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Abstract
Wedemonstrate that a two-dimensional finite and periodic array of Ising spins coupled via RKKY-like
exchange can exhibit tunablemagnetic states ranging across three distinctmagnetic regimes: (1) a
conventional ferromagnetic regime, (2) a glass-like regime, and (3) a newmulti-well regime. These
magnetic regimes can be tuned by one gate-like parameter, namely the ratio between the lattice
constant and the oscillating interactionwavelength.We characterize the variousmagnetic regimes,
quantifying the distribution of low energy states, aging relaxation dynamics, and scaling behavior. The
glassy andmulti-well behavior results from the competing character of the oscillating long-range
exchange interactions with respect to the lattice. Themulti-well structure featuresmultiple attractors,
eachwith a sizable basin of attraction. Thismay open the possible application of such atomic arrays as
associativememories.

1. Introduction

Due to the growing demand for energy-efficient information and computing technologies [1] as well as, artificial
neural networks, there has been vast interest in the development of hardware designed for efficient pattern
recognition tasks [2–6]. The strategy toward this end has been to create physical analogs ofmachine learning
concepts inmaterials [7].Manipulating the spin degree of freedom in solid-statematter is a promising route for
brain-inspired computing [8, 9], due to the combination of (i) high-qualitymaterials available towhich
individual and coupledmoments can bemanipulated down to the atomic scale, (ii) rich landscape of non-linear,
dynamic, and stochastic spin-based phenomena, (iii) the variety of read/write options available. Recently,many
schemes have been proposedwhich utilize the spin degree of freedom in hardware, to performmachine learning
tasks [10–13]. Of particular interest is theHopfield network: a recurrent neural network that implements an
associativememory [14]. The neurons are binary variables that evolve under a stochastic (Glauber) dynamics
[14]. A givenmemory pattern is stored as a local energyminimum, or so-called attractor, in a tailored energy
landscape comprised ofmany localminima.When the system is initialized in a distorted version of one of its
storedmemories, the network state evolves to the nearest attractor and thus restores thememory as a formof
pattern recognition. Thememory is called associative, because a singlememory can containmany components
and one component can restore the entirememory. AHopfield network is formally equivalent to an array of
coupled Ising spins, where themagnetization of each spin represents a pixel and the couplings are optimized to
store a given set ofmemories [14].

A key challenge toward amaterial realization of theHopfield network is creatingmany low-energy complex
and tailored ordered states, to identicallymatch a desired pattern. Conventionalmagnetically ordered states
such as ferromagnets exemplify the concept of broken symmetry [15]with bistability of the ground state.
However, this bistability is not ideal for attractormemory, because atmost one pattern (and its inverse) can be
stored. At the opposite extreme is the spin glass [16–18], as suggested by Edwards andAnderson in 1975 [19, 20],
that is characterized by an energy landscapewith infinitelymany local energyminima separated by energy
barriers ofmultiple heights so that there is a broad distribution of transition times between differentminima.
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However, spin glasses cannot be used for associativememory either, because the basins of attraction are too
small. Therefore, an intermediate potential landscape, situated between a robust double-well landscape and a
too complex glassy landscape is necessary to realize theHopfield network in realmagneticmaterials.

Here, we propose that an ordered andfinite 2D array of Ising spins interacting via awell-defined long-range
RKKY interaction [21] can be used to create energy landscapes with a tunable level of complexity. By changing
the ratioα=λ/a between theRKKYwavelength (λ) and the lattice constant (a), the energy landscape of the spin
array can be tuned between three differentmagnetic regimes, ranging from a regimewith double-well potential
(DW), through amulti-well potential (MW) regime, to a spin glass-like regime, similar towhat has been
previously studied in [22, 23].We refer to this regime as a spin-Q glass (SQG) (figure 1) [24]. To characterize each
regime, we compute the distribution of the spatial Fourier components (Q-space) of the low energy states
allowing us to subsequently classify each regime and construct a regime diagram. Subsequently, we characterize
each regime by computing the scaling of the number of localminimawith system size; we use awaiting time
analysis to characterize the aging dynamics [25]; andwe estimate the size of the basins of attraction in each of the
regimes.

2.Methods and results

2.1.Modeling themagnetic interactions in the Ising spin array
Weconsider simulations of n×n 2D square spin arrays (  n4 40, unless specified otherwise n=25)with
interatomic distance a, as shown infigure 1(a).We consider an exchangeHamiltonian of the form:
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where si represent an Ising spinwith the position i. The exchange parameter Jij is derived froman isotropic
RKKY-like exchange [26]:
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Figure 1. (a)The spatial distribution of the RKKY exchange interaction (J) for the central atom in the Ising spin array (n=25) for
differentα for the labeledmagnetic regime: spin-Q glass (SQG), multi-well (MW), double well (DW). The color bar represents the
amplitude and sign of the interaction. (b) Schematic of the energy landscape for the three-labeled regimes, illustrating qualitatively the
distribution and depth of states for each regimewhere gray illustrates the effective temperature. (c) Illustration of the distinguishing
features in theQ-space histogram identifying each regime, wherewhite to red intensity corresponds to a low to high number of states.
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where rij is the distance between positions i and j, andλ is the period of the RKKY interaction as illustrated for the
center atom infigure 1(a). Aswe show, the competition between the lattice constant and the resultant exchange
interactions leads to three distinguishable regimes, characterized by different distribution and density of low-
energy ground states (figure 1(b)).

2.2.Q-space and energy histograms as regime identifiers
Weanalyze the energy landscapes for differentα and n in the followingway.We use iterative improvement,
which is a zero-temperature single spin flip dynamics, tofindmetastable states that are fixed points of the spin
dynamics.We initialize a state randomly, run the dynamics and repeat this procedure 5000 times.We
characterize the empirical distribution of low energy states thus obtained by computing theQ-space histogram,
orQ-histogram for short. TheQ-histogram is the sumof the absolute values of the Fourier coefficients of the
metastable states, weighted by the empirical probability offinding the state. Aswe illustrate in a schematic in
figure 1(c), wewill subsequently show that there are distinctly differentQ-histograms, whichwe can identify
with themagnetic regimes illustrated infigure 1.

We vary the ratioα from1 to 50with a step size of 0.5, and analyze the resultant properties of the array. In
figure 2(a), theQ-histogram for differentα for a 25×25 lattice is shown. Forα=2.5, 7.5–12, 46 the array is in
the SQG,MW, andDWregime, respectively. The valueα= 4marks the transition points between SQG and the
MWregime, which is distinguished by the emergence of a larger number of states centered aroundQ=0. The
transition between theMWandDWregime ismore continuous and happens aroundα∼40, inwhich only a
strong globalmaximumcentered aroundQ=0 remains and allmeta stable states disappear (figure 2(b)).
Furthermore, we distinguish twoMWregimes, a and b. The difference betweenMW-a and the SQG regime is
that in the former the ground state is an ordered state whereas in the latter it is a disordered state. The difference

Figure 2. (a)Q-histogram for various values ofα. The histograms are theweighted average over the absolute values from the Fourier
transformof themetastable states. The hue indicates the relative amplitude of eachQ-vector in the histogram,where purple to yellow
is an amplitude ranging from zero to the strongest amplitude found for that particular value ofα. (b)Histograms of the distribution of
energy states for eachα shown in (a), where the x-axis scales from the ground state (E0) to themaximal state. The total number of bins
in each histogram corresponds to 50. The distribution is normalized by the total area of the distribution. The density of states ( ( )ra E ),
as defined in the text for the indicated values of energy.
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betweenMW-a andMW-b is that inMW-a, the ground state probability is vanishingly small; while inMW-b,
the probability is significant (figure 2(b)). Aswe show later, theMW-b regime is the regimemost suitable for
attractormemory.

Forα= 2.5, theQ-histogram is characterized by four peaks, at non-zeroQ values, each along either the
negative/positiveQx orQy axis. The corresponding picture in real space, as illustrated in infigure 3, is that there
aremany low lyingmetastable states with no clear long-range ordered pattern, similar to previously observed
self-induced glasses [22, 23]. Therefore, we identify this regime as the SQG regime. Asα is increased, the
diameter of the ring in theQ-histogram shrinks and the center starts to gain intensity with the stateQ=0, being
the globalmaximum. This results in a preferable ferromagnetic ground state, but co-exists with a distribution of
low-energymeta-stable states with non-trivialQ values. Therefore, we identify this as theMWregime. This leads
to a distribution of states, as shown in real space, which cannot be characterized by simple ferromagnetic or
antiferromagnetic order, as shown infigure 3. Asα is increased, the distribution of states aroundQ=0
narrows, leading to fewermetastable states and the growing dominance of the ferromagnetic ground state. This
coincides with the increasingwavelength to the RKKY, relative to the total lattice size, leading to the dominance
of one sign of the RKKY exchange (figure 1(a)). Forα>40.00we transition from theMWregime into theDW
regime, also leading to a clear ferromagnetic pattern in real space (figure 3).

Infigure 2(b), histograms of the state energies are shown for various values ofα corresponding to the
different regimes. The histogram consists offifty equally spaced intervals between the ground state energyE0 and
the highest energy indicated in the bottom right corner of each graph. The total area of the histogram is
normalized to one. The energy histograms are in agreement withwhat one expects for the energy landscapes for
the different regimes, as illustrated infigure 1(b). The SQG shows aGaussian like distribution (α=2.50),
indicating the presence ofmanymeta-stable states over a narrow range of energies. In direct contrast, forα=
46.00, there is strong intensity near the ground state indicative of a strong double-well potential. In theMW
regime, there are two distinctly different distributions depending on the value ofα. Forα= 7.50 (MW-a
regime), there aremany low energy states, similar to the SQG regime, even though the ground state resides at
Q=0 (figure 2(a)). Asα increases, the gap in energy between the ground state and the other low energy states
grows. This leads to a second type of behavior in theMWregime, exemplified byα= 12 (MW-b regime). There
are fewer low energy states in comparison to theMW-a regime, and the ferromagnetic ground state ismore
dominant in comparison. TheMW-b (α=27) lattice resembles the stable retrieval phase A [27] for the
Hopfieldmodel where stable attractors (see later) are the lowest energy states, while theMW-b (α=12)
resembles retrieval phase B [27], where stable and unstable attractors have similar energies. Aswewill show, the
MW-b regime has the right balance of a large number of low energy states and large basins of attraction for
potential application to aHopfield network.We also note that similar energy landscapes can be observedwhen
changing the shape of the boundaries.

Figure 3.Examples of the real space site dependentmagnetization for a lattice size of 25×25, for variousmetastable states for each of
the labeled regimes (red/blue correspond to an average spin value of−/+ 1). Each of the patterns corresponds to a low-energy state,
taken from the histogram infigure 2(b), for the labeled regime and value ofα. The states increase in energy from left to right.
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2.3. Scaling and entropy based behavior—constructing the regime diagram
Utilizing the aforementioned distinctions between regimes, we construct a regime diagramdelineating the
differentmagnetic regimes (figure 4(a)). The horizontal axis representsα, from2.5 to 50with a step size of 0.5.
The vertical axis represents the number of spins along one axis of the square lattice, from n=4 to n=40 spins.
For each grid-point (n,α) statistics have been obtained by 5000 iterative improvement runs. From these
statistics, we calculated the entropy S over the states, å= -S p pln

i i i where pi is the probability offinding a
unique state i. The entropy is ameasure of the roughness of the energy landscape, as landscapes withmany
minima have higher entropy compared to landscapes with fewerminima. The entropy for each grid cell is
indicated by the intensity defined in the scale bar.We observe a strong enhancement of the entropy as the value
ofα is smoothly decreased. The increased entropy is due to the increasing number ofmetastable states seen in
theQ-histograms, discussed infigure 2(a).We note that the entropy is significantly underestimated in the SQG
andMW-a regimes, because it is virtually impossible to sample sufficiently to get a correct estimate of the
entropy due to the large number of available states. The regime boundary between the SQG andMW is based on
Q-histograms, namely if theQ=0 state is the ground state as discussed earlier. Thismethod does notworkwell
for distinguishing theMWandDWregimes, since the ferromagnetic ground state is very strong along the
regime boundary.We found empirically that an entropy value below 0.95 is indicative ofDWbehavior and used
this to create the regime boundary.Nevertheless, the entropy behavior illustrates that the various regimeswe see
here cannot be ascribed to an effect of smallfinite sized systems, and that there are large regionswhere one can
findMW-b regimeswhich, as we described later, can be used as attractors.

While the value of entropy is a strong indicator of the different regimes, it is interesting also to investigate the
scaling behavior of the number of low lying states with system size in the different regimes. For instance, we
expect a strong difference in the scaling behavior between a glass like system and a ferromagnetic system. Since
the boundaries depend on both n andα, we compute the number ofmeta stable states along thewhite dashed
lines infigure 4(a). These lineswere chosen such that they followed regions of similar entropy/energy landscapes
and thus show the scaling behavior for lattices of difference with similar dynamics. The results in figure 3(b)
show exponential scaling in the SQG regime. Tomeasure the exponential scaling of the SQG regime, we used 106

initializations instead of 5000.However even for n=11 this is not sufficient, illustrating the exponential
growth. This behavior is not observed in the other regimes, where the number of states grows at amuch slower
pace or appears to be constant. These observations are in agreement with spin glass theory [17] and the linear
storage capacity of theHopfieldmodel [28].

2.4. Aging dynamics
In order to explore the relaxation dynamics of the various regimes, we perform aging calculations similar to [25].
We consider a randomly initialized array and let this array evolve over time usingMetropolis–Hastings
algorithm [29, 30]with a suitable, fixed, temperatureT. The aging dynamics are captured by calculating the
autocorrelation function between the state at t=tw and a later time t:

Figure 4. (a)A regime diagramwith the latticewidth n on the vertical axis andα on the horizontal axis. Thewhite dashed-dot lines
indicate the different regimes, as labeled and as defined by the correspondingQ-histograms. The color scale indicates the entropy as
defined in themain text. (b)The scaling behavior near the boundary between each regime, corresponding to thewhite dashed lines in
(a) and labeled by the letters A–D. Each plot corresponds to the number of available states as a function of the latticewidth n versus the
normalized number ofmetastable statesN/Nmax.N,Nmax are the number of stable states and the largest number of stable states per
graph, respectively, andwe divide the former by the latter in order to normalize each plot for comparison. These simulationswere
repeated three times, no large differences were found.
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whereN is the number of spins. Increasing tw increases the probability that the systemhas reached a favorable
low-energy state, resulting in larger autocorrelation. A constant value of ( )+C t t t,w w for large tw, indicates that
the array has relaxed into a frozen state. Since ( )+C t t t,w w at a given temperature depends on the smoothness
or ruggedness of the energy landscape, we can use it to analyze the different regimes.

Figure 5(a) shows ( )+C t t t,w w for each regime discussed infigure 2(a), forα= {2.50, 7.50, 27.00 and
46.00} and { }=t 2 , 2 , 2 , 2 , 2 , 2 , 2 .w

5 7 9 11 13 15 17 As expected, for theDWregime, there is only one relaxation
time-scale independent of tw (t=103), but the asymptotic correlations ( )+C t t t,w w depends on the value of
tw. These are the characteristics of a ferromagnetic system,where for large tw the system cannot escape fromone
of its bistable wells. The SQG regime shows the other extreme, where the asymptotic correlations are zero for all
tw butwithmultiple relaxation times. This confirms that the SQG regime exhibits aging properties of a spin glass,
as was previously considered seen for the prototypical spin glassMn–Cu [25]. TheMWregime shows the
intermediate case between the SQG and theDW; both the relaxation times and the asymptotic value depend on
tw.Most notably, ( )+C t t t,w w exhibits plateaus, not found in the SQG andDWregimes. The system initially
relaxes towards a relatively stablemeta stable state and at amuch larger time scale relaxes to the ground state.
This is especially true forα= 27.00, where two plateaus can be clearly distinguished due to the large difference
between the two relaxation times. This particularly observation clearly illustrates the intermediate behavior of
theMWregime, inwhichmultiple yet robust energyminima are present, as towhich the system can relax.
Moreover, in combinationwith theQ-histogram analysis and density of states analysis, this aging analysis is a
quantitativemeasure for distinguishing the various regimes.

2.5. Basins of attraction for eachmagnetic regime
Wehave demonstrated that we canmodify the energy landscape of the spin array, by changing the gate
parameterα, distinguishing three different regimes characterized by different distribution of energy states,Q-
states, as well as aging dynamics.With regards to applying these systems to create associativememories, it is
important to characterize the robustness of theminima in these different regimes. Infigure 6(a), we explore the
robustness of the low-energy states by studying the basin of attraction.We estimate the return probability of the
20 lowest energy states by randomly flipping a percentage of the spins of the given low-energy state and running
the zero temperature dynamics until convergence, andmeasuring the return probability to the original state.
This return probability is the average over 200 runs per state for an initial perturbation={0.05, 0.10, 0.15, 0.20,
0.25, 0.30}.We plot this return probabilityR for each regime for different perturbation percentages, where the
colors correspondwith the energy of the studied state. The SQG regime has a zero percent return probability for
all states evenwhen the initial perturbation affects only 5%of the lattice, as expected for a glassy landscape. The
strongest state in theMW-a regime has a return probability of 40% for a 5% initial perturbation, which is not
robust enough to serve as associativememory. In contrast, theMW-b showsmany robustmemories.We define
stable attractors asmetastable states that for an initial perturbation of 10%have a return probability to that state
of 0.9 or higher. The results infigure 6(a) show that theMW-b regime has 32 stable states. In theDWregime,
only the ferromagnetic ground state has a large basin of attraction, while allmeta-stable states have veryweak
basins of attraction.

Infigure 6(b), we determined the number of stable states for lattices of size 10, 20 and 25.We variedα in the
rangewhere the lattice is in theMW-b regime. For eachα, we determine the stability of the states with 400 lowest
energy levels by repeating the above-mentioned procedure. Infigures 6(c) and (d), we illustrate examples of the

Figure 5.The autocorrelation function ( )+C t t t, ,w w as defined in the text, for differentα and labeled regimes, where tw is the
waiting time beforemeasuring the autocorrelation and tw is the time step during themeasurement as indicated by the colors/values
labeled above the graphs. Each line is the average over 100 runs. For eachα the temperaturewas set below the critical temperature
(determined using the Binder cumulant), but high enough to show aging behavior in 107 time steps.
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coinciding real spacemagnetization distribution of stable and unstable states, respectively, and compare the
states before and after the return procedure. Stable patterns appear to bemore regular and their periodicity is
similar to the periodicity of the RKKY interaction.When perturbing a stable pattern by 10% it robustly returns
to the original statemore than 90%of the time (figure 6(c)).When perturbing an unstable pattern by 10% it does
not return to the original state (figure 6(d)).

3. Conclusion

In conclusion, we have shown thatfinite size spin lattices with long-range competing RKKY interactions can
serve as a platform to create a rich variety ofmagnetic regimes, ranging from robust doublewell potentials,
toward glassy landscapes andmulti-well landscapes. The necessity of such states are recently discussed in the
context of biological complexity [31, 32]. In addition to the peculiarity that we see spin glass like behavior in
relatively small systems, themulti-well landscapes are at the edge of chaos, between the ferromagnetic DW
regime that is too simple and the spin glass regime that is too complex. The polynomial growth of the number of
localminimawith respect to the system size can be considered as a characteristic feature of themulti-well
regime, which has not been previously studied.Moreover, as we show, themulti-well regime can be utilized to
create stable attractors in spin-based hardware, serving as a platform for associativememory and recurrent
neural networks. Experimentally, atoms on surfaces which exhibit strong RKKY interactions serve as a viable
platform to test the theoretical proposals outlined in this study [33–38]. In the case that an individual spin
exhibits strong uniaxial out of plane anisotropy, at sufficiently low temperature, the system can be reduced to a
treatment of the lowest doublet, i.e. a classical Ising spin systemwith longitudinal exchange coupling as treated
here [39].We note that in experiments, the RKKY interaction deviates from the isotropicmodel [33, 35, 38];
howeverwe do not see indications that this changes the primary conclusions labeled here for the isotropic case.
Likewise, it would be interesting to probe the energy landscapes for systems beyond this limit, namely to probe
spins in an easy plane configuration [40], or in the limit where chiralmagnetic interactions are
significant [33, 37].

AAK acknowledges funding fromNWO, and theVIDI project: ‘Manipulating the interplay between
superconductivity and chiralmagnetism at the single-atom level’with project number 680-47-534. AAK also

Figure 6. (a). The return probabilityR for a lattice of size 25×25 of the 20 lowest energy states as a function of the initial perturbation,
where perturbation is defined as the percentage change of spin flips. Each line represents a single state, with low energy states having a
purple hue and higher energies shifting towards a red hue, as labeled by the color bar on the right. The return probability per state was
calculated over 200 individual runs per perturbation percentage. (b)The number of stable states, as defined in the text, as a function of
α for different labeled array sizes. To check the consistency of the curves, the retrieval experiment was repeated three times for the
10×10 lattice, each time the original curve was obtained. (c)Examples of themagnetization distribution for various stable attractors
in theMW-b regime. The color indicates the average spin value fromminus one (red) to positive one (blue). (d)The evolution of
unstable attractors in theMW-b regime before the perturbation (left side) and themost probable return state after the return
procedure (right).
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