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1.  Introduction

As an important transmission component in mechanical 
equipment, gearboxes are vital to the safety and reliability of 
mechanical equipment [1, 2]. In practical operation, when the 
gearbox has local faults, weak fault characteristic signals are 
always submerged in strong noise. Therefore, the compound 
fault diagnosis of gearboxes in noisy environments is of great 
importance in preventing breakdown accidents and mini-
mizing production loss. In addition, due to the fact that the 
fault data collection time is obviously shorter than the analysis 
time, the rapid separation of different fault components from 
massive and complex data samples and the accurate identi-
fication of health conditions has become an urgent research 
subject [3, 4].

Due to its complex structure and poor working condi-
tions, when a gear or bearing fails, it can easily induce other 

faults [5]. Compound fault diagnosis is much more difficult 
than single fault diagnosis, which is always a challenge for 
emerging techniques. Unlike single fault diagnosis, faults 
of a compound nature may interfere with each other. For 
example, there are different resonance bands in the frequency 
domain, and different impulse components in the time domain 
counteract or overlap with each other. In addition, the gen-
eration process of a compound fault is often a development 
process from a single fault to a compound fault. Therefore, 
the signal of a later fault in a compound fault is often weaker. 
In particular, for compound faults from bearings and gears, 
early gear faults may only produce an amplitude modulation 
phenomenon [6].

In early gear fault signals, the mesh frequency and its 
harmonics are modulated by the rotating speed [7]. By con-
trast, in a bearing fault signal, the inherent frequency of dif-
ferent fault conditions will be modulated by its characteristic 
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frequency [8]. In compound faults, the local faults of the 
gear and the bearing may co-exist and influence each other. 
Different fault component separation is at the core of com-
pound fault diagnosis. In recent years, various data processing 
techniques have been proposed for compound fault separation 
such as empirical mode decomposition (EMD) [9–11], vari-
ational mode decomposition (VMD) [12, 13], the envelope 
analysis method, maximum correlated kurtosis deconvolution 
(MCKD) [14–16], morphological compound analysis (MCA) 
[17] and the kurtogram [18, 19], etc. Antoni elaborated on 
the related theories of SK and officially gave a mathematical 
definition of it, which was the energy-normalized fourth-order 
spectral cumulant. Then, a fast kurtogram concept was pro-
posed, which has been studied and is being widely used by 
more and more researchers [20–22]. Wavelet packet transform 
(WPT) filters can process nonstationary transient vibration sig-
nals more efficiently than STFT. Therefore, Lei et al proposed 
an improved kurtogram in which STFT is replaced with WPT 
[23]. To solve the problem of the kurtogram tending to choose 
the frequency band with individual impulses rather than the 
desired fault impulses, Miao et al introduced a sparsity index 
called the Gini index as an alternative estimator for the selec-
tion of the resonance band [24]. The improvement method is 
more effective under harsh working conditions, even in com-
plex structures. These methods have played important roles in 
the fault diagnosis of gearboxes.

However, the approaches may suffer some kinds of limita-
tion. EMD, VMD, and envelope analysis are effective tools 
for extracting harmonic features but not valid for the detec-
tion of transient features. In addition, the performance of these 
methods will be degraded with a low signal-to-noise ratio 
(SNR). Therefore, these kinds of method usually need to be 
carried out with noise reduction technology. Morphological 
component analysis (MCA) approaches this problem via 
sparse representation and dictionary learning [25]. The main 
idea behind MCA is to use the morphological diversity of the 
different faults contained in the data to associate each morph
ology to a dictionary of atoms for which a fast transform is 
available [25]. In [26], Db, Symmlet and Coiflet wavelets are 
selected to represent the periodic impulse component, and 
local discrete cosine and sine dictionaries (LDCS) are selected 
to represent the meshing component. However, MCA cannot 
separate multiple bearing faults due to the fact that the dic-
tionary we choose will extract different impulse components 
as one fault. MCKD is an effective tool for separating out the 
periodic impulse fault component from the vibration signal 
in the case of strong background noise [14]. In [27], MCKD 
is used to separate the different fault components from the 
compound bearing fault signal. However, the main problem 
in the practical application of MCKD is how to set the fol-
lowing four parameters appropriately: the length of the filter, 
the maximum count of iteration, and the order of the shift and 
fault period, which will affect the performance of the MCKD 
[14]. It should be noticed that MCA and MCKD require an a 
priori basis and the selection of proper parameters is difficult, 
limiting their use in practical applications.

Sparse filtering, which was first proposed by Ngiam [28], 
is a simple and effective method and has been widely used 

in the area of intelligent fault diagnosis [29, 30]. In [31], Jia 
developed the application of sparse filtering and proposed a 
convolutional sparse filter (CSF) for weak signature detection. 
One-dimensional CSF shows the advantages of strong noise 
adaptability, a fast filter training process and the need for few 
parameters to be adjusted [32]. However, the filter training 
performance and robustness of the CSF will be degraded in 
the case of multi-dimensions especially for harmonic comp
onents. Meanwhile, it needs a large output dimension to train 
the filters more accurately.

To overcome these weaknesses, a novel compound fault 
diagnosis method based on intrinsic component filtering is 
proposed to separate the compound fault in an unsupervised 
way. The simulation and experimental results show that 
the proposed method can effectively separate the gear fault 
component and the bearing fault component from the com-
pound fault vibration signals of gearboxes with stronger noise 
adaptability.

The main contributions of this literature are summarized 
as follows. Firstly, the filter learning process of the proposed 
method is unsupervised and has only two simple tunable hyper-
parameters: input dimension and output dimension. Secondly, 
the proposed method does not require any prior knowledge in 
the process of fault separation. Thirdly, the proposed method 
is applicable to various fault compound modes, and is an 
effective tool for both harmonic and transient features.

The rest of this paper is organized as follows. The appli-
cation of CSF in weak signature detection is introduced in 
section 2. In section 3, the proposed method is described in 
detail. The simulated and experimental results are analyzed 
and discussed in section 4. Finally, conclusions are drawn in 
section 5.

2.  Convolutional sparse filtering

Sparse filtering, which was first proposed by Ngiam [18], is 
a simple and effective method which has three desired prin-
ciples: population sparsity, lifetime sparsity and high dispersal 
through the optimization of the l1/2 norm of the normalized 
feature matrix. In recent research, sparse filtering methods 
are used to extract discriminative features adaptively from 
original vibration signals in an unsupervised way. Then, the 
features are fed to a classifier, such as softmax regression, to 
classify the health conditions in a supervised manner [29, 30].

Sparse filtering is viewed as a two-layer neural network. 
The objective function of sparse filtering can be written as

JSF (f) =
m∑
1

∥∥∥∥∥∥∥
f̂

i

∥∥∥f̂
i
∥∥∥

2

∥∥∥∥∥∥∥
1

where f̂ j =
f j∥∥∥f j

∥∥∥
2

� (1)

where f i
j ∈ �Nout×M  corresponds to the j th feature of the ith 

sample, which is computed using a weight matrix and the 

training samples 
{

xi
}M

i=1, and x j ∈ �N  is the original signal.
A sparse feature learning method can also be used as a 

blind deconvolution method for weak signature detection. 
Jia developed the application of sparse filtering of the vibra-
tion signal processing to pursue finer solutions for weak 
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impulsive signature enhancement. The derivation of the CSF 
is presented in detail in [21]. The input matrix of the CSF is a 
Hankel matrix constructed by the input data x j ∈ �N , which 
can be expressed as

H =




x1
x2
x3
...

xL

x2
x3
x4
...

xL+1

x3
x4
x5
...

xL+2

· · ·
· · ·
· · ·
...
· · ·

xN−L+1
xN−L+2
xN−L+3

...
xN




.� (2)

Multiple inverse filters will be obtained from the CSF using 
the weight matrix. In the output layer, only the dominant fea-
tures of the feature matrix are preserved by using dimension 
reduction technology. One-dimensional sparse filtering shows 
good performance in weak signal detection. The weight vec-
tors calculated by multi-dimensional sparse filtering need PCA 
dimensionality reduction, which improves the noise reduction 
effect of the CSF. However, in compound fault diagnosis, the 
robustness of the feature learning performance of the filter is 
poor, especially for the harmonic component.

3. The proposed method

3.1.  Intrinsic component filtering

Recent literature [30] has developed the normalization 
method of sparse filtering as a generalized lr−p/q form, as 
shown in equation (3). A sparse distribution can be achieved 

by minimizing Jgnsp (x) for the case of p < q, or maximizing 
Jgnsp (x) when p > q. The research results show better perfor-
mance in case of p = 3, q = 2, r = 2:

Jgnsf (f) =
Å

1
N

ã1− p
q

·
M∑
i

(∑N
j

∣∣∣̂f i
∣∣∣

p)

(∑N
j

∣∣∣̂f i
∣∣∣
q) p

q
� (3)

where f̂ = fj/

Ç
N∑
j

∣∣∣f j

∣∣∣
r
å

1
r  and p �= q.

Intrinsic component filtering focuses on the consistency 
between the samples with the same condition. The l1/2-norm 
of the column of the feature matrix is used to realize the spar-
sity of features per sample and the l3/2-norm of the rows is 
used to achieve consistency of features between the samples.

Specifically, the training samples of the Hankel matrix are 

mapped onto their features f i
j ∈ �Nf×(N−L+1) using a weight 

matrix W ∈ �Nf×L, where the xi ∈ �N×1 is a training sample, 
Nf  is the filter number, and L denotes the filter length and the 
input dimension of ICF:

f = Wx.� (4)

Figure 1.  The l1/2-norm and the l3/2-norm of a 2D vector.

    (a)                                           (b)

Figure 2.  The time domain waveform of the simulated vibration signal: (a) the bearing fault, (b) the gear fault.

Table 1.  The parameters of the simulated signals.

Number fs fr Tb α A

S1 20 kHz 2000 Hz 0.025 s 300 1
S2 20 kHz 1200 Hz 0.04 s 500 0.7

Meas. Sci. Technol. 31 (2020) 055103
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The l1/2-norm is employed to achieve the sparsity of features 
per sample. The l3/2-norm of rows is used to achieve the con-
sistency of features between the samples. In order to eliminate 
the influence of redundancy in the optimization process, the 
weight vectors are constrained to the unit vectors. The final 
objective function of the ICF can be written as

LICF =
M∑
i

∑Nf
j

∣∣∣f i
j

∣∣∣
Å∑Nf

j

∣∣∣f i
j

∣∣∣
2
ã 1

2
+ λ

Nf∑
j

∑M
i

∣∣∣f i
j

∣∣∣
3

Å∑M
i

∣∣∣f i
j

∣∣∣
2
ã 3

2
S.T

∣∣Wi∣∣
2 = 1

� (5)

where M = N − L + 1, LICF is nonsmooth and nonconvex, 

and we replace |f | with the soft-absolute function 
»

f 2 + ε , 

where ε is a small positive number and has the value 1 × 10−8 
in this paper. Then, we take the off-the-shelf algorithm 
L-BFGS to minimize the objective function until convergence. 
The gradient function is given by

∂LICF

∂w
=
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 · ga ·

f
|f |

· x′

� (6)
where o ∈ �Nout×M  is a matrix of all ones and ga  is the gra-
dient of the activation function.

The l1/2-norm and l3/2-norm of a 2D vector is plotted in 
figure 1 to further explain the characteristics of ICF. It can be 

seen that the minimum value of the l1/2-norm is on the coor-
dinate axis. In this case, one of the values of the two features 
is 0, which means that the ratio of the two features is much 
greater (or less) than 1. However, the maximum value of the 
l1/2-norm is on the coordinate axis and the ratio of the two fea-
tures equals 1. Similarly, the maximum value of the l3/2-norm 
is on the coordinate axis and the minimum value is on the 
diagonal line. Therefore, the minimization of the l1/2-norm 
means sparsity and the minimization of the l3/2-norm means 
the features are equal.

3.2.  Compound fault separation using ICF

In this paper, a novel multi-dimension blind deconvolution 
method is proposed based on the ICF algorithm for rotating 
machinery compound fault separation. The framework of the 
proposed method is shown in figure 3 and the main steps are 
described as follows.

Step 1: �The construction of the training matrix using row 
data. Suppose that the input dimension and output 
dimension of the ICF are L and Nf . Specifically, 
the collected signal x ∈ �N is transformed into a 
Hankel matrix H ∈ �L×(N−L−1). Each ascending 
skew-diagonal element from left to right is constant 
in the Hankel matrix.

Step 2: �Filter optimization using ICF. This is an unsuper-
vised learning process and multiple inverse filters 
are obtained.

Step 3: �Signal filtering through trained filters.
Step 4: �Dimension reduction using PCA. The first order 

principal components are selected as the final 
signals.

Figure 3.  A flow chart of the proposed method.

Meas. Sci. Technol. 31 (2020) 055103
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4.  Simulation analysis

In this section, application of the ICF for compound fault 
diagnosis is demonstrated based on the simulated signals.

4.1.  Case 1: compound fault of bearings

The simulated vibration signals of the bearing outer-race 
failure are shown in figure 2(a), which can be expressed as 
follows:

x (t) =
∑

i

AB(t)Sb(t − iTb − δT) + n(t)
� (7)

B (t) = [1 − cos (2πfrt)] /2� (8)

Sb (t) = e−αt sin(2πfrt)� (9)

where A simulates the amplitude coefficient, and B (t) is 
the amplitude modulation due to the effects of the trans-
mission path. Sb (t) expressed as equation (9) is the impulse 
response function of the bearing-casing-sensor system 
which represents periodic impulse components when it is 
simplified as a linear system. Tb represents the time interval 
between two impulses, which means the frequency of the 
shock is 1/Tb. δT  denotes the random jitter caused by the 
slip effect of rolling elements. fr  specifies the resonant 
frequency that is excited by mechanical defects and α 
is the decay rate of the impulses. n(t) is the noise comp
onent to simulate random interference, which is simulated 
as Gaussian noise. The definition of the signature to noise 
ratio (SNR) is expressed as

SNRdB = 10log10(
Psignal

Pnoise
)� (10)

Figure 4.  Diagnosis results of the bearing compound fault using ICF. (a) A simulated compound fault vibration time series with 
SNR  =  −10 dB; (b) the envelope spectrum of the simulated signal; (c) the time waveform of the filtered signal of S2; (d) the envelope 
spectrum of the filtered data of S2; (e) the time waveform of the filtered data of S1; (f) the envelope spectrum of the filtered data of S1.

Figure 5.  The diagnosis results of the bearing compound fault using CSF. (a) The time waveform of the filtered data of component 1; (b) 
the envelope spectrum of the filtered data of component 1; (c) the time waveform of the filtered data of component 2; (d) the envelope 
spectrum of the filtered data of component 2.

Meas. Sci. Technol. 31 (2020) 055103
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where Psignal and Pnoise are the power of the signal and the 
noise respectively. The parameter settings of the simulated 
signals in this section are displayed in table 1.

In this experiment, the output dimension of the ICF is 10, 
λ = 1, L = 100. The detection results using ICF and CSF and 
the corresponding envelope spectra are plotted in figures 4 and 
5 with SNR  =  −10 dB. The results indicate that the proposed 
ICF can separate different impulsive signatures with various 
amplitudes from the compound fault signal. Two filtered 
components extracted by the ICF can successfully detect the 
different bearing fault from the envelope spectrum. The peak 
values are obvious at the characteristic frequency (40 and 25 Hz)  
and its harmonics, which indicates that an outer ring fault has 
occurred. In addition, the ICF filters recover the impulsive 
signature of the input signal successfully in the time domain. 
However, CSF can only extract the feature of S1 as shown in 

figure 4. It is difficult to identify the fault in S2 through the 
filtered time domain signal and envelope spectrum, due to the 
vibration amplitude of S2 being smaller. The decomposition 
results using VMD are displayed in figure 6. The balancing 
parameter of the data-fidelity constraint is set as 2000 and 
the number of modes to be recovered is four. It can be seen 
that the decomposition results of VMD are similar to those of 
CSF: they can only identify the fault characteristics of S1. We 
can see the obvious shock information from the first IMF, and 
the corresponding envelope spectrum has obvious peaks in 
the characteristic frequency of S1. The recovered time domain 
waveform of ICF is the best of the three methods.

In order to study the property of the proposed ICF, the 
trained filters corresponding to the different fault components 
and their spectrum are displayed in figure 7. It can be seen 
that the first two principal components correspond to two fault 

Figure 6.  Decomposition results bearing the compound fault using VMD.

Figure 7.  The filters of the bearing compound fault trained by ICF and CSF and the corresponding spectrum. (a) The time waveform of 
the trained filter of S1; (b) the envelope spectrum of the trained filter of S1; (c) the time waveform of the trained filter of S2; (d) the envelope 
spectrum of the trained filter of S2.

Meas. Sci. Technol. 31 (2020) 055103
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characteristics. The main frequencies of the filters trained by 
the ICF are the resonant frequency of S1 and S2, respectively. 
This further explains why ICF can accurately separate dif-
ferent fault components. The resonant frequency of S2 is suc-
cessfully trained by CSF, however, the filter corresponding to 
S1 still contains the characteristics of S2. Therefore, compared 
with CSF, ICF shows superior performance in the decomposi-
tion of compound bearing faults.

4.2.  Case 2: compound fault of gears

The vibration signal of the gearbox fault contains amplitude 
and phase modulations that are periodic with the frequency of 
rotation of the gear, which can be simulated as

h (t) =
M∑

m=0

Xm(1 + am(t)) cos(2πmzfnt + φm + bm(t)) + n(t)

� (11)
where M simulates the number of tooth-meshing harmonics; 
fn is the rotating frequency; z denotes the number teeth of the 
gear; and Xm  and φm denote the amplitude and the phase of the 
mth meshing harmonic, respectively. am and bm are the ampl
itude and phase modulation functions, respectively. The time 
domain waveform of the simulated gear fault vibration signal 
is shown in figure 3(b). In this experiment, the output dimen-
sion of ICF is 10, λ = 1, L = 100. The sampling frequency 
is set as 20kHz, the rotating frequency fn is set as 30 Hz and 
40Hz, and the number of teeth of the gear z are set as 13 and 
14. The corresponding signal numbers are S3 and S4.

Figure 8.  The diagnosis results of compound gear faults using ICF. (a) A simulated compound fault vibration time series with SNR  =  −10 
dB; (b) the envelope spectrum of the simulated signal; (c) the time waveform of the filtered data of S3; (d) the envelope spectrum of the 
filtered data of S3; (e) the time waveform of the filtered data of S4; (f) the envelope spectrum of the filtered data of S4.

Figure 9.  The diagnosis results of compound gear faults using CSF. (a) The time waveform of the filtered data of S3; (b) the envelope 
spectrum of the filtered data of S3; (c) the time waveform of the filtered data of S4; (d) the envelope spectrum of the filtered data of S4.

Meas. Sci. Technol. 31 (2020) 055103
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The experiment results using ICF and CSF and the corre
sponding envelope spectra are plotted in figures 8 and 9 with 
SNR  =  −10 dB. It can be seen that it is difficult to find the 
fault information in the original signal, due to the interaction 
of two faults and the influence of noise. The proposed ICF 
can separate different harmonic features from the compound 
fault signal in a noisy environment. The different gear faults 
are separated by the two filters (the first two principal comp
onents) of ICF and it can be successfully detected from the 
corresponding envelope spectrum. In figures  8(d) and (f), 
there is an obvious peak at the rotating frequency 30 and  
40 Hz, which corresponds to the crack fault of the gear. In 
addition, the ICF filters recover the impulsive signature of the 
input signal successfully in the time domain, as shown in fig-
ures  8(c) and (e). By comparison, as shown in figure  9, no 

components have been observed in the first two principal fea-
tures extracted by CSF. It is difficult to distinguish the fault in 
the gear. These results show that CSF cannot extract different 
gear fault features simultaneously due to the interference of 
noise.

The decomposition results using VMD are displayed in 
figure 10. It can be seen that the envelope spectrum of the first 
IMF contains two main frequencies, which means that two 
fault features are extracted simultaneously without achieving 
separation of the different fault components.

The trained filters corresponding to the different fault 
components and their spectra are displayed in figure 11. It can 
be seen that the main frequencies of the filters trained by ICF 
correspond to the gear meshing frequency of S3 and S4, respec-
tively. However, there is no obvious frequency component for 

Figure 10.  The decomposition results of the gear compound fault using VMD.

Figure 11.  The filters of compound gear faults trained by ICF and CSF and the corresponding spectrum. (a) The time waveform of the 
trained filter of S3; (b) the envelope spectrum of the trained filter of S3; (c) the time waveform of the trained filter of S4; (d) the envelope 
spectrum of the trained filter of S4.

Meas. Sci. Technol. 31 (2020) 055103
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the filters trained by CSF. This indicates that CSF will not 
over-sparsify the harmonic signal. Therefore, compared with 
CSF, ICF shows more superior performance in the separation 
of compound gear faults.

4.3.  Case 3: compound fault of gear and bearing

In this experiment, the output dimension of ICF is 10, 
λ = 1, L = 100. The first two principles of the trained filters are 

selected as the final filters. The detected results using ICF, CSF 
and VMD are plotted in figures 12–14 with SNR  =  −10 dB.  
Figures 12(a) and (b) show the raw compound fault signal and 
its envelope spectrum. It is difficult to judge the fault informa-
tion with them. The first two principles of the filters trained 
by ICF and the first two IMFs calculated by VMD can suc-
cessfully separate the harmonic and transient component and 
recover the input signal in the time domain. ICF recovers the 
fault data better in the time domain. However, in comparison, 

Figure 12.  The diagnosis results of the gear and bearing compound fault using ICF. (a) A simulated compound fault vibration time 
series with SNR  =  −10 dB; (b) the envelope spectrum of the simulated signal; (c) the time waveform of the filtered data of the gear fault 
component; (d) the envelope spectrum of the filtered data of the gear fault component; (e) the time waveform of the filtered data of the 
bearing fault component; (f) the envelope spectrum of the filtered data of the bearing fault component.

Figure 13.  The diagnosis results of the gear and bearing compound fault using CSF. (a) The time waveform of the filtered data of the gear 
fault component; (b) the envelope spectrum of the filtered data of the gear fault component; (c) the time waveform of the filtered data of the 
bearing fault component; (d) the envelope spectrum of the filtered data of the bearing fault component.

Meas. Sci. Technol. 31 (2020) 055103
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CSF can only extract the transient component, as shown in 
figures 13(a) and (b). Figure 15 shows the final filters. It can 
be seen that the first principle components trained by CSF do 
not show the gear meshing frequency.

In summary, the simulation analysis results show that the 
proposed ICF can separate the different fault components and 
is applicable to all kinds of fault compound mode in strong 
noise environments.

5.  Experimental analysis

The previous sections  investigated the decomposition perfor-
mance of the proposed ICF for various compound fault modes 
in strong noise environments. In this section, experimental data 
is employed to further demonstrate the property of ICF. The 
compound faults of the bearing outer ring fault and gear wear 

fault were simulated on the experimental platform, as shown in 
figure 16. In this study, a planet gear and a rolling bearing are 
selected to simulate the gear fault and the bearing fault. The plan-
etary gear set consists of a sun gear, a ring gear and three planet 
gears, all remaining in a constant mesh. The number of teeth in 
the sun gear is 38. The number of teeth of the driven gears is 
both 18. The tooth surface of the planet gear is ground to simu-
late the wear failure of the gear. A groove with a width of 0.15 
and a depth of about 0.2 is cut in the outer ring of the bearing to 
simulate the outer ring fault. The acceleration sensor is fixed on 
the bearing seat at the driving end of the gear box. The driving 
motor works at 1000 rpm in the testing process. The vibration 
signals are collected with a sampling frequency of 25.6 kHz, and 
each vibration sample contains 6400 sample points, as shown 
in figure 16(a). The filter length L is 100, the number of filters 
Nf  is 20. The separation results of the compound faults are 

Figure 14.  The decomposition results of the gear and bearing compound fault using VMD.

Figure 15.  The filters of the gear and bearing compound fault trained by ICF and CSF and the corresponding spectrum. (a) The time 
waveform of the trained filter of the bearing fault component; (b) the envelope spectrum of the trained filter of the bearing fault component; 
(c) The time waveform of the trained filter of the first component; (d) the envelope spectrum of the trained filter of the second component.
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shown in figures 17 and 18. The ICF can successfully sort out 
the bearing and gear components in a compound fault. The peak 
values are obvious at the characteristic frequency of the outer 
ring and its harmonics, as shown in figure 17(d), which indicates 

that the bearing has an outer ring fault. In figure 17(f), there is an 
obvious peak at the rotating frequency, which corresponds to the 
crack fault of the gear. Compared with CSF, the different fault 
components are reconstructed better in the time domain.

Figure 16.  Motor-driven gear box test bench.

Figure 17.  The diagnosis results of the experimental compound fault using ICF. (a) A simulated compound fault vibration time series 
with SNR  =  −10 dB; (b) the envelope spectrum of the simulated signal; (c) the time waveform of the filtered data of the bearing fault 
component; (d) the envelope spectrum of the filtered data of the bearing fault component; (e) the time waveform of the filtered data of the 
gear fault component; (f) the envelope spectrum of the filtered data of the gear fault component.
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6.  Conclusion

This study proposes a novel compound fault diagnosis method 
based on intrinsic component filtering applied to the com-
pound fault diagnosis of gearboxes. The proposed method can 
be divided into three main steps: firstly, a Hankel matrix is con-
structed as an input by the collected vibration data. Secondly, 
multiple filters are trained by the intrinsic component filtering 
in an unsupervised way without any time-consuming prepro-
cessing or a prior basis. Finally, the dominant filter is selected 
by PCA and Hilbert demodulation analysis is conducted on 
the filtered data.

The performance of the proposed method is validated by 
the simulation data and the experiment signals from a plan-
etary gearbox with compound faults. Through the verifica-
tion results we can obtain the conclusions as follows: the 
proposed method is a promising tool that can handle dif-
ferent compound fault modes in a strong noise environment. 
The proposed method shows stronger noise adaptability and 
robustness, especially for the harmonic component.

It would be very interesting to develop ICF for new appli-
cations such as intelligent compound fault diagnosis. The 
authors will continue to research this topic in the future.
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