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Abstract
Models of magnetohydrodynamic (MHD) equilibia that for computational convenience assume
the existence of a system of nested magnetic flux surfaces tend to exhibit singular current sheets.
These sheets are located on resonant flux surfaces that are associated with rational values of the
rotational transform. We study the possibility of eliminating these singularities by suitable
modifications of the plasma boundary, which we prescribe in a fixed boundary setting. We find
that relatively straightforward iterative procedures can be used to eliminate weak current sheets
that are generated at resonant flux surfaces by the nonlinear interactions of resonating wall
harmonics. These types of procedures may prove useful in the design of fusion devices with
configurations that enjoy improved stability and transport properties.

Keywords: magnetohydrodynamic equilibria, nested flux surfaces, singular current sheets,
rational rotational transform, nonlinear mode coupling

(Some figures may appear in colour only in the online journal)

1. Introduction

We describe a modification of the magnetohydrodynamic
(MHD) equilibrium and stability code NSTAB [1] in order to
study the effect of wall perturbations on resonant flux surfaces
where singular current sheets are often observed. NSTAB (and
our modified version of NSTAB) solves the governing equations

· ( )´ =  =  ´  =pJ B J B B, , 0, 1

where B is the magnetic field, J is the current density, p is the
plasma pressure, and to simplify the notation we normalized the
magnetic permeability to unity. The first equation in (1) is the
basic force balance in the plasma, the second defines the current
density, and the third expresses the solenoidal nature of the
magnetic field.

NSTAB is a fixed boundary code, meaning that the
plasma boundary ¶V of the toroid plasma volume V is

considered to be given with a prescribed shape. NSTAB
equilibria are stationary points of the energy functional [1–3]

⎧⎨⎩
⎫⎬⎭

∣ ∣ ( )ò= -E p dV
B
2

, 2
V

2

which is extremized over solenoidal fields B that have van-
ishing normal flux at the boundary of V. Following [1, 4–7],
an assumption of nested flux surfaces is used in formulating
the model, and the problem is recast as a variational principle
over a class of functions that satisfy this constraint. Although
the assumption of nested flux surfaces provides significant
computational advantages, the price to be paid is that this
assumption can introduce singularities in the solution [8–11],
as will be discussed in some detail.

To implement the constraint of nested flux surfaces the
toroidal flux itself is introduced as an independent variable,
and the variational principle is posed in a fixed computational
domain that is defined in terms of the independent variables
(s, u, v) in a unit cube. Here s is the normalized toroidal flux
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with 0<s<1, and u and v are normalized poloidal and
toroidal angles. Since ·  =pB 0, the pressure is constant on
an ergodic flux surface, and the problem formulation is
completed by prescribing the pressure field p(s) and the
rotational transform ( )i s (see, e.g. [12]) as functions of the
flux label s. The rotational transform ι is a measure of the
average number of poloidal turns a magnetic field line makes
during each toroidal turn around the flux surface. It can also
be expressed as the derivative of the poloidal flux with respect
to the toroidal flux [13].

The singularities in this model tend to occur on so-called
resonant flux surfaces where the rotational transform assumes
rational values, ( )i =s n m. These singularities can be
interpreted as current sheets located at the resonant flux sur-
faces which are present to prevent the formation of islands
that would otherwise develop in an equilibrium without the
constraint of nested flux surfaces [10]. An example of an
NSTAB calculation with current sheets is shown in figure 1,
where the flux surfaces alternately bunch up and spread out
around a resonant surface where ( )i =s 2 3. The (3, 2)
symmetry of the resonance is clear in the cross-sections
of the flux surfaces at four stations around the torus, and
the local distortions occur at points where the Jacobian

( ) ( )¶ ¶x y z s u v, , , , of the mapping from computational to
physical coordinates assumes large or small values. These
local distortions are representative of the tendency of the
equilibrium to allow for magnetic islands, if the constraint of
nested flux surfaces were relaxed [14]. The relation between

the singular current sheet, as reflected in the behavior of the
mapping Jacobian, and the prescribed wall geometry is the
subject of this study, which will be conducted numerically in
a simplified geometry. A detailed theoretical discussion of the
underlying differential equations requires the machinery of
KAM theory [15] which hinges upon the occurrence of ‘small
divisors’ in the problem. These present significant numerical
issues for convergence under mesh refinement; here we will
confine our attention to the numerical treatment of the
underlying discretized model in which the problem of small
divisors is sidestepped by restricting the degrees of freedom
in the angular coordinates [8].

Desirable MHD equilibria with good particle confine-
ment typically feature a large fraction of the plasma volume
with nested flux surfaces, and few, narrow magnetic islands
with correspondingly small regions with magnetic field sto-
chasticity surrounding them. A corresponding NSTAB equi-
librium would exhibit only weak current sheets at resonant
surfaces. In this paper, we explore the possibility of pre-
scribing the shape of the fixed plasma boundary in such a way
that resonant singularities are suppressed. To do so, we have
examined a modified form of NSTAB that is suitable for a
slab geometry, in a doubly-periodic domain that is bounded
by two given flux surfaces. We chose to consider this sim-
plified geometry, corresponding to a topological torus without
the curvature effects of a true torus, in order to avoid com-
plications associated with the magnetic axis [1, 4–6, 16] that
is surrounded by the innermost flux surface in a toroidal
geometry, which represents a coordinate singularity requiring
special numerical treatment. Our work is motivated by the
recent analysis of Weitzner [16], which suggests that one can
tailor the outermost flux surface in order to avoid resonance-
induced singularities. The present study shares many simila-
rities with the recent work of Mikhailov, Nührenberg and
Zille [11], with the following notable differences. Mikhailov
et al remove singularities in true toroidal stellarator equilibria
computed with VMEC [7], as opposed to the slab geometry in
the present work. On the other hand, we will show that we
can adjust the outermost flux surface in order to remove
singularities at multiple resonant flux surfaces, whereas
Mikhailov et al only focused on the removal of a single
singularity. In addition, we demonstrate that the method also
applies to equilibria with pressure profiles with a finite pres-
sure gradient throughout the plasma volume, whereas in their
work based on VMEC equilibria, Mikhailov et al flattened the
pressure profile in the neighborhood of the resonant flux
surface before removing the current sheet through an appro-
priate boundary perturbation.

Our work is also distinct from strategies which modify
the shapes of the coils [17–19] or directly the amplitudes of
the components of the vacuum field [20] to increase the
fraction of the plasma volume which has nested flux surfaces,
and reduce the size of magnetic islands. This line of research
requires free boundary calculations and equilibrium solvers
which do not a priori assume the existence of a full set of
nested flux surfaces. It has long been recognized that a ‘one-
step’ stellarator optimization process, in which one designs a
stellarator by directly designing the coils, can be desirable,

Figure 1. NSTAB computation of four cross-sections of a torus with
aspect ratio A=5. From left to right and top to bottom, the
normalized toroidal angles are v=0, v=1/4, v=1/2 and v=
3/4. The pressure is given by p(s)=0.01 (1−s2)2, and the
rotational transform is ( )i = +s s0.6 0.1 . The observed spacing
of the displayed flux surfaces (contours of constant s) reflects a
singular current sheet that occurs at a resonant flux surface where
( )i =s 2 3, and the surfaces display a corresponding symmetry with
poloidal and toroidal mode numbers (m, n)=(3, 2).
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since engineering constraints can be included quite naturally
in the optimization procedure, and the magnetic field con-
figuration one obtains at the end of the optimization process is
then automatically compatible with reasonable coil shapes.
However, stellarators have been historically designed with
‘two-step’ optimization strategies, in which one first opti-
mizes the stellarator starting from fixed boundary equilibria,
and then, in a second step, optimizes for coils necessary to
achieve such equilibria. The ‘two-step’ method remains often
favored to this day, because free-boundary computations are
more expensive than fixed-boundary computations, and
because it has been empirically observed that it more readily
gives equilibria with a reasonably large set of nested flux
surfaces from the outset. The work we present here is directly
applicable to the ‘two-step’ optimization strategy. Further-
more, as we discussed previously, since we use an equili-
brium solver which assumes the existence of nested flux
surfaces throughout the plasma volume, we do not directly
measure the quality of the equilibria through the approximate
calculation of islands widths and the visualization and mea-
sure of magnetic stochasticity, unlike in [17–20]. Instead, we
estimate the quality of an equilibrium by the smoothness of
the parallel current and the Jacobian of the mapping in the
neighborhood of rational surfaces. Our approach has the
advantage of numerical efficiency and robustness, since
equilibrium codes assuming nested flux surfaces are sig-
nificantly faster and tend to have more robust convergence
properties.

The structure of this article is as follows. In the next
section, we present the formulation for the slab version of
NSTAB, which we have called NSLAB. In the following
section, we derive a linearized model starting from the
NSLAB formulation, in which the singularity at resonant
flux surfaces appears explicitly. We then present numerical
results for the full set of nonlinear governing equations, and
end the article with some conclusions and suggestions for
future work.

2. A slab version of NSTAB: NSLAB

2.1. Governing equations

We describe a modification of the stellarator equilibrium code
NSTAB [1], denoted ‘NSLAB,’ that solves the governing
equations (1) in a topological torus, or slab geometry,
allowing us to avoid dealing with the magnetic axis that
occurs in a toroidal geometry. The physical domain is
assumed to be doubly periodic in x and y, which play the role
of the ‘poloidal’ and ‘toroidal’ angles in this simplified geo-
metry. The fields have periods Lx and Ly, with x=Lxu and
y=Lyv, where  u0 1 and  v0 1. The mapping to
physical space ( )= s u vx x , , is given by

( )
( )[ ( ) ( )] ( )

= = =
+ -

x L u y L v z z u v

R s u v z u v z u v

, , ,

, , , , , 3
x y 0

1 0

where z0(u, v) and z1(u, v) are the coordinates of the lower and
upper flux surfaces, corresponding to s=0 and s=1,

respectively, with R(0, u, v)=0 and R(1, u, v)=1, and
where we follow the dimensionless treatment of the govern-
ing equations used in NSTAB [1], wherein the characteristic
length scale is given by the minor radius. The monotonicity of
R(s, u, v) as a function of s incorporates the assumed con-
straint of nested flux surfaces. In physical space, the flux
surfaces are the graphs of the function z(s, u, v) as a function
of u and v for constant s.

The solenoidal magnetic field ( )s u vB , , is represented in
terms of a Clebsch potential ( )y s u v, , as

( )y=  ´  = +s B BB t t , 4u
u

v
v

where the contravariant basis vectors are

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )





=
¶
¶

= +
¶
¶

+
¶
¶

-
¶
¶

+ -
¶
¶

u
L

z

u
R

z

u

z

u

z z
R

u

t
x

x

z, 5

u x
0 1 0

1 0

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )

=
¶
¶

= +
¶
¶

+
¶
¶

-
¶
¶

+ -
¶
¶

v
L

z

v
R

z

v

z

v

z z
R

v

t
x

y

z, 6

v y
0 1 0

1 0

( ) ( )=
¶
¶

= -
¶
¶s

z z
R

s
t

x
z. 7s 1 0

Herex,y, andz are unit vectors in the x, y, and z directions.
The Jacobian of the coordinate transformation is given by

( ) ( )
( )
·

[ ( ) ( )] ( ) ( )

=
¶
¶

= ´ =

´ -
¶
¶

J s u v
x y z

s u v
L L

z u v z u v
R

s
s u v

t t t

, ,
, ,

, ,

, , , , , 8

s u v x y

1 0

and the contravariant components of B are

( ) ( )

( ) ( ) ( )

y

y

=
¶
¶

=-
¶
¶

B s u v
J v

s u v

B s u v
J u

s u v

, ,
1

, , ,

, ,
1

, , . 9

u

v

We observe that since equation (4) may also be written as
( )y=  ´ sB , we may interpret ψ as the s-component of a

covariant vector potential y= sA , so that the corresp-
onding current density is [ ( )]y=  ´  ´ sJ .

With this representation, the dependent variables in
NSLAB are R(s, u, v) and ( )y s u v, , , which satisfy partial
differential equations that result from the the first variation of
the energy (2),

∭ [ ( ) ( ) ] ( )d y dy d= = +E L L R R s u v0 d d d . 101 2

The Euler–Lagrange equations L1(ψ)=0 and L2(R)=0 can
be written in the form [1]

( ) ( )y =
¶
¶

-
¶
¶

=L
B

v

B

u
0, 11u v

1
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⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

( ) ( )

y

y

=
¶
¶

¶
¶

-
¶
¶

-
¶
¶

¶
¶

-
¶
¶

+ ¢ =

L R
u

B

v

B

s

v

B

u

B

s
p s J 0. 12

s v

s u

2

These equations are expressed in terms of the covariant
components of B,

( )=  +  + B s B u B vB , 13s u v

where

· · · ( )= = =B B Bt B t B t B, , . 14s s u u v v

We note that the current density =  ´J B can be written as

( )= + +J J JJ t t t , 15s
s

u
u

v
v

where the contravariant components of J are

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
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=
¶
¶

-
¶
¶

=
¶
¶

-
¶
¶

=
¶
¶

-
¶
¶

J
J

B

u

B
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J

J

B

v

B

s

J
J

B

s

B

u

1
,

1
,

1
. 16

s v u u s v

v u s

These expressions give us clear interpretations for
equations (11) and (12). Equation (11) expresses the fact that
the force balance condition ´ = pJ B implies that

·=  =J sJ 0s . Equation (12) is the s-component of the
force balance (expressed in covariant form).

We denote by Jp(s, u, v) the quantity

·
∣ ∣ ∣ ∣

∣ ∣ ( )= =
+

= +Jp
J B J B

B B B B
J B
B B

B, . 17
u

u
v

v u
u

v
v2 2

2

In a slight abuse of vocabulary, for the remainder of the
article we will simply refer to Jp as the parallel current,
although the actual parallel current density has instead a
single power of ∣ ∣B in the denominator (see, e.g. section 2.7
of [13]).

We note that the analysis of current sheets is often
facilitated by the use of special coordinate systems, such as
the one developed by Boozer (see, e.g. [13]), in which the
magnetic field lines are straight. Fourier analysis in such
coordinates then reveals that the resonant Fourier comp-
onent of the parallel current is in general the sum of two
singular terms: the first term exhibits a delta-function-like
singularity, and the second term a ‘1/x’ or pole singularity
[11, 13]. These results are useful in interpreting the singu-
larities that we observe in our NSLAB computations;
nevertheless, since our numerical scheme does not employ a
straight field line coordinate system, our observed singula-
rities with nested flux surfaces can differ quantitatively from
these results. Even so, in the slab geometry with small-
amplitude wall perturbations which we mostly focus on
here, our computed parallel current profiles on discrete
meshes tend to resemble delta-function-like profiles at
rational surfaces, and the pole singularities are not

observed. However, we have verified that, for very large
values of β or more distorted wall geometries, such as the
equilibrium shown in figure 2, solutions with pole singu-
larities can be observed with NSLAB. These more complex
cases are beyond the scope of this study, but are the subject
of ongoing detailed analysis, with results to be commu-
nicated at a later date.

Following the normalization for ψ(s, u, v) adopted in [1],
we write

( ) [ ( ) ] ˜ ( ) ( )y p i y= - +s u v u s v s u v, , , , , 18

where ỹ is periodic in u and v. Although ψ is multi-valued,
from equation (4) this representation leads to a single-valued
magnetic field with poloidal and toroidal fluxes determined by
the rotational transform ( )i s . We also note that equation (11)
determines ỹ only up to an arbitrary function of s, which we
specify by requiring the mean Fourier harmonic ˜ ( )y s00 to
vanish.

2.2. Numerical scheme

The nonlinear governing equations (11) and (12) are solved
numerically following the procedure given in [1]. In brief, the
equations are discretized using second-order-accurate finite
differences in s, with a pseudospectral representation in the
angular variables u and v. A staggered mesh in s is employed,
with L2(R) evaluated at nodes, and L1(ψ) evaluated at centers;
this allows a conservative difference scheme with a compact
stencil [5] that can capture singularities over two or three
mesh points, as illustrated in the numerical results below.

A second-order Richardson method is used to solve the
resulting equations iteratively. This scheme can be viewed as
introducing an artificial time t, and solving

( )

( ) ( )

y y
y

¶
¶

+
¶
¶

=

¶
¶

+
¶
¶

=

y ya
t

e
t

L

a
R

t
e

R

t
L R

,

, 19R R

2

2 1

2

2 2

via an explicit-in-time discretization with t=nΔt. The con-
stants aψ and aR are chosen to maintain numerical stability of
the scheme with the time step Δt on the same order as the
spatial mesh, and the coefficients eψ and eR are chosen
dynamically to optimize convergence [21]. In practice, the
right hand sides of equation (19) are preconditioned to
accelerate convergence, and the iteration is actually per-
formed in Fourier space by updating the Fourier coefficients
of R and ψ with respect to the angular coordinates [1].

An example of a numerical solution with a resonant flux
surface computed using NSLAB is shown in figure 2,
demonstrating that the slab geometry also supports singular
behavior similar to that observed using NSTAB. The spa-
cing of the flux surfaces reflects a resonance where ι(s)=1,
and the surfaces display a corresponding symmetry with
poloidal and toroidal mode numbers (m, n)=(1, 1). Further

4

Plasma Phys. Control. Fusion 62 (2020) 044002 E Kim et al



examples will be discussed in more detail in section 4. We
first include a discussion of the singularities present in a
linearized treatment of small amplitude perturbations of a
planar geometry.

3. Linearized equations

To illustrate the resonances at rational flux surfaces, it is
useful to consider the linearized governing equations for
small-amplitude perturbations of two planar flux surfaces
bounding the plasma. Specifically, we consider a perturbation
expansion of the MHD equilibrium relative to a one-dimen-
sional base state corresponding to flat walls z0=a0 and
z1=b0. We consider a normal mode perturbation of the
system with wavenumber (m, n), with a small expansion
parameter ò, ∣ ∣  1, which results in a linear problem at first
order in ò. The expansion is performed with the aid of a

computer algebra system; we omit the details and summarize
the results.

The perturbed bottom and top walls are assumed to take
the form

( ) ( )
( ) ( ) ( )

p
p

= + -
= + -




z u v a a mu nv
z u v b b mu nv

, cos 2 ,
, cos 2 , 20

mn

mn

0 0

1 0

respectively, and their difference ( ) ( )=z u v z u v, ,2 1

( )-z u v,0 is denoted by

( ) ( ) ( )p= + -z u v c c mu nv, cos 2 , 21mn2 0

with cmn=bmn−amn. The corresponding expansion for
R(s, u, v) is

( ) ( ) ( ) ( ) ( )
( )

p= + - + R s u v R s R s mu nv O, , cos 2 ,
22

mn0
2

and that for ψ(s, u, v) is

( ) [ ( ) ]
( ) ( ) ( ) ( )

y p i
y p

= -
+ - + 

s u v u s v

s mu nv O

, ,

sin 2 . 23mn
2

Figure 2. NSLAB computation of a slab equilibrium as described in section 2, for Lx=Ly=1, the pressure profile p(s)=0.01 (1−s2)2,
the rotational transform profile ( )i = +s s0.5 1.0 , a flat lower flux surface, z0(u, v)=0, and an upper flux surface given by

( ) ( )p= + -z u v u v, 1 0.1 cos 21 . The plots show various flux surfaces z=z(s, u, v) for constant s versus the poloidal angle u at four
toroidal angles v=0, v=1/4, v=1/2, and v=3/4 (from left to right and from top to bottom).
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Note the presence of the sin function as opposed to the
cos function for R for the normal mode representation of
ψ(s, u, v), which corresponds to the difference in the number
of derivatives appearing for ψ(s, u, v) and R(s, u, v) in the
governing equations.

3.1. Base state

Expanding in ò gives the leading order nonlinear ordinary
differential equation for the one dimensional base state,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( ) ( ) ( )
( [ ( )] )

( )

( )
( [ ( )] )

[ ( )] ( )

i i
i

p i

 -
¢

+
¢

-
¢

+
¢ =

R s
L s s

L s L
R s

c L L p s

L s L
R s 0, 24

x

y x

x y

y x

0

2

2 2 2 0

0
2 2 2

2 2 2 2 0
3

with R0(0)=0 and R0(1)=1. The solution depends on the
dimensions a0, b0, Lx and Ly of the system, the rotational
transform ( )i s , and the pressure gradient p′(s). In the force-
free case with ( )¢ =p s 0, and with zero shear, ( )i¢ =s 0, the
solution is just R0(s)=s. The general case requires the
numerical solution of this nonlinear differential equation.

3.2. First order equations

At first order, we obtain a linear equation that can be solved
for the perturbation ψmn(s) in terms of cmn/c0 and

( ) ( )¢ ¢R s R smn 0 ,

⎡
⎣⎢

⎤
⎦⎥( )

[ ( )]
[ ]

( )
( )

( )y
i

=
+

+
+

¢
¢

s
L m L n s

L m L n

c

c

R s

R s2
. 25mn

y x

y x

mn mn
2 2

2 2 2 2
0 0

The perturbation Rmn(s) satisfies the linear second order
ordinary differential equation

( ) ( ) ( ) ( )a a a g + ¢ + + =R s R s R s 0, 26mn mn mn1 2 3

where the coefficients in these equations are

[ ( )]
( )[ ( )]
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and the inhomogeneous term is
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Note the common appearance of the resonant factor
[ ( )]i-n m s in each coefficient. In particular, the terms involve
the factors [ ( )] ( )i i- ¢n m s s and [ ( )] ( )i- ¢n m s p s2 . For van-
ishing shear, ( )i¢ =s 0, each remaining term contains a quad-
ratic factor of [ ( )]i-n m s 2, and the singularity at ( )i =s n m
is removable. This result is in agreement with the well-known
result that nonsymmetric equilibria with nested flux surfaces
can be constructed for constant rotational transform [16, 22].
On the other hand, with moderate shear ( )i¢ ¹s 00 at the
resonant surface s=s0, equation (26) is singular at s0, and the
leading order behavior of the singularity does not change
qualitatively with changes in ( )¢p s0 . The case of small shear is
thus a singular limit of equation (26), and finite pressure effects
can be significant in this case.

3.3. Numerical example

As an example, we take Lx=Ly=1, a0=amn=0, b0=
bmn=1, and

( ) ( ) ( ) ( )i = + = -s s p s s s0.25 0.5 , 1.5 1 , 31

and we consider the resonant surface where ( )i =s 1 3 by
adding a (3, 1) harmonic to the external boundary. A finite
difference solution for R31(s), and the corresponding solution
ψ31(s), is shown in figure 3. We do not attempt any special
treatment of the singularity in this simple case, since this is
consistent with the specific finite difference scheme employed
in NSTAB and NSLAB, and the solution in figure 3 should
therefore reproduce the behavior expected in those codes for
small amplitude perturbations. In this case, the resonant sur-
face where ( )i =s 1 3 at s≈0.167 does not lie on the
numerical grid, and the solution is exhibiting singular beha-
vior at nearby mesh points. Note that there are continuous

Figure 3. Numerical solution of equations (25) and (26) for R31(s)
and ψ31(s) for the parameters and profiles given in section 3.3 using
64 grid points (black dots) and 128 grid points (blue curves). A
singularity is present at the surface where ( )i =s 1 3.
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gradients in R31(s) (and in ψ31(s), which is coupled to ( )¢R s31 )
near the walls where R31(s) vanishes, although these smooth
variations are easily distinguished from the singular behavior
at the resonant surface.

4. NSLAB Numerical results

We start the discussion of the NSLAB numerical results with
a comparison of the linearized results from the previous
section with a corresponding nonlinear NSLAB computation
for a small-amplitude, single-mode perturbation of the upper
wall. Our examples will all feature a flat lower surface,
z0(u, v)=0, with Lx=Ly=1.

4.1. Comparison of NSLAB and linearized results

We consider a force-free case with ( )¢ =p s 0 and rotational
transform ( )i = +s s0.95 0.1 , focusing on a (1,1)mode at the
resonant surface s0=1/2. The upper surface is given by

( ) ( ) ( )p= + D -z u v u v, 1 cos 2 , 321 11

with amplitude D = -1011
4. The comparison is illustrated in

figure 4, where we show ψ11 given by the analytic linear
calculation and the (1, 1) Fourier harmonic of NSLAB’s
nonlinear solution for ψ(s, u, v). On a mesh of 25 points, the
agreement is seen to be quite satisfactory. The numerical
solution for ψ11(s) shows a localized peak at the three mesh
points centered at s0=1/2. As a rough indicator of the
strength of the singularity, we use

( ) [ ( ) ( )] ]

( ) ( )

y
y y y

y

=
- + + -

»

D
s s h s h

h
d

ds
s

2

1

2
, 33

2
11

11 0 11 0 11 0
2

2
11
2 0

where h is the mesh spacing in s. As well as approximating
( )y s 211 0 , yD2

11 characterizes the peak amplitude relative to
the average value of the two neighboring values. Since

[ ( )]y=  ´  ´ sJ , ( )y s11 0 is an effective measure of
the singular current strength. For the case shown in figure 4,
we find y =D 0.59382

11 . At this point, we stress that we
recognize that the computation of equilibria with a localized
singularity on a fixed mesh is necessarily plagued by rela-
tively high levels of truncation error. However, we will not be
concerned by this numerical issue since our goal for the
remainder of the article is to find appropriate wall shapes that,
as much as possible, eliminate these singularities. The
resulting smooth solution can then achieve the level of acc-
uracy that is expected of a second-order-accurate finite dif-
ference scheme.

4.2. Eliminating current sheets by wall modification

The remainder of the article focuses on our central motivation
for this work, namely the elimination current sheets by sui-
table modifications of the shape of the upper wall. We con-
sider various cases with one, two, and three resonant surfaces
for force-free equilibria with ( )¢ =p s 0 or for finite pressure
equilibria with ( ) ( )= -p s p s10

2 2. In this study, we consider
relatively weak current sheets that can be eliminated by small
amplitude perturbations of a flat upper wall. We generally
represent the upper wall as a finite Fourier series

( ) ( ) ( )å p= D -z u v mu nv, cos 2 , 34
m n

mn1
,

where the mean position of the wall isΔ00=1. The magnitude
of the pressure in the finite-pressure equilibria we will study will
be expressed in terms of the usual β parameter, defined by

∣ ∣
( )

ò

ò
b =

p dV

dVB

2
, 35V

V
2

and which can be determined from a numerical integration once
the solution has been computed.

4.2.1. Single resonant surface. For the case of a single
resonant surface, we consider the rotational transform profile
( )i = +s s0.35 0.3 . To generate a (2, 1) current sheet, we
start with a perturbed upper wall with (2, 0) and (0, 1)
harmonics,

( ) ( )p p= + +z u v u v, 1 0.01 cos 4 0.01 cos 2 . 361

The nonlinear interaction of the (2, 0) and (0, 1) modes is
found to generate at quadratic order a (2, 1) mode that triggers
a current sheet at the resonant surface s0=1/2,
where ( )i =s 1 20 .

Some numerical results are given in figure 5 for a case
with p0=0.3 corresponding to b = 2.5%. The top two plots
in the figure show the (2, 1) Fourier components R21(s) and
ψ21(s) of the computed solutions R(s, u, v) and ψ(s, u, v). It is
also insightful to consider the profiles for two other quantities
which have an immediate physical interpretation, namely the
parallel current density and the Jacobian of the coordinate

Figure 4. Comparison between the linearized solution (blue curve)
and the corresponding NSLAB computation (black dots) for the slab
equilibrium described in section 4.1.
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transformation, which can be viewed as a measure of the
distortion of the flux surfaces associated with the appearance
of a current sheet. The (2, 1) Fourier component Jp21(s) of the
parallel current Jp(s, u, v) in (17), and the (2, 1) Fourier
component JD21(s) of the Jacobian J(s, u, v) in (8), are shown
as the bottom two plots in figure 5. Both the parallel current
and the Jacobian profiles show singular behavior that is
qualitatively similar to ψ21(s), with peaked singularities that
are localized near s=s0. In our computations, we generally
find that the behavior of the parallel current profiles Jpmn(s) is
faithfully mirrored by that of the ψmn(s) profiles. We
emphasize that all four quantities plotted in figure 5 exhibit
related singular behavior at the resonant flux surface. In
particular, this figure illustrates the finding that the spacing of
the flux surfaces near the resonance, as determined by the
mapping Jacobian JD21(s), is related to the current sheet
singularity, albeit via a numerical computation. Indeed, we
will see below that a strategy to eliminate the singularity in
just one of the four quantities also simultaneously eliminates
the singularities in the other three as well.

On the left-hand side of figure 6, we show the parallel
current profile in the vicinity of the resonant surface s=s0
for a series of mesh refinements using ns=25, 49, 65, and 97
mesh points for the s coordinate. With decreasing mesh size
1/ns the peak increases in magnitude, while the width of the
peak decreases. The figure on the right-hand side of figure 6
shows a scaled version of the figure on the left-hand side of
figure 6, where the vertical axis is scaled by ns2 and the
horizontal axis by 1/ns. We observe that a satisfactory
calculation of the singularity is captured using a relatively
crude mesh. This can be attributed to the use of a carefully
designed conservative difference scheme in NSLAB

(following that used in NSTAB), which avoids smearing
the singularity over too many neighboring mesh points.

We next consider the feasibility of eliminating the
singularity at the s0=1/2 surface by varying the funda-
mental harmonic Δ21 of the wall perturbation. We consider
p0=0.68, corresponding to a high-beta equilibrium with
β=5.8%. The profile for the (2, 1) Fourier component ψ21(s)
of ψ(s, u, v) for Δ21=0 is shown in the top plot in figure 7.
The quadratic interaction of the (2, 0) and (0, 1) wall
perturbations has generated a small-amplitude current sheet
with a negative value of ψ21(s0). The corresponding value of
D2ψ21 in equation (33) is D2ψ21=−1.076. We note that, as
one would expect, D2ψ21 scales quadratically in the
magnitude of the wall perturbation amplitude, as can be
verified by reducing the magnitude of the wall perturbations
by half so that Δ20=Δ01=0.005, which results in an
observed four-fold decrease in D2ψ21 to D2ψ21=−0.269.

If we then explicitly introduce a (2, 1) wall perturbation
of amplitude Δ21, so that

( )
( ) ( )
p p

p
= + +

+ D -
z u v u v

u v
, 1 0.01 cos 4 0.01 cos 2

cos 2 2 37
1

21

we find that the peak in ψ21(s0) monotonically increases from
negative values, through zero, and then on to positive values
as Δ21 is increased from zero through positive values. For
example, the third plot in figure 7 for Δ21=0.003 shows a
positive peak in ψ21(s0), with D2ψ21=1.301. At the
intermediate value Δ21=0.001 359, we find that D2ψ21

passes through zero, and the second plot in figure 7
corresponding to that case shows a smooth profile for
ψ21(s) in the vicinity of the resonant surface: the singularity
has been removed. In the bottom three plots in figure 7, we
show the corresponding plots for the (2, 1) Fourier component
R21(s) of the other dependent variable R(s, u, v), which also
exhibits singular behavior at s0 that is similarly eliminated by
modifying the shape of the upper wall.

The critical value of the (2, 1) wall perturbation Δ21 that
eliminates the current sheet with D2ψ21=0 can be computed
by performing a series of NSLAB runs, effectively conduct-
ing a root-finding search by considering D2ψ21 to be a
function of Δ21. More efficiently, this search can instead be
incorporated into the overall NSLAB iterative procedure in
equation (19) by appending an additional evolution equation

( )y
D

= -a
d

dt
D , 3821

21 2
21

where a21 is a positive relaxation coefficient. In this way, the
critical value of the wall perturbation Δ21 that drives the
singularity amplitude D2ψ21 to zero as the iteration converges
can be found in a single NSLAB run. We numerically observe
that just like D2ψ21, this critical value of Δ21 scales
quadratically with the amplitude of the wall perturbation we
imposed to generate the current sheet. Furthermore, for the
small perturbations considered in this work, we empirically
observed that D2ψ21 depended linearly on Δ21, with a slope
somewhat steeper for the finite pressure gradient case
discussed here as compared to the zero pressure gradient
case discussed next. In that sense, we may say that the

Figure 5. Slab equilibrium with a single resonant surface with
singularity at s0=1/2. The rotational transform profile is
( )i = +s s0.35 0.3 , the pressure profile is p(s)=0.3 (1−s2)2,
β=2.5%, and the wall perturbations correspond to
D = D = 0.0120 01 and Δ21=0. From top to bottom, we plot the
(2, 1) Fourier component R21(s) of R(s, u, v), the (2, 1) Fourier
component ψ21(s) of ψ(s, u, v), the (2, 1) Fourier component Jp21(s)
of the parallel current Jp(s, u, v), and the (2, 1) Fourier component
JD21(s) of the Jacobian J(s, u, v), all as a function of flux surface
coordinate s.
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elimination of the current sheet is robust to small changes in
the amplitude of the applied resonant component.

In figure 8, we again consider the rotational transform
profile ( )i = +s s0.35 0.3 , for a force-free equilibrium

( )¢ =p s 0. In this case, we find an optimal value of
Δ21=0.001 604 that results in D2ψ21≈0. Comparing with
the corresponding profiles in figure 7, we find that decreasing
β to zero amplitude has reduced the peaks in ψ21 by roughly
half; the same is true for the corresponding values of D2ψ21.
We generally find that the sensitivity of the amplitude of the
computed current sheets to β is increased as the shear ( )i¢ s
decreases. For larger shear, the results tend to become
insensitive to β; this is consistent with the findings for the
linear analysis of normal modes described in the previous
section.

4.2.2. Two resonant surfaces. We next consider the
rotational transform profile ( )i = +s s0.4 0.4 , which
includes the low-order rationals i = 1 2 and i = 2 3, and
we trigger singularities by prescribing the fixed wall
perturbations with (2, 0) and (0, 1) components to generate
a (2, 1) mode via nonlinear coupling, and wall perturbations
with (3,0) and (0,2) components to generate a (3, 2) mode, so
that we have two prominent resonant surfaces at s21=1/4,
and s32=2/3 for ( )i =s 1 221 and ( )i =s 2 332 ,
respectively. Specifically, the upper surface is

( )
( )

( ) ( )

p p
p
p p
p

= + +
+ D -
+ +
+ D -

z u v u v
u v

u v
u v

, 1 0.01 cos 4 0.01 cos 2
cos 2 2

0.01 cos 6 0.01 cos 4
cos 2 3 2 . 39

1

21

32

The resulting equilibrium with pressure profile p(s)=0.75
(1− s2)2, corresponding to β=5.8%, and Δ21=Δ32=0 is

shown in figure 9. The profiles for ψ21(s) and ψ32(s) are
plotted on similar scales but with an inset for ψ21(s) to better
show the (2, 1) singularity around s21. To eliminate the
singularities, we generalize the iteration in equation (38) to

( )

y

y

D
=-

D
=-

a
d

dt
D

a
d

dt
D

,

, 40

21
21 2

21

32
32 2

32

where D2ψ21 and D2ψ32 are based at s21 and s32,
respectively. The iteration produces critical wall
perturbation values Δ21=0.001 147 and Δ32=0.001 998
that eliminate the singularities as shown in figure 10. We
mention here that to compute the critical wall perturbation
values Δ21 and Δ32, we have also used a quasi-Newton
method in a separate run, described in section 4.2.3, and
obtained the same results. We note that the same scales are
used in the plots of figure 9 and figure 10. We again observe
that the Fourier harmonics ψ21 and ψ32 of ψ, and Jp21 and
Jp32 of Jp have the same behavior, and that we indeed
eliminated the current singularity.

4.2.3. Three resonant surfaces. Our final case is to consider
three resonant surfaces, with a rotational transform
( )i = +s s0.4 0.5 admitting the low-order rationals 1/2,
2/3, and 3/4. For the force-free ( )¢ =p s 0 case shown in
figure 11, we set the wall perturbation amplitudes
D = D = D = D = D = D = 0.0120 30 40 01 02 03 . There are
singularities of ψ21, ψ32 and ψ43 around the flux surfaces
s21=1/5, s32=8/15 and s43=7/10, respectively. In this
case, the generalization of equation (40) to the computation
with three resonant surfaces is very slow to converge, and
we have employed an alternate strategy. We observe that a

Figure 6. Single resonant surface with singularity at s0=1/2: the rotational transform ( )i = +s s0.35 0.3 and the pressure field p(s)=
0.3 (1−s2)2, with β=2.5%. The Fourier component Jp21(s) of the parallel current Jp(s, u, v) (see (17)), as a function of flux surface s with
the wall perturbation amplitudes Δ20=Δ01=0.01 andΔ21=0. The parallel current profiles Jp21(s) near s=0.5 for the mesh refinements
using ns=25, 49, 65, and 97 points in the s coordinates (left) and their scaled versions (right).
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Figure 7. Single resonant surface with singularity at s0=1/2 with finite pressure gradients. The rotational transform profile is
( )i = +s s0.35 0.3 , the pressure profile is p(s)=0.68 (1−s2)2, β=5.8%, and the wall perturbation amplitudes are Δ20=Δ01=0.01,
and three different amplitudes for Δ21. From top to bottom, we plot the Fourier component ψ21(s) of ψ(s, u, v) with Δ21=0,
Δ21=0.001 359, andΔ21=0.003 and the Fourier component R21(s) of R(s, u, v) withΔ21=0, Δ21=0.001 359, andΔ21=0.003, all as
a function of the flux coordinate s.
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change of one wall harmonic, say Δ21, can have a significant
effect on all three singularities D2ψ21, D

2ψ32, and D2ψ43, so
that the straightforward procedure that drives each wall
harmonic by its corresponding singular mode in
equation (38) or (40) can become ineffective. We therefore
iterate on the coefficients by coupling their influence though
a simple version of a quasi-Newton procedure, setting
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where F is the 3×3 Jacobian ( )y y y¶ D D D, ,2
21

2
32

2
43

( )¶ D D D, ,21 32 43 computed approximately via finite
differences from separate NSLAB runs with varying wall
perturbations. Equation (41) can also be regarded as the
discretized form of a first order ordinary differential
equation in time that couples the dependence on the three
wall harmonics. This procedure produces good values for
the critical wall harmonics with only a few NSLAB runs,
and we find the critical values Δ21=0.000 83,
Δ32=0.002 22, and Δ43=0.001 92 as shown in
figure 12. We again observe that the behaviors of the

parallel current Jp21 and ψ21, Jp32 and ψ32, and Jp43 and ψ43

are qualitatively similar.

5. Discussion

We have developed a modified version of the MHD equili-
brium and stability code NSTAB [1] in a slab geometry that
avoids complications arising from the magnetic axis in tor-
oidal geometries. We have used this code to study the pos-
sibility of using suitable wall modifications to avoid the
occurrence of singular current sheets that tend to arise at
resonant flux surfaces where the rotational transform assumes
low-order rational values [8–11]. We find that a simple
iterative procedure can be used to eliminate one or two cur-
rent sheets, while a more complicated procedure that takes
additional mode coupling into effect suffices to remove three
sheets. We have restricted our attention to relatively weak
current sheets that are generated by nonlinear interactions
between ‘sideband’ wall harmonics that can resonate with the
fundamental harmonics associated with the resonant flux
surfaces. We have considered both force-free examples and
examples with finite pressure gradients. Remarkably, finite
pressure gradients at the resonant surfaces do not prevent us
from removing the singularities at these surfaces, and do not
affect the behavior of our solver. This could be an artifact of

Figure 8. Single resonant surface with a singularity at s0=1/2 for a force-free field. The Fourier component ψ21(s) of ψ(s, u, v) as a function
of the flux coordinate s for force-free equilibria with rotational transform profile ( )i = +s s0.35 0.3 , wall perturbation amplitudes
D = D = 0.0120 01 , and three different amplitudes for Δ21: Δ21=0 (top), Δ21=0.001 604 (middle), and Δ21=0.003 (bottom).
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our focus on small wall perturbations and slab equilibria,
although preliminary results in a toroidal geometry with the
NSTAB code suggest otherwise, as we have found that we are
also able to remove small-amplitude current singularities in
some NSTAB toroidal equilibria with finite pressure gra-
dients. We are currently investigating this question from a
slightly broader viewpoint; namely, we want to determine
whether there exist current singularities which cannot be
removed by suitable boundary perturbations.

We have emphasized the role played by a conservative
difference scheme in capturing the singular current sheets
over a width of one or two mesh points. A complementary
approach is to expressly add in smoothing terms that smear
out such singularities over several mesh points to improve the

robustness of the computation. This might be termed an
‘artificial resistivity’ approach that resembles the ‘artificial
viscosity’ schemes that are used successfully in computa-
tional fluids dynamics to capture shocks (see, e.g. [23]). Also
in this spirit an analysis of such smoothing effects on parallel
current singularities at a resonant surface has been given by
Hudson [24], with suggested applications to equilibrium
calculations. We also note that the conservative difference
scheme used in NSTAB and NSLAB, while often able to
resolve moderate singularities compactly, can also lead to
mesh-dependent non-convergence of the scheme if the

Figure 9. Two resonant surfaces with singularities at s21=1/4, and
s32=2/3. The rotational transform profile is ( )i = +s s0.4 0.4 ,
the pressure profile is p(s)=0.75(1− s2)2, β=5.8%, and the wall
perturbation amplitudes are D = D = D = D = 0.0120 30 01 02 and
Δ21=Δ32=0. From top to bottom, we plot the (2, 1) Fourier
component ψ21(s) and the (3, 2) Fourier component ψ32(s) of
ψ(s, u, v), the (2, 1) Fourier component Jp21(s), and the (3, 2) Fourier
component Jp32(s) of Jp(s, u, v), all as a function of the flux
coordinate s for a slab equilibrium.

Figure 10. Two resonant surfaces with singularities at s21=1/4,
and s32=2/3 removed. The rotational transform profile is
( )i = +s s0.4 0.4 , the pressure profile is p(s)=0.75(1− s2)2,
β=5.8%, and the wall perturbation amplitudes are D = D20 30
=D = D = 0.0101 02 , Δ21=0.001 147, and Δ32=0.001 998. From
top to bottom, we plot the (2, 1) Fourier component ψ21(s), the (3, 2)
Fourier component ψ32(s) of ψ(s, u, v), the (2, 1) Fourier component
Jp21(s) and the (3, 2) Fourier component Jp32(s) of Jp(s, u, v), all as a
function of the flux coordinate s for a slab equilibrium. Comparing
these figures with figure 9, we observe that the singularity has been
eliminated.
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Jacobian J of the mapping becomes very large or very small
near a resonant surface.

A related topic to our treatment of the removal of current
sheet singularities by appropriate wall perturbations is the
topological changes made possible by the inclusion of resis-
tive effects that can lead to the breaking and reconnection of
field lines [14, 25]. These effects are generally dynamic and
dissipative in nature, in contrast to the flux-conserving
equations of ideal MHD that underlie our treatment of static
equilibria that minimize the magnetic energy over a class of

solenoidal fields with nested flux surfaces. In both cases, these
complementary models address the possibility of regularizing
current sheet singularities, albeit via quite distinct processes.

It would be worthwhile to do a direct comparison of our
measure of the singular current amplitude, D2ψmn, in a nested
flux surface model, with an island width computed without
the assumption of nest flux surfaces; for example, one com-
puted by using field line tracing with a force-free code.
Measures of island width inferred from nested flux surface
computations have been discussed previously (see, e.g.

Figure 11. Three resonant surfaces with singularities at s21=1/5, s32=8/15 and s43=7/10. The rotational transform profile is
( )i = +s s0.4 0.5 , and the wall perturbation amplitudes areD = D = D = D = D = D = 0.0120 30 40 01 02 03 andΔ21=Δ32=Δ43=0.
On the left, we plot the (2, 1) Fourier component ψ21(s) (top), the (3, 2) Fourier component ψ32(s) (middle), and the (4, 3) Fourier component
ψ43(s) (bottom) of ψ(s, u, v), and on the right, we plot the (2, 1) Fourier component Jp21(s) (top), the (3, 2) Fourier component Jp32(s)
(middle), and the (4,3) Fourier component Jp43(s) (bottom) of Jp(s, u, v), all as a function of the flux coordinate s for a force-free slab
equilibrium.

Figure 12. Three resonant surfaces with singularities at s21=1/5, s32=8/15 and s43=7/10 removed. The rotational transform profile is
ι(s)=0.4+0.5s, and the wall perturbation amplitudes are D = D = D = D = D = D = 0.0120 30 40 01 02 03 , Δ21=0.000 83,
Δ32=0.002 22, and Δ43=0.001 92. On the left, we plot the (2, 1) Fourier component ψ21(s) (top), the (3, 2) Fourier component ψ32(s)
(middle), and the (4,3) Fourier component ψ43(s) (bottom) of ψ(s, u, v), and on the right, we plot the (2, 1) Fourier component Jp21(s) (top),
the (3, 2) Fourier component Jp32(s) (middle), and the (4,3) Fourier component Jp43(s) (bottom) of Jp(s, u, v), all as a function of the flux
coordinate s for a force-free slab equilibrium. Comparing these figures with figure 11, we see that this particular choice of Δ21, Δ32, and Δ43

allowed us to eliminate the singularities at the resonant surfaces.
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[8, 9]), but these arguments ultimately amount to conjectured
scaling relations in the absence of a direct comparison. This is
also an important subject for future research.
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