1

. 16xnet A B A B

0

k

According to (7) the center-of-massʼs acceleration

( ) m=a
k

ge
1

17xcm k

is constant, independent from the balls’ mass and dependent on the groove width.
For each force, we calculate the torque with respect to the center of mass. The lines of

action of the normal forces

NA B and the weight force


G pass through the center of mass, thus

their torques are zero. The kinetic friction force

FA and


FB causes the torque

tA and
tB,

respectively. The torques are

( ) ( )   
t = - ´r r F . 18A B A B cm A B

Inserting (3) and (15) in (18) yields

( )( ) ( )       t m m m= ´ = -re e mge mgre mge . 19y
b

z k x k z
b

k yA B 2
1
2 k

1
2 k 4 k

Hence, the y-component of the net torque
  t t t= +net A B is zero and we get

( ) ( ) ( )    t m m= - = ´ = -
k

mgre re F R mge
1

2 . 20z y znet k A B k

The net torque tnet is independent of the groove width b, because for increasing b the normal
forces and the kinetic friction forces, and thus their torques, increase, but also the angle
between the torques (figure 5). According to (8) and (20) the angular acceleration

( ) a
m

= -
g

R
e

5

2
21z

k

is constant and independent from the balls’ mass and the groove width.
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2.3. Interplay between translation and rotation

Integrating (17) and (21) over the time intervall [ ]t t,0 yields, with (6), the linear functions

( ) ( ) ( )
m

= +v t v t
g

k
t, 22x xcm, cm, 0

k

( ) ( ) ( ) ( )w
m

= = - -v t t r v t
k g

t
5

2
. 23z xt cm, 0

k

The signs in (22) and (23) indicate that the graphs of ( )v txcm, and ( )v tt have for all k an
intersection point at time ¢t0 (figure 6), when the ball fulfills the rolling condition after the first
impact, i.e.

( ) ( ) ( )¢ = ¢v t v t . 24xcm, 0 t 0

From (22)–(24) we obtain for ( )¢ ¢t v t, x0 cm, 0 and the position ( ) ( )ò¢ =
¢

x t v t td
t

x0 0 cm,
0 :

( )
( )

m
¢ = -

+
>t

k

k

v t

g

4

2 5
0 25x

0 2
cm, 0

k

( ) ( ) ( ) ( )¢ = -
-
+

= ¢v t
k

k
v t v t

2 5

2 5
26x xcm, 0

2

2 cm, 0 t 0

( )
( )

( )
m

¢ = -
+

<x t
k

k

v t

g

20

2 5
0. 27x

cm 0

3

2
cm,
2

0

k

Equation (26) allows one to discriminate between the three trajectory types:

• ( )¢ <v t 0xcm, 0 for ( )Îb b0, * : the ball performs pure rolling for > ¢t t0 against the
x-direction and the balls move apart from each other. The center-of-mass velocity v xcm,

remains negative after the impact, but the tangential velocity vt and the angular velocity

w

change their direction according to (23) at a time

( ) [ ] ( )
m

= - Î ¢t
k g

v t t t
2

5
, . 28x0

r

k
cm, 0 0 0

At this time, the ball performs pure translation (figure 3(b)).
• ( )¢ =v t 0xcm, 0 for =b b*, i.e. the balls come to rest at time ¢t0 . From (26) and (12) we get
for the critical groove width

( )=
b

R

12

5
. 29

*

Neither the direction of translation nor the direction of rotation change, because the
rolling condition is fulfilled at the moment the center-of-mass velocity is zero.

• ( )¢ >v t 0xcm, 0 for ( )Îb b R, 2* : the ball is rolling in the x-direction for ¢t t0 and the balls
collide again. The direction of rotation remains the same, whereas the direction of
translation changes according to (22) at a time

( ) [ ] ( )
m

= - Î ¢t
k

g
v t t t, . 30x0

t

k
cm, 0 0 0

At this time the ball performs pure rotation (figure 3(a)).

Overall, the slopes of the v xcm, - and the vt-graph determine which of the three trajectory
types occur. Therefore, the ratio
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Figure 6. Theoretical graphs of the center-of-mass’ velocity ( )v txcm, and the tangential
velocity ( )v tt for groove widths (a) ( )Îb b0, * , (b) =b b* and (c) ( )Îb b R, 2* .
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⎛
⎝⎜

⎞
⎠⎟

∣ ∣
∣ ∣

( )= = = -D
a

a
k

b

R

5

2

5

2
1

4
31

x

t

cm,

2
2

2

is a determinant for the three trajectory types, where

( )a= =a
v

t r
d

d
32zt

t

denotes the tangential acceleration.
For ( )ÎD 1, 5

2
and ( )Îb b0, * , the tangential acceleration at is greater than the center-

of-mass acceleration a xcm, (figure 7). Translatory motion decelerates faster than rotatory
motion and, therefore, the direction of translation changes before the direction of rotation can
change and the balls move apart. For ( )ÎD 0, 1 and ( )Îb b R, 2* the roles of translation and
rotation are reversed: the balls move towards each other and collide several times. For D=1
and =b b* the center of mass and the tangential acceleration are equal in magnitude, i.e. the
translatory and rotatory motion synchronously decelerate till the balls are at rest.

3. Comparison of theory and experiment

For groove widths b of the three corresponding trajectory types, the balls’ (radius
=R 2.75 cm, mass =m 0.167 kg) translatory and rotatory motion were measured with video

analysis [8] by tracking the center-of-mass coordinates and the coordinates of a point on a
circle of effective radius r with respect to a fixed coordinate system (frame rate of 100/s).
Coordinate measurement errors were minimized by sufficiently high ball radius and a
selection of smallest possible image sections, which were adapted to the ballʼs motion. We
checked the equality of the initial ball speeds and calculated the left ballʼs center-of-mass
velocity v xcm, and according to (4) the tangential velocity vt (figure 8).

In order to determine the critical groove width b* for the measurement of case (b) in
figure 8, we have reduced the groove width over several tests until, at a width of =b 4.4 cm,
the balls came to rest after the first impact. The critical case was observed for groove widths in
a range of 4.1 cm to 4.4 cm, where =b 4.26 cm* is the calculated critical groove width
from (29).

Figure 7. Normalized center-of-mass acceleration ∣ ∣ ( )ma gxcm, k , normalized tangential
acceleration ∣ ∣ ( )ma gt k and ratio D against the ratio b/R.
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Equal magnitudes of v xcm, right before and after the collision as well as the constant v xcm,

in pure rolling time intervals confirm the previously made assumptions (section 2.2). The
approximately linear graphs of the intermediate motion states confirm the use of the velocity-
independent kinetic friction law (15).

The center-of-mass acceleration ∣ ∣a xcm, and the tangential acceleration ∣ ∣at in table 1 is
determined from linear regression of ( )v txcm, and ( )v tt in figure 8 restricted to the linear piece

Figure 8. Measured center-of-mass velocity ( )v txcm, and tangential velocity ( )v tt for
groove widths (a) =b 3.5 cm, (b) =b 4.4 cm and (c) =b 4.9 cm.
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after the first collision. From both accelerations the kinetic friction coefficient mk,cm and mk,t is
calculated from the slope formula in (22) and (23), respectively. We used m m=k k,cm in (16)

and (20) to calculate the net force ∣ ∣

Fnet and the net torque ∣ ∣tnet in table 1 because the center-of-

mass velocity vcm could be measured more accurately than the tangential velocity vt. Fur-
thermore, the times ¢t t,0 0

r and t0
t in figure 8 were calculated by (25), (28) and (25) with

m m=k k,cm and correspond well with the measurement data.
The experimental results in table 1 indicate that in accordance with the theory (figure 7,

(16) and (20)) for increasing groove width b the center-of-mass acceleration a xcm, and the net
force


Fnet increase and the tangential acceleration at decreases, whereas the torque

tnet is
approximately constant. The mean kinetic friction coefficient from table 1 is m = 0.17k .

4. Summary and educational conclusions

In this article, we derived a cause-and-effect chain from particle kinematics and the appli-
cation of Newtonʼs laws of translation and rotation for rigid bodies to explain the three
trajectory types when two identical balls collide centrally and ideal-elastically with equal
speed in a groove of variable groove width (figure 9). Overall, an increasing groove width
causes an increasing center of mass and a decreasing tangential acceleration in magnitude, so
that when the rolling condition is fulfilled, the center-of-mass velocity either points away

Figure 9. Cause-and-effect chain to explain the occurence of the three trajectory types
with groove width b, effective radius r, ratio =k r R, normal forces


NA B, kinetic

friction forces

FA B, net force


Fnet, net torque

tnet, angular acceleration
a, center-of-

mass acceleration a xcm, and tangential acceleration at.  and  denote increase and
decrease in magnitude, respectively.

Table 1. Experimentally determined quantities for the intermediate motion states after
the first collision (figure 1).

b in cm ∣ ∣a xcm, in -m s 2 mk,cm ∣ ∣

Fnet in N

3.5 2.15 0.17 0.36
4.4 2.86 0.18 0.48
4.9 3.26 0.17 0.54

b in cm ∣ ∣at in -m s 2 mk,t ∣ ∣tnet in Nm

3.5 2.92 0.15 0.008
4.4 2.61 0.17 0.009
4.9 2.00 0.16 0.008
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from the location of collision (the balls depart), is zero (the balls come to rest) or points
towards the location of collision (the balls collide again). For the chosen collision conditions
the motion of the balls is symmetrical to the location of the collision and the three trajectory
types arise independently of the equal initial speed of the balls.

The theoretical level of the experiment provides a challenging problem for introductory
mechanics courses. Explaining the occurence of the three trajectory types in the experiment
requires one to make appropriate assumptions, to apply and combine several rigid body
concepts and to perform a quantitative analysis of the relations between quantities. Therefore,
students should have sufficient previous knowledge about the laws and kinematics of rigid
bodies from lectures. We recommend to implement the experiment with the here-presented
theoretical treatment in homework problems or in an introductory physics laboratory [6],
because there will be sufficient time for students to understand the experimental results on
their own. Additionally, teachers can deal with the well-known difficulties students have in
understanding relevant rigid body concepts concerning the experiment, for example:

• particle velocities of a rolling body with respect to a fixed and a moving coordinate
system [9];

• independence of Newtonʼs law of translation from the working point of forces [10];
• a single force on a rigid body can cause translation and rotation [10]; and
• connection of kinetic friction forces and kinematics during the transition from pure rolling
to pure translation [11].
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