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1.  Introduction

The strap-down inertial navigation system (SINS) is taken as 
the core navigation system in the field of ship navigation [1–3].  
The north-pointing SINS mechanization is widely applied in 
the non-polar region; however, it has difficulty calculating the 
accurate yaw and longitude in the polar region. It has been 
proved that the grid SINS mechanization is feasible to be 
applied in the polar region [4–7]. Since SINS is a dead reck-
oning system, the error deteriorates with time in grid SINS 
[8, 9], and the gyroscope drift is the primary error source. 
For a long-term shipborne grid strap-down inertial navigation 
system (SGSINS), specific techniques must be implemented 
to suppress the deteriorated errors.

In view of keeping the navigation autonomy of the ship, 
the system reset is taken as an effective method to suppress 
the navigation errors as well as extend the navigation time 
of SGSINS. The system reset aims to reset the system errors 
and compensate the gyroscope drifts under the assistance of 
intermittent or short continuous external navigation informa-
tion [10, 11]. Under the assistance of intermittent external 
navigation information, aiming at a platform inertial naviga-
tion system, [12] introduced two-point and three-point system 
reset schemes, thereinto the two-point system reset scheme 
can also be applied to SINS. Aiming at SINS, [13] designed 
the progressive two-point system reset scheme, where the 
inertial frame is introduced to replace the OEPQ frame. The 
scheme eliminates the constraints in [12] that the latitude and 
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attitude of the ship are not allowed to change in the system 
reset. Similarly, [14] designed the progressive three-point 
system reset scheme; however, due to the coupling effect 
between the horizontal gyroscope drifts and yaw error, only 
Z-axis gyroscope drift could be estimated. According to the 
error propagation rule of the azimuth damping INS, [15] 
designed the corresponding system reset scheme. Aiming at a 
transversal SINS mechanization working in the polar region, 
on the basis of [14], [16] designed the three-point system reset 
scheme, and the scheme obtained identical simulation results 
to [14]. Aiming at SGSINS, [17] derived the P  equation and 
designed the two-point and three-point system reset schemes 
based on the inertial frame. The system reset algorithms men-
tioned above should be realized in damping state. In order to 
eliminate this constraint, [18] proposed a non-damping system 
reset algorithm. In [18], SINS is integrated with external 
velocity and position to estimate the horizontal attitude errors. 
In order to ensure the two-point system reset scheme can 
be realized in the non-damping state, the horizontal attitude 
errors are compensated through feedback calibration by using 
the estimation results from the Kalman filter. Note that the 
feedback calibration to restrain the horizontal attitude errors 
is the novel damping method that was introduced in [19], 
and this method relies heavily on the initial parameters of the 
filter, which is difficult to implement in practical application. 
With the assistance of short continuous external yaw and posi-
tion, [20] proposed an optimum system reset scheme based 
on the inertial frame, and the gyroscope drifts are estimated 
by Kalman filter. Note that the scheme should be realized in 
damping state. Under the assistance of continuous external 
position, [21] proposed a non-damping optimum system reset 
algorithm to estimate the gyroscope drifts. However, the gyro-
scope drift in the east direction cannot be estimated through 
the algorithm.

The P  equation and the ψ equation are the key in designing 
the system reset scheme. The P  equation relates the position 
errors to the vector angle ψ and yaw error, and the ψ equa-
tion relates the vector angle ψ to the gyroscope drifts. In the 
previous research, the P  equation was derived based on the 
assumption that the horizontal attitude errors are approxi-
mately zero [12–14, 16, 17]. To ensure horizontal attitude 
errors can be approximated to zero, the SINS needs to work in 
damping state in the system reset. In this way, the estimation 
accuracy of the gyroscope drift relies heavily on the damping 
performance. The Doppler velocity log (DVL) is usually used 
to dampen the errors of the SINS; however, the accuracy of 
the DVL is extremely vulnerable to the ocean current and the 
maneuvering of the ship [22–24]. The working state of the 
SINS frequently switches between damping state and non-
damping state based on the availability of the DVL. When the 
working state switches in the system reset, the error propa-
gation rule of damping SINS breaks [25], and the estimation 
accuracy of gyroscope drift degrades.

With the aim of solving the problem mentioned above, this 
paper addresses a non-damping system reset algorithm for 
the SGSINS. First, on the basis of the SGSINS error model, 
the SGSINS is integrated with the DVL to estimate the hori-
zontal attitude errors, and the estimation results are introduced 

to the system reset. Next, in order to ensure the system reset 
algorithm can be realized in non-damping state, we reform
ulated the P  equation. Different from the P  equation in [17], 
the horizontal attitude errors are contained as the correction 
terms in P  equation which aims to eliminate the approximate 
error caused by ignoring the horizontal attitude errors. Finally, 
under the assistance of two intermittent or short continuous 
external yaw and position, we designed the two-point and 
optimum system reset schemes, respectively. The simulation 
tests demonstrate that the designed system reset schemes can 
estimate the gyroscope drifts in non-damping state accurately. 
Compensating the gyroscope drifts can efficiently restrain the 
drifted errors in the SGSINS. Because it only takes a short 
time to estimate the horizontal attitude errors in the system 
reset, compared with the existing system reset algorithms real-
ized in damping state, the proposed algorithm greatly shortens 
the time of using DVL, which improves the reliability of the 
algorithm in practical application.

The paper is organized as follows: section  2 introduces 
the relevant coordinate systems and SGSINS error model; 
section 3 reformulates the P  equation, and the ψ equation is 
also introduced; under the assistance of two intermittent or 
short continuous external yaw and position, the two-point and 
optimum system reset schemes are designed in sections  4, 
and 5 validates the effectiveness of the proposed system reset 
schemes; section 6 gives the conclusions.

2.  Coordinate systems and SGSINS error model

2.1. The relevant coordinate systems

The coordinate systems used in this paper include the 
following. 

Body frame b: the body frame has its origin at the center of 
mass of the ship. The pitch axis xb, roll axis y b and yaw axis zb 
point to the right-hand side, forward and upward, respectively. 
The body frame is shown in figure 1:

Earth-fixed frame e: the earth-fixed frame has its origin at 
the center of mass of the earth. xe lies along the intersection 
line of the equatorial plane and Greenwich meridian; y e lies 
in the equatorial plane and is perpendicular to xe; ze coincides 
with the polar axis. xe, y e and ze constitute the right-handed 
coordinate system.

Inertial frame i: the inertial frame has its origin at the center 
of mass of the earth. xi lies in the equatorial plane and points to 
a fixed star; y i lies in the equatorial plane and is perpendicular 

Figure 1.  The body frame b.
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to xi; zi coincides with the polar axis. xi, y i and zi constitute the 
right-handed coordinate system. The inertial frame and earth-
fixed frame are illustrated in figure 2:

Geographic frame t: the geographic frame has its origin at 
the center of mass of the ship. xt lies in the local horizontal 
plane and points to the east; y t lies in the local horizontal 
plane and points to the north; zt is perpendicular to the local 
horizontal plane and points upward. xt, y t and zt constitute 
the right-handed coordinate system. The geographic frame is 
drawn in figure 3:

OEPQ frame: the OEPQ frame has its origin at the center 
of mass of the ship. OE is tangent to the latitude circle and 
points to the east; OP is parallel to the polar axis and points 
to the north; OQ lies in the latitude circle and is perpendicular 
to the polar axis. OE, OP and OQ constitute the right-handed 
coordinate system. The OEPQ frame is shown in figure 4:

Grid frame G: the grid frame is chosen as the navigation 
frame for SGSINS. The grid frame has its origin at the center 
of mass of the ship. y G points to the north, meanwhile y G is 
parallel to the Greenwich meridian and lies in the local hori-
zontal plane; xG points to the east, meanwhile xG lies in the 
local horizontal plane and is perpendicular to y G; zG coincides 
with zt. xG, y G and zG constitute the right-handed coordinate 
system.

Mathematical platform frame p : p  imitates G, and the origin 
coincides with the origin of G. The vector angle between G 
and p  is defined as φ, which is usually called the grid attitude 
error angle.

Computer frame c: c imitates G, and the origin is the posi-
tion calculated by SGSINS. The vector angle between G and 
c is defined as δθ, and the vector angle between p  and c is 
defined as ψ. φ, δθ and ψ satisfy:

φ = δθ +ψ.� (1)

The grid frame, mathematical platform frame and computer 
frame are illustrated in figure 5. In figure 5, δλ and δϕ denote 
the longitude and latitude errors; ρ  and ρc denote the true grid 
azimuth and the calculated grid azimuth outputted by SGSINS.

The relationship between φ, δθ and ψ is illustrated in 
figure 6.

The definitions of the abovementioned coordinate systems 
can refer to [8, 19]. The proposed system reset algorithm is 
performed upon the SGSINS mechanization. [19] has given a 
detailed description of the SGSINS mechanization.

2.2.  SGSINS error model

In order to eliminate the approximate error caused by 
ignoring the horizontal attitude errors in deriving the P  equa-
tion, the SGSINS is integrated with the DVL to estimate 

Figure 2.  The inertial frame i and earth-fixed frame e.

Figure 3.  The geographic frame t.

Figure 4.  The OEPQ frame.

Figure 5.  The grid frame, mathematical platform frame and 
computer frame.

Figure 6.  The relationship between φ, δθ and ψ.
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the horizontal attitude errors, and the estimation results are 
introduced to the system reset. The vertical velocity is neg-
ligible in shipborne application. Defining the state vector as 

x =
[
φG

E φG
N φG

U δVG
E δVG

N δX δY δZ
]T

, thereinto 
φG

E , φG
N  and φG

U  denote the pitch, roll and grid yaw errors; δVG
E  

and δVG
N  denote the grid east and grid north velocity errors; 

δX , δY  and δZ denote the position errors in the earth-fixed 
frame. The continuous-time linear process equation is form
ulated as

ẋ(t) = A(t)x(t) + B(t)w(t)� (2)

where w(t) =
[
εb ∇b(1 : 2)

]T
 is the process noise. εb 

denotes the gyroscope drift in the body frame; ∇b(1 : 2) 
denotes the first two elements of accelerometer bias ∇b in the 
body frame. The state transition matrix A(t) and the process 
noise matrix B(t) are obtained as follows:

A(t) =




A11 A12 A13

A21 A22 A23

A31 A32 A33


 .� (3)

B(t) =



−CG

b 03×2

02×3 (CG
b )2|2

03×3 03×2


� (4)

where A11 = −ωG
iG×, A12 = (CAV)3|2, A13 = CAR1 + CAR2,   

A21 = (f G×)2|3, A22 = [VG × CAV − (2ωG
ie + ωG

eG)×]2|2, 
A23 = [VG × (CAR1 + 2CAR2)]2|3, A31 = 03×3, A32 = (Ce

G)3|2 
and A33 = −Ce

G(V
G×)CR.

The definitions of the symbols in (3) and (4) are expressed 
as follows:

		  ωγ
βα: rotation angular rate of α frame with respect to β 

frame in γ  frame, e.g. ωG
iG, ωG

ie and ωG
eG; 

		  Θ×: the antisymmetric matrix related to Θ, e.g. ωG
iG×, 

f G×, VG× and (2ωG
ie + ωG

eG)×; 

		  (·)m|n: the first n columns and m rows of the matrix; 

		  f G: the accelerometer output in grid frame; 

		  VG: velocity in grid frame; 

		  Cframe2
frame1: direction cosine matrix between frame 1 and 

frame 2, e.g. Ce
G and CG

b .

The detailed expressions of matrixes CAV , CAR1, CAR2 and CR 
are formulated in the appendix.

In this paper, SGSINS and DVL are integrated through the 
loosely coupled method. Thereby, the difference between the 
velocities provided by SGSINS and DVL is taken as the meas-
urement. The measurement equation is formulated as follows:

z(t) =
[
δVG

E

δVG
N

]
= Hx(t) + η(t).� (5)

where z is the measurement vector; the measurement matrix 
H =

[
02×3 I2×2 02×3

]
, and I2×2 is the 2 × 2 identity 

matrix.
Note that in order to reduce the time of using DVL and 

improve the reliability of the system reset algorithm, we only 
integrate the SGSINS and DVL for a short period of time in 
the system reset. In section 4, figures 8 and 10 have shown 
the time of introducing DVL to the two-point and optimum 
system reset schemes.

3. The ψ equation and the derivation of the  
modified P  equation

In the field of ship navigation, the celestial navigation system 
(CNS) is usually taken as the yaw reference, and the global 
positioning system (GPS) is usually taken as the position 
reference. Under the assistance of two intermittent or short 
continuous external yaw and position, this paper proposed 
the two-point and the optimum system reset schemes. The 
proposed system reset schemes are designed based on the 
P  equation  and ψ equation. In this paper, the P  equation, 
which relates the position errors to the vector angle ψ and grid 
yaw error, is reformulated by reserving the horizontal attitude 
errors as the correction terms in P  equation, and the ψ equa-
tion which relates the vector angle ψ to the gyroscope drifts 
is introduced.

3.1. The derivation of the modified P  equation

In order to eliminate the approximate error caused by ignoring 
the horizontal attitude errors in deriving the P  equation, the 
P  equation is reformulated which can be used to design the 
non-damping system reset algorithm for the SGSINS. In the 
derivation, ϕ and λ denote the latitude and longitude of the 
ship, and ρ  denotes the grid azimuth which is defined as the 
rotation angle between the grid frame and geographic frame. 
Accordingly, δϕ, δλ and δρ denote the latitude, longitude 
and grid azimuth errors. The transformation matrix CG

t  is 
described as follows:

CG
t =



cos ρ − sin ρ 0
sin ρ cos ρ 0

0 0 1


 .� (6)

The transformation matrix Ct
e is described as follows:

Ct
e =




− sinλ cosλ 0
− sinϕ cosλ − sinϕ sinλ cosϕ

cosϕ cosλ cosϕ sinλ sinϕ


 .� (7)

The computer frame c can be generated by performing 
three-time rotation of the grid frame G which is illustrated in 
figure 7.

As shown in figure 7, the frame Ox′Gy′Gz′G  is generated by 
spinning the grid frame around the x axis of the geographic 
frame by −δϕ; the frame Ox′′Gy′′Gz′′G  is generated by spinning 
the frame Ox′Gy′Gz′G  around the z axis of the earth-fixed frame 
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by δλ; the computer frame is generated by spinning the frame 
Ox′′Gy′′Gz′′G  around the z axis of the computer frame by −δρ. By 
ignoring the second-order small terms, the projection of δθ on 
the geographic frame is calculated as follows:

δθt =



−δϕ

0
0




+




− sinλ cosλ 0
− sinϕ cosλ − sinϕ sinλ cosϕ

cosϕ cosλ cosϕ sinλ sinϕ







0
0
δλ




+




1 δθt
z −δθt

y

−δθt
z 1 δθt

x

δθt
y −δθt

x 1







0
0

−δρ




≈




−δϕ

δλ cosϕ

δλ sinϕ− δρ


 .

�

(8)

The projection of δθ on the grid frame is calculated as 
follows:

δθG = CG
t δθ

t

=



cos ρ − sin ρ 0
sin ρ cos ρ 0

0 0 1







−δϕ

δλ cosϕ

δλ sinϕ− δρ


 .

� (9)

The components of δθG are expressed as follows:

δθG
x = −δϕ cos ρ− δλ cosϕ sin ρ,� (10a)

δθG
y = −δϕ sin ρ+ δλ cosϕ cos ρ,� (10b)

δθG
z = δλ sinϕ− δρ.� (10c)

In the previous research, with the purpose of simplifying 
the derivation of the P  equation, the horizontal attitude errors 
φG

x  and φG
y  are approximately zero, and SINS is required to 

work in damping state to restrain the horizontal attitude errors. 
In this way, according to (1) and (10), we can obtain the fol-
lowing approximate relationship [17]:

ψG
x ≈ δϕ cos ρ+ δλ cosϕ sin ρ,� (11a)

ψG
y ≈ δϕ sin ρ− δλ cosϕ cos ρ,� (11b)

φG
z = δλ sinϕ− δρ+ ψG

z .� (11c)

The existing P  equation is derived based on the approxi-
mate relationship in (11), and the system reset algorithms 
designed based on the existing P  equation need to be real-
ized in damping state. The damping of the SINS is usually 

realized with the aid of DVLs; however, the accuracy of DVLs 
is extremely vulnerable to the ocean current and maneuvering 
of the ship. The working state of the SINS frequently switches 
between the non-damping state and damping state based on 
the availability of DVLs. In this way, when the working state 
of the SGSINS switches in the system reset, the error propa-
gation rule of damping SINS breaks, and the estimation acc
uracy of gyroscope drifts degrades.

This paper proposes a non-damping system reset algorithm 
which aims to reduce the time using DVL as well as elimi-
nate the approximate error caused by ignoring the horizontal 
attitude errors. Employing (1) and (10), we can obtain the fol-
lowing equation:

ψG
x − φG

x = δϕ cos ρ+ δλ cosϕ sin ρ,� (12a)

ψG
y − φG

y = δϕ sin ρ− δλ cosϕ cos ρ,� (12b)

φG
z = δλ sinϕ− δρ+ ψG

z .� (12c)

We assume the earth is a standard sphere for the purpose 
of simplifying the derivation, and the radius of the earth 
R  =  6378393.0  m. Suppose that the position in the earth-

fixed frame is defined as 
[
x y z

]T
, then the transformations 

between 
[
x y z

]T
 and 

[
λ ϕ

]T
 are given by

sinϕ =
z
R

,� (13a)

cosϕ =

√
x2 + y2

R
,� (13b)

sinλ =
y√

x2 + y2
,� (13c)

cosλ =
x√

x2 + y2� (13d)

where R denotes the earth radius.
By calculating the derivatives on both sides of (13b) and 

(13c), δϕ and δλ can be described as follows:

δϕ = − xδx + yδy

z
√

x2 + y2
,� (14a)

δλ =
xδy − yδx

x2 + y2 .� (14b)

The transformations between grid azimuth ρ  and 
[
λ ϕ

]T
 

are given by

sin ρ =
sinϕ sinλ√

1 − sin2 λ cos2 ϕ
,� (15a)

cos ρ =
cosλ√

1 − sin2 λ cos2 ϕ
.� (15b)

Using (13) in (15) yields

sin ρ =
yz√

x2 + y2
√

x2 + z2
,� (16a)

Figure 7.  The transformation from grid frame to computer frame.
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cos ρ =
Rx√

x2 + y2
√

x2 + z2
.� (16b)

Using (13), (14) and (16) in (12) yields

ψG
x − φG

x = −
√

x2 + z2

Rz
δx − xy

Rz
√

x2 + z2
δy,� (17a)

ψG
y − φG

y = − 1√
x2 + z2

δy,� (17b)

φG
z = ψG

z +
xzδy − yzδx
R(x2 + y2)

− δρ.� (17c)

Employing (17a) and (17b), δx and δy can be described as

δx =
xy(ψG

y − φG
y )− Rz(ψG

x − φG
x )√

x2 + z2
,� (18a)

δy = −
√

x2 + z2(ψG
y − φG

y ).� (18b)

Using (18) in (14) yields

δλ =
Ryz(ψG

x − φG
x )− R2x(ψG

y − φG
y )

(x2 + y2)
√

x2 + z2
,� (19a)

δϕ =
Rxz(ψG

x − φG
x ) + yz2(ψG

y − φG
y )

R
√

x2 + y2
√

x2 + z2
.� (19b)

By calculating the derivatives on both sides of (15b), δρ 
can be expressed as follows:

δρ =
δλ sinϕ

1 − sin2 λ cos2 ϕ
+

δϕ sinλ cosλ cosϕ

1 − sin2 λ cos2 ϕ
.� (20)

Using (13) and (19) in (20) yields

δρ =
R2y(ψG

x − φG
x )− Rxz(ψG

y − φG
y )

(x2 + y2)
√

x2 + z2
.� (21)

Using (18) and (21) in (17c) yields

φG
z = ψG

z − y√
x2 + z2

(ψG
x − φG

x ).� (22)

According to (18) and (22), we can obtain the following 
equation:

P̃ =



δx̃
δỹ
φ̃G

z


 =




δx − RzφG
x√

x2+z2
+

xyφG
y√

x2+z2

δy −
√

x2 + z2φG
y

φG
z − yφG

x√
x2+z2




=




−Rz√
x2+z2

xy√
x2+z2

0

0 −
√

x2 + z2 0
−y√
x2+z2

0 1






ψG

x

ψG
y

ψG
z




= MG



ψG

x

ψG
y

ψG
z


 .

�

(23)

In (23), the modified position errors are related to the 
vector angle ψ and modified grid yaw error, and (23) is the 

so-called P  equation. Different from the P  equation in [17], 
(23) reserved the horizontal attitude errors, and the horizontal 
attitude errors are contained as the correction terms in the 
position errors and grid yaw error. The horizontal attitude 
errors are estimated through the integration of SGSINS and 
DVL, which was introduced in section  2.2. Obviously, as 
long as horizontal attitude errors can be estimated accurately, 
the modified P  equation  can be utilized to design the non-
damping system reset scheme.

The OEPQ frame is first used as the core coordinate system 
to design the system reset scheme; however, this kind of 
scheme needs to be realized with the special constraint: the 
latitude and attitude of the ship are not allowed to change in 
the system reset. In order to eliminate the constraint, [14, 16, 
17, 20] proposed to substitute the inertial frame for the OEPQ 
frame. Here, we adopted the same method to eliminate the 
constraint. By expressing the vector angle ψ in the inertial 
frame, (23) can be further modified as follows:

P̃ =



δx̃
δỹ
φ̃G

z


 = MGCG

i



ψi

x

ψi
y

ψi
z


 = Mi



ψi

x

ψi
y

ψi
z


� (24)

where the transformation matrix CG
i  can be calculated as 

follows:

CG
i = CG

t Ct
eCe

i .� (25)

In (25), the transformation matrixes Ce
i , C

t
e and CG

t  can be 
calculated as follows:

Ce
i =




cosΩt sinΩt 0
− sinΩt cosΩt 0

0 0 1


 .� (26)

Ct
e =




−y√
x2+y2

x√
x2+y2

0

−xz
R
√

x2+y2

−yz
R
√

x2+y2

√
x2+y2

R

x
R

y
R

z
R


 .� (27)

CG
t =




Rx√
x2+y2

√
x2+z2

−yz√
x2+y2

√
x2+z2

0
yz√

x2+y2
√

x2+z2

Rx√
x2+y2

√
x2+z2

0

0 0 1


� (28)

where t denotes the time; Ω denotes the angular velocity of the 
earth’s rotation.

Using (26), (27) and (28) in (25), (24) can be further 
expressed as follows:

P̃ =




z sinΩt −z cosΩt y
z cosΩt z sinΩt −x
Rx cosΩt

x2+z2
Rx sinΩt

x2+z2
Rz

x2+z2





ψi

x

ψi
y

ψi
z




= Mi



ψi

x

ψi
y

ψi
z


 .

�

(29)

Equation (29) is the modified P  equation  which will be 
utilized to design the system reset schemes in section 4.

Meas. Sci. Technol. 31 (2020) 055104



T Fang et al

7

3.2. The ψ equation

The relationship between the vector angle ψ and gyroscope 
drifts is formulated as the ψ equation. Similarly, in order to 
eliminate the constraints of the traditional algorithm on the 
motion state of the ship, we substituted the inertial frame for 
the OEPQ frame. The ψ equation is expressed as follows [13, 
14, 16, 17]:

ψ̇
i
= Ci

bε
b.� (30)

4. The system reset schemes based on external 
yaw and position

4.1. The two-point system reset scheme

Under the assistance of two intermittent external yaw and 
position, this paper proposes a two-point system reset scheme. 
Suppose that the SGSINS receives the external yaw and posi-
tion at time t1 and t2. Since horizontal attitude errors have 
strong observability, 20 min is enough to obtain accurate esti-
mation results of the horizontal attitude errors. In the two-
point system reset scheme, we integrated SGSINS with DVL 
from t1  −  20 min to t1 and t2  −  20 min to t2, and the estimation 
results at t1 and t2 are introduced to the system reset. Figure 8 
shows the time of introducing DVL, GPS and CNS to the pro-
posed two-point system reset. In figure 8, the red segments 
indicate the time when the outputs are introduced to the two-
point system reset.

Employing (30), the increment of the vector angle ψ from 
t1 to t2 is described as follows:

∆ψt1|t2 = ψi(t2)−ψi(t1) =
(∫ t2

t1
Ci

bdt
)
εb.� (31)

Equation (31) establishes the relationship between the 
gyroscope drifts and increment of the vector angle. Note 
that the transformation matrix Ci

b from t1 to t2 is obtained 
through the recursive calculation of the differential equa-

tion Ċ
i
b = Ci

bω
b
ib× with the gyroscope outputs [14, 16].

Employing (29), the increment of the vector angle ψ from 
t1 to t2 can be described in another form:

∆ψt1|t2 = M−1
i (t2)P̃(t2)− M−1

i (t1)P̃(t1).� (32)

At t1, we reset the yaw and position of the SGSINS. 
Meanwhile, we reset the horizontal attitude according to the 
estimation results of the horizontal attitude errors from the 

filter. After the attitude and position reset, P̃(t1) = 0. Then 
(32) can be further expressed as follows:

∆ψt1|t2 = M−1
i (t2)P̃(t2).� (33)

At t2, employing (31) and (33), the gyroscope drifts can be 
calculated as follows:

εb =

(∫ t2

t1
Ci

bdt
)−1

M−1
i (t2)P̃(t2).� (34)

Equation (34) relates the gyroscope drifts and observation 
at t2. Obviously, the gyroscope drifts can be estimated under 
the assistance of two intermittent external yaw and position.

The two-point system reset scheme realized in damping 
state needs more time to integrate the SGSINS with the DVL. 
Taking horizontal damping for instance, one and a half periods 
of Schuler oscillation (84.4 min) are usually required for the 
process of damping the error into the stable state [26]. In this 
case, in order to ensure the damping from t1 to t2 reaches the 
stable state, the integration of SGSINS and DVL should start 
no later than t1 − 1.5 × 84.4 min. From the above analysis, 
the shortest time of using DVL output can be calculated as: 
t2 − t1 + 126.6 min. The times of introducing DVL, GPS and 
CNS to the conventional two-point system reset are shown in 
figure 9. As shown in figure 8, in the proposed two-point system 
reset scheme, since the time of using DVL only depends on 
the time of estimating horizontal attitude errors, we only need 
to integrate the SGSINS with the DVL for 40 min. In this way, 
the proposed two-point system reset scheme greatly reduces 
the time of using DVL output.

4.2. The optimum system reset scheme

With the assistance of short continuous external navigation 
information, the system reset to estimate the gyroscope drifts 
through the Kalman filter is usually called the optimum system 
reset. With the assistance of short continuous external yaw 
and position, this paper proposes an optimum system reset 
scheme. Suppose that the gyroscope drift consists of constant 
drift and random drift:

εb = εb
c + εb

r� (35)

where ε̇b
c = 0 represents the gyroscope constant drift; εb

r   
represents the gyroscope random drift.

By selecting the vector angle ψ and gyroscope constant 
drift εb

c as the state variables, according to (30) and (35), the 

Figure 8.  The time of introducing DVL, GPS and CNS to the 
proposed two-point system reset.

Figure 9.  The time of introducing DVL, GPS and CNS to the 
conventional two-point system reset.
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continuous-time linear process equation  is formulated as 
follows:

[
ψ̇

i

ε̇b
c

]
=

[
03×3 Ci

b

03×3 03×3

][
ψi

εb
c

]
+

[
Ci

bε
b
r

03×1

]
.� (36)

where the transformation matrix Ci
b is calculated as follows:

Ci
b = Ci

eCe
t Ct

GCG
b .� (37)

In (37), Ci
e is obtained by calculating the transpose of (26); 

Ct
G and Ce

t  are obtained by calculating the transposes of (28) 
and (27) with the assistance of the external position. CG

b  is 
obtained by correcting the attitude errors. Suppose that CG′

b  
represents the strap-down matrix outputted by the SGSINS, 
then the strap-down matrix CG

b  can be corrected as follows:

CG
b =




1 −φG
U φG

N

φG
U 1 −φG

E

−φG
N φG

E 1


CG′

b .� (38)

In (38), φG
E  and φG

N  are estimated by the Kalman filter which 
has been introduced in section 2.2; φG

U  is obtained by calcu-
lating the difference between the external yaw and the yaw 
outputted by the SGSINS. In the proposed optimum system 
reset scheme, the SGSINS receives the external yaw and posi-
tion from time t to t  +  10 min, and the SGSINS is integrated 
with the DVL from t  −  20 min to t  +  10 min. The estimation 
results of the horizontal attitude errors are introduced to the 
system reset from t to t  +  10 min. Figure 10 shows the time 
of introducing DVL, GPS and CNS to the proposed optimum 
system reset. In figure 10, the red segments indicate the time 
when the outputs are introduced to the optimum system reset.

Equation (29) can be rewritten in the following form:

y(t) = Miψ
i + ζ(t).� (39)

where y =
[
δx̃ δỹ φ̃G

z

]T
. ζ  represents the measurement 

noise which includes the measurement noise from GPS and 
CNS. By selecting the vector angle ψ and gyroscope constant 
drift εb

c as the state variables, the measurement equation  is 
formulated as follows:

y(t) =
[
Mi 03×3

] [ψi

εb
c

]
+ ζ(t).� (40)

According to (36) and (40), with the assistance of the 
external yaw and position, the gyroscope constant drifts can 
be estimated by Kalman filter.

The optimum system reset scheme realized in damping 
state needs more time to integrate SGSINS with DVL. In 
order to ensure the damping from t to t  +  10 min reaches the 
stable state, the integration of SGSINS and DVL should start 
no later than t − 1.5 × 84.4 min. From the above analysis, the 
shortest time of using DVL output is 136.6 min. The time of 
introducing DVL, GPS and CNS to the conventional optimum 
system reset are shown in figure 11. As shown in figure 10, in 
the proposed optimum system reset scheme, since the time of 
using DVL only depends on the time of estimating horizontal 

attitude errors, we only need to integrate SGSINS with DVL 
for 30 min. In this way, the proposed optimum system reset 
scheme greatly reduces the time of using DVL output.

5.  Simulation results and analysis

Due to the limitations of performing the experiment in the 
polar region, we performed a numerical simulation to test the 
proposed two-point and optimum system reset schemes. The 
outputs of the gyroscope and accelerometer are generated by 
an SINS simulator. The simulation parameters are set as in 
table 1.

The Kalman filter in section 2.2 is utilized to estimate the 
horizontal attitude errors. The initial state vector x0, estima-
tion error covariance matrix P0, process noise covariance 
matrix Q0 and measurement noise covariance matrix R0 are 
initialized as follows:

x0 =
[
0 0 0 0 0 0 0 0

]T
,

Figure 10.  The time of introducing DVL, GPS and CNS to the 
proposed optimum system reset.

Figure 11.  The time of introducing DVL, GPS and CNS to the 
conventional optimum system reset.

Table 1.  The simulation parameters.

Parameters Values

Navigation time 25 h
Gyroscope constant drift 0.01◦ h−1

Gyroscope random drift White noise
Accelerometer constant bias 10−4 g
Accelerometer random bias White noise
Standard deviation of external position error 10 m
Standard deviation of external yaw error 10′′

Initial attitude errors 6′′ 6′′ 6′

Initial latitude and longitude 85°N  18°E
Speed of ship 10 m s−1

Attitude change of ship Sine function
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P0 = diag{[(6′′)2 (6′′)2 (6′)2 (0.1 m s−1)2 (0.1 m s−1)2

(5 m)2 (5 m)2 (5 m)2]},

Q0 = diag{[(0.01◦ h−1)2 (0.01◦ h−1)2 (0.01◦ h−1)2

(10−4 g)2 (10−4 g)2]},

R0 = diag{[(0.1 m s−1)2 (0.1 m s−1)2]}.

5.1. The simulation results of the two-point system reset 
scheme

The ship sails northwards. The SGSINS receives external yaw 
and position at t1  =  2 h and t2  =  6 h. From t  =  1 h40 min to 
t  =  2 h and t  =  5 h40 min to t  =  6 h, the SGSINS is integrated 
with the DVL to estimate the horizontal attitude errors. To 
verify the superiority of the designed two-point system reset 
scheme, the SGSINS mechanization is tested with different 
operations at t1  =  2 h and t2  =  6 h, named scheme 1, scheme 2 
and scheme 3. These are shown in table 2.

Scheme 3 is the proposed two-point system reset scheme. 
Under the simulation conditions set above, the yaw error and posi-
tion errors in the earth-fixed frame are drawn in figures 12 and 13.

At t2  =  6 h, according to the proposed system reset scheme, 
the estimated three-axis gyroscope drifts are 0.0092◦ h−1, 

0.0089◦ h−1 and 0.0101◦ h−1. Obviously, under the assistance 
of two intermittent external yaw and position, the two-point 
system reset scheme can estimate the gyroscope drifts accu-
rately in non-damping state. In theory, compensating the gyro-
scope drifts can suppress the drifted errors in the SGSINS. 
The root-mean-squares (RMSs) of position and yaw errors 
after t  =  6 h are summarized in table 3.

As shown in figures 12, 13 and table 3, when the SGSINS 
mechanization is performed without any measure to sup-
press the errors, the position and yaw errors accumulate rap-
idly for scheme 1. When the attitude and position reset are 
operated at t1  =  2 h and t2  =  6 h, the position and yaw errors 
decrease rapidly after the reset at t1  =  2 h and t2  =  6 h. 
However, the navigation errors still accumulate with time 
as the gyroscope drifts are not compensated in scheme 2. 
In scheme 3, the accumulated navigation errors have been 
restrained effectively as the gyroscope drifts are compen-
sated at t2  =  6 h. The proposed two-point system reset 
scheme is performed in non-damping state, and the time 
of using DVL is only 40 min. However, according to the 
analysis in section 4.1, the two-point system reset scheme 
realized in damping needs at least 366.6 min to integrate 
the SGSINS with the DVL. Therefore, the proposed two-
point system reset scheme greatly shortens the time of using 
DVL, and this improves the reliability of the algorithm in 
practical application.

Table 2.  The operations of scheme 1, scheme 2 and scheme 3 at t1  =  2 h and t2  =  6 h.

Operations

Scheme 1 No operation
Scheme 2 Attitude and position reset at t1  =  2 h and t2  =  6 h
Scheme 3 Attitude and position reset at t1  =  2 h and t2  =  6 h; gyroscope drifts compensation at t2  =  6 h
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Figure 12.  The grid yaw error of scheme 1, scheme 2 and scheme 3.
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5.2. The simulation results of the optimum system reset 
scheme

The ship sails northwards. The SGSINS receives external 
yaw and position from t  =  6 h to t  =  6 h 10 min. From t  =  5 h 
40 min to t  =  6 h 10 min, the SGSINS is integrated with the 
DVL to estimate the horizontal attitude errors. Aiming at 
optimum system reset, the other Kalman filter is utilized to 
estimate the gyroscope constant drifts, which has been intro-
duced in section  4.2. The initial state vector x′

0, estimation 
error covariance matrix P′

0, process noise covariance matrix 
Q′

0 and measurement noise covariance matrix R′
0 are initial-

ized as follows:

x′0 =
[
0 0 0 0 0 0

]T
,

P′
0 = diag{[(6′′)2 (6′′)2 (6′)2 (0.01◦ h−1)2

(0.01◦ h−1)2 (0.01◦ h−1)2]},

Q′
0 = diag{[(0.001◦ h−1)2 (0.001◦ h−1)2 (0.001◦ h−1)2]},

R′
0 = diag{[(5m)2 (5m)2 (10′′)2]}.

To verify the superiority of the designed optimum system 
reset scheme, the SGSINS mechanization is tested with dif-
ferent operations at t  =  6 h 10 min, named scheme 1, scheme 
2 and scheme 3. These are shown in table 4.

Scheme 3 is the proposed optimum system reset scheme. 
From t  =  6 h to t  =  6 h 10 min, the Kalman filter is utilized to 
estimate the gyroscope constant drifts based on the state-space 
model in section 4.2. The estimation results of the gyroscope 
constant drifts are shown in figure 14.

As shown in figure 14, the estimation results of the gyro-
scope constant drifts converge to the stable state in about 200 s.  
Taking the means of the estimation results from 500 s to 600 s 
as the estimated gyroscope constant drifts, the estimated gyro-
scope constant drifts are 0.0090◦ h−1, 0.0091◦ h−1 and 0.0103◦ 
h−1. Obviously, under the assistance of short continuous 
external yaw and position, the optimum system reset scheme 
can estimate the gyroscope constant drifts accurately in non-
damping state. Under the simulation conditions set above, 
the yaw error and position errors in the earth-fixed frame are 
drawn in figures 15 and 16.

The RMSs of position and yaw errors after t  =  6 h 10 min 
are summarized in table 5.

As shown in figures 15, 16 and table 5, we can find only 
attitude and position reset at t  =  6 h 10 min cannot restrain the 
errors essentially. The compensation of the gyroscope drifts at 
t  =  6 h 10 min can efficiently improve the navigation accuracy 
of the SGSINS. The proposed optimum system reset scheme 
is realized in non-damping state, and the time of using DVL is 
only 30 min. However, according to the analysis in section 4.2, 
the optimum system reset scheme realized in damping state 
needs at least 136.6 min to integrate the SGSINS with the 
DVL. Therefore, the proposed optimum system reset scheme 
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Figure 13.  The position errors of scheme 1, scheme 2 and scheme 3.

Table 3.  The RMSs of position and yaw errors of scheme 1, 
scheme 2 and scheme 3.

Navigation errors Scheme 1 Scheme 2 Scheme 3

Grid yaw error (′) 0.0825 0.1088 0.0020
X-axis position error (m) 6728 6835 995
Y-axis position error (m) 5413 5160 727
Z-axis position error (m) 210 101 25
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Table 4.  The operations of scheme 1, scheme 2 and scheme 3 at t  =  6 h 10 min.

Operations

Scheme 1 No operation
Scheme 2 Attitude and position reset at t  =  6 h 10 min
Scheme 3 Attitude reset, position reset and gyroscope drift compensation at t  =  6 h 10 min
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Figure 14.  The estimation results of the gyroscope constant drifts from t  =  6 h to t  =  6 h 10 min.
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Figure 15.  The grid yaw error of scheme 1, scheme 2 and scheme 3.

Meas. Sci. Technol. 31 (2020) 055104



T Fang et al

12

reduces the time we depend on DVLs, which has important 
practical value in engineering.

6.  Conclusions

In view of keeping the navigation autonomy as well as 
extending the navigation time of the SGSINS, this paper 
addressed a non-damping system reset algorithm to estimate 
the gyroscope drifts. We integrated SGSINS and DVL to esti-
mate the horizontal attitude errors and the estimation results 
are introduced to the system reset. In order to ensure the 
system reset algorithm can be realized in non-damping state, 
the P  equation  is reformulated by reserving the horizontal 
attitude errors as the correction terms in the P  equation. 
Under the assistance of two intermittent or short continuous 
external yaw and position, we designed the two-point and 
optimum system reset schemes. The numerical simulation 
indicates the proposed system reset schemes can estimate the 
gyroscope drifts accurately in non-damping state, and com-
pensating the gyroscope drifts can restrain the drifted errors 
in the SGSINS. The algorithm greatly reduces the time we 
depend on DVLs, and this improves the reliability of the algo-
rithm in engineering.
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Appendix. The detailed expressions of matrixes 
CAV , CAR1, CAR2 and CR

CAV =




0 − 1
R 0

1
R 0 0
0 − cotϕ sin ρ

R 1


 ,� (A.1)

CAR1 =
1

R2




C1(1, 1) C1(1, 2) C1(1, 3)
C1(2, 1) C1(2, 2) C1(2, 3)
C1(3, 1) C1(3, 2) C1(3, 3)


� (A.2)

where

C1(1, 1) = VG
N cosϕ cosλ,

C1(1, 2) = VG
N cosϕ sinλ,

C1(1, 3) = VG
N sinϕ,

C1(2, 1) = −VG
E cosϕ cosλ,

C1(2, 2) = −VG
E cosϕ sinλ,

C1(2, 3) = −VG
E sinϕ,
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Figure 16.  The position errors of scheme 1, scheme 2 and scheme 3.

Table 5.  The RMSs of position and yaw errors of scheme 1, 
scheme 2 and scheme 3.

Navigation errors Scheme 1 Scheme 2 Scheme 3

Grid yaw error (′) 0.0828 0.1074 0.0019
X-axis position error (m) 6718 6925 786
Y-axis position error (m) 5427 5165 898
Z-axis position error (m) 206 99 19
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C1(3, 1) =
2VG

N cos2 ϕ sinλ cosλ

(1 − cos2 ϕ sin2 λ)
3
2

,

C1(3, 2) = −VG
N

√
1 − cos2 ϕ sin2 λ,

C1(3, 3) =
2VG

N sinϕ cosϕ sinλ

(1 − cos2 ϕ sin2 λ)
3
2

where VG
E  and VG

N  denote the grid east velocity and grid north 
velocity:

CAR2 =
Ω

R(1 − cos2 ϕ sin2 λ)
3
2


C2(1, 1) C2(1, 2) C2(1, 3)
C2(2, 1) C2(2, 2) C2(2, 3)
C2(3, 1) C2(3, 2) C2(3, 3)




� (A.3)

where

C2(1, 1) = 2 cos2 ϕ sinϕ sinλ cosλ,

C2(1, 2) = − sinϕ[cos2 λ+ sin2 λ(sin2 ϕ− cos2 ϕ)],

C2(1, 3) = sin2 ϕ cosϕ sinλ,

C2(2, 1) = sin2 ϕ,

C2(2, 2) = 0,

C2(2, 3) = − sinϕ cosϕ cosλ,

C2(3, 1) = − sinϕ cosϕ cosλ,

C2(3, 2) = − sinϕ cosϕ sinλ,

C2(3, 3) = cos2 ϕ.

CR =
1
R




CR(1, 1) CR(1, 2) CR(1, 3)
CR(2, 1) CR(2, 2) CR(2, 3)
CR(3, 1) CR(3, 2) CR(3, 3)


� (A.4)

where

CR(1, 1) =
sinϕ√

1 − cos2 ϕ sin2 λ
,

CR(1, 2) = 0,

CR(1, 3) =
− cosλ cosϕ√
1 − cos2 ϕ sin2 λ

,

CR(2, 1) =
sinλ cosλ cos2 ϕ√

1 − cos2 ϕ sin2 λ
,

CR(2, 2) =
√

1 − cos2 ϕ sin2 λ,

CR(2, 3) =
− sinλ sinϕ cosϕ√

1 − cos2 ϕ sin2 λ
,

CR(3, 1) =
cosϕ sinϕ sinλ

1 − cos2 ϕ sin2 λ
,

CR(3, 2) = 0,

CR(3, 3) =
− cos2 ϕ sinλ cosλ

1 − cos2 ϕ sin2 λ
.
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