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Abstract
Adistributed sensing protocol uses a network of local sensing nodes to estimate a global feature of the
network, such as aweighted average of locally detectable parameters. In the noiseless case,
continuous-variable (CV)multipartite entanglement shared by the nodes can improve the precision
of parameter estimation relative to the precision attainable by a networkwithout shared entanglement;
for an entangled protocol, the rootmean square estimation error scales like 1/Mwith the numberM
of sensing nodes, the so-calledHeisenberg scaling, while for protocols without entanglement, the
error scales like M1 . However, in the presence of loss and other noise sources, although
multipartite entanglement still has some advantages for sensing displacements and phases, the scaling
of the precisionwithM is less favorable. In this paper, we show that usingCV error correction codes
can enhance the robustness of sensing protocols against imperfections and reinstateHeisenberg
scaling up tomoderate values ofM. Furthermore, while previous distributed sensing protocols could
measure only a single quadrature, we construct a protocol inwhich both quadratures can be sensed
simultaneously. Ourwork demonstrates the value of CV error correction codes in realistic sensing
scenarios.

Quantum sensing [1–11] uses nonclassical resources to enhancemeasurement precision. It hasmany
applications, including atomic clocks [12, 13], the laser interferometer gravitational-wave observatory [14, 15],
quantum illumination [16–22], quantum reading [23] and bio-sensing [24].When the sensing task involves
multiple parties, entanglement can be extremely beneficial. Early works have already shown that when
measuring a single physical parameter withM sensor probes, entanglement among the sensors can reduce the
rootmean square (rms) estimation error to theHeisenberg scaling [4–6, 25–28] of∝1/M. In contrast, in the
absence of entanglement, the rms estimation error always obeys the standard quantum limit (SQL) scaling of
µ M1 , as dictated by the law of large numbers.

More recently, this separation betweenHeisenberg and SQL scaling has been generalized to the scenario of
distributed sensing, where an array of sensors aims to sense a global feature, such as aweighted average, of some
local parameters detected by different sensor nodes [29–33]. In particular, [31] proposed a protocol to use
continuous variable (CV)multi-partite entanglement to enhance the distributed sensing of displacements and
phases, which led to the first experimental demonstration [34] of sensing advantage enabled bymulti-partite
entanglement.

Despite beingmore robust against loss than their discrete variable (DV) cousins, the performance
enhancement inCVdistributed sensing protocols still decays in the presence of loss and noise [35]. As a
consequence, [34] only achieved a∼20%advantage in the rms estimation error. Therefore, lossmitigation is
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crucial for achieving a practical advantage in distributed sensing. To this end, [36] proposed to use nonlinear
amplifiers [37] to non-deterministically reduce loss in the state distribution process. In this paper, we propose to
use the recently developedCV error correction codes [38] tomitigate loss and noise in a deterministicmanner.

There has been various proposals to improve the sensing precisionwith error correction codes inDV
systems [39–45].Most of theseworks consider aHamiltonian parameter estimation scenario, where frequent
error correction steps are applied to suppress the noise without at the same time suppressing the signal.When
the ‘Hamiltonian not in the Lindblad span’ (HNLS) criterion is satisfied, theHeisenberg scaling in precision can
be reinstated [43]. For applications like radio-frequency (RF) sensing or bio-sensing, however, the sensing
process on each spatially distributed sensing node ismodeled as a quantum channel. In such a distributed-
channel parameter estimation scenario, the distribution loss is amajor source of imperfection; we propose to use
CV error correction tomitigate this loss. Using the recently developedCV error correction codes based on the
Gottesman–Kitaev–Preskill (GKP) code [46], we show that themeasurement precision can be substantially
improvedwhen the loss is not too high. Inspired by the idea ofmeasuring commuting operators associatedwith
the grid state [47], we also extend the distributed sensing protocol to simultaneously achieve theHeisenberg
scaling on both quadratures.We do sowithout using any ancilla in the source, unlike in the usual super-dense
sensing scheme [48].

Our paper is organized as follows. In section 1, we introduce the distributed sensing protocol for real
quadrature displacements. In section 2we introduce theCV error correction codes, including theGKP-two-
mode-squeezing code in section 2.1 and theGKP-stabilizer code in section 2.2. Finally, in section 3, we evaluate
the performance improvement achieved using error correction in distributed sensing schemes, including loss
mitigation in the sensing of single-quadrature displacements in section 3.1 and the extension to the sensing of
complex-valued displacement (i.e. displacements on both quadratures) in section 3.2.

1.Distributed sensing of real quadrature displacements

ForCV sensors, the signal is acquired bymeasuring the displacement changes in the sensor state—e.g. position
and/ormomentum change for amechanical oscillator. The precisemeasurement of displacements is important
for interferometric phase sensing [35], quantumkey distribution [49], spin sensing [50], and inertia sensing [51].
Moreover, like the example in RF sensing [52], transducers can transform a even broader class of signals into
optical displacements for further sensing purposes.Mathematically, displacements are described by the unitary

a a a= - U a aexpˆ ( ) ( ˆ ˆ )† , or equivalently themode transform a +a aˆ ˆ . Here â is the annihilation operator
of the field being sensed. Equivalently, a displacement aÛ ( ) can also be represented by a quadrature transform

a a + +q p q p, 2 Re , 2 Im( ˆ ˆ) ( ˆ ( ) ˆ ( )), where = +q a a 2ˆ ( ˆ ˆ)† , = -p a ai 2ˆ ( ˆ ˆ)† are the position
andmomentumquadratures. For simplicity, wewill use the notationa a a= Re , Im( ( ) ( )). In this convention,
the quadrature variance is + = +p q n2 12 2ˆ ˆ ˆ , where ºn a aˆ ˆ ˆ† is the number operator. Thus the vacuumnoise
(á ñ =n 0ˆ ) is á ñ = á ñ =p q 1 22 2ˆ ˆ .

As shown infigure 1, the original distributed sensing protocol [31] aims to obtain aminimumrmserror
estimate of aweighted average, a aº å = wm

M
m m1¯ , of real quadrature displacements {αm, 1�m�M}, where the

weights,{wm, 1�m�M}, are non-negative and sum toone7 . Todo that, in general one inputsMmodes,
 a m M, 1mˆ , one for each sensor node, andperformsmeasurements on theoutputmodes   a m M, 1mˆ .

Tomodel the imperfections from thedistributed sensors, we introduce an independent loss channel h m
with

Figure 1. Schematic of a distributed quantum sensing protocol formeasuring displacements on a single quadrature. SV: squeezed-
vacuum statewithmean photon numberNS and squeezed noise in its real quadrature. h : pure-loss channel with transmissivity
0<η�1. aÛ ( ):field-quadrature displacement by real-valuedα. homo: homodynemeasurement of the real quadrature.

7
Note that negative weights can bemerged into the sign of eachαm.
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transmissivity ηmon each sensor node, leading to themode transform h h¢ = + -a a e1m m m m mˆ ˆ ˆ , where the
environmentmode emˆ is in a vacuumstate. To enable performance comparison,we characterize the overall
resource for the sensing task by the totalmeanphotonnumberNSused inmodes  a m M, 1m{ ˆ }. This is
because for sensing applications like bio-sensing onewants tominimize the light power shining on the fragile
samples to avoid anydamage.

In an entanglement-enhanced distributed sensing protocol, themodes  a m M, 1m{ ˆ }are in aCV
multipartite entangled state, produced by passing a single-mode squeezed vacuum,withmean photon number
NS, through a beamsplitter array.Homodynemeasurements are applied to obtain the information about the
weighted average. To benchmark the performance, we compare the entangled schemewith the optimal
separable scheme, where eachmode is in a squeezed vacuum state withmean photon numberNm, and the total
mean photon numberå == N Nm

M
m S1 for fair comparison. In principle, one can introduce extra ancillamodes;

however, this is not necessary in the lossless case—one can show that each scheme is optimal in its own class,
given the totalmean photon number constraint. In the lossy case, the optimal protocol is still an open question,
but [31, 36]were able to show that the scheme infigure 1maximizes the Fisher information amongGaussian
states and achieves the best precisionwhen homodynemeasurement is applied. Recently [53] proved that this
scheme is also the optimalGaussian protocol for distributed phase sensing.

In the following, we evaluate the performance of the entangled and separable sensing protocols in the
presence of loss.We set the beasmplitters such that hº å =b w a Wm

M
m m m1 1

ˆ ˆ ¯ is in a squeezed-vacuum state,

where hº å =W wm
M

m m1
2¯ . Then, we have that a º å = w aRem

M
m m1˜ ( ˆ ) is an unbiased estimator of āwith the

minimum rms error [31]

da
h

h=
+ +

+ -h
w

N N2 1
1 , 1E

S S
2

1 2⎛
⎝⎜

⎞
⎠⎟

¯ ¯
( )

¯ ( )

under the average photon-number constraint, where º å =w wm
M

m1
2¯ and h hº å = w wm

M
m m1
2 2¯ ¯ .

The optimal separable-state scheme, for the scenario under consideration here, employs a product state,
but its precision dah

C does not have a closed solution in general. For the simple case of ηm=η,wm=1/M,
we have [31]

da
h h

=
+ +

+
-

h
M N N M

1
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1
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As shown infigure 5, in the lossless case, the separable scheme has its precision obeying the SQL, while the
entangled scheme achieves theHeisenberg scaling; evenwhen there is loss, the entanglement enhancement
survives, due to the robustness of CVmultipartite entanglement. However, the scaling advantage is entirely gone
even for smallM. Tomitigate the loss issue, we consider CVquantum error-correction.

2. CV error correction

Quantumerror correction [54] codes are originally developed for protectingDVquantum information for
scalable quantum computing, sometimes evenwith the aid of CV systems [46, 55, 56]. However, various
quantum sensing applications require CVquantum information processing. To facilitate these applications, the
question to be addressed in this section is: canwe protect CVquantum information against noise?

The general idea to correct a CVmode is to encode a singlemode intomultiplemodes. Indeed, previous such
proposals can correct single-mode errors [57, 58]. However, a key difference of CV systems is that errors (e.g.
thermal noises and excitation loss) happenwith unity probability on allmodes. Thermal noise can be described
by an additive whiteGaussian noise channel (AWGN) Fs2, which applies a Gaussian distributed complex-
valued randomdisplacement ¢ = + + a a i 2q pˆ ˆ ( ) on the inputmode.Here òp, òq are real Gaussian
distributedwith standard deviationσ. In fact, it suffices to consider AWGNchannels for all Gaussian noise
models, due to channel reduction relations [59–63]. As an example, the excitation loss channel h can be

combinedwith an amplification channelG in front, described by themode transform ¢ = - -a G a G e1ˆ ˆ ˆ†

joint on the vacuumenvironmentmode ê . Choosing the gainG=1/η, weobtain the composite channel
= Fh h h- 1 1◦ 8.

8
Because = Fh h h- 1 1 1◦ and = Fh h h- 1 1◦ and 1−η�1/η−1, it is always beneficial to apply amplification before the loss.
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To correct the AWGNnoise, the new idea in [38] is to useGKP grid states to encode CV information. This
builds on an observation emphasized in [47, 64]—that withGKP grid states we can simultaneouslymeasure two
quadratures with high precision, as long as we’re promised that the displacement of both quadratures is small.
TheGKP grid state haswave function

ò òå åñ µ ñ µ ñp p p

=-¥

¥
- D - - D

=-¥

¥
-D - - Dq q p pGKP e e d e e d . 4

t

t q t

t

p p t2 2 2 2 22 2 2 2 2 2 2 2∣ ∣ ∣ ( )( ) ( )

WhenΔ=1, itsWigner function is peaked around a square grid of spacing p2 in the phase space. The overall
variance á ñ á ñ Dq p 1 22 2 2ˆ ˆ  equals themean photon numberNS; however, if we consider only the phase
space region close to a single peak, the variances in position andmomentum areΔ2/2;1/4NS=1, only twice
the squeezed-vacuumvariance.

Belowwewill recall two codes introduced in [38], theGKP-two-mode-squeezing code and theGKP-
stabilizer code. To understand the error correctionmechanism, consider two inputmodes to an encoding
circuit.Mode 1will be used to detect the signal, andmode 2 is an ancilla which has been prepared in aGKP state.
The encoding circuit applies aGaussian unitary operatorUS

ˆ to this pair ofmodes, where S is a symplectic

tranformation; its inverseUS
ˆ †

can be used to decode the state. Between encoding and decoding, the twomodes
are subjected to additive noise—the noise operation is a displacement = Ä  U U U1 1 2 2

ˆ ( ) ˆ ( ) ˆ ( ). Thus, after
decoding, the noise is transformed to amodified displacement = ¢ U U U US S

ˆ ˆ ( ) ˆ ˆ ( )†
, where ¢ = - S 1 [65]. By

choosing a proper entangling transformUS
ˆ , one induces a correlation of the effective displacements ¢ 1 and ¢ 2 of

the twomodes. Then bymeasuring the displacement ¢ 2 of theGKP ancilla, one can infer a displacement U c
ˆ ( )

which corrects the additive error ¢ 1on the signalmode. In this scheme, while all operations areGaussian, the
input ancilla is a non-GaussianGKP grid states, so the effectiveness of error correction is compatible with the
no-go theorem forGaussian error correction in [66].

2.1. GKP-two-mode-squeezing code
As illustrated infigure 2, theGKP-two-mode-squeezing code uses a two-mode squeezing operationT GT12

ˆ ( ) to
entangle the input state with an ancilla initialized in theGKP grid state. After bothmodes go through the noise

channelΦσ, another conjugate two-mode squeezing operationT GT12
ˆ ( )†

is performed. Finally, both quadratures of
the ancilla aremeasuredmodulo p2 to diagnose the displacement error on the input state. After conjugation of
the displacement error by the two-mode squeezing operator, we obtain the the effective displacements

T G UT12 1 1
ˆ ( )[ ˆ ( )†

⊗ U T GT2 2 12
ˆ ( )] ˆ ( )= + - U G G 1T T1 1 2

ˆ ( )⊗ + - U G G 1 ;T T2 2 1
ˆ ( ) we see that

whenGT is large, the effective displacements are highly correlated. Thusmeasuring the displacement noise of the
ancilla provides a good estimate of the displacement error on the signal, and therefore enables approximate
correction of the error through a counter-displacement. Although theuncertainty principle forbids the
simultaneous precisemeasurement of displacements onboth quadratures, an ancilla in theGKPgrid state allows
the precisemeasurement of both quadrature displacementsmodulo p2 . Reference [38]has given a detailed
analysis on the amount of noise reduction in this scheme.Weplot the rms logical noisesσp,σq givenby
equation (24) in [38] on each quadraturewith the physical noiseσ infigure 3. The code helpswhenσ�0.558,
which corresponds to lossη�0.689.

Figure 2. Schematic of theGKP-two-mode-squeezing code (top) and the encoding part of theGKP-stabilizer code (bottom).
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2.2. GKP-stabilizer codes
Reference [38]has also proposed amore general GKP-stabilizer code. In theGKP stabilizer code, a hierarchical
structure of squeezing andGKP encoding is used, as shown infigure 2.We begin by analyzing the lowest
level (n=2).

The encoding is achieved by a sequence ofGaussian operations—a two-mode SUMgate and single-mode
squeezing operations. Recall that a SUMgate SUM1 2

ˆ acts on a pair ofmodes according to

 - + q p q p q p p q q pSUM : , , , , , , , 51 2 1 1 2 2 1 1 2 1 2 2
ˆ ( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ ˆ ˆ ) ( )

and that a squeezing operation acts onmodem according to

l l lS q p p q: , , . 6m m m m m
^ ^ ^ ^ ^( ) ( ) ( ) ( )/

Toprotectmode 1, wemake use of theGKP ancillamode 2 via the encoding circuit

g b d= U S S SSUM . 72
1 2 1 2 1ˆ ˆ ( ) ˆ ( ) ˆ ˆ ( ) ( )( )

Here the order of operations is read from right to left—that is, dS1̂( ) acts first, followed by the sumgate and then
g bS S1 2

ˆ ( ) ˆ ( ). The overall 4×4 symplecticmatrix applied to the four quadratures can be calculated to be

dg

dg g
db b

b

=
-

S

0 0 0

0
1

0
1

0 0

0 0 0
1

. 8
U

2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

( )ˆ ( )

The decoding circuit is the encoder run in reverse and implements the unitaryU
2ˆ ( ) †

.
Now suppose that after encoding, additive noise acts on the twomodes leading to the displacement

=    , , ,q p q p T
1 1 2 2( ) and then the decoder is applied. If there is no noise, the decoder perfectly restores the

input signal. Butwhen there is noise the decoder distorts the noise, yielding noise in the output signal

dg
dg db

g b
b¢ = = + - +-       S

1
, ,

1 1
, . 9

U

q p p q q p
T

1
1 1 2 1 2 22

⎛
⎝⎜

⎞
⎠⎟ ( )ˆ ( )

Becausemode 2was initially encoded as an ideal GKP grid state, it is possible to simultaneouslymeasure the
offset of both quadratures inmode 2, assuming the (distorted)noise is sufficiently weak.Oncewe know the
offset inmode 2, we can approximately diagonose the additive shift in the (unmeasured)mode 1. Specifically,
aftermeasuring

g b
bD = - + D =  q p

1 1
, , 10q q p

2 1 2 2 2 ( )

Figure 3.Performance of theGKP-two-mode-squeezing code and theGKP-stabilizer code. (a)Position-quadrature logical noiseσq
versus the physical noiseσ. (b)Momentum-quadrature logical noiseσp versus the physical noiseσ. The colors from red to blue
indicates the level of squeezing fromλ=1.05, 1.15,L,1.95, 2.05 in theGKP-stabilizer codes.
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we apply a corrective displacement d d= D - D q p,c
T

2 2( ) , obtaining the partially corrected noise inmode 1:

db
dg =  

1
, . 11q p

T

1 2 1

⎛
⎝⎜

⎞
⎠⎟ ( )

Suppose for example that δ=1,β=γ−1=λ>1, and that  q
1 , 

p
1 , 

q
2, » p

2 are all comparable; then the
noise in both quadratures ofmode 1 is suppressed by a factorλ−1 relative to an unprotectedmode. In practice
the noise suppression is limited because, for a given noise strength there is a limit to howmuchwe can squeeze
the noise and still read out both quadratures of theGKP grid state unambiguously. Furthermore, if theGKP grid
states themselves are only finitely squeezed, further squeezing during the protocolmay compromise their error-
correcting power.

We can go further in a protocol thatmakes use ofmultipleGKP-encodedmodes. To see how thatworks,we
consider the casewhere thenoise acting on the twomodes is asymmetric, so that  q

2≈ p
2 ≈ < 2 1≈ q

1 ≈ p
1 ,

andwe adjust the protocol so that the output noise onmode 1 after decoding and recovery is balanced between q
and p; hence

dg
db

k d bg k=  = = <   
1

, where 1. 121 2
2

2 1 ( )

There is a further constraint—wedo notwant the shift error inmode 2 after decoding to be too large, which
would compromise our ability tomeasure both quadratures accurately. To ensure that the distorted error is
comparable in both quadratures inmode 2, we impose

g
b bk k

bg
d k= =  =  =  

1 1
. 131 2 1 ( )

To summarize, if the noise inmode 2 is weaker than the noise inmode 1 by the factorκ<1, and if wewant the
error-corrected noise inmode 1 to be balanced between the q and p quadratures, we use the encoderwith

g
l

b
l
k

d k= = = <
1

, , 1, 14( )

whereλ>1; then the error corrected noise inmode 1 is ò2/λ in both quadratures.
Because the schemeworks for asymmetric noise, it can be used iteratively. For example, with threemodes,

wheremode 1 is the sensingmode andmodes 2 and 3 areGKP-encoded ancillas, we can usemode 3 to reduce
the additive noise inmode 2 by a factor of 1/λ, and then usemode 2 to reduce the noise inmode 1 by a further
factor of 1/λ, achieving all together a reduction by 1/λ2 in the noise in the sensingmode. If there are n−1
GKP-encoded ancillas, then as indicated infigure 2 the encoding circuit acting onmodes 1 and 2would be

l
l

l
= -

 -
U S S S

1
SUM

1
, 15n n

n1 2
1

1 2 1 2
^ ^ ^ ^ ^⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠( ) ( )( )

which implements the symplectic transformation

l
l l

l l
l

= -

-

-

-

-

S

0 0 0
0 0

0 0
0 0 0

. 16
U

n

n

n

n

1

1

1

1

n

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
( )ˆ ( )

Guidedby this intuition, let us formally optimize thedecodingoperations. Supposeon the (n−1)-th level the
logical noisesZq,n−1 andZp,n−1 havebeen reduced toσq,n−1 andσp,n−1; then the initial covariancematrixof the additive
noise on the ancilla Z Z,q n p n,

0
,
0( ) ( ) and the (n−1)-th level logical noise is s s s s=- - -V Diagonal , , ,n q n p n0, 1

2 2
, 1

2
, 1

2[ ].
After the encoding anddecoding the effectivenoise covariancematrix = -V S V SED n U n

U
T

, 0, 1n nˆ ˆ
( ) † ( ) †. Thedecoding

operationmeasures the ancilla of the (n−1)-th level andperformsadisplacementon thenth level ancilla

= - p -Z Z C R Z , 17q n q n q q n, ,
0

2 , 1( ) ( )( )

= - p -Z Z C R Z . 18p n q n p p n, ,
0

2 , 1( ) ( )( )

HereRs(z)=z−nå(z)s and = -Î


n z z nsargminn( ) ∣ ∣, i.e. functionRs(z) takes the generalizedmodulo
z smod . The choice of the coefficientsminimizes the variance in the ideal case,

= =C
V

V
C

V

V

1, 3

3, 3
,

2, 4

4, 4
. 19q

n

n
p

n

n

ED,

ED,

ED,

ED,

( )
( )

( )
( )

( )

Due to the imperfectmeasurement of quadratures that aGKP grid state offers, after the error correction the
probability density function (PDF) of the logical noise PZx n,

(·), x=p, q is notGaussian. It can be obtained
through the following recursion relation

6

New J. Phys. 22 (2020) 022001



ò ò

ò

x x x x x d x x x

x x x x

= - -

= å -

p

p

p
p=-¥

¥

-

-

+

-

P P P C R

P C R P

d d

d , 20

Z x Z Z x x

n
n

n

Z x x Z

0 1 0 1 0 2 1

2

2

1 2 1 1

x n x n x n

x n x n

, ,
0

, 1

,
0

, 1

( ) ( ) ( ) [ ( )]

[ ( )] ( ) ( )

( )

( )

wheren±=n±1/2.Note that P Zx n,
0 (·)( ) and the initial noise PZx,1

(·) both obey zero-meanGaussian distributions
with varianceσ2. The variances of the logical noises can be obtained by integrations over the PDFs obtained from
the recursion.

Suppose allmeasurements are perfect (without the p2 ambiguity), then the ideal evolution of noise obeys
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In the small noise limit, we have s s l s-
q n p n

n
,

2
,

2 2 2 2  , which indeed agrees with the intuitive understanding.
To summarize, if there is one input signalmodelwewish to protect in a sensing experiment,wemay introduce

n−1 ancillaGKP grid states and then iterate the protocoln−1 times, thereby reducing thenoise strength to
σn−1;σ/λn−1 in the error-corrected signal state. Toprecisely evaluate the error correction performance under
moderate noise,weperformnumerical integration of equation (20) repeatedly and obtain the standarddeviation
σq,n,σp,n. The results, for the casen=7, are infigure 3, where different levels of the squeeze parameterλ are
chosen, indicated by the color;wedid not perform the computations for larger values ofndue to limitations on
numerical precision.When the initial noiseσ is large, themodulo p2 property of themeasurement leads to
excess noise and thus hinders the error correction performance.At certain critical noise level, the code ceases to
reduce thenoise, as indicated by the termination of the plots on the right-hand-side infigure 3.

3. Improved distributed sensing

Nowwe apply theCV error correction codes in the distributed sensing protocol introduced in section 1.Wewill
evaluate the standard deviations in parameter estimation given the loss and error correction. Although theGKP
based error correction codes lead to non-Gaussian random errors in the parameter estimation, the standard
deviation of noise is still a good characterization of themeasurement precision. This is because in a parameter
estimation scenario, one can averagemultiple independent repetitions of the samemeasurement, evenwhen
eachmeasurement is alreadymulti-mode.When the number of repetitions is large, the central limit theorem
guarantees that the averagedmeasurement error is Gaussian distributed and thus can be characterized entirely
by its standard deviation.

3.1. Error corrected real quadrature sensing
Weapply theGKP-two-mode-squeezing code and theGKP-stabilizer code in a real-quadrature distributed
sensing protocol. As shown infigure 4, to performdistributed sensing on different nodes, onefirst locally
generates signalmodes  a m M, 1m{ ˆ } in the sameCVmultipartite entangled state as in section 1. After the
beamsplitter array, eachmode amˆ in themultipartite entangled state is immediately encoded (with additional
ancilla) to protect against independent loss errors; to facilitate error correction, amplifiers h1 transform the
loss channels h to AWGNchannels that can be correctedwith the standardGKPdecoder. Before the sensing
process, decoding is applied to the received signalmodes and ancillae, and then the error-corrected signal
inputs, ¢am{ ˆ }, are injected to sense displacements. Note that, while a total of∝M ancillamodes are used in the

Figure 4.Distributed quantum sensor formeasuring field-quadrature displacementwith error correction in the distribution step.
Multiple ancullamodes can be utilized, however, only a single ancillamode is shown for simplicity.
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entanglement distribution process, the sensing process occurs after theGKP-assisted decoding, and only a single
error-corrected signalmode interacts with the sample at each sensing node.

As a demonstration, we consider the case of equal weights and equal displacements; similar advantages are
expected formore generic cases. Suppose the error correction code reduces the original noise h-1 toσEC(η);
as in equation (2), one can then obtain the precision

d
s h

=
+ +

+h
M N N M

1

2

1

1

2
. 22

S S

EC
2

EC
2 1 2⎛

⎝⎜
⎞
⎠⎟( )

( ) ( )

Note that, due to the amplification, comparedwith equation (2) the error is larger by a factor h , and also the
second term inside the square root is a factor of two larger in addition to the change from1−η to s hEC

2 ( ). Using
the results in section 2, we can evaluate the performance of both error correction codes. As shown infigure 5, we
see that theGKP-two-mode-squeezing code (orange) only has a small advantage over the schemewithout error
correction (blue) in the low loss region (η�0.95). TheGKP-stabilizer codewith n=7 (red) gives amuch better
performance improvement. In the low loss region , theHeisenberg scaling of of precision can be reinstated up to
M∼102modes.Moreover, when η=0.85 there is still appreciable advantage over the schemewithout error
correction (blue).

A few comments areworthy ofmention here. First, the above performance is valid for arbitrary
displacement values, butwe can do better the if displacement at each sensing node is guaranteed to be smaller
than p2 . AGKP-decoding error could result in a displacement of ¢â by an unknown integermultiple of p2 ,
but this error has no damaging effect if we decode the result of the homodynemeasurement of eachmode by
evaluating itmodulo p2 . Second, in a fair comparison between sensing schemes, we usually fix themean
photon number of the source that interacts with the samples. In the above comparison, we have not quite done

Figure 5.Performance of error correction codes for distributed real quadrature displacement sensing.NS=MnS,nS=1. δα is the
measurement standarddeviation andM is the number of sensingnodes.While the lossless case is plotted for comparison,we considered
various lossesη (corresponding tonoise s h= -1 infigure 3) for the protocols: (a) η=0.99 (log10σ=−1), (b) η=0.95
( s -log 0.6510  ), (c) η=0.9 ( s = -log 0.510 ), and (d) η=0.85 ( s -log 0.4110  ). QEC1:GKP-two-mode-squeezing code.QEC2:
GKP-stabilizer codewithn=7. Note that in (c) and (d) the performance ofQEC1 isworse thannon-corrected case, due to the extra
amplification required to reduce loss to additive thermal noise.
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that, because in the case without error correction themean photon number at the sensing nodes has been
attenuated by the loss factor η, while in the case with error correctionwe have compensated for the loss channel

h with the amplification channel h1 , which transforms the loss channel into anAWGNchannel. However, as
one can see infigure 5, we have plotted the separable scheme in the lossless case (gray dashed) for comparison—
it has the same inputmean photon number∼NS/M, while its performance is limited by the SQL. Also, the
dominant noise in the entangled schemewithout error correction (blue) comes from loss, and further increasing
the initialmean photon numberNS barely changes the performance. Finally, we address the necessity of theGKP
grid states. For single-quadraturemeasurement, onemight think that a CV repetition code [57]will also be able
to suppress the noise due to an effective squeezing.However, in that case while the noise in one quadrature
decreases, the noise in the other quadrature increases, leading to an overall increase in themean photon number.
Only a codewith non-Gaussian resources such asGKP grid states can suppress noise in both quadratures.

3.2.Distributed sensing for complex-valued displacements
The original distributed sensing protocol [31] only estimates displacements on a single quadrature. Because a
GKP grid state enables the precisemeasurement of both quadratures [47, 64]when the displacements are small,
we hope to utilizeGKP grid states to extend the distributed sensing protocol to estimate complex-valued
displacements. Let us start with the simple lossless and equal-weight case, later wewill address the extensions to
the unequal-weight and lossy cases. Comparedwith the original protocol infigure 1, the new protocol
(schematic infigure 6) hasmode b1

ˆ in aGKP grid state instead of a squeezed vacuum state; the outputmodes
frompassing themode b1

ˆ through the same beamsplitter array go through displacements aÛ ( ), with complex
α. Finally one utilizes simultaneousmeasurement of quadratures with amodulo p2 constraint.

Belowwe design estimators for both the real and imaginary parts ofα and analyze their performance. A
direct attempt to create estimators of Re(α) and Im(α) is simply to take the averages of themeasurement results,

¢ = ¢
~

p  q R q m M, 1m m2{ ˆ ( ˆ ) }and ¢ = ¢
~

p  p R p m M, 1m m2{ ˆ ( ˆ ) }. However, becausewe have distributed a
single GKP grid state tomultiple nodes, therewill be large vacuum fluctuations on each node, causingmodulo

p2 errors evenwhenα is arbitrarily small. To avoid those errors, we consider the estimators

a

a

= å ¢ = å ¢

= å ¢ = å ¢
~

~~

~

p p

p p

R
M

q R
M

q

R
M

p R
M

p

2 Re
1 1

,

2 Im
1 1

. 23

m m m m

m m m m

M M

M M

2 2

2 2

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ˆ ˆ

( ) ˆ ˆ ( )

The expectation values of the above estimators are aá ñ
~

2 Re( ) = apR 2 Re
M
2 ( ( )) and a =

~
2 Im⟨ ( )⟩

apR 2 Im
M
2 ( ( )). Although the estimators give the displacement values with amodulo degeneracy, when a good

prior knowledge ofα is available, themodulowill not introduce additional noise. In the following, wemake this
heuristic rigorous.

Because of the symmetry in theGKP grid state and the estimators in equation (23), the performance of the
two estimators are identical andwe only need to analyze the real quadrature. For the equal-weight scenario, by

choosing balanced beamsplitters, we have a a= +
~

pR Q M2 Re 2 Re
M
2 1̂( ) ( ( ))/ , where =Q b2 Re1 1

ˆ ( ˆ ) is

the position quadrature of the GKP grid state. The distribution of Q M1
ˆ concentrates on points pk 2{

Î M k, }, and around each point there is varianceΔ2/2M. Thus the effect of themodulo errors on the

performance of a
~

2 Re( ) depends on the choice ofM and the amplitude of Re(α).

Figure 6.Distributed quantum sensor formeasuring complex-valued displacements.

9

New J. Phys. 22 (2020) 022001



A special case iswhenRe(α)=0 andM is a square of an integer, i.e. = Î M J J,2 . In this case, the PDFof

the estimator a
~

2 Re( ) is peaked around zerowith varianceΔ2/2M. In general, ifM is not a square of an integer,
then after themodulo thePDFcan concentrate on various peaks across the range of p p- M M2 , 2[ ]
and cause extra noise. To avoid the extra noises, sinceM is chosenbydesign in a sensor network,we can indeed
ensureM to be a square of an integer.

However,we still need to address the noise introduced by a2 Re( ) being nonzero.We argue thatwhen a good
prior of a2 Re( ) is available, the estimator can increase the precision as if a2 Re( ) is zero.A goodprior is often
possiblewhen the parameter estimationprocess hasmultiple steps.Uponobtaining theprior estimation qprior in
thefirst step, one can apply a displacement -U q 2prior

ˆ ( ) at eachnode before thenextmeasurement.Here qprior

is the prior estimator’s result, whichwe assume to obey aGaussian distribution a s 2 Re , prior
2[ ( ) ], withmean

a2 Re( ) and variance sprior
2 . The secondmeasurement result qGKPwill obey a 2 Re[ ( ) - Dq M, 2prior

2 ]up
to the p Mmod 2 constraint. Because of the additional displacement,without loss of generalitywe can assume
Re(α)=0. To combine the priorwith the newmeasurement result, we construct thenew estimator

z z z= - + + = +z q q q q q1 , 24prior GKP prior GKP prior( ) ( ) ( )

where ζwill be chosen tominimize the combined variance.
Now let’s evaluate the performance of this estimator. First, it is easy to see that the estimator is unbiased, i.e.

á ñ =z 0.Denote p=c M2M , k±=k±1/2, and á ñf q x, kprior( ) as the average over the prior and

measurement outcome in the range of - +k c k c,M M[ ], i.e.

ò òá ñ = s - D
-

+

 f q x q P q x P x f q x, d d , . 25k
k c

k c

q Mprior prior 0, prior , 2 prior
M

M

prior
2

prior
2( ) ( ) ( ) ( ) ( )[ ] [ ]

Theoverall variance canbeobtained through d z= å á - + ñz =-¥
¥ x kc qk M k

2
prior

2( ) [ ( ) ] = s z+ Vprior
2 2

1

z+ V2 ,2 where theoutcomevariance = å á - ñ=-¥
¥V x kck M k1

2( ) and the cross correlation =V2

å á - ñ=-¥
¥ x kc qk M kprior( ) . It is easy to see that theminimumvariance, achieved at z = - V V2 1, equals

d s= -z
 V V . 262

prior
2

2
2

1( ) ( )

Wecan see that the variance decreaseV2
2/V1 is largewhen the variance of the outcome is small and the cross

correlation is large.With the overall precision in hand, to characterize the precision of the secondmeasurement
d hq GKP, we calculate the Fisher information increase d d s= -h z

q1 1 1 ,GKP 2 2
prior
2( ) ( ) thus the effective

measurement rms precision

d s
s

= -hq
V V

1 . 27GKP
prior

prior
2

2
2

1

( )

To evaluate the precision, wewill consider s = k M n4 Sprior
2

prior
2 with various kprior. As shown infigure 7, we do

see aHeisenberg-scaling precision, regardless of the different values of kprior. Especially, when kprior∼1, we see a
good agreement with the performancewithout themodulo p2 complication, d ~hq M n1 2 S

GKP ( ).
Finally we address the loss issue and possible generalizations.When there is loss, one can utilize theCV error

correction schemes tomitigate the loss, similar to the scheme analyzed in section 3.1.
Due to the constraints from themodulo operations, we are restricted to the equal-weight scenario in the

previous analysis. The generalization to the unequal-weight scenario is possible, at the cost of introducing excess
noises. Supposewe keep the beamsplitters balanced and the post-processing in the estimator the same as in
figure 6; we can still tune theweights {wm, 1�m�M} by concatenating each displacement unitary with a
suitable loss or amplification channel. Consider the rescaledweights, {km≡Mwm, 1�m�M}, with the
normalization å == k Mm

M
m1 .When km>1, one can apply a loss  k1 m

2 and a gain km
2 such that the combined

channel

a a= F - U U k , 28k m k k m m1 1m m m
2 2 2◦ ˆ ( )◦ ◦ ˆ ( ) ( )

where the notation Û (·) is now a unitary displacement channel.When km<1, one can apply a gain  k1 m
2 first

and then loss km
2 , such that the combined channel

a a= F - U U k . 29k m k k m m1 1m m m
2 2 2◦ ˆ ( )◦ ◦ ˆ ( ) ( )
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With the above equivalence relation, afterwards an equal-weight addition of themeasurement results will give
the correct weighted average of displacements, up to some overall noise with variance å -= k M1m

M
m1
2∣ ∣ .

4.Discussion

Inprinciple, CVerror correction codes such asGKP-stabilizer codesmay beused to enhance the reliability of any
protocol thatmakes use ofCVquantum information. In this paper, we focus on the enhancement of distributed
sensing tasks that canbe achievedwithCVerror correction, providing a detailed evaluationof the effectiveness of
GKP-stabilizer codes used for this purpose.Whenused for distributed sensing ofCVdisplacements, theGKP-
stabilizer codewith six iterations (leveln=7 code) reinstatesHeisenberg-scaling of precision up to about 102

nodes for transmissivity η�0.95, while theHeisenberg scaling is destroyed entirelywhenno error correction is
used. Since theGKPgrid state enables simultaneous precisemeasurements of small displacements onboth
quadratures, we also use it to extend the distributed sensing protocol fromsingle-quadrature displacements to
displacements of bothquadratures.When goodprior information is available, simultaneousHeisenberg scaling of
rms estimation errors onboth quadratures can be achieved for the equal-weight case.

Three future directions areworth pointing out. First, there is room for improvement on the conversion froma
pure loss channel to anAWGNchannel in section2.During the amplification, part of the information about the
input state is stored in the environmentmode, and itmight improve performance if the environmentmode is used
in the decoding process aswell. Itwill also beworthwhile to investigatewhether usingCVerror correction in
quantumrepeaterswill improve their performance against loss. Finally, ourmethods can be applied to sensing
other parameters, such as aweighted average of phases,wherewe expect similar enhancements of performance.
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