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Abstract
Some two-component extensions of the modified μ-Camassa–Holm equation are proposed. We
show that these systems admit Lax pairs and bi-Hamiltonian structures. Furthermore, we
consider the blow-up phenomena for one of these extensions (2μmCH), and the periodic
peakons of this system are derived.
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1. Introduction

Over the last two decades, more and more scholars have
focused on the Camassa–Holm equation (CH) [1],

+ + = = -m u m um m u u2 0, .t x x xx

This famous equation describes a unidirectional propagation
of shallow water waves, which was derived by R. Camassa
and D. Holm in 1993 by means of an asymptotic expansion of
Euler’s equations. However, it first appeared from the
investigation of a recursion operator to a bi-Hamiltonian
equation with infinitely many conservation laws in the article
of Fokas and Fuchssteiner in 1986 [2]. One of the remarkable
properties of the CH equation is that it possesses peaked
solutions, i.e. peakons. A peakon is a continuously weak form
traveling wave solution, whose profile remains bounded.
Meanwhile, it has a sharp angle at the central elevation, and
the slope at the critical point changes rapidly. The other
property of the CH equation is wave-breaking phenomena
[3–5], which means the solution remains bounded, and the
slope of the solution becomes unbounded in finite time.

Another famous (1+1) dimension CH-type equation is
the Fokas–Olver–Resenau–Qiao equation (FORQ), or mod-
ified CH equation (mCH) [6–8]

+ - = = -m u u m m u u0, ,t x x xx
2 2( ) )

which was derived by the authors, respectively. It should be
noted that the nonlinear term in the mCH equation is cubic; this
is different to the CH equation. Similarly, the mCH equation
also admits peakons and wave-breaking phenomena [9]. A
natural thought is to generalize such an integrable equation into
multi-component sense. Some two-component extensions of
the mCH equation have been derived. Song, Qu and Qiao
proposed a two-component modified CH system (SQQ) [10]
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through a 2×2 spectral problem, and the x-part is
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Li and Li considered other two-component cases by extending
the spectral problem into a 4×4 matrix [11]. At the same
time, they obtained three two-component generalizations of the
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mCH equation by taking reduction. The bi-Hamiltonian
structures and reciprocal transformations of these systems have
also been considered by the authors.

The μ-version of the mCH equation was constructed by
Qu, Fu and Liu [12]

m g m+ - + = = -m u u u m u m u u2 0, ,t x x x xx
2[( ( ) ) ] ( )

where γ is the coefficient of the lower-order term. This
equation can be regarded as a Euclidean-invariant version of
the μCH equation.

All the equations mentioned above are integrable, which
means they all admit Lax representations and bi-Hamiltonian
structures. To the best of our knowledge, there are less multi-
component cases of the μmCH equation. Thus, the aim of this
paper is to propose some two-component generalizations of
the μmCH equation. The outline of this paper is as follows: in
section 2, we consider an extended spectral problem and three
two-component reductions. It is proved that both reductions
admit bi-Hamiltonian structures in section 3. As an example,
we derive two blow-up criteria for the 2μmCH system in
section 4, and the periodic peakons are derived in section 5.
Finally, some conclusions are given in the last section.

2. Extension of Lax pair

In this section, we derive some two-component general-
izations of the μmCH equation. Recall the Lax pair
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in which m= -B u u u u2 x
2( ) ( ) and l l m= +-L u u, 1
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lB u m( ) . It is easy to check the μmCH equation arises as a
zero-curvature equation - + =P Q P Q, 0t x [ ] , which is the
compatibility condition of a linear system (1). Now we extend
the spectral problem of the μmCH to a 4×4 matrix sense,
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where f1 and f2 are two-dimension column vectors, M, U, μ
(U) and I are 2×2 matrices and I is an identity matrix.
Taking P and Q into the zero-curvature equation, we have
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To obtain two-component generalizations of the μmCH
equation, we must restrict the choice of matrix U. It is suf-

ficient to choose =U a b
c d

⎜ ⎟
⎛
⎝

⎞
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= =a d bc b c, .x x

Under this assumption, all the matrices M, U and μ(U) are
commutable. Here are three possible choices for U, which can
be written as
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and the corresponding expressions of M and μ(U) are
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Under the assumptions of (7)–(9), we finally obtain three
two-component generalizations of the μmCH equation (for
simplicity, we only consider γ=0)

m m
m m

m m
m m

+ + - +
+ + - =

+ + - +
+ + - =

m u u v v u v m
u v v u u v n

n u u v v u v n
u v v u u v m

2 2
2 0,

2 2
2 0, 10

t x x

x x x

t x x

x x x

2 2

2 2

[( ( ) ( ) ( )
( ( ) ( ) ) ]

[( ( ) ( ) ( )
( ( ) ( ) ) ] ( )

m m
m m

m m
m m

+ - - -
- + - =

+ - - -
+ + - =

m u u v v u v m
u v v u u v n

n u u v v u v n
u v v u u v m

2 2
2 0,

2 2
2 0, 11

t x x

x x x

t x x

x x x

2 2

2 2

[( ( ) ( ) ( )
( ( ) ( ) ) ]

[( ( ) ( ) ( )
( ( ) ( ) ) ] ( )

m

m
m m

+ - =

+ -
+ + - =

m u u u m

n u u u n
u v v u u v m

2 0,

2
2 0. 12

t x x

t x

x x x

2

2

[( ( ) ) ]
[( ( ) )

( ( ) ( ) ) ] ( )

3. Bi-Hamiltonian structures of reductions

In this section, we show that systems (10), (11) and (12)
admit bi-Hamiltonian structures. This property is very
important for integrable systems. It is already known that the
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μmCH equation admits a bi-Hamiltonian structure
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in which the Hamiltonian functionals are
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and the associated Hamiltonian operators are

= ¶ ¶ ¶ = ¶ = -¶-J m m K A, , 141 3 ( )

where ∂=∂x. To derive the Hamiltonian structure of (10)
and (11), inspired by Li [11], we denote
= + = -u u v v u v,¯ ¯ and = + = -u u v v u vi , i¯ ¯ , then

(10) and (11) can be rewritten as two decoupled μmCH
equations
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Thus, the Hamiltonian functionals are
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With a direct calculation, we find (10) can be reformulated as
a bi-Hamiltonian system
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by using Hamiltonian functionals
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Similarly, (11) can also be reformulated as a bi-Hamiltonian

system. The Hamiltonian functionals are
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The Hamiltonian operator K is defined in (19), and J is
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It is not difficult to check that (12) admits the following two
conserved quantities
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Thus, we can also rewrite (12) into the bi-Hamiltonian form,
the associated Hamiltonian operator K is the same as (10) and
(11), and J is
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4. Blow-up criteria

In this section, we provide a criterion for the blow up of
solutions to the Cauchy problem of system (10) (2μmCH)
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Firstly, we offer the local well-posedness of (24) in
Sobolev space. The process of the proof is similar to the paper
[8]. Therefore, we only show the result here.

Theorem 1. Let Î u v H, s
0 0

2( ) ( ( ) with >s 5

2
. Then a

time >T 0 exists such that the initial-value problem (24) has
a unique strong solution Î -u v C T H C T H, 0, ; 0, ;s s1 1 2( ) ( ([ ] )⋂ ([ ] ) ,
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and the map u v u v, ,0 0( ) ( ) is continuous from a neighbor-
hood of u v,0 0( ) in Hs 2( ) into -C T H C T H0, ; 0, ;s s1 1 2( ([ ] )⋂ ([ ] ) .

Now we introduce the following transport estimation
lemma, which is crucial to the proof of the blow-up criterion
for (24).

Lemma 1 (10). Consider the one-dimensional linear transport
equation
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The blow-up criterion for (24) is as follows.

Theorem 2. Let Îu v H, s
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. Let (u,v) be the corresponding solution to (24).

Assume that >T 0* is the maximum time of existence. If T* is
finite, then we have
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Proof. In order to apply lemma 1 to prove theorem 1, we
consider the equivalent form of (24) as we have just
mentioned in (15)
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for all < <t T0 *. Recall the 1-D Moser-type estimates [13],
for s�0, the following estimates hold:
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where the constant C is independent of f and g. Owing to the
first Moser-type estimate, we have
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Squaring both sides of (34) and (35), and by the definition of
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the Sobolev norm, we have

ò

+

+ t t t+¥ ¥

m t n t

m n

2

2 e ,

H H

H H
C m n

2 2

0
2

0
2 2 d

s s

s s

t

L L
0

2

( ( ) ( ) )

( ) ( ( ) ( ) )

   

       

which means

ò

+

+ t t t+¥ ¥

m t n t

m n2 e . 36

H H

H H
C m n

0
2

0
2 d

s s

s s

t

L L
0

2

( ) ( )

( ) ( )( ( ) ( ) )

   

       

Thus, if the maximal existence time < ¥T* satisfies

ò t t t+ < ¥¥ ¥m n d ,
T

L L
0

2
*

( ( ) ( ) )   

throw inequality (36), we have

+ < ¥


m t n tlim sup , 37
t T

H Hs s

*
( ( ) ( ) ) ( )   

which contradicts the assumption that the maximal existence
time T* is finite.

Step 2. For s ä [1,2), differentiating (27) with respect to
x, we have

m

m

+ - =- -

+ - =- -

m u u u m u m u m

n v v v n v n v n

2 2 3 ,

2 2 3 . 38

xt x xx xx x x

xt x xx xx x x

2 2 2

2 2 2

¯ ( ( ¯) ¯ ¯ ) ¯ ¯ ¯ ¯ ( ¯ )
¯ ( ( ¯) ¯ ¯ ) ¯ ¯ ¯ ¯ ( ¯ ) ( )

Applying lemma 1 to the first equation of (38) yields

ò m

t

+ -

+ +

- -

¥ -

- -

m m

C u u u m

u m u m

2

d . 39

x H x H
t

x x L x H
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0
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s s

s
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1 1

1

1 1

¯ ¯

( ( ( ¯) ¯ ¯ ) ¯

¯ ( ¯ ) ¯ ¯ ) ( )

   

   

   

With a similar computation to (31), by the Moser-type
estimates and the fact

m= -
+

¥ ¥

¥ ¥ ¥ 
u m m

C m G m C m ,
xx L L

L L L*

¯ ( ¯ ) ¯
( ¯ ¯ ) ¯

   
     

we have

- ¥

- ¥ -




u m C m m

u m C m m

,

. 40

x x H L H

xx H L H

2 2

2 2

s s

s s

1

1 1

¯ ( ¯ ) ¯ ¯
¯ ¯ ¯ ¯ ( )

     
     

Plugging (32) and (40) into (39), we see (33) still holds for
1�s<2. Following the same argument in step 1 from (34)
to (37), we see that theorem 1 still holds for 1�s<2.

Step 3. For Î ¥s 2,[ ), assume Î k2 is a positive
integer. We prove that by induction, if (26) holds when
- <k s k1 , then it still holds for < +k s k 1.

Differentiate the first equation of (27) k times with respect
to x, we have

m

m

m

m

¶ + - ¶

= -å ¶ - ¶ - ¶

¶ + - ¶

= -å ¶ - ¶ - ¶

=
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=
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( ¯) ( ( ¯) ¯ ¯ )( ¯)

( ( ¯) ¯ ¯ ) ¯ ( ¯ ¯ )
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Taking advantage of lemma 1, consider the first equation of
(41), we have

ò t t

m

t t

¶ ¶

+ ¶

+ å ¶ - ¶

+ ¶

=
- - +

- -

- ¥

-

m t m
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C u u u m

u m

2

2 d .

42

x
k

H x
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H

x
k

H x L
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k
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x x
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x H
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1 2 1

2

s k s k
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¯ ( ) ¯

( ¯ ( ) ( ¯ ¯ )( )

( ( ( ¯) ¯ ¯ ) ¯

( ¯ ¯ ))( ) )
( )

   

   



Using Moser-type estimates and the Sobolev embedding
inequality, it is easy to check that

m

¶

å ¶ - ¶=
- - +

- ¥

-

- +





u m C m m

C u u u m

C m m

,

2

, 43

x
k

x H L H

j
k

k
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x
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x x
j

H

H
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2

s k s

s k

s
k 1

2

( ¯ ¯ ) ¯ ¯

( ( ¯) ¯ ¯ ) ¯

¯ ¯ ( )

     

   

where ò is a sufficiently small positive number such that
+ ¥H L

1
2 ↪ holds. Taking (43) into (42) and by Sobolev

embedding - + ¥H Lk 1
2 ↪ with k�2, we have

ò t t t+
- +

m t m C m m d ,

44

H H

t

H
H0

0

2s s
k

s
1
2

¯ ( ) ¯ ¯ ( ) ¯ ( )

( )

       

and applying Gronwall’s inequality, we obtain

ò t t
- +m t m e . 45H H

C m
0

d
s s

t

H
k0

1
2

2

¯ ( ) ¯ ( )
¯ ( )

   
 

Similarly, we have the estimation for n̄

ò t t
- +n t n e . 46H H

C n
0

d
s s

t

H
k0

1
2

2

¯ ( ) ¯ ( )
¯( )

   
 

By the definition of the Sobolev norm, and squaring both
sides of (45) and (46), finally we get

ò

+

+ t t t+- + - + 

m t n t

m n2 e .

47

H H

H H
C m n

0
2

0
2 d

s s

s s

t

H
k

H
k

0
1
2

1
2

2

( ) ( )

( )
( )

( ( ) ( ) )

   

       

If the maximal existence time T* is finite, and

ò t t t+ < ¥¥ ¥m n d ,
T

L L
0

2
*

( ( ) ( ) )   

we find that t t+- + - + m n
H Hk k1

2
1
2

( ) ( )    is uniformly
bounded in T0, *( ) by the induction assumption. Throw
(47), and we get that (37) still holds for s 2, which
contradicts the assumption that the maximal existence time T*

is finite. Thus we complete the proof of theorem 2.

Remark 1. In theorem 2, we have already proved that if m(t)
or n(t) blow up in finite time, we have

ò t t t+ = ¥¥ ¥m n d ,
T

L L
0

2
*

( ( ) ( ) )   
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which means

= ¥ = ¥
 

¥ ¥m t n tlim sup , or lim sup . 48
t T

L
t T

L
* *

( ) ( ) ( )   

On the other hand, if (48) holds, then by the Sobolev
embedding theorem ¥ f C f Hs    , we have

= ¥ = ¥
 

m t or n tlim sup , lim sup .
t T

H
t T

Hs s

* *
( ) ( )   

Thus we have the following corollary.

Corollary 1. Let Îu v H, s
0 0

2( ) ( ) be as in theorem 1 with
>s 5

2
, and u v,( ) be the corresponding solution to (24). Then

u v,( ) blow up in finite time if and only if (48) holds.

The following theorem shows that the wave-breaking
only depends on the infimum of mu mv nu, ,x x x and nvx.

Theorem 3. Let Îu v H, s
0 0

2( ) ( ) be as in theorem 1 with
>s 5

2
. Then the solution (u,v) blow ups in finite time >T 0*

if and only if

= -¥
Î

ab t xlim inf inf , , 49t T
x
*[ ( ( )] ( )

where Îa m n,{ } and Îb u v,x x{ }.

Proof. Arguing by density, it suffices to prove the case s=3.
Multiplying the first equation of (24) by 2m and the second
equation by 2n, integrating with respect to x over , we have

ò ò

ò ò
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m m

m m

m m

=- +

- +
+ + -

=- +

- +
+ + -

 

 

t
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t
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u v v u u v m x

d

d
d 2 2 2

2 d ,
d

d
d 2 2 2

2 d . 50

x x

x x x

x x

x x x

2

2 2

2

2 2

[( ( ) ( )

( )
( ( ) ( ) ) ]

[( ( ) ( )

( )
( ( ) ( ) ) ] ( )

Plugging the two equations of (50) and integration by parts,
yields

ò
ò

+

= - + + - +





t
m n x

m n mu nv mn mv nu x

d

d
d

2 2 2 2 2 d .

51
x x x x

2 2

2 2

( )

( )( ) ( )
( )

Differentiating (24) with respect to x, we have

m m
m m

m m
m m

+ + - +
+ + - =

+ + - +
+ + - =

m u u v v u v m
u v v u u v n

n u u v v u v n
u v v u u v m

2 2
2 0,

2 2
2 0. 52

xt x x

x x xx

xt x x

x x xx

2 2

2 2

[( ( ) ( ) ( )
( ( ) ( ) ) ]
[( ( ) ( ) ( )
( ( ) ( ) ) ] ( )

Multiplying the first equation of (52) by m2 x and the second

equation by n2 x, we have

ò ò

ò ò

m m

m m

m m

m m

=- + - +

+ + -

=- + - +

+ + -

 

 

t
m x m u u v v u v m

u v v u u v n x

t
n x n u u v v u v n

u v v u u v m x

d

d
d 2 2 2

2 d ,
d

d
d 2 2 2

2 d .

53

x x x x

x x xx

x x x x

x x xx

2 2 2

2 2 2

[( ( ) ( ) ( )

( ( ) ( ) ) ]

[( ( ) ( ) ( )

( ( ) ( ) ) ]
( )

Plugging the two equations of (53) and integration by parts,
we get

ò
ò

+

= - + + + +





t
m n x

m n mu nv m n mv nu x

d

d
d

8 16 d .

54

x x

x x x x x x x x

2 2

2 2

( )

( ( )( ) ( )
( )

By virtue of (51) and (54), we obtain

ò

+

= - + + - +

+ + + + +


t
m t n t

m n mu nv mn mv nu

m n mu nv m n mv nu x

d

d

2 2 2 2 2

8 16 d .

55

H H

x x x x

x x x x x x x x

2 2

2 2

2 2

1 1( ( ) ( ) )

( )( ) ( )

( )( ) ( )
( )

   

Thus, if a positive constant C>0 exists such that ab�−C
on ´ T0, *[ ) , then by the above estimation, we have

ò

+

+ + +


t
m t n t

C m m n n x

d

d
32 d . 56

H H

x x

2 2

2 2 2 2

1 1( ( ) ( ) )

( ) ( )

   

Applying Gronwall’s inequality finally yields

+ +m t n t m ne 57
H H

Ct
H H

2 2 16
0

2
0

2
1 1 1 1( ) ( ) ( ) ( )       

for Ît T0, *[ ), which contradicts the fact that < ¥T* is the
maximal existence time. On the other hand, if (49) holds, we
have

= ¥ = ¥
 

¥ ¥m t or n tlim sup , lim sup .
t T

L
t T

L
* *

( ) ( )   

Then, by the Sobolev embedding theorem, we claim that the
solution of (24) will blow up in finite time via corollary 1.

5. Periodic peakons

A peakon is a continuously weak form traveling wave solu-
tion, whose profile remains bounded. A big feature of CH-
type equations is that they possess peaked traveling wave
solutions. As we have just mentioned that A is invertible and
the Green function of operator = =- -A u A m G m,1 1 * is
given by

= - - +G x x x
1

2

1

2

23

24
.

2
⎜ ⎟⎛
⎝

⎞
⎠( ) [ ]

Thus, similarly to the CH equation, it is natural to assume
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both (10)–(12) admit periodic peakons with the form

f x f x= =x t p t G x t q t G, , , , 58u v( ) ( ) ( ) ( ) ( ) ( ) ( )

where x = -x s t p t q t, ,( ) ( ) ( ) and s(t) are functions of t. As
an example, we calculate the peakons for (10). Due to the fact
that G(ξ) only admits a first order partial derivative, we have
to give the definition of weak solutions for (10) first.

Definition 1. Solutions u and v are called weak for (10), if for
any test function f Î ¥ t x C T u, 0, , ,per( ) ([ ) ) and v satisfy the
following integral equations

ò ò
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Denoting z x x= - - 1

2
[ ] , and taking (58) into the first

equation of (59), we have
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where μ(G(x))=1. For convenience, we denote =f f

t

d

d
 , and

with a direct calculation, we have
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Plugging (61)–(63) into (60), we obtain the following
ordinary differential equations (ODEs)
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Similarly, from the second equation of (59), we have
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With a similar technique, one can verify that (11) and
(12) also admit periodic peakons with form (58).

6. Conclusions

In this paper, we derived some two-component general-
izations of the μmCH equation by extending the Lax pair
through a zero-curvature equation, and we established bi-
Hamiltonian structures of these systems. As an example, we
presented two blow-up criteria and periodic peakons for
system (10). The remaining problem is whether the peaked
solutions are orbital stable, and how to prove the stability if
such an assumption holds by taking advantage of the
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conserved quantities. In addition, the symmetry analysis
method is one of the effective methods used to investigate the
properties of partial differential equations [14–17]. Based on
the conservation laws, one can construct the nonlocally
related systems to search the nonlocal symmetries. One of our
authors investigated the conservation laws and nonlocally
related systems of the Hunter–Saxton equation [18], which is
a short-wave limit of the CH equation. Many new local and
nonlocal symmetries were obtained, and the inverse potential
system was also constructed. It has been proved that the
symmetry analysis method is an effective method for studying
the CH-type equation. In the forthcoming days, we will study
the symmetry properties of the μmCH equation presented in
this paper.
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