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1.  Introduction

Fringe projection profilometry (FPP) is being employed for 
three-dimensional (3D) measurement more and more widely 
[1–9]. Since FPP was proposed [10], more than 35 years have 

passed. The fundamental problems concerning FPP, such as 
phase demodulation [10–13], phase unwrapping [14–18], and 
system calibration [19–25], have been well studied. At present, 
more attention is being paid to improving the measurement 
performance of FPP under variant practical measurement 
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Abstract
Off-axis circular fringe projection profilometry (OCFPP) is a kind of recently proposed 
three-dimensional (3D) measurement technique. Coordinates of the zero-phase point is an 
indispensable parameter for the application of OCFPP. As the zero-phase point is virtual, 
calculation of its coordinates is a key problem to be solved. To efficiently and accurately 
calculate the coordinates of the zero-phase point, a compound method is put forward in 
this paper. Firstly, a method is proposed to detect the coarse coordinates of the zero-phase 
point with the aid of the property of the phase distribution; then, a fast searching strategy 
is presented to efficiently detect the exact coordinates. The coarse coordinates provide a 
reasonable center for the following fast searching. The foundation of the fast searching 
strategy is laid with the aid of a constructed mathematical model and computer simulation. 
Benefits of the compound method are twofold: firstly, it makes it possible to locate the 
searching center without usage of an additional ruler; secondly, it significantly improves the 
efficiency of detecting the zero-phase point while keeping the accuracy. Experiments confirm 
the advantages of the proposed method.
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conditions. Raising the measurement accuracy is among the 
key objectives. In order to raise the accuracy, an effective 
measure is to equip a camera or a projector with telecentric 
lenses [26–34]. The reason is manifest: the usage of telecen-
tric lenses can evidently improve the transverse resolution, 
which will eventually contribute to raising the measurement 
accuracy in the height.

Circular fringe projection profilometry (CFPP) is a special 
kind of FPP with telecentric lenses [35–37]. The specialty lies 
in that CFPP recovers the 3D profile based on the triangulation 
formed between the optical axis and the projected light rays of 
a projector. Accordingly, the hardware layout, the coded fringe 
pattern and the 3D reconstruction model differ with those of 
FPP. CFPP is proposed to explore a novel 3D measurement 
technique, and is expected to outperform the performance of 
FPP in terms of measurement accuracy. However, the perfor-
mance of CFPP remains to be further developed.

When the zero-phase point is located within the field of 
view of a CFPP system, the intersection angles between the 
projection lights and the optical axis approximate to zero at 
the region near the optical axis. Then, errors in the measured 
parameters at the region will be dramatically amplified because 
values of cotangent of the intersection angles are extremely 
large. This will bring in tremendous error to the recovered 3D 
profile. To deal with this problem, off-axis CFPP (OCFPP) is 
recently presented [37]. In OCFPP, the axes of a camera and a 
projector are adjusted to be far away. OCFPP helps to improve 
the 3D measurement accuracy. However, it also brings in an 
accessional issue that the zero-phase point stands outside the 
field of view of the camera. This means that its pixel coor-
dinate, which is indispensable for 3D reconstruction, is lost. 
In [37], two methods, called the two-dimensional (2D) ruler-
based method (2DRM) and the plane constraint-based method 
(PCM) are respectively presented to solve this problem. These 
methods are far from enough because the 2DRM can only 
ensure a coarse result with the aid of a 2D ruler while the 
PCM can obtain a fine result at the expense of huge time con-
sumption. Furthermore, the application of the PCM requires 
that a reasonable searching center be provided in advance. To 
obtain the searching center, a method such as the 2DRM has 
to be adopted beforehand. In practice, it is expected that the 
zero-phase point could be accurately calculated with high effi-
ciency and without relying on an additional 2D ruler.

This paper solves this problem by proposing a novel com-
pound method to efficiently and accurately detect the zero-phase 
point. The proposed method is composed of two connected 
methods. The first method is called the circle fitting-based 
method (CFM) for simplicity. The CFM is used to work out the 
coarse coordinates of the zero-phase points by applying circle 
fitting to phases of a captured circular fringe pattern. The second 
method is called the recursive plane constraint-based method 
(RPCM) for simplicity. The coarse coordinates obtained with 
the CFM will be used as the first-round searching center of the 
RPCM. RPCM is capable of searching for the accurate coordi-
nates in an efficient way since a fast searching strategy similar 
to the binary search strategy is adopted. To ensure that the effi-
cient searching strategy is tenable, mathematical deviation and 
computer simulation are conducted.

The CFM, in combination with the RPCM, will be called 
the circle-fitting RPCM (CRPCM) for simplicity. The 
CRPCM contributes to evidently improving the efficiency to 
detect the zero-phase point while saving the usage of an aux-
iliary 2D ruler. Consequently, it helps to further enhance the 
performance of OCFPP.

The rest of this paper is structured as follows: in section 2, 
OCFPP is briefly introduced, and the origin of the problem 
of detecting the zero-phase point is explained; in section 3, 
theoretical foundation of CFM and RPCM is proven, CFM 
and RPCM are described, and procedures for CRPCM are 
outlined; in section 4, experiments are performed to check the 
practical performance of CRPCM, and discussions are made; 
in section 5, this paper is summarized.

2.  Off-axis circular fringe projection profilometry 
(OCFPP)

2.1.  Brief introduction to OCFPP

It is recommended that [35–37] be referred to in advance 
because this paper builds on theories therein.

Similar to FPP, OCFPP is also a triangulation-based 3D 
measurement technique. The triangle it relies on is depicted 
in figure 1. ON  is perpendicular to the projection plane, M 
denotes any point on a measured surface, MN⊥ON , the angle 
between OM and ON  is θ, and MN//EF . Lines l1 and l2 rep-
resent the optical axes of the adopted projector and camera 
respectively, and l1//l2. The core of OCFPP is to calculate the 
z coordinate of the point M (i.e. the length of ON ) with the 
aid of MN  and θ. ∆OMN  and the projection plane constitute a 
model like a reverse pinhole model, which can be readily real-
ized by a projector. However, direct calculation of MN  and θ 
are impossible since the point N  is virtual in practice. To this 
end, a kind of circular fringe pattern, a conventional projector 
and a camera equipped with telecentric lenses are used. Then, 
θ can be signified by the phase of the circular fringe pattern 
and intrinsic parameters of the projector; MN  can be signified 
by the phase of the circular fringe pattern, the image coordi-
nate of the zero-phase point, and intrinsic parameters of the 
camera and telecentric lenses. It can be worked out that the 3D 
reconstruction model of OCFPP can be expressed as [35–37]

Figure 1.  Geometry of OCFPP.
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


x(xc, yc) = µcxc/β + ξx

y(xc, yc) = µcyc/β + ξy

z(xc, yc) = (µc

»
(xc − xc0)

2
+ (yc − yc0)

2
)/(kβΦ(xc, yc))

,

� (1)
where µc denotes the physical size of pixels of a used digital 
camera, (xc, yc) are pixel coordinates of any point in captured 
images, β represents the amplification factor of the employed 
telecentric lenses, ξx and ξy are constants only determined by 
the origin of the world coordinate system, (xc0, yc0) represents 
pixel coordinates of the zero-phase point in a captured circular 
fringe pattern, Φ(xc, yc) is the phase of the captured circular 
fringe pattern, and k is a parameter determined by intrinsic 
parameters of the projector and the period of the coded cir-
cular fringe pattern.

Errors always exist in values of all parameters in the 3D 
reconstruction model. From equation  (1), it can be inferred 
that when Φ(xc, yc) approximates to zero, the calculated value 
of z will be severely distorted by the potential error. It has 
been theoretically demonstrated that the larger the value of θ, 
the better the measurement accuracy for OCFPP will become 
on the condition that θ is less than a threshold around 0.7 
radians [37]. The maximum divergence angle of a conven-
tional projector is generally less than 0.7 radians. Hence, the 
distance between l1 and l2 should be set as large as possible to 
improve the measurement accuracy.

2.2.  Zero-phase point problem in OCFPP

The departure of l1 and l2 helps to enhance the measurement 
performance of OCFPP. In practice, the distance between 
l1 and l2 should be adjusted to be so large that the point N  
in figure 1 is always out of the field of view of the imaging 
system. This phenomenon is further exhibited in figure 2. It can 
be seen that the field of views of the camera and the projector 
are very different in OCFPP. The reason is that the camera is 
equipped with telecentric lenses while the projector has con-
ventional lenses. The point N  in figure 2 is the same as the one 
in figure 1. It is the zero-phase point. The phase of a projected 
circular fringe pattern is always zero at this point (it makes up 
a line coinciding with l1 in figure 1). If the zero-phase point 
could be imaged, its coordinates would be (xc0, yc0). However, 
as can be seen from figure 2, the point N  cannot be imaged by 

the camera in OCFPP. Accordingly, it becomes impossible to 
detect (xc0, yc0) by searching for the point whose phase value 
is zero in the phase map of an acquired circular fringe pattern. 
(xc0, yc0) become lost in OCFPP. This prevents the application 
of equation (1), and makes it impossible to accomplish the 3D 
measurement with OCFPP. Measures have to be taken to solve 
this problem.

2.3.  Shortcomings in the PCM

In [37], the PCM is put forward to detect the zero-phase point. 
It will be briefly introduced here because the method in this 
paper is partly built on the PCM.

Considering that µc, k and β all are constants, and their 
values are set to 1, the equation for calculating the z coordi-
nate (please refer to equation (1)) becomes

zvirtual(xc, yc) =

»
(xc − xc0)

2
+ (yc − yc0)

2

Φ(xc, yc)
.� (2)

Obviously,

zvirtual(xc, yc) = λz(xc, yc),� (3)

where λ is constant.
From equation  (3), it can be inferred that the shape of 

zvirtual(xc, yc) is the same to that of z(xc, yc). Therefore, if a flat 
board is measured with OCFPP, the virtual profile recovered 
with the aid of equation (2) should be a plane. The problem 
lies in that (xc0, yc0) are unknown. The planeness of the recov-
ered profile is best only when (xc0, yc0) takes its actual value. 
As presented in [37], this property can be utilized to detect 
(xc0, yc0). Suppose a flat board is measured with OCFPP, q is 
any point within a region covering the actual zero-phase point, 
and its coordinates are (xq

c0, yq
c0). Accordingly,

zq
virtual(xc, yc) =

»
(xc − xq

c0)
2
+ (yc − yq

c0)
2

Φ(xc, yc)
.� (4)

Then plane fitting is applied to zq
virtual(xc, yc), and the obtained 

plane is signified by zq
fit(xc, yc). The root mean square error 

(RMSE) of the plane fitting can be calculated by

RMSE(q) =

√∑column
xc=1

∑row
yc=1 (z

q
virtual(xc, yc)− zq

fit(xc, yc))
2

row · column
,

� (5)
where row and column denote the total row number and 
column number of the captured image respectively.

Now that the measured object is a flat board, it is obvious 
that the following relationship stands:

(xc0, yc0) = (xq̄
c0, yq̄

c0),� (6)

where

q̄ = min
q=1,2,···

RMSE(q).� (7)

The above-mentioned method is the PCM proposed in [37]. Its 
searching process is explained in figure 3. The total number of 
points to be searched is

Figure 2.  Schematic diagram of field of views of a camera and a 
projector in OCFPP.
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Q =
W
w

· H
w

.� (8)

In order to accurately detect the zero-phase point, the step 
width w should be set to a small value. In order to ensure 
the searching region covers the actual zero-phase point, W  
and H  should be set relatively large. Suppose W = H = 500 
and w = 0.1 (this is not a harsh condition in practice), it 
can be computed that totally 25 000 000 points should be 
searched, which means 25 000 000 times plane fitting have to 
be implemented. This is too time-consuming. Furthermore, 
the searching center should be obtained before the PCM is 
employed. At present, this can be accomplished with the aid 
of the 2DRM, which is also proposed in [37]. However, the 
application of the 2DRM requires a 2D ruler be used, which 
makes the actual operation complex. An efficient and handy 
method for detecting the zero-phase point in OCFPP remains 
to be investigated.

3.  Principle of the circle-fitting recursive plane 
constraint-based method (CRPCM)

The CRPCM is proposed to accurately and efficiently detect 
the zero-phase point for OCFPP. It realizes this goal by two 
core steps: firstly, it calculates the coarse location of the zero-
phase point by implementing circle fitting to the absolute 
phase of a circular fringe pattern captured from a flat board; 
then, a recursive PCM is applied to search for the zero-phase 
point with both accuracy and efficiency. This will be con-
cretely described in the following.

3.1.  Circle fitting method (CFM) for detecting the coarse 
zero-phase point

The phase of a coded circular fringe pattern is regular. It is 
proportional to the distance between any point and the zero-
phase point, which can be expressed as [35]

Φ(xp, yp) = 2π

»
(xp − xp0)

2
+ (yp − yp0)

2

Rp
,� (9)

where Φ(xp, yp) denotes the phase at point (xp, yp), (xp0, yp0) 
are coordinates of the zero-phase point, and Rp represents the 
fringe period in the pixel of the coded circular fringe pattern.

Note that (xp0, yp0) should be the pixel coordinates of the 
point F  in figure 1 ideally. From equation (9), it can be inferred 
that pixels with the same phases form a set of concentric cir-
cles with the center being (xp0, yp0). This phenomenon is visu-
alized in figure 4. Therefore, if the phases of a subregion of the 
coded circular fringe pattern are known, the coordinates of its 
zero-phase point, (xp0, yp0), can be calculated by performing 
circle fitting to any set of points with the same phase value.

When a circular fringe pattern, as shown in figure 4(a), is 
projected onto a flat board that is perpendicular to the optical 
axis of the projector, its spatial distribution will be amplified 
with a ratio determined by focal length of the projector and 
distance between the optical center of the projector and the flat 
board (see figure 5). Accordingly, the phase distribution on the 
flat board becomes

Φ(x, y) = 2π

»
(x − x0)

2
+ (y − y0)

2

R
,� (10)

where (x, y) and (x0, y0) can be regarded as coordinates in mil-
limeters of any point and the zero-phase point in the world 

Figure 3.  Explanation to the searching process of the PCM: 
(xc

c0, yc
c0) denotes the center of the selected searching region, 

(xc0, yc0) denotes the actual zero-phase point, (x1
c0, y1

c0) denotes the 
first searching point, (xQ

c0, yQ
c0) denotes the last searching point, the 

window size is W × H, the searching width is w, and the purple 
arrows signify the radial directions.

Figure 4.  (a) A coded circular fringe pattern and (b) its phase: 
the size of the image is 300  ×  400 (row  ×  column), Rp = 60, 
(xp0, yp0) = (200.5, 150.5), and red circles in the right image mark 
pixels with values of 2π (inner) and 4π (outer) respectively.

Figure 5.  A coded circular fringe pattern projected onto a flat 
board, which is perpendicular to the optical axis of the employed 
projector.
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coordinate system respectively, Φ(x, y) is the phase of the cir-
cular fringe pattern at point (x, y), and





x = αupxp

y = αupyp

R = αupRp

,� (11)

where µp denotes the physical size of pixels of a used digital 
projector, and α = L/f .

From equation (10), it can be inferred that points with the 
same phase values on the flat board form a set of concentric 
circles centering at (x0, y0). Hence, if the phases of a subre-
gion of the circular fringe pattern on the flat board are known, 
the coordinates of its zero-phase point, (x0, y0), can be calcu-
lated by performing circle fitting to any set of points with the 
same phase value.

The circular fringe pattern on the flat board will be captured 
by a camera with telecentric lenses. As shown in figure 1, the 
optical axis of the camera is parallel to that of the projector. 
According to the imaging law of telecentric lenses, the circular 
fringe pattern keeps to the circular fringe pattern when imaged 
by the camera. Figure  6 exemplifies this phenomenon. The 
orange solid rectangle signifies the actual field of view of the 
camera with telecentric lenses. As can be seen, only a small 
part of circular fringe pattern on the flat board can be seen by 
the camera. It can be inferred that phases of circular fringe 
pattern captured by the camera obey the following equation:

Φ(xc, yc) = 2π

»
(xc − xc0)

2
+ (yc − yc0)

2

Rc
,� (12)

where

Rc =
βR
µc

.� (13)

Hence, it can be inferred that coordinates of the virtual zero-
phase point, (xc0, yc0), can be calculated with the aid of circle 
fitting theoretically.

In practice, it is difficult to set a board to be strictly perpend
icular to the optical axis of a projector, and other kinds of error 
in the calculated parameters are also unavoidable. These fac-
tors make the accuracy of (xc0, yc0) obtained by circle fitting 

not high. However, it provides a convincing searching center 
required for detecting the exact zero-phase point. Note that 
both the flat board and the circular fringe patterns required in 
CFM can be obtained in the conventional calibration process 
of the OCFPP system. Hence, the application of the CFM con-
sumes little resources.

3.2.  RPCM for detecting the exact zero-phase point

Suppose the coarse coordinates calculated with the CFM is 
(xc

c0, yc
c0), a searching window centered at (xc

c0, yc
c0) with a size 

of W × H being selected, as shown in figure 3. As noted in sec-
tion 2.3, it will be too time-consuming if the selected region 
is searched point by point with a constant searching step, i.e. 
w remaining constant. It is easy to think of employing a fast 
searching strategy instead of the exhaustive search. However, 
does the feasibility of a fast searching strategy stand?

3.2.1.  Demonstration of the feasibility of a fast searching  
strategy.  If the distribution of the planeness of recovered vir-
tual profiles are inversely proportional to the distance between 
any point and the zero-phase point along the radial direction 
(please refer to figure 3), then a binary search can be employed 
to efficiently detect the zero phase point. Does this assumption 
stand? This will be answered by mathematical deviation and 
computer simulation.

When a flat board is measured with OCFPP, and suppose its 
height distribution, z(xc, yc), is known in advance, according 
to equation (1), the phase distribution of the captured circular 
fringe pattern can be expressed as

Φ(xc, yc) =
µc

»
(xc − xc0)

2
+ (yc − yc0)

2

kβz(xc, yc)
.� (14)

Combining equation (4) with (14), it can be worked out that

zq
virtual(xc, yc) = z(xc, yc)fq(xc, yc),� (15)

where

fq(xc, yc) =

Ã
(xc − xq

c0)
2
+ (yc − yq

c0)
2

(xc − xc0)
2
+ (yc − yc0)

2 .� (16)

Note that µc, k, and β are all set to be 1 for clarity because 
this does not impact the planeness of zq

virtual(xc, yc). Now that 
the measured object is a flat board, z(xc, yc) should represent 
a plane. Similarly, zq

virtual(xc, yc) represents a plane if and only 
if (xq

c0, yq
c0) = (xc0, yc0). At this time, fq(xc, yc) = 1, and hence 

zq
virtual(xc, yc) = z(xc, yc). This coincides with the conclusion in 

section 2.3 that the planeness of the recovered virtual profile of 
a measured flat board is best only when (xq

c0, yq
c0) = (xc0, yc0). 

What is interested in is whether or not the planeness of pro-
files recovered at each searched point, (xq

c0, yq
c0), is inversely 

proportional to the distance between the point and the actual 
zero-phase point along the radial direction. This is a complex 
mathematical proof problem for one who does not major in 
mathematics. However, it can be proven by mathematical 
modeling and computer simulation.

Figure 6.  Circular fringe pattern on a flat board and the region 
actually captured by a camera with telecentric lenses: the orange 
solid rectangle marks the captured circular fringe pattern.
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When (xq
c0, yq

c0) �= (xc0, yc0), the profile of fq(xc, yc) will 
deviate from fq(xc, yc) = 1 disproportionally, and hence the 
profile of zq

virtual(xc, yc) will become curved (please refer to 
equation  (15)). Considering that z(xc, yc) denotes a plane, 
the curvature of zq

virtual(xc, yc) is resulted from fq(xc, yc). 
Concretely, the larger the deviation of fq(xc, yc) from a hori-
zontal plane, the larger the curvature of zq

virtual(xc, yc) will 
become. Therefore, the curvature of zq

virtual(xc, yc) can be 
quantified by

curvature(q) =
∑column

xc=1
∑row

yc=1

∣∣fq(xc, yc)− f̄ (q)
∣∣

row × column
,� (17)

where f̄ (q) represents a horizontal plane determined by 
fq(xc, yc):

f̄ (q) =
∑column

xc=1
∑row

yc=1 fq(xc, yc)

row × column
.� (18)

Hence, the above-mentioned problem is transformed to 
whether or not there is one and only one local minimum value 
for curvature(q). This problem can be solved with the aid of 

computer simulation. If the distribution of curvature(q) along 
with (xq

c0, yq
c0) had one and only one local minimum value that 

locates at (xc0, yc0) under representative simulated conditions, 
the above-mentioned problem can be proven.

Suppose (xc0, yc0) = (5000, 800), curvature(q) with 
W1 × H1 = (2000, 2000) (please refer to figure 3), w1 = 20;  
W2 × H2 = (60, 60), w2 = 1; W3 × H3 =(4, 4), w3 = 0.1; 
W4 × H4 = (0.4, 0.4), w4 = 0.01 are considered respectively. 
Figure  7 depicts the calculated curvature(q). The searched 
region is gradually subdivided to detect all of the potential 
local minimum values besides (xc0, yc0). It is clear that all 
minimum values of curvature(q) are unique, and locate at 
(5000, 800). Hence, it can be safely concluded that the local 
minimum value of curvature(q) is unique. This lays the foun-
dation for the adoption of a fast searching strategy.

3.2.2.  Recursive plane constraint-based method 
(RPCM).  Now that there is one and only one minimum value 
for curvature(q) that locates at the actual zero-phase point 
(see figure 7), and a fast searching strategy becomes available. 
Once Φ(xc, yc), zq

virtual(xc, yc) and (xc
c0, yc

c0) are calculated, the 
location of the zero-phase point can be searched as follows 
(see figure 8):

Step 1: set the first-round searching step to be w0, the size 
of first-round searching window centered at (xc

c0, yc
c0) to 

be W0 × H0  (values of W0 and H0 should be relatively 
large, such as 1024), and calculate all of the values of 
zq

virtual(xc, yc) with the aid of equation (4). 
Step 2: the four points that make the planeness of 

zq
virtual(xc, yc) better than that of the other points are 

detected, and they make up a region to be searched in 
the next round. 

Step 3: procedures similar to steps 1 and 2  are recursively 
applied until wi � thrset, thrset should be a small value, 
such as 0.01, and during the recursive searching process, 
the searching step and the size of the searching window 
could be set to

®
wj = wj−1/ε

Wj × Hj = wj−1 × wj−1
, j = 1, 2, . . . J,� (19)

Figure 7.  Distributions of curvature(q): (a) W1 × H1 = (2000, 2000), and w1 = 20; (b) W2 × H2 = (60, 60), and w2 = 1; 
(c) W3 × H3 = (4, 4), and w3 = 0.1; (d) W4 × H4 = (0.4, 0.4), and w4 = 0.01.

Figure 8.  The region (the orange region) that covers the actual 
zero-phase point detected by first-round searching: the planeness 
of four vertexes of the orange region are better than that of other 
points, the blue cross whose coordinates are (xc0, yc0) marks the 
actual zero-phase point, the red cross whose coordinates are 
(xc

c0, yc
c0) marks the center of the selected first-round searching 

window, the first-round window size is W0 × H0 , and the first-round 
searching step is w0.
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		 where ε is an integer larger than 1, J is a number that 
makes wJ � thrset. 

Step 4: coordinates of the zero-phase point is the one making 
the planeness of zq

virtual(xc, yc) best in the last-round 
searching.

The above searching process is called the RPCM for 
simplicity.

There are many strategies that can be adopted to select w0. 
A preferred one is as follows:

w0 =

®
W/ε, if W � H
H/ε, if W < H .� (20)

Then, the total number of plane fitting during the applica-
tion of the RPCM can be calculated by (assume W = H for 
simplicity):

f (ε, τ) = (ε+ 1)2ceil(logετ),� (21)

where ceil(∗) means taking the smallest integer that is no less 
than *, and τ = W/thrset  .

Distribution of f (ε, τ) when ε ∈ [2, 20] and τ ∈ [103, 105] 
is plotted in figure 9. It is clear that ε = 2 should be chosen to 
ensure the best efficiency. When ε = 2, and assume W = H, 
the ratio between the number of plane fitting required by the 
PCM and that by the RPCM is

R(τ) =
(τ + 1)2

9ceil(log2τ)
.� (22)

Figure 10 depicts the distribution of equation (22). The value 
of τ  is seldom smaller than 1000 in practice. Therefore, it can 
be found that the efficiency of the RPCM should be more than 
10 000 times faster than that of the PCM.

3.3.  Procedures of CRPCM

The CRPCM is a combination of the CFM and RPCM. Its 
working principle is as follows:

Step 1: a flat board is placed within the field of view of an 
OCFPP system, and it is adjusted to be as perpendicular 
to the axis of a projector in the OCFPP system as possible. 

Step 2: a set of circular fringe patterns are projected onto the 
flat board, and they are imaged. 

Step 3: Φ(xc, yc) is calculated from the acquired circular fringe 
patterns. 

Step 4: CFM is applied to detect the coarse coordinates of the 
zero-phase point, i.e. (xc

c0, yc
c0) which will be used as the 

first-round searching center of RPCM. 
Step 5: RPCM is applied to detect the actual coordinates of the 

zero-phase point.

The perpendicularity in step 1 is just to obtain a more accu-
rate searching center with the CFM. It is not required by the 
RPCM. The application of the CRPCM can be realized with 
little resource consumption because the required flat board 
and phase can be provided by the conventional system cali-
bration process.

4.  Experiments and discussions

Experiments were conducted to validate the CRPCM. In 
the experiments, the projector utilized is a SONY VPL-
EW276 with a resolution of 1280  ×  800; the CCD camera 
used is a Microvision MV-VEM 120SM with a resolution of 
1280  ×  960; the telecentric lenses is a BT-2396 with a valid 
field of view of 51.6 mm  ×  38.7 mm when the CCD size is 
1/3′′ . During the experiments, a flat board played an impor-
tant role: firstly, it was used to detect the coarse coordinates 
of the zero-phase point; secondly, it was used to detect the 
actual coordinates of the zero-phase point; lastly, it was used 
to calibrate the OCFPP system. Note that axes of the projector 
and camera should be carefully adjusted to be as parallel as 
possible before the formal 3D measurement.

4.1.  Detection of zero-phase point with the CRPCM

The application of the CRPCM consists of two steps: firstly, 
the coarse coordinates of the zero-phase point was detected 
with the CFM; then, the RPCM was applied to obtain the fine 
coordinates of the zero-phase point.

Figure 11 depicts one of circular fringe patterns captured 
from a flat board, and its absolute phase. Three curves are 
plotted in figure  11(b). Each curve denotes pixels with the 
same phase value. They look like a set of arcs. Circle fitting 
was applied to them. The calculated centers are listed in table 1. 

Figure 9.  Distribution of the required number of plane fitting along 
with ε and τ .

Figure 10.  Ratio between the efficiency of the RPCM and PCM 
when ε = 2.
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Their average, (5935, 692), was used as (xc
c0, yc

c0) in RPCM. 
To preliminarily check the validity of the searching center 
detected with CFP, 2DRM in [37] was also implemented. The 
result calculated with 2DRM is (6069.16, 675.56). The two 
detected points are not far away. This is one piece of evidence 
that the CFM can provide a reasonable searching center. The 
actual performance of the CFM depends on the actual hard-
ware layout accuracy and the phase accuracy.

Then RPCM was applied to detect the fine coordinates 
of the zero-phase point. During this process, configurations 
in figure 12 rather than those described in section 3.2 were 
adopted. This is to enhance the robustness of the searching 
process because noise is always unavoidable. Under these 
configurations, in total 694 times of plane fitting were adopted 
to obtain the coordinates of the zero-phase point with accuracy 
better than 0.05. The result is (xc0, yc0) = (6004.31, 691.88). It 
can be found that coordinates of the zero-phase point calcu-
lated with RPCM, (6004.31, 691.88), is not far from the one 
calculated with CFM, (5935, 692). This is another piece of 
evidence that the CFM is capable of providing a reasonable 
searching center for the RPCM. It can also be found that the 
searching center provided by the CFM was more accurate 
than the one by the 2DRM in this experiment even though 
the 2D ruler is avoided. To validate the robustness of the 
RPCM, (xc

c0, yc
c0) = (5935 + 100, 692 + 100) and (xc

c0, yc
c0) = 

(5935 − 100, 692 − 100) were also tried. The results were 
also (xc0, yc0) = (6004.31, 691.88). Therefore, the RPCM is 
robust in detecting the zero-phase point. If the PCM proposed 
in [37] is used to obtain coordinates of the zero-phase point 
with the same accuracy, the number of plane fitting required is 
(1024/0.05 + 1)× (1024/0.05 + 1) ≈ 4.2 × 108. This is too 
time-consuming. The RPCM makes the efficiency of detecting 
the zero-phase point increased by about 6 × 105 times without 
loss of accuracy in this experiment.

4.2.  3D measurement of standard balls

Two standard balls were measured to further validate the pro-
posed method. The diameters of them are 50.8035 mm and 

29.9998 mm respectively. Figure 13 shows the circular fringe 
patterns captured from these two standard balls. It can be 
found that there is a small part of saturated regions in both 
of the captured fringe patterns. This is because these stan-
dard balls are made of ceramic, and their surfaces are very 
smooth. In the following data processing, data in these satur
ated regions were discarded.

The 3D profiles of these two standard balls were recov-
ered with the aid of zero-phase points detected with the CFM 
and CRPCM respectively. Figure 14 depicts the 3D profiles 
recovered with the CRPCM. Then sphere fitting was applied 
to the recovered profiles. Tables  2 and 3 list the results. In 
these tables, D signifies the fitted diameter, eD signifies the 
difference between the fitted diameter and the actual diam-
eter, and SD signifies the stand deviation of the sphere fit-
ting. It can be found that the measurement accuracy when the 
CRPCM is used is better than that when the CFM is used. 
This is because the CRPCM is capable of detecting more 
accurate coordinates of the zero-phase point. However, the 3D  
measurement accuracy when the CFM is used is not too bad. 

Figure 11.  (a) A circular fringe pattern captured from a flat board, 
and (b) its phase: curves in (b) marks pixels with phase values of 
360, 330, and 300 radians respectively.

Table 1.  Zero-phase points detected with CFM.

Phase 300 330 360

Zero-phase 
point

(5930.4, 692.4) (5929.0, 691.1) (5946.2, 693.2) Figure 12.  The searching strategy of the RPCM adopted 
in the experiments: the red cross whose coordinates are 
(xc

c0, yc
c0) = (5935, 692) marks the center of the selected searching 

window, the first-round window size is 1024 × 1024, the first-
round searching width is w0 = 64, ε = 4, and thrset = 0.05, the 
orange region signifies the region that covers the actual zero-phase 
point detected by one round of searching, the blue cross whose 
coordinates are (xc0, yc0) marks the actual zero-phase point, the 
purple asterisk denotes the points with the smallest curvature(q) 
during the first-round search.

Figure 13.  Circular fringe patterns captured from two standard 
balls during the experiment.
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This further indicates that the zero-phase point detected with 
the CFM near its actual location.

SD is still not low enough even when the zero-phase 
point is detected with the CRPCM. This is not resulted by 
the CRPCM but by the accuracy of the calculated phase. As 
noted in [35], the phase accuracy of OCFPP is experimentally 
detected to be less than 1/7 of that of the conventional FPP. It 
can be improved to the same level as that of FPP by refining 
the hardware configuration which has not been accomplished 
at present.

Furthermore, it was found that obvious overall inten-
sity variation among the captured circular fringe patterns 
might occur. This will bring damage to the 3D measurement 
accuracy. In our first experiment, this phenomenon arose 
when measuring the ball in figure  13(b). We re-conducted 
measurement to this ball, and the huge intensity variation 
disappeared. The intensity variation seems to be random. 
However, this phenomenon is not related to the proposed 
method. It will be further researched and analyzed in the 
future work.

4.3.  Measurement of representative objects

Lastly, a mechanical part was measured with the CRPCM (see 
figure 15). This is just to demonstrate the effectiveness of the 
CRPCM in a more vivid way. Hence, no quantitative analysis 
will be given. Figure 16 shows the recovered profile. It is clear 
that the 3D profile of the mechanical part is well recovered. 

This indirectly demonstrates that the CRPCM works well in 
detecting the zero-phase point.

5.  Conclusion

In this paper, the CRPCM is proposed to make it possible 
to detect the zero-phase point with both accuracy and effi-
ciency for OCFPP. The CRPCM is composed of two related 
methods, the CFM and RPCM. The CFM is capable of 
finding the coarse location of the zero-phase point. It works 
by applying circle fitting to the phase of a circular fringe 
pattern captured from a flat board. The CFM provides the 

Figure 14.  3D profiles of the standard balls recovered with CRPCM whose diameters are (a) 50.8035 mm and (b) 29.9998 mm respectively.

Table 2.  Results of sphere fitting applied to measured 3D data of 
the standard ball with diameter being 50.8035 mm (in millimeters).

Method CFM CRPCM

D 50.581 50.859
eD −0.222 0.056
SD 0.178 0.117

Table 3.  Results of sphere fitting applied to measured 3D data of 
the standard ball with diameter being 29.9998 mm (in millimeters).

Method CFM CRPCM

D 30.107 30.035
eD 0.107 0.035
SD 0.153 0.118

Figure 15.  Image of a measured mechanical part.

Figure 16.  Recovered 3D profile of the measured mechanical part.
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searching center for the first-round search of RPCM. It helps 
to decrease the size of the searching window because the 
location it provides should be not far away from the actual 
location. RPCM is a modification of the PCM proposed in 
[37]. The main improvement lies in that a fast searching 
strategy is adopted in the RPCM to evidently decrease the 
time consumption. Mathematical deduction in combination 
with computer simulation is implemented to demonstrate 
the foundation of the fast searching strategy. The validity of 
the CRPCM is further demonstrated by a set of experiments. 
The CRPCM makes it possible to find the coarse location of 
the zero-phase point while getting rid of a 2D ruler, and dra-
matically raise efficiency of detecting the zero-phase point. 
The experiment shows that the efficiency of the CRPCM can 
be 6 × 105 times faster than that of the PCM.

Note that ideally the CRPCM is capable of accurately 
detecting coordinates of the zero-phase point, and the accuracy 
is only determined by the value of thrset in equation (19); in 
practice, its accuracy relies on the phase accuracy, the acc
uracy of the hardware arrangement, and the planeness of the 
adopted flat board, etc.
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