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Abstract
A 0-D model for the time evolution of the electron temperature T and current density j is derived
(following a systematic procedure) from the cylindrical 1-D electron heat transport and current
density diffusion equations. The stationary regimes (stable fixed points) of the deduced
dynamical system are analysed and it is shown that the model reproduces well the cases of total
diffusion (no sources), of a pure Ohmic (OH) discharge and of a constant external heating
scenario. Moreover, it is seen that, as the fraction of externally driven non-inductive current
applied off-axis is increased, the system moves from an OH regime into an internal transport
barrier (ITB) regime, where j is reversed and the negative magnetic shear reduces the heat
diffusivity, thus increasing T at the core. When the external power deposition is made
proportional to both T and j, limit-cycle oscillations, which resemble those of the O-regime at
Tore Supra, are found. The 1-D transport equations are also solved numerically and an ITB
oscillatory regime with features similar to the experiments is found, namely, a period of
oscillation that is of the order of the resistive time scale, along with a decrease of the oscillationʼs
amplitude with increasing frequency.

Keywords: internal transport barriers, limit-cycle oscillations, non-inductive current, advanced
tokamak scenarios

(Some figures may appear in colour only in the online journal)

1. Introduction and motivation

The need to provide continuous electrical power to the grid
from a fusion reactor is the basis of research on alternatives to
the pulsed Ohmic (OH), inductive mode of tokamak operation
[1–4]. This means that a steady state (SS) or a hybrid sce-
nario, when plasma current is driven completely or partially
by non-inductive (NI) methods, is one of the main goals in
view of future reliable fusion reactors. Since, from an ener-
getic point of view, it is economically prohibitive to rely
solely on external NI current drive (CD) mechanisms, one
must look for scenarios with a high fraction of bootstrap (BS)
current [3, 5]. To achieve these scenarios, a highly tailored
hollow current density profile is required [1, 4, 6], which can

be created by means of some external NI CD applied off-axis.
This induces a reversed profile for the safety factor q, i.e. an
inner zone with negative magnetic shear, or a reversed shear
(RS) region, that opposes the growth of drift wave instabil-
ities, eventually stabilizing them [2]. Moreover, sheared
E×B flows can reduce the amplitude of turbulent fluctua-
tions. These two phenomena together result in a local
decrease of the particle and heat turbulent diffusion coeffi-
cients, which can trigger the formation of an internal transport
barrier (ITB), a region within the plasma core where the
density and temperature gradients become large [2].

Whereas the radial heat flux q and density n are such that
q/n∼−χ∇T stays essentially the same in this region of
improved confinement, the temperature gradient ∇T in the
plasma centre increases substantially (with a concomitant
decrease of the diffusivity χ) [2], leading in this way to a
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higher value of the energy confinement time. This is the main
reason why ITB’s are a key factor in future operation of
advanced tokamak (AT) scenarios. Notwithstanding this
advantage, an oscillatory regime featuring long-lasting, quasi-
sinusoidal electron temperature oscillations in the core has
been measured in Tore Supra (and dubbed the O-regime) [7].
These oscillations are a result of a nonlinear coupling between
electron temperature and current density and they are under-
stood as the manifestation of an incomplete ITB transition, i.e.
a regime that oscillates back and forth around a bifurcation to
an enhanced core confinement state [8].

Similar oscillations have also appeared in fully NI
experiments at TCV [9] and DIII-D [10] tokamaks, although
in the latter case the oscillations are more of a relaxation type
rather than sinusoidal. In Tore Supra, the onset of the oscil-
lations is linked to a quasi-full lower-hybrid (LH) CD, which
introduces a strong dependency of the current diffusion on the
T and q profiles [11], but this coupling might also come from
electron cyclotron (EC) heating and ECCD [9, 10], or even be
found in high BS scenarios, since the BS current is also
contingent on the T and q profiles. In all cases the oscillations
have a very low frequency (1–10Hz) and are azimuthally and
poloidally symmetric (m=n=0), meaning that they are not
of an MHD nature, although in Tore Supra [12] and TCV
[9, 13] they have been seen to coexist with MHD modes, the
latter eventually providing a good tool to diagnose these
temperature oscillating regimes [12]. Nonetheless, an inter-
play between MHD modes and the q profile may indeed exist,
so much so that no plasma discharge has been obtained in
TCV displaying oscillations without the presence of MHD
activity [13]. Differently from Tore Supra, in TCV the
external NI current is driven by EC waves and the triggering
of the oscillations has been concluded to be due to the
destabilization of a large island caused by unfavourable q and
pressure profiles [13].

Understanding the phenomenology underlying these
oscillations, as well as the equations behind it, is of great
importance, since this strong coupling between current and
temperature may be a common feature of SS tokamak plas-
mas, and so we must know how to deal with it, especially
when AT scenarios are one possibility for the operation of
future tokamaks. So far, these oscillations have been analysed
in the framework of the TASK/TR [14], ASTRA [15],
CRONOS [8, 11] and JETTO [5, 16] transport codes, a link
between Tore Supra’s O-regime and a modified predator-prey
dynamical system having also been presented [8]. The main
motivation for this work is to tackle these oscillations also
from a dynamical system point of view, but with a more
consistent 0-D model derived systematically from the 1-D
transport equations for heat and current density. This clearly
differs from the previous predator-prey analysis [8], since the
very simple noisy Lokta–Volterra equations used therein were
introduced in an ad hoc fashion and not via an accurate
reduction of the 1-D equations describing current diffusion
and heat transport. Our approach is thus to look for limit-
cycles (LC’s), within our model, when these arise from an
Andronov–Hopf (AH) bifurcation, a very common bifurca-
tion in the study of dynamical systems, and one which is at

the origin of an LC [17]. LC oscillations have already been
invoked in the context of the L/H transition, namely to
simulate the intermediary or dithering phases [18–21]. In one
of these works, the same type of approach to be followed here
was already used, i.e. to reduce a set of 1-D transport
equations to a 0-D model by assuming certain spatial profiles
and by subsequently evaluating the equations at a given
position [18]. We also solve the more accurate 1-D equations
and then compare the results with those of the 0-D model.

So, this paper is organized as follows: in section 2, the
0-D transport model (in the form of a dynamical system) is
deduced from the 1-D equations and the heat diffusivities are
adapted to the model; in section 3, the 0-D model is exploited,
its SS cases are characterized and the conditions to see LC
ITB oscillations are identified; in section 4 we discuss the
numerical implementation of the 1-D equations and its results,
and the latter are compared with those of the 0-D model; and,
in section 5, we present a summary and the conclusions of
our work.

2. Reduction of a 1-D to a 0-D model: from the
transport equations to a dynamical system

2.1. Deriving the 0-D model

The transport equations for electron temperature T and current
density j in cylindrical coordinates, assuming poloidal and
axial symmetry, are given by [8, 14, 15]
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where n is the density, assumed to be constant, χ is the
electron heat diffusivity and ˜h h= T3 2 is Spitzer’s resis-
tivity with h̃ = ´ W-6.1 10 m8 if [T]=keV [6]. Note that,
instead of using (2), it would also be possible to work with the
diffusion equation for the poloidal magnetic field Bθ [14]

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

( ) ( )h
m

¶ = ¶
¶

-q
qB

rB

r
j

1
, 3t r

r

0
NI

j and B being related by means of Ampère’s law

( ) ( )
m

=
¶ qj

rB

r

1
. 4r

0

The heating source term Sh in (1) comprises the sum of the
OH heating plus external heating

( ) ( )h= - +S j j j S , 5h NI ext

the equipartition term being neglected4. The NI current jNI in
(2) is given as the sum of the BS current jBS with some
externally driven NI current jext. The expanded versions of (1)

4 Basically, this approximation amounts to consider either that the ion and
electron temperatures are roughly identical, and both equal to T, or that the
latter is the sum of those two temperatures in a one-fluid model.
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and (2) are thence

⎡
⎣⎢

⎤
⎦⎥( )( )

( ) ( )

c c c

h

¶ =
¶

+ ¶ ¶ + ¶

+ - +

n T n
T

r
T T

j j j S

3

2
6

t
r

r r r
2

NI ext

and

The strategy now is to make a second-order expansion of
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are going to fix; the temperature and current density values at
this position, Tb and jb, respectively, are also to be fixed.
Furthermore, we require the boundary conditions on the axis
as follows: ( ) ( )¢ = = ¢ = =j r T r0 0 0. Thus, choosing pro-
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the time dependency entering via the on-axis quantities
( )ºT T t0 0 and ( )ºj j t0 0 . The NI current term is treated also

with a second order expansion, being given by
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. So, after inserting

these profiles in (6) and (7), and evaluating both equations at
r=0, the two coupled partial differential equations (PDE’s)
become a nonlinear autonomous dynamical system of two
ordinary differential equations (ODE’s), namely,
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The time-varying value of the BS current at the barrier’s
foot jBSb

is evaluated from the known BS expression [22]
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where R0 is the major radius of the tokamak and all quantities
are in SI units except T and n20, which are to be given in keV
and 1020 m−3, respectively. Using the expanded profiles (8)

and (9) we get, after some simple algebra,
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Note that this is in accordance with what one would expect
from a BS current: increases with increasing T0 for a fixed
value of Tb (i.e. the gradient at the barrier’s foot is higher) and
becomes zero if the gradient is zero (i.e. if T0=Tb). We fix
the external NI current to a constant value according to

ºj j Kext b NIb
, and we further define the adimensional

quantities ºx T T0 b and ºy j j0 b, which are to be of great
use in what follows.

2.2. Choosing heat diffusivities for the 0-D model

The only quantity in (10) and (11) we have not yet provided
is the electron heat diffusivity χ. Currently, a first-principles
derived heat diffusivity taking into account the negative
magnetic shear effect is still lacking. Indeed, transport
simulations typically use an heuristic model that mimics the
reduction of the coefficients in the presence of an RS con-
figuration [11, 24, 23]. In the present work we use two
different forms for the diffusivity, the first and simplest one
being a phenomenological model that captures the essence
of the influence the magnetic shear s has in reducing χ: for
s<0, the heat diffusivity tends to a lower value (i.e. χH for
high-confinement mode) whereas, for s>0, approaches a
higher value (i.e. χL for low-confinement mode). By casting
this behaviour in a logistic function as is done in common
transport codes [11, 15], the henceforth called shear diffu-
sivity reads
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with α a shear control parameter. In cylindrical coordinates,
the magnetic shear is given by [6, 22]
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OH non-reversed discharge, whereas y<1 corresponds to
an RS configuration. Thus we have the correspondence
c c H as y 0 and c c L as  +¥y :

( )c c c
c c

= - +
-

+ a-e
2 2

1
, 16

ysh H L
L H

a graphical representation being shown in figure 1(a). We
now fix χH=0.1 m2 s−1 and χL=1.0 m2 s−1, because
turbulent diffusion coefficients in fusion plasmas are typi-
cally of the order of 1.0 m2 s−1 [6], and we further assume
that negative magnetic shear can potentially reduce them up
to one order of magnitude, as inferred from the O-regime
simulations for Tore Supra using the CRONOS transport
code [8].

The second form for the diffusivity used in this work is
more sophisticated and takes into account temperature, as is
usual for a diffusion coefficient in a fusion plasma. Without
an RS configuration, turbulent diffusion coefficients usually
follow the Bohm (B) and gyro-Bohm (gB) forms, respec-
tively,
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with C1,2 numerical coefficients usually adjusted by bench-
marking to a broad range of discharges and the total diffu-
sion coefficient being given by χ=χB+χgB [24, 25].
Whenever the shear effect is to be taken into account, a shear
function F(s) multiplies the B term (i.e. χ=F(s)χB+χgB),
so that its value becomes reduced in an RS configuration
[11, 23]. The B term is related with the long-wavelength
turbulence transport and it is this one that is reduced in the
region with low-positive or negative magnetic shear, the
short-wavelength turbulence, which produces gB transport,
being not modified in such a region [24]. Using profiles (8)

and (9), and evaluating the diffusivity inside the barrier at
r=rb

5, we get

⎛
⎝⎜

⎞
⎠⎟

∣ ∣
( )

( )
  

c
m

=
-
+

¢

C
aB

r R j
T

x

y

2 4 1

1
19

C

B 1
0

b 0 0 b

2

b 2

1

and

∣ ∣ ( )
  

c = -

¢

C
T

B r
T x

2
1 . 20

C

gB 2
b

0
2

b
b

2

Plugging in (19) and (20) the Tore Supra values
R0=2.4m, a=0.7 m, rb=0.2a, B0=3.8 T, n20=0.5 m−3,
Tb=4 keV, ηb=8×10−9Ω m, jb=1.5MAm−2 [8], we
obtain ¢ =C 1191 and ¢ =C 7.912 . When all constants are given
in SI units, except for Tb, which is given in keV, C1=0.200
and C2=0.158 for electrons [25]. This means that

¢ = -C C 23.8 m s1 1
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Introducing now a shear function that multiplies both B and gB
terms, in order to amplify the shear effect [11], we write the
BgB diffusivity as

( )[ ( ) ] ( )c c c g= + - - a-e1 1 , 23y
BgB B gB

with the γ factor preventing c  0BgB when y 0. Thus, if
for instance γ=0.01, the total diffusivity is reduced by two
orders of magnitude as y 0. In figure 1(b) we plot the
trend of χBgB with y for some values of x and α. It can be
seen that, just like with χsh, for small y and α above a certain
threshold, we have that the diffusivity decreases as the

Figure 1. (a) Shear diffusivity χ=χsh(y), as given by (16), and (b) BgB diffusivity χ=χBgB(x, y), as given by (23) with γ=0.01. Note
that in both cases α controls the slope of the curves and that these models are only valid for y� 0.

5 The reason why we do not evaluate it at the core (i.e. at r= 0) is because
(17) and (18) vanish there, meaning that we would lost the heat diffusion
term from our model.
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profile becomes more reversed (i.e. y becomes smaller
than 1); then, as y becomes large, χBgB tends approximately
to a constant value. For a sufficiently small value of α,
however, the denominator of the B term starts to take a role
and χBgB decreases with y. Nonetheless, for both small and
large α, the dependence on the temperature gradient is very
clear: χBgB increases with x.

2.3. Nondimensionalising the 0-D model

By defining t cº rx b
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Hereabove c c cº 0, with χ given by (16) or (23) and χ0 a
normalization constant equal to χL or ¢C C1 1 , respectively.
Using Tore Supra values, we have CBS=0.305, τy=3.08 s,
τx=1.96×10−2 or 8.24×10−4 s, and CΩ=7.41×10−3

or 3.11×10−4, depending on the form chosen for χ (i.e.
whether χsh or χBgB).

It is tempting to regard τx and τy as the heat transport and
current diffusion time scales, respectively. If this poses no
problem with the latter, regarding the former there is a very
strong dependency on the model chosen for χ, which may

lead to very disparate figures for τx, as we have just seen.
As such, we no longer look at τx as being fixed by the χ

model, but we consider it an independent parameter instead,
to be gauged against τy through the ratio m t tº x y

6. One of
the unresolved issues of AT studies is precisely the scaling of
the energy confinement time, and thus also of χ, with plasma
parameters [15]. Typically, it is difficult to find such scaling
because of the strong coupling between the plasma quantities,
in this case between j and T. This uncertainty that still exists
regarding the χ models for AT scenarios gives us some lib-
erty to take τx as a free parameter. Note as well that α, KNI

and Kext are free parameters of the model and h(x, y) is a
function that may, or may not, depend on x and y, depending
on which external heating scheme is under consideration.

3. Discussion of the 0-D model: results from a
dynamical system

3.1. Testing the simplest cases

The best way to test our model is to make sure that the
outcome is correct when looking at familiar situations. We
thus start to study the dynamical system in its simplest form
(i.e. with no sources) and then successively add more terms.

3.1.1. No sources. Let us then start by setting all heating and
current sources to zero in (24) and (25), that is, by making
CΩ=Kext=CBS=KNI=0. In this case, the system has the
fixed point {xSS=1, ySS=1}, which is a stable node
regardless of the form of the diffusivity used. Furthermore,

Figure 2. Phase space and vector field of (24) and (25) for (a) CΩ=0 and μ=0.001 and (b) CΩ=0.02 and μ=0.1, with χ=χBgB

(α=1.0) and CBS=Kext=KNI=0. Blue and orange lines are the x- and y-nullclines, respectively, the red curves correspond to some
trajectories in phase space and the black dots indicate the stable fixed points {xSS, ySS}.

6 In fact, (24) and (25) can be written without explicit dependence on τx and
τy individually, but rather with a single dependence on μ if time t is
normalized to one of those characteristic time scales.
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whatever the initial conditions are, the system evolves always
towards its stable node. This result is indeed consistent with
our knowledge of transport equations: with no sources, the
temperature and the current simply diffuse away, achieving an
SS where T and j are everywhere equal to their boundary
values. Recalling that T and j are actually normalized to the
boundary values Tb and jb, this SS corresponds to having
x=1 and y=1, as can be seen in figure 2(a). Note that the
trajectory is rapidly attracted to the x-nullcline7, and then
slowly approaches the stable equilibrium, which is due to the
distinct time scales we have set for this simulation. In
addition, keep in mind that any SS equilibrium {xSS, ySS} is
independent of the time scales.

3.1.2. OH heating. If ¹WC 0, the stable node verifies
{xSS>1, ySS>1}, as shown in figure 2(b), which is also
expected because, in principle, it is possible to sustain non-
constant temperature and current density profiles whenever
there is a source term balancing the diffusion losses. However,
note that for the realistic value of CΩ used in the simulation, xSS
is very close to 1, meaning that it is not possible to sustain large
temperature gradients inside the ITB solely with OH heating.
Note as well that, if the initial y value y(0) is too large, the
system diverges (i.e.  ¥x and  ¥y ). This is simply due
to the fact that the OH heating scales with y2 and so, if the
initial y is too large, the heating quickly overcomes the
diffusion losses (in the case that ( ) <x 0 0, otherwise the losses
are initially already overcome), driving the system to higher
and higher temperatures. On the other hand, the reason for y

not stabilizing can be explained by rewriting (25) in the case
with no current sources as

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( ) = - +y

x

y

x

4

2
1

3
1 , 26

3 2

which shows that y does not stabilize if x>3. This can be
verified in figure 3, a zoomed-out view of figure 2(b), where it
is possible to see an unstable fixed point at very large y, with
the green trajectory, which starts with a very large y(0), failing
to be attracted to the stable fixed point but rather diverging to
infinity. Note however that this indefinitely growth of y is non-
physical since, in an OH discharge, the total plasma current is
fixed and, thus, the central current density could only go ideally
to infinity if j were zero everywhere else. The actual term that
makes this behaviour possible is the one that comes from the
first and second derivatives of the resistivity, and the fact that
our model allows this behaviour is probably due to some
simplifying assumption made. Incidentally, note that  ¥x is
also non-physical because the pressure, hence the temperature,
is limited by the β-limit in a tokamak plasma [6, 22]. Indeed,
this is one of the main operational issues related with ITB’s: if
the barrier becomes too good, the pressure overcomes its limit
value and a disruption occurs due to MHD instability [2–4].
Remark still that in figure 2(b) we have used a much larger
value for μ than that of figure 2(a), and because of this we can
see that the trajectory is no longer rapidly attracted to the x-
nullcline.

Another feature of the model is that CΩ cannot be too
large, otherwise the stable node is lost (i.e. the nullclines no
longer cross each other to produce a stable fixed point) and
the system diverges whatever the initial condition, as shown

Figure 3. Zoomed-out view of figure 2(b), where it is possible to see
an unstable fixed point (grey dot) and a new trajectory (green line)
starting at a large y value and thus failing to be attracted to the stable
fixed point (black dot), but rather diverging to infinity.

Figure 4. Phase space and vector field of (24) and (25) for
= >W WC C0.1 MAX and μ=0.1, with χ=χBgB (α=1.0) and

CBS=Kext=KNI=0. Blue and orange lines are the x- and y-
nullclines, respectively, and the red curve corresponds to some
trajectory in phase space.

7 The x- and y-nullclines are the set of points where x and y are zero,
respectively.
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in figure 4. Once more, this is due to the large heating when
compared with the losses: if CΩ is too large, then the OH
heating eventually drives the system to a point where >x 3,
thus pushing the y-equation into an unstable region and
consequently, with OH heating increasing simultaneously
with y, driving x even further up. Nevertheless, it should be
mentioned that the value WC MAX above which the stable node
is lost is orders of magnitude above the CΩ values previously
calculated using Tore Supra parameters.

3.1.3. BS and NI currents. Let us now release the constraint
CBS=0 and recall that in highly bootstrapped tokamak
plasmas, when the BS current gets peaked off-axis, the total
current density follows and, eventually, gets peaked at the
same position [4, 5, 10]. In our 0-D model this signifies that,
if we have an initial situation with y>1 and at some point
jBSb

starts to increase, the total current density starts changing
to a more RS profile, meaning that y begins decreasing,
eventually reaching y<1 if the BS term at the barrier grows
even further. With this in view, observe from (25) that a
growth in the BS term always contributes to reduce ( )y t ;
moreover, we find from figure 5 that the ySS value decreases
with increasing CBS. These two features of our model are thus
in good agreement with the physics we just discussed and that
usually happens in tokamak plasmas. In addition, note that
when we make ¹K 0NI we have the same effect as when

¹C 0BS , implying that, if both CBS and KNI do not vanish,
more easily ySS reaches a lower value.

3.1.4. External heating. If we now set h(x, y)=1 and Kext a
positive constant, we can find the behaviour of the system
when it is externally heated at the core. It is thus found that
there is a stable node for < <K K0 ext ext

MAX, and beyond
Kext

MAX the nullclines no longer cross and the system diverges
independently of the initial condition. In the region where the
system converges to a stable node, the value of xSS increases
with Kext, which means that more external heating leads to a
higher core SS temperature. The value of ySS also grows with
Kext because, with higher temperatures, the resistivity is
smaller and so the current can penetrate further into the core.

In fact, ySS increases much faster than xSS with Kext as can be
seen in figure 6, where it is depicted the evolution of xSS and
ySS with Kext for three different values of CΩ. It is possible to
see that, with increasing CΩ, Kext

MAX decreases; in other words,
if the OH heating increases, there is, say, less room for the
system to be externally heated without diverging. Moreover,
the highest xSS value increases with decreasing CΩ, with the
highest value of x 3SS and  ¥ySS in the limit WC 0,
which is consistent with what we have seen in connection
with the analysis of OH heating.

3.2. Analysing ITB regimes

In the h(x, y)=1, Kext>0 and KNI>0 case, it should be
possible to observe two different SS regimes: an OH and an
ITB, depending on the external parameters Kext and KNI, and
independently of the diffusivity used, whether χsh or χBgB.
Whereas in an OH SS situation we expect xSS1 and
ySS1, in the case of an ITB SS with RS we ought to find
xSS?1 and ySS 1.

3.2.1. SS ITB’s. The phase spaces corresponding to SS OH
and ITB regimes are shown in figures 7(a) and (b),
respectively, where Kext is fixed but the fraction KNI of
externally applied NI current is different. Then, in figures 8(a)
and (b) we plot xSS and ySS as a function of KNI and for
different Kext. The first thing to notice is that, in general, xSS
increases with KNI, which means that, as the fraction of
external NI current applied at the foot of the barrier increases,
so does the temperature; this is just a consequence of ySS
being decreasing, reducing in this way the diffusivity (16).
Hence, we can conclude that, as KNI is increased, the system
moves from an SS OH regime into an SS ITB regime, in
which the externally applied NI current changes the current
density into a reversed profile, reducing the turbulent
transport and thus allowing for steeper temperature
gradients at the core.

One note regarding the small decreasing of xSS with KNI

at small values of the latter for =K 4.0ext in figure 8(a). This
is due to the fact that, for large Kext and small KNI (and thus
very large ySS), the heating sources (i.e. OH and external)
overcome the diffusion term. Indeed, when KNI<0.1 there is
no solution (i.e. the nullclines do not cross to produce a stable
fixed point) because the heating becomes so large that it is not
compensated by diffusion, driving the system to an unstable
situation where temperature keeps increasing indefinitely. If
CΩ is set to zero, this behaviour is no longer seen. Remark, in
addition, that ySS also increases with Kext, which is due to the
first term on the right-hand side of (25), the one that arises
from the radial derivatives of η.

Still referring to figures 7(a) and (b), note that in both we
have plotted two trajectories starting at different initial
conditions. In the case of the SS ITB regime in figure 7(b),
where KNI has a larger value than in the SS OH case, for a too
small y(0) the system is not attracted to the stable fixed point,
but rather diverges away with temperature continuously
increasing as seen in the green trajectory. Indeed, we have
found that for any < <K K0 ext ext

MAX, as KNI increases, y(0) at

Figure 5. Stable fixed point ySS as a function of CBS for different KNI

and with CΩ=0.001, χ=χBgB (α=1.0) and Kext=0.
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Figure 6. Stable fixed points xSS and ySS, respectively (a) and (b), as functions of Kext for different CΩ and with χ=χsh (α=1.0),
CBS=0.1, KNI=0.3 and h(x, y)=1.

Figure 7. Phase space and vector field of (24) and (25) for (a) an SS OH regime with KNI=0.10 and (b) an SS ITB regime with KNI=0.87,
with χ=χsh (α=1.0), μ=0.01, CΩ=0.01, CBS=0.1, Kext=1.9 and h(x, y)=1. Blue and orange lines are the x- and y-nullclines,
respectively, the red and green curves correspond to trajectories with different initial conditions, the black dots indicate the stable fixed points
{xSS, ySS} and the grey dot an unstable fixed point.

Figure 8. Stable fixed points xSS and ySS, respectively (a) and (b), as functions of KNI for different Kext and with χ=χsh (α=1.0),
CΩ=0.01, CBS=0.1 and h(x, y)=1.
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some point can no longer be arbitrarily small, but it must fulfil
the condition y(0)>y(0)min>0 so that the system is
attracted to its stable fixed point. This has to do with the
dependency of χ on y: if y(0) is small, then χ(0) is also small
and, with a large KNI that prevents y from increasing too
much, the diffusivity keeps a low-enough value that inhibits
the losses from compensating the external heating.

3.2.2. ITB oscillations? Regarding current and temperature
oscillations, as already mentioned, these are due to the
nonlinear coupling between the equations that model their
evolution. This coupling comes about via Spitzer’s resistivity,
heat diffusivity, the BS and externally driven NI currents and
their respective power depositions [5, 7, 8, 11, 14, 15]. The
first two coupling sources (resistivity and diffusivity) are not
sufficient, at least within our model, to trigger oscillations. A
scan in Kext, KNI and α (and also in μ for reasons that become
clearer soon) was made to look for LC’s, and the result was
null for both diffusivity models considered so far. This
indicates that the external NI current density and/or its power
deposition should be x and y dependent, in order to introduce
a new form of coupling. In the LH case, wave propagation
and absorption are usually described having recourse to ray-
tracing or full-wave codes [26]. Obviously we are not
interested here in this type of approach, so we must do with
simple scalings. Since it has been reported that the local LH
absorption increases with electron temperature, whereas the
global LH efficiency grows with plasma current [11], it is
reasonable to assume Sext∝jT. This cross term between T
and j for the source is not new, having already been used
within the CRONOS transport code [7, 8, 11]. True, it was
used to model the LH-driven current density inside the
barrier, and not the external heating profile, but since the
former typically follows the latter, we adopt the same scaling.
Thus, we keep the fraction KNI of externally applied NI
current at the foot of the barrier as constant, but write the
external heating term due to LH waves as h(x, y)=xy.
Furthermore, note that we have been treating Kext and KNI as
independent free parameters so far. In principle, for an LH
system, these two quantities should be related although, with
the simple arguments used to model the power deposition, it
is difficult to tell the scaling of one with the other. Thus, we
will keep treating these two as independent and, with this in
mind, let us analyse the oscillatory regimes found with the
two forms of the diffusivity.

3.2.3. ITB oscillations with χsh. When the shear diffusivity
(16) is used and α is set to 1, supercritical AH bifurcations
(i.e. stable LC’s) are found for < <K0 1.0NI and, for each
value of KNI, for Kext above Kext* , which is the value of Kext at
the bifurcation point8. Moreover, these oscillations only
appear if the time-scale ratio verifies μ≈1. In figure 9 we
show the phase space of some of these LC’s for different
values of Kext and KNI=0.7. Observe that, as Kext increases,

so does the size of the limit cycle, as predicted for AH
bifurcations, an increase in size that scales with -K Kext ext*
[17]. Note it may happen that, for Kext above a certain value,
the oscillation in y goes to negative values and this is out of
the validity of the model since, for y<0, not only (16)
becomes negative (which is non-physical), but we may enter
the current-hole domain [27, 28] (which is not covered here).
In addition, situations where x becomes less than 1 should be
regarded as non-physical too. As Kext increases, y(0) and x(0)
cannot be too large, otherwise the system is not attracted to
the LC but diverges away instead, which is simply due to the
external heating being proportional to xy.

3.2.4. ITB oscillations with χBgB. Considering the BgB heat
diffusivity (23), supercritical AH bifurcations are found when
KNI>0.5 and, for each value of KNI, when Kext lies above
the bifurcation point. However, for this to occur, α must lie
roughly in the interval 0.1 α 0.01, otherwise no stable,
physical LC’s are found. When the values of Kext and KNI are
not in the LC range, SS ITB regimes are encountered that are
much more pronounced than those of the constant external
heating case, in the sense that xSS?1 and ySS=1. An
example of this is shown in figure 10, whereas in figure 11(a)
we plot a stable LC, whose corresponding oscillations in time
are depicted in figure 11(b). Note that the current is in
advance of the temperature with a phase shift of 55◦, this
angle increasing with increasing Kext.

No LC’s are found when the BgB heat diffusivity is used
without the shear correction, nor when the BS term is

Figure 9. Phase space and vector field of (24) and (25) for different
Kext, with χ=χsh (α=1.0), μ=1.0, CΩ=0.01, CBS=0.1,
KNI=0.7 and h(x, y)=xy. Blue and orange lines are the x- and y-
nullclines, respectively, and the grey dot indicates the unstable fixed
point when Kext=1.48. In this plot, we ignore the initial instants
where the trajectories, coming from different initial conditions,
approach the respective LC’s.

8 For α=0.1, stable LC’s were also found, but the oscillations in that case
are established around x≈50, which is way above what is seen in the
various experiments.
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disregarded, and, once more, the oscillations only appear
when we set μ≈1. From a dynamical system point of view
this is understandable: in order to have an oscillatory regime,
we need the two quantities competing with each other (just
like in a predator-prey system) and this is only possible if
both evolve on the same time scale. From a plasma point of
view, this means one of three things: the heat transport time τx
increases to the order of the current diffusion time τy, the
latter decreases to the order of the former, or a mixing
between these two. This last option seems very plausible
because, locally close to the ITB, we expect the confinement
time to substantially increase and the current diffusion time to
be low (due to the small ITB radius), and thus these two times
approach each other.

The oscillation frequency in our model is of the order
0.1/τy, as can be seen in figure 12, where we plot the
normalized (i.e. to t-y

1) frequency f * as a function of Kext. We
also show the frequency curve theoretically predicted by the
Hopf theorem, which is given by Im(λ)/2π, where λ is the
eigenvalue of the unstable fixed point at the bifurcation. This
formula is exact at the bifurcation point and correct within

( )- K Kext ext* for Kext close to Kext* [17]; this is why the
predicted value is only in very good agreement with the
frequency obtained with the simulation in the beginning,
close to Kext* (which is =K 1.30ext* in the case of KNI=0.6,
as in figure 12). The order of magnitude obtained for f * means
that the period of oscillation is about 10τy, roughly one order
of magnitude above what is seen in the various experiments,
in which the oscillation period compares typically with the
resistive time [7–9, 11].

4. Discussion of the 1-D model: results from the
transport equations

4.1. Implementing the equations

The 0-D model has given us a great insight into the transport
equations, providing us with a very simple tool to look at
stationary and oscillatory ITB regimes. However, three issues
remain to be addressed with the more accurate 1-D equations,
namely: the mismatch between the time scales for the two
equations, the oscillation frequency and how the amplitude
depends on the latter. This is why we now solve the 1-D
equations using the same assumptions made for the 0-D
model: quadratic profile for the external NI current density
between the core and the foot of the barrier, fixed values of
temperature and current density at the foot of the barrier and a
phenomenological model for the heat diffusivity that takes
into account its reduction in RS scenarios.

4.1.1. Numerical scheme. The 1-D equations to be
numerically solved are (1) and (3), and the reason why we
now prefer to use (3) instead of (2) is that, when using model
(14) for the diffusivity, we need the shear s given in (15). The
latter is directly given by differentiation of Bθ, whilst if we
use j instead we have to perform an integration, which is not
so straightforward nor intuitive when working with finite
differences as we do. The 1-D equations, to be solved in the
interval [ ]r Î 0, 1 , with r º r rb, read

⎛
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20 0. The spatial derivatives of the
equations are discretized using second-order finite differences
and the system is evolved in time according to a semi-implicit
numerical scheme, which is to be reported elsewhere and
allows us to see an oscillatory regime when we make
Fext∝jT [29]. It is worth mentioning that, had we used one
of the standard schemes commonly employed to solve
diffusion-like PDE’s, such as Crank–Nicolson’s, the time
evolution would become unstable for the same source term.

4.1.2. Boundary conditions. Since we are interested in
comparing results from the 1-D equations with the 0-D
dynamical system, boundary conditions for T and j (or B) are
taken (as far as possible) the same for both models. Regarding
the temperature equation, the exact same boundary
conditions have been used, namely, ( )r¶ = =rT 0 0 and
T(ρ= 1)=Tb. Note that ∇T=0 on the axis results from
requiring that the heat flux q at the origin be zero. This is so
because the cylindrical geometry imposes all fluxes to vanish

Figure 10. Phase space and vector field of (24) and (25) with
χ=χBgB (α=γ=0.01), μ=1.0, CΩ=0.001, CBS=0.1,
KNI=0.4, Kext=0.6 and h(x, y)=xy. Blue and orange lines are
the x- and y-nullclines, respectively, red and green curves correspond
to trajectories with different initial conditions and the black dot
indicates the stable fixed point.
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at ρ=0; were the flux not exclusively diffusive, ∇T would
not be necessarily zero.

As for the j equation, in the case of the 0-D model we
have used ( )r¶ = =r j 0 0 and j(ρ=1)=jb. The former
does not follow from the geometry, but it is rather an
approximation motivated by the fact that, in SS, equation (3)
with Spitzer’s resistivity yields

( ) ( )- =  = +
T

j j C j j CT
1

, 29
3 2 NI NI

3 2

where C is an integration constant. It thus follows directly

that, in SS,
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This means that, if ( )r¶ = =r j 0 0NI (which is the case
when using a quadratic profile), we automatically get

( )r¶ = =r j 0 0. Thence, this condition is exact once an SS
is achieved, although it may not be true in the transient phase.
In the 1-D model, where we use the equation for Bθ instead of
the equation for j, the boundary condition on the axis is valid
at all instants of time since it follows directly from Ampère’s
law that
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where we have used Cauchy’s rule.
Coming now to the condition j(ρ=1)=jb, which is

used both in the 0-D and 1-D models, it may be a little harder
to motivate since it is not commonly found in the fusion
literature dealing with transport codes [30, 31]. In fact, these
codes usually solve the transport equations in the whole
plasma volume, using as boundary conditions the total plasma
current, or the poloidal flux at the edge. However, in this
work we are mainly interested in what happens between the
core and the foot of the barrier, which is why we have
restricted the equations to that region of the plasma.
Experimental data (plus reconstruction by means of integrated

Figure 11. (a) Phase space and vector field of (24) and (25) and (b) temperature and current density oscillations in normalised time t=t t y*
for stable LC oscillations with χ=χBgB (α=γ=0.01), μ=1.0, CΩ=0.001, CBS=0.1, KNI=0.60, Kext=0.55 and h(x, y)=xy. In
(a), blue and orange lines are the x- and y-nullclines, respectively, and the grey dot indicates the unstable fixed point.

Figure 12. Normalized frequency t= -f f y
1* of the LC as a

function of Kext for χ=χBgB (α=γ=0.01), μ=1.0,
CΩ=0.001, CBS=0.1, KNI=0.6 and h(x, y)=xy. The model
frequency is compared with the one given by the Hopf theorem,
which is only exact near K*

ext=1.30 in this case.
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modelling) for the O-regime shows that temperature and
current density are approximately constant at the foot of the
barrier, even when there are oscillations inside the barrier [8].
This gives us some confidence that the chosen boundary
conditions are indeed a quite good approximation.

4.2. Examining SS OH and ITB regimes

Let us start by analysing the SS regimes of the 1-D equations
when χ=χsh, as given by (14), Fext=TbKext is constant and
jNI=jext(ρ)=KNIjbρ

2 (we do not consider the BS current in
the 1-D model). In figures 13(a) and (b) we show, for
KNI=0.8 and Kext=0.4, an SS regime obtained by feeding
some initial profiles to the numerical scheme and then evol-
ving in time the equations until the profiles no longer change.
Note that the SS profiles are essentially quadratic, a feature
that is constantly obtained after carrying out this exercise for a
broad range of Kext and KNI values. Furthermore, we have
also used higher-than-quadratic initial profiles and the system
has always evolved towards the same type of quadratic SS
profiles, which somehow comforts us in our approach for the
0-D model, where we have assumed quadratic profiles.

We now evaluate SS profiles for different Kext and with
KNI in the range 0.0�KNI�0.95. After doing so, we can

construct the plots in figures 14(a) and (b), where xSS and ySS
correspond to the central SS values of T and j normalized to
the fixed values at the boundary, very much like in the 0-D
model. As expected, we see that larger heating leads to higher
core temperatures, and also that, as the fraction of NI current
applied at the foot of the barrier is increased, so does the
temperature. At the same time, we see that the current density
changes from an OH profile to a more reversed profile as KNI

increases and, moreover, that the central current density
increases with Kext. These observations are all in accordance
with the results of the 0-D model, as can be checked by
comparing figures 14(a) and (b), on the one hand, with
figures 8(a) and (b), on the other. We stress that this beha-
viour of changing from an OH to an ITB regime is induced by
the type of heat diffusivity used. More precisely, if χ had not
a shear dependency, the temperature equation would be
decoupled from the magnetic field equation (aside from the
OH heating term, which has little influence since Kext?CΩ),
and thus xSS would not be sensitive to KNI.

4.3. Analysing oscillatory ITB regimes

When we make = µF K jT j T jText ext b b , we are able to find
oscillations when 0.01μ1, which is a much lesser

Figure 13. SS profiles of temperature and current density, respectively (a) and (b), for χ=χsh (α=1.0), KNI=0.8 and Kext=0.4. A fit to
T of the type Tfit(ρ)=Tb+(T0−Tb)(1−ρα)β and a similar fit to j are also shown.

Figure 14. Central SS values xSS=T0/Tb and ySS=j0/jb, respectively (a) and (b), as a function of KNI for different Kext, with χ=χsh

(α=1.0). Note that the system changes from an OH regime into an ITB regime as KNI increases.
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constraint than the 0-D model condition μ≈1. Furthermore,
contrary to the 0-D model, all the oscillatory regimes within
the 1-D equations were obtained without the BS term, thus
making jT the main term inducing a nonlinear coupling

between T and B, which ultimately leads to oscillations. The
appearance of oscillations is very similar to the bifurcation-
like behaviour we have seen in the dynamical system, 0-D
model: for a fixed value of KNI, an oscillatory regime appears

Figure 15. Temperature and current density oscillations, respectively (a) and (b), at different ρ positions with χ=χsh (α=1.0), μ=0.3,
KNI=0.7 and Kext=7.5.

Figure 16. Temperature and current density envelopes during oscillations, respectively (a) and (b), constructed by superposing the profiles
- á ñT T and - á ñj j for several oscillating cycles, with á ñT and á ñj average values and for the same simulation parameters of figures 15(a)

and (b).

Figure 17. (a) Phase space of x=T0/Tb and y=j0/jb for Kext=4.5 and two different initial conditions and (b) normalized frequency
t= -f f y

1* of the LC and amplitude of the temperature oscillations as functions of Kext, with χ=χsh (α=1.0), μ=0.3 and KNI=0.7. In
(a), note that the same LC is achieved for both initial conditions.

13

Plasma Phys. Control. Fusion 62 (2020) 045018 A J Coelho et al



after a certain Kext* threshold. In figures 15(a) and (b) it is
depicted an example of the oscillations at different ρ posi-
tions, with the oscillations in j looking more sinusoidal than
those in T, the latter very much resembling the O-regime in
Tore Supra [7, 8, 11]. The corresponding envelopes, once a
stable oscillatory regime has been established, are shown in
figures 16(a) and (b), where it is possible to see the symmetry
of the oscillations about their average values. Moreover, we
can see that the oscillation amplitude is larger in T than in j.

It is also interesting to observe that different initial profiles
lead to the same LC, in the same manner as we have seen above
that, after the transient regime, different initial profiles lead to the
same SS. This can be verified in figure 17(a), where we have
used as initial profiles T(ρ)=T0−(T0−Tb)ρ

2 (and a similar
one for j) with {T0/keV, j0/MAm−2}={5.0, 2.0} and
{T0/keV, j0/MAm−2}={9.0, 5.0}, and have plotted the
corresponding trajectories in phase space. The oscillation fre-
quency was also studied in the context of the 1-D model and we
show in figure 17(b) the normalized frequency f * as a function of
Kext, for KNI=0.7, the bifurcation point occuring at =K 3.7ext*
for T0=20 keV

9. It must be noted that f * increases with Kext

just like in the 0-D model, where the Hopf theorem predicted
such increasing. The main difference with the 0-D model lies
in the frequency itself, since now we have a frequency of the
order of t-y

1 or, in other words, an oscillation period of the
order of τy, instead of 10τy as in the 0-D case. The 1-D results
thus agree more correctly with the experiments, since in the
O-regime the oscillation is commensurate with the resistive
time scale [7, 8, 11]. Regarding the oscillation amplitude
itself, more precisely, how it varies with Kext, we see that it is
always smaller than 10 keV. At Tore Supra, it was reported
that the amplitude of the temperature oscillation ranged from
0.1 to 1.0 keV [7], meaning that our 1-D model can reproduce
the correct amplitude in a given interval of Kext. We can still
see from figure 17(b) that the T oscillation amplitude becomes
smaller as Kext increases, which is markedly in contrast with
what was seen in the 0-D model, where a growth with Kext

was found (as expected from AH bifurcation theory). In any
case, what we see in figure 17(b) is exactly what is observed
with the O-regime in Tore Supra: decreasing of the oscillation
amplitude with increasing frequency [7].

5. Summary and conclusions

In this work, and with the purpose of studying ITB oscilla-
tions as those characteristic of the O-regime in Tore Supra
[7, 8, 11], a 0-D model in the form of a dynamical system was
systematically derived from the 1-D diffusion equations
governing electron temperature and current density in fusion
plasmas. The said model is not only capable of capturing the
ITB oscillatory behaviour, but it also provides the expected
SS OH and ITB regimes. Note that the approach followed
here is substantially different from a previous attempt to
model these ITB oscillations using an ad-hoc system of

predator-prey equations [8] in that, to arrive at the 0-D
dynamical system obtained in this paper, we followed a
methodical reduction process starting from the appropriate
1-D transport equations.

Two forms for the heat diffusivity were used, one phe-
nomenological and the other related with the BgB diffusivity
(corrected for RS configurations), which were further adapted
to our 0-D model. When the external heating and CD terms
are set to constants, it is possible to identify a continuous
transition from an SS OH to an SS ITB regime as the fraction
of externally applied NI current at the foot of the barrier is
increased. By recognising that many LC oscillatory regimes
in dynamical systems occur whenever an AH bifurcation
appears, a scan was made in parameter space to find this
bifurcation and then check whether the LC was stable/
unstable so that we could give it a physical meaning. When
the external terms are constant, no LC’s were found; however,
stable LC’s were encountered, with both forms for the dif-
fusivity, when the external heat source was made proportional
to both temperature and current in order to mimic the power
deposition of an LH system. Moreover, with this form for the
external heating, SS ITB regimes exist when the free para-
meters of the model are not in the LC range.

A feature of the oscillations found with the 0-D model is
that they only appear when the time scales of the two
equations are commensurate, meaning that the characteristic
heat transport and current diffusion times must be of the same
order (i.e. their ratio must be roughly 1). In fact, this should
be experimentally expected also because, at the ITB (where
confinement happens to be significantly higher), the time
scales for heat transport and current diffusion (within a small
ITB radius) tend to become similar. It was further shown that
a necessary condition to see LC oscillations is to have a
current dependency in the heat diffusivity (which we have
assumed to be of the type that reduces the latter in RS con-
figurations). This manifestly indicates that the true, actual heat
transport coefficient must be shear (or current) dependent,
something that has been intuited [15, 24], but whose clear
demonstration is still lacking. We can even envisage, in the
future, to infer the type of interplay, or coupling, between the
transport and current equations in AT scenarios by analysing
these ITB oscillations. For instance, this can be done by
varying the functional dependency on current of the heat
diffusivity, then comparing the obtained oscillations with
what is experimentally observed and subsequently, if neces-
sary, iterating the procedure.

There are two additional features of the 0-D model
oscillations that do not match the experimental results,
namely: the oscillation period, which is one order of magni-
tude above the experiment, and the LC amplitude, which
increases with frequency, the opposite of what was reported
for the O-regime. For that reason, we decided to solve the
more exact 1-D transport equations with the same type of
assumptions that led us to the 0-D dynamical system. By
doing this, we were able to obtain oscillations with a period
whose order of magnitude matches that of the resistive time
scale and whose amplitude becomes smaller as the frequency
grows, precisely the trends seen in the experiment [7, 8, 11].

9 We indicate T0 because we have seen that the bifurcation point varies (but
not very much) with it.
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We have seen in both models that, once beyond the
bifurcation point, the oscillations are persistent and cannot be
made to disappear by augmenting the external heating, which
is in accordance with previous results showing that, in order
for the oscillatory behaviour to vanish, the E×B shear must
play a role in the χ model [5], something we have not
accounted for herein. It has been observed as well that precise
shapes of the ECCD deposition profiles are necessary to
overcome the oscillations in the O-regime [8], still a further
element not considered in our models. There is thus room for
improving our 0-D analysis, through the incorporation of
these mechanisms in the χ models utilized, in order to con-
clude whether, after the bifurcation point that leads to LC
oscillations, another bifurcation appears that kills them or not.
One last comment: the oscillations found within the 1-D
model were obtained with equations that do not include in
them the contribution of the BS current, differently from the
0-D model, where keeping the BS term is a necessary con-
dition to get LC oscillations. Hence, a work to be done, and
which would be of relevance for the SS operation of future
fusion reactors, is to analyse ITB oscillations, from a dyna-
mical system point of view, in the BS-dominated regime seen
in DIII-D [10] and studied for AT scenarios in JET [5, 16].
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