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Abstract

A distributed sensing protocol uses a network of local sensing nodes to estimate a global feature of the
network, such as a weighted average of locally detectable parameters. In the noiseless case,
continuous-variable (CV) multipartite entanglement shared by the nodes can improve the precision
of parameter estimation relative to the precision attainable by a network without shared entanglement;
for an entangled protocol, the root mean square estimation error scales like 1/M with the number M
of sensing nodes, the so-called Heisenberg scaling, while for protocols without entanglement, the
error scales like 1/ JM . However, in the presence of loss and other noise sources, although
multipartite entanglement still has some advantages for sensing displacements and phases, the scaling
of the precision with M is less favorable. In this paper, we show that using CV error correction codes
can enhance the robustness of sensing protocols against imperfections and reinstate Heisenberg
scaling up to moderate values of M. Furthermore, while previous distributed sensing protocols could
measure only a single quadrature, we construct a protocol in which both quadratures can be sensed
simultaneously. Our work demonstrates the value of CV error correction codes in realistic sensing
scenarios.

Quantum sensing [ 1-11] uses nonclassical resources to enhance measurement precision. It has many
applications, including atomic clocks [12, 13], the laser interferometer gravitational-wave observatory [ 14, 15],
quantum illumination [16-22], quantum reading [23] and bio-sensing [24]. When the sensing task involves
multiple parties, entanglement can be extremely beneficial. Early works have already shown that when
measuring a single physical parameter with M sensor probes, entanglement among the sensors can reduce the
root mean square (rms) estimation error to the Heisenberg scaling [4—6, 25-28] of oc1 /M. In contrast, in the
absence of entanglement, the rms estimation error always obeys the standard quantum limit (SQL) scaling of
ocl/+/M, as dictated by the law of large numbers.

More recently, this separation between Heisenberg and SQL scaling has been generalized to the scenario of
distributed sensing, where an array of sensors aims to sense a global feature, such as a weighted average, of some
local parameters detected by different sensor nodes [29—33]. In particular, [31] proposed a protocol to use
continuous variable (CV) multi-partite entanglement to enhance the distributed sensing of displacements and
phases, which led to the first experimental demonstration [34] of sensing advantage enabled by multi-partite
entanglement.

Despite being more robust against loss than their discrete variable (DV) cousins, the performance
enhancement in CV distributed sensing protocols still decays in the presence of loss and noise [35]. As a
consequence, [34] only achieved a ~20% advantage in the rms estimation error. Therefore, loss mitigation is
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Figure 1. Schematic of a distributed quantum sensing protocol for measuring displacements on a single quadrature. SV: squeezed-
vacuum state with mean photon number N and squeezed noise in its real quadrature. £,: pure-loss channel with transmissivity
0 < 7 < 1. U(«): field-quadrature displacement by real-valued . homo: homodyne measurement of the real quadrature.

crucial for achieving a practical advantage in distributed sensing. To this end, [36] proposed to use nonlinear
amplifiers [37] to non-deterministically reduce loss in the state distribution process. In this paper, we propose to
use the recently developed CV error correction codes [38] to mitigate loss and noise in a deterministic manner.

There has been various proposals to improve the sensing precision with error correction codes in DV
systems [39—45]. Most of these works consider a Hamiltonian parameter estimation scenario, where frequent
error correction steps are applied to suppress the noise without at the same time suppressing the signal. When
the ‘Hamiltonian not in the Lindblad span’ (HNLS) criterion is satisfied, the Heisenberg scaling in precision can
be reinstated [43]. For applications like radio-frequency (RF) sensing or bio-sensing, however, the sensing
process on each spatially distributed sensing node is modeled as a quantum channel. In such a distributed-
channel parameter estimation scenario, the distribution loss is a major source of imperfection; we propose to use
CV error correction to mitigate this loss. Using the recently developed CV error correction codes based on the
Gottesman—Kitaev—Preskill (GKP) code [46], we show that the measurement precision can be substantially
improved when the loss is not too high. Inspired by the idea of measuring commuting operators associated with
the grid state [47], we also extend the distributed sensing protocol to simultaneously achieve the Heisenberg
scaling on both quadratures. We do so without using any ancilla in the source, unlike in the usual super-dense
sensing scheme [48].

Our paper is organized as follows. In section 1, we introduce the distributed sensing protocol for real
quadrature displacements. In section 2 we introduce the CV error correction codes, including the GKP-two-
mode-squeezing code in section 2.1 and the GKP-stabilizer code in section 2.2. Finally, in section 3, we evaluate
the performance improvement achieved using error correction in distributed sensing schemes, including loss
mitigation in the sensing of single-quadrature displacements in section 3.1 and the extension to the sensing of
complex-valued displacement (i.e. displacements on both quadratures) in section 3.2.

1. Distributed sensing of real quadrature displacements

For CV sensors, the signal is acquired by measuring the displacement changes in the sensor state—e.g. position
and/or momentum change for a mechanical oscillator. The precise measurement of displacements is important
for interferometric phase sensing [35], quantum key distribution [49], spin sensing [50], and inertia sensing [51].
Moreover, like the example in RF sensing [52], transducers can transform a even broader class of signals into
optical displacements for further sensing purposes. Mathematically, displacements are described by the unitary
U(a) = exp (dTa — da*), or equivalently the mode transform @ — 4 + . Here 4 is the annihilation operator
of the field being sensed. Equivalently, a displacement U (c) can also be represented by a quadrature transform
@, p) — (4§ + V2 Re(a), p + /2 Im(a)), where § = (a7 + 4) /2, p = i(a" — @) /~/2 arethe position
and momentum quadratures. For simplicity, we will use the notation ¢ = (Re(«), Im(cv)). In this convention,
the quadrature variance is p> + 4> = 27 + 1, where /i = a%d is the number operator. Thus the vacuum noise
() = 0)is (p*) = (§*) = 1/2.

As shown in figure 1, the original distributed sensing protocol [31] aims to obtain a minimum rms error
estimate of a weighted average, & = S-™_ w,, ,,, of real quadrature displacements {v,,,, 1 < m < M}, where the
weights, {w,,,, 1 < m < M}, are non-negative and sum to one’ . To do that, in general one inputs M modes,

dm 1 < m < M, one for each sensor node, and performs measurements on the output modes d,ﬁ, 1<m< M.
To model the imperfections from the distributed sensors, we introduce an independent loss channel £,, with

7 . . . .
Note that negative weights can be merged into the sign of each cv,,,.
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transmissivity 7,,, on each sensor node, leading to the mode transform d,; = SN am + 1 — 1,8y, wherethe
environment mode é,, is in a vacuum state. To enable performance comparison, we characterize the overall
resource for the sensing task by the total mean photon number Ngused in modes {d,,, 1 < m < M}. Thisis
because for sensing applications like bio-sensing one wants to minimize the light power shining on the fragile
samples to avoid any damage.

In an entanglement-enhanced distributed sensing protocol, the modes {d,,, | < m < M}areinaCV
multipartite entangled state, produced by passing a single-mode squeezed vacuum, with mean photon number
N, through a beamsplitter array. Homodyne measurements are applied to obtain the information about the
weighted average. To benchmark the performance, we compare the entangled scheme with the optimal
separable scheme, where each mode is in a squeezed vacuum state with mean photon number N,,,, and the total
mean photon number M | N, = N for fair comparison. In principle, one can introduce extra ancilla modes;
however, this is not necessary in the lossless case—one can show that each scheme is optimal in its own class,
given the total mean photon number constraint. In the lossy case, the optimal protocol is still an open question,
but[31, 36] were able to show that the scheme in figure 1 maximizes the Fisher information among Gaussian
states and achieves the best precision when homodyne measurement is applied. Recently [53] proved that this
scheme is also the optimal Gaussian protocol for distributed phase sensing.

In the following, we evaluate the performance of the entangled and separable sensing protocols in the
presence of loss. We set the beasmplitters such that l;l = ZZI:I Win Ty Gim /W isin asqueezed-vacuum state,

where W = , /Z%z lw,fl 7,,- Then, we have that & = Z%:l w,, Re(4,) is an unbiased estimator of & with the
minimum rms error [31]

6O[E w 77]

1/2
n:_ +l_7_7 >
2\ (INs + 1 + Ns)?

under the average photon-number constraint, where w = /> Z': 1an1 and7 = > nAf:I w2 Ny /W2

The optimal separable-state scheme, for the scenario under consideration here, employs a product state,
but its precision 604% does not have a closed solution in general. For the simple case ofn,,, = 0, w,,, = 1/M,
wehave [31]

@
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As shown in figure 5, in the lossless case, the separable scheme has its precision obeying the SQL, while the
entangled scheme achieves the Heisenberg scaling; even when there is loss, the entanglement enhancement
survives, due to the robustness of CV multipartite entanglement. However, the scaling advantage is entirely gone
even for small M. To mitigate the loss issue, we consider CV quantum error-correction.

2. CV error correction

Quantum error correction [54] codes are originally developed for protecting DV quantum information for
scalable quantum computing, sometimes even with the aid of CV systems [46, 55, 56]. However, various
quantum sensing applications require CV quantum information processing. To facilitate these applications, the
question to be addressed in this section is: can we protect CV quantum information against noise?

The general idea to correct a CV mode is to encode a single mode into multiple modes. Indeed, previous such
proposals can correct single-mode errors [57, 58]. However, a key difference of CV systems is that errors (e.g.
thermal noises and excitation loss) happen with unity probability on all modes. Thermal noise can be described
by an additive white Gaussian noise channel (AWGN) ® .2, which applies a Gaussian distributed complex-
valued random displacement @’ = 4 + (¢; + i€) / /2 on the input mode. Here €p» €5 are real Gaussian
distributed with standard deviation o. In fact, it suffices to consider AWGN channels for all Gaussian noise
models, due to channel reduction relations [59-63]. As an example, the excitation loss channel £, canbe
combined with an amplification channel A in front, described by the mode transform 4’ = JGa — JG — 16t
joint on the vacuum environment mode é. Choosing the gain G = 1/7, we obtain the composite channel
LyoA =01y, "

8 Because A /oL, = ®y/y_1and L, 04/, = ®_,and 1 — 7 < 1/5 — 1, itisalways beneficial to apply amplification before the loss.
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Figure 2. Schematic of the GKP-two-mode-squeezing code (top) and the encoding part of the GKP-stabilizer code (bottom).

To correct the AWGN noise, the new idea in [38] is to use GKP grid states to encode CV information. This
builds on an observation emphasized in [47, 64]—that with GKP grid states we can simultaneously measure two
quadratures with high precision, as long as we’re promised that the displacement of both quadratures is small.
The GKP grid state has wave function

IGKP) o Z e*”Aztzfe*(q*"m’)z/mﬂzpdq - Z fefAzpz/Zef(pfwﬁt)z/2A2|p>dp' (4)

t=—00 t=—00

When A < 1, its Wigner function is peaked around a square grid of spacing /27 in the phase space. The overall
variance (%) ~ (p?) =~ 1/2/A? equals the mean photon number Ng; however, if we consider only the phase
space region close to a single peak, the variances in position and momentum are A*/2 ~ 1/4Ng < 1, only twice
the squeezed-vacuum variance.

Below we will recall two codes introduced in [38], the GKP-two-mode-squeezing code and the GKP-
stabilizer code. To understand the error correction mechanism, consider two input modes to an encoding
circuit. Mode 1 will be used to detect the signal, and mode 2 is an ancilla which has been prepared in a GKP state.
The encoding circuit applies a Gaussian unitary operator Us to this pair of modes, where S is a symplectic

tranformation; its inverse U; can be used to decode the state. Between encoding and decoding, the two modes
are subjected to additive noise—the noise operation is a displacement U (€) = Uy(e;) @ Uy (e,). Thus, after
decoding, the noise is transformed to a modified displacement 0; U(e)Us = U(e'), where e’ = S~ e [65]. By
choosing a proper entangling transform Us, one induces a correlation of the effective displacements ¢ and ¢’ of
the two modes. Then by measuring the displacement ¢ of the GKP ancilla, one can infer a displacement U (¢,)
which corrects the additive error €] on the signal mode. In this scheme, while all operations are Gaussian, the
input ancilla is a non-Gaussian GKP grid states, so the effectiveness of error correction is compatible with the
no-go theorem for Gaussian error correction in [66].

2.1. GKP-two-mode-squeezing code
Asillustrated in figure 2, the GKP-two-mode-squeezing code uses a two-mode squeezing operation T, (Gr) to
entangle the input state with an ancilla initialized in the GKP grid state. After both modes go through the noise

channel @, another conjugate two-mode squeezing operation YA]TZ (Gr) is performed. Finally, both quadratures of
the ancilla are measured modulo /27 to diagnose the displacement error on the input state. After conjugation of
the displacement error by the two-mode squeezing operator, we obtain the the effective displacements
ﬁg(GT)[Ul(fl) ® Up(e)]T2(Gr) =Ui({/Grey + JGr — 1) @ Uh({/Gre, + /Gr — 161); wessee that
when Gris large, the effective displacements are highly correlated. Thus measuring the displacement noise of the
ancilla provides a good estimate of the displacement error on the signal, and therefore enables approximate
correction of the error through a counter-displacement. Although the uncertainty principle forbids the
simultaneous precise measurement of displacements on both quadratures, an ancilla in the GKP grid state allows
the precise measurement of both quadrature displacements modulo /27 . Reference [38] has given a detailed
analysis on the amount of noise reduction in this scheme. We plot the rms logical noises 0,, o, given by

equation (24) in [38] on each quadrature with the physical noise o in figure 3. The code helps when o < 0.558,
which corresponds toloss7 > 0.689.
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Figure 3. Performance of the GKP-two-mode-squeezing code and the GKP-stabilizer code. (a) Position-quadrature logical noise o,
versus the physical noise 0. (b) Momentum-quadrature logical noise o, versus the physical noise o. The colors from red to blue
indicates the level of squeezing from A = 1.05,1.15, -+, 1.95,2.05 in the GKP-stabilizer codes.

2.2. GKP-stabilizer codes
Reference [38] has also proposed a more general GKP-stabilizer code. In the GKP stabilizer code, a hierarchical
structure of squeezing and GKP encoding is used, as shown in figure 2. We begin by analyzing the lowest
level (n = 2).

The encoding is achieved by a sequence of Gaussian operations—a two-mode SUM gate and single-mode
squeezing operations. Recall that a SUM gate SUM, _., acts on a pair of modes according to

S[leﬂZZ @1’ f’p Qr [32) - (QP ﬁl - [32’ qu + %’ 132)’ (©)
and that a squeezing operation acts on mode m according to
SNz @ D) = N> G/ V- (6)

To protect mode 1, we make use of the GKP ancilla mode 2 via the encoding circuit

0P = §,(1)5:(3)SUM; _281(6). @)

Here the order of operations is read from right to left—that is, 5, (8) acts first, followed by the sum gate and then
$1(7)S,(3). The overall 4 x 4 symplectic matrix applied to the four quadratures can be calculated to be

S5y 0 0 0
1 1
0 —0 -
Y Y
S0 = 8
=168 0 B 0 ®)
0 0 O 1
g
The decoding circuit is the encoder run in reverse and implements the unitary o,
Now suppose that after encoding, additive noise acts on the two modes leading to the displacement
€ = (e, €l, €4, €)' and then the decoder is applied. If there is no noise, the decoder perfectly restores the
input signal. But when there is noise the decoder distorts the noise, yielding noise in the output signal
1 1 1 !
€' =8 le= (—e?, ovef + 6Bef, ——ef + —el, Beé’) : 9
v oy v g
Because mode 2 was initially encoded as an ideal GKP grid state, it is possible to simultaneously measure the
offset of both quadratures in mode 2, assuming the (distorted) noise is sufficiently weak. Once we know the
offset in mode 2, we can approximately diagonose the additive shift in the (unmeasured) mode 1. Specifically,
after measuring
1 1
Agy=—el+ geh Ap =l (10)
Y
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we apply a corrective displacement €, = (Aq, /8, —§Ap,)T, obtaining the partially corrected noise in mode 1:

! T
= (—eg, 675{') . (11)
o6

Suppose for examplethatd = 1,3 =~"" = A > l,andthat el ¢/, ¢4, €} ~ ¢ areall comparable; then the
noise in both quadratures of mode 1 is suppressed by a factor \™* relative to an unprotected mode. In practice
the noise suppression is limited because, for a given noise strength there is a limit to how much we can squeeze
the noise and still read out both quadratures of the GKP grid state unambiguously. Furthermore, if the GKP grid
states themselves are only finitely squeezed, further squeezing during the protocol may compromise their error-
correcting power.

We can go further in a protocol that makes use of multiple GKP-encoded modes. To see how that works, we
consider the case where the noise acting on the two modes is asymmetric, sothat € ~ €} ~ 6, < 6 ~ €] ~ €/,
and we adjust the protocol so that the output noise on mode 1 after decoding and recovery is balanced between g
and p; hence

byer = %Ez = Kk =620y, where kK=¢6 /6 <1. (12)

There is a further constraint—we do not want the shift error in mode 2 after decoding to be too large, which
would compromise our ability to measure both quadratures accurately. To ensure that the distorted error is
comparable in both quadratures in mode 2, we impose

1 1

—6 = P = Preg=> k=— = § = K. (13)
g B

To summarize, if the noise in mode 2 is weaker than the noise in mode 1 by the factor £ < 1, and if we want the

error-corrected noise in mode 1 to be balanced between the g and p quadratures, we use the encoder with

'y:l, ﬁ:i, b=r <1, (14)
A K
where A > 1; then the error corrected noise in mode 1 is €,/ A in both quadratures.

Because the scheme works for asymmetric noise, it can be used iteratively. For example, with three modes,
where mode 1 is the sensing mode and modes 2 and 3 are GKP-encoded ancillas, we can use mode 3 to reduce
the additive noise in mode 2 by a factor of 1/ A, and then use mode 2 to reduce the noise in mode 1 by a further
factor of 1/ ), achieving all together a reduction by 1/\? in the noise in the sensing mode. If there are n — 1
GKP-encoded ancillas, then as indicated in figure 2 the encoding circuit acting on modes 1 and 2 would be

0" = s?(%)SZ(AH)SIEMMS](%), (1)

which implements the symplectic transformation

X-m o0 0 0
0o Xt 0 =X
Ao x|
0 0 0 N

Sy = (16)

Guided by this intuition, let us formally optimize the decoding operations. Suppose on the (n — 1)-th level the

logical noises Z,,_; and Z,, ,,_; have been reduced to o,,,_; and 0,,,,_+; then the initial covariance matrix of the additive
noise on the ancilla Zq(f),z, ZI(,?,Z and the (n — 1)-thlevel logical noiseis Vy ,_; = Diagonal[c?, o2, oé,n, b afm, -

After the encoding and decoding the effective noise covariance matrix Vgp , = Syt Vo, 1S 5("”' The decoding
operation measures the ancilla of the (n — 1)-th level and performs a displacement on the nth level ancilla

Zgn = Zgon = CqR 3z (Zgn-1), (17)
Zpn = Zih = CoR 3z (Zpu—1)- (18)

Here R(z) = z—n"(2)sand n*(z) = argmin, _,|z — ns|,1i.e. function Ry(z) takes the generalized modulo
zmod s. The choice of the coefficients minimizes the variance in the ideal case,

C - Vep,n(1, 3) Cco— Vep,n(2, 4)
qa— > ~p .
Vep,n(3, 3) Vip,n (4, 4)

(19)

Due to the imperfect measurement of quadratures that a GKP grid state offers, after the error correction the
probability density function (PDF) of the logical noise P, (-), x = p, qis not Gaussian. It can be obtained
through the following recursion relation
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Figure 4. Distributed quantum sensor for measuring field-quadrature displacement with error correction in the distribution step.
Multiple anculla modes can be utilized, however, only a single ancilla mode is shown for simplicity.

P20 = [ [d&P0EPs, ()81 — & — CR ()]

X,

0T
= S d6PplE — CREFEIPL, (), 20)

wheren, = n £ 1/2.Note that P ZX(OZ(') and theinitial noise P7_, (-) both obey zero-mean Gaussian distributions
with variance 0%, The variances of the logical noises can be obtained by integrations over the PDFs obtained from
the recursion.
Suppose all measurements are perfect (without the /27 ambiguity), then the ideal evolution of noise obeys
ol ~ Ué,nfl ol o~ \2-2ng2 (21)
PN+ )\’2”0’202’,1,1) Copn .

In the small noise limit, we have o , ~ 07, , ~ X~ ?"0%, which indeed agrees with the intuitive understanding.

To summarize, if there is one input signal model we wish to protect in a sensing experiment, we may introduce
n — 1ancilla GKP grid states and then iterate the protocol n — 1 times, thereby reducing the noise strength to
0,1 =~ o/ X" inthe error-corrected signal state. To precisely evaluate the error correction performance under
moderate noise, we perform numerical integration of equation (20) repeatedly and obtain the standard deviation
O4m Op.n- Theresults, for the case n = 7, arein figure 3, where different levels of the squeeze parameter A are
chosen, indicated by the color; we did not perform the computations for larger values of # due to limitations on
numerical precision. When the initial noise o is large, the modulo /27 property of the measurement leads to
excess noise and thus hinders the error correction performance. At certain critical noise level, the code ceases to
reduce the noise, as indicated by the termination of the plots on the right-hand-side in figure 3.

3.Improved distributed sensing

Now we apply the CV error correction codes in the distributed sensing protocol introduced in section 1. We will
evaluate the standard deviations in parameter estimation given the loss and error correction. Although the GKP
based error correction codes lead to non-Gaussian random errors in the parameter estimation, the standard
deviation of noise is still a good characterization of the measurement precision. This is because in a parameter
estimation scenario, one can average multiple independent repetitions of the same measurement, even when
each measurement is already multi-mode. When the number of repetitions is large, the central limit theorem
guarantees that the averaged measurement error is Gaussian distributed and thus can be characterized entirely
by its standard deviation.

3.1. Error corrected real quadrature sensing

We apply the GKP-two-mode-squeezing code and the GKP-stabilizer code in a real-quadrature distributed
sensing protocol. As shown in figure 4, to perform distributed sensing on different nodes, one first locally
generates signal modes {d,,, 1 < m < M} inthe same CV multipartite entangled state as in section 1. After the
beamsplitter array, each mode d,, in the multipartite entangled state is immediately encoded (with additional
ancilla) to protect against independent loss errors; to facilitate error correction, amplifiers A, /,, transform the
loss channels £, to AWGN channels that can be corrected with the standard GKP decoder. Before the sensing
process, decoding is applied to the received signal modes and ancillae, and then the error-corrected signal
inputs, {ﬁr;}, are injected to sense displacements. Note that, while a total of M ancilla modes are used in the

7
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Figure 5. Performance of error correction codes for distributed real quadrature displacement sensing. Ng = M ns, ng = 1. écvis the
measurement standard deviation and M is the number of sensing nodes. While the lossless case is plotted for comparison, we considered
various losses 7) (corresponding tonoise o = /1 — 7 in figure 3) for the protocols: (a) = 0.99 (log;q0 = —1), (b)n = 0.95
(log,,0 >~ —0.65),(c)n = 0.9 (log,,0 = —0.5),and (d)n = 0.85 (log,, o >~ —0.41). QEC1: GKP-two-mode-squeezing code. QEC2:
GKP-stabilizer code with n = 7. Note that in (c) and (d) the performance of QEC 1 is worse than non-corrected case, due to the extra
amplification required to reduce loss to additive thermal noise.

entanglement distribution process, the sensing process occurs after the GKP-assisted decoding, and only a single
error-corrected signal mode interacts with the sample at each sensing node.

As a demonstration, we consider the case of equal weights and equal displacements; similar advantages are
expected for more generic cases. Suppose the error correction code reduces the original noise /1 — 7 to ogc(7);
asin equation (2), one can then obtain the precision

) 1/2
SeEC 1(M( 1 + 2(715(:(7))) ) (22)

T A MUN R T+ YN )2 M

Note that, due to the amplification, compared with equation (2) the error is larger by a factor /7, and also the
second term inside the square root is a factor of two larger in addition to the change from 1 — 7to o5 (7). Using
the results in section 2, we can evaluate the performance of both error correction codes. As shown in figure 5, we
see that the GKP-two-mode-squeezing code (orange) only has a small advantage over the scheme without error
correction (blue) in the low loss region (17 < 0.95). The GKP-stabilizer code with n = 7 (red) gives a much better
performance improvement. In the low loss region , the Heisenberg scaling of of precision can be reinstated up to
M ~ 10> modes. Moreover, when 1 = 0.85 there is still appreciable advantage over the scheme without error
correction (blue).

A few comments are worthy of mention here. First, the above performance is valid for arbitrary
displacement values, but we can do better the if displacement at each sensing node is guaranteed to be smaller
than /27 . A GKP-decoding error could result in a displacement of 4’ by an unknown integer multiple of /27,
but this error has no damaging effect if we decode the result of the homodyne measurement of each mode by
evaluating it modulo J27. Second, in a fair comparison between sensing schemes, we usually fix the mean
photon number of the source that interacts with the samples. In the above comparison, we have not quite done
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Figure 6. Distributed quantum sensor for measuring complex-valued displacements.

that, because in the case without error correction the mean photon number at the sensing nodes has been
attenuated by the loss factor 7, while in the case with error correction we have compensated for the loss channel
L, with the amplification channel A, /n» Which transforms the loss channel into an AWGN channel. However, as
one can see in figure 5, we have plotted the separable scheme in the lossless case (gray dashed) for comparison—
it has the same input mean photon number ~Ns/M, while its performance is limited by the SQL. Also, the
dominant noise in the entangled scheme without error correction (blue) comes from loss, and further increasing
the initial mean photon number Ngbarely changes the performance. Finally, we address the necessity of the GKP
grid states. For single-quadrature measurement, one might think that a CV repetition code [57] will also be able
to suppress the noise due to an effective squeezing. However, in that case while the noise in one quadrature
decreases, the noise in the other quadrature increases, leading to an overall increase in the mean photon number.
Only a code with non-Gaussian resources such as GKP grid states can suppress noise in both quadratures.

3.2. Distributed sensing for complex-valued displacements

The original distributed sensing protocol [31] only estimates displacements on a single quadrature. Because a
GKP grid state enables the precise measurement of both quadratures [47, 64] when the displacements are small,
we hope to utilize GKP grid states to extend the distributed sensing protocol to estimate complex-valued
displacements. Let us start with the simple lossless and equal-weight case, later we will address the extensions to
the unequal-weight and lossy cases. Compared with the original protocol in figure 1, the new protocol
(schematic in figure 6) has mode byina GKP grid state instead of a squeezed vacuum state; the output modes
from passing the mode by through the same beamsplitter array go through displacements U («v), with complex
«. Finally one utilizes simultaneous measurement of quadratures with a modulo /27 constraint.

Below we design estimators for both the real and imaginary parts of o and analyze their performance. A
d,i\rject attempt to create estimators of nga) and Im(«) is simply to take the averages of the measurement results,
{ zj,; = Ry (@;), 1 <m < M}and {13;7 = R (ﬁ’;), 1 < m < M}.However, because we have distributed a
single GKP grid state to multiple nodes, there will be large vacuum fluctuations on each node, causing modulo
J27 errors even when « is arbitrarily small. To avoid those errors, we consider the estimators

— 1 > 1 "

—— 1 N1 (1 At
I =R | — =R | — .
V2 Im(c) RT(MZ’”E") RT(MZ’WPM) (23)

The expectation values of the above estimators are (/2 m> = R 37 (~/2Re(a)) and (v/2 fm\(aS) =
M
R 37 (V2Im(w)). Although the estimators give the displacement values with a modulo degeneracy, when a good

pril\(/)fr knowledge of « is available, the modulo will not introduce additional noise. In the following, we make this
heuristic rigorous.

Because of the symmetry in the GKP grid state and the estimators in equation (23), the performance of the
two estimators are identical and we only need to analyze the real quadrature. For the equal-weight scenario, by
choosing balanced beamsplitters, we have /2 lie\(a/) =Rz (Q1/~M + V2Re()), where Q; = 2 Re(l;l) is

M

the position quadrature of the GKP grid state. The distribution of Q./~M concentrates on points {k~/27 /
JM, k € 7}, and around each point there is variance AZ/ZM. Thus the effect of the modulo errors on the
performance of /2 f{%f) depends on the choice of M and the amplitude of Re(«).
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A special case is when Re(a) = 0and M isa square of an integer, i.e. M = J2, ] € Z.In this case, the PDF of
the estimator /2 ﬁ_e(\ozj is peaked around zero with variance A?/2M.1In general, if M is not a square of an integer,
then after the modulo the PDF can concentrate on various peaks across the range of [ — /27 /~/M, /27 /~/M ]
and cause extra noise. To avoid the extra noises, since M is chosen by design in a sensor network, we can indeed
ensure M to be a square of an integer.

However, we still need to address the noise introduced by /2 Re(cr) being nonzero. We argue that when a good
prior of /2 Re(c) is available, the estimator can increase the precision as if +/2 Re(«v) is zero. A good prior is often
possible when the parameter estimation process has multiple steps. Upon obtaining the prior estimation gpyior in
the first step, one can apply a displacement U (— Dprior /~/2) ateach node before the next measurement. Here prior

is the prior estimator’s result, which we assume to obey a Gaussian distribution N/ [V2 Re(a), o , with mean

2
jor]
prior
V2 Re(a) and variance af,rior. The second measurement result gxp will obey N[+/2 Re(ar) — Dpriors A?/2Mup
to the mod /27 /M constraint. Because of the additional displacement, without loss of generality we can assume

Re(a) = 0. To combine the prior with the new measurement result, we construct the new estimator
g( = (1 - C) qprior + C(qGKP + qprior) = CqGKP + qprior’ (24)

where ( will be chosen to minimize the combined variance.
Now let’s evaluate the performance of this estimator. First, it is easy to see that the estimator is unbiased, i.e.
(&) = 0.Denote ¢y = V2w /M, k. =k + 1/2,and (f(qprior, X)) as the average over the prior and

measurement outcome in the range of [k_ay, kiay], i.e.
kyem
<f(qprior’ x)>k = qupriorpf\f[o)f’;nm](qprior)ﬁ . dx PN[iqprior’Az/ZM] (x)f(qprior’ x). (25)
—M

The overall variance can be obtained through (6€0)* = Y22 ([{(x — kay) + qprior]2>k = of,rior + v

+ 2(V,, where the outcome variance Vi = >3 ((x — kay)? ) and the cross correlation V=
e — kay) Qorior Y- It is easy to see that the minimum variance, achieved at (* = —V; /V;, equals

(6E2)? = Oprior — V3 Vi (26)

We can see that the variance decrease V3/V is large when the variance of the outcome is small and the cross
correlation is large. With the overall precision in hand, to characterize the precision of the second measurement
6qnGKP, we calculate the Fisher information increase 1/ ((SqUC'KP 2 = 1/(6&€ 2)2 -1/ aérior, thus the effective
measurement rms precision

561,7 = Uprior (27)

To evaluate the precision, we will consider afmor = kprior /4M g with various kpyior. As shown in figure 7, we do

see a Heisenberg-scaling precision, regardless of the different values of kpior. Especially, when kyyior ~ 1, weseea
good agreement with the performance without the modulo /27 complication, 5qnGKP ~ 1/(2M Jng).

Finally we address the loss issue and possible generalizations. When there is loss, one can utilize the CV error
correction schemes to mitigate the loss, similar to the scheme analyzed in section 3.1.

Due to the constraints from the modulo operations, we are restricted to the equal-weight scenario in the
previous analysis. The generalization to the unequal-weight scenario is possible, at the cost of introducing excess
noises. Suppose we keep the beamsplitters balanced and the post-processing in the estimator the same as in
figure 6; we can still tune the weights {w,,, 1 < m < M} by concatenating each displacement unitary with a
suitable loss or amplification channel. Consider the rescaled weights, {k,, = Mw,,,1 < m < M}, with the
normalization ZHALI k,, = M.Whenk,, > 1, one canapplyaloss £, 2 and a gain Akfz such that the combined
channel

Akiof](am)oﬁl/kn{ = @moﬁ(kmam), (28)

where the notation U () is now a unitary displacement channel. When k,, < 1, one can apply a gain A, sk first
and thenloss £ k2> such that the combined channel

LizoU(am)oAisiz = @ [z oU (kmay). (29)
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Figure 7. The performance of the GKP distributed sensing for complex-valued displacements for various prior information. Without
loss of generality, only the precision in the real quadrature displacement is plotted. ng = 4.

With the above equivalence relation, afterwards an equal-weight addition of the measurement results will give
the correct weighted average of displacements, up to some overall noise with variance >M_ k2 — 1|/M.

4. Discussion

In principle, CV error correction codes such as GKP-stabilizer codes may be used to enhance the reliability of any
protocol that makes use of CV quantum information. In this paper, we focus on the enhancement of distributed
sensing tasks that can be achieved with CV error correction, providing a detailed evaluation of the effectiveness of
GKP-stabilizer codes used for this purpose. When used for distributed sensing of CV displacements, the GKP-
stabilizer code with six iterations (level 1 = 7 code) reinstates Heisenberg-scaling of precision up to about 10>
nodes for transmissivity n > 0.95, while the Heisenberg scaling is destroyed entirely when no error correction is
used. Since the GKP grid state enables simultaneous precise measurements of small displacements on both
quadratures, we also use it to extend the distributed sensing protocol from single-quadrature displacements to
displacements of both quadratures. When good prior information is available, simultaneous Heisenberg scaling of
rms estimation errors on both quadratures can be achieved for the equal-weight case.

Three future directions are worth pointing out. First, there is room for improvement on the conversion froma
pure loss channel to an AWGN channel in section 2. During the amplification, part of the information about the
input state is stored in the environment mode, and it might improve performance if the environment mode is used
in the decoding process as well. It will also be worthwhile to investigate whether using CV error correction in
quantum repeaters will improve their performance against loss. Finally, our methods can be applied to sensing
other parameters, such as a weighted average of phases, where we expect similar enhancements of performance.
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