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Abstract – In this paper we propose a new form of generalized uncertainty principle which
involves both a linear and a quadratic term in the momentum. From this we have obtained the
corresponding modified dispersion relation which is compared with the corresponding relation in
rainbow gravity. The new form of the generalized uncertainty principle reduces to the known
forms in appropriate limits. We then calculate the modified velocity of photons and we find
that it is energy-dependent, allowing therefore for a superluminal propagation. We then derive
the (1 + 1)-dimensional Klein-Gordon equation taking into account the effects of the modified
dispersion relation. The positive frequency mode solution of this equation is then used to calculate
the power spectrum arising due to the Unruh effect. The result shows that the power spectrum
depends on the energy of the particle owing its origin to the presence of the generalized uncertainty
principle. Our results capture the effects of both the simplest form as well as the linear form of the
generalized uncertainty principle and also points out an error in the result of the power spectrum
up to first order in the generalized uncertainty principle parameter existing in the literature.

Copyright c© EPLA, 2020

Introduction. – In 1927 Heisenberg proposed the Un-
certainty Principle [1] from his famous thought experi-
ment. At that time physicists could not believe that the
measurement of one physical observable could hamper the
measurement of another observable simultaneously. In
this principle there is a fundamental limit for the measure-
ment accuracy with which certain pairs of physical observ-
ables such as position and momentum or energy and time
can be measured simultaneously. Around the mid sixties,
the concept of fundamental minimum measurable length
was introduced [2]. The existence of this minimum mea-
surable length would mean that Heisenberg uncertainty
principle has to be modified. It is for this reason that the
generalized uncertainty principle (GUP) was introduced in
the literature [3–8]. It is observed that the GUP not only
has a minimum measurable length but also a maximum
measurable momentum [9]. It is well known that the fun-
damental length scale introduced by these models breaks
Lorentz invariance [10,11]. Although there is no direct
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evidence of Lorentz symmetry violation at high energies,
the beauty of these theories lies in the fact that quantum
field theories based on these Lorentz invariance violating
models can be formulated in a consistent way. There has
been a lot of investigations thereafter incorporating the
effects of the GUP in black hole thermodynamics [12–14],
quantum systems such as particle in a box, Landau lev-
els, simple harmonic oscillator [15–17]. Thereafter, stud-
ies to calculate Planck scale corrections due to modified
dispersion relations to the response of the Unruh-DeWitt
detector have also been carried out in [18]. Tunneling of
fermions with half-integer spin from a higher-dimensional
charged anti-de Sitter (AdS) black hole in massive gravity
incorporating the effect of modified dispersion relation has
also been investigated recently in [19]. Further, the cur-
rent accuracy of precision measurement of Lamb shift gives
an upper bound on the quadratic GUP parameter [15],
which although turns out to be weaker than that set by the
electroweak scale, is not inconsistent with it. It is expected
that with improvements in the accuracy of measurements,
the bound will go down by several orders of magnitude.

In this paper we consider a new form of the GUP which
is a combination of both the linear and the simplest forms
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of the GUP exisiting in the literature. Taking this new
form of GUP, we derive the corresponding dispersion re-
lation. From this we obtain the velocity of photons up
to second order in the linear GUP parameter and first
order in the quadratic GUP parameter. We then derive
the Klein-Gordon equation in (1 + 1) dimensions taking
into account the effects of the modified dispersion relation.
This equation is then solved in an iterative approach and
we work with the positive frequency mode solution only.
The solution is then written down for a uniformly accel-
erating observer using the Rindler coordinate transforma-
tions. Using this solution for the uniformly accelerating
observer, we derive the emission spectrum arising from
the Unruh effect. Such an exercise was carried out earlier
in [20] taking into account the linear form of the GUP.
However, our result capture the effects of both the lin-
ear GUP as well as the quadratic GUP parameters in the
power spectrum. It also differs from the result in [20] up
to first order in the linear GUP parameter as there seems
to be an error in the result on dimensional grounds.

The paper is organized as follows. In the next sec-
tion, we consider the new form of the GUP and using
this we derive the modified dispersion relation and obtain
the photon velocity. In the third section, we derive the
Klein-Gordon equation incorporating the modified disper-
sion relation and solve this equation. In the fourth section,
we obtain the power spectrum of the Unruh effect using
the solution in the third section. We conclude in the fifth
section.

Modified dispersion relation and photon veloc-
ity. – In this section our goal is to derive the GUP cor-
rected dispersion relation. Let pA be the modified four
momentum and kA be the usual four momentum. Now
we introduce a general form of the GUP given by the
expression

[xi, pj ] = ih̄

[
δij − α

(
δijp +

pipj

p

)
+β

(
δijp

2 + 2pipj

) − α2(δijp
2 + pipj)

]
, (1)

where p2 ≡ |�p|2 = ηijp
ipj ; i, j = 1, 2, 3. The above com-

mutator ensures by the Jacobi identity that

[xi, xj ] = 0, [pi, pj] = 0. (2)

The commutation relation between the position operator
and the usual three-momentum operator is the standard
Heisenberg algebra given by

[xi, kj ] = ih̄δij . (3)

The relations between the modified and the usual mo-
menta which give the commutation relation (1) read

p0 = k0, (4)
pi = ki(1 − αk + βk2), (5)

where α = α0/(MPlc) and β = β0/(MPlc)2 are small pa-

rameters, MPl is the Planck mass, k2 ≡ |�k|2 = ηijk
ikj .

It is reassuring to note that in the limit α → 0, eq. (1)
reduces to the simplest form of the GUP proposed in the
literature [7]

[xi, pj ] = ih̄
[
δij + β

(
δijp

2 + 2pipj

)]
. (6)

Further, setting β = 2α2 in eq. (1) yields the
expression [15]

[xi, pj ] = ih̄

[
δij − α

(
δijp +

pipj

p

)
+ α2 (

δijp
2 + 3pipj

)]
.

(7)
Setting i = j, eq. (1) leads to the following modified un-
certainty relation:

ΔxiΔpi ≥ h̄

2

(
1 − α

〈
p +

pipi

p

〉
−(α2 − β)((Δp)2+〈p〉2)

−(α2 − 2β)((Δpi)2 + 〈pi〉2)
)

. (8)

We now consider the background spacetime metric
ηAB, (A, B = 0, 1, 2, 3) in (3+1) dimensions to be the
Minkowski spacetime with signature (−, +, +, +), that is

ds2 = ηABdxAdxB = −c2dt2 + ηijdxidxj (9)

with η00 = −1, ηij = δij . Hence the square of the four
momentum in this background becomes

pApA = ηABpApB

= −(p0)2 + ηijp
ipj

= −(k0)2 + ηijk
ikj(1 − αk + βk2)2

= −(k0)2 + k2(1 − αk + βk2)2, (10)

where eqs. (4), (5) have been used in the third line of the
equality.

Keeping terms up to O(α2, β) in the above expression,
we obtain

pApA = −(k0)2 + k2[1 − 2αk + α2k2 + 2βk2]
= kAkA + k2[−2αk + α2k2 + 2βk2]. (11)

Using the usual dispersion relation

kAkA = −m2c2, (12)

eq. (11) takes the form

pApA = −m2c2 + k2[−2αk + (α2 + 2β)k2]. (13)

Setting β = 2α2, the above relation reduces to [20]

pApA = −m2c2 + k2[−2αk + 5α2k2]. (14)

To express the usual momentum k in terms of the modified
momentum p up to O(α2, β), we choose an ansatz of the
form

k = a0 + αa1 + βa2 + α2a3. (15)
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Now taking the magnitude of both sides of eq. (5), we get

p = k(1 − αk + βk2), p = |�p|. (16)

Substituting eq. (15) in eq. (16), we get

p = a0 +(a1 −a2
0)α+(a3 −2a0a1)α2 +(a3

0 +a2)β. (17)

Comparing coefficients of α0, α, α2, β on both sides of the
above equation, we have

a0 = p, (18)
a1 = a2

0 = p2, (19)
a3 = 2a0a1 = 2p3, (20)
a2 = −a3

0 = −p3. (21)

This gives the following relation between the usual
three-momentum ki in terms of the modified three-
momentum pi:

ki = pi[1 + αp + (2α2 − β)p2]. (22)

Substituting the above expression for the usual three-
momentum ki in eq. (13) and retaining terms up to
O(α2, β), the modified dispersion relation corresponding
to the form of the GUP considered here takes the form

pApA = −m2c2 + p2[− 2αp − (5α2 − 2β)p2]. (23)

Writing the left-hand side of the above equation as

pApA = −M2c2 (24)

yields

M =

√
m2 +

p2[ 2αp + (5α2 − 2β)p2]
c2 . (25)

The above result indicates that M is an effective mass of
the particle generating solely due to the GUP.

From eq. (23), the time component of the four-
momentum squared, up to O(α2, β) can be written as

(p0)2 = m2c2 + p2[1 + 2αp + (5α2 − 2β)p2]. (26)

Hence the energy of the particle up to O(α2, β) is given
by

E2 = m2c4 + p2c2[1 + 2αp + (5α2 − 2β)p2]. (27)

The above relation is the most general modified dispersion
relation. It is interesting to compare this result with the
rainbow gravity generalization of the modified dispersion
relations in doubly special relativity to curved spacetime.
These modified dispersion relations are given by [21,22]

E2f2(E/Ep) − p2c2g2(E/Ep) = m2c4, (28)

where Ep is the Planck energy and the functions f(E/Ep)
and g(E/Ep) are called rainbow functions. Specific forms
of the rainbow functions read [23]

f(E/Ep) = 1, g(E/Ep) =

√
1 − η

(
E

Ep

)n

, (29)

where η is the rainbow parameter. In [24], it was argued
from the universality of logarithmic corrections to black
hole entropy that n gets restricted to n = 1, 2. Setting
n = 2, eq. (28) gives

E2 =
m2c4 + p2c2

1 + η p2c2

E2
p

. (30)

Keeping terms up to linear order in ηp2c2/E2
p in the above

relation yields

E2 = m2c4 + p2c2
[
1 − η

m2c4

E2
p

− η
p2c2

E2
p

]
. (31)

The above relation has a very similar structure to the one
derived in eq. (27).

Setting β = 2α2 in eq. (27), we get

E2 = m2c4 + p2c2[1 + 2αp + α2p2]. (32)

It is reassuring to note that in the absence of quantum
gravity corrections, that is, α = 0 and β = 0, we have
pi = ki, and hence one gets back the standard dispersion

E2 = m2c4 + k2c2. (33)

We shall now proceed to investigate how the velocity of
photon gets affected by the modified dispersion relation
(eq. (27)). In the usual case, the velocity of photon c =
E/k. However, since the momentum is modified here due
to the GUP, it is expected that the velocity of photon
will also get modified. In Minkowskian background, the
velocity of photon can be calculated as

u =
∂E

∂p
. (34)

Setting m = 0 in eq. (27), we get

E2 = p2c2[1 + 2αp + (5α2 − 2β)p2]. (35)

Substituting eq. (35) in eq. (34) and keeping terms up to
O(α2, β), we get

u =
∂E

∂p
= c[1 + 2αp + 3(2α2 − β)p2]. (36)

Now we proceed to invert eq. (35) to express p in terms of
energy E. This is required to rewrite eq. (36) in terms of
energy E. To do this we take p to be of the form

p = a + αb + βe + α2d + O(α3, β2, α2β). (37)

Substituting eq. (37) in eq. (35) and comparing the coeffi-
cients of α0, α, β, α2 on both sides of the equation, we get

a2c2 = E2, (38)
abc2 + c2a3 = 0, (39)
ac2e − a4c2 = 0, (40)

b2c2 + 2adc2 + 6c2a2b + 5c2a4 = 0. (41)
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Solving the above equations, we obtain

a =
E

c
, (42)

b = −a2 = −E2

c2 , (43)

d = 0, (44)

e = a3 =
E3

c3 . (45)

Substituing the above values in eq. (37), we have

p =
E

c

[
1 − α

E

c
+ β

E2

c2

]
+ O(α3, β2, α2β). (46)

Substituting eq. (46) into eq. (36) and keeping terms up to
O(α2, β), the modified photon velocity is obtained to be

u = c

[
1 +

2αE

c
+

(4α2 − 3β)E2

c2

]
. (47)

The above result for the velocity of photon captures the
effect of the GUP for both the linear and the quadratic
terms in momentum in the GUP (8).

Setting β = 2α2 in the above relation, we get

u = c

[
1 +

2αE

c
− 2α2E2

c2

]
. (48)

From the above relation, we observe that the velocity of
photon is energy-dependent. This energy dependence is
due to the modified dispersion relation arising from the
GUP. The other important point to note is that the photon
velocity is larger than the speed of light c which indicates
that quantum gravity effects allow a superluminal photon
propagation.

Klein-Gordon equation and modified dispersion
relation. – In this section we are going to write down
the modified Klein-Gordon equation in (1+1)-dimensional
Minkowski spacetime

ds2 = −c2dT 2 + dX2. (49)

To obtain the modified Klein-Gordon equation, we first
recast eq. (11) in the form

pApA = −(k0)
2
+ k2 + k2[−2αk + α2k2 + 2βk2]. (50)

Elevating k0 and k to operators and using their standard
representations

k0 =
ih̄

c
∂T , k1 = −ih̄∂X (51)

and keeping terms up to O(α2, β), we get the modified
Klein-Gordon equation in (1 + 1) dimensions for massless
particles to be

pApA Φ(T, X) = h̄2
[

1
c2 ∂2

T − ∂2
X − 2iαh̄∂3

X

+(α2 + 2β)h̄2∂4
X

]
Φ(T, X) = 0. (52)

The third and fourth terms in the right-hand side of the
above equation are the ones that have emerged due to
the GUP. We now take a solution of the above equation
in the form

Φ(T, X) = exp(−iωT )Ψ(X), (53)

where h̄ω is the energy of the particle.
Substituting this in the above equation, we get[

∂2
X + 2iαh̄∂3

X − (α2 + 2β)h̄2∂4
X +

ω2

c2

]
Ψ(X) = 0. (54)

The above equation reduces to that derived in [20] up to
O(α, β0).

Setting
Ψ(X) = exp(nX) (55)

we obtain

n2 + 2ih̄αn3 − (α2 + 2β)h̄2n4 +
ω2

c2 = 0 .

To solve this equation, we choose an ansatz

n = n0 + αn1 + βn2 + α2n3, (56)

where n0, n1, n2, n3 are to be determined. Substituting
this ansatz in the above equation and comparing the coe-
eficients of α0, α, β and α2 on both sides of the equation,
we get

ω2

c2 + n2
0 = 0,

2n0n1 + 2ih̄n3
0 = 0,

n2
1 + 2n0n3 + 6ih̄n2

0n1 − h̄2n4
0 = 0,

−2h̄2n4
0 + 2n0n2 = 0.

Solving these equations, we get

n0 =
iω

c
, (57)

n1 = ih̄
ω2

c2 , (58)

n2 = −ih̄2 ω3

c3 , (59)

n3 = 2ih̄2 ω3

c3 . (60)

Note that we have considered only the outgoing mode solu-
tions since they give the radiation spectrum. The positive
frequency outgoing solution of the modified Klein-Gordon
equation therefore reads

Φ(T, X) = exp
[
−iω

(
T − X

c

)
+ iα

h̄ω2

c2 X

+i(2α2 − β)
h̄2ω3

c3 X

]
. (61)

The above solution reduces to that derived in [20] up to
O(α, β0). Interestingly, the above solution also reduces to
that derived in [20] for β = 2α2. In the next section, we
shall use this solution to investigate the power spectrum
of a uniformly accelerated observer.
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GUP corrected power spectrum in Unruh effect.
– In this section we essentially follow the analysis in [25] to
compute the power spectrum of a uniformly accelerating
observer. We first consider a uniformly accelerated frame
known as Rindler frame. The coordinate transformation
equations connecting Minkowski and Rindler frames with
respect to an observer in the Rindler frame moving along
the x-axis read

X(τ) =
c

κ
cosh(κτ), T (τ) =

1
κ

sinh(κτ), (62)

where τ is the proper time of the uniformly accelerating
observer. Hence the wave function (eq. (61)) as seen by
the Rindler observer will have the form

φ[T (τ), X(τ)] =

exp
[
iω

κ
e−κτ

(
1 +

αh̄ω

2c
+

(2α2 − β)h̄2ω2

2c2

)]

× exp
[
ih̄ω2

2cκ
eκτ

(
α + (2α2 − β)

h̄ω

c

)]
. (63)

The above relation can be obtained by substituting
eq. (62) in eq. (61).

The power spectrum is now given by [25]

P (ν) = |f(ν)|2, (64)

where f(ν) is the Fourier transform of φ(τ),

f(ν) =
∫ +∞

−∞
dτ Φ(τ)eiντ . (65)

Substituting eq. (63) in the above relation yields

f(ν) =
∫ +∞

−∞
dτexp

[
iω

κ
e−κτ

(
1+

αh̄ω

2c
+

(2α2 − β)h̄2ω2

2c2

)]

×exp
[
ih̄ω2

2cκ
eκτ

(
α + (2α2 − β)

h̄ω

c

)]
eiντ . (66)

Now expanding the second term of the above equation and
keeping terms up to O(α2, β), we obtain

f(ν) =
∫ ∞

−∞

[
exp

[
iω

κ
e−κτ

(
1 +

αh̄ω

2c

+
(2α2 − β)h̄2ω2

2c2

)]
+ iντ

]
dτ

+
∫ ∞

−∞

[
ih̄ω2

2cκ

(
α + (2α2 − β)

h̄ω

c

)
exp [iντ + κτ

+
iω

κ
e−κτ

(
1 +

αh̄ω

2c
+

(2α2 − β)h̄2ω2

2c2

)]]
dτ

−
∫ ∞

−∞

α2ω4h̄2

8c2κ2 exp [iντ + 2κτ

+
iω

κ
e−κτ

(
1 +

αh̄ω

2c
+

(2α2 − β)h̄2ω2

2c2

)]
dτ . (67)

To compute the above integrals we need to rewrite the
integral in a suitable form. For doing that we introduce
a new variable v = eκτ . Using this, eq. (67) takes the
form

f(ν) =
∫ ∞

0

1
κ

v−(1+ iν
κ )

× exp
[
iωv

κ

(
1 +

αh̄ω

2c
+

(2α2 − β)h̄2ω2

2c2

)]
dv

+
∫ ∞

0

ih̄ω2

2cκ2

(
α+(2α2 − β)

h̄ω

c

)
v−(1+ iν

κ )−1exp
[
iωAv

κ

]
dv

−α2ω4h̄2

8c2κ3

∫ ∞

0
v−(2+ iν

κ )−1exp
[
iωAv

κ

]
dv, (68)

where

A =

(
1 +

αh̄ω

2c
+

(
2α2 − β

)
h̄2ω2

2c2

)
. (69)

To perform the above integrals, we use the standard
integral ∫ ∞

0
xs−1exp(−bx)dx = exp(−slnb)Γ(s). (70)

Using this and keeping the terms up to O(α2, β), we
obtain

f(ν) =
1
κ

[
wA

κ

] iν
κ

exp
(πν

2κ

)
Γ

(
− iν

κ

)

×
[
1 − αh̄ω3

2cκ2(1 + iν
κ )

+
βh̄2ω4

2c2κ2(1 + iν
κ )

− 5α2h̄2ω4

4c2κ2(1 + iν
κ )

+
h̄2α2ω6

8c2κ4(1 + iν
κ )(2 + iν

κ )

]
.(71)

Hence the power spectrum with a negative frequency is
given by

|f(−ν)|2 =
2π

νκ

1
(e

2πν
κ − 1)

[
1 − αh̄ω3

cκ2( ν2

κ2 + 1)

+
βh̄2ω4

c2κ2( ν2

κ2 + 1)
− 5 α2h̄2ω4

2c2κ2( ν2

κ2 + 1)
+

3α2h̄2ω6

2c2κ4( ν2

κ2 + 1)( ν2

κ2 + 4)

]
.

(72)

From this we can obtain the power spectrum per logarith-
mic band to be

ν|f(−ν)|2 =
2π

κ

1
(e

2πν
κ − 1)

[
1 − αh̄ω3

cκ2( ν2

κ2 + 1)

+
βh̄2ω4

c2κ2( ν2

κ2 +1)
− 5 α2h̄2ω4

2c2κ2( ν2

κ2 + 1)
+

3α2h̄2ω6

2c2κ4( ν2

κ2 + 1)( ν2

κ2 + 4)

]
.

(73)
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A few observations are in place now. We would first like
to point out that the power spectrum becomes dependent
on the frequency ω and hence the energy of the particle
due to the presence of the GUP. This result is in con-
trast to the result in the absence of the GUP where the
power spectrum is independent of the energy of the par-
ticle. Hence, one can infer that the energy of the parti-
cle provides a back reaction effect on the power spectrum
due to the generalized uncertainty principle. This phe-
nomenon is similar to the back reaction effects observed
in rainbow gravity [26]. We would then like to point out
that up to O(α) our result does not agree with that ob-
tained in [20], and there appears to be an error in the
result in [20] in the power of κ.

Further, setting β = 2α2 in the above relation gives

ν|f(−ν)|2 =
2π

κ

1
(e

2πν
κ − 1)

[
1 − αh̄ω3

cκ2( ν2

κ2 + 1)

− α2h̄2ω4

2c2κ2( ν2

κ2 + 1)
+

3α2h̄2ω6

2c2κ4( ν2

κ2 + 1)( ν2

κ2 + 4)

]
. (74)

Up to O(α), the above result reduces to

ν|f(−ν)|2 =
2π

κ

1
(e

2πν
κ − 1)

[
1 − αh̄ω3

cκ2( ν2

κ2 + 1)

]
. (75)

From the non-negativity of the power spectrum, the above
result imposes a constraint on the linear GUP parameter
α, which reads

αh̄ω3

cκ2( ν2

κ2 + 1)
< 1. (76)

Setting α = 0 in eq. (73), we obtain the power spectrum
per logarithmic band for the simplest form (quadratic) of
the GUP to be

ν|f(−ν)|2 =
2π

κ

1
(e

2πν
κ − 1)

[
1 +

βh̄2ω4

c2κ2( ν2

κ2 + 1)

]
. (77)

It is interesting to note from the above result that the
quadratic form of the GUP gives no constraint in contrast
to the linear form of the GUP which gives a constraint
given by eq. (76). Reassuringly we recover the standard
result in the limit α, β → 0 [25]

ν|f(−ν)|2 =
2π

κ

1
(e

2πν
κ − 1)

. (78)

This indeed shows that the power spectrum is independent
of the energy of the particle.

Conclusions. – In this paper we have proposed a new
form of generalized uncertainty principle which contains
both the linear as well as the quadratic terms in the mo-
mentum, from which we derive the corresponding modified
dispersion relation. We compare this with the dispersion
relation in rainbow gravity and observe that both have a

very similar structure. The new form of the generalized
uncertainty principle reduces to the known forms existing
in the literature in appropriate limits. The modified veloc-
ity of photons is then obtained from the modified disper-
sion relation and shows that it is energy dependent, and
hence allows for a superluminal propagation. We then de-
rive the (1+1)-dimensional Klein-Gordon equation taking
into account the effects of the modified dispersion relation.
Solving this equation iteratively, we obtain the power spec-
trum arising due to the Unruh effect. The result shows
that the power spectrum depends on the energy of the
particle owing its origin to the presence of the generalized
uncertainty principle. This implies that the energy of the
particle provides a back reaction effect due to the gener-
alized uncertainty principle. This is similar to the back
reaction effects observed in rainbow gravity [26]. Keeping
terms up to leading order in the linear generalized uncer-
tainty principle parameter in the power spectrum result,
we observe that a constraint gets imposed on this param-
eter. However, the quadratic form of the generalized un-
certainty principle gives no constraint in contrast to the
linear form of the generalized uncertainty principle. Our
results capture the effects of both the simplest form and
the linear form of the generalized uncertainty principle.
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