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Abstract — It is known that interface states are not guaranteed at the interface between two two-
dimensional photonic crystals. To create an interface state, it is usual to decorate the structure
near the interface. In this work, we construct a photonic crystal in an oblique lattice through

tilting from a square lattice.

Conical dispersion, existing in the oblique lattice, induces band

inversion and results in two band gaps, separated by the projected band structure of it, possessing
opposite signs of surface impedance. Therefore, interface states are guaranteed to exist at the
interface between the square lattice and its “tilted” partner.

Copyright © EPLA, 2020

An interface state is characterized by the field localized at
the interface between two materials exponentially decay-
ing in the direction perpendicular to the interface. For the
field enhancement and subwavelength properties, inter-
face states can be used to guide electromagnetic waves for
many interesting applications [1,2]. In homogeneous mate-
rials, there exists an analytical condition for the existence
of interface states [2]. If the effective medium description
is valid, this condition can be easily extended to photonic
crystals (PCs) [3]. However, generally, the existence of in-
terface states in PCs is usually verified by full-wave simu-
lations based on a trial-and-error method [1,4-6]. It is well
known that at a surface formed by a semi-infinite PC and
air, in order to generate surface states, it is needed to cut
the cylinders at the boundary [1]. Replacing air with an-
other PC to form a new interface, there are no simple ways
to predict the existence of interface states. To create in-
terface states, it is usual to decorate the interface through
shifting two PCs laterally along the interface direction or
modifying separation between them [4]. It has been shown
that interface states can be found in two-dimensional (2D)
PCs, which possess Dirac-like cone dispersions in the Bril-
louin zone center [7]. Interface states are also found at the
boundary between a 2D PC and its “inverted” partner [8].
Recently, Hang’s group realized interface states in 2D PCs
in two different ways: one is using a PC and its partner
with translating each unit cell by half a lattice constant [9],
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the other is using two PCs with different radii and rela-
tive permittivities [10]. All of these interface states are
resulted from different geometric phases of the bulk band
structures of the two PCs at the interface. Inspired by the
topological edge states in electronic systems [11,12], topo-
logical surface/interface states in photonic systems have
attracted much attention [13-29]. In this work, we re-
port that interface states can be found in a simple way
in 2D PCs at the boundary formed by a PC in a square
lattice and its “tilted” partner. These interface states are
different from those reported in refs. [7-10], in which dif-
ferent materials or different geometries of scatterers are
applied. Here, only the same material and geometry of
scatterers are needed, which helps the sample fabrication
and experimental measurement. These interface states are
determined by the conical dispersion of the oblique lattice,
which leads to the band inversion for varying the wave vec-
tor across the Dirac point. This induces the m Zak phase
jump. As a consequence, the band gaps separated by the
Dirac cone should have opposite signs of imaginary parts
of the surface impedance.

In a 2D PC with a square lattice, only considering the
monopole and dipole modes, as the Cy, symmetry, the
bulk band structure possesses a quadratic dispersion at
the M point [30]. Through tilting the square lattice to an
oblique lattice for maintaining the side length of the unit
cell, the first Brillouin zone is changed to a hexagon as
shown in fig. 1(b). The tilted angle is 6 and the lattice
constant is a as displayed in fig. 1(a). As a result, the

34001-pl



Huifen Gao and Jianwei Liu

(a) ® 6 6 0 M

M; K3

M:

\fy‘ooooﬁ@- .
® 6 6 o K p

b,

a
..I.. M
N

o 060 ©

Fig. 1: (a) The schematic of an interface formed by two 2D
photonic crystals in a square lattice and an oblique lattice.
a is the lattice constant of both the two lattices. 6 is the tilted
angle of the oblique lattice. (b) The first Brillouin zones of a
square lattice (bottom) and an oblique lattice (top).

quadratic dispersion will evolve to a pair of conical dis-
persions along the (I'K;)- or (KsMs)-direction. To spec-
ify this point, we first calculate the bulk band structure
of a triangular lattice with 6 = 60° in transverse electric
polarization (electric field perpendicular to the plane) as
shown in fig. 2(b). Meanwhile, the bulk band structure
for a square lattice is plotted in fig. 2(a). The relative
permittivity, permeability and radii of the cylinders are
e = 10,0 = 1, R = 0.15a. Conical dispersion is at the
K-point in the triangular lattice, and the quadratic dis-
persion is at the M point in the square lattice. The inter-
face along the z-direction constructed by these two PCs is
schematically demonstrated in fig. 1(a).

Then, we will study the existence of interface states at
this interface. The condition for the existence of inter-
face states is described by Zy(w, k) + Zr(w, k) = 0,
where Zyr)(w, k)|) is the surface impedance of the PC
on the upper (lower) side for certain w and k) [31,32].
In lossless materials, Z(w, kj|) is real or pure imaginary,
Z(w, ky)) is real, i.e., Im(Z(w, k) = 0, for the pass band,
and Z(w, k) is pure imaginary inside a gap. To study
the existence of interface states, the necessary condition is
the existence of a common band gap, then the projected
bands along the interface (I’ X)-direction are calculated in
figs. 2(c) and (d). The purple and blue regions represent
the pass band with Im(Z(w, kj|)) = 0. The white ones are
for band gaps with Im(Z(w, k/))) > 0 or Im(Z(w, k) < 0.
There are two band gaps in the PC with a square lattice,
the lower gap with Im(Z(w, k)j)) < 0, and the upper one
with Im(Z(w, kj|)) > 0. Whereas there are three gaps in
the PC with a triangular lattice. The lower gap is also
with Im(Z(w, k)|)) < 0, while in the upper frequency re-
gion, there are two gaps separated by the projected bands
of a Dirac cone. The key point is that Im(Z(w, k|)) carries
opposite signs in these two gaps. It should be noted that
for a given k)|, Im(Z(w, k)|)) decreases monotonically from
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Fig. 2: The bulk band structures in the transverse electric
polarization for the PCs with a square lattice (a) and an oblique
lattice with 8 = 60° (b). (c¢)—(d) The projected band structures
of these two PCs. (e) The interface wave dispersions at the
interface. The relative permittivity and permeability of the
PCs are e = 10, u = 1. The radius of the cylinder is R = 0.15a.
The green line represents the interface wave dispersions.

0 to —oc in the gap with Im(Z(w, k))) < 0 accompanying
with frequency increasing, whereas Im(Z(w,k))) de-
creases monotonically from +oo to 0 in the gap with
Im(Z(w,ky)) > 0 [7,8]. Therefore, as long as there is a
common gap with opposite signs of Im(Z(w, ky|)), the in-
terface wave condition should be satisfied. Considering the
frequency region near 0.65¢/a, there are two common gaps
between these two PCs. Im(Z(w, k||)) > 01is for the square
lattice, while both Im(Z(w, kj)) > 0 and Im(Z(w, k)|)) < 0
are for the oblique lattice. As a consequence, the inter-
face wave condition is satisfied for the band gap on the
right side with larger k). In addition, the interface wave
condition is also satisfied in the lower common gap near
0.525¢/a. Two interface wave dispersions are shown in
fig. 2(d) denoted by the green lines.

The interface wave dispersions are obtained through the
full-wave simulations. Actually, the existence of interface
waves can be predicted by the properties of the bulk bands.
It is shown that the ratio of the signs of surface impedance
Im(Z(w, k) in two adjacent gaps is related to the Zak
phase ¢;_1 of the band [33] in between in the following
equation [7,8,34]:

Sgn(Im[Z;(w, k)]

_ ei(cpi,l‘i‘ﬂ') .
Sgn[Im[Z; 1 (w, ky))]]

The Zak phase of the ¢-th band is illustrated in fig. 3
for the oblique lattice with different k,. As the Zak
phase is dependent on the choice of the origin, the ori-
gin for the calculation is demonstrated in the inset of
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Fig. 3: The bulk band structures with a fixed k. = 7/3a (a)
and k; = 57/6a (b) for the PC in a triangular lattice. The
Zak phase of the bulk band is either 0 or 7 labeled with red
color. The purple and green regions denote different signs of
Im(Z), purple color for Im(Z) < 0, green one for Im(Z) > 0.
The inset denotes the coordinate for calculating the Zak phase.
The parameters of the PC is the same as those in fig. 2.

fig. 3(b), which is consistent with the boundary of the
interface as shown in fig. 1. As the Dirac point locates
at (ku,ky) = (27/3a,27/+/3a), for k, = 27/3a, the band
gap between the second and third bands as shown in fig. 3
will close. Thus, the linear dispersion of the Dirac point
leads to the band inversion of the second and third bands
for k, < 2m/3a and k, > 2w/3a. This gives rise to the 7
Zak phase jump of the second bands for k, = 7/3a and
k, = 5m/6a as shown in fig. 3. The sign of Im(Z(w, k)|)) in
the lowest gap is always negative as in the long wavelength
limit the effective medium is valid to determine the sign
of Im(Z(w, kj)). Based on the equation for the relation
between Im(Z(w, k)|)) and the Zak phase, we can obtain
Im(Z(w, k) < 0 and Im(Z(w,k))) > 0 for the second
and third gaps with k, = m/3a, respectively (fig. 3(a)),
while all the three gaps are with Im(Z(w,k)) < 0 for
kg = bm/6a as shown in fig. 3(b). Obviously, the third
gaps have opposite signs of Im(Z(w, kj)) for two different
k. on the two sides of the Dirac point. The Zak phases of
the lowest two bands for the PC with a square lattice are
the same as those in fig. 3(a). Therefore, at the interface
formed by the PCs with square and oblique lattices, in
the common gap, the interface states should appear in the
right side gap possessing opposite signs of Im(Z(w, k).
This explanation is consistent with the full-wave simula-
tion in fig. 2.

In the previous discussion, we choose a PC in a trian-
gular lattice, which is a well-known structure possessing
conical dispersion at the high symmetry point [35]. In fact,
for the fixed size of the cylinders, the tilted angle 6 can be
varied from 20° to 90°. Our results discussed above can
be fulfilled to other tilted angles in this large tilted angle
range. For instance, we calculate the bulk band structure
of an oblique lattice with § = 70° as shown in fig. 4(a).
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Fig. 4: (a) Bulk band structure of a PC in an oblique lattice
with § = 70°. (b) Projected band structures and interface wave
dispersion of an interface formed by two PCs in a square lattice
and an oblique lattice. The green line represents the interface
wave dispersion. The other parameters of the two PCs are the
same as in fig. 2.

There is also conical dispersion in the I'Ky-direction. The
inset demonstrates the enlarged region near the Ki-point.
To find the interface states, the projected band structures
for two PCs in the square and oblique lattices are plotted
in fig. 4(b). The green line denotes the dispersion of inter-
face states. Im(Z(w,ky|)) in the gaps have the same dis-
tributions as that shown in fig. 2 for the triangular lattice.
The left gap has Im(Z(w, k|)) > 0, while Im(Z(w, k)|)) < 0
in the right gap. Therefore, in the right gap, the sign of
Im(Z(w, k) in the oblique lattice is opposite to that of
the square lattice. This guarantees the existence of inter-
face states.

In summary, we demonstrate a simple way to create in-
terface states at the interface formed by two PCs with one
PC in a square lattice and another one being its “tilted”
partner. Based on the current fabrication and measure-
ment technologies [8-10], our idea can be experimentally
realized at microwave and even near-infrared frequencies.
This way can be used to create interface waves for prop-
agating electromagnetic waves for communication. In ad-
dition, this method considered here can be extended to
other classical wave systems.
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