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Abstract
Using a novel wavenumber-advection algorithm, we show that profile curvature (shear in the
profile gradient) can be implemented with spectral accuracy in gyrokinetic turbulence
simulations. This approach enables a global simulation capability with the relatively low cost
and high accuracy of local simulations. Using this new algorithm, we show that for a well-
studied tokamak core test case, the effect of temperature-gradient curvature is below the
threshold of detectability for experimentally-relevant values of curvature.
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1. Introduction and background

1.1. Conceptual motivation

Radial variation, or shear, in the equilibrium ´E B velocity
is well-known to have a profound stabilizing effect on drift-
wave turbulence. The importance of including this global
shearing effect in nonlinear simulations of tokamak turbu-
lence has long been recognized [1–5]. Relatedly, the con-
ceptual possibility of transport reduction through profile
curvature [5, 6] was considered by Waltz and Garbet more
than 20 years ago. These key global effects, not directly
treatable by a flux-tube code2, provided the motivation for
development of radially-nonperiodic global gyrokinetic
codes. However, the capability to treat ´E B shear is pos-
sible within the flux-tube framework. To wit, the wave-
number-remapping method [7, 8] was used successfully to
implement ´E B shear by exploiting the property that tor-
oidal Fourier harmonics return to radial periodicity at integer
multiples of a critical time [7, 9]. For a fixed radial domain
size, however, the discretization error is fixed and cannot be
reduced by resolving higher wavenumbers. Moreover, the

time-dependence of the solution is mildly discontinuous.
More importantly, the wavenumber-shift method is applicable
only to ´E B shear but not to profile curvature—because
profile curvature does not cause a simple Doppler shift of the
time derivative. For these reasons, a new approach to treat

´E B shear by continuous advection of radial wavenumbers
was developed [10]. This wavenumber-advection approach
was shown to produce energy and momentum fluxes that
agree well with global simulation results. The new approach
simultaneously eliminates (1) certain negative aspects of the
wavenumber-shift algorithm and (2) ad hoc radial boundary
conditions required by global simulations. In this work, we
outline a new approach to the calculation of global profile
curvature (shear in the temperature and density gradients) by
constructing a suitable generalization of the wavenumber
advection method. Using this approach, we show that profile
curvature can be implemented with spectral accuracy in
gyrokinetic turbulence simulations. This enables one to carry
out global simulations with the relatively low cost and high
accuracy of local simulations. Preliminary nonlinear simula-
tion results for a well-studied test case demonstrate that the
effect of temperature-gradient curvature (shear in the temp-
erature gradient) is below the threshold of detectability for
experimentally-relevant values of the curvature in the core of
tokamaks.
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1.2. Profile curvature

Consider the profiles of density and temperature gradient
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Above, r is the midplane minor radius, a is the minor radius
of the LCFS, and the subscript a denotes a species index.
Linear growth rates and associated nonlinear fluxes of heat
and particles are well-known to be controlled by the local
values of these parameters. Gyrokinetic code benchmark
exercises are typically carried out using the Cyclone base case
[11] and the GA standard case [4] parameters—characterized
by constant values of kN and kT. Since the development of the
first toroidal gyrokinetic codes in the 1990s, the conceptual
possibility of transport reduction through profile curvature
[5, 12] has been considered. The curvature does not presently
have a standard formal definition, so in this work we define
the density and temperature curvature as
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Here, ρs is the effective ion-sound gyroradius
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The explicit appearance of ρs in equations (3) and (4) is
required to maintain the proper analytic scaling of the cur-
vature, which should vanish in the limit r r a 0s *

 . In
the definition of ρs, Bunit is the effective magnetic field
[13, 14]. This is independent of poloidal angle, and defined
with reference to a global equilibrium through the relation

y= ¢B r
q

r
, 6unit ( ) ( )

where y y¢ ¶ ¶r . At mid-radius in the DIII-D tokamak,
typical curvatures are on the order of ~ ~s s 0.01a a

N T when
k k~ ~ 1.0a a

N T . In a gyrokinetic simulation with r=L 100 s,
for example, the ion density gradient scale length would vary
by an amount D =a L 1.0ni( ) over the simulation domain
when =s 0.01i

N . Like the rotation profile, the equilibrium
density and temperature are free profiles in the gyrokinetic
equation and determined by the respective transport equations
at r 2

*
( ).

1.3. Consistency with the drift ordering

The profile curvature terms associated with equations (3) and
(4) are formally one order smaller in ρ* than those required
by the drift ordering [15, 16]. Evidently, there are myriad
other formally negligible terms that could also be added to the
gyrokinetic equation. Thus, if profile curvature is measurable
in a gyrokinetic simulation, then other small corrections might
also be measurable. For this reason we must explain our
motivation. Interest in profile curvature dates back more than

two decades, when it was speculated that the shear in the
diamagnetic frequency (proportional to sa

N and sa
T) might

provide a stabilization comparable to the shear in the ´E B
velocity (γE) [5]. Prior simulations attempting to quantify this
have been carried out [6, 12], but the effects are small and
difficult to measure accurately. Thus, in treating curvature
spectrally, we can make a higher-precision estimate of cur-
vature-driven stabilization than in previous work. If curva-
ture-driven stabilization is significant, it would be an
indication that the gyrokinetic ordering itself is in jeopardy.
Alas, for the test cases considered in this paper, no significant
stabilization is observed. A similar null result was found,
some time ago, for the (higher-order) parallel non-
linearity [17].

1.4. Spectral treatment of nonperiodic phenomena

To avoid later confusion, we will clarify some important
nomenclature. In this work, a local simulation [9, 18] is one in
which the coefficients of the gyrokinetic equation are constant
and solutions doubly periodic in the radial and binormal
directions. An oft-used synonym for local is flux-tube. Local
simulations normally use a Fourier representation of fluctua-
tions, but this is not necessary. In principle, local simulations
can use mesh-based finite-differences (GYRO local simula-
tions are one example). In contrast to a local simulation is a
global simulation [19–21]. In principle, global could refer to
any simulation that is not local; for example, a simulation
with constant coefficients (no profile variation) and Dirichlet
(nonperiodic) boundary conditions. Of course this is not
standard usage of the term. More commonly, a global simu-
lation is nonperiodic and retains some coefficient variation in
the radial direction. With respect to the simulation technique,
spectral implies a manifestly periodic 2D Fourier mode
representation in the radial and binormal directions. Spectral
gyrokinetic solvers achieve high computational efficiency and
accuracy [22] by working directly in wavenumber space
thereby reducing the gyroaverage to multiplication by a
Bessel function. Because of the periodicity of fluctuations,
spurious behaviour including boundaries instabilities [21] and
profile flattening [6, 23] are eliminated. In addition, simula-
tions that require simultaneous resolution of electron-scale
and ion-scale turbulence [24, 25] benefit greatly from spectral
algorithms. A technically precise description of the contrast
between flux-tube and global simulations, and a prescription
for treating global terms in a flux-tube framework, has also
been given by Parra [26] and we refer the reader thereto for
more information.

Historically, because a spectral basis implies periodicity
of fluctuations in the radial and binormal directions,
researchers were mostly resigned to the opinion that turbu-
lence stabilization due to profile curvature, along with other
mesoscale transport phenomena, are amenable only to tradi-
tional nonperiodic global simulation. This reasoning directly
motivated the development of GYRO [21] in 1999. Over the
years, comparisons between local and global simulation have
seen some confluence as (1) profile relaxation effects gener-
ated in global simulations have been eliminated, (2) methods
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to treat ´E B shear with reasonable fidelity were developed
for flux-tube codes [7]. For example, very recent simulations
of ASDEX [27] and TCV [28] show that local-global dif-
ferences are small or negligible when profile relaxation is
properly mitigated. These shrinking differences between local
and global simulations give rise to a catch-22 in which the
lower fidelity of global codes with respect to  1( ) local
physics makes them less able to reliably compute the small
(ρ*) corrections they were designed for3. This sobering rea-
lization was a key motivation for the development of CGYRO
[29]. The CGYRO strategy is to optimize the performance
and accuracy of the dominant, leading-order gyrokinetic
dynamics, and then seek new approaches to deal with highly
subdominant mesoscale phenomena.

With the development of the wavenumber advection
method, a new possibility for high accuracy global-spectral
simulation emerges in which coefficients of the gyrokinetic
equation may retain physical radial variation over a sub-
domain of a larger periodic computational domain. More
generally, spectral representation of nonperiodic functions as
a research topic has received significant attention [30–32] and
is closely connected to Chebyshev approximation.

2. Theoretical formulation

2.1. Spectral representation of fluctuations

In the recursive formulation of nonlinear electromagnetic
gyrokinetic theory [16, 33], fluctuations are represented in
eikonal (ballooning) form as

å=
^

^h e hR , 7a
i

a
k

R
k

S
,k( ) ( )( )

where ^ ^k Sk is the perpendicular wavenumber, R is the
location of a gyrocenter, and a is the species index. In this
paper, we use the non-orthogonal field-aligned coordinate
system y q a, ,( ) together with the Clebsch representation
for the magnetic field [34], a y=  ´ B . Here, a 
j n y q+ ,( ), where j is the toroidal angle, ψ is the poloidal
flux divided by 2π, and θ is the poloidal angle.

A spectral gyrokinetic code expands fluctuations in terms
of a time-independent eikonal

å åa = a
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where a= -S px nk . In these expressions, f0a is the zeroth-
order equilibrium Maxwellian distribution for species a.
The Fourier representation in equation (8) is clarified further
in section 3 of [29]. In equation (8), we have defined an
angular radial variable p p= - Îx r r L2 0, 20( ) [ ), where L
is the radial width of the simulation domain. As in equation
(15) of [10], the spectral gyrokinetic equation is written

symbolically as

¶
¶

= 
h

t
n p h, , . 9a

a

unsheared

( ) ( )
 

The expression above reflects the CGYRO formulation as
written in equation (27) of [35] for the case of sonic rotation,
or in equation (57) of [29] for the simpler case of diamagnetic
toroidal rotation. We can make contact with [29, 35] by
writing
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where =c T ms e D is the deuteron sound speed, Te is the
electron temperature, and mD is the deuteron mass. General,
explicit forms for

~
Ha, Wq, Ωξ, Ωd, Ω*, Y

~
a, Cab

L and ∗ (a gen-
eralized convolution) are given in [35].

2.2. Wavenumber advection

´E B shear and profile curvature can now be treated using
the same spectral representation of fluctuations defined in
equation (8). We do this by employing a periodization of the
nonperiodic function x in terms of a spectral shearing operator
X . The details of this periodization, including discussion of
naive and inaccurate forms of X , are given in [10]. Using X
we can write a periodic spectral GK equation including the
effect of ´E B shear and density/temperature curvature
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Here, u v v2a ta( ) with vta the thermal velocity of species
a. X is an operator on the space of discrete functions f given
by

å- = + - -iXf n p a f n p k f n p k, , , . 12
k
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The decorrelation rate in the presence of sheared ´E B flow
is given by the Waltz shearing rate [1]

g
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In [10], a two-term expansion was recommended, with
p=a 21 and p= -a 2 93 ( ). Retaining only 2 terms in the

series ensures that the shearing is driven by only the two
longest (equilibrium-scale) waves in the system. Physically,
the wavenumber advection method represents two simula-
tions: one with positive shearing connected smoothly to one
with negative shearing. It is important to note that, since the

3 In particular, error control in connection with sources, boundary
conditions, electron dynamics and electromagnetic modes is more challen-
ging globally.
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shearing represents only a small perturbation to the unsheared
system, the unphysical Dirichlet-type boundary conditions
normally used in global simulations are replaced by elegant
inflow/outflow boundaries. In the case of ´E B shear, a
spectral shift in the fluctuation spectrum is induced [36], and
a model of this shift is the basis for implementation in the
TGLF [37] transport model.

2.3. Time-delay kinetic source

To complete the formulation we define a source in terms of a
time-delay operator acting only on the longest-wavelength
zonal mode h 0, 1a ( ) :

n
¶

¶
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t
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This source, to be added to equation (11), prohibits relaxation
of all velocity-space moments of the distribution, including
particles, momentum, and energy. It is now well-understood
that sources of particles, momentum and energy must be
included to maintain density, rotation and temperature profiles
[26]. Because the source in equation (14) acts only on the
zonal (n=0) component, there is no unphysical effect on
linear growth rates via finite-ky dissipation [38]. For the
simulations reported herein we have selected t =c a 50.0s( ) ,
which is the same value used in the original GYRO time-
delay source (circa 2002) [6]. The source rate is taken to be
proportional to the shearing rate: for example, n =a cs s( )

s10 D
T. To obtain the conjugate mode -h 0, 1a ( ) we simply set

- =h h0, 1 0, 1a a *( ) ( )  . Finally, we remark that the equili-
brium mode h 0, 0a ( ) is undetermined by gyrokinetic theory4

and thus is absent from the simulation.

3. Performance of the new approach

To assess the performance of the new approach we carried out
numerous nonlinear CGYRO simulations—both with adia-
batic and kinetic electrons—based on the General Atomics
(GA) standard case parameters [4]: =R a 3,0 r/a=0.5,
q=2, s=1, =T Ti e. The geometry is a Grad–Shafranov
unshifted circular equilibrium with metric coefficients gen-
erated using the Miller local formalism [40, 41]. All simula-
tions retained 16 discrete complex toroidal modes

r = ¼k 0.0, 0.05, 0.1, , 0.75, 16y s ( )

with =k nq ry . This binormal resolution corresponds to
N=15 in equation (8), although modes with n<0 do not
need to be simulated because reality of the physical fields
implies - - =h n p h n p, ,a a

*( ) ( )  . In the radial direction we

used 180 radial wavenumbers (M=90) thereby resolving
r k0 2.80x s . The radial and binormal domain sizes were

taken to be r=L 200 s and r=L 126y s, respectively. Den-
sity gradients were fixed in all cases: k k= = 1eD

N N .

3.1. Nonlinear global simulations with adiabatic electrons

To begin, we carried out simulations with gyrokinetic deu-
terium and adiabatic electrons. A small collision frequency

n = ´ -a c 0.165 10s DD
3( ) was chosen to provide some

damping of zonal flows. All runs used fixed timestep
D =c a t 0.04s( ) . Because the energy fluxes have a natural

gyroBohm scaling, we normalize them to a reference gyro-
Bohm level

r
=Q n T c

a
. 17e e s

s
GB

2

2
( )

Both global and local simulations were done with CGYRO.
The single global CGYRO simulation used density and
temperature gradients k = 1D

N and k = 3D
T respectively, with

temperature curvature =s 0.015D
T (density curvature was set

to zero). The results of this simulation are shown in figure 1,
overlaid with results from 12 local simulations for which kD

T

was varied over the range k 2.5 3.6D
T . At this value of sD

T

we expected to see some evidence of turbulence suppression,
but no statistically significant effect was observed. Note that,
to achieve very low statistical error, we ran all simulations up
to =c a t 2000s( ) , averaging results over the range

 c a t300 2000s( ) . The profile of global energy flux, QD,
was obtained by reconstruction using radial wavenumbers

p 4∣ ∣ (an arbitrary choice, sufficient to capture the relevant
long-wavelength structure).

A second global spectral simulation was carried out with
double the shearing rate: =s 0.03D

T . The results of this more
highly-sheared case are shown in figure 2, overlaid with
results from the same 12 local simulations. In this case the
local simulations are spaced at half the distance they were in

Figure 1. Global flux profile (solid curve) for GA standard case
(adiabatic electrons) with =s 0.015D

T , compared with equivalent
local simulations (magenta dots). Deviation from the local result is
less than the statistical uncertainty of the time-averaged fluxes.
Green shaded region r L 0.25(∣ ∣ ) is the positive (physical)
curvature region whereas the unshaded white region >r L 0.25(∣ ∣ )
is the negative (mirror) curvature region.

4 The poloidal dependence of the (0, 0) mode is effectively determined by
neoclassical theory [39] whereas its flux-surface average is determined by the
transport equations [16].
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figure 1 because the shearing rate for the global simulation has
doubled. In detail, figure 2 shows the turbulent energy fluc-
tuations (frame a) atop the effective density-gradient scale
length (frame b) and global energy flux (frame c). As before,
the flux profile was obtained by reconstruction using radial
wavenumbers p 4∣ ∣ . Even at this larger shearing rate, no
statistically significant transport reduction is observed. We also
clarify that, in figure 2, the green shaded region corresponds to
the positive shear domain. In this domain, the gradient scale
length varies significantly: from k 1.5 4.5D

T .

3.2. Nonlinear global simulations with kinetic electrons

To avoid the possibility of misleading results due to the
(physically inaccurate) adiabatic electron model, we carried
out a second series of simulations with gyrokinetic deuterium
and gyrokinetic electrons ( =m m 3670eD ). A much smaller
timestep, D =c a t 0.005s( ) , was required. The simulations
were electromagnetic with a small value of b = 0.05%e,unit .
Collisions were implemented using the Sugama [42, 43]
operator with self-consistent collision rates n =a c 0.1s ee( )
and n = ´ -a c 0.165 10s DD

3( ) . Radial and binormal reso-
lutions were unchanged from the previous section. Six local
simulations and one global simulation was carried out.
The local simulations spanned the range k 2.8 3.3D

T .

The global simulation had k k= = 3eD
T T and curvatures

= =s s 0.015eD
T T . The result—shown in figure 3—once again
demonstrates surprisingly close agreement between local and
global fluxes in all transport channels with no evidence of
profile curvature stabilization.

4. Discussion and summary

Using a novel wavenumber-advection algorithm, we have
shown that nonlocal profile curvature can be implemented
with spectral accuracy in gyrokinetic turbulence simulations.
This approach represents an alternative methodology for
global gyrokinetic simulation, with the lower cost and higher
accuracy of local simulation algorithms. Using this high-
accuracy method, we have demonstrated that, for a well-stu-
died test case, the effect of temperature-gradient curvature is
below the statistical threshold of detectability for experi-
mentally-relevant values of curvature. Whether this result can
be generalized to more realistic experimental parameters is a
question for future inquiry.
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