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Abstract

Quantum state merging is one of the most important protocols in quantum information theory. In
this task two parties aim to merge their parts of a pure tripartite state by making use of additional
singlets while preserving correlations with a third party. We study a variation of this scenario where
the shared state is not necessarily pure, and the merging parties have free access to local operations,
classical communication, and positive partial transpose (PPT) entangled states. We provide general
conditions for a state to admit perfect merging, and present a family of fully separable states which
cannot be perfectly merged if the merging parties have no access to additional singlets. We also show
that free PPT entangled states do not give any advantage for merging of pure states, and the conditional
entropy plays the same role as in standard quantum state merging quantifying the rate of additional
singlets needed to perfectly merge the state.

1. Introduction

Quantum state merging can be understood as a game involving three players, which we will call Alice, Bob and
Charlie in the following. Initially, they share a large number of copies of ajoint pure state |¢)) = [))AB, and the
aim of Bob and Charlie is to merge their parts of the state on Charlie’s side while preserving correlations with
Alice. For achieving this, Bob and Charlie have access to additional singlets and a classical communication
channel. Taking into account that singlets are considered as an expensive resource in quantum information
theory, the main question of quantum state merging can be formulated as follows: How many singlets are
required for perfect asymptotic merging per copy of the state |¢))? The answer to this question was found in [1, 2]:
the minimal number of singlets per copy is given by the conditional entropy S(p ) — S(p©).

Noting that the conditional entropy can be positive or negative, it is surprising that it admits an operational
interpretation in both cases. In particular, if the conditional entropy is positive, Bob and Charlie will require
S(p®) — S(p©) singlets per copy for perfectly merging the total state |¢/) in the asymptotic limit, and perfect
merging cannot be accomplished if less singlets are available. On the other hand, if S(0*) — S(p ©)is negative,
Bob and Charlie can asymptotically merge the state |1/) without any additional singlets by only using local
operations and classical communication (LOCC). Moreover, Bob and Charlie can gain additional singlets at rate
S(p G — S(p BC) and store them for future use [1, 2].

Another important concept in quantum information theory is the framework of entanglement distillation
[3-5]. One of the most surprising features in this context is the phenomenon of bound entanglement: there exist
entangled states from which no singlets can be distilled [6]. Moreover, it is known that all states with positive
partial transpose (PPT) are nondistillable [6], while it is still an open question if there exist bound entangled
states with nonpositive partial transpose (NPT) [7].

In this paper we introduce and study the task of PPT quantum state merging (PQSM). Similar to standard
quantum state merging, PQSM can be considered as a game between three players who share a joint mixed state
p = p”P€. The aim of the game for Bob and Charlie is to merge their parts of the state p on Charlie’s side while
preserving correlations with Alice. In contrast to standard quantum state merging, Bob and Charlie can use
unlimited amount of PPT entangled states, see figure 1 for illustration. The situation where Bob and Charlie do
not have access to PPT entangled states is known as LOCC quantum state merging (LQSM), and has been
introduced in [8].
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Figure 1. PPT quantum state merging (PQSM). Alice, Bob and Charlie initially share a joint state p = p*“. Bob and Charlie aim to
merge Bob’s part of p on Charlie’s side, while preserving correlations with Alice. For this, Bob and Charlie have access to arbitrary PPT

states fppr = ullff;:r, and can perform local operations on their parts and communicate the outcomes via a classical channel. The

register R in Charlie’s hands serves as storage: in the ideal case, the final state O'?CR is equivalent to p*5€ up to relabeling Band R.

Before we discuss the concept of PQSM and present our main results, we will introduce PPT assisted LOCC
operations in the following.

2.PPT assisted LOCC
For a tripartite state p*®“ shared between Alice, Bob and Charlie, a PPT assisted LOCC protocol performed by
Charlie and Bob will be denoted by Appr and has the following form:

Appr(pA€) = Trpel Arocclp™¢ @ pBC 11, 1)

Here, NEST isan arbitrary PPT state shared by Bob and Charlie, and A occ is an LOCC protocol between them,
see figure 1.

We also introduce PPT distillable entanglement Dppr as the singlet rate which can be asymptotically
obtained from a state via PPT assisted LOCC. This quantity is in full analogy to the standard distillable
entanglement [3] that quantifies the singlet rate which can be obtained via LOCC only. We will denote the latter
by Diocc.

If we further introduce the PPT and LOCC entanglement cost Cppr and Cy occ as the entanglement cost for
creating a state via the corresponding set of operations, we immediately obtain the following inequality:

Diocc(p) < Dppr(p) < Gopr(p) < Crocc(p)- @)

This relation follows by noting that PPT assisted LOCC is more general than LOCC only, and by the fact that the
PPT entanglement cost cannot be below the PPT distillable entanglement. Since for all pure states Dy occ and
Crocc are equal to the von Neumann entropy of the reduced state [4], all quantities in equation (2) coincide for
pure states. In the following, we will also use the logarithmic negativity [9, 10]

Eu(p) = log,l|p™l, 3)

where T, denotes partial transposition, and ||M|| = Tr v MM is the trace norm of M. The logarithmic
negativity is an upper bound on Dy occ [10].

We further note that PPT assisted LOCC is a subclass of general PPT preserving operations. It is however not
clear whether or not these two classes coincide.

3. PPT quantum state merging

We are now in position to introduce the aforementioned task of PQSM. In this task, Bob and Charlie aim to
merge their parts of the total state p = p**“ by using PPT assisted LOCC operations, see figure 1 for illustration.
A natural figure of merit for this process is the fidelity of PQSM:

Frr1(p) = sup F(oy, o) 4)
APPT

with fidelity F(p, o) = Tr(\/po/p )!/2 . In the above expression, the target state o; = /AR is the same as

p = p“B€up to relabeling of the systems Band R, where R is an additional register in Charlie’s hands. The final

state oy = O'?CR shared by Alice and Charlie is given by
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of = Trs[Appr[pA5¢ @ PRI, )

where p® is an arbitrary initial state of Charlie’s register R. The supremum in equation (4) is taken over all PPT
assisted LOCC operations Appt between Bob’s system Band Charlie’s system CR, see also figure 1 for details. A
state p admits perfect single-shot PQSM if and only if the corresponding fidelity is equal to one: Fppr(p) = 1, and
Frpr(p) < 1otherwise.

In the asymptotic scenario where a large number of copies of the state p is available, the figure of merit is the
asymptotic fidelity of PQSM:

Frpr(p) = Lim Fepr(p™"). (6)
This quantity can be regarded as a natural quantifier for asymptotic PQSM, since a state p admits perfect
asymptotic PQSM if and only if F5p(p) = 1.
4. Perfect asymptotic PQSM

In the following we will focus on those states p = p*5©

Frrr(p) = 1. 7

which admit perfect asymptotic PQSM:

In particular, perfect asymptotic PQSM is always possible if the state p has nonpositive conditional entropy:
S(p"°) — S(p°) < 0. ®)

This follows from the fact that in this situation Bob and Charlie can achieve perfect asymptotic merging for the
purification of pjust by using LOCC[1, 2, 8]. Moreover, equation (8) also implies that states satisfying
equation (7) have nonzero measure in the set of all states, since this is evidently true for states satisfying
equation (8).

At this point, we also note that perfect asymptotic PQSM is only possible if the state p satisfies the following
condition:

D (p) < DEBC(p), 9)

where X:Y denotes a bipartition between two (possibly multipartite) subsystems X and Y. To see this, consider
the overall state p**“ ® p®, where Ris a register in Charlie’s hands. If this state allows for perfect asymptotic
PQSM, there exists a PPT assisted LOCC protocol Appr between Bob and Charlie such that

App:

pAC @ pR == pAR @ 10) (0]". (10)

Consider now the PPT distillable entanglement in the bipartition AB:CR. By its very definition, PPT distillable
entanglement cannot grow under PPT assisted LOCC operations, and we obtain

Dy (pAR @ 10) (0[F) < Dgpr® (pAB€ @ ph). (11)

Noting that the states p*#©and p*“® differ only by relabeling Band R completes the proof of equation (9).

For states which satisfy equation (9) but violate equation (8) no conclusive statement can be made in general.
One important subclass of such states are fully separable states, and it is easy to provide examples for such states
which violate equation (8), but still can be merged via LOCC even on the single-copy level. In the following we
will show that the investigation of such states can be simplified significantly. This will also lead us to a new class
of fully separable states which cannot be merged via asymptotic PQSM.

5. Single-shot versus asymptotic PQSM

In the following, we consider the situation where the total state p = p**“is PPT with respect to the bipartition
AB:C. The set of these states includes the aforementioned set of fully separable states. The following theorem
shows that for all such states the single-copy fidelity is never smaller than for any number of copies.

Theorem 1. Given a tripartite state p = p“BC which is PPT with respect to AB:C, the following inequality holds for
anyn = 1

Ferr(p) = Fppr(p®"). (12)

This also implies that in this case the single-shot fidelity cannot be smaller than the asymptotic fidelity: Fppr(p)>
Fopr(p). Werefer to the appendix for the proof.Crucially, this result also means that perfect single-shot PQSM is
fully equivalent to perfect asymptotic PQSM for all such states:
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Freer(p) = 1 & Frpr(p) = 1. (13)

The importance of this result lies in the fact that it remarkably simplifies the analysis, if one is interested in the
question whether a state p admits perfect asymptotic PQSM or not. For all such states we only need to study the
single-copy situation: if perfect PQSM is not possible in the single-copy case, it is also not possible
asymptotically.

As an application of theorem 1, we will now present a general family of fully separable states which does not
admit perfect asymptotic PQSM. These states are given by

iﬁc ZPJ’ YA ® of (14)
i=0

where all probabilities p; are nonzero, and the two-qubit states o> are all separable and chosen such that their

generalized Bloch vectors are all linearly independent. For the proof that such states exist and that they indeed do

not allow for perfect asymptotic PQSM we refer to the appendix.

6. States with vanishing asymptotic fidelity

Taking into account the results discussed so far, it is natural to ask whether the asymptotic fidelity F ppr can
attain only one of two values, namely 0 or 1. We can neither prove nor disprove this at the moment.
Nevertheless, we will provide strong evidence for this in the following, showing that a significant amount of
quantum states has vanishing asymptotic fidelity:

Fopr(p) = 0. (15)

This happens for all states which are distillable between A and BC, and at the same time have PPT in the
bipartition AB:C. These two conditions are summarized in the following inequality:

D{EE(p) > ELPC(p) = (16)

The proof of this statement can be found in the Appendix.
At this point it is also interesting to note that the asymptotic fidelity F ppy is not a continuous function of the
state. This discontinuity is present even for pure states, and can be demonstrated on the following example:

p = 1) (Y1 @ 10) (0. (17)

Note that this state admits perfect PQSM whenever [¢)) is a product state, i.e. |[¢)) = |a)? ® |3)5. In this case,
perfect merging can be accomplished without any communication if Charlie prepares his register R in the state
|3)R. Note however that the asymptotic fidelity F 35 vanishes for any entangled state |t), as follows directly
from the above discussion.
As is further shown in the appendix, the set of states having vanishing asymptotic fidelity has nonzero

measure in the set of all states. Combining these results with our previous findings, namely that states satisfying

Fppr(p) = 1alsohave nonzero measure in the set of all states, this means that both of these sets have finite size.
We hope that this result can serve as a starting point to prove that F ppr can take as values only O or 1.

7. Absence of bound entanglement

The results presented in this work can also be applied to the scenario where Bob and Charlie do not have access
to PPT entangled states. This task is known as LQSM, and has been presented in [8]. The figure of merit in this
case will be denoted by F1occ.

Note that the quantities F; occ and Fppr obey the following relation:

Ferr(p) = Frocc(p) = 2:T@- 1750, (18)

Here, I'*B¢is the mutual information between A and BC, and Z is the concentrated information introduced

in [8]. The concentrated information quantifies the maximal amount of mutual information between Alice and
Charlie obtainable via LOCC operations performed by Charlie and Bob, and can be considered as a figure of
merit for LQSM on its own right. The first inequality in (18) follows from the fact that PPT assisted LOCC
operations are more general than LOCC operations alone. The second inequality in (18) crucially relies on
results from [11-13], and the proof can be found in [8].

The second inequality in (18) further implies that F; occ and Fppr are nonzero for any finite-dimensional
state p. This follows directly by noting that the concentrated information Z is non-negative, and that the mutual
information 1% s finite. The first inequality in (18) implies that all states with vanishing asymptotic PQSM
fidelity also have zero asymptotic LQSM fidelity: Fpr(p) = 0implies FTycc(p) = 0. This means that all states
pwhich fulfill equation (16) also have vanishing asymptotic LQSM fidelity: F{cc(p) = 0.
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This result can be slightly generalized by using the same arguments as in the proof of equation (15). In
particular, all states p which are distillable between A and BC but nondistillable with respect to AB:C have
vanishing asymptotic fidelity for LQSM, i.e.

D{E¥(p) > Di&(p) = 0 (19)

implies FTHcc(p) = 0. For proving this, we can use the same proof as for equation (15), by noting that the final
state shared by Alice and Charlie will never be distillable if the initial state p satisfies equation (19), and if Bob and
Charlie use LOCC operations only.

At this point we also note that equation (19) does not guarantee vanishing PQSM fidelity. In particular, if
there exist NPT bound entangled states—and it is strongly believed that this is indeed the case [7]—Bob and
Charlie could use PPT entangled states to perfectly merge a state of the form

p =16 (7148 @ pl, (20)

where the particles B, and B, are in Bob’s hands, |¢*) = (|00) + |11))/A/2 is a maximally entangled two-qubit
state, and pypris an NPT bound entangled state with the property that Dy occ(ponpr ® pppr) > 1for some PPT
entangled state pppt. Note that states pypr and pppr with the aforementioned properties exist if there are NPT
bound entangled states [14]. Bob and Charlie can then use the state pippy to distill the state pypr ® pppr> and by
applying Schumacher compression [15] to achieve Fppr(p) = 1.

We also note that all states p which fulfill the condition (8) admit perfect asymptotic LQSM [8], which also
implies that states with Facc(p) = 1 have nonzero measure in the set of all states. Moreover, a state p admits
perfect asymptotic LQSM only if it satisfies the following condition:

D{EE(p) < DiSS(p). 1)

Similar to the condition (9) for perfect asymptotic PQSM, equation (21) follows from the fact that distillable
entanglement cannot increase under LOCC operations.

8. Comparison to standard quantum state merging

In the setting discussed so far we assumed that Bob and Charlie have free access to PPT entangled states together
with LOCC. To compare our results to standard quantum state merging [1, 2], we will now also allow Bob and
Charlie to share singlets. The main question of this section can be formulated as follows: can shared PPT states
reduce the singlet rate required for merging? As we will see in the following, the answer to this question is negative:
also in the presence of PPT states the minimal singlet rate needed to achieve perfect merging of a tripartite pure
state [4))A5C corresponds to the conditional entropy S(p ) — S(p©).

If Bob and Charlie have access to additional entangled states | D;)5'’ with initial distillable entanglement D;,
perfect PQSM of the state [1)) = |))ABC can be seen as the following asymptotic transformation:

Yall A P’ Yall
[Y)APC @ [DHP'C @ [0)R =5 [)AR @ |Dy)P'C @ [0)E. (22)

Here, R is a register in Charlie’s possession, and the state |Dy)®' ¢ has final distillable entanglement Dy This
condition means that by using additional singlets at rate D;, Bob and Charlie can perfectly merge the state |¢) in
the asymptotic limit via PPT assisted LOCC, and will at the same time gain singlets at rate Dy The entanglement
cost of the process is then given by D; — D

We will now show that the conditional entropy of the reduced state p *“ is equal to the minimal
entanglement cost of the above process. For this, we note that perfect merging is always possible at cost
D; — D= S(p BCY — S(p©), since there exists an LOCC protocol accomplishing this task at this cost [1, 2]. In
the following, we will see that PPT assisted LOCC cannot lead to lower cost, i.e.

D; — Dy > S(p"°) — S(p°) (23)

is true for any PPT assisted LOCC protocol achieving perfect merging as in equation (22). For proving this, we
will introduce the initial state | ¥;) and the final state [¥). They correspond to the total state on the left-hand side
and the right-hand side of equation (22), respectively. Using the fact that for pure states the PPT distillable
entanglement Dppy is equal to the von Neumann entropy of the reduced state (see also equation (2) and
discussion there), it is straightforward to verify the following equality:

D; — Dy = S(p"%) = S(p°) + Drpr (%)) — Drpr(1%)), (24)

where the PPT distillable entanglement Dppr is considered with respect to the bipartition ABB":CC'R. The
desired inequality (23) follows by noting that Dppr cannot increase under PPT assisted LOCC, and
thus Dppr(|¥;)) > Dppr(|¥)).
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9. Conclusions

In this paper we introduced and studied the task of PQSM, where two parties—Bob and Charlie—aim to merge
their shares of a tripartite mixed state by using PPT entanglement and classical communication, while preserving
correlations with Alice.

We considered the fidelity of this process, both in the single-copy and the asymptotic scenario, and showed
that fully separable states can be perfectly merged asymptotically if and only if they can be perfectly merged on
the single-copy level. We used this result to present a family of fully separable states which do not admit perfect
asymptotic PQSM. We also identified very general conditions for a state to have vanishing fidelity of PQSM in
the asymptotic limit. We showed that these conditions apply to a significant amount of quantum states having
nonzero measure in the set of all states, thus proving that a large number of quantum states cannot be merged
asymptotically with any nonzero precision. With respect to standard quantum state merging, our results imply
that using additional PPT states does not change the entanglement cost of the process: the minimal singlet rate
needed for perfectly merging a pure state in the asymptotic limit corresponds to the conditional entropy also in
this extended setup.

We further note that the protocol considered here cannot be extended to the scenario where Bob and Charlie
have access to arbitrary bound entangled states. In particular, if there exist NPT bound entangled states, the
results presented in [14] immediately imply that Bob and Charlie also have access to an unlimited amount of
singlets, and thus all states can be perfectly merged. On the other hand, if NPT bound entangled states do not
exist, the scenario described here already represents the most general situation.

We expect that the tools presented here will find applications for other quantum communication protocols
such as quantum state redistribution [16], also taking into account possible local constraints [17, 18]. However,
these questions are beyond the scope of this work.
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Appendix A. Proof of theorem 1

In the following we will prove that any state p = p*#¢

the inequality

which is PPT with respect to the bipartition AB:C satisfies

Forr(p) = Forr(p®") (AD)

for any number of copies n > 1. We will prove this inequality for n = 2, and for larger n the proof follows
similar lines of reasoning.
For n = 2 we will denote the total initial state by

p&p=phtha @ phha, (A2)

AAGGR

and the final state oy = 0% R is then given by

0y = Trgpicl Alph PG @ phBC @ bl @ phike]), (A3)

where MEST isa PPT state, A isan LOCC operation between Bob’s total system B, B, B and Charlie’s total system
C,C,CR Ry, and pR® is an arbitrary initial state of Charlie’s register.

We will now prove equation (A1) by contradiction, assuming that it is violated for some state p which is PPT
with respect to AB: C. In this case there must exist a PPT state pppr and an LOCC protocol A such that

F(of, oM @ 029R) > Fppr(p), (A4)

where the final state oywas given in equation (A3). The target state ohGR @ oMmCGR s the sameas p

up to relabeling the parties B; and Ry, and B, and R,.

We will now show that Bob and Charlie can ‘simulate’ such a two-copy protocol with just one copy of the
state p, thus achieving a single-copy fidelity strictly above Fppr, which will be the desired contradiction. The
basic idea of the proof is illustrated in figure 2. We assume that Alice, Bob and Charlie start with only one copy of
thestate p = p™P, and that the state is PPT between AB and C. Since Bob and Charlie can prepare arbitrary PPT

ABG @) pABC
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Alice Bob Charlie

@ LOCC Q

Figure 2. Proof of equation (A1) for n = 2. A violation of equation (A1) could be used to build a protocol acting on one copy of the
state p, and reaching a higher single-copy fidelity than Fppr(p).

states, they can additionally prepare the state p B¢ whichis equivalent to p*#< up to the fact that A’ and B’ are
both in Bob’s possession, see figure 2.

In the next step, Bob and Charly prepare a PPT state pippr and run the same LOCC protocol A which was leading
to equation (A4). By following this strategy, they will end up with a final state U?A/CC’RR/ having the property that

F(o R, g1 @ oY > Fopr(p). (A5)

Recalling that fidelity does not decrease under discarding subsystems, it follows that
F(o %, ol > Forrlp), (A6)

which is the desired contradiction.
The proof for arbitrary n > 2 follows by applying the same arguments. Moreover, using the same ideas it is
possible to show that the fidelity of LQSM F satisfies the inequality

Flp) = F(p®") (A7)
foranyn > 2and any state p which is separable between AB and C.

Appendix B. Fully separable states not admitting perfect asymptotic PQSM

ABC
sep

LOCC even in the asymptotic scenario. The desired family of states is given by

Here we will present a family of fully separable tripartite states p."* that cannot be merged via PPT assisted

14
pan’ = Do pli) (it @ ot (B1)
i=0
Here, all states o> are separable two-qubit states and the particle A has dimension 15 (the reason for this will
become clear below). The probabilities p; are strictly positive forall 0 < i < 14.

Note that any general d-dimensional Hilbert space has an associated Bloch vector space of dimension d* — 1
[19]. In the case considered here, the particles B and C are qubits. Thus, the Bloch vector space associated with
the Hilbert space of BC has dimension 15. Moreover, note that there exist 15 separable two-qubit states o2 with
the property that all their Bloch vectors are linearly independent. This follows from the fact that the set of
separable states has finite size within the set of all states [20].

As we will see in the following, the state in equation (B1) cannot be merged via PPT assisted LOCC whenever
the generalized Bloch vectors of the states a? Care linearly independent forall 0 < i < 14. Due to theorem 1 of
the main text it is enough to focus on the single-shot scenario, since a fully separable state admits perfect
asymptotic PQSM if and only if it admits perfect PQSM in the single-shot scenario.

Using the above result, we will now prove the desired statement by contradiction. Assume that the state p5¢

sep
with the above properties can be merged with some single-shot PPT assisted LOCC protocol Appr between Bob

and Charlie. It then immediately follows that this protocol must merge each of the states o*¢ individually.

7
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Moreover, by convexity, this protocol also merges each convex combination of the form
14
BC
T8¢ =" g,07. (B2)
i=0

Recall that the set of states of the form (B2) has finite size within all two-qubit states. By convexity, this implies
that the protocol Appr can be used for single-shot merging of any state shared by Bob and Charlie. In particular,
this means that Appr can merge both states |00)5¢ and |+0)5¢. The existence of such a protocol would thus
imply that the states |0) and |+) = (|0) + |1))/A/2 can be perfectly teleported with the aid of PPT states on the
single-copy level. This is however impossible [21], which is the desired contradiction. This completes the proof
that the aforementioned family of states does not admit perfect asymptotic PQSM.

Appendix C. States with vanishing asymptotic fidelity

Here we will show that all states satisfying the inequality
Digée(p) > EfC(p) = 0 Cn
have zero fidelity in the asymptotic limit:
Frer(p) = 0. (C2)

For this we note that for all such states the final state oy = O’?CR is PPT with respect to the bipartition A:CR, and

thus is nondistillable with respect to this bipartition'. This means that for any number of copies # the fidelity of
PQSM is bounded above as follows:

Feer(p®") = sup F(o;", o5) < sup F(o;™", 7), (C3)

Appr 7€D

where the final state o shared by Alice and Charlie is given as oy = Trg[Appr[p®” ® pR1], and the supremum in
the last expression is taken over all states 7 which are not distillable between Alice and Charlie.
In the next step, we introduce the geometric distillability

D,(v) =1 — supF(v, 7), (C4)

7€D

and note that the target state o, = AR in equation (C3) s distillable between Alice’s system A and Charlie’s
system CR. For proving equation (C2) it is thus enough to show that for any distillable state v the geometric
distillability approaches one in the asymptotic limit:

lim Dy (v®") = 1. (C5)

n—oo

Surprisingly, this is indeed the case for any distillable state v, and the proof will be given in the following.

Appendix D. Asymptotic geometric distillability

In the following we consider the geometric distillability defined as
De(p) =1 — sup F(p, 0), (D1)

oceD

where F(p, o) = Tr(/po/p )W/2 isthe fidelity, and the supremum is taken over the set of nondistillable states
D. We will also consider the closely related quantity

Dy(p) = inf T(p, 0), (D2)
oceD

where T (p, o) = ||p — ol|/2 is the trace distance with the trace norm ||M|| = Tr VMM The trace distance

and fidelity are related as
1 = F(p, 0) < T(p, 0) <1 = F(p, 0)°. (D3)

As we will show in the following, both quantities Dyand D, are discrete in the asymptotic limit:
asymptotically they attain only the values 0 (if p is nondistillable) and 1 (if p is distillable). For nondistillable
states p it is clear that D, and D, are both zero, and thus also zero asymptotically. We will now prove the following
equality for any distillable state p:

lim D,(p®") = lim D,(p®") = 1. (D4)

n—oo n—oo

1 . C . .
Note that here the final state U?CR is not equal to the initial state p** up to relabeling Band R.
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Note that due to equation (D3) it is enough to prove only one of the equalities. In the following, we will prove the
equality for D,.

In the first step, we note that equation (D4) is true for the maximally entangled state |¢t) = (]00) + |11))/~/2.
This can be seen by noting that the fidelity between |¢* )2 and any nondistillable state ¢ € D is bounded above as
follows [22,23]:

1
2n/2'

F(l¢7) (617", 0) < (D5)

In the next step, note that for a distillable state p there exist a sequence of LOCC protocols A, acting on # copies
of the state p such that

lim T(Aa[p®"], |6) (¢7|1"F)) = 0, (D6)

n—o0

where E; is the distillable entanglement or p and | x | is the largest integer below x. Moreover, without loss of
generality, we assume that A,[p®"] and |¢")®1"Fel have the same dimension.
By applying the triangle inequality with some nondistillable state o we further obtain:

T(|¢") (¢TPE | o) < T (AL [p®M], |¢F) (pF|PlnEal)
+ T(Au[p®"1, o). (D7)

Minimizing both sides of this inequality over all nondistillable states o, it follows that:

D,(|¢+>®LnEdJ) < T(AL[p®M, |61 <¢+|®LnEdJ)

+ Dy (An[p®"). (D8)
In the final step, we take the limit n — 00 and use equation (D6), arriving at the following result:
lim D;(|¢")®") < lim D, (A,[p*"]). (DY)

Recalling the fact that equation (D4) is true for the maximally entangled state | "), this inequality implies
lim Dy (A, [p™]) > 1. (D10)

n—o0

The proof of equation (D4) for all distillable states is complete by noting that D, cannot increase under LOCC,
Le. Dy (p®") = Dy(Au[p®"]).

Appendix E. States with vanishing asymptotic fidelity have nonzero measure

We will now show that the set of states with vanishing asymptotic fidelity has nonzero measure in the set of all
states. For this we will present a family of three-qubit states p = p*#“ which are separable between ABand C, do
not touch the boundary of separable states, and are distillable between A and BC. This assures that small
perturbations of this state do not change its basic properties, i.e. the perturbed states are also separable between
ABand C, distillable between A and BC, and thus have vanishing asymptotic fidelity F5p1(p) = 0.

The following three-qubit state has the aforementioned properties:

p == plét) (6H @ 10) (0] + p% (ED)

with |¢") = (]00) + |11))/~/2. The parameter p can be chosen from therange 0 < p < p,. ,and p,_ >0is
chosen such that the state pis distillable between Aand BCforall p < p,_ .

In order to see that the state obtained in this way is not on the boundary of separable states (with respect to
the bipartition AB:C), we consider a small perturbation of the form

pl=co+ (1 —¢ep (E2)

with an arbitrary three-qubit state 0. The proof is complete by noting that for any o there exists some maximal
parameter £, (0) > 0such that p’ is separable forall 0 < € < epay (o). This follows directly from the
existence of a separable ball around the maximally mixed state [20].
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