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Abstract
Considering, as a limit case, an approximately flat pion distribution amplitude,
which is determined from the hardest, in momentum space, solution of the
Bethe–Salpeter equation for the pion wave function, we compute the pion
transition form factor ( )pggF Q2

* and the pion form factor Fπ(Q
2), taking into

account the LO as well as NLO form of the hard coefficient function entering
the leading-twist factorization formula. We also compute the exclusive pho-
toproduction of pions pairs at high energies, gg p p + -, where perturbative
QCD can be used to compute the hard scattering matrix elements. We verify
that the existent data for exclusive pion production can be reasonably
described as a function of such a flat distribution amplitude.

Keywords: pion distribution amplitude, non-perturbative QCD, pion transition
form factor

(Some figures may appear in colour only in the online journal)

1. Introduction

The hadronic distribution amplitudes (DAs) are an essential ingredient for measuring
exclusive processes at large momentum transfer. Most of the recent data about the standard

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 47 (2020) 045004 (15pp) https://doi.org/10.1088/1361-6471/ab6947

5 Author to whom any correspondence should be addressed.

0954-3899/20/045004+15$33.00 © 2020 IOP Publishing Ltd Printed in the UK 1

https://orcid.org/0000-0003-0134-2638
https://orcid.org/0000-0003-0134-2638
mailto:luna@if.ufrgs.br
https://doi.org/10.1088/1361-6471/ab6947
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6471/ab6947&domain=pdf&date_stamp=2020-02-27
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6471/ab6947&domain=pdf&date_stamp=2020-02-27


model parameters rely on QCD factorization, asymptotic freedom and make use of process-
independent hadronic DAs. This fact reveals the importance of knowing the intricacies of
quarks and gluons within the hadrons. The pion, being the simplest hadron, should, in
principle, be the easiest particle to offer a laboratory to learn about hadronic DAs, although its
study is still motive of debates.

Some years ago the BaBar Collaboration [1] published results for the photon-pion
transition form factor ( )pggF Q2

* , where one of the photons is near mass shell (Q2≈ 0) and the
other one is far off mass shell (large Q2). These measurements have been taken in single-
tagged two-photon p+ - + -e e e e 0 reaction and have been performed in a wide range of
momentum transfer squared (4−40 GeV2). It is expected that standard factorization approach
can be applied at such high Q2 region [2].

The surprise with the BaBar result is that it was not in agreement with the expected
perturbative QCD behavior, where ( ) ¥pggQ F Q2 2

* should be limited to the value
»pf2 0.185 GeV, which is known as the BL limit [3]. Here fπ=131MeV is the pion

decay constant. Some time later the Belle Collaboration presented data [4] in the same range
of transferred momenta showing that the pion transition form factor may not increase as fast
as indicated by the BaBar results, although some medium values of Belle data also appear to
be in contradiction with the BL limit.

These experiments originated several theoretical papers speculating why the data should
or should not obey the BL limit [5–15]. Some of these and recent proposals also claimed that
the pion DA at high momentum transfer was not given by the asymptotic form [16]

( ) ( ) ( )j = -p x x x6 1 , 1as

but should be replaced by a broad concave distribution [17, 18] or a flatter one [5, 6, 8, 12,
19–22]. Available information indicates that the above asymptotic distribution is a poor
approximation to the pion DA even at large momentum scales [17]. As a consequence,
predictions of leading-order, leading-twist formula based on ( )jp xas should be revisited.
Actually, a flat DA is consistent with the BaBar data [5], although a theoretical support for
such possibility is still missing. Thus we may assume, as claimed in [23], that there is no
definite conclusion as yet on which is the asymptotic form of the pion DA, and it is possible
that a combined analysis of data of the processes involving pions would shed light on the pion
DA [24].

The pion transition form factor is quite dependent on the pion DA, and this one is directly
related to the pion wave function. Recently some of us proposed a limit on the transition form
factor based on the hardest solution (in momentum space) of the Bethe–Salpeter equation
(BSE) for the pseudoscalar pion state [25]. This wave function leads to the flattest QCD DA
and such kind of behavior, as argued by Radyushkin [5], can describe the BaBar data. The
pion DA obtained in [25] shows that non-perturbative effects change the soft asymptotic
behavior of the pion wave function leading to a much broader DA than the one of
equation (1), and this fact was observed in lattice simulations [26]. Therefore a very flat (not
constant) pion DA can be naturally explained within the QCD theory when associated to a
particular behavior of the BSE solution.

In this work we will explore in detail the predictions of this extreme BSE solution for the
high energy behavior of the pion transition form factor, its form factor and the two-photon
production of a pion pair. The paper is organized as follows: in section 2 we first illustrate our
theoretical framework [25] and recall how the pion DA can be obtained from the BSE. We
also advocate in favor of a BSE solution for the pion wave function that decreases slowly with
the momentum, which is at the origin of the flat pion DA. In section 3 the pion DA introduced
in the previous section is used to determine the pion transition form factor. In sections 4 and 5
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we continue with the phenomenological implications of our flat DA in the cases of the pion
form factor and hard exclusive two-photon production of a pion pair, respectively. Section 6
contains our conclusions.

2. The pion DA from the BSE

We start by writing down the pion DA at leading twist, as a function of the pion-quark vertex
and the quark self-energy [25, 27]:

( ) ( ¯ )
( ) ( ¯)

[ ( ¯) ¯ ( )] ( )
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l
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l l
l l

l l
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where ¯ ( )= -x x1 , the variable u represents the quark transverse momentum squared, λ x
and ¯l- x are the longitudinal projections of the quark momentum on the light cone directions,
and Σ(u) is the dynamical quark mass. The function D(u) in the expression above is a
function related to the quark propagator

( ) ( ) ( )º + SD u u u , 32

whereas F is the momentum dependent part of the quark-pion vertex. The function F can be
approximated by

( ) ( ) ( ) ( )¢ = S S ¢F p p p p, , 42 2 2 2

where p and p′ are the quark and anti-quark momenta, respectively. The pion DA at leading
twist is usually normalized as

( ) ( )ò j m =px xd , 1, 5
0

1

where jπ(x, μ) is defined at some normalization scale μ.
As demonstrated by Delbourgo and Scadron some years ago [28], the spontaneous

generation of fermion mass can be associated with zero-mass pseudoscalar bosons. Specifi-
cally, the Schwinger–Dyson equation for the dynamical quark self-energy, ΣSD(p

2), is
identical to the BSE for a pseudoscalar, ( )F p q,P

BS , at zero momentum transfer:

( ) ( )∣ ( )S » F p p q, . 6P
qSD

2
BS 0

This relation is a consequence of the fact that Σ and Φ are related through the Ward–
Takahashi identity. The homogeneous BSE can be written as [29]

( )
( )

( ) ( ) ( ) ( ) ( )ò p
F = - F

¥

+ -k P
q

K k q P S q q P S q, i
d

2
; , ; , 7

q

4

4

where P (q) is the total (relative) momentum of the quarks, K is the fully amputated quark-
antiquark scattering kernel, S(qi) are the dressed quark propagators, ( )h= - --q q P1 , and

h= ++q q P, with h 0 1. Here η is the momentum fraction parameter. In the pion case
the homogeneous BSE is valid on-shell, i.e. P2=0. Note that in equation (7) we have
suppressed all indices (color, etc...).

The quark masses are dynamically generated along with bound state Goldstone bosons
(the pions). It is worth noting that the equation (7) is an integral equation that can be
transformed into a differential equation of second order. The two solutions of this differential
equation, as obtained in [30, 31], are characterized by one soft asymptotic solution
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( ) ( ) ( )F ~ S ~p p p m
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p
, 8R R
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and by an extreme hard asymptotic behavior of a bound-state wave function
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where ( ) p= -b N n11 2 48c f
2 is the first coefficient of the perturbative β function (with

Nc= 3), c=4/3 is the Casimir eigenvalue for quarks in the fundamental representation,
δ=c/2b, g2 is the coupling constant, and mq is the dynamical quark mass at zero
momentum.

The asymptotic expression shown in equation (9) satisfies the Callan–Symanzik
equation, and was determined in the appendix of [32]. The hard solution is constrained by the
BSE normalization condition [33], which imply the condition nf>5 [30, 34] (for this reason
we adopt in this paper nf= 6). Note that the hard expression (9) is an alternative solution to
the soft one ( ( )S ~p p12 2) [35], which in turn leads to the standard DA

( ) ( )j m  ¥ = -p x x x, 6 1as . It is known that we may have solutions with a momentum
behavior varying between the equations (8) and (9). The effective behavior of the solution,
particularly as the number of fermions is increased, depends on the theory dynamics [34, 36].

It has been argued that, in a scenario where the gluons have a dynamically generated
mass and the chiral symmetry breaking is associated to confinement, the solution (9) may be a
realistic one [34, 37, 38]. The hard solution also appears associated to a finite quark con-
densate when using the technique of the improved renormalization group approach in QCD
[39], and the condensate minimizes the vacuum energy provided that nf>5 [40]. Further-
more, it is well known that the hard solution is the only one consistent with an expansion
group (Regge-pole like) solution [31].

Recently it was demonstrated numerically [41] and analytically [42] that (9) emerges
when the current quark masses are generated dynamically, although in these cases the power δ
will depend on the details of the model. It is interesting to recall that models with origin in the
Nambu–Jona–Lasinio model (NJL), like the ones of [21, 22], also describe the data with a flat
pion DA, what is not surprising since the NJL model naturally lead to dynamical masses with
a behavior similar to the one of equation (9), which, as shown in the sequence, induce a quite
flat DA.

The important fact to be noticed here is that equation (9) gives the hardest asymptotic
behavior (in momentum space) allowed for a bound state solution in a non-Abelian gauge
theory. This behavior has the consequence that, no matter the hard solution is realized in
Nature or not, the pion DA will be very flat. Note that in our case a totally flat (constant) DA
is not allowed since such a behavior can only be related to a fundamental pion. Thus any other
flatter pion DA than the one obtained from the hard solution (9) cannot be a realistic BSE
wave function, and consequently would not be consistent with a composite pion.

We compute the pion DA performing an integral over the full range of momenta (up to
 ¥p2 ), covering all possible thresholds. In order to explore the full behavior of the

‘hardest’ quark self-energy, we adopt a simple interpolating expression for Σ(p2) [34, 38]:
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Note that the equation (10) assumes a constant IR behavior for the quark self-energy.
This is totally consistent with numerical solutions of the DSE, and the value of the quark mass
does not impact strongly on the results. However the gluon mass that act as an IR cutoff
introduces some effect in the calculation of the perturbative matrix elements. Of course, we
should stick to values consistent with most phenomenological calculations of this quantity.

Before proceeding it may be worth emphasizing that the mq factors introduced into the
logarithm term leads to the right infrared behavior, namely ( )S  =p m0 q

2 . Also, the
coupling g2, calculated at the chiral symmetry breaking scale Λ′, may be written as

( )
[( ) ]

( )=
+ L

g p
b p M

1

ln 4
, 11

g

2 2
2 2

QCD
2

where ΛQCD is the QCD characteristic scale and Mg is an effective dynamical gluon mass
[43]. The coupling is infrared finite, with an value ( ) » LM 0 2g QCD, consistent with the
phenomenological models of [34, 37, 38, 44–46].

The pion DA numerical result calculated with equations (2) and (10), and constrained by
equation (5), can be quite well reproduced by the normalized form [25]

( ) ( )
( )

( ) ( )j =
G +
G +

-p  


 x x x;
2 2

1
1 , 12

2

where

( )» 0.0248, 13

which will be used in the following calculations. Note that, according to Radyushkin [5],
QCD corrections will barely affect such flat DA, where no dependence with the factorization
scale will be assumed.

3. Pion transition form factor

At sufficiently high Q2 it is expected that the standard factorization approach can be applied
[47, 48] (for a review, see [2]), and the pion transition form factor is given by

( ) ( ) ( ) ( )ò j m= ¢pgg
p

p gpF Q
f

dx x T x Q
2

3
, , . 14H2

0

1
2

*

This equation is obtained assuming factorization of the pion DA ( )jp x and the hard scattering
amplitude ( )m¢gpT x Q, ,H 2 given by [3, 49]

( ) ( ) ( ) ( )m m m¢ = ¢ + ¢gpT x Q T x Q T x Q, , , , , , , 15H H H2
1

2
2

2

where ¯ = -x x1 , x is the longitudinal momentum fraction carried by the quark in the meson
and μ′ is an arbitrary momentum scale which separates the hard and soft momenta regions.

The hard-scattering amplitude ( )m¢gpT x Q, ,H 2 must be symmetrized under exchange
¯«x x

( ) ( ¯ ) ( )m m¢ = ¢T x Q T x Q, , , , , 16H H
2

2
1

2

and at the next to leading order ( )m¢T x Q, ,H
1

2 is given by [50, 51]
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where
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For simplicity we set μ′=Q and ( )m¢T x Q, ,H
1

2 can be written as
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where f (x) is given by

( )
¯

( )= - -f x x
x x

x
ln

ln
9. 202

As emphasized by Radyushkin [5], the finite size R≈1/M of the pion interaction should
provide a cut-off for the x integral. Therefore the xQ2 in the denominator of equation (19)
should be changed as

( ) ( ) +xQ xQ M xQ . 212 2 2 2

In principle the factor M should be related to the dynamical quark mass. It was also proposed
by Radyushkin that M could be treated as an effective gluon mass. Indeed the meson radius
may have a deep connection with the effective gluon mass as discussed in [52], and in the
following we will assume ( ) ( )ºM Q M Qg

2 2 . Therefore, no matter we have one case or
another, the asymptotic transition form factor will be given by

( )
( )

( )ò
j

 ¥ =
+

pg g p
pF Q f x

x

xQ M
0; , 0

2

3
d . 22

g

2

0

1

2 2*

Mg, being a dynamical mass, should have a momentum dependence showing the decrease of
the mass with the momentum. However when xQ2 is small we can safely substitute Mg(xQ

2)
by the infrared Mg value in equation (22), and for large xQ2 the value of Mg(xQ

2) is negligible
compared to xQ2.

Our result for the pion transition form factor, using equation (12) and the hard-scattering
amplitude at leading and next-to-leading order is shown in figure 1, where it is possible to see
a reasonable agreement with the BaBar data. Note that the introduction of the NLO correction
is important for this agreement.

4. The pion form factor

The pion form factor Fπ(Q
2) is also going to be changed if the pion DA is flatter than the

usual asymptotic form. As already discussed in [53] the QCD prediction for the form factor is
also dependent on the IR non-perturbative behavior of the gluon propagator and of the
running coupling constant [54]. Therefore we will now compute Fπ(Q

2) with the new DA
discussed above and also with improved non-perturbative results for the gluon propagator and
coupling constant. The asymptotic form factor is predicted by perturbative QCD
[2, 3, 54, 55]. It depends on the internal pion dynamics that is parametrized by the quark DA
of the pion. The QCD expression for the pion form factor is [49]
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( ) ( ˜ )
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where ˜ ( )= -Q x x QMin , 1x and Q is the four-momentum in Euclidean space transferred by
the photon . The function ( ˜ )j x Q, x is the momentum dependent pion DA, that gives the
amplitude for finding the quark or antiquark within the pion carrying the fractional
momentum x or - x1 , respectively. TH (x, y, Q2) is the hard-scattering amplitude that is
obtained by computing the quark-photon scattering diagram as shown in figure 2.

How the pion DA (12) evolves with the scale ‘Q̃’ will be discussed in section 6. We
advance that independently of its shape at some specific low normalization point
m  1 GeV0 , at large values of μ the pion DA acquires an expected QCD asymptotic form.

Figure 1. Pion transition form factor calculated with the flat pion distribution of
equation (12) considering dynamical quark and gluon masses given, respectively, by
250 and 600 MeV. We also plot the Radyushkin result [5] with a 700 MeV gluon mass.

Figure 2. The leading-order diagrams that contribute to the pion form factor. ( ˜ )f x Q, x

is the pion wave function, that gives the amplitude for finding the quark or antiquark
within the pion carrying the fractional momentum x or - x1 . The photon transfers the
momentum q′ (in Minkowski space), Q2=−q′2, for the qq pair of total momentum P
producing a qq pair of final momentum P′.
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Furthermore, it is known that non-perturbative lattice calculations for small normalizations
scales m ~ 0.5 GeV [56] produced a rather flat DA very close to the one obtained is this
work. As we will see, at low scales an extremely slow non-perturbative evolution dominates .
Thus, even a choice ˜m = Q does not alter our results.

The lowest-order expression of TH(x, y, Q
2) is given by [53]

⎡
⎣⎢

⎤
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( ) ( ) ( )

( ) ( ) ( )
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3

2

3
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3
, 24

H s

s

2 2 2

2 2

where K2=(1− x)(1− y)Q2 and P2=xyQ2. Here D(K2) is related to the perturbative QCD
gluon propagator that, in the Landau gauge, is given by

⎛
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⎞
⎠⎟( ) ( ) ( ) ( )d= - =mn mn

m n
D q

q q

q
D q D q

q
,

1
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2
2 2
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In our analysis the perturbative ( ) =D q
q

2 1
2 is now substituted by the non-perturbative (in

Euclidean space) expression

( )
( )

( )=
+

D q
q M q

1
, 26

g

2
2 2 2

where Mg(q
2) is the dynamical gluon mass which is roughly given by [57, 58]

( ) ( )» +M q M q Mg g g
2 2 4 2 2 . Since this mass decays very fast with the momentum our

calculations are not affected if we just assume ( ) »M q Mg g
2 2 2, as we took for granted in the

previous section.
The inclusion of radiative corrections in the hard-scattering amplitude imply that TH(x, y,

Q2) has to be multiplied by the factor [50]

[ ( ) ] ( )a
p

-
Q

1
5

6
. 27s

2

Note that in our calculations we are including the radiative corrections in the hard-scattering
amplitude, and assume that factorization happens at a scale Q2>1 GeV2.

The result for the electromagnetic pion form factor is shown in figure 3, where it is
compared to a simple fit to the experimental data [59]:

⎛
⎝⎜

⎞
⎠⎟( ) ( )= -pF Q

Q Q

0.46895
1

0.3009
, 28fit 2

2 2

although this is a quite naive fit, which does not include one of the highest energy data. It is
clear that more data is necessary in order to check the high energy behavior of the pion form
factor, but it is quite interesting that the high energy behavior of the electromagnetic form
factor seems to be reasonably described by the same factors (pion DA and dynamical masses)
that we considered previously. We observe that the pion form factor is not very sensitive to
mq and mg, changing by about 15% (19%) when mq (mg) ranges from 200 to 250MeV (from
500 to 700 MeV).
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5. Hard exclusive two photon production of a pion pair

The helicity amplitudes for a pion pair production in exclusive two photon collisions at high
energies and large center of mass scattering angles θcm is given by

( ˜ ) ( ˜ ) ( ) ( )ò ò j j=¢ ¢ll ll x y x Q y Q T x y Qd d , , , , , 29x y H
0

1

0

1
2* *

where ˜ ( ) ∣ ∣q= -Q x x sMin , 1 sinx cm , similarly for Q̃y, and = ggs W2 is the square of the cm

energy of the two-photon system. ( )ll¢T x y Q, ,H
2 is the helicity dependent perturbative hard

scattering amplitude for two pion production. The spin-averaged cross section for producing
the pion pair is

⟨∣ ∣ ⟩ ( )s
p

= 
z s

d

d

1

32
, 302

with

⟨∣ ∣ ⟩ ∣ ∣ ( )å=
¢

¢

ll

ll 
1

4
312 2

and q=z cos cm. The hard scattering amplitudes (in leading order) for the different helicity
structures are given by [49]

Figure 3. Pion form factor calculated with the flat pion distribution of equation (12),
and with dynamical quark and gluon masses given, respectively, by 250 and 600 MeV.
Comparison with the experimental fit of [59]. The experimental data are taken from
[60–63].
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where ei are the quark charges (meaning that the pions have charges ( ) -e e1 2 ) and

} ( )( ) ( )= - - a
b

x y xy1 1 . 34

In order to restrain the calculation at the perturbative QCD level we can multiply the right
side of equation (29) by the following form factor, which smoothly switches off the pQCD
contribution at low energies [64]

Figure 4. Total cross section for pion pair exclusive production. Results are also
computed with the pQCD contribution suppressed by the form factor given in
equation (35).
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In figure 4 we plot the total cross section for hard exclusive two photon production of a
charged pion pair. Again our results seem to be in agreement with the existent data when
calculated with the same parameters used in the previous sections. Our results are compatible
with the ones presented by Nižić [65].

Within the same approach we can compute the differential cross section for exclusive
pion pair production. The existent models, the BL one and the one of [66], are not fully in
agreement with the experimental data. This cross section is plotted in figure 5 and we verify
that at least for large photon pair energy, where we do expect that perturbative QCD can
describe the experimental data, our calculation is consistent with the known experimental
results. Unfortunately it is still a challenge the full explanation of the experimental data within
perturbative QCD, i.e. if we have already arrived at the high energy frontier in this part-
icular case.

6. Discussion and conclusions

The BaBar results for the pion transition form factor suggested many authors to propose a flat
pion DA in order to describe the data. In [25] we proposed that only a very hard BSE solution
(in momentum space) for the pion wave function can generate such flat DA. We computed the
DA as a function of this type of solution of quark self-energy, which is related to the pion
wave function, and our main intention in this work was to verify how this DA describe the
experimental data. We stress that, as far as we know, only a very hard (in momentum space)
quark self-energy can lead to a natural explanation of a flat pion DA within first QCD
principles.

We computed the pion transition form factor, the pion form factor and the exclusive
photoproduction of charged pion pairs at high energies with the DA determined in section 2.

Figure 5. Differential cross section for pion pair exclusive production, compared with
experimental data at different energies.
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Following Radyushkin [5] we have assumed that QCD corrections barely affect such flat DA,
however the QCD corrections in the hard scattering amplitudes seem to be necessary for a
better description of the experimental data. All quantities were computed with the same
parameters used to determine the DA, i.e. dynamical quark and gluon masses, providing a
consistent picture of pions exclusive production.

In principle we may not expect that the quark self-energy, or the similar pion wave
function, should follow exactly the behavior of equation (9), but this is indeed one possibility
that appears when the quark masses are dynamically generated [41, 42], and this possibility
should be confronted with the experimental data. However the description of the data is quite
reasonable and seems to indicate that the pion wave function may be well approximated at
large momentum by the behavior of equation (9). Our discussion immediately raises two
important questions: will the pion DA evolve and, for very large μ, will satisfy some
asymptotic behavior? The answer is yes for both. For m 1 the perturbative evolution
dominates and brings our pion DA to some of the asymptotic forms discussed in
[5, 6, 8, 12, 17, 19–22, 25, 18]. However, our results depend mainly on the shape of ( )j mp x,
at low scales, namely m  1 GeV, and on these scales dominates the non-perturbative
evolution, which is extremely slow. This can be understood by considering a particular
argument due to Radyushkin [5]: let us consider the one-loop correction ( )pggF QNLO 2

* for the
pion transition form factor, equations (17) and (18)
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We see that ( )mQln 2 2 is very large when  mQ . In order to make the one-loop correction
small, we can eliminate the logarithmic contribution by adopting Q=μ. We shall, however,
continue to have a large one-loop correction since, in effect, the dominant term in (37) is now
the term of order~ 2 2. In our case (ò= 0.0248) we have a huge correction ( )a p~750 s . In
fact the dominant term can be compensated by the logarithmic term ( ) ( )m Q2 ln 2 2 only by
taking ( )m = Qln 12 2 , and this choice simply imposes m = - e Q2 1 2. This relation may
be rewritten as ¯m = x Q2 2, where

¯
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ò

ò

j

j

p

p




x

x x x

x x
ln

ln ; d

; d
380

1

0

1

for the case of the amplitude with almost flat DA. In the expression above x̄ is an effective
average x. The optimal choice for the normalization scale μ is therefore something like
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( )m = ~- -e Q Q10 . 392 1 0.0248 2 8 2

We observe that even for the highest Q2 scales reached in the BELLE and BABAR
experiments, we obtain m ~ ´ -4 102 7 GeV2. This scale corresponds to distances much
larger than the size of the pion. Thus, we unfortunately cannot evolve ( )j mp x, down to such
tiny scale, the perturbative evolution must stop for a scale of the order of m ~ L0

2
QCD
2 . In other

words, our flat pion DA becomes a pion DA defined at some low normalization point
m m= ~ L0 QCD, and below this point there is no evolution. In this picture we can consider
the case where the evolution of jπ(x, μ) is absent, i.e. we deal simply with j (x; ò). Hence our
pion DA almost does not evolve and there is no need to specify the renormalization scale μ at
which it is defined. It may be worth emphasizing that the argument just exposed is valid only
up to NLO correction. Choosing a special scale will not eliminate high order terms.

It is worth remarking on the fact that our pion DA, despite having an intrinsic flat
invariant (independent of the renormalization scale μ) behavior across the widest range of
scales, exhibits the correct UV asymptotic behavior in the limit m  ¥. At this stage we
have to remember that in essence the pion DA depends on the scale μ that is used to define the
matrix elements of the leading (twist-2) local operators. Its evolution equation in kernel form
is given by [16, 48]

( )
( ) ( ) ( )òm

j m
m

j m=p
p

x
V x y y y
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d
, , d , 40

0

1

where V(x, y) is the evolution kernel. The general solution of (40) may be written in terms of
Gegenbauer polynomials
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where β0 is the first coefficient of the β function of the QCD, and γ2n>0 is the anomalous
dimension of the composite operator (with 2n derivatives). As a result, in the limit m  ¥
the pion DA acquires the asymptotic form ( )jp xas . In our case, where m ~ - Q102 8 2, the
asymptotic behavior occurs on Q2 scales far greater than the currently accessible energy
regimes. We see that even in this scenario the infrared behavior is important for short-distance
quantities such as the pion DA.

It would be interesting to compare the DA calculation of equation (2) with the one using
the Bethe–Salpeter amplitude of (18). In a naive analysis we have verified that the form factor
calculation using the BSA, when expressions for vertex and propagators are plugled in the
BSA expression, generates a similar power dependence on the quark self-energy and
exchanged momenta. As we are using a very hard self-energy, all integrations will be quite
dependent only on the UV asymptotic behavior and not on the IR subtleties of the calculation.
Therefore we do not expect large divergences from one result to the other. However it is clear
that a full comparison of the different calculations can motivate a more lengthy and detailed
work. A detailed comparison will be addressed in a future work.
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