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Impact of a ball with a rigid rod
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Abstract
The impact of a ball with a rigid rod is a standard textbook problem with
several surprises. We consider a hinged rod, as well as a free rod. Intuition
suggests that the rod will rotate fastest when struck at one end. However, an
end impact generates maximum rotation speed only if the mass of the free rod
is at least double the mass of the ball, or the mass of a hinged rod is at least
three times the mass of the ball. These results can be explained in terms of the
reduced effective mass of a rod near its free end, and a consequent reduction in
the impulsive force for impacts near a free end.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A few years ago, Lemos [1] analysed a textbook problem concerning the impact of a ball with
a rigid rod, arriving at an intuitively unexpected result. The rod is assumed to be at rest on a
frictionless table and is struck at right angles by a ball of mass m. Assuming that the rod has
mass M and is free to rotate, and the collision is perfectly elastic, Lemos found that the rod
will rotate at maximum angular velocity if it is struck at one end, as expected, but only if
M > 2m. If M < 2m then the rod rotates at maximum speed when the impact point lies
between the middle and the end of the rod. Lemos attributed the latter result to the fact that the
rotation axis of the rod is not fixed, unlike the more familiar case of a hinged door. For a free
rod, and a given impact speed, the impulsive force on the rod varies with the impact point and
is smallest for an impact at the tip. Consequently, the impulsive torque is not necessarily a
maximum at the tip of the rod.

However, a similar result is obtained if the rod is hinged or pivoted at one end, in which
case the rotation axis of the rod is fixed, like a hinged door. It is shown below that a hinged
rod rotates at maximum speed if it is struck at the free end, but only if M > 3m. Otherwise,
maximum rotation speed arises if the rod is struck at a point remote from the far end. In the
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Figure 1. Impact of a ball of mass m with a uniform rod of mass M and length L.

latter case, the impact point that generates maximum rotation speed corresponds to the point
where the rebound speed of the ball is zero. We consider both perfectly elastic and inelastic
collisions.

2. Theoretical collision models

Consider the situation shown in figure 1 where a ball of mass m is incident at right angles on a
uniform rod of mass M and length L, initially at rest. The centre of mass of the rod is located
at a distance L/2 from each end, and the ball impacts at a distance b from the centre of mass.
The ball is incident at speed v, and rebounds at speed v,. Immediately after the collision, the
rod rotates at angular velocity w, the speed of the centre of mass is V., and the speed of the
impact point on the rod is V = V,,,, + bw. We consider two separate cases where the rod is
either free to rotate and translate, or is hinged at its upper end.

2.1. Free rod

If F is the impact force exerted by the ball on the rod at the impact point then the equations of
motion describing the collision are F = —mdv/dt = MdV,,, /dt and Fb = I, dw/dt where
1., is the moment of inertia of the rod for rotation about its centre of mass. Integration of the
equations of motion over the impact duration gives

fF dt = m, + vy) = MV,, ¢))
and
Iy w= mb(v1 + v). (2)

Since there are three unknowns (v,, V., and w), a third equation is required to solve the
problem, describing energy loss during the collision. The latter quantity can be expressed in
terms of the coefficient of restitution, e, which can vary from zero to unity depending on the
energy loss. Two such coefficients are needed in general (normal and tangential coefficients)
to describe oblique collisions, but we consider only normal collisions in this paper. For
simplicity it is assumed that e is independent of the impact point, although in practice e
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usually varies with the impact point, mainly due to vibration energy losses in the rod. By
assuming that the rod is rigid, vibrational energy losses can be ignored.

In general, solutions of these equations are algebraically complicated, especially when
considering inelastic collisions. However the algebra and the physics are both simplified if we
define two new quantities, namely e, = v,/v; and an effective mass, M,, given by
F = M,dV /dt. The quantity e4 is an apparent coefficient of restitution, ignoring recoil of the
rod. The actual coefficient of restitution, e, is given by

Vo 4+ V
151 .

3

e =

For a perfectly elastic collision, e = 1, and for an inelastic collision, 0 < e < 1. The apparent
coefficient of restitution is more easily measured and is generally a more useful quantity when
describing the impact of a striking implement swung at an incoming ball [2—4].

The effective mass of the rod varies along its length and can be regarded as a point mass
M, that recoils at speed V when subject to the impact force F. The collision between the ball
and the rod is then simplified, both algebraically and conceptually, since it is equivalent to
one between a point mass m and another point mass M,. Since V > V,,,,, M, is less than the
actual mass, M, of the rod. Since V =V, + bw,

v dV,, . dw

— = + b—, 4

dt dt dt @
SO

1 1 b2

— ==+ —. )

M, M I,

From equations (1), (2) and (5) it is easy to show that
m
V="V +bw=(1+ e)—w. (0)
M,
Alternatively, equation (6) follows directly from conservation of momentum since

mvy = M,V — mv,. Substitution of (6) in (3) then gives

% eM, — m
o2 M —m ™)
Vi M, + m

while the angular velocity of the rod is given from (1) to (2) by

_ be dr (1 4 eq)bmy,

w 8
IC"’[ Icm ( )
For a uniform rod with I, = ML? /12, substitution of equations (5) and (7) in (8) gives
1+ e)vix
( vy ©)

W = ,
Lx> + (1 + M/m)/12]

where x = b/L. In that case, w is a maximum when x> = (1 + M/m)/12. For example w is a
maximum at x = 1/2 if M = 2m. Since x cannot be larger than 1/2, w is a maximum for an

3



Eur. J. Phys. 41 (2020) 035001 R Cross

impact at the tip of the rod provided that M > 2m. Otherwise, w is a maximum when
x < 1/2. Since w is proportional to 1 + e, the same conclusions can be drawn regardless of
the value of e.

2.2. Hinged rod

If the rod is hinged at its upper point in figure 1 then F = —mdv/dt = M,dV /dt and
FR = Iydw/dt, where R = L/2 + b and I, = ML2/3 is the moment of inertia of the rod for
rotation about a fixed axis at one end. The net force on the rod includes a reaction force at the
hinged end which can be ignored for now. Integration over the impact duration gives

Iy w=mR(v| + v;) = M,RV. (10)

Since V = Rw, dV/dt = Rdw/dt so

F I
‘T av/dt  R? an
and
we Y+ emy (12)

R RM,

From equations (3) and (10) it is easy to show that e, is given by equation (7) for a hinged
rod, although the expressions for M, are different for free and hinged rods. Equation (7)
applies to both free and hinged rods because it is a standard result that applies to the head-on
collision between any two point masses m and M,. For a uniform, hinged rod where
Iy = ML?/3 and M, = MI*/3R2, equations (7) and (12) give
= (14 e)vix
L(x%2 + M/3m)’
where x = R/L. In that case, w is a maximum when x* = M/3m, meaning that w is a

maximum for an impact at the tip of the rod when M > 3m but is a maximum at R < L when
M < 3m, regardless of the values of e, v; and L.

13)

3. Comparison of free and hinged rods

Solutions of the above equations are shown in figures 2 and 3 for a ball of mass m = 0.1 kg
impacting a uniform rod of mass M = 0.2kg and length L = 0.5 m, as functions of the
impact parameter, b. The solutions are given for a perfectly elastic collision with e = 1 but
results for other values of e are easily determined since w is proportional to 1 + e. For this rod,
I, = 0.004 17 kg m* and I, = 0.016 67 kg m°.

The effective mass of the free and hinged rods is shown in figure 2. For a free rod,
M, = M when b = 0 and M, = M/4 when b = L/2. For the hinged rod, M, = 4M/3 when
b =0 and M, = M/3 when b = L/2. The effective mass of the rod is independent of the
mass of the ball and is independent of e, but it decreases as b increases since the rod rotates at
relatively high speed for impacts near the tip. That is, M, = F/(dV/dt) decreases as b
increases since V increases as b increases.
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Figure 2. Effective mass, M,, of the free and hinged rods versus the impact
parameter, b.
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Figure 3. (a) Angular velocity, w, and (b) e4 for the free and hinged rods versus the
parameter, b.

The value of M, for the free rod is the same as that for the hinged rod if the impact occurs
at b = L/6 since the impact point then coincides with the centre of percussion. That is, the
free rod rotates about an axis through the far end, so a free rod then behaves in the same
manner as a hinged rod. The location of the centre of percussion can be calculated from
equations (6) and (8) and from the relation V, =V — (L/2 + b)w = 0 where V, is the
velocity of the far end of the free rod.

The angular velocity of the rods is shown in figure 3(a). For the free rod, w is zero for an
impact in the middle of the rod since the torque about the centre of mass is then zero. The
angular velocity increases as b increases, since the torque Fb increases with b, and is a
maximum at the tip of the rod. For the hinged rod, w is finite for an impact in the middle of the
rod since the torque about the hinged end is finite. Even though R increases as b increases, w
is almost independent of b, with a weak maximum at » = 0.16 m. The explanation is that the
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impulse f F dt decreases by a factor of about two when R is doubled since the ball rebounds
at lower speed when bouncing off a smaller mass. As a result, the impulsive torque about the
hinged end depends only weakly on b.

The bounce speed to incident speed ratio, e4 = v,/vy, is shown in figure 3(b). The
incident ball bounces best when M, is large but it comes to a complete stop with e, = 0 if
eM, = m, as indicated by equation (7) and as shown in figure 3(b). When e = 1, the ball
comes to a stop if M, = m, in the same way that a billiard comes to a stop if it strikes an
identical, stationary ball. For impacts closer to the tip, where M, < m, the ball does not
bounce at all. Instead, the ball keeps moving in the same direction, at reduced speed. At least,
that is the case in figure 3. Lighter balls, with m < eM, at the tip of the rod, will bounce
backwards off the tip.

A surprising result is that w is a maximum when e, = 0 for the hinged rod, but not for
the free rod. The hinged rod result is easily explained, since maximum energy is transferred to
the rod if the ball comes to rest and since the kinetic energy of the rod is %IA w?. The kinetic

energy of the free rod is %MVCZm + %Icmwz, which is maximised when e, = 0, but the energy
is partly translational and partly rotational.

4. Discussion

The intentions of this article are primarily to rephrase the findings of Lemos [1] in simpler
terms so that the physics is more transparent, and to extend his findings to include inelastic
collisions and a hinged rod. The discussion is greatly simplified by considering only a
perfectly rigid rod. Nevertheless, a flexible rod behaves in a similar fashion, as shown in
previous studies concerning the impact of a ball and a striking implement [2—4].

There are two main differences between perfectly rigid and flexible (i.e. real) rods. One is
that a flexible rod will vibrate if it is struck anywhere other than a vibration node point.
Consequently, some of the initial impact energy of the ball is lost in the form of rod vibra-
tions. The loss may be comparable to the energy lost in the ball itself, especially for impacts
near the tip of the rod. The effect of vibrational energy loss is that the coefficient of restitution
is reduced, an effect that can be modelled simply by reducing the value of e in the above
equations, especially near the tip of the rod. Vibrational energy losses can be minimised by
using a very stiff rod, which is part of the reason that modern tennis racquets are now made
from stiff graphite rather than wood. Interesting results can be observed by dropping a ball
vertically on a flat beam. If the ball slows down almost to a stop, multiple impacts can arise
due to vibrations of the beam [5—7]. A result is shown in [5] where a ball bounced seven times
on a beam before being ejected by the beam.

The other main difference concerns bending wave propagation along the rod. In many
cases of interest, the bending wave generated by the impact takes several milliseconds or
more to travel to the far end of the rod and back to the impact point. If the ball bounces off the
rod before the wave returns, then no information is transmitted back to the ball concerning the
end of the rod. In that case, the rebound speed of the ball will be independent of whether the
far end of the rod is free to rotate or is hinged or rigidly clamped [2]. The implication in ball
sports is that it makes no difference to the exit speed of a ball whether the handle end of the
striking implement is gripped firmly or loosely.
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5. Conclusions

While the impact of a ball with a rigid rod is a topic suitable for undergraduate physics
students, a straightforward mathematical analysis is relatively cumbersome in general and
tends to hide the underlying physics. By defining an effective mass of the rod, both the
algebra and the physics are simplified considerably since the impact can be treated as one
between two point masses. Since the effective mass of a rod is smallest at a free end, the
rebound speed of the ball and the impulsive force are both reduced for impacts near the free
end. The rebound speed of the ball may even be zero if the effective mass of the rod is
comparable to the mass of the ball. Consequently, the impulsive torque is not necessarily a
maximum for an impact at the free end, so the angular velocity of the rod is not necessarily a
maximum for an impact at the free end. For a free rigid rod, maximum angular velocity occurs
for an impact remote from the tip if the actual mass of the rod is less than twice the mass of
the ball, regardless of the coefficient of restitution. For a hinged rigid rod, maximum angular
velocity occurs for an impact remote from the tip if the mass of the rod is less than three times
the mass of the ball.
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