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Abstract

Quantum nonlocality has recently been intensively studied in connection to device-independent
quantum information processing, where the extremal points of the set of quantum correlations play a
crucial role through self-testing. In most protocols, the proofs for self-testing rely on the maximal
violation of the Bell inequalities, but there is another known proof based on the geometry of state
vectors to self-test a maximally entangled state. We present a geometrical proofin the case of partially
entangled states. We show that, when a set of correlators in the simplest Bell scenario satisfies a
condition, the geometry of the state vectors is uniquely determined. The realization becomes self-
testable when another unitary observable exists on the geometry. Applying this proven fact, we
propose self-testing protocols by intentionally adding one more measurement. This geometrical
scheme for self-testing is superior in that, by using this as a building block and repeatedly adding
measurements, a realization with an arbitrary number of measurements can be self-tested. Besides the
application, we also attempt to describe nonlocal correlations by guessing probabilities of distant
measurement outcomes. In this description, the quantum set is also convex, and a large class of
extremal points is identified by the uniqueness of the geometry.

1. Introduction

It was shown by Bell that the nonlocal correlations predicted by quantum mechanics are inconsistent with local
realism [1]. Bell nonlocality, or quantum nonlocality, has attracted many research interests over the years (see [2]
for areview). Recently, it has been intensively studied in connection to device-independent quantum
information processing (see [3, 4] for reviews), where the extremal points of the convex set of quantum
correlations plays a crucial role through self-testing.

The correlation that attains the maximal quantum violation of 2+/2 [5] in the Clauser—Horne—Shimony—
Holt inequality [6] is an extremal point of the quantum set, for which the quantum realization (state and
measurements) is unique up to unavoidable local isometry. This implies that attaining the value of 2+/2 can self-
test the state and the measurements in the Bell experiment [7]. When a realization is a unique maximizer of a Bell
inequality, the realized correlation is a self-testable extremal point. Although there exist non-exposed extremal
points that cannot be a unique maximizer of any Bell inequality, a correlation is extremal when the realization is
self-testable [8]. In this way, self-testability and extremality are intimately connected. In most protocols, the
proofs for self-testing rely on the maximal violation of the Bell inequalities. However, even in the simplest Bell
scenario (two parties and two binary measurements on each party), the maximal violation by a partially
entangled state is known for only a few Bell inequalities [9—13], and not many protocols are proposed for self-
testing partially entangled states [14—18].

On the other hand, the proof for self-testing in [19] is fascinating, because no Bell inequality is used directly.
In the simplest Bell scenario, when marginal probabilities of outcomes are unbiased, the boundaries of the
quantum set are identified by the Tsirelson-Landau—Masanes (TLM) criterion [20-22]. The proofin [19] relies
on the fact that the geometry of the state vectors is uniquely determined when the TLM criterion is satisfied (and
the anti-commutation relation between observables is proven on the geometry). However, this geometrical
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proofis restricted to the case of a maximally entangled state by the restriction of the TLM criterion. In a general
case, where an extremal correlation may be realized by a partially entangled state, the criterion for the
identification has been only conjectured, based on the probabilities of guessing outcomes of a distant party
(referred as ‘guessing probability” hereafter) [23].

In this paper, we present a geometrical proof in the case of partially entangled states. We show that, when a
set of correlators in the simplest Bell scenario satisfies a condition, the geometry of state vectors is uniquely
determined. The realization becomes self-testable when another unitary observable exists on the geometry to
prove anti-commutation relation. Applying this proven fact, we propose self-testing protocols by intentionally
adding one more measurement to prove the anti-commutation relation. This geometrical scheme for self-
testing is superior in that, by using this as a building block and repeatedly adding measurements, a realization
with an arbitrary number of measurements can be self-tested.

Beside applications, efforts have been made to describe the quantum set having a complicated structure
[24-26, 8, 27] in a more tractable way; some descriptions exist such as covariance [28] and entropy [29]. For this
purpose, we attempt to describe nonlocal correlations by guessing probabilities. We show that the quantum
realizable set is also convex in this description, and a large class of extremal points is identified by the uniqueness
of the geometry of state vectors. Moreover, with the help of this extremality, we show that the sufficiency of the
extremal criterion conjectured in [23] can be reduced to certifiability of guessing probabilities.

This paper is organized as follows: in section 2, we briefly summarize the preliminaries. For details, see [2—4]
and the references therein. For clarity, we first introduce the description of correlations by guessing probabilities
in section 3, and discuss the properties of the quantum set, such as the extremality and self-testability. In
section 4, we investigate the geometrical properties of realizations in the standard description of correlations.
Finally, as an application, we propose self-testing protocols for partially entangled states in section 5, whose self-
testability is geometrically proven, regardless of the validity of the conjectured extremal criterion. A summary is
given in section 6.

2. Preliminaries

In the simplest Bell scenario, Alice (Bob) performs one of two binary measurements on a shared state depending
on a given random bit x (y), and obtains an outcome a = £1 (b = %1). The properties of a nonlocal correlation
are described by a set of conditional probabilities { p(ab|xy)} referred as a ‘behavior’, which specifies a point in
the probability space. As p(ab|xy) = i[l + aCi + bCyB + abC,,] for no-signaling correlations, with ci(ch
being a bias of the marginal p(alx) [ p(b|y)], any no-signaling correlation can be described by a behavior

{ca, Cf » Cyy}. Such abehavior specifies a point in the 8-dimensional no-signaling space, which we denote by
the C-space.

Abehavior { Cf, Cf , Cy,} is realized by quantum mechanics, if and only if there exist a shared quantum
state |¢)) and the observables A, (B,) of Alice (Bob), such that A} = By2 =1,CA = (YA, Cf = (Y|By|¢)),
and Cy, = (Y|A(B,|¢)). We use (---) as the abbreviation of (/|- --|1)). Any state vector has a real-vector
representation [20, 30, 31]. For example, when |1) is represented by components as [¢)) = (¢, g,--+) with
¢ € C, 123 = (Recp, Im ¢y, Re ¢, Im ¢, ) isareal-vector representation.

The realizable behaviors constitute a convex set in the C-space, denoted by Q. In the unbiased case where
Cl = Cf = 0, abehavior belongs to Q, if and only if the TLM inequality [20-22]

[Co0Co1 — CioCiil < \/(1 - Cozo)(l - Cozl) + \/(1 — Clzo)(l — 6121), (D

is satisfied for C,, = C,, [together with p(ablxy) > 0].

Using the correlators of a behavior { C4, CyB » Cyxy},let us introduce the quantities Sﬁ; given by

1
Sy = Eny + I — 4K,
Jy =Cl — (CH? — (C))? + 1,

Ky =Cyy — CAC). @

Suppose that the following holds for a set { Py}
Sggm —_ Sé]{” — 511610 — Sﬁ“,

H =], [(1 - $§)Cy — CLCP1 >0, 3)
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where p,, is either ‘+ or ‘. Letting the value of Sf;x/ be equal to sin? 2, the following is also introduced:
d? = (C})? +sin’2y, d = (C))? + sin?2y. (4)
Then, to identify the nonlocal extremal points of O, the following criterion has been conjectured in [23].

Conjecture 1. A nonlocal behavior { C4, Cf » Cyy} is an extremal point of Q, if and only if equation (3) holds as

Soo = Soi = Sip = S, and inequality (1) is saturated for both scaled correlators C,, = C,, / Jd?

and ny = ny/\/de‘.

Note that the fulfillment of equation (3) for some {p, } (not necessarilyas Sgy = Sp1 = Sip = S;1) is necessary
(and even sufficient in the case of sin? 2y < 1) for the existence of a two-qubit realization in the form of

A, =sin 9;\01 + cos 02, B, = sin 9501 + cos 0503,
|1) = cos x|00) + sin x|11), (5)

where (01, 03, 03) are the Pauli matrices (but there is no o, term), and hence also necessary for the extremality of
Qc (see the supplemental material of [23]). Note further that the definition of #% and 95 are changed from

[32, 33, 23] for convenience (92 — 7/2 — 0% and Qf — 7r/2 — 95).

Moreover, for a given { ij‘, CyB » Cy b the quantity Df and DyA (explained later) has a device-independent
upper bound, which can be obtained by the Navascués—Pironio—Acin (NPA) hierarchy [35, 36], and the
following is also implicitly conjectured in [23].

Conjecture 2. When a nonlocal behavior { C4, C},B , Cyy} satisfies the same condition as Conjecture 1, d?and df‘

coincides with the device-independent upper bound of (D?)? and (D)f‘)z, respectively.

3. Quantum set in D-space

As mentioned, CZ is the bias of p(a|x), butitis also the bias of Bob’s optimal probability of guessing Alice’s
outcome g, without the use of any side information. In the nonlocality scenario, however, Bob has a halfofa
shared state; the local state g, (conditioned on Alice’s outcome a), and by the use of it the guessing probability is
generally increased. Therefore, it seems another natural way of describing nonlocal correlations to use the
guessing probabilities optimized under p,,.. For this purpose, we focus on the quantities introduced in [32, 33]
DB = max (A, X3), D? = max (X4B,), 6

v = e (AdX), Dy = max (XaBy) ©
where the maximization is taken over any Hermite operator X5 (X,4) on Bob’s (Alice’s) side. Indeed, when p, Ix
and p_, |x are both pure states, the maximum in the definition of Df is attained when Xé = I [32]; hence Df
becomes equalto tr|p,|, — p_y),|; coinciding with the bias of Bob’s optimal guessing probability [34].

Let us then describe a correlation by a behavior { 6%, (5;‘, C,}, such thatitis realized by quantum mechanics
ifand only if there exist |¢/), A} = By2 =1,6% = (DFy?, (5)“,\ = (DyA)z, and Cy, = (Y|A,B,|¢). The reason for
taking the square of DY and Df will become clear soon. Such a behavior specifies a point in an 8-dimensional
space, which we denote by the D-space. Note that the behaviors in the C-space and the D-space have no
one-to-one correspondence. For example, the completely random correlation is uniquely represented by
{ Cf =0, Cf =0, C, = 0}in the C-space but represented in the D-space by { 6f =0, 6}’,* =0, C, = 0} and
(68 =1, 6? = 1, C,, = 0}. The former is realizedby A, = B, = 0y 0n|¢) = |00), and the latter is realized by
Ay = 01, B, = oson ) = (|00) + |11)) /2.

Now, let us investigate the properties of the behaviors in the D-space. When the behaviors p; are realized by
quantum mechanics, there always exists a realization of the behavior p = Y=, A;p, forany A; > 0 such that
>=; Ai = L. Thisis because, as shown in appendix A, although (Df )2 and (DyA)2 are convex in general such that

[DZ )P < 32 MIDE(p)P, @)

the equality holds, at least when each local state of the realization of p; has orthogonal support, and hence,
Lemma 1. The behaviors {55, 6;‘, Cyy ), which are realized by quantum mechanics, constitute a convex set.

This set, denoted by Qp, is then at least enclosed by the hyperplanes in the D-space defined from the
following inequalities:
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BE= -3 VIE+ > ViC, < LB ®)
x xy q
A= Z Ve + Z L 9)
4q
where the coefficients satisfy VS > 0, Il < 0,and V{ Vi, V5, = — V5 Vi, Vi forboth ¢ = A, B. Note that

V& is the coefficient of Cyy, but V§} is the coefﬁaent of Cyo. The quantum bound of the inequalities is given by

. \% . . —X
q = = = = —
(s6)* (51 )2 \ V10 Vi’ V61 Voo

X = VHVAEIVe)® + (V)] = Vo Val(Vig)? + (ViD?l. (10)

This is due to the cryptographic quantum bound shown in [32]. Indeed, ug, =(—1D¥ V)g, / s fulfills

ny(uf;)z = land ug ud = wful; hence any realization obeys

B = —qB% (Y DY) + X, 57 ug,(—1)Y (AB,)
L 1
—g%5 (st DPY? + $SpPyY | < —. 11
9", GEDEY? + [, P DE Y] o (11)
The same holds for B by using u)f; = (—1)¥ V)f; / syA. The inequalities (8) and (9) are respected by any quantum
realization, which we denote by quantum Bell inequalities in analogy to the Bell inequalities.
Itis convenient to introduce another convex set, which is enclosed by inequalities (8) and (9). As inequality
(11) holds whenever the first inequality due to the cryptographic quantum bound holds, the behaviors in this set
are those satisfying the TLM inequality (1) for both scaled correlators ny =G, / \/(Tf and ny = Cy / 6? [32]

(together with the obvious constraint of Cﬁy < 65 6? < 1). This convex set, denoted by Q cryp, is a superset
of Q D-

Let us now search for the extremal points of Q. It is known that each extremal point of Q¢ has a two-qubit
realization [5, 37]. This is due to the fact that A and A; (By and B, as well) are simultaneously block-diagonalized
by appropriate local bases with the block size of at most 2 [37]. However, this cannot be applied to the case of Q)
due to the convexity of (D)2 and (D}f*)2 as in inequality (7). Fortunately, however, we have the following:

Lemma 2. A behavior in Qp, which simultaneously saturates the quantum Bell inequalities (8) and (9), has a two-
qubit realization.

Proof. As the maximization in D is rewritten by using the Lagrange multiplier [ as
DF = max[(4]|A,XplY)) — 1((4|Xab) — 1)], any realization must satisfy
B

trpAx ) (Y] = %trA(FxIl/)} (Wl + 1) (YIE), (12)

where F, is an optimal operator attaining the maximum. Let 0, Ay, Ey, and E be the real-vector representation
for [4), A;|v), Bylv)), and E|1)), respectively, which are all unit vectors. Then, equation (12) implies

A.-E=D! A, B, =DPE-B, A, -¢=DE-. (13)

On the other hand, the saturation of inequality (8) implies that inequality (1) is saturated for C’x}, = Kx . Ey /
DE = E - Ey, which ensures that four real vectors By, B), F,, and F, lie in the same B-plane [19] as shown in

figure 1. Similarly, the saturation of inequality (9) implies that four real vectors Ao, Ay, Ey,and E liein the same
A-plane, where E;, is the real vector optimizing DyA. However, as a high-dimensional vector space is considered,
the relationship between the two planes has not been determined yet.

Suppose that AO = iAl and Bo = :I:Bl Let the pro;ectlon of w to the A-plane (B-plane) be wA (¢B)
Moreover, let the pI‘O]eCthIl of 1/JB to the A-plane be I/JBA From the laws of sines and cosines, WBAl2 is given by

o - Up)? + (A - ) — 2(Ag - ) (A - Z/JB)COSA

14
sin? A (14
where A is the angle between go and A,. From equation (13),
Ac- g =DJE -ty =DJE - = Ac - = A, - 4y, (15)

and consequently we have |¢BA| |1/JA| Similarly, we have |sz s = |¢B| This implies that the two planes
intersect with 1// = TZJA = wB being a common vector as shown in figure 1. The two-qubit realization of
equation (5) can realize the same geometry of real vectors.

4
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B-plane

Figure 1. Geometry of real vectors, where Fy, By, E),and B, (E,, Xo, E,,and A}) lie in the B-plane (A-plane), and E (E}) is directed
along the projection of A, (Ey) to the B-plane (A-plane), respectively. The two planes intersect at the angle of 7/2 — 2, with 7:@’
being a common vector. The angle between 17)’ and B, (E.)is denoted by 68 (qﬁf ), and that between 1_[1’ and Ky (Ey) is denoted by 9?
(¢‘;‘). As inequality (1) is saturated by scaled correlators, inequality (17) holds in this geometry. We assume, without loss of generality,
0 < x < 7/4 throughout this paper.

When A, = +A,, A, and B}, lie in a 3-dimensional subspace. Moreover, the saturation of inequality (1) for
scaled correlators occurs only when A coincides with + E, or + E}, and F, coincides with & By or + B,. The
behavior in the D-space realized by such a simple geometry can be realized by equation (5). Similarly, when
By = +B,. 0

As such a behavior saturates inequality (1) for scaled correlators, it is located at a boundary of Qryp.
Conversely, a boundary behavior of Q.. generally does not have a realization with the geometry of figure 1 and
cannot be realized by quantum mechanics; hence,

Lemma 3. Qp is a strict subset of Qcrypt.-

Hereafter, to describe the geometry of figure 1, we also use the shortcut notations of

NG = ¢ — 05, A= 05— 05, AdF = ¢ — ¢, (16)

forboth ¢ = A, B. See figure 1 for the definition of (;56 and (;5; Note that, as inequality (1) is saturated for scaled
correlators, the geometry of figure 1 satisfies [23]

H sin Afy < 0and H sin A)’}x <0. (17)
xy xy

When such a geometry is given, we can easily construct the quantum Bell inequalities (8) and (9) that are
simultaneously saturated by the geometry, as shown in appendix B. Conversely, let us investigate the
realizations to maximize such a given pair of the quantum Bell inequalities. Note that there exists
unavoidable ambiguity of the realizations, which is referred as obvious symmetries hereafter, as the four
geometries with the parameters {62, Gf, X} (02, —91;, xh{m — 04, 7 — 05, x},and

(r+ 04 7+ 95, X} realize the same behavior in the D-space. In general, the realization that saturates
either inequality (8) or (9) is not unique; hence belonging to a flat surface of Qp. The realization is
characterized by A@® and A4, respectively, such that AZ and A’ is determined for a given A#¥ and Af4,
respectively. However, (A, B,) = D} cos Afy = D)f\ cos Afx must hold in figure 1. As aresult, to saturates
both inequalities (8) and (9), AG® and A9 are constrained to satisfy
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(1 4+ a?cos AG4)? (1 + aB cos AGF)?
(1 4+ atcos A (1 + aPcosABP)?’
(cos AGA + a2 (cos AO® + aP)?

(cos AD* + o) (cos ADP + aB)?’

2

(1 — ?COSAQA) (1 — SLCOSAHB)
2 N2’

(1 - —cos AGA) (1 — COS A@B)
2 2
(cos AOA — %) (cos APB — L)

(cos AG* — L)2 (cos AGP — L)2 ,

X

(18)

jA

where the parameters of the original geometry used for constructing a given pair of the Bell inequalities are
indicated by an overline such as A§°. The parameters o and 3¢ are given by —sin A,/ sin Ay, and

sin A}, / sin A}y, respectively. As details are given in appendix B, when equation (18) only has a trivial solution of
cos AO° = cos A forboth ¢ = A, B, the realizations become unique up to obvious symmetries, and we have

Lemma 4. The geometry of a realization, which simultaneously saturates the quantum Bell inequalities (8) and (9), is
unique up to obvious symmetries when equation (18) only has a trivial solution; hence such a behavior is an extremal

pointof Qp.

For a given pair of quantum Bell inequalities, no pair of a° and 3¢ is identical in general and equation (18)
only has a trivial solution. This implies that the behaviors realized by two-qubit realizations equation (5) with
the parameters satisfying inequality (17) are generally extremal for Qp, constituting a large class of extremal
points. Note that the uniqueness of the realization is not necessarily required for the extremality, and hence
lemma 4 does not exclude the possibility that the behaviors realized by equation (5) with inequality (17) are all
extremal.

In any case, for an extremal behavior of Qp proven by lemma 4, the geometry of real vectors is unique up to
the obvious symmetry. Is such a behavior self-testable? The answer is negative by two reasons (apart from the
problem ofhow Df and D)f‘ is determined by experiments). The first is that |7:/}’ |in figure 1 is undetermined; |{/}’ |
can be determined through (A,) = |¢'| cos 82 or (B,) = |4}'] cos 0%, but these are unspecified in the D-space.
The second relates to the convexity of (Df)? and (Df)z. As shown in appendix C, there exists an example in
which the correlation P, despite being an extremal point of Qp, may have two different realizations due to the
strict convexity. However, in some cases, we can exclude the possibility of such strict convexity, that is, the
certifiability of D? and DyA.

Suppose that Conjecture 2 holds true. As inequality (1) is saturated for scaled correlators, (DF)? and (DyA)2
are also lower bounded by dBand d;\ [23]; hence those are certifiable, and we have (D?)? = d” and (Df)2 = dyA.
This correlation, denoted by p, is then found to be an extremal point of @, by lemma 4. When a realization of p
is decomposed into two-qubit realizations of p;, based on the block-diagonalization [37], (DB and (D)f‘)2 must
not be strictly convex; otherwise we would construct a realization whose D7 or DyA exceeds the device-
independent upper bound by using orthogonal bases. Moreover, because the correlation p is an extremal point
of Qp, all p; must exhibit the same behavior {d?, d C,} in the D-space. Then, the geometry of the two-qubit
realizations is uniquely determined up to the 0bv1ous symmetry by lemma 4. The symmetry leaves the ambiguity
between {C24, Cf} and {—C, — Cf}, but the latter is clearly inappropriate. In this way, the extremality of Op,

combined with the certifiability of D and DyA, makes the realization unique; hence,

Lemma 5. If Conjecture 2 holds true, the extremal behaviors of Qp by lemma 4 are self-testable extremal points

Ofgc.

This lemma implies that the sufficiency of Conjecture 1 relies on the validity of Conjecture 2. Note that,
under the truth of Conjecture 2, the self-testable extremal points of Q¢ by lemma 5 are such that inequality (3) is
satisfied as Sgp = Soi = S = Sii,inequality (1) is saturated by both Cy, = C,, / \/dTB and C,, = C,, / \/diyA ,
and equation (18) only has a trivial solution. As mentioned above, the information of { Cf, Cf } is necessary for
self-testing to specify [¢’|, and it is indeed used in lemma 5 through equation (3).
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4. Quantum set in C-space

From now on, let us show some geometrical properties of the realizations for the behaviors in the standard C-
space. Note that these hold true regardless of the validity of Conjectures 1 and 2. To begin with, we show that the
geometry of the realization of a behavior in the C-space is uniquely determined when the correlators satisfy a
condition:

Lemma 6. For a nonlocal behavior { C2, CyB, Cyy }, which satisfies inequality (3) for some { ny} (not necessarily as

Soo = Sot = Siy = Si1) and saturates inequality (1) for both C,,, = x},/\/df and C,, = W/JdA, the geometry
of the realization is unique up to obvious symmetries.

The unique geometry is the same as figure 1, but the obvious symmetry now refers the ambiguity between
(64, 95, x}and {02, — 05, X }. Moreover, |1’| is determined to cos 2 as in the two-qubit realizations of
equation (5). The proofis given in appendix D. The difference from the proof of lemma 2 is that 4, and dyA by
equation (4) are not ensured to coincide with (D?)? and (Df)z, and we cannot use equation (12). For the same

reason, F, and Ey in figure 1 are now not ensured to attain D and Df; \/dT? E, is merely the projection of Ay to
the B-plane.

In this way, the geometry is uniquely determined for not necessarily So; = Si = S;h, = S;}. However, this
uniqueness does not ensure the extremality of O¢. This is in contrast to lemma 4, where quantum Bell
inequalities are maximized by a unique geometry, and the extremality of Q, is ensured. Indeed, the nonlocal
correlation P in appendix C, where Spy = Sg; = S5 = S;}, is an explicit counter example for extremality.
Interestingly, P is located in the strict interior of the quantum set, according to the I + AB level of the NPA
hierarchy [38]. This also implies that, even though |¢)’| = cos 2 is ensured to be the same as the two-qubit
realizations, the uniqueness is still insufficient for self-testing. The condition Sy, = Sy} = S;§ = S;} is crucial,
apart from the unique determination of the geometry, for making the realization self-testable through the
certification of Df and Df, as shown bylemma 5.

However, other than the unproved certification condition, a more general condition that makes the unique
geometry self-testable is found as follows:

Lemma 7. For a nonlocal behavior { C2, CyB, Cyy }, which has a unique geometry by lemma 6, the realization is self-

testable, if and only if a real vector representation G of G|v)), with G being a local unitary observable, exists in either
A-plane or B-plane (other than :I:gx and ié;,).

Proof. As the geometry is uniquely determined as figure 1 by lemma 6, the ‘only if’ part is obvious: when the
realization is self-testable, it is a two-qubit realization of equation (5), where any one of E and Ey can be regarded
as G because F, and E, arelocal and unitary (F} = Ey2 = I). Letus prove the ‘if part. We again use the notation
of equation (16). For the operator Zp defined by

sin05 B, — sin 07 B

Iy = 5 19
B sin A@B (19)

we have (| Z2|1)) = 1as By - B, = cos A@%, and similarly for Z,4. As the unit vectors Zg|)) and Zy|1)) are both
directed along 173’ ,wehave Zp|¢)) = L |y ) = Za|1). Suppose now that G liesin the B-plane with G being

cos2x

Bob’s unitary observable (G* = I). Letting the angle between Gand {D" be 7B, it is written as

sinnBB,|¢) — sin(n® — 91;)Z3|¢>

G =
V) sin 9)13

, (20)

for y =0, 1. Moreover, as G commutes with Z, and G? = I, we have (VIGZyZs Gy = <1/J|Z,§|¢) = land
sin 0} = sin?n® + sin’(n® — 070) (| Z5le)
— 2sinnPsin(n? — ‘91;) <1/)|Z§By|1/’>- 2D

From this and equation (19), we have (1| Z3|1)) = 1;hence Z3|1)) is a unit vector. As ()| ZZ|1)) = 1, we have
Z3lw) = |1b), which proves the anti-commutation relation of

(BoBy + B1By)[¥)) = 2cos AGP|1)). (22)
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Figure 2. Four state vectors lie in the same plane, and Xp|t)) and X4 Z4|v)) are orthogonal, which also implies that Z|¢/) and X4 X5|v))
are orthogonal because (1)|Xp X4 Zu|1p) = 0.

As Zi|[Y) = Z3h) = |¢), the anti-commutation relation between Agand A, is also proven. Let us define Xz by

cos 05 B; — cos 08 By
Xp = 23
? sin A8 )

and similarly X,. With the anti-commutation relations of B, and A,, we can confirm
X)) = (Xa)*|eh) = Iv) and (XpZp + ZpXp)|[Yh) = (XaZa + ZaXa)|[Yh) = 0. However, [¢)) has not been
determined yet. From equation (D4), we have

(VIZa Xa XpZpl1)) = — (Y1 Za Xa Zp Xpl|Y))
= —(YIXaXplth) = —sin2y,
(YIXaXpZalY) = (Y| XpXpZplth) = cos2x. (24)

This implies that the four state vectors (not in the real-vector representation) of Xy Zs|v), X4|), Xp|t)), and
XpZp|1) lie in the same plane in a complex vector space, as shown in figure 2. Moreover, this figure shows that
(Y| XpXaZalth) = 0;hence Zy|yp)and X4 Xp|t)) are orthogonal to each other. As the components of [¢)) to these
orthogonal vectors are given by (1| Zs|1)) = cos2x and (¢)| X4 Xp|1p) = sin x, we can conclude

1) = sin2xXa Xplt)) + cos2xZalt)). (25)

By operating X, X on both sides, we have
sin 2 Xa Xplt) — sin2x|4)
cos 2
= cos2x|Y) — Zylv), (26)

and cos XXy Xg(I — Zy)|¢)) = sin x(I + Z)|¢). Then, the local unitary transformation ® = & ® dp
commonly used for self-testing [3] shown in figure 3 results in

sin ZXXAXBZA|¢> =

D1)100) = 210 + ZO + Znl¥) [00)

+ Xs(I + Zy)(I — Zp)[¢)|01)

+ XalI — Z)I + Zp)|ap) [10)

+ XaXg(I — Za)(I — Zp)|9)|11)]
I+ Z) )

=——""""7(cos x|00) + sinx|11)), (27)
2cosx
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0) — H _T_H_T_

o T A4

Figure 3. Local unitary transformation used for self-testing.

and consequently |¢)) is locally equivalent to cos x|00) + sin x|11). Similarly, we also have
DX, Xp|10) |00) = |junk) (cos x|11) + sinx|00)), (28)

and so on, and measurements are self-tested. O

For self-testability, the proof of the anti-commutation relation between By and B, (equation (22)) is crucial.
To prove it, lemma 7 implies that the third unitary observable G, whose real vector lies in the same B-plane, is
necessary. In the unbiased case where x = /4, the four vectors go’ A,, By, B, allliein the same plane, and A,
can be used as the third unitary observable [19]. However, in the other general case of 0 < x < 7/4, Agand A
lie in a different A-plane, and A, cannot be used anymore. It is not limited, but the optimal operator F, for D isa
good candidate for G. Interestingly, in the special case that Fy = Byand F, = B, the candidate for G is missing
in the B-plane, but the correlation in this case is always local.

5. Scheme for self-testing partially entangled state

As shown in section 3, under the conjectured certifiability of D? and Df, the realizations are automatically self-
testable by lemma 5; however, Conjecture 2 has not been proven. Fortunately, however, lemma 7 tells us how to
self-test such realizations irrespective of the validity of the conjecture; it suffices to intentionally introduce a
unitary observable by adding one more binary measurement.

The simplest protocol may be to add the measurement of Zp. Let us add a binary measurement to the Bell
scenario, such as the Bell (2, 3, 2)-scenario but on Bob’s side only, whose observableis B, (B} = I). Suppose
that the correlators by the original set { Ay, A;, By, B;} satisfy the condition in lemma 6, and the geometry of real
vectors is determined as figure 1, where sin 2y is also determined. When the additional correlators satisfy

(AyBy) = cos 02 = (A,) /cos2x, (B,) = cos2y, (29)

forbothx = 0,1, B, is ensured to lie in the A-plane and is directed along {D" . Then, in this protocol,
Bolv)) = Zg|y) = Z|1p) can be directly used for proving the anti-commutation relation of B, (A, also) as in the
proof oflemma 7.

The additional measurement is not restricted to Zp. In the second protocol, suppose that the correlators by
{Ao, A1, By, By} also satisty the condition in lemma 6, in addition to the original {Ag, A;, By, B;}. Then, as Tb/ ,
go, §2 lie in the same plane, 52 is ensured to lie in the B-plane, and again, B, can be used as the third observable
for proving the anti-commutation relation between By and By; the proof of lemma 7 runs similarly, and the
realization is self-tested.

Note that B, is also self-tested at the end of both protocols. Obviously, the scheme of the second protocol can
be repeated to add more measurements on both sides of Alice and Bob. In this way, by using the geometry of
figure 1 as a building block, the two-qubit realizations in the form of equation (5) with arbitrary number of
measurements (whose basis lies in the X—Z plane) can be self-tested.

6. Summary

In this paper, we studied the self-testability and extremality from the viewpoint of the geometry of the state
vectors of the realizations for quantum correlations, and showed a condition that determines the geometry

9
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uniquely. Interestingly, in the case of the realizations using partially entangled states, the condition for the
unique determination of the geometry is strictly looser than that for the self-testability.

We first showed that the saturation of the TLM inequality for scaled correlators, together with the existence
of a two-qubit realization in the form of equation (5), uniquely determines the geometry of state vectors in both
cases of the D-space and the C-space (lemma 4 and 6). The uniqueness of the geometry generally ensures the
extremality of Qp, because it is a unique simultaneous maximizer of two quantum Bell inequalities in the D-
space. In the case of the C-space, however, such quantum Bell inequalities are lacking, and the uniqueness of the
geometry is insufficient for the extremality of O¢. Indeed, there exists a two-qubit realization such that, despite
being an extremal point of Qp, itis not an extremal point of Q due to the convexity of guessing probabilities.
This suggests that the structure of Qp, is simpler than Q. The complete characterization of the extremal points
of Qp is an intriguing open problem.

We next showed that, when the conjectured certifiability of the guessing probabilities holds true, the self-
testability in the C-space (hence the extremality of Q¢) comes to be ensured by the extremality of Qp (lemma 5).
Namely, the sufficiency of the extremality criterion conjectured in [23] was shown to rely on the certifiability of
guessing probabilities. The proof of the certifiability (i.e. the proof of the device-independent upper bound of
guessing probabilities) seems quite challenging but attractive, because it would also lead to the discovery of the
information principles [2, 39] behind quantum mechanics, and ‘almost quantumness’ [40] as well.

Moreover, the realization with a unique geometry becomes self-testable if and only if another unitary
observable exists on the geometry (lemma 7). Applying this proven fact, we proposed self-testing protocols for
partially entangled two-qubit states, where one more measurement is intentionally added to prove the anti-
commutation relation between observables. This geometrical scheme provides a building block used for a more
complicated geometry. Indeed, repeatedly adding measurements by this scheme, a realization with an arbitrary
number of measurements can be self-tested. It is an open problem of how robust this scheme is.

As all the known nonlocal extremal points in the simplest Bell scenario are self-testable, it is natural to expect
that the true extremal criterion must be the one that determines the geometry of state vectors as well as the TLM
criterion. The conjectured criterion in [23] fulfills this expectation. Interestingly, although the validity of the
conjecture has not been proven, the property of determining the geometry proves the self-testability of the
realizations in the Bell scenario with more measurement settings as in the above self-testing protocols.
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Appendix A. Convexity of D”

Let p,, be Bob’s subnormalized conditional state. For any convex decomposition g, = 32; A; psl)x, we have
Dy = maxtr(pyy, = -y X
= max3, Aitr(pf), — P70 Xs
= max S Arl(pf), = %0 © () (el X © 1o

< max 3, Aitrl(pff, = %10 @ (1) {iDal Xo
‘Ba

) 1/2
[Z" st~ 0| ] | o
B

where a denotes the ancilla. At the last equality, we used the formula (Df)? = S 2lawe P/ (my + mys), where
ae = (kl(py, — p_y)) [K') are the matrix elements with respect to the eigenstates of p,|, + p_, |, withmand
my being the eigenvalues, as shown in appendix A of [32]. See also [33].

Appendix B. Uniqueness of geometry I

First, we explicitly show how to construct a pair of the quantum Bell inequalities (8) and (9) that is simultaneously
saturated by a given geometry of figure 1 (i.e. a given set of the geometrical parameters {6, 05 , X })- The saturation

condition for the first inequality in inequality (11) is that, for X, = > ) ug (—-DYB,,

10
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_ (sin A%Bo — sin AﬁoBl)
sin A@8
(so Dg)*(X7) = (s/ DP)* (X¢), (BD)

X, x E

>

and the coefficients of the quantum Bell inequalities must satisfy

uge sin Ay = —ug; sin Ay,  ufysin Afy = uf; sin Afy,
(s§ D§)?| sin A, sin Afy| = (sf Df)?| sin A{; sin Af|,
1
(s6Dg)* + (sfDf )* = 2 (B2)
4(q°)

where the last equation is the saturation condition for the second inequality of inequality (11). It is then sufficient
to choose for both ¢ = A, Bas follows:

Ugy = asin Ay, ug = —asin Ay,

ufy ="bsin Af,, uf; = bsin A{,,

s¢ = Dfa, s{ =D{b, l/q‘ =2/(s¢DE)? + (s Df)?,

s c s c
. 1 sin Af, sin A
- . . . . . >
sin AG° \ sin Af; sin Af, — sin Ag; sin Ag,
: c : c
b 1 —sin Ag; sin Ag, (B3)
sin AG°\ sin Af; sin Af; — sin Ag; sin Ay,

Next, let us show conversely that, for a given set of such coefficients of quantum Bell inequalities, the
geometrical parameters satisfying equation (B2) are unique (up to obvious symmetries). Let a° = ug, /ug, and
B¢ = ufy/uf;. Once we choose AfF, tan Aj; is determined from equation (B2) as

—af sin AG° sin Ag°
tan ABO = ————#  tan Af)l =
1 + afcos A§° cos AG° + af
1 .
— sin AG°¢ .
3¢ sin AG°
tan Af, = ‘517, tan Af; = —_—
1— = cos AG° cos AG¢ — =

and as aresult, Dg and DY is also determined by A6 as
1 of—!—%—FZcosAQC
o

(DS)Z = >
4569 o + — + B+

1 BCJrBLCchosA@f

(D)? (B4)

AT o+ L L

af
For these solutions to represent the same realization, (A, B,)* = (D} cos Agy)z = (D}f‘ cos Afx)z must
hold for every x and y; hence equation (18) must hold, where the original geometrical parameters appearsin
equation (B2) are indicated by an overline. When equation (18) only has a trivial solution of cos Af¢ = cos A",
wehave D§ = D¢ and Df = Dy from equation (B4). Moreover, from DED? sin A¢® = sin 2y sin A@4 and
0 < x < /4, wehave y = yas tan A¢ = tan(A§, — Af) = £tan Ag‘. From (D)2 = cos? 2 cos? 9}’} +
sin? 2y, we have cos? 0? = cos’ 9yA ,and similarly cos? 62 = cos? 95 . Considering the possible combination of
signs carefully, it is found that the allowed solutions of equation (B2) are only { 9,:‘ R éyB , Xbh{— 9;\ , — éyB » Xb
(m—8)m— éyB, yhand {7 + 8/, 7 + E?YB, X}

Appendix C. Example of strict convexity

Let us consider the two nonlocal correlations P and Q realized by equation (5) using the following parameters:

P: 08 =0, 9{‘ =7m/2, 05 =¢, 08 =—7/4, 2y = /6,
Q: 9{;‘ =0, 0{4 =m/2, 03 = ¢, 0{3 = —n/4, 2x = w/4,
where eisasmall angle (0 < € < 7/40) to ensure that equation (18) only has a trivial solution. AsP and Q

saturate equation (1) for scaled correlators, they are the extremal points of Q. Let us then consider L
extrapolated from P and Q as

11
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Co=112 | Oeryp |
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0.5 & sisig | 050 T !
J post-quantum
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1 =112-1 for L
0 plost-qluantlum . . 0 | . . . .
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Figure 4. Two cross sections of the D-space, Cy;-67 and Cy ;- &1, which contain P, Q, and L. The behaviors in the gray region belong to
Qerypt- When P = AQ + (1 — M)Lwith A =1 — % (in the limit of € — 0), the behavior of L in the D-space is not quantum
realizable, whereas the behavior in the C-space is locally realizable.

P=)Q+ (1 — ML, (Cl)

where Ais chosen such that Cyg + Co; + Cy9 — G = 2 at L. Suppose that {Cf, Cf, C,y} is extrapolated by
equation (C1). Because the behavior of L in the C-space satisfies the positivity constraint p(ablxy) > 0,Lisa
local correlation. This implies that P can also be realized by a convex sum of Q and deterministic correlations,
despite that P is an extremal point of Qp. On the other hand, when { 6f R 6?, C,y} is extrapolated by

equation (C1), Lis not allowed in quantum mechanics as shown in figure 4. This implies that (DxB )2 and (DyA)2
must be strictly convex for equation (C1). Although it is unknown that this convex-sum realization certainly
realizes {65, (5?, C,y} of P, even an extremal point of @, may be realized as a convex sum due to the convexity of

Dfand DyA. Interestingly, as { 4, CyB » Cyy} of Pin the C-space is realized by equation (C1),P is not an extremal
point of Q, despite being an extremal point of Qp.

Appendix D. Uniqueness of geometry II

As anonlocal behavior is considered, the measurement operators in the realization satisfy Ay = +A; and
By = =£B, [41].Inthe case of sin? 2y = S5 = 1, the geometry of real vectors is uniquely determined by the
TLM criterion as shown in [19]. In the other cases, sin?2y = S,g’jy isa solution of

(<AxBy> - M)z = sin22x(1 — <Ax>2 )(1 _ <BJ’>2 ))

cos? 2y cos? 2y cos? 2y

and (A, B,) is equal to either one of

Ax) (B A, )? By)?
{Ax) (By) x>2< 2 :i:sinZX\/l— < ;‘> \/1——< 2y> : (D1)
cos“2x cos“2x cos“2x
Let us introduce 64 and Hf by
(Ay) = cos2x cosf2, (B,) = cos2y cos 05. (D2)
Under this parameterization,
d? = cos?2x cos? 0% + sin?2y. (D3)

As H > 0, the double sign of the second term in inequality (D1) can be negative for even pairs among the four
possible (x,), and hence, by adjusting the sign of sin 6% and sin 91; , (A;B,) is always written as

(AyB,) = cos 0% cos 6‘5 + sin A2 sin 05 sin 2. (D4)

Let us then consider the real-vector representation. Because the scaled correlators saturate equation (1), there
exists real unit vectors I and E, such that

Ay -B, = \dPE - B,, A.-B,=d}E,-A,, (D5)

and E; and Ey (E} and A'x) are ensured to lie in the same B-plane (A-plane) [19]. However, the relationship
between the two planes has not been determined yet.
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Clearly, \/d? is the length of the projection of A, to the B-plane, and from the laws of sines and cosines,
g5 — s Bo)’ + (A, - B)* — 2(A, - By)(4, - Bycos A
* sin? A ’
must hold, where A is the angle between By and B, (not yet determined). From equations (D3) and (D4), we can

introduce (bf to express Ex . Ey as \/djg cos(gbfj — 95), and we have from equation (D6)
[cos A — cos ABB][cos A — cos(2¢§ — 05— 0BH1=0. (D7)

(Do)

As this must hold for both x = 0, 1, the solution of cos A = cos(2¢f — 08 — 9F)isinappropriate unless the

two-planes are perpendicular (arld the cgrrelation islocal). We then have By - B; = cos A = cos AG5. Let the

projector of ¢ to the B-plane be ¢5. As ¢ - B, = (B,),

(Bo)* + (B1)*> — 2(By) (By) cos AG®

sin? AGB

and hence we know from equation (D2) that the angle between IZB and B}, is 91; .As IZB lies in the B-plane,

sin 9351 — sin 9{31?0
sin A#B

and from equation (D4) we have Zx . TZ)B = cos 2 cos 9?, which implies that the angle between Xx and 1723 is

9;‘. From the same argument as above, we have KO . A} = cos A94, which implies that A'o, Xl, and FpB liein the

same plane. Similarly, we know that By, By, and 1_[1A lie in the same plane. After all, the geometry of real vectors is
determined as figure 1 with [1/'| = cos 2. The obvious symmetry is {2, 95, x}and {—64, —95, x }, which

[sl? = = cos?2y, (D8)

g = cos2x , (D9)

arises from the ambiguity in adjusting the sign of sin #2 and sin 6’]; .

In this way, without any assumption, the geometry is determined; hence it is unique. In the special case
where Sgy = Soi = S;p = S;iand Sy = S5; = Sjp = Sy;, there seem to exist two possible choices for sin? 2.
However, as this contradicts the uniqueness of the geometry, some condition is not satisfied for either choice.
For example, the correlation of the Tsirelson bound, where C4 = C}J,B = 0and Cy, = (—1)¥ / V2, wealso have
Soo = So1 = S1o = S;1 = 1/2,but H < 0 for this choice.
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