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Abstract
In this work, an improved version of the CarMa code is presented, called CarMa-D, for the analysis
of resistive wall modes (RWMs) in fusion devices, simultaneously considering the effects of
volumetric three-dimensional conducting structures, plasma dynamics, toroidal rotation or drift-
kinetic damping. Unlike static CarMa, CarMa-D does not rely on the simplifying assumptions such
as neglecting the plasma mass, toroidal rotation and kinetic damping. The new coupling strategy is
based on matrix-based Padé rational functions approximation of plasma a response. The arising
mathematical model is formally equivalent to the original CarMa model, but with a higher number of
degrees of freedom to model the dynamics of the plasma. CarMa-D overcomes the main limitations
of the original CarMa, in particular: (i) the massless assumption for the plasma is removed, allowing
modeling of global modes growing both on ideal kink time scales and in the typical RWM growth
rate regime, with a suitable treatment of the model; (ii) the effects of toroidal plasma flow and drift
kinetic damping can be included into the new model, providing a powerful tool to study macroscopic
phenomena where both plasma dynamics and 3-D conducting structures play important roles.

Keywords: coupled problems, linear MHD stability, resistive wall modes, eddy currents, 3-D
conductors

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the most stringent restrictions to reach high plasma per-
formances in fusion devices is given by external ideal MHD
modes of low toroidal mode number n [1, 2], driven either by the
plasma current or pressure. These instabilities produce magnetic
field perturbations, which induce stabilizing image currents in the

metallic structures placed around the plasma. Such image cur-
rents, flowing inside the resistive wall, reduce the mode growth
rate from the Alfvén time scale (microseconds) to the char-
acteristic time of the passive conducting structures (the so called
wall time, i.e. the penetration time of the perturbed magnetic field
through the wall). This time ranges from several milliseconds for
the existing devices to about 0.3 s for ITER [3, 4]. The residual
kink instability is called resistive wall mode (RWM), which
grows at much slower time scale with respect to the original ideal
kink, opening to the possibility of stabilization with magnetic
feedback.

It is well known that the three-dimensional characteristics of
conducting structures, as well as the geometry of feedback coil
system, play an important role in determining the mode
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dynamics [5]. It is therefore important to implement modelling
tools that take these characteristics into account. Many different
strategies have been applied to tackle active control of RWMs.
Both experimental and modelling examples can be found on a
variety of Tokamak devices [6–9], and extensions of the virtual
shell concept for stabilization of multiple RWMs have been
applied to reversed field pinch experiments as well [10–13].

The CarMa code [14, 15] is a computational tool developed
for the purpose of studying RWM instabilities coupled with
conducting structures by self-consistently interfacing the CAR-
IDDI code [16, 17] with the MARS-F code [18]. CarMa takes
rigorously into account the real geometry of conducting struc-
tures, such as the thickness of the conductors. Many other tools
have been developed with similar purpose [19–23], but mainly
using a thin wall approximation [24] for the passive conductors.
The CarMa code overcomes this assumption, taking advantage
of a volume integral solution of the eddy current problem pro-
vided by CARIDDI. This way, it is possible to evaluate the
effect on RWMs of conductors in which the penetration depth is
comparable with their width [25].

CarMa has been successfully used in existing devices,
such as JET [26] and RFX-mod [5], with applications to
RWM control modelling [27] and control system optimization
[28]. Predictive simulations have been carried out for future
devices as well, such as JT-60SA [29] and ITER [25, 30, 31].
However, the coupling strategy behind the CarMa code suf-
fers of certain limitations: the main one is the assumption of
static plasma response to external magnetic field perturbation,
the so-called massless approximation. This means that the
plasma inertia and any associated Alfvén-wave-like phe-
nomena are neglected on the time scale of interest [32].

This work reports an essential improvement that we have
made to CarMa. This consists in abandoning the massless
approximation and implementing a proper treatment of the
plasma dynamic effect, by introducing matrix based rational
function approximation for the plasma response. The new tool
allows self-consistent coupling of magnetic feedback with plasma
dynamic effects such as the plasma toroidal rotation and the drift-
kinetic damping on the RWM. This latter aspect in particular
allows coupling with the MARS-K code [33]. The improved
version of the code is named CarMa-Dynamic, or CarMa-D. The
paper is organized as follows. Section 2.1 briefly summarizes the
original CarMa code, reporting the key equations of the coupling
strategy. This is followed by section 2.2 describing CarMa-D,
where details of the matrix based rational interpolation of the
plasma response are reported and the resulting mathematical
model is formulated. In section 3, the new code is tested against a
n=1 kink instability for a circular shaped plasma. Conclusions
and final remarks are reported in section 4.

2. Description of models

2.1. Standard CarMa coupling based on static plasma
response

The CarMa code is based on the control surface concept to
self-consistently couple a linear MHD solver (MARS-F [18])

to a 3-D code for the computation of eddy currents in the
metallic structures surrounding the plasma (CARIDDI
[16, 17]): a solid theoretical formulation of the coupling
procedure can be found in [14].

The equilibrium is assumed to be toroidally symmetric:
the region of space occupied by the plasma in its reference
equilibrium is called Vp and is enclosed by a suitable coupling
surface Se, which does not intersect neither the plasma
boundary nor the conducting structures, and does not enclose
any conducting structures inside the surface (see figure 1 for
the reference geometry). This coupling surface is the key
feature of CarMa coupling strategy: the electromagnetic
effects of the plasma, seen from the external environment, is
described as produced by an equivalent current density jeq

flowing on the coupling surface [34].
The most important assumption at the base of the

aforementioned coupling procedure is that the plasma is
assumed to be static, i.e. the plasma mass is neglected
(massless approximation) and no toroidal flow is considered
(plasma equilibrium fluid velocity =V 00 ). Under this
hypothesis, the governing equations inside the plasma volume
Vp are single fluid, linearized MHD equations:

» - + ´ + ´J B B Jp0 , 11 1 0 1 0 ( )
   

x x= -  - G p P P , 21 0 0· · ( )
 

x=  ´ ´B B , 31 0( ) ( )
  

m =  ´J B , 40 1 1 ( )
 

=  B0 , 51· ( )


where P is the plasma pressure, B

is the magnetic flux den-

sity, J

is the current density, x


is the plasma displacement and

Γ is the specific heat ratio. The subscript 0 is for equilibrium
quantities, while 1 means the first order variation. With
respect to the usual formulation of the single-fluid ideal MHD
equations, the terms related to plasma mass have been
neglected. The equations for outside vacuum region Ve

bounded by the surface Se are:

 ´ =B 0, 61 ( )


 =B 0. 71· ( )


Figure 1. Reference geometry.
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At this point, the components of the perturbed magnetic
field normal and tangential to the coupling surface Se are
expanded in poloidal and toroidal Fourier harmonics. For the
mode analysis, only one specific toroidal harmonic comp-
onent (e.g. n= 1) and a suitable spectrum of M poloidal
harmonics is considered. It is clear that, in principle, an
infinite number M of poloidal harmonics is required: for a
realistic implementation only a finite number M is chosen,
high enough to ensure the desired accuracy for a given shaped
equilibrium. The number of harmonics has been found per-
forming a convergence study on the eigenvalue. In the next
part of the work, the lowercase letter (i.e. b) will be used for
quantities defined in Fourier space.

The key steps developed in [14], and here briefly
reported, give the relations needed to compute the plasma and
external contribution, respectively bN

pla and bN
ex, to the total

perturbed magnetic field bN , that are normal to the coupling
surface Se. In particular, the plasma contribution is given in
terms of equivalent surface current density jeq on the coupling

surface instead of bN
pla:

m= - =-j K K b Fb , 8eq N N0
1( ˜ ) ( )

where K and K̃ are defined such as =b KbT N and =b KbT N
˜ ˜ ,

where the tilde means a vacuum quantity (i.e. without
plasma). This mean that K is the matrix mapping the normal
field bN imposed on Se to the tangential field bT produced by
the plasma, and K̃ is obtained imposing the same bN on Se,
but solving vacuum equations (6)–(7). From their combina-
tion the matrix F can be obtained, which gives, for a certain
perturbation bN on Se, the response of the plasma in terms of
equivalent surface current density. These relations have
dimension M×M.

The second key relation involves bN
ex, the external

contribution (due to the passive conductors and the feedback
actuators) to the total perturbed magnetic field:

=b Wb , 9N N
ex ( )

where W is the M×M static relation which provides bN
ex

starting from the total field bN .

Since we are interested in the study of the RWMs sta-
bilization, the external perturbation bN

ex comes from both
excitation coils and the eddy current induced inside the
conducting structure by the mode itself. The computational
problem in the conductors outside the coupling surface is
treated through an integral formulation [16], which assumes
as primary unknown the current density in conducting
structures. The outcoming equation for the eddy current
dynamics is:

+ = - +L
i

Ri
u

Dv
d

dt

d

dt
, 10( )

where i represents the eddy currents, R and L are the resist-
ance and self-inductance matrices of the passive conductors,
respectively, D is an incidence matrix between the nodes
where the voltage is applied and the edges mesh elements, u
is the magnetic flux produced by the plasma and linked with
the passive conductors, therefore - ud dt is the voltage

induced by the plasma evolution and v is the vector of vol-
tages applied to the feedback coils.

The suitable manipulation of (8) and (9) allows to write
the plasma contribution ud dt in equation (10) in terms of the
so called plasma response matrix X , which can be considered
as a modification of the inductance operator L:

+ + =L X
i

Ri Dv
d

dt
11

L*

( ) ( )  

here L* is the perturbed inductance operator which takes into
account also the plasma contribution in the eddy current
equation.

It is worth noting that X can be defined only with the
assumption of inertia-free plasma, the first important
assumption behind this coupling scheme: this is reasonable if
we are interested in analyzing phenomena which are orders of
magnitude slower than Alvén timescale. This is the case of
the typical RWM regime, in which the growth/damping rate
has the same order of magnitude as the wall characteristic
time, a common quantity for the study of RWMs stabi-
lity [35].

The other assumption is that a fluid description is
adopted, i.e. no kinetic damping physics is considered. If the
damping physics resulting from the plasma flow and the drift
kinetic resonance effects has to be considered, or, conversely,
if the dynamical effects play a crucial role, the massless
approximation is no longer suitable. In the following, some
specific cases will be discussed in which the massless
approximation is not valid and hence a suitable extension of
the procedure is needed.

2.2. New CarMa-D coupling based on dynamic plasma
response

2.2.1. Dynamic plasma response and matrix-based rational
function approximation. The inertia-free approximation,
from the point of view of the matrix K already introduced
in Subsection 2.1, leads to a static relation between the normal
and tangential components of the perturbed magnetic field on
the coupling surface. When the plasma is close to the ideal-
wall beta limit, or when the plasma flow effects are important,
such assumption is no longer valid, and all the quantities
involved in the plasma response matrix computation in
section 2.1 should depend on the dynamics of the perturbation
field, hence on the plasma dynamics. Thus, working in the
Laplace domain, system (1)–(5) can be written as [36–38]:

r

r f

+ W = - + ´ + ´

- W ´ + W 

V J B B J

z V V

s in p

R2 , 12

1 1 1 0 1 0

1 1
2

( )
[ ˆ ( · ) ] ( )

    

 

+ W = -  - G V Vs in p P P , 131 1 0 0 1( ) · · ( )
 

f+ W =  ´ ´ + W B V B Bs in R , 141 1 0 1
2( ) ( ) ( · ) ( )

   

m =  ´J B , 150 1 1 ( )
 

=  B0 , 161· ( )


where s is the complex Laplace variable, corrected by the
Doppler shift Win , Ω is the plasma rotation frequency along
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the toroidal direction f̂, R the plasma major radius, ρ is the
unperturbed plasma density, and ẑ the unit vector in the
vertical direction. Other quantities have already been defined
in section 2.1. The set of equations (12)–(16) are the full set
of linearized MHD equations, written in term of perturbed
velocity V , in which the plasma inertia is not neglected.

Drift-kinetic effects are included in the MHD model
through the equation involving the perturbed kinetic pressure
tensors [33]:

= + + -^bb bbp p pp I I , 17ˆ ˆ ( ˆ ˆ) ( )

where p is the pressure tensor, p is the scalar pressure
perturbation, p and p⊥ are respectively the components of
the kinetic pressure perturbations parallel and perpendicular
to the equilibrium magnetic field, I is the unit tensor and
=b B Bˆ ∣ ∣. The full pressure tensor p is self-consistently

included into the MHD formulation by replacing the term p
the momentum equation (12).

From the aforementioned considerations it follows that, if
the plasma mass is taken into account, a certain dependance
of the matrix K on the complex Laplace variable s is
expected, giving rise to a dynamic mapping K s( ). From a
formal point of view, the matrix K s( ), which has now to be
considered a matrix function, can be computed as done in
section 2.1. To this purpose, the system of equations (12)–
(16) written in a reformulated way [36] and solved for
frequency dependent boundary conditions b sN ( ) on the
coupling surface:

=
=

Ux Ax
b b
s

s
, 18

N S Ne

⎧⎨⎩ ∣ ( ) ( )

where x is the vector of unknowns, and the matrices U , A are
obtained through numerical discretization of the differential
equations (12)–(16) [39].

This means that equations (8) and (9) become:

m= - =-j K K b F bs s , 19eq N N0
1( ( ) ˜ ) ( ) ( )

=b W bs , 20N N
ex( ) ( )

where W Fs s,( ) ( ) are now matrix-valued transfer functions
that describe, together, the plasma response to externally
applied magnetic field perturbation.

The arbitrary dependence of the plasma response with
respect to the perturbation frequency can be treated as a
dynamical linear system: equations (8), (9) and (10) are
written showing the explicit dependence of the response
matrices with the respect of s. Assuming vanishing initial
conditions we obtain:

+ + =

= =
=

Li Ri Mj Dv

b W b W Qi
j F b

s s

s s
s

, 21
eq

N N
ex

eq N

⎧
⎨⎪

⎩⎪
( ) ( )
( )

( )

where the matrix M is the mutual inductance between the
passive conductors and the plasma equivalent surface current,
and the matrix Q maps the eddy currents into the perturbed

magnetic field normal to the coupling surface Se. Every entry of
the matrices F s( ) endW s( ) is a scalar function of the variable s.

This system of equations describes the coupled problem
of the plasma response to external field perturbation together
with the eddy current equation, without any assumption of
neglecting the plasma mass. It would be desirable to have an
analytic relation for the matrix functionW s( ), F s( ). However,
in this work, the problem is addressed in a numerical way,
looking for a suitable set of matrix-based interpolating
functions. For this purpose, we recall a result already proved
in [40] for cylindrical geometry, stating that the plasma
response is a rational function, also called Padé interpolation,
of the complex variable s. The Padé approximation, which
has been widely adopted in many fields as a model reduction
technique, has been used also for representing the plasma
response for feedback stabilization of RWMs [6, 36].

The Padé approximant for F Ws s,( ) ( ), are matrix-based
functions of s, defined as:

=
å

å +
=

å

å +
=

=

=

=

F
A

B E
W

C

D E
s

s

s
s

s

s
. 22i

k
i

i

i
k

i
i

i
k

i
i

i
k

i
i

0

1

0

1

( ) ( ) ( )

where E is the identity matrix and A B C D, , ,i i i i are the
matrix coefficients of the interpolation of dimension M×M.
Another possible solution can consider directly the product

=P F Ws s s( ) ( ) ( ) for the rational interpolation:

=
å

å +
=

=

P
A

B E
s

s

s
. 23i

k
pi

i

i
k

pi
i

0

1

( ) ( )

Since the relations required to obtain the matrix coefficients
are the same for (22) and (23), in the following part of the
section only the relations for P s( ) are considered. Thus for
simplicity the subscript p of coefficients A B,ip ip of
equation (23) are neglected.

With this approach, the plasma response is approximated
through a matrix based rational interpolation of the reference
one, computed starting from MHD equations (12)–(16).
Dealing with an interpolation problem means that the
coefficients Ai, Bi have to be computed starting from the
knowledge of the matrix function P s( ), which has to be
interpolated on a certain number of frequencies si (the so-
called basis points). For a given degree k, the coefficients of
(23) require the choice of +k2 1 basis points. These points
consist in a suitable set of complex frequencies chosen along
the complex plane, and used as input frequencies of the
forcing problem (18): this means that, given +k2 1 values of

s w= +s ii i i as complex excitation frequency, for each si the
plasma response P si( ) has to be computed solving the MHD
kinetic-hybrid equations (12)–(16) running MARS-K. This is
one of the main differences with the static CarMa code, in
which the computation of the (static) plasma response has to
be computed just once for vanishing excitation fre-
quency s 0∣ ∣ .

Among all possible sets of basis points, a desirable
choice can be to force the interpolant to match the reference
function P s( ) for two particular frequencies:
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• =s 0∣ ∣ , to match the static response

= =A P s 0 240 ( ) ( )

with this particular choice, the coefficient A0 is the same
matrix for the original CarMa code;

•  +¥s∣ ∣ , to match the response at infinite frequency:

= =
+¥

-
¥P B A Pslim 25

s
k k

1( ) ( )
∣ ∣

the remaining -k2 1 coefficients A B,i i can be obtained by
performing -k2 1 times the response computations with
MARS-F/K for different values of s. In particular, if we write
a = - ¥P Ps s( ) ( ) and b = -P Ps s0( ) ( ) the following
linear system with matrix-based unknowns can be casted:

a a

b b

- -

- -

=

-

- -

- -

B B A A

P P

P P

E E

E E

s s s s

s s s s

s s s s

s s

s s

s s

.. ..

...

...

...

...

...

... 26
Z

R

k k

k k

k k

k k

1 1 1

1 1 2 2

1
1

1 1
1

2

1 1 2 2

1
1

2
1

1 2

1 2

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

[ ]

( ) ( )
( ) ( )

( ) ( )

[ ( ) ( ) ] ( )

 

 

  

  

which can be solved by inverting the matrix Z. It is worth noting
that the matrix Z can be very ill-conditioned, or even singular to
machine working precision. This rank deficiency can happen if
the information in the pairs Ps s,i i( ( )) are linearly dependent,
and this can be due to several reasons. One possible case is that
the plasma response is almost constant for all the range of
frequencies, and this is the case where the massless approx-
imation holds and the static CarMa coupling strategy should be
properly used. Another possible issue can be a non appropriate
choice of the basis points, that could be erroneously placed in a
‘flat region’ of the plasma response giving rise to a set of linearly
dependent pairs Ps s,i i( ( )).

From a purely formal point of view, the desired interpola-
tion degree k can be arbitrarily high. However, the work
described in [40] shows analytically, for a cylindrical plasma,
that the system exhibits second order dynamics. In addition to
this, the higher the interpolation order k is, the worse is the
conditioning of the matrix Z, which can compromise the
computation of the coefficients A B,i i. This happens because,
when the interpolation order k is too high in comparison with the
system dynamics, there is not enough information on the data
from the MHD computations to obtain the coefficients.

2.2.2. Frequency dependent coupling scheme. The
aforementioned matrix-based rational interpolation functions
are used to improve the coupling strategy used in the CarMa
code in the following. The description is presented only for
the interpolant P s( ) of equation (23), while the mathematical
procedure for the separate interpolation of F Ws s,( ) ( ) using

equations (22) follows exactly the same steps and can be
found in appendix.

Inserting equation (23) into in the system of
equations (21) leads to:

+ + =

= å å
-

Li Ri Mj Dv

j B A Qi

s s

s s
27

eq

eq i
i

i i
i

i
1

⎪

⎪

⎧
⎨
⎩ ( ) ( ) ( )

this system can be written, through the definition of the block
matrices L R,ai a, as a kth order system of differential
equations in the Laplace domain, as:

- + + - +

+ - + - =

A Q B
i
j A Q B

i
j

L M
A Q B

i
j

R
P Q E

i
j

Dv

s s

s

0 0 0 0

0
0

... ...

28

L x L

L R u

k

k k eq

i

i i eq

eq eq1 1 0

ak ai

a a1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )



     

     

or equivalently, with a compact formalism:

å + =
=

L x R x us , 29
i

k
i

ai a
1

⎛
⎝⎜

⎞
⎠⎟ ( )

where =x i jeq
T[ ] is the augmented state vector and

=u Dv 0 T[ ] is the input quantities.
It is well known that a system of differential equations with

degree greater than one can be written as a system of the first
order equations by performing a suitable change of variables:

=
=

=-

x y
y y

y y

s

s n n

1

1 2

1



and the new system becomes

+

-

-
=

-

- -

E
E

L

x
y

y

E

E
R L L

x
y

y

u

s

0
0 0

0

.

L y

R u

k k

a ak k

1

1

1 1

1

1

*

* *

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥




  


  



  

 

With obvious redefinitions, the new systems becomes:

+ =L y R y us 30P* * * ( )

which is formally equivalent to equation (15)a in [14], that is the
original CarMa code, but with a higher number of states to take
into account the plasma dynamics. In particular, both R L,* *
are sparse matrices, and their dimensions are + ´k M N D3( )

+k M N D3( ), with N3D the number of discrete unknowns of the
eddy current problem.

As already discussed, if the previous approach is used to
study a Resistive Wall Mode in the so-called typical RWM
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regime, e.g. if the instability growth time has the same order
of magnitude of wall time, the matrix L* in equation (30) can
be singular to the machine working precision. In the static
limit, when the growth rate is small if compared to the wall
time, the matrices A B,i i in equation (28), with >i 1, are all
zeros. This means that the matrix L* is rank deficient, and the
eigenvalues of the system- -L R1* *( ) , which are the growth/
damping rates of the RWM, cannot be computed anymore
because L* is not invertible. This issue can be overcome
exploiting a suitable treatment of the problem. To this
purpose we consider that the matrix R* is always invertible,
because it is the composition of the identity matrix with Ra,
which always has a full rank. A possible solution to this
problem is to compute the eigenvalues of the system
- -R L1* *( ) , to obtain the growth/damping time of the
instability rather than the growth/damping rate: the growth
rate then follows as the inverse of the growth time. This is one
of the strengths of the proposed approach, that is allowing the
treatment of global modes both on ideal kink time scales and
in the typical RWM growth rate regime with a general
strategy, regardless the possible presence of singular matrices.

It can be proved that an analytical relation is available for
the block inversion of - -R 1*( ) , avoiding the numerical
computation for the entire inverse matrix and limiting it to
blocks - -R La ai

1( ) . This latter step is not computationally
expensive, because the matrix Ra is sparse, as can be seen
from equation (28). It follows that:

= -

-

-

- -
-

-

R

R L R L R
E

E

31

a a k a

1

1
1

1
1

1

*

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( ) ( )





therefore, the matrix - -R L1* *( ) becomes:

- =- -

-

-

- -
-

-

R L

R L R L R L
E

E

. 32

a a a ak a k

1

1
1

1
1

1

* *

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
( ) ( )





As will be shown in the next section, the matrix
- -R L1* *( ) is almost sparse, except for a square block on
the upper left corner. This block is related to the -R La

1
1 in

(32), which is the sub-matrix related to the static CarMa
system. This means that the number of non-zero elements of
the system matrix is almost due to the passive block, and
therefore, even if the number of unknowns is much higher,
the computational effort to find the eigenvalues does not grow
substantially if the problem is solved through a suitable sparse
linear algebra toolbox.

With this formalism, in case of static response, the
resulting eigenvalues of (32) would be all zeros, corresp-
onding to the instantaneous static response, except for the N3D

eigenvalues of the static CarMa matrix just mentioned,
therefore giving exactly the inverse of the eigenvalues of the
static CarMa system.

3. Numerical verification of models

The CarMa-D model has been tested on a reference case in
order to show its validity and effectiveness. The benchmark
case is a stability analysis of a tokamak plasma with circular
cross section (figure 2(a)), with major radius of R0=2 m,
minor radius of a=0.4 m. The equilibrium pressure and
safety factor profiles are the same of [14]. The coupling
surface and the resistive wall shape are also plotted in
figure 2(a). A circular resistive wall with thickness δ=5mm
placed at aw=1.3a. The penetration time of the n=1
magnetic field perturbation is τw=4.5 ms. Since the primary
goal of this work is the validation of CarMa-D with MARS-
K, which uses the thin-wall approximation, only one mesh
element along the shell thickness is considered.

The validation of CarMa-D has been performed for two
different damping physics mechanisms. The first is the par-
allel sound wave damping model (SD), described in detail in
[41, 42], which uses a numerically adjustable coefficient to
tune the strength of the damping effect. The second damping

Figure 2. Overview of the benchmark cases. (a) cross section of circular plasma (blue), coupling surface (magenta), 2-D trace of the resistive
structures. (b)–(c) real (red) and imaginary (blue) parts of the eigenvalue, normalized by the resistive wall time tW , for the two different
damping mechanism considered.
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Figure 3. Plot of the matrix P s∣ ( )∣ at different values of Laplace variable s for the circular equilibrium with sound wave damping.

Figure 4. Comparison, for the two major entries of the matrix function P s( ) (respectively entries P s6,6 ( )( ) and P s9,9 ( )( ) ), between reference
(solid) and 3rd order rational interpolant (circle). Both real (blue) and imaginary part (red) are reported. Three different sets of basis points are
considered: complex (left), real (middle) and imaginary (right).
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model is the self-consistent, full toroidal drift kinetic-model
(KD), presented and validated in [33]. Figure 2(b)-(c) reports
the MARS-F/K computed RWM eigenvalues assuming the
fluid and drift-kinetic models respectively, while scanning the
plasma rotation frequency wE . The latter is assumed to be a
constant along the plasma minor radius. CarMa-D computa-
tions will be benchmarked against these results.

For both damping mechanisms, validation of CarMa-D
follows the same procedure as in [43], i.e. performing a scan
of the resistivity η of the vessel. In the limit of infinite
resistivity, the no-wall growth rate of the ideal kink mode
must be recovered, which has the same order of magnitude of
Alvénic timescale, and therefore strongly depends on the
dynamical effects. The next subsections show the results of
this analysis for both damping mechanisms.

3.1. RWM with sound wave damping (SD)

As further proof that the plasma response to external magnetic
field perturbation should depend on the frequency of the
perturbation, figure 3 shows the matrix function P s( ), com-
puted for different values of s. As was already said, P s( )
gives, for a certain perturbation bN on Se, the response of the
plasma in terms of equivalent surface current density. In this
case, the matrix has been computed using, as boundary con-
ditions, the time-varying normal field b sN ( ). For the analyzed
case, the complex frequency, normalized by the Alfvén fre-
quency wA, varies in the range w Î ´ ´-s 1 10 , 1 10A

6 6∣ ∣ [ ].
In figure 3 only some frequencies have been shown. As can
be seen, the matricial function is clearly not constant, thus for
this case the assumption of static response is not appropriate.

As already said, the function P s( ) has to be interpolated,
thus the reference P s( ) has to be evaluated on a certain
number of frequencies si through equations (12)–(16). The
choice of these frequencies, the so-called basis points, can be

done in several ways or along different directions on the
complex plane. To test different configurations, we have
considered three different paths along the complex plane
where the basis points are placed, named respectively com-
plex (s=σ+iω, imposing σ=ω for the computations), real
(s=σ) and imaginary (s=iω) cases.

In order to test the effectiveness of rational interpolation, the
first important step is to understand which set of basis point is
the most suitable to be chosen as complex interpolation fre-
quencies. To do so we can compare the reference values of P s( )
with its interpolant. The function P s( ) is a matricial function of
s, meaning that every entry p sm m, ( )( ) is a scalar function of s. On
the other hand, for a chosen si=γi+iωi, the quantity P si( ) is a
M×M matrix. Figure 4 shows the results for 3rd order inter-
polant of P s( ) (only the two major entries of the matrix function
are shown) for the three different set of basis points. This
benchmark results show that the real set of basis points is much
more effective than the other sets of points. This is due to the
fact that the real part of the unstable eigenvalue is several times
larger than the imaginary part, as can be seen in the rotation scan
results reported in figure 2(b). Choosing to interpolate the
plasma response along the real axis allows to obtain more
information then the other choices of basis points. A comparison
of the reference P s( ) with respect to the interpolated one is
important to understand if the set of basis points is suitable, and
if the coefficients A B,i i have been computed correctly.

As already said, to assess the capabilities of CarMa-D, a
scan of the resistivity of the conducting wall is performed.
Since the real data gives the best results, the detailed results of
the resistivity scan are reported only for this case, in figure 5.
These plots compare the CarMa-D results of the different
interpolation approaches presented in section 2.2.1, more
precisely interpolations of 2nd order for F Ws s( ) ( ) and 3rd
order for P s( ). Results from st1 order interpolation on
F Ws s( ) ( ) are also reported, being the first version of the

Figure 5. Results of the scan of wall resistivity for the fluid case. Above: real (a) and imaginary (b) part of the eigenvalue and error (c);
logarithmic scale.
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improved CarMa code presented in [43]. Selected results from
figure 5 are also reported in table 1, in order to give a
quantitative comparison of the CarMa-D accuracy.

Figure 5(c) shows the relative error of the CarMa-D
results compared to the reference MARS-F results. The
relative error is defined as:

g w g w
g w

=
+ - +

+


i i

i
100 . 33

ref

ref
%

∣( ) ( ) ∣
∣( ) ∣

( )

Results clearly show that interpolating directly the function
P s( ) gives much more accurate results that interpolating
F Ws s,( ) ( ) separately, but a higher order, i.e. 3rd order for
this equilibrium, is required. Specifically, the 3rd order
interpolation on P s( ) gives an error around 1% for all the
range of resistivity.

A straightforward way of further improving the accuracy
would be to increase the order of interpolation. This should be
true from a theoretical point of view, but there are numerical
issues that gives an upper bound to the interpolation order.
Indeed, increasing k in equation (23), the condition number of
the matrix Z in equation (26) would rise simultaneously, even-
tually becoming too high to give reliable coefficients for the
interpolation. Further comparison had shown that the accuracy is
worse if the interpolation is increased from 3rd to 4th order,
showing that the 3rd order interpolation of P s( ) is the best
compromise between proper dynamic description and numerical
accuracy. For the same considerations, the best results for
F Ws s,( ) ( ) are obtained with 2nd order interpolation.

To support the analysis of the computational effort in
treating the matrix (32), figure 6 shows its sparsity pattern for
the k=3 interpolation degree on P s( ). The matrix dimen-
sions are 5988×5988, and the non-zeros are » ´4 106,
while for standard CarMa the non-zeros are » ´3.9 106.

3.2. RWM with drift kinetic damping (KD)

The same validation procedure reported in figure 4 has been
repeated also for the drift kinetic model, showing exactly the
same outcomes. As for the previous test case, the real set of basis
point again turns out to be the most effective choice. For this
reason, the scan of wall resistivity has been performed only for
the real set of basis points, and can be seen in figures 7(a)–(c). On
the other hand, the effectiveness of interpolating directly P s( )
rather than F Ws s,( ) ( ) separately seems no longer clear for the
this benchmark case: figure 7(c) shows that both strategies give
very good results. Figure 8 compares the eigenvectors, i.e. the

spatial pattern of the eddy currents which would be induced in
the conducting structures by the mode evolution, with both
poloidal and toroidal components computed by MARS-K and
CarMa-D, assuming 3rd order interpolation on P s( ) and real set
of basis points. Excellent agreement of the mode eigenvectors is
obtained. It is worth noting that the circular cross section and the
relatively simple shapes of the current eigenfunction are not
representative of modern fusion devices (e.g. ITER), but are used
here are simple examples; of course, the capabilities of the code
would allow the treatment of more realistic geometries. Table 2
compares the eigenvalues for the RWM case, with η/ηref=1
(left), and the ideal kink case, with η/ηref=10

5 (right). The
accuracy both for the RWM and for the ideal kink is excellent.

The results reported in figures 7–8 and table 2 are obtained
assuming relatively fast plasma flow (ωA/ωA=10−2). We also
report results for a case with slow plasma flow. As shown in
figure 2(c), the kinetic effects (thermal particle precessional drift
resonances with the mode in this case) occur strongly at very
slow rotation frequency [44]. Without going through a detailed
investigation of various kinetic damping physics, which is
beyond the aim of the present work, it is interesting to test the
effectiveness of CarMa and CarMa-D for the particular case,
with ωE/ωA=6×10−4 for two different values of wall resis-
tivity. Table 3 shows that static CarMa erroneously predicts a
stable mode, while CarMa-D is very accurate for both resistivity

Table 1. Growth rates normalized by the wall time τw=4.5 ms for
sound wave case with ωE/ωA=1×10−2 for two different wall
resistivities.

η/ηref=1 η/ηref=105

Mars 2.08 + 0.24i 123.8 + 42.3i
CarMa static 2.05 + 0.23i 204 776 + 22 793i
CarMa 1st ord. on F Ws s( ) ( ) 2.03 + 0.26i 96.4 + 64.3i
CarMa 2st ord. on F Ws s( ) ( ) 2.10 + 0.25i 125.3 + 38.6i
CarMa 3rd ord. on P s( ) 2.08 + 0.24i 123.9 + 44.0i

Figure 6. Sparsity pattern of matrix defined in equation (32) for
3rd order rational interpolation. The matrix dimensions are 5988×
5988 and the total number of non-zeros are » ´4 106.

Table 2. Growth rates normalized by the wall time τw=4.5 ms for
drift kinetic case with ωE/ωA=1×10−2 for two different wall
resistivities.

η/ηref=1 η/ηref=105

Mars 1.12 + 0.59i 260.5 + 37.3i
CarMa static 1.20 + 0.65i 120 226 + 65 324i
CarMa 1st ord. on F Ws s( ) ( ) 1.22 + 0.67i 187.7−6.5i
CarMa 2st ord. on F Ws s( ) ( ) 1.12 + 0.60i 271.1 + 34.0i
CarMa 3rd ord. on P s( ) 1.12+ 0.59i 267.6 + 36.0i
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values, showing the robustness of the approach from the typical
RWM regime to the ideal kink regime. It is worth nothing that,
for η/ηref=1, static CarMa fails even if the mode is a typical
RWM, as discussed above, and the assumption of neglecting the
plasma inertia should be reasonable.

The capability of CarMa-D is further demonstrated by
considering 3-D conducting structures. The 3-D geometry is
obtained by opening a number of ports on the axisymmetric

Figure 7. Results of the scan of wall resistivity for the fluid case: above: real (a) and imaginary (b) part of the eigenvalue and error
(c); logarithmic scale.

Figure 8. Comparison of eigenvectors computed by MARS-K (black solid) and CarMa-D (red circles) for 3rd order interpolation on P s( ) and
real set of basis points: standard RWM with η/ηref=1 (a) and Ideal Kink with η/ηref=105 (b). The quantities are normalized.

Table 3. Growth rates normalized by the wall time τw=4.5 ms for
drift kinetic case with ωE/ωA=6×10−4 for two different wall
resistivities.

η/ηref=1 η/ηref=105

Mars 0.31−1.12i 261.5+37.49i
CarMa static −0.08−0.98i (−0.08−0.98i)×105

CarMa 3rd ord. 0.26−1.06i 259.13 + 35.25i
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mesh already used for the previous cases. Figure 9 reports results
with the same rotation scan as in figure 2(c) for the kinetic case,
computed with CarMa-D both for the axisymmetric mesh and for
the 3-D mesh, as well as with static CarMa. With the axisym-
metric mesh (red), results given by CarMa-D agree well with the
reference MARS-K data (black). The presence of holes in the
wall leads, in this specific rotation range, to more unstable RWM
[45]. It is interesting to notice that CarMa-D (blue) give less
pessimistic results than static CarMa (green). Moreover, for a
very low toroidal rotation ωE/ωA=5×10

−4, the mode growth
rate predicted by CarMa-D with the 3-D mesh is the same as the
axisymmetric case, because, being the mode growth rate very
small, the amplitude of the eddy current is also small, giving a
weak effect on the mode. With a negligible stabilizing effect,
clearly the geometry of the shell does not influence the mode
evolution. On the other hand, static CarMa erroneously predicts a
stable mode. The imaginary part of the mode eigenvalue is not
strongly affected by the 3-D features of the geometry.

An example of the eddy current pattern corresponding to
the unstable eigenvector for the three-dimensional mesh is
shown in figure 10, where the eddy pattern modification due
to the holes can be seen.

4. Conclusion and discussion

CarMa-D, an improved version of the CarMa code, has been
presented. This upgraded code is capable of self-consistently
taking into account, in addition to the three dimensional
conducting structures, also plasma mass, toroidal rotation and
kinetic damping physics for the study of Resistive Wall
Modes stability. The CarMa-D code can thus also be used to
study ideal kink instabilities. Numerical tests show that,
independent of the damping mechanisms assumed for the
RWM, the new dynamic model recovers well the reference
results provided by MARS-F/K. Furthermore, CarMa-D also
predicts growth rates for the ideal kink instability, for which
the plasma inertia plays an essential role. An example
application of CarMa-D to a circular equilibrium with 3-D
conducting structures shows that the inclusion of the drift
kinetic damping effects in the model obtained by CarMa-D
gives less pessimistic results than what gives the static
CarMa. In the future, the CarMa-D code will be applied to
several cases of interest, such as existing (i.e. ASDEX-U and
MAST-U) and future (ITER and JT-60SA) devices. In part-
icular the code allows to simultaneously take into account
passive (e.g. kinetic damping) and active (e.g. feedback)
RWM stabilizing contributions, with a detailed description of
3-D geometries of active and passive conductors surrounding
the plasma.
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Appendix. Derivation of equation (29) interpolating
separately F ðsÞ;W ðsÞ

The derivation of equation (29) for the case of rational
interpolation separately of F Ws s,( ) ( ) follows the same steps
as for P s( ). Inserting equation (22) into the system of
equation (21) yields:
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This system of differential equations can be straightforwardly
written as equation (29), which consequently leads to
equation (30).
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