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Abstract
Quantumnonlocality has recently been intensively studied in connection to device-independent
quantum information processing, where the extremal points of the set of quantum correlations play a
crucial role through self-testing. Inmost protocols, the proofs for self-testing rely on themaximal
violation of the Bell inequalities, but there is another knownproof based on the geometry of state
vectors to self-test amaximally entangled state.We present a geometrical proof in the case of partially
entangled states.We show that, when a set of correlators in the simplest Bell scenario satisfies a
condition, the geometry of the state vectors is uniquely determined. The realization becomes self-
testable when another unitary observable exists on the geometry. Applying this proven fact, we
propose self-testing protocols by intentionally adding onemoremeasurement. This geometrical
scheme for self-testing is superior in that, by using this as a building block and repeatedly adding
measurements, a realizationwith an arbitrary number ofmeasurements can be self-tested. Besides the
application, we also attempt to describe nonlocal correlations by guessing probabilities of distant
measurement outcomes. In this description, the quantum set is also convex, and a large class of
extremal points is identified by the uniqueness of the geometry.

1. Introduction

It was shownby Bell that the nonlocal correlations predicted by quantummechanics are inconsistent with local
realism [1]. Bell nonlocality, or quantumnonlocality, has attractedmany research interests over the years (see [2]
for a review). Recently, it has been intensively studied in connection to device-independent quantum
information processing (see [3, 4] for reviews), where the extremal points of the convex set of quantum
correlations plays a crucial role through self-testing.

The correlation that attains themaximal quantumviolation of 2 2 [5] in theClauser–Horne–Shimony–
Holt inequality [6] is an extremal point of the quantum set, for which the quantum realization (state and
measurements) is unique up to unavoidable local isometry. This implies that attaining the value of 2 2 can self-
test the state and themeasurements in the Bell experiment [7].When a realization is a uniquemaximizer of a Bell
inequality, the realized correlation is a self-testable extremal point. Although there exist non-exposed extremal
points that cannot be a uniquemaximizer of any Bell inequality, a correlation is extremal when the realization is
self-testable [8]. In this way, self-testability and extremality are intimately connected. Inmost protocols, the
proofs for self-testing rely on themaximal violation of the Bell inequalities. However, even in the simplest Bell
scenario (two parties and two binarymeasurements on each party), themaximal violation by a partially
entangled state is known for only a fewBell inequalities [9–13], and notmany protocols are proposed for self-
testing partially entangled states [14–18].

On the other hand, the proof for self-testing in [19] is fascinating, because noBell inequality is used directly.
In the simplest Bell scenario, whenmarginal probabilities of outcomes are unbiased, the boundaries of the
quantum set are identified by the Tsirelson–Landau–Masanes (TLM) criterion [20–22]. The proof in [19] relies
on the fact that the geometry of the state vectors is uniquely determinedwhen the TLMcriterion is satisfied (and
the anti-commutation relation between observables is proven on the geometry). However, this geometrical
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proof is restricted to the case of amaximally entangled state by the restriction of the TLMcriterion. In a general
case, where an extremal correlationmay be realized by a partially entangled state, the criterion for the
identification has been only conjectured, based on the probabilities of guessing outcomes of a distant party
(referred as ‘guessing probability’ hereafter) [23].

In this paper, we present a geometrical proof in the case of partially entangled states.We show that, when a
set of correlators in the simplest Bell scenario satisfies a condition, the geometry of state vectors is uniquely
determined. The realization becomes self-testable when another unitary observable exists on the geometry to
prove anti-commutation relation. Applying this proven fact, we propose self-testing protocols by intentionally
adding onemoremeasurement to prove the anti-commutation relation. This geometrical scheme for self-
testing is superior in that, by using this as a building block and repeatedly addingmeasurements, a realization
with an arbitrary number ofmeasurements can be self-tested.

Beside applications, efforts have beenmade to describe the quantum set having a complicated structure
[24–26, 8, 27] in amore tractable way; some descriptions exist such as covariance [28] and entropy [29]. For this
purpose, we attempt to describe nonlocal correlations by guessing probabilities.We show that the quantum
realizable set is also convex in this description, and a large class of extremal points is identified by the uniqueness
of the geometry of state vectors.Moreover, with the help of this extremality, we show that the sufficiency of the
extremal criterion conjectured in [23] can be reduced to certifiability of guessing probabilities.

This paper is organized as follows: in section 2, we briefly summarize the preliminaries. For details, see [2–4]
and the references therein. For clarity, we first introduce the description of correlations by guessing probabilities
in section 3, and discuss the properties of the quantum set, such as the extremality and self-testability. In
section 4, we investigate the geometrical properties of realizations in the standard description of correlations.
Finally, as an application, we propose self-testing protocols for partially entangled states in section 5, whose self-
testability is geometrically proven, regardless of the validity of the conjectured extremal criterion. A summary is
given in section 6.

2. Preliminaries

In the simplest Bell scenario, Alice (Bob) performs one of two binarymeasurements on a shared state depending
on a given randombit x (y), and obtains an outcome a=±1 (b=±1). The properties of a nonlocal correlation
are described by a set of conditional probabilities p ab xy{ ( ∣ )} referred as a ‘behavior’, which specifies a point in
the probability space. As = + + +p ab xy aC bC abC1 x

A
y
B

xy
1

4
( ∣ ) [ ] for no-signaling correlations, withCA

x (C
B
y )

being a bias of themarginal p a x( ∣ ) p b y[ ( ∣ )], any no-signaling correlation can be described by a behavior
C C C, ,x

A
y
B

xy{ }. Such a behavior specifies a point in the 8-dimensional no-signaling space, whichwe denote by
theC-space.

A behavior C C C, ,x
A

y
B

xy{ } is realized by quantummechanics, if and only if there exist a shared quantum

state yñ∣ and the observablesAx (By) of Alice (Bob), such that = =A B Ix y
2 2 , y y= á ñC Ax

A
x∣ ∣ , y y= á ñC By

B
y∣ ∣ ,

and y y= á ñC A Bxy x y∣ ∣ .We use á ñ as the abbreviation of y yá ñ∣ ∣ . Any state vector has a real-vector
representation [20, 30, 31]. For example, when yñ∣ is represented by components as yñ = c c, ,0 1∣ ( ) with

Î ci , y = c c c cRe , Im , Re , Im ,0 0 1 1( )


 is a real-vector representation.
The realizable behaviors constitute a convex set in theC-space, denoted byC. In the unbiased case where
= =C C 0x

A
y
B , a behavior belongs toC, if and only if the TLM inequality [20–22]
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is satisfied for =C Cxy xy
˜ [togetherwith p ab xy 0( ∣ ) ].

Using the correlators of a behavior C C C, ,x
A

y
B

xy{ }, let us introduce the quantities Sxy given by
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Suppose that the following holds for a set pxy{ }
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where pxy is either ‘+’ or ‘−’. Letting the value of Sxy
pxy be equal to csin 22 , the following is also introduced:

c cº + º +d C d Csin 2 , sin 2 . 4x
B

x
A

y
A

y
B2 2 2 2( ) ( ) ( )

Then, to identify the nonlocal extremal points ofC , the following criterion has been conjectured in [23].

Conjecture 1.Anonlocal behavior C C C, ,x
A

y
B

xy{ } is an extremal point ofC, if and only if equation (3) holds as

= = =+ + + +S S S S00 01 10 11, and inequality (1) is saturated for both scaled correlators =C C dxy xy x
B˜

and =C C dxy xy y
A˜ .

Note that the fulfillment of equation (3) for some pxy{ } (not necessarily as = = =+ + + +S S S S00 01 10 11) is necessary
(and even sufficient in the case of c <sin 2 12 ) for the existence of a two-qubit realization in the formof

q s q s q s q s

y c c

= + = +

ñ= ñ + ñ

A Bsin cos , sin cos ,

cos 00 sin 11 , 5

x x
A

x
A

y y
B

y
B

1 3 1 3

∣ ∣ ∣ ( )

where s s s, ,1 2 3( ) are the Paulimatrices (but there is no s2 term), and hence also necessary for the extremality of
C (see the supplementalmaterial of [23]). Note further that the definition of qx

A and q y
B are changed from

[32, 33, 23] for convenience (q p q -2x
A

x
A and q p q -2y

B
y
B).

Moreover, for a given C C C, ,x
A

y
B

xy{ }, the quantity Dx
B and Dy

A (explained later) has a device-independent
upper bound, which can be obtained by theNavascués–Pironio–Acín (NPA) hierarchy [35, 36], and the
following is also implicitly conjectured in [23].

Conjecture 2.When a nonlocal behavior C C, ,x
A

y
B{ Cxy} satisfies the same condition asConjecture 1, dx

B and dy
A

coincides with the device-independent upper bound of Dx
B 2( ) and Dy

A 2( ) , respectively.

3.Quantum set inD-space

Asmentioned, CA
x is the bias of p a x( ∣ ), but it is also the bias of Bob’s optimal probability of guessing Alice’s

outcome a, without the use of any side information. In the nonlocality scenario, however, Bob has a half of a
shared state; the local state ra x∣ (conditioned onAlice’s outcome a), and by the use of it the guessing probability is
generally increased. Therefore, it seems another natural way of describing nonlocal correlations to use the
guessing probabilities optimized under ra x∣ . For this purpose, we focus on the quantities introduced in [32, 33]

º á ñ º á ñ
á ñ= á ñ=

D A X D X Bmax , max , 6x
B

X
x B y

A

X
A y

1 1B A
2 2

( )

where themaximization is taken over anyHermite operatorXB (XA) onBob’s (Alice’s) side. Indeed, when r x1∣
and r- x1∣ are both pure states, themaximum in the definition of Dx

B is attainedwhen =X IB
2 [32]; hence Dx

B

becomes equal to r r- -tr x x1 1∣ ∣∣ ∣ , coincidingwith the bias of Bob’s optimal guessing probability [34].
Let us then describe a correlation by a behavior d d C, ,x

B
y
A

xy{ }, such that it is realized by quantummechanics

if and only if there exist yñ∣ , = =A B Ix y
2 2 , d = Dx

B
x
B 2( ) , d = Dy

A
y
A 2( ) , and y y= á ñC A Bxy x y∣ ∣ . The reason for

taking the square of Dx
B and Dy

A will become clear soon. Such a behavior specifies a point in an 8-dimensional
space, whichwe denote by theD-space. Note that the behaviors in theC-space and theD-space have no
one-to-one correspondence. For example, the completely random correlation is uniquely represented by

= = =C C C0, 0, 0x
A

y
B

xy{ } in theC-space but represented in theD-space by d d= = =C0, 0, 0x
B

y
A

xy{ }and
d d= = =C1, 1, 0x

B
y
A

xy{ }. The former is realized by s= =A Bx y 1on yñ = ñ00∣ ∣ , and the latter is realized by

s=Ax 1, s=By 3 on yñ = ñ + ñ00 11 2∣ (∣ ∣ ) .
Now, let us investigate the properties of the behaviors in theD-space.When the behaviors pi are realized by

quantummechanics, there always exists a realization of the behavior l= åp pi i i for any l  0i such that

lå = 1i i . This is because, as shown in appendix A, although Dx
B 2( ) and Dy

A 2( ) are convex in general such that

å lD Dp p , 7x
B

i
i x

B
i

2 2[ ( )] [ ( )] ( )

the equality holds, at least when each local state of the realization ofpi has orthogonal support, and hence,

Lemma1.The behaviors d d C, ,x
B

y
A

xy{ }, which are realized by quantummechanics, constitute a convex set.

This set, denoted byD, is then at least enclosed by the hyperplanes in theD-space defined from the
following inequalities:

3

New J. Phys. 22 (2020) 023022 S Ishizaka



å ådº - + V V C
q

1

4
, 8B

x
x
B

x
B

xy
xy
B

xy B
( )

å ådº - + V V C
q

1

4
, 9A

y
y
A

y
A

xy
yx
A

xy A
( )

where the coefficients satisfy V 0x
c , V 0xy xy
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VB
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A
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This is due to the cryptographic quantumbound shown in [32]. Indeed, = -u V s1xy
B xy

xy
B

x
B( ) fulfills

å =u 1xy xy
B 2( ) and =u u u u ;B B B B

00 01 10 11 hence any realization obeys

=- å + å - á ñ
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The same holds for A by using = -u V s1yx
A xy

yx
A

y
A( ) . The inequalities (8) and (9) are respected by any quantum

realization, whichwe denote by quantumBell inequalities in analogy to the Bell inequalities.
It is convenient to introduce another convex set, which is enclosed by inequalities (8) and (9). As inequality

(11) holds whenever thefirst inequality due to the cryptographic quantumbound holds, the behaviors in this set

are those satisfying the TLM inequality (1) for both scaled correlators d=C Cxy xy x
B˜ and d=C Cxy xy y

A˜ [32]

(together with the obvious constraint of d d C , 1xy x
B

y
A2 ). This convex set, denoted bycrypt, is a superset

ofD.
Let us now search for the extremal points ofD. It is known that each extremal point ofC has a two-qubit

realization [5, 37]. This is due to the fact thatA0 andA1 (B0 andB1 as well) are simultaneously block-diagonalized
by appropriate local bases with the block size of atmost 2 [37]. However, this cannot be applied to the case ofD

due to the convexity of Dx
B 2( ) and Dy

A 2( ) as in inequality (7). Fortunately, however, we have the following:

Lemma2.Abehavior inD, which simultaneously saturates the quantumBell inequalities (8) and (9), has a two-
qubit realization.

Proof.As themaximization in Dx
B is rewritten by using the Lagrangemultiplier l as

y y y y= á ñ - á ñ -D A X l Xmax 1x
B

x B B
2[ ∣ ∣ ( ∣ ∣ )], any realizationmust satisfy

y y y y y yñá = ñá + ñáA
D

F Ftr
2

tr , 12A x
x
B

A x x∣ ∣ ( ∣ ∣ ∣ ∣ ) ( )

where Fx is an optimal operator attaining themaximum. Let y

, Ax


, By


, and Fx


be the real-vector representation

for yñ∣ , yñAx∣ , yñBy∣ , and yñFx∣ , respectively, which are all unit vectors. Then, equation (12) implies

y y= = =A F D A B D F B A D F, , . 13x x x
B

x y x
B

x y x x
B

x· · · · · ( )
         

On the other hand, the saturation of inequality (8) implies that inequality (1) is saturated for ºC A Bxy x y
˜ ·

 

=D F Bx
B

x y·
 

, which ensures that four real vectors B0


, B1


, F0


, and F1


lie in the sameB-plane [19] as shown in

figure 1. Similarly, the saturation of inequality (9) implies that four real vectors A0


, A1


, E0


, and E1


lie in the same

A-plane, where Ey


is the real vector optimizing Dy

A. However, as a high-dimensional vector space is considered,
the relationship between the two planes has not been determined yet.

Suppose that ¹ A A0 1

 
and ¹ B B0 1

 
. Let the projection of y


to theA-plane (B-plane) be yA


(yB


).

Moreover, let the projection of yB


to theA-plane be yBA


. From the laws of sines and cosines, yBA

2∣ ∣


is given by

y y y y+ - D
D

A A A A2 cos

sin
, 14B B B B0

2
1

2
0 1

2

( · ) ( · ) ( · )( · ) ( )
       

whereΔ is the angle between A0


and A1


. From equation (13),

y y y y y= = = =A D F D F A A , 15x B x
B

x B x
B

x x x A· · · · · ( )
         

and consequently we have y y=BA A∣ ∣ ∣ ∣
 

. Similarly, we have y y=AB B∣ ∣ ∣ ∣
 

. This implies that the two planes
intersect with y y y¢ º =A B

  
being a common vector as shown infigure 1. The two-qubit realization of

equation (5) can realize the same geometry of real vectors.
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When = A A0 1

 
, Ax


and By


lie in a 3-dimensional subspace.Moreover, the saturation of inequality (1) for

scaled correlators occurs only when A0


coincides with±E0


or±E1


, and F0


coincides with±B0


or±B1


. The

behavior in theD-space realized by such a simple geometry can be realized by equation (5). Similarly, when
= B B0 1

 
. ,

As such a behavior saturates inequality (1) for scaled correlators, it is located at a boundary ofcrypt.
Conversely, a boundary behavior ofcrypt generally does not have a realizationwith the geometry offigure 1 and
cannot be realized by quantummechanics; hence,

Lemma3.D is a strict subset ofcrypt.

Hereafter, to describe the geometry offigure 1, we also use the shortcut notations of

f q q q q f f fD º - D º - D º -, , , 16ij
c

i
c

j
c c c c c c c

0 1 0 1 ( )

for both c=A, B. See figure 1 for the definition of fc
0 and f

c
1. Note that, as inequality (1) is saturated for scaled

correlators, the geometry offigure 1 satisfies [23]

 D D sin 0 and sin 0. 17
xy

xy
B

xy
yx
A ( )

When such a geometry is given, we can easily construct the quantumBell inequalities (8) and (9) that are
simultaneously saturated by the geometry, as shown in appendix B. Conversely, let us investigate the
realizations tomaximize such a given pair of the quantum Bell inequalities. Note that there exists
unavoidable ambiguity of the realizations, which is referred as obvious symmetries hereafter, as the four
geometries with the parameters q q c, ,x

A
y
B{ }, q q c- -, ,x

A
y
B{ }, p q p q c- -, ,x

A
y
B{ }, and

p q p q c+ +, ,x
A

y
B{ ¯ } realize the same behavior in theD-space. In general, the realization that saturates

either inequality (8) or (9) is not unique; hence belonging to a flat surface ofQD. The realization is
characterized by qD B and qD A, respectively, such thatDxy

B andDyx
A is determined for a given qD B and qD A,

respectively. However, á ñ = D = DA B D Dcos cosx y x
B

xy
B

y
A

yx
A must hold in figure 1. As a result, to saturates

both inequalities (8) and (9), qD B and qD A are constrained to satisfy

Figure 1.Geometry of real vectors, where F0


, B0


, F1


, and B1


(E0


, A0


, E1


, and A1


) lie in theB-plane (A-plane), and Fx


(Ey


) is directed

along the projection of Ax


(By


) to theB-plane (A-plane), respectively. The two planes intersect at the angle of p c-2 2 , with y¢



being a common vector. The angle between y¢

and Bx


(Fx


) is denoted by qx

B (fx
B), and that between y¢


and Ay


(Ey


) is denoted by q y

A

(fy
A). As inequality (1) is saturated by scaled correlators, inequality (17) holds in this geometry.We assume, without loss of generality,

c p 0 4 throughout this paper.

5

New J. Phys. 22 (2020) 023022 S Ishizaka



a q
a q

a q
a q

q a
q a

q a
q a

q

q

q

q

q

q

q

q

+ D
+ D

=
+ D
+ D

D +
D +

=
D +
D +

- D

- D
=

- D

- D

D -

D -
=

D -

D -

b

b

b

b

b

b

b

b

1 cos

1 cos

1 cos

1 cos
,

cos

cos

cos

cos
,

1 cos

1 cos

1 cos

1 cos
,

cos

cos

cos

cos
, 18

A A

A A

B B

B B

A A

A A

B B

B B

A

A

B

B

A

A

B

B

2

2

2

2

2

2

2

2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

A

A

B

B

A

A

B

B

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ¯ )

( )
( ¯ )

( )
( ¯ )

( )
( ¯ )

¯ ¯

¯ ¯
( )

where the parameters of the original geometry used for constructing a given pair of the Bell inequalities are
indicated by an overline such as qD c¯ . The parameters ac and bc are given by- D Dsin sin

c c
00 01

¯ ¯ and
D Dsin sin

c c
11 10

¯ ¯ , respectively. As details are given in appendix B, when equation (18) only has a trivial solution of
q qD = Dcos cosc c¯ for both c=A, B, the realizations become unique up to obvious symmetries, andwe have

Lemma4.The geometry of a realization, which simultaneously saturates the quantumBell inequalities (8) and (9), is
unique up to obvious symmetries when equation (18) only has a trivial solution; hence such a behavior is an extremal
point ofD.

For a given pair of quantumBell inequalities, no pair of ac and bc is identical in general and equation (18)
only has a trivial solution. This implies that the behaviors realized by two-qubit realizations equation (5)with
the parameters satisfying inequality (17) are generally extremal forD, constituting a large class of extremal
points. Note that the uniqueness of the realization is not necessarily required for the extremality, and hence
lemma 4 does not exclude the possibility that the behaviors realized by equation (5)with inequality (17) are all
extremal.

In any case, for an extremal behavior ofD proven by lemma 4, the geometry of real vectors is unique up to
the obvious symmetry. Is such a behavior self-testable? The answer is negative by two reasons (apart from the

problemof how Dx
B and Dy

A is determined by experiments). Thefirst is that y¢∣ ∣


infigure 1 is undetermined; y¢∣ ∣


can be determined through y qá ñ = ¢A cosx x
A∣ ∣


or y qá ñ = ¢B cosy y

B∣ ∣


, but these are unspecified in theD-space.

The second relates to the convexity of Dx
B 2( ) and Dy

A 2( ) . As shown in appendix C, there exists an example in

which the correlationP, despite being an extremal point ofD, may have two different realizations due to the
strict convexity. However, in some cases, we can exclude the possibility of such strict convexity, that is, the
certifiability of Dx

B and Dy
A.

Suppose that Conjecture 2 holds true. As inequality (1) is saturated for scaled correlators, Dx
B 2( ) and Dy

A 2( )
are also lower bounded by dB

x and d
A
y [23]; hence those are certifiable, andwe have =D dx

B
x
B2( ) and =D dy

A
y
A2( ) .

This correlation, denoted by p, is then found to be an extremal point ofD by lemma 4.When a realization ofp
is decomposed into two-qubit realizations ofpi, based on the block-diagonalization [37], Dx

B 2( ) and Dy
A 2( ) must

not be strictly convex; otherwise wewould construct a realizationwhose Dx
B or Dy

A exceeds the device-

independent upper bound by using orthogonal bases.Moreover, because the correlation p is an extremal point
ofD, allpimust exhibit the same behavior d d C, ,x

B
y
A

xy{ } in theD-space. Then, the geometry of the two-qubit

realizations is uniquely determined up to the obvious symmetry by lemma 4. The symmetry leaves the ambiguity
between C C,x

A
y
B{ }and - -C C,x

A
y
B{ }, but the latter is clearly inappropriate. In this way, the extremality ofD,

combinedwith the certifiability of Dx
B and Dy

A, makes the realization unique; hence,

Lemma5. If Conjecture 2 holds true, the extremal behaviors ofD by lemma 4 are self-testable extremal points
ofC.

This lemma implies that the sufficiency of Conjecture 1 relies on the validity of Conjecture 2. Note that,
under the truth of Conjecture 2, the self-testable extremal points ofC by lemma 5 are such that inequality (3) is

satisfied as = = =+ + + +S S S S00 01 10 11, inequality (1) is saturated by both =C C dxy xy x
B˜ and =C C dxy xy y

A˜ ,

and equation (18) only has a trivial solution. Asmentioned above, the information of C C,x
A

y
B{ } is necessary for

self-testing to specify y¢∣ ∣, and it is indeed used in lemma 5 through equation (3).
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4.Quantum set inC-space

Fromnowon, let us show some geometrical properties of the realizations for the behaviors in the standardC-
space. Note that these hold true regardless of the validity of Conjectures 1 and 2. To beginwith, we show that the
geometry of the realization of a behavior in theC-space is uniquely determinedwhen the correlators satisfy a
condition:

Lemma6. For a nonlocal behavior C C C, ,x
A

y
B

xy{ }, which satisfies inequality (3) for some pxy{ } (not necessarily as

= = =+ + + +S S S S00 01 10 11) and saturates inequality (1) for both =C C dxy xy x
B˜ and =C C dxy xy y

A˜ , the geometry

of the realization is unique up to obvious symmetries.

The unique geometry is the same asfigure 1, but the obvious symmetry now refers the ambiguity between
q q c, ,x

A
y
B{ }and q q c- -, ,x

A
y
B{ }.Moreover, y¢∣ ∣ is determined to ccos 2 as in the two-qubit realizations of

equation (5). The proof is given in appendixD. The difference from the proof of lemma 2 is that dB
x and d

A
y by

equation (4) are not ensured to coincide with Dx
B 2( ) and Dy

A 2( ) , andwe cannot use equation (12). For the same

reason, Fx


and Ey


infigure 1 are nownot ensured to attain Dx

B and D ;y
A d Fx

B
x


ismerely the projection of Ax


to

theB-plane.
In this way, the geometry is uniquely determined for not necessarily = = =+ + + +S S S S00 01 10 11. However, this

uniqueness does not ensure the extremality ofC . This is in contrast to lemma 4, where quantumBell
inequalities aremaximized by a unique geometry, and the extremality ofD is ensured. Indeed, the nonlocal
correlationP in appendix C,where = = =+ + + -S S S S00 01 10 11, is an explicit counter example for extremality.
Interestingly,P is located in the strict interior of the quantum set, according to the + AB1 level of theNPA
hierarchy [38]. This also implies that, even though y c¢ = cos 2∣ ∣ is ensured to be the same as the two-qubit
realizations, the uniqueness is still insufficient for self-testing. The condition = = =+ + + +S S S S00 01 10 11 is crucial,
apart from the unique determination of the geometry, formaking the realization self-testable through the
certification of Dx

B and Dy
A, as shown by lemma 5.

However, other than the unproved certification condition, amore general condition thatmakes the unique
geometry self-testable is found as follows:

Lemma7. For a nonlocal behavior C C C, ,x
A

y
B

xy{ }, which has a unique geometry by lemma 6, the realization is self-

testable, if and only if a real vector representation G

of yñG∣ , with G being a local unitary observable, exists in either

A-plane orB-plane (other thanAx


andBy


).

Proof.As the geometry is uniquely determined asfigure 1 by lemma 6, the ‘only if’ part is obvious: when the
realization is self-testable, it is a two-qubit realization of equation (5), where any one of Fx


and Ey


can be regarded

as G

because Fx andEy are local and unitary ( = =F E Ix y

2 2 ). Let us prove the ‘if’ part.We again use the notation
of equation (16). For the operatorZB defined by

q q
q

=
-
D

Z
B Bsin sin

sin
, 19B

B B

B
0 1 1 0 ( )

wehave y yá ñ =Z 1B
2∣ ∣ as q= DB B cos B

0 1·
 

, and similarly forZA. As the unit vectors yñZB∣ and yñZA∣ are both

directed along y¢

, we have y y yñ = ¢ñ = ñ

c
Z ZB A

1

cos 2
∣ ∣ ∣ . Suppose now that G


lies in theB-planewithG being

Bob’s unitary observable (G2=I). Letting the angle between G

and y¢


be hB, it is written as

y
h y h q y

q
ñ =

ñ - - ñ
G

B Zsin sin

sin
, 20

B
y

B
y
B

B

y
B

∣
∣ ( ) ∣

( )

for y= 0, 1.Moreover, asG commutes withZA andG
2= I, we have y y y yá ñ = á ñ =GZ Z G Z 1A A A

2∣ ∣ ∣ ∣ and

q h h q y y

h h q y y

= + - á ñ

- - á ñ

Z

Z B

sin sin sin

2 sin sin . 21

y
B B B

y
B

B

B B
y
B

B y

2 2 2 4

3

( ) ∣ ∣

( ) ∣ ∣ ( )

From this and equation (19), we have y yá ñ =Z 1;B
4∣ ∣ hence yñZB

2∣ is a unit vector. As y yá ñ =Z 1B
2∣ ∣ , we have

y yñ = ñZB
2∣ ∣ , which proves the anti-commutation relation of

y q y+ ñ = D ñB B B B 2 cos . 22B
0 1 1 0( )∣ ∣ ( )

7

New J. Phys. 22 (2020) 023022 S Ishizaka



As y y yñ = ñ = ñZ ZA B
2 2∣ ∣ ∣ , the anti-commutation relation betweenA0 andA1 is also proven. Let us defineXB by

q q
q

=
-
D

X
B Bcos cos

sin
23B

B B

B
0 1 1 0 ( )

and similarlyXA.With the anti-commutation relations ofBy andAx, we can confirm
y y yñ = ñ = ñX XB A

2 2( ) ∣ ( ) ∣ ∣ and y y+ ñ = + ñ =X Z Z X X Z Z X 0B B B B A A A A( )∣ ( )∣ . However, yñ∣ has not been
determined yet. From equation (D4), we have

y y y y
y y c

y y y y c

á ñ = -á ñ
= -á ñ = -

á ñ= á ñ =

Z X X Z Z X Z X

X X

X X Z X X Z

sin 2 ,

cos 2 . 24

A A B B A A B B

A B

A A A B B B

∣ ∣ ∣ ∣
∣ ∣

∣ ∣ ∣ ∣ ( )

This implies that the four state vectors (not in the real-vector representation) of yñX ZA A∣ , yñXA∣ , yñXB∣ , and
yñX ZB B∣ lie in the same plane in a complex vector space, as shown infigure 2.Moreover, thisfigure shows that

y yá ñ =X X Z 0;B A A∣ ∣ hence yñZA∣ and yñX XA B∣ are orthogonal to each other. As the components of yñ∣ to these
orthogonal vectors are given by y y cá ñ =Z cos 2A∣ ∣ and y y cá ñ =X X sinA B∣ ∣ , we can conclude

y c y c yñ = ñ + ñX X Zsin 2 cos 2 . 25A B A∣ ∣ ∣ ( )

By operating X XA B on both sides, we have

c y
c y c y

c
c y y

ñ =
ñ - ñ

= ñ - ñ

X X Z
X X

Z

sin 2
sin 2 sin 2

cos 2

cos 2 , 26

A B A
A B

A

2

∣ ∣ ∣

∣ ∣ ( )

and c y c y- ñ = + ñX X I Z I Zcos sinA B A A( )∣ ( )∣ . Then, the local unitary transformation F º F Ä FA B

commonly used for self-testing [3] shown infigure 3 results in

y y

y
y

y
y

c
c c

F ñ ñ= + + ñ ñ

+ + - ñ ñ
+ - + ñ ñ
+ - - ñ ñ

=
+ ñ

ñ + ñ

I Z I Z

X I Z I Z

X I Z I Z

X X I Z I Z

I Z

00
1

4
00

01

10

11

2 cos
cos 00 sin 11 , 27

A B

B A B

A A B

A B A B

A

∣ ∣ [( )( )∣ ∣

( )( )∣ ∣
( )( )∣ ∣

( )( )∣ ∣ ]
( )∣ ( ∣ ∣ ) ( )

Figure 2. Four state vectors lie in the same plane, and yñXB∣ and yñX ZA A∣ are orthogonal, which also implies that yñZA∣ and yñX XA B∣
are orthogonal because y yá ñ =X X Z 0B A A∣ ∣ .
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and consequently yñ∣ is locally equivalent to c cñ + ñcos 00 sin 11∣ ∣ . Similarly, we also have

y c cF ñ ñ = ñ ñ + ñX X 00 junk cos 11 sin 00 , 28A B∣ ∣ ∣ ( ∣ ∣ ) ( )

and so on, andmeasurements are self-tested. ,
For self-testability, the proof of the anti-commutation relation betweenB0 andB1 (equation (22)) is crucial.

To prove it, lemma 7 implies that the third unitary observableG, whose real vector lies in the sameB-plane, is
necessary. In the unbiased case whereχ=π/4, the four vectors A0


, A1


, B0


, B1


all lie in the same plane, andAx

can be used as the third unitary observable [19]. However, in the other general case of c p< <0 4, A0


and A1



lie in a differentA-plane, andAx cannot be used anymore. It is not limited, but the optimal operator Fx for Dx
B is a

good candidate forG. Interestingly, in the special case that =F B0 0

 
and =F B1 1

 
, the candidate forG ismissing

in theB-plane, but the correlation in this case is always local.

5. Scheme for self-testing partially entangled state

As shown in section 3, under the conjectured certifiability of Dx
B and Dy

A, the realizations are automatically self-
testable by lemma 5; however, Conjecture 2 has not been proven. Fortunately, however, lemma 7 tells us how to
self-test such realizations irrespective of the validity of the conjecture; it suffices to intentionally introduce a
unitary observable by adding onemore binarymeasurement.

The simplest protocolmay be to add themeasurement ofZB. Let us add a binarymeasurement to the Bell
scenario, such as the Bell 2, 3, 2( )-scenario but onBob’s side only, whose observable isB2 ( =B I2

2 ). Suppose
that the correlators by the original set A A B B, , ,0 1 0 1{ } satisfy the condition in lemma 6, and the geometry of real
vectors is determined asfigure 1, where csin 2 is also determined.When the additional correlators satisfy

q c cá ñ = = á ñ á ñ =A B A Bcos cos 2 , cos 2 , 29x x
A

x2 2 ( )

for both x=0, 1, B2


is ensured to lie in theA-plane and is directed along y¢


. Then, in this protocol,

y y yñ = ñ = ñB Z ZB A2∣ ∣ ∣ can be directly used for proving the anti-commutation relation ofBy (Ax also) as in the
proof of lemma 7.

The additionalmeasurement is not restricted toZB. In the second protocol, suppose that the correlators by
A A B B, , ,0 1 0 2{ }also satisfy the condition in lemma 6, in addition to the original A A B B, , ,0 1 0 1{ }. Then, as y¢


,

B0


, B2


lie in the same plane, B2


is ensured to lie in theB-plane, and again,B2 can be used as the third observable

for proving the anti-commutation relation betweenB0 andB1; the proof of lemma 7 runs similarly, and the
realization is self-tested.

Note thatB2 is also self-tested at the end of both protocols. Obviously, the scheme of the second protocol can
be repeated to addmoremeasurements on both sides of Alice and Bob. In this way, by using the geometry of
figure 1 as a building block, the two-qubit realizations in the formof equation (5)with arbitrary number of
measurements (whose basis lies in theX–Z plane) can be self-tested.

6. Summary

In this paper, we studied the self-testability and extremality from the viewpoint of the geometry of the state
vectors of the realizations for quantum correlations, and showed a condition that determines the geometry

Figure 3. Local unitary transformation used for self-testing.
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uniquely. Interestingly, in the case of the realizations using partially entangled states, the condition for the
unique determination of the geometry is strictly looser than that for the self-testability.

Wefirst showed that the saturation of the TLM inequality for scaled correlators, togetherwith the existence
of a two-qubit realization in the formof equation (5), uniquely determines the geometry of state vectors in both
cases of theD-space and theC-space (lemma 4 and 6). The uniqueness of the geometry generally ensures the
extremality ofD, because it is a unique simultaneousmaximizer of two quantumBell inequalities in theD-
space. In the case of theC-space, however, such quantumBell inequalities are lacking, and the uniqueness of the
geometry is insufficient for the extremality ofC. Indeed, there exists a two-qubit realization such that, despite
being an extremal point ofD, it is not an extremal point ofC due to the convexity of guessing probabilities.
This suggests that the structure ofD is simpler thanC. The complete characterization of the extremal points
ofD is an intriguing open problem.

Wenext showed that, when the conjectured certifiability of the guessing probabilities holds true, the self-
testability in theC-space (hence the extremality ofC) comes to be ensured by the extremality ofD (lemma 5).
Namely, the sufficiency of the extremality criterion conjectured in [23]was shown to rely on the certifiability of
guessing probabilities. The proof of the certifiability (i.e. the proof of the device-independent upper bound of
guessing probabilities) seems quite challenging but attractive, because it would also lead to the discovery of the
information principles [2, 39] behind quantummechanics, and ‘almost quantumness’ [40] aswell.

Moreover, the realizationwith a unique geometry becomes self-testable if and only if another unitary
observable exists on the geometry (lemma 7). Applying this proven fact, we proposed self-testing protocols for
partially entangled two-qubit states, where onemoremeasurement is intentionally added to prove the anti-
commutation relation between observables. This geometrical scheme provides a building block used for amore
complicated geometry. Indeed, repeatedly addingmeasurements by this scheme, a realizationwith an arbitrary
number ofmeasurements can be self-tested. It is an open problemof how robust this scheme is.

As all the knownnonlocal extremal points in the simplest Bell scenario are self-testable, it is natural to expect
that the true extremal criterionmust be the one that determines the geometry of state vectors aswell as the TLM
criterion. The conjectured criterion in [23] fulfills this expectation. Interestingly, although the validity of the
conjecture has not been proven, the property of determining the geometry proves the self-testability of the
realizations in the Bell scenariowithmoremeasurement settings as in the above self-testing protocols.
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AppendixA. Convexity of Dx
B

Let ra x∣ be Bob’s subnormalized conditional state. For any convex decomposition r l r= åa x i i a x
i

∣ ∣
( ) , we have

r r

l r r

l r r

l r r

l r r

= -

= å -

= å - Ä ñá Ä

å - Ä ñá

= å -

-

-

-

-

-



D X

X

i i X I

i i X

X

max tr

max tr

max tr

max tr

max tr , A1

x
B

X
x x B

X
i i x

i
x

i
B

X
i i x

i
x

i
a B a

X
i i x

i
x

i
a Ba

i i
X

x
i

x
i

B
i

1 1

1 1

1 1

1 1

1 1

2 1 2

B

B

B

Ba

B
i

( )

( )

[( ) (∣ ∣) ]( )

[( ) (∣ ∣) ]

( ) ( )

∣ ∣

∣
( )

∣
( )

∣
( )

∣
( )

∣
( )

∣
( )

∣
( )

∣
( ) ( )

( )

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

where a denotes the ancilla. At the last equality, we used the formula = å +¢ ¢ ¢D a m m2x
B

kk kk k k
2 2( ) ∣ ∣ ( ), where

r r= á - ¢ñ¢ -a k kkk x x1 1∣( )∣∣ ∣ are thematrix elements with respect to the eigenstates of r r+ -x x1 1∣ ∣ withmk and

¢mk being the eigenvalues, as shown in appendix A of [32]. See also [33].

Appendix B.Uniqueness of geometry I

First,we explicitly showhow to construct a pair of thequantumBell inequalities (8) and (9) that is simultaneously
saturated by a given geometry offigure 1 (i.e. a given set of the geometrical parameters q q c, ,x

A
y
B{ }). The saturation

condition for thefirst inequality in inequality (11) is that, for º å -X u B1x y xy
B xy

y( ) ,
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q
µ =

D - D
D

á ñ= á ñ

X F
B B

s D X s D X

sin sin

sin
,

, B1

x x
x
B

x
B

B

B B B B

1 0 0 1

0 0
2

1
2

1 1
2

0
2

( )

( ) ( ) ( )

and the coefficients of the quantumBell inequalitiesmust satisfy

D = - D D = D
D D = D D

+ =

u u u u

s D s D

s D s D
q

sin sin , sin sin ,

sin sin sin sin ,
1

4
, B2

c c c c c c c c

c c c c c c c c

c c c c
c

00 00 01 01 10 10 11 11

0 0
2

01 00 1 1
2

11 10

0 0
2

1 1
2

2

( ) ∣ ∣ ( ) ∣ ∣

( ) ( )
( )

( )

where the last equation is the saturation condition for the second inequality of inequality (11). It is then sufficient
to choose for both c=A, B as follows:

q

q

= D = - D
= D = D

= = = +

=
D

D D
D D - D D

=
D

- D D
D D - D D

u a u a

u b u b

s D a s D b q s D s D

a

b

sin , sin ,

sin , sin ,

, , 1 2 ,

1

sin

sin sin

sin sin sin sin
,

1

sin

sin sin

sin sin sin sin
. B3

c c c c

c c c c

c c c c c c c c c

c

c c

c c c c

c

c c

c c c c

00 01 01 00

10 11 11 10

0 1 1 0 0 0
2

1 1
2

11 10

11 10 01 00

01 00

11 10 01 00

( ) ( )

( )

Next, let us show conversely that, for a given set of such coefficients of quantumBell inequalities, the
geometrical parameters satisfying equation (B2) are unique (up to obvious symmetries). Let a º u uc c c

01 00 and
b º u uc c c

10 11. Oncewe choose qD c, Dtan ij
c is determined from equation (B2) as

a q
a q

q
q a

q

q
q

q

D =
- D
+ D

D =
D

D +

D =
D

- D
D =

D

D -
b

b b

tan
sin

1 cos
, tan

sin

cos
,

tan
sin

1 cos
, tan

sin

cos
,

c
c c

c c
c

c

c c

c

c

c

c
c

c

00 01

10

1

1 11 1

c

c c

and as a result,D0
c andD1

c is also determined by qD c as

a q

a b

b q

a b

=
+ + D

+ + +

=
+ - D

+ + +

a

a b

b

a b

D
s q

D
s q

1

4

2 cos
,

1

4

2 cos
. B4

c
c c

c c

c c

c
c c

c c

c c

0
2

0
2

1

1 1

1
2

1
2

1

1 1

c

c c

c

c c

( )
( )

( )
( )

( )

For these solutions to represent the same realization, á ñ = D = DA B D Dcos cosx y x
B

xy
B

y
A

yx
A2 2 2( ) ( ) must

hold for every x and y; hence equation (18)must hold, where the original geometrical parameters appears in
equation (B2) are indicated by an overline.When equation (18) only has a trivial solution of q qD = Dcos cosc c¯ ,
we have =D Dc c

0 0
¯ and =D Dc c

1 1
¯ from equation (B4).Moreover, from f c qD = DD D sin sin 2 sinB B B A

0 1 and
c p 0 4, we have c c= ¯ as f fD = D - D =  Dtan tan tanc c c c

00 10( ) ¯ . From c q= +D cos 2 cosx
B

y
A2 2 2( )

csin 22 , we have q q=cos cosy
A

y
A2 2 ¯ , and similarly q q=cos cosx

B
x
B2 2 ¯ . Considering the possible combination of

signs carefully, it is found that the allowed solutions of equation (B2) are only q q c, ,x
A

y
B{¯ ¯ ¯ }, q q c- -, ,x

A
y
B{ ¯ ¯ ¯ },

p q p q c- -, ,x
A

y
B{ ¯ ¯ ¯ }, and p q p q c+ +, ,x

A
y
B{ ¯ ¯ ¯ }.

AppendixC. Example of strict convexity

Let us consider the two nonlocal correlationsP andQ realized by equation (5) using the following parameters:

q q p q q p c p

q q p q q p c p

= = = = - =

= = = = - =





P

Q

: 0, 2, , 4, 2 6,

: 0, 2, , 4, 2 4,

A A B B

A A B B
0 1 0 1

0 1 0 1

where ò is a small angle ( p< <0 40) to ensure that equation (18) only has a trivial solution. AsP andQ
saturate equation (1) for scaled correlators, they are the extremal points ofD. Let us then consider L
extrapolated fromP andQ as
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l l= + -P Q L1 , C1( ) ( )
whereλ is chosen such that + + - =C C C C 200 01 10 11 atL. Suppose that C C C, ,x

A
y
B

xy{ } is extrapolated by
equation (C1). Because the behavior of L in theC-space satisfies the positivity constraint p ab xy 0( ∣ ) , L is a
local correlation. This implies thatP can also be realized by a convex sumofQ and deterministic correlations,
despite thatP is an extremal point ofD. On the other hand, when d d C, ,x

B
y
A

xy{ } is extrapolated by
equation (C1),L is not allowed in quantummechanics as shown infigure 4. This implies that Dx

B 2( ) and Dy
A 2( )

must be strictly convex for equation (C1). Although it is unknown that this convex-sum realization certainly
realizes d d C, ,x

B
y
A

xy{ }ofP, even an extremal point ofD may be realized as a convex sumdue to the convexity of

Dx
B and Dy

A. Interestingly, as C C C, ,x
A

y
B

xy{ }ofP in theC-space is realized by equation (C1),P is not an extremal
point ofC, despite being an extremal point ofD.

AppendixD.Uniqueness of geometry II

As a nonlocal behavior is considered, themeasurement operators in the realization satisfy ¹ A A0 1 and

¹ B B0 1 [41]. In the case of c = =Ssin 2 1xy
p2 xy , the geometry of real vectors is uniquely determined by the

TLMcriterion as shown in [19]. In the other cases, c = Ssin 2 xy
p2 xy is a solution of

c
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and á ñA Bx y is equal to either one of
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Let us introduce qx
A and q y

B by

c q c qá ñ = á ñ =A Bcos 2 cos , cos 2 cos . D2x x
A

y y
B ( )

Under this parameterization,

c q c= +d cos 2 cos sin 2 . D3x
B

x
A2 2 2 ( )

As H 0, the double sign of the second term in inequality (D1) can be negative for even pairs among the four
possible (x,y), and hence, by adjusting the sign of qsin x

A and qsin y
B, á ñA Bx y is always written as

q q q q cá ñ = +A B cos cos sin sin sin 2 . D4x y x
A

y
B

x
A

y
B ( )

Let us then consider the real-vector representation. Because the scaled correlators saturate equation (1), there
exists real unit vectors Fx


and Ey


such that

= =A B d F B A B d E A, , D5x y x
B

x y x y y
A

x x· · · · ( )
       

and Fx


and By


(Ey


and Ax


) are ensured to lie in the sameB-plane (A-plane) [19]. However, the relationship

between the two planes has not been determined yet.

Figure 4.Two cross sections of theD-space,C11-dB
1 andC11-dA

1 , which containP,Q, and L. The behaviors in the gray region belong to
crypt .When l l= + -P Q L1( ) with l = -1 1

2
(in the limit of  0), the behavior of L in theD-space is not quantum

realizable, whereas the behavior in theC-space is locally realizable.
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Clearly, dx
B is the length of the projection of Ax


to theB-plane, and from the laws of sines and cosines,

=
+ - D

D
d

A B A B A B A B2 cos

sin
, D6x

B x x x x0
2

1
2

0 1
2

( · ) ( · ) ( · )( · ) ( )
       

must hold, whereΔ is the angle between B0


and B1


(not yet determined). From equations (D3) and (D4), we can

introduce fx
B to express A Bx y·

 
as f q-d cosx

B
x
B

y
B( ), andwe have from equation (D6)

q f q qD - D D - - - =cos cos cos cos 2 0. D7B
x
B B B

0 1[ ][ ( )] ( )

As thismust hold for both x=0, 1, the solution of f q qD = - -cos cos 2 x
B B B

0 1( ) is inappropriate unless the
two-planes are perpendicular (and the correlation is local).We then have q= D = DB B cos cos B

0 1·
 

. Let the
projector of y


to theB-plane be yB


. As y = á ñB By y·

 
,

y
q

q
c=

á ñ + á ñ - á ñá ñ D
D

=
B B B B2 cos

sin
cos 2 , D8B

B

B
2 0

2
1

2
0 1

2
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

and hencewe know from equation (D2) that the angle between yB


and By


is q y

B. As yB


lies in theB-plane,

y c
q q

q
=

-
D

B B
cos 2

sin sin

sin
, D9B

B B

B
0 1 1 0 ( )

  

and from equation (D4)wehave y c q=A cos 2 cosx B x
A·

 
, which implies that the angle between Ax


and yB


is

qx
A. From the same argument as above, we have q= DA A cos A

0 1·
 

, which implies that A0


, A1


, and yB


lie in the

same plane. Similarly, we know that B0


, B1


, and yA


lie in the same plane. After all, the geometry of real vectors is

determined as figure 1with y c¢ = cos 2∣ ∣ . The obvious symmetry is q q c, ,x
A

y
B{ }and q q c- -, ,x

A
y
B{ }, which

arises from the ambiguity in adjusting the sign of qsin x
A and qsin y

B.
In this way, without any assumption, the geometry is determined; hence it is unique. In the special case

where = = =+ + + +S S S S00 01 10 11 and = = =- - - -S S S S00 01 10 11, there seem to exist two possible choices for csin 22 .
However, as this contradicts the uniqueness of the geometry, some condition is not satisfied for either choice.
For example, the correlation of the Tsirelson bound, where = =C C 0x

A
y
B and = -C 1 2xy

xy( ) , we also have
= = = =- - - -S S S S 1 200 01 10 11 , butH<0 for this choice.
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