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Abstract – This paper analyzes the security of a random number generator (RNG) based on a
4-D chaotic hyperjerk system. An attack system is designed to reveal the security weaknesses of
the proposed chaotic RNG. Knowing the structure of the RNG and observing one of the state
variables of the chaotic system, convergence between attack and target systems is demonstrated by
applying linear continuous coupling in master-slave synchronization scheme. Output bit sequence
of the chaotic RNG is identically reproduced. The feasibility of the attack system is verified
through numerical simulations. In this paper, a specific continuous-time chaos-based RNG is
targeted as a case study. However, the cryptanalysis method presented in this paper is applicable
to any continuous-time or discrete-time chaos-based RNGs. Therefore, this study highlights the
security vulnerabilities of chaos-based RNGs and underlines that deterministic chaos itself cannot
be considered as an entropy source for generation of random numbers.

Copyright c© EPLA, 2020

Introduction. – With the rising number of devices
connecting to the internet and exchanging data with each
other and the server, ensuring information security be-
comes more challenging than ever before. Consequently,
the design of cryptographic systems is gaining importance
to assure the confidentiality, the integrity and the authen-
ticity of information. A cryptographic system is basically
a combination of an encryption algorithm and a random
number generator (RNG) that produces key values for
enciphering/deciphering data, one-time pad [1], crypto-
graphic nonces, padding bytes and blinding values [2].
Cryptographic systems can implement a variety of com-
plex encryption algorithms; however, the strength of a
cryptographic system mostly depends on the secrecy and
the unpredictability of the key values produced by its
RNG [3]. Therefore, to ensure information security, the
RNG in a cryptographic system must satisfy the follow-
ing secrecy criteria: 1) The next bit of a RNG must be
unpredictable, 2) it must be impossible to regenerate the
output bit sequence of a RNG even if the RNG structure
and method is known, and 3) the output bit stream must
qualify all statistical tests of randomness such as NIST
and Diehard [4]. Accordingly, it is extremely crucial to
cryptanalyze a RNG to disclose its security weaknesses
before it is deployed in a real cryptographic system.

In general, a RNG is a combination of three compo-
nents: 1) An entropy source based on an intrinsically
random physical process, such as thermal and shot
noise or jittered oscillator [5], 2) a sampler such as a
comparator or a flip-flop to generate random bits exploit-
ing the entropy source, 3) a statistical post-processing
phase such as Von Neumann or XOR to enhance the
statistical properties of the RNG output bit stream. Four
fundamental methods are frequently use to build RNGs:
1) Amplification of noise [6,7]; 2) using a jittered clock [8],
3) discrete-time chaotic maps [9,10] and 4) continuous-
time chaotic oscillators [11–13]. Among these methods,
using continous-time chaotic oscillators suggest enabling
higher throughput without need for amplification and
post-processing [14–16]. Consequently, there is a growing
interest in the design of RNGs based on continous-time
chaos.

Chaotic systems are defined by a set of deterministic
equations. However, due to the positive Lyapunov expo-
nents of the system, small fluctuations in initial conditions
lead to hugely diverging results, thus obstructing the
long-term predictability of the output [17]. Furthermore,
chaotic signals exhibit irregular behavior and noise-like
frequency spectrum, and hence appear to be ideal for
use in RNGs. However, it should be underlined that
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deterministic chaos cannot deliver true randomness. The
actual source of randomness in a chaos-based RNG is
the non-deterministic drift in initial conditions caused by
noise. The unpredictability of the chaotic signals needs
to be analyzed as in [10,13] before being used in a RNG
system. If the deterministic chaos itself is used as the
sole entropy source of the RNG, the output bit stream
can be accurately predicted through synchronization of
chaotic oscillators, thus information security can be com-
promised as we have shown previously in [18] for a 3-D
continuous-time chaotic system. To address this security
vulnerability of chaos-based RNGs, noise analysis has to
be performed as we previously presented in [19,20] where
the deterministic and non-deterministic components of the
entropy source are highlighted. Contrarily, in [21], a chaos-
based RNG is developed using a 4-D chaotic hyperjerk
equation and the proposed RNG is claimed to be secure to
be deployed in a cryptographic system. However, in the
continuous-time chaos-based RNG described in [21], the
chaotic signal itself is pointed out as the entropy source
and numerical solution of the deterministic chaotic system
is used for generating the encryption/decryption keys and
thus, the impact of non-deterministic noise is discarded.
Similar to [21], many studies focus on developing new
RNGs based on various chaotic systems whereas they ig-
nore the security issues related to the deterministic nature
of chaos. For this reason, there is a compelling need for
cryptanalysis of chaos-based RNGs and to disclose their
security weaknesses.

This paper introduces a significant contribution to the
aforementioned previous studies by presenting a compre-
hensive cryptanalysis study of the RNG based on the
continuous-time 4-D chaotic hyperjerk system described
in [21] in order to draw attention to security issues aris-
ing from using deterministic chaos as an entropy source
for generation of random numbers. Although this paper
targets the specific chaos-based RNG described in [21],
this study presents a synchronization-based cryptanalysis
method in details which can be applied to any continuous-
time or discrete-time chaos-based RNG. Furthermore, this
paper exemplifies that the strength of a cryptographic
system depends on the secrecy of the key values gener-
ated by its associated RNG rather than the type of en-
cryption/decryption method. Therefore, different from
our previous studies [18–20], this paper presents a de-
tailed study combining the theory behind synchronization
of chaos and application of it on the security analysis of a
RNG based on a 4-D chaotic hyperjerk system. This paper
is organized as follows: the second section introduces the
details of the target RNG and the cryptographic system
given in [21]. The third section describes the mathemat-
ical analysis and the design of the attack system based
on the master-slave synchronization between chaotic os-
cillators. The theory behind synchronization of chaotic
systems through continuous linear coupling is revisited in
that section and the concept of conditional Lyapunov ex-
ponents (CLE) corresponding to the eigenvalues of the

Jacobian matrix of the difference system between target
and attack systems is analytically described. The fourth
section presents the numerical simulation results illustrat-
ing the convergence of target and attack RNG systems
by adjusting the strength of coupling between the target
and attack systems such that the largest CLE becomes
negative, followed by the conclusions of this paper.

Target system. – RNGs can be based on either
discrete-time or continous-time chaotic oscillators. How-
ever, the implementation of continuous-time chaotic sys-
tems as an electrical circuit is simpler due to the absence
of sample-and-hold stages, amplifiers and switched-
capacitors which are required in discrete-time chaotic sys-
tems [10,22]. In [21] a continuous-time chaotic system
named as a new 4-D chaotic hyperjerk system is used
as a basis for designing a RNG due to its nonlinear dy-
namic features and wide-band noise-like frequency spec-
trum. The values of the chaotic state variables x, y, z and
w are used to derive the crypto keys to be used in the
XOR-based image encryption/decryption algorithm. The
set of equations defining the 4-D chaotic system is given
as [21,23]

ẋ1 = y1,

ẏ1 = z1,

ż1 = w1,

ẇ1 = −cx1 − by1 − exp(y1) − exp(z1) − aw1.

(1)

The initial conditions and parameters in [21] are given as

x0 = 0, y0 = −0.5, z0 = 0.1, w0 = −1,

a1 = 2, b1 = 4, c1 = 6.
(2)

Using the initial conditions and parameters from (2), the
equation system in (1) is solved using a 4th-order Runge-
Kutta algorithm with a fixed step size h = 0.001. The
3-D phase portraits corresponding to combinations of x1-
y1-z1-w1 state variables are shown in fig. 1.

The Jacobian matrix of a nonlinear system is defined as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ẋ1

∂x1

∂ẋ1

∂y1

∂ẋ1

∂z1

∂ẋ1

∂w1

∂ẏ1

∂x1

∂ẏ1

∂y1

∂ẏ1

∂z1

∂ẏ1

∂w1

∂ż1

∂x1

∂ż1

∂y1

∂ż1

∂z1

∂ż1

∂w1

∂ẇ1

∂x1

∂ẇ1

∂y1

∂ẇ1

∂z1

∂ẇ1

∂w1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

−c1 (−b1 − exp(y1)) − exp(z1) −a1

⎤
⎥⎥⎥⎥⎦

. (3)

For the given parameters, using the QR decomposition-
based numerical method on (3), the Lyapunov exponents
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Fig. 1: 3-D phase portraits of the 4-D chaotic hyperjerk system: (a) x1-y1-z1, (b) y1-z1-w1, (c) x1-z1-w1, (d) w1-x1-y1.

of this system for these given parameters can be found
approximately as (0.31, 0,−0.16,−2.15). The system has
only one positive Lyapunov exponent indicating that the
system is in chaos. The bit generation method described
in [21] is based on the calculation of the float type x1, y1,
z1 and w1 state variables with a fixed step size Δh and
converting them into 32-bit binary arrays. Then random
bit sequences are generated by taking 2 least significant
bits of x1, y1, w1 and 5 least significant bits of z1. Follow-
ing this method 1 MBit length series is generated for each
phase and subjected to the NIST-800-22 statistical tests
of randomness. The step size Δh or the number of least
significant bits is adjusted until bit sequences correspond-
ing to each phase pass NIST test. It is asserted that as
each bit sequence satisfies NIST 800-22 tests, this shows
that the bit sequences have adequate randomness. Then
as a demonstration in [21], a sample image is encrypted
using an XOR-based algorithm. The image is converted
to pixel-based binary form and subjected to XOR opera-
tion with the bit array obtained from the z-phase of the
RNG. The decryption process is also shown by subject-
ing the encrypted image to another XOR operation with
the same bit array. Therefore, a chaos-based RNG and its
use in an encryption algorithm are shown in [21]. Due to

the sensitivity of chaotic systems to initial conditions, it
is claimed that this chaos-based encryption is impossible
to decrypt.

Attack method. – The aperiodic behavior of
continuous-time chaotic signals makes them appear ran-
dom and attractive to use for the generation of ran-
dom numbers. However, the short-term predictability
of chaotic systems raises concern over the RNG secu-
rity [24,25]. There have been a number of cryptanalysis
studies on the security chaos-based systems implementing
various attack methods, such as return-map attacks [26],
prediction attacks [27], synchronization attacks [28], and
parameter identification attacks [29]. In this paper, the
attack method is based on synchronization of chaotic os-
cillators as described in the pioneering work by Pecora [30]
and Carroll [31]. The convergence of target and attack sys-
tems is accomplished by applying a simple linear continous
feedback to the attack system following the master-slave
synchronization method. To provide an algebraic crypt-
analysis of the target RNG, four clone systems are pro-
posed each corresponding to each observed state variable
of the target chaotic system. The synchronization of tar-
get and attack RNGs is achieved by adjusting the feedback
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coupling coefficient such that the largest CLE of the
difference system becomes negative. The continuous-time
chaos-based RNG given in [21] is targeted by the clone
systems while the information available is the structure of
the RNG and the scalar time series of the corresponding
chaotic state variable. In this paper, all parameters a, b
and c of the target RNG are assumed to be known. There
are mathematical methods to extract the parameter val-
ues which is beyond the scope of this paper and they will
be investigated in a future study [29].

Clone system for observable x1. Assuming scalar time
series corresponding to the chaotic state variables x1 is
observable, then the equations defining the clone system
can be given as [32]

ẋ2 = y2 + k(x1 − x2),

ẏ2 = z2,

ż2 = w2,

ẇ2 = −cx2 − by2 − exp(y2) − exp(z2) − aw2,

(4)

where k is the coupling strength between the target (mas-
ter) and clone (slave) systems for continuous linear feed-
back. In this study it is assumed that the parameters of
the clone RNG system and the target one are equal. The
error signals are defined as ex = x1 − x2, ey = y1 − y2,
ez = z1 − z2, ew = w1 − w2 and the purpose is to adjust
k so that |ex(t)|, |ey(t)|, |ez(t)|, |ew(t)| → 0, as t → ∞. To
find the range of k values where the master-slave synchro-
nization is stable, the CLEs of the difference system are
calculated using the 4th-order Runge-Kutta algorithm and
the QR decomposition method. The equations defining
the difference system can be obtained by subtracting (4)
from (1):

ėx = (y1 − y2) − k(x1 − x2),
ėy = z1 − z2,

ėz = w1 − w2,

ėw = −c1(x1 − x2) − b1(y1 − y2)
−(exp(y1) − exp(y2)) − (exp(z1) − exp(z2))
−a1(w1 − w2). (5)

The derivatives of ėx with respect to ex, ey and ez can be
found by

∂ėx

∂ex
= −k,

∂ėx

∂ey
= 1,

∂ėx

∂ez
= 0,

∂ėx

∂ew
= 0, (6)

∂ėy

∂ex
= 0,

∂ėy

∂ey
= 0,

∂ėy

∂ez
= 1,

∂ėy

∂ew
= 0, (7)

∂ėz

∂ex
= 0,

∂ėz

∂ey
= 0,

∂ėz

∂ez
= 0,

∂ėz

∂ew
= 1, (8)

∂ėw

∂ex
= −c1,

∂ėw

∂ey
= −b1 − exp(y1),

∂ėw

∂ez
= − exp(z1),

∂ėw

∂ew
= −a1.

(9)

During the calculation of the derivatives, the following
assumptions are made: exp(y1) − exp(y2) = exp(y1) −
exp(y1 − ey) and assuming ey is small to calculate the
derivation ∂ėw/∂ey, it can be written that exp(y1) −
exp(y1 − ey) = exp(y1)(1 − exp(−ey) = exp(y1)(1 − (1 −
ey)) = exp(y1)ey. The calculation of ∂ėw/∂ez also follows
similarly.

Then the Jacobian of the difference system becomes

J =

⎡
⎢⎢⎢⎢⎣

−k 1 0 0

0 0 1 0

0 0 0 1

−c1 −b1 − exp(y1) − exp(z1) −a1

⎤
⎥⎥⎥⎥⎦

. (10)

As the Jacobian of the difference system is 4 dimensional,
the CLE spectrum consists of 4 components. If the largest
of these exponents is negative, then synchronization is ac-
complished and stable. In fig. 2(a) the variation of CLE
with respect to coupling strength k is shown when x1 is
the observed chaotic state variable. It is observed that
the largest CLE of the difference system does not become
negative for a wide range of k coupling strength. There-
fore, synchronization between target and clone RNG is
not possible when the observable chaotic state variable is
x1 [30,31].

Clone system for observable y1. Similarly, assuming
the available scalar time series is y1, then the clone system
for cryptanalysis of the target RNG is given as

ẋ2 = y2,

ẏ2 = z2 + k(y1 − y2),

ż2 = w2,

ẇ2 = −cx2 − by2 − exp(y2) − exp(z2) − aw2.

(11)

Then similarly, to calculate CLEs, the Jacobian of the
difference system can be written as

J =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 −k 1 0

0 0 0 1

−c1 −b1 − exp(y1) − exp(z1) −a1

⎤
⎥⎥⎥⎥⎦

. (12)

The relationship between the largest CLE and the cou-
pling strength k for the observable y1 is shown in fig. 2(b).
It is observed that when k ≥ 0.8, the CLE immediately
becomes negative, hence the synchronization between the
target and clone RNG is possible and stable.

Clone system for observable z1. When the observable
chaotic state variable is z1, the equations defining the at-
tack system can be defined as

ẋ2 = y2,

ẏ2 = z2,

ż2 = w2 + k(z1 − z2),

ẇ2 = −cx2 − by2 − exp(y2) − exp(z2) − aw2.

(13)
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Fig. 2: Largest Conditional Lyapunov Exponent(CLE) as a function of the coupling strength k when the observed chaotic state
variable is (a) x1, (b) y1, (c) z1, (d) w1.

Then following the same methodology, the Jacobian of the
difference system can be written as

J =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 −k 1

−c1 −b1 − exp(y1) − exp(z1) −a1

⎤
⎥⎥⎥⎥⎦

. (14)

The change of the largest CLE with coupling strength k
for the observable z1 is shown in fig. 2(c). It is observed
that for k ≥ 10.5, the largest CLE is negative, thus the
synchronization of target and clone systems is possible and
stable.

Clone system for observable w1. Following a similar
method, when w1 is observable, the system of equations
for the clone system can be defined as

ẋ2 = y2,

ẏ2 = z2,

ż2 = w2,

ẇ2 = −cx2 − by2 − exp(y2) − exp(z2)

−aw2 + k(w1 − w2).

(15)

The Jacobian matrix of the difference system becomes

J =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

−c1 −b1 − exp(y1) − exp(z1) −a1 − k

⎤
⎥⎥⎥⎥⎦

.

(16)
The relation between the largest CLE and the coupling
strength in this case is shown in fig. 2(d). As can be
observed, similar to observable x1 case, the CLE of the
difference system stays positive for a wide range of cou-
pling strengths. Thus, the synchronization of target and
clone systems is not possible by linear continuous coupling
to w1.

Numerical results. – Using the proposed attack
method, clone systems defined by (4), (11), (13) and (15)
are numerically simulated using the 4th-order Runge-
Kutta algorithm and the coupling strength k parameter
is adjusted according to the CLE vs. k graphs shown
in fig. 2. The numerical simulations are run from t = 0
to t = 1000 with a fixed step size h = 0.001 as given
in [21]. For each observed chaotic state variable, the nu-
merical simulations approximately took 6 seconds using
MATLAB R2018a on a desktop PC with 2.4GHz Intel
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Fig. 3: a) Asynchronous (blue line) and synchronous (red line) motions of clone and target systems when (a) y1 is observable,
(b) z1 is observable. Time evolution of log |ey| while (c) y1 is observable and the coupling strength k = 0.85 (black), 5 (red)
and 10 (blue); (d) z1 is observable and the coupling strength k = 11.5 (black), 15 (red) and 20 (blue).

Xeon Processor and 64GB DDR4 Ram. Therefore, the
method described in this paper is not computationally in-
tensive. Based on the discussion from the previous section
and as shown in fig. 2, if the observable scalar time series
is from either x1 or w1, it is not possible to achieve a
stable synchronization due to positive CLE values. On
the other hand, for the coupling strength k values greater
than associated thresholds, the synchronization of target
and clone system is possible when the available scalar time
series is from either y1 or z1. In fig. 3(a) and (b) the cou-
pling strengths are set as k = 0.85 and k = 11.5 and
the available scalar time series correspond to y1 and z1,
respectively. Despite different initial conditions, it is ob-
served that as the coupling strength k is greater than the
corresponding threshold values 0.8 and 10.5 for y1 and z1

variables, respectively, a synchronized behavior is achieved
and stable. As illustrated in fig. 3(a) and (b), two systems
are initially not synchronized as shown by the blue line,
however, with time the clone RNG converges to the target
RNG shown as the red line.

In fig. 3(c), the error function log |ey| is shown when y1 is
the available scalar time series, linear continuous feedback

is applied according to (11) and the coupling strength val-
ues 0.85, 5 and 10 are applied as shown by black, red
and blue lines, respectively. It is observed that it takes
shorter time to reach synchronization with k = 5 com-
pared to k = 10 as the magnitude of the largest CLE is
higher as seen in fig. 2(b). In fig. 3(d), the time evolu-
tion of log10 |ey| is shown when the available time series
is from z1 and the coupling strength k is 11.5, 15 and 20
corresponding to black, red and blue lines, respectively. It
is observed that synchronization is achieved faster for a
higher k value which corresponds to a higher magnitude
of the negative largest CLE, as shown in fig. 2(c).

In [21], the float value obtained from each variable is
converted into a 32-bit binary number, and the 2 least
significant bits of x1, y1, w1 and 5 least significant bits
of z1 are added to the bit sequence. Furthermore, in [21]
as a demonstration of image encryption, a sample image
is first turned into a pixel-based binary form and then
subjected to a bitwise XOR operation with this bit se-
quence. By repeating the XOR operation with the same
bit sequence, the image is decrypted. The quality of this
encryption process is evaluated and found to be close to
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optimal according to various metrics. However, in this pa-
per, the synchronization of the clone RNG to target RNG
is demonstrated by observing a chaotic state variable and
applying a simple linear continuous feedback. Therefore,
it is possible to reproduce the exact same bitstream used
in the encryption of the image which then can be used in
the decryption of the encrypted image.

This study demonstrates that the strength of an encryp-
tion algorithm depends strongly on the unpredictability of
the crypto key values produced by the RNG. The RNG
output can satisfy statistical tests of randomness such as
NIST 800-22. However, if the RNG output is predictable
as in [21], the RNG cannot satisfy the second and third
criteria of secrecy, thus the RNG proposed in [21] is not
secure to be deployed in a cryptograhic system.

Conclusions. – The security analysis of a random
number generator (RNG) based on a chaotic hyperjerk
system is described. An attack method is proposed
to reveal security vulnerabilities of the continuous-time
chaos-based RNG. Using the master-slave synchroniza-
tion scheme, stable synchronization between target and
clone RNGs is numerically verified. By knowing the target
RNG structure and observing the scalar time series from a
chaotic state variable of the target RNG, the output of the
bit stream of the target and clone RNGs can be reproduced
by adjusting the magnitude of the coupling strength.
Therefore, cryptokeys used in the XOR-based encryption
algorithm are accurately predicted and thus information
security is compromised. Although the target RNG is
built on a 4-D chaotic hyperjerk system, the described
method in this paper can be used for the cryptanalysis of
any continuous-time or discrete-time chaos-based RNGs.
This study demonstrates the security vulnerabilities aris-
ing from using deterministic chaos as the sole entropy
source of a RNG without considering the impact of noise.
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[10] Drutarovský M. and Galajda P., Radioengineering,
16 (2007) 121.

[11] Ozouz S., Elwakil A. and Ergun S., IEE Proc. Circuits
Devices Syst., 153 (2006) 506.

[12] Ergün S., Method and hardware for generating ran-
dom numbers using dual oscillator architecture and
continuous-time chaos (U.S. Patent 8,612,501, 17 Dec.
2013).

[13] Petrzela J. and Polak L., IEEE Access, 7 (2019)
17561.
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