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Abstract
Quantum statemerging is one of themost important protocols in quantum information theory. In
this task two parties aim tomerge their parts of a pure tripartite state bymaking use of additional
singlets while preserving correlations with a third party.We study a variation of this scenariowhere
the shared state is not necessarily pure, and themerging parties have free access to local operations,
classical communication, and positive partial transpose (PPT) entangled states.We provide general
conditions for a state to admit perfectmerging, and present a family of fully separable states which
cannot be perfectlymerged if themerging parties have no access to additional singlets.We also show
that free PPT entangled states do not give any advantage formerging of pure states, and the conditional
entropy plays the same role as in standard quantum statemerging quantifying the rate of additional
singlets needed to perfectlymerge the state.

1. Introduction

Quantum statemerging can be understood as a game involving three players, whichwewill call Alice, Bob and
Charlie in the following. Initially, they share a large number of copies of a joint pure state ∣ ∣y yñ = ñABC , and the
aimof Bob andCharlie is tomerge their parts of the state onCharlie’s sidewhile preserving correlationswith
Alice. For achieving this, Bob andCharlie have access to additional singlets and a classical communication
channel. Taking into account that singlets are considered as an expensive resource in quantum information
theory, themain question of quantum statemerging can be formulated as follows:Howmany singlets are
required for perfect asymptoticmerging per copy of the state ∣yñ? The answer to this questionwas found in [1, 2]:
theminimal number of singlets per copy is given by the conditional entropy S(ρBC)−S(ρC).

Noting that the conditional entropy can be positive or negative, it is surprising that it admits an operational
interpretation in both cases. In particular, if the conditional entropy is positive, Bob andCharlie will require
S(ρBC)−S(ρC) singlets per copy for perfectlymerging the total state ∣yñ in the asymptotic limit, and perfect
merging cannot be accomplished if less singlets are available. On the other hand, if S(ρBC)−S(ρC) is negative,
Bob andCharlie can asymptoticallymerge the state ∣yñwithout any additional singlets by only using local
operations and classical communication (LOCC).Moreover, Bob andCharlie can gain additional singlets at rate
S(ρC)−S(ρBC), and store them for future use [1, 2].

Another important concept in quantum information theory is the framework of entanglement distillation
[3–5]. One of themost surprising features in this context is the phenomenon of bound entanglement: there exist
entangled states fromwhich no singlets can be distilled[6].Moreover, it is known that all states with positive
partial transpose (PPT) are nondistillable [6], while it is still an open question if there exist bound entangled
states with nonpositive partial transpose (NPT) [7].

In this paperwe introduce and study the task ofPPT quantum statemerging (PQSM). Similar to standard
quantum statemerging, PQSMcan be considered as a game between three players who share a jointmixed state
ρ=ρABC. The aimof the game for Bob andCharlie is tomerge their parts of the state ρ onCharlie’s sidewhile
preserving correlationswithAlice. In contrast to standard quantum statemerging, Bob andCharlie can use
unlimited amount of PPT entangled states, see figure 1 for illustration. The situationwhere Bob andCharlie do
not have access to PPT entangled states is known as LOCCquantum statemerging (LQSM), and has been
introduced in [8].
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Beforewe discuss the concept of PQSMandpresent ourmain results, wewill introduce PPT assisted LOCC
operations in the following.

2. PPT assisted LOCC

For a tripartite state ρABC shared betweenAlice, Bob andCharlie, a PPT assisted LOCCprotocol performed by
Charlie andBobwill be denoted byΛPPT and has the following form:

( ) [ [ ]] ( )˜ ˜
˜ ˜r r mL = L ÄTr . 1ABC

BC
ABC BC

PPT LOCC PPT

Here,
˜ ˜mBC

PPT is an arbitrary PPT state shared by Bob andCharlie, andΛLOCC is an LOCCprotocol between them,
see figure 1.

We also introduce PPTdistillable entanglementDPPT as the singlet rate which can be asymptotically
obtained from a state via PPT assisted LOCC. This quantity is in full analogy to the standard distillable
entanglement [3] that quantifies the singlet rate which can be obtained via LOCConly.Wewill denote the latter
byDLOCC.

If we further introduce the PPT and LOCC entanglement costCPPT andCLOCC as the entanglement cost for
creating a state via the corresponding set of operations, we immediately obtain the following inequality:

( ) ( ) ( ) ( ) ( )r r r r  D D C C . 2LOCC PPT PPT LOCC

This relation follows by noting that PPT assisted LOCC ismore general than LOCConly, and by the fact that the
PPT entanglement cost cannot be below the PPT distillable entanglement. Since for all pure statesDLOCC and
CLOCC are equal to the vonNeumann entropy of the reduced state[4], all quantities in equation (2) coincide for
pure states. In the following, wewill also use the logarithmic negativity [9, 10]

( ) ∣∣ ∣∣ ( )r r=E log , 3n
T

2
A

whereTA denotes partial transposition, and ∣∣ ∣∣ †=M M MTr is the trace normofM. The logarithmic
negativity is an upper bound onDLOCC [10].

We further note that PPT assisted LOCC is a subclass of general PPTpreserving operations. It is however not
clearwhether or not these two classes coincide.

3. PPTquantum statemerging

Weare now in position to introduce the aforementioned task of PQSM. In this task, Bob andCharlie aim to
merge their parts of the total state ρ=ρABC by using PPT assisted LOCCoperations, see figure 1 for illustration.
A naturalfigure ofmerit for this process is the fidelity of PQSM:

( ) ( ) ( )r s s=
L

 Fsup , 4f tPPT

PPT

withfidelity ( ) ( )r s rs r=F , Tr 1 2 . In the above expression, the target state s s=t t
ACR is the same as

ρ=ρABC up to relabeling of the systemsB andR, whereR is an additional register inCharlie’s hands. Thefinal
state s s=f f

ACR shared byAlice andCharlie is given by

Figure 1.PPTquantum statemerging (PQSM). Alice, Bob andCharlie initially share a joint state ρ=ρABC. Bob andCharlie aim to
merge Bob’s part of ρ onCharlie’s side, while preserving correlations with Alice. For this, Bob andCharlie have access to arbitrary PPT

states ˜ ˜m m= BC
PPT PPT, and can perform local operations on their parts and communicate the outcomes via a classical channel. The

registerR in Charlie’s hands serves as storage: in the ideal case, thefinal state s f
ACR is equivalent to ρABC up to relabelingB andR.
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[ [ ]] ( )s r r= L ÄTr , 5f B
ABC R

PPT

where ρR is an arbitrary initial state of Charlie’s registerR. The supremum in equation (4) is taken over all PPT
assisted LOCCoperationsΛPPT between Bob’s systemB andCharlie’s systemCR, see alsofigure 1 for details. A
state ρ admits perfect single-shot PQSM if and only if the corresponding fidelity is equal to one: ( )r = 1,PPT and

( )r < 1PPT otherwise.
In the asymptotic scenario where a large number of copies of the state ρ is available, thefigure ofmerit is the

asymptotic fidelity of PQSM:

( ) ( ) ( )r r=¥

¥

Ä lim . 6
n

n
PPT PPT

This quantity can be regarded as a natural quantifier for asymptotic PQSM, since a state ρ admits perfect
asymptotic PQSM if and only if ( )r =¥ 1PPT .

4. Perfect asymptotic PQSM

In the followingwewill focus on those states ρ=ρABCwhich admit perfect asymptotic PQSM:

( ) ( )r =¥ 1. 7PPT

In particular, perfect asymptotic PQSM is always possible if the state ρhas nonpositive conditional entropy:

( ) ( ) ( )r r- S S 0. 8BC C

This follows from the fact that in this situation Bob andCharlie can achieve perfect asymptoticmerging for the
purification of ρ just by using LOCC [1, 2, 8].Moreover, equation (8) also implies that states satisfying
equation (7) have nonzeromeasure in the set of all states, since this is evidently true for states satisfying
equation (8).

At this point, we also note that perfect asymptotic PQSM is only possible if the state ρ satisfies the following
condition:

( ) ( ) ( )r rD D , 9A BC AB C
PPT

:
PPT

:

whereX:Y denotes a bipartition between two (possiblymultipartite) subsystemsX andY. To see this, consider
the overall state ρABC⊗ρR, whereR is a register inCharlie’s hands. If this state allows for perfect asymptotic
PQSM, there exists a PPT assisted LOCCprotocolΛPPT between Bob andCharlie such that

⟶ ∣ ∣ ( )r r rÄ Ä ñá
L

0 0 . 10ABC R ACR BPPT

Consider now the PPTdistillable entanglement in the bipartitionAB:CR. By its very definition, PPTdistillable
entanglement cannot grow under PPT assisted LOCCoperations, andwe obtain

( ∣ ∣ ) ( ) ( )r r rÄ ñá ÄD D0 0 . 11AB CR ACR B AB CR ABC R
PPT

:
PPT

:

Noting that the states ρABC and ρACR differ only by relabelingB andR completes the proof of equation (9).
For states which satisfy equation (9) but violate equation (8)no conclusive statement can bemade in general.

One important subclass of such states are fully separable states, and it is easy to provide examples for such states
which violate equation (8), but still can bemerged via LOCC even on the single-copy level. In the followingwe
will show that the investigation of such states can be simplified significantly. This will also lead us to a new class
of fully separable states which cannot bemerged via asymptotic PQSM.

5. Single-shot versus asymptotic PQSM

In the following, we consider the situationwhere the total state ρ=ρABC is PPTwith respect to the bipartition
AB:C. The set of these states includes the aforementioned set of fully separable states. The following theorem
shows that for all such states the single-copy fidelity is never smaller than for any number of copies.

Theorem1.Given a tripartite state r r= ABC which is PPTwith respect toAB:C, the following inequality holds for
any n 1:

( ) ( ) ( )r rÄ  . 12n
PPT PPT

This also implies that in this case the single-shotfidelity cannot be smaller than the asymptoticfidelity: ( )r PPT

( )r¥ PPT .We refer to the appendix for the proof.Crucially, this result alsomeans that perfect single-shot PQSM is
fully equivalent to perfect asymptotic PQSM for all such states:
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( ) ( ) ( )r r=  =¥ 1 1. 13PPT PPT

The importance of this result lies in the fact that it remarkably simplifies the analysis, if one is interested in the
questionwhether a state ρ admits perfect asymptotic PQSMor not. For all such states we only need to study the
single-copy situation: if perfect PQSM is not possible in the single-copy case, it is also not possible
asymptotically.

As an application of theorem1,wewill nowpresent a general family of fully separable states which does not
admit perfect asymptotic PQSM.These states are given by

∣ ∣ ( )år s= ñá Ä
=

p i i , 14ABC

i
i

A
i
BC

sep
0

14

where all probabilities pi are nonzero, and the two-qubit states si
BC are all separable and chosen such that their

generalized Bloch vectors are all linearly independent. For the proof that such states exist and that they indeed do
not allow for perfect asymptotic PQSMwe refer to the appendix.

6. Stateswith vanishing asymptoticfidelity

Taking into account the results discussed so far, it is natural to askwhether the asymptotic fidelity ¥ PPT can
attain only one of two values, namely 0 or 1.We can neither prove nor disprove this at themoment.
Nevertheless, wewill provide strong evidence for this in the following, showing that a significant amount of
quantum states has vanishing asymptotic fidelity:

( ) ( )r =¥ 0. 15PPT

This happens for all states which are distillable betweenA andBC, and at the same time have PPT in the
bipartitionAB:C. These two conditions are summarized in the following inequality:

( ) ( ) ( )r r> =D E 0. 16A BC
n
AB C

LOCC
: :

The proof of this statement can be found in the Appendix.
At this point it is also interesting to note that the asymptotic fidelity ¥ PPT is not a continuous function of the

state. This discontinuity is present even for pure states, and can be demonstrated on the following example:

∣ ∣ ∣ ∣ ( )r y y= ñá Ä ñá0 0 . 17AB C

Note that this state admits perfect PQSMwhenever ∣yñ is a product state, i.e. ∣ ∣ ∣y a bñ = ñ Ä ñA B. In this case,
perfectmerging can be accomplishedwithout any communication if Charlie prepares his registerR in the state
∣bñR. Note however that the asymptotic fidelity ¥ PPT vanishes for any entangled state ∣yñ, as follows directly
from the above discussion.

As is further shown in the appendix, the set of states having vanishing asymptotic fidelity has nonzero
measure in the set of all states. Combining these results with our previous findings, namely that states satisfying

( )r =¥ 1PPT also have nonzeromeasure in the set of all states, thismeans that both of these sets havefinite size.
We hope that this result can serve as a starting point to prove that ¥ PPT can take as values only 0 or 1.

7. Absence of bound entanglement

The results presented in this work can also be applied to the scenariowhere Bob andCharlie do not have access
to PPT entangled states. This task is known as LQSM, and has been presented in [8]. Thefigure ofmerit in this
case will be denoted by LOCC.

Note that the quantities LOCC and PPT obey the following relation:

( ) ( ) ( )[ ( ) ( )]r r r r-    2 . 18I
PPT LOCC

A BC1
2

:

Here, I A:BC is themutual information betweenA andBC, and  is the concentrated information introduced
in[8]. The concentrated information quantifies themaximal amount ofmutual information betweenAlice and
Charlie obtainable via LOCCoperations performed byCharlie and Bob, and can be considered as afigure of
merit for LQSMon its own right. Thefirst inequality in(18) follows from the fact that PPT assisted LOCC
operations aremore general than LOCCoperations alone. The second inequality in (18) crucially relies on
results from [11–13], and the proof can be found in [8].

The second inequality in (18) further implies that LOCC and PPT are nonzero for anyfinite-dimensional
state ρ. This follows directly by noting that the concentrated information  is non-negative, and that themutual
information I A:BC isfinite. Thefirst inequality in (18) implies that all states with vanishing asymptotic PQSM
fidelity also have zero asymptotic LQSMfidelity: ( )r =¥ 0PPT implies ( )r =¥ 0LOCC . Thismeans that all states
ρwhich fulfill equation (16) also have vanishing asymptotic LQSM fidelity: ( )r =¥ 0LOCC .
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This result can be slightly generalized by using the same arguments as in the proof of equation (15). In
particular, all states ρwhich are distillable betweenA andBC but nondistillable with respect toAB:Chave
vanishing asymptotic fidelity for LQSM, i.e.

( ) ( ) ( )r r> =D D 0 19A BC AB C
LOCC

:
LOCC

:

implies ( )r =¥ 0LOCC . For proving this, we can use the same proof as for equation (15), by noting that the final
state shared byAlice andCharlie will never be distillable if the initial state ρ satisfies equation (19), and if Bob and
Charlie use LOCCoperations only.

At this point we also note that equation (19) does not guarantee vanishing PQSMfidelity. In particular, if
there exist NPTbound entangled states—and it is strongly believed that this is indeed the case [7]—Bob and
Charlie could use PPT entangled states to perfectlymerge a state of the form

∣ ∣ ( )r f f r= ñá Ä+ + , 20AB B C
NPT

1 2

where the particlesB1 andB2 are in Bob’s hands, ∣ (∣ ∣ )f ñ = ñ + ñ+ 00 11 2 is amaximally entangled two-qubit
state, and ρNPT is anNPTbound entangled state with the property thatDLOCC(ρNPT⊗μPPT)>1 for some PPT
entangled stateμPPT.Note that states ρNPT andμPPTwith the aforementioned properties exist if there areNPT
bound entangled states [14]. Bob andCharlie can then use the stateμPPT to distill the state ρNPT⊗μPPT, and by
applying Schumacher compression [15] to achieve ( )r =¥ 1PPT .

We also note that all states ρwhich fulfill the condition(8) admit perfect asymptotic LQSM [8], which also
implies that states with ( )r =¥ 1LOCC have nonzeromeasure in the set of all states.Moreover, a state ρ admits
perfect asymptotic LQSMonly if it satisfies the following condition:

( ) ( ) ( )r rD D . 21A BC AB C
LOCC

:
LOCC

:

Similar to the condition (9) for perfect asymptotic PQSM, equation (21) follows from the fact that distillable
entanglement cannot increase under LOCCoperations.

8. Comparison to standard quantum statemerging

In the setting discussed so far we assumed that Bob andCharlie have free access to PPT entangled states together
with LOCC. To compare our results to standard quantum statemerging[1, 2], wewill now also allowBob and
Charlie to share singlets. Themain question of this section can be formulated as follows: can shared PPT states
reduce the singlet rate required formerging?Aswewill see in the following, the answer to this question is negative:
also in the presence of PPT states theminimal singlet rate needed to achieve perfectmerging of a tripartite pure
state ∣yñABC corresponds to the conditional entropy S(ρBC)−S(ρC).

If Bob andCharlie have access to additional entangled states ∣ ñ ¢ ¢Di
B C with initial distillable entanglementDi,

perfect PQSMof the state ∣ ∣y yñ = ñABC can be seen as the following asymptotic transformation:

∣ ∣ ∣ ⟶ ∣ ∣ ∣ ( )y yñ Ä ñ Ä ñ ñ Ä ñ Ä ñ¢ ¢ L ¢ ¢D D0 0 . 22ABC
i

B C R ACR
f

B C BPPT

Here,R is a register inCharlie’s possession, and the state ∣ ñ ¢ ¢Df
B C hasfinal distillable entanglementDf. This

conditionmeans that by using additional singlets at rateDi, Bob andCharlie can perfectlymerge the state ∣yñ in
the asymptotic limit via PPT assisted LOCC, andwill at the same time gain singlets at rateDf. The entanglement
cost of the process is then given byDi−Df.

Wewill now show that the conditional entropy of the reduced state ρBC is equal to theminimal
entanglement cost of the above process. For this, we note that perfectmerging is always possible at cost
Di−Df=S(ρBC)−S(ρC), since there exists an LOCCprotocol accomplishing this task at this cost [1, 2]. In
the following, wewill see that PPT assisted LOCC cannot lead to lower cost, i.e.

( ) ( ) ( )r r- -D D S S 23i f
BC C

is true for any PPT assisted LOCCprotocol achieving perfectmerging as in equation (22). For proving this, we
will introduce the initial state ∣Yñi and the final state ∣Y ñf . They correspond to the total state on the left-hand side
and the right-hand side of equation (22), respectively. Using the fact that for pure states the PPTdistillable
entanglementDPPT is equal to the vonNeumann entropy of the reduced state (see also equation (2) and
discussion there), it is straightforward to verify the following equality:

( ) ( ) (∣ ) (∣ ) ( )r r- = - + Yñ - Y ñD D S S D D , 24i f
BC C

i fPPT PPT

where the PPT distillable entanglementDPPT is consideredwith respect to the bipartitionABB′:CC′R. The
desired inequality (23) follows by noting thatDPPT cannot increase under PPT assisted LOCC, and
thus (∣ ) (∣ )Yñ Y ñD Di fPPT PPT .
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9. Conclusions

In this paper we introduced and studied the task of PQSM,where two parties—Bob andCharlie—aim tomerge
their shares of a tripartitemixed state by using PPT entanglement and classical communication, while preserving
correlationswithAlice.

We considered thefidelity of this process, both in the single-copy and the asymptotic scenario, and showed
that fully separable states can be perfectlymerged asymptotically if and only if they can be perfectlymerged on
the single-copy level.We used this result to present a family of fully separable states which do not admit perfect
asymptotic PQSM.We also identified very general conditions for a state to have vanishing fidelity of PQSM in
the asymptotic limit.We showed that these conditions apply to a significant amount of quantum states having
nonzeromeasure in the set of all states, thus proving that a large number of quantum states cannot bemerged
asymptotically with any nonzero precision.With respect to standard quantum statemerging, our results imply
that using additional PPT states does not change the entanglement cost of the process: theminimal singlet rate
needed for perfectlymerging a pure state in the asymptotic limit corresponds to the conditional entropy also in
this extended setup.

We further note that the protocol considered here cannot be extended to the scenario where Bob andCharlie
have access to arbitrary bound entangled states. In particular, if there existNPT bound entangled states, the
results presented in [14] immediately imply that Bob andCharlie also have access to an unlimited amount of
singlets, and thus all states can be perfectlymerged.On the other hand, if NPTbound entangled states do not
exist, the scenario described here already represents themost general situation.

We expect that the tools presented herewillfind applications for other quantum communication protocols
such as quantum state redistribution[16], also taking into account possible local constraints[17, 18]. However,
these questions are beyond the scope of this work.
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AppendixA. Proof of theorem1

In the followingwewill prove that any state ρ=ρABCwhich is PPTwith respect to the bipartitionAB:C satisfies
the inequality

( ) ( ) ( )r rÄ  A1n
PPT PPT

for any number of copies n�1.Wewill prove this inequality for n=2, and for larger n the proof follows
similar lines of reasoning.

For n=2wewill denote the total initial state by

( )r r r rÄ = Ä , A2A B C A B C1 1 1 2 2 2

and thefinal state s s=f f
A A C C R R1 2 1 2 1 2 is then given by

[ [ ]] ( )˜ ˜
˜ ˜s r r m r= L Ä Ä ÄTr , A3f B B BC

A B C A B C BC R R
PPT1 2

1 1 1 2 2 2 1 2

where
˜ ˜mBC

PPT is a PPT state,Λ is an LOCCoperation between Bob’s total system ˜B B B1 2 andCharlie’s total system
˜C C CR R1 2 1 2, and rR R1 2 is an arbitrary initial state of Charlie’s register.

Wewill nowprove equation (A1) by contradiction, assuming that it is violated for some state ρwhich is PPT
with respect toAB:C. In this case theremust exist a PPT stateμPPT and an LOCCprotocolΛ such that

( ) ( ) ( )s s s rÄ > F , , A4f t
A C R

t
A C R

PPT
1 1 1 2 2 2

where thefinal stateσfwas given in equation (A3). The target state s sÄt
A C R

t
A C R1 1 1 2 2 2 is the same as r rÄA B C A B C1 1 1 2 2 2

up to relabeling the partiesB1 andR1, andB2 andR2.
Wewill now show that Bob andCharlie can ‘simulate’ such a two-copy protocol with just one copy of the

state ρ, thus achieving a single-copy fidelity strictly above PPT, whichwill be the desired contradiction. The
basic idea of the proof is illustrated infigure 2.We assume that Alice, Bob andCharlie start with only one copy of
the state ρ=ρABC, and that the state is PPTbetweenAB andC. Since Bob andCharlie can prepare arbitrary PPT

6
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states, they can additionally prepare the state ρA′B′C′, which is equivalent to ρABC up to the fact thatA′ andB′ are
both in Bob’s possession, see figure 2.

In the next step, Bob andCharly prepare aPPT stateμPPT and run the sameLOCCprotocolΛwhichwas leading
to equation (A4). By following this strategy, theywill endupwith afinal state s ¢ ¢ ¢

f
AA CC RR having the property that

( ) ( ) ( )s s s rÄ >¢ ¢ ¢ ¢ ¢ ¢ F , . A5f
AA CC RR

t
ACR

t
A C R

PPT

Recalling that fidelity does not decrease under discarding subsystems, it follows that

( ) ( ) ( )s s r> F , , A6f
ACR

t
ACR

PPT

which is the desired contradiction.
The proof for arbitrary n�2 follows by applying the same arguments.Moreover, using the same ideas it is

possible to show that thefidelity of LQSM  satisfies the inequality

( ) ( ) ( )r rÄ  A7n

for any n�2 and any state ρwhich is separable betweenAB andC.

Appendix B. Fully separable states not admitting perfect asymptotic PQSM

Herewewill present a family of fully separable tripartite states rABC
sep that cannot bemerged via PPT assisted

LOCC even in the asymptotic scenario. The desired family of states is given by

∣ ∣ ( )år s= ñá Ä
=

p i i . B1ABC

i
i

A
i
BC

sep
0

14

Here, all states si
BC are separable two-qubit states and the particleA has dimension 15 (the reason for this will

become clear below). The probabilities pi are strictly positive for all 0�i�14.
Note that any general d-dimensionalHilbert space has an associated Bloch vector space of dimension d2−1

[19]. In the case considered here, the particlesB andC are qubits. Thus, the Bloch vector space associatedwith
theHilbert space ofBC has dimension 15.Moreover, note that there exist 15 separable two-qubit states si

BC with
the property that all their Bloch vectors are linearly independent. This follows from the fact that the set of
separable states hasfinite size within the set of all states[20].

Aswewill see in the following, the state in equation (B1) cannot bemerged via PPT assisted LOCCwhenever
the generalized Bloch vectors of the statesσi

BC are linearly independent for all 0�i�14.Due to theorem1 of
themain text it is enough to focus on the single-shot scenario, since a fully separable state admits perfect
asymptotic PQSM if and only if it admits perfect PQSM in the single-shot scenario.

Using the above result, wewill nowprove the desired statement by contradiction. Assume that the state rABC
sep

with the above properties can bemergedwith some single-shot PPT assisted LOCCprotocolΛPPT between Bob
andCharlie. It then immediately follows that this protocolmustmerge each of the states si

BC individually.

Figure 2.Proof of equation (A1) for n=2. A violation of equation (A1) could be used to build a protocol acting on one copy of the
state ρ, and reaching a higher single-copy fidelity than ( )rPPT .
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Moreover, by convexity, this protocol alsomerges each convex combination of the form

( )åt s=
=

q . B2BC

i
i i

BC

0

14

Recall that the set of states of the form (B2) hasfinite sizewithin all two-qubit states. By convexity, this implies
that the protocolΛPPT can be used for single-shotmerging of any state shared by Bob andCharlie. In particular,
thismeans thatΛPPT canmerge both states ∣ ñ00 BC and ∣+ ñ0 BC. The existence of such a protocol would thus
imply that the states ∣ ñ0 and ∣ (∣ ∣ )+ñ = ñ + ñ0 1 2 can be perfectly teleportedwith the aid of PPT states on the
single-copy level. This is however impossible [21], which is the desired contradiction. This completes the proof
that the aforementioned family of states does not admit perfect asymptotic PQSM.

AppendixC. Stateswith vanishing asymptoticfidelity

Herewewill show that all states satisfying the inequality

( ) ( ) ( )r r> =D E 0 C1A BC
n
AB C

LOCC
: :

have zero fidelity in the asymptotic limit:

( ) ( )r =¥ 0. C2PPT

For this we note that for all such states thefinal state s s=f f
ACR is PPTwith respect to the bipartitionA:CR, and

thus is nondistillable with respect to this bipartition1. Thismeans that for any number of copies n thefidelity of
PQSM is bounded above as follows:

( ) ( ) ( ) ( )r s s s t=
t

Ä

L

Ä

Î

Ä


F Fsup , sup , , C3n
t

n
f t

n
PPT

PPT

where thefinal stateσf shared byAlice andCharlie is given as [ [ ]]s r r= L ÄÄTrf B
n R

PPT , and the supremum in
the last expression is taken over all states τwhich are not distillable betweenAlice andCharlie.

In the next step, we introduce the geometric distillability

( ) ( ) ( )n n t= -
tÎ

D F1 sup , , C4g

and note that the target state s s=t t
ACR in equation (C3) is distillable betweenAlice’s systemA andCharlie’s

systemCR. For proving equation (C2) it is thus enough to show that for any distillable state ν the geometric
distillability approaches one in the asymptotic limit:

( ) ( )n =
¥

ÄDlim 1. C5
n

g
n

Surprisingly, this is indeed the case for any distillable state ν, and the proof will be given in the following.

AppendixD. Asymptotic geometric distillability

In the followingwe consider the geometric distillability defined as

( ) ( ) ( )r r s= -
sÎ

D F1 sup , , D1g

where ( ) ( )r s rs r=F , Tr 1 2 is thefidelity, and the supremum is taken over the set of nondistillable states
.Wewill also consider the closely related quantity

( ) ( ) ( )r r s=
sÎ

D Tinf , , D2t

where ( ) ∣∣ ∣∣r s r s= -T , 2 is the trace distance with the trace norm ∣∣ ∣∣ †=M M MTr . The trace distance
andfidelity are related as

( ) ( ) ( ) ( )r s r s r s- - F T F1 , , 1 , . D32

Aswewill show in the following, both quantitiesDg andDt are discrete in the asymptotic limit:
asymptotically they attain only the values 0 (if ρ is nondistillable) and 1 (if ρ is distillable). For nondistillable
states ρ it is clear thatDg andDt are both zero, and thus also zero asymptotically.Wewill nowprove the following
equality for any distillable state ρ:

( ) ( ) ( )r r= =
¥

Ä

¥

ÄD Dlim lim 1. D4
n

g
n

n
t

n

1
Note that here thefinal state s f

ACR isnot equal to the initial state ρABC up to relabelingB andR.
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Note that due to equation (D3) it is enough to prove only one of the equalities. In the following, wewill prove the
equality forDt.

In thefirst step,wenote that equation (D4) is true for themaximally entangled state ∣ (∣ ∣ )f ñ = ñ + ñ+ 00 11 2 .
This canbe seenbynoting that thefidelity between ∣f ñ+ Än and anynondistillable state s Î  is bounded above as
follows [22, 23]:

(∣ ∣ ) ( )f f sñá+ + Ä F ,
1

2
. D5n

n 2

In the next step, note that for a distillable state ρ there exist a sequence of LOCCprotocolsΛn acting on n copies
of the state ρ such that

( [ ] ∣ ∣ ) ( )⌊ ⌋r f fL ñá =
¥

Ä + + ÄTlim , 0, D6
n

n
n nEd

where Ed is the distillable entanglement or ρ and⌊ ⌋x is the largest integer below x.Moreover, without loss of
generality, we assume that [ ]rL Ä

n
n and ∣ ⌊ ⌋f ñ+ Ä nEd have the same dimension.

By applying the triangle inequality with some nondistillable stateσwe further obtain:

(∣ ∣ ) ( [ ] ∣ ∣ )
( [ ] ) ( )

⌊ ⌋ ⌊ ⌋f f s r f f
r s

ñá L ñá
+ L

+ + Ä Ä + + Ä

Ä

T T

T

, ,

, . D7

nE
n

n nE

n
n

d d

Minimizing both sides of this inequality over all nondistillable statesσ, it follows that:

(∣ ) ( [ ] ∣ ∣ )
( [ ]) ( )

⌊ ⌋ ⌊ ⌋f r f f
r

ñ L ñá
+ L

+ Ä Ä + + Ä

Ä

D T

D

,

. D8
t

nE
n

n nE

t n
n

d d

In thefinal step, we take the limit  ¥n and use equation (D6), arriving at the following result:

(∣ ) ( [ ]) ( )f rñ L
¥

+ Ä

¥

ÄD Dlim lim . D9
n

t
n

n
t n

n

Recalling the fact that equation (D4) is true for themaximally entangled state ∣f ñ+ , this inequality implies

( [ ]) ( )rL
¥

Ä Dlim 1. D10
n

t n
n

The proof of equation (D4) for all distillable states is complete by noting thatDt cannot increase under LOCC,
i.e. ( ) ( [ ])r rLÄ ÄD Dt

n
t n

n .

Appendix E. Stateswith vanishing asymptoticfidelity have nonzeromeasure

Wewill now show that the set of states with vanishing asymptotic fidelity has nonzeromeasure in the set of all
states. For this wewill present a family of three-qubit states ρ=ρABCwhich are separable betweenAB andC, do
not touch the boundary of separable states, and are distillable betweenA andBC. This assures that small
perturbations of this state do not change its basic properties, i.e. the perturbed states are also separable between
AB andC, distillable betweenA andBC, and thus have vanishing asymptotic fidelity ( )r =¥ 0PPT .

The following three-qubit state has the aforementioned properties:

( )∣ ∣ ∣ ∣ ( )r f f= - ñá Ä ñá ++ +p p1 0 0
8

E1

with ∣ (∣ ∣ )f ñ = ñ + ñ+ 00 11 2 . The parameter p can be chosen from the range < <p p0 max, and >p 0max is
chosen such that the state ρ is distillable betweenA andBC for all <p pmax.

In order to see that the state obtained in this way is not on the boundary of separable states (with respect to
the bipartitionAB:C), we consider a small perturbation of the form

( ) ( )r es e r¢ = + -1 E2

with an arbitrary three-qubit stateσ. The proof is complete by noting that for anyσ there exists somemaximal
parameter ( )e s > 0max such that ρ′ is separable for all ( )e e s 0 max . This follows directly from the
existence of a separable ball around themaximallymixed state[20].
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