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Abstract. In this analysis we demonstrate the freeze-in realization of a non-abelian vector
boson dark matter (DM). We choose to elaborate an existing SU(2)N extension (N stands for
neutral) of the Standard Model (SM) with an additional U(1) = S′ global symmetry, which
stabilizes the vector boson (X, X̄) as DM through unbroken S = T3N + S′ as the lightest
odd S particle. Apart from showing the right order of the SU(2)N coupling (∼ 10−12–10−13)
required for the correct relic of DM via freeze in, the analysis reveals that the contribution to
the freeze-in production of DM from the decay of a heavier scalar bi-doublet ζ0,±

1 → ζ0,±
2 X is

equally important even after the decoupling of ζ0,±
1 from the thermal bath. This treatment

of computing the relic abundance in context with freeze-in is practically model-independent
and can be applied to all the scenarios where the DM is produced from the decay of a massive
particle which was once in equilibrium with the thermal bath. This bi-doublet earlier was in
equilibrium with the visible sector due to SM SU(2)L coupling. Moreover, the neutral compo-
nent of SU(2)N scalar triplet (∆), responsible for neutrino mass generation in this framework,
turns out to serve as additional DMs in the model and offers a multipartite freeze-in DM set
up to explore. The allowed parameter space is obtained after estimating constraints from
CMB, BBN and AMS-02 bound. This exercise nicely complements the freeze-out realization
of (X, X̄) as weakly interacting massive particle (WIMP) and distinguishes it through stable
charge track signature at collider compared to leptonic signal excess as in WIMP scenario.
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1 Introduction

A particle dark matter (DM) is highly motivated from astrophysical observations. However,
laboratory experiments like direct search and collider searches have not detected any signals
yet. It is therefore an important exercise to look for possibilities where DM interaction with
the Standard Model (SM) is suppressed, yet produces correct relic density as has been dic-
tated by anisotropies in Cosmic Microwave Background Radiation (CMBR). Among several
possibilities [1, 2], freeze-in mechanism serves as an interesting alternative [3–8]. In such a
case, the DM is assumed not to be in equilibrium with thermal bath in the early universe
owing to its tiny coupling to the visible sector. It is then produced then non-thermally via
decay or annihilation of particles in thermal bath and freezes in once the temperature drops
below DM mass to yield correct relic density (Ωh2 ∼ 0.1198 [9]). Several studies have been
done in this direction to show that freeze-in can give rise to DM mass ∼TeV scale, but
the coupling with visible sector requires to be extremely tiny . 10−10. Therefore, such DM
models are classified as feebly interacting massive particle (FIMP) (for a review see [10]), as
opposed to the thermal freeze-out of weakly interacting massive particle (WIMP).

Our aim here is to demonstrate the freeze-in of a non-abelian vector boson DM [11]
(see [12] for an abelian example). We choose a well motivated SU(2)N extension (N stands for
neutral1) of the Standard Model (SM) with an additional U(1) = S′ global symmetry, which

1This means that the SU(2)N vector bosons are electromagnetic charge neutral.
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stabilizes the lightest of the vector boson (X, X̄) as DM through unbroken S = T3N +S′ [13].
Spontaneous symmetry breaking of SU(2)N results in massive gauge bosons. None of the SM
particles are charged under SU(2)N and therefore X, X̄ do not have a direct coupling to the
visible sector besides Higgs portal which is required to be tiny to avoid conflict with Higgs
data. This naturally leads to the possibility of FIMP nature of X, X̄ as DM. The model,
in addition, possesses several features, for example, addressing neutrino mass generation via
inverse seesaw of type-III irrespective of whether the DM is undergoing freeze-in or freeze-out
and a possible unification to SU(7).

The DM (X, X̄) in this model is produced from the decay of a scalar bi-doublet ζ0,±
1 ,

owing to SU(2)N interaction.2 Naturally, the correct relic density of X, X̄ via freeze-in
indicates that the SU(2)N gauge coupling needs to be ∼ O(10−10). One of the salient
features of this study is to show that the contribution to DM production from the decay of
ζ0,±

1 remains significant even after the freeze-out of ζ0,±
1 . We point out that such a feature

is inevitable whenever the decay is slow enough, although not much elaborated in FIMP
literature. Moreover, our formulae for computing the yield of the DM from the decay of a
decoupled species is actually model-independent, and can be applied to any scenario where the
freeze-in production of the DM is taking place via the decay of a heavy particle, which shared
a common temperature with the thermal bath in the early universe. The subsequent change
in the allowed parameter space due to the ‘late decay’ turns out to be quite noteworthy. The
SU(2)N scalar triplet (∆) required for neutrino mass generation also provides with additional
DM components in this model. The neutral components of ∆ turn out to be stable at the
scale of the universe life time, thanks to the small SU(2)N gauge coupling in the freeze-in
mechanism advocated here. Therefore the model also serves as a multipartite FIMP DM set
up, although the DM components do not have sizable interaction with each other. Hence,
the freeze-in of each individual component remains unaffected by the presence of others, but
provides with a sizable range of allowed parameter space to span the whole under abundant
region in the absence of direct search constraint for these FIMP like DMs.

However, stringent bounds on the lifetime of semi-stable charged and neutral particles
(ζ0,±

1,2 ) arises from Big Bang Nucleosynthesis (BBN), which essentially rules out hadronically
decaying particle with lifetime τ > 100 sec [14, 15]. CMB, on the other hand, puts a lower
bound on the lifetime of DM decaying to SM particles, which can potentially alter the
ionization history (and hence the power spectrum) of CMB [16]. Experiments like AMS-
02 [17] also puts lower bound on decaying DM from non-observation of anti proton excess.
In our case, as we shall elaborate, bounds from CMB and AMS-02 are rather lose but BBN
plays a crucial role by eliminating a large portion of the parameter space allowed from relic
density condition.

This same model from WIMP perspective, has already been thoroughly explored in [13,
18]. The present exercise therefore provides an opportunity to compare two different real-
izations (freeze out versus freeze in) of the same model. In the following, we see that this
provides not only a distinction in terms of SU(2)N gauge coupling, but also in terms of DM
mass. For example, in case of freeze-in, we are bound to stick to low DM mass: mX . 50 GeV
(depending on the contribution of X to total relic abundance), while the WIMP scenario is
valid for DM mass even upto ∼TeV. Finally, the distinction between the WIMP and FIMP
realization can also arise in collider signature of the model. For WIMP case, it was shown
that hadronically quiet single and two lepton channels could verify the existence of such a

2If the decay is kinematically forbidden, then annihilation of ζ0,±
1 to produce (X, X̄) becomes important.
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Particles SU(3)c SU(2)L U(1)Y SU(2)N S′

X1,2,3 1 1 0 3 0

n = (n1, n2)L,R 1 1 0 2 1/2

χ ≡ (χ1, χ2) 1 1 0 2 1/2

ζ ≡

ζ0
1 ζ0

2

ζ−1 ζ−2

 1 2 −1/2 2 −1/2

∆ ≡

∆2/
√

2 ∆3

∆1 −∆2/
√

2

 1 1 0 3 −1

Φ ≡

φ+

φ0

 1 2 1/2 1 0

Table 1. Relevant particle content of the model and their charges under SU(3)c⊗SU(2)L⊗U(1)Y ⊗
SU(2)N ⊗ S′. SU(2)L doublets are indicated by vertical parenthesis with T3L = ±1/2 for up and
down components respectively. SU(2)N doublet is depicted by entries in horizontal parenthesis with
T3N = ±1/2 to left and right fields respectively.

model framework. On the contrary, in FIMP realization, the signature can arise through
stable charge tracks or displaced vertices of ζ±1,2 as demonstrated here.

The paper is organised as follows: in section 2 we have provided the details of the model
including the symmetry breaking and spectrum of the physical particles that are important
for the present phenomenology. Then in section 3 we have shown how light neutrino mass
can be generated via inverse seesaw mechanism in this framework. Section 4 contains the
main DM analysis under which in subsection 4.1 and 4.1.1 we have discussed in detail the
yield for X and ∆ by solving the Boltzmann equation (BEQ) and in subsection 4.1.2 we have
elaborated the impact of BBN and CMB bounds on the parameter space of this model. In
section 5 we have shown the possible signatures that this model may yield at the colliders.
Finally in section 6 we have summarized our findings.

2 The model

We have considered a SU(2)N extension of the SM (N stands for neutral), where the lightest
of the gauge bosons acts as a DM candidate. The particle content is chosen in such a way so
that the spontaneous symmetry breaking (SSB) of SU(2)N to yields massive gauge bosons
and at the same time it is also possible to generate correct light neutrino mass successfully
as proposed in [13]. All the SM fermions are singlet under the new SU(2)N . The stability of
DM is ensured by an imposed global U(1) symmetry (S′), such that S = S′ + T3N remains
unbroken.

The new particles introduced in the model and their charges under SU(3)C ⊗ SU(2)L⊗
U(1)Y⊗ SU(2)N ⊗ S′ are noted in table 1. In the gauge sector, there are three SU(2)N
gauge bosons X1,2,3, where X(X) = X1∓iX2√

2
turns out to be mass degenerate and serves

as DM component(s) of the model. In the fermion sector, three families of Dirac fermion
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Particles S′ S = S′ + T3N

X(X̄) 0 +1(−1)

X3 0

n1L,R 1/2 +1

n2L,R 0

χ1 1/2 +1

χ2 0

ζ1 −1/2 −1

ζ2 0

∆1 −2

∆2 −1 −1

∆3 0

Table 2. S charge assignment for the new particles added in the model as introduced in table 1.

doublets n = (n1, n2)L,R (under SU(2)N ) are introduced which mediate the interactions of
the dark sector (non-zero S charged particles as noted below) with the SM sector. The
scalar sector consists of one SU(2)L scalar doublet Φ (which contains the 125 GeV Higgs
boson), one SU(2)N doublet χ, one scalar bi-doublet ζ and one SU(2)N scalar triplet ∆. The
Dirac fermion doublets, together with the scalar triplet (∆) are required for generating light
neutrino masses, which shall be discussed in the next section. The scalar doublet and bi-
doublets participate in spontaneous symmetry breaking (SSB) to generate masses for all the
particles involved in the model. The minimization condition along with the physical states
that appear after SSB are elaborated below. It is important to note here that SU(2)N ⊗S′ →
S(= S′ + T3N ) occurs via the non-zero vacuum expectation value (VEV) of SU(2)N scalar
doublet: 〈χ2〉 = u2. In table 2 we have tabulated the S charge assignments for the new
particles added in the model. All the SM particles have zero S charge. Therefore, particles
with non-zero S charge will be protected from decaying into the SM. We can assume X(X̄)
to be the lightest of the particles with non-zero S charge to qualify as DM candidate(s).
Furthermore, neutral components of scalar triplet ∆1,2,3 can be stable (if SU(2)N coupling is
assumed to be very small for successful freeze-in of X(X̄)) and be part of a multi-component
DM framework.

The scalars which acquire VEV are: 〈χ2〉 = u2, 〈ζ0
2 〉 = v2, 〈∆3〉 = u3, and 〈φ0〉 = v1.

Note that the VEV assignment is different here from the SU(2)N extension considered in [19],
where 〈∆0

1〉 is also non-zero. One should note here that this particular assignment of VEVs for
different scalar multiplets of the model is the only possibility to keep the SM ×S symmetry
intact, so that VEVs are assigned to only those neutral scalars which have zero S-charge;
exception of which can lead to breaking of the S-charge spoiling the underlying symmetry of
the Lagrangian and render the vector boson DM unstable. For example, SU(2)N breaking
is only possible through 〈χ2〉. This, in turn, ensures that only ζ2 can acquire a non-zero
VEV due to the term (µ1Φ̃†ζχ+ H.c.) in the scalar potential (see eq. (2.3)). Similarly, it is
straightforward to show from the term

(
µ2χ̃

†∆χ+ H.c.
)
, that only ∆3 can acquire a non-
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zero VEV to keep S-symmetry unbroken. One can also check by computing the Hessian3 of
the scalar potential that with our choice of the VEVs, the potential satisfies the necessary
condition to be at its local minimum.

With this VEV choices, X1,2 bosons have equal masses in this model, and more impor-
tantly S = S′ + T3N global symmetry remains unbroken unlike in [19] as mentioned in the
last paragraph. Also note that U(1)EM remains unbroken after the electroweak symmetry
breaking as no scalar with EM charge receives a non-zero VEV. This ensures that the photon
remains massless. The masses of the other gauge bosons are then given by:

m2
W =

1

2
g2

2

(
v2

1 + v2
2

)
, m2

X =
1

2
g2
N

(
u2

2 + v2
2 + 2u2

3

)
, m2

Z′ '
1

2
g2
N

(
u2

2 + v2
2 + 4u2

3

)
,

(2.1)

where Z–Z ′ mixing matrix is given by:

m2
Z,Z′ =

1

2

(g2
1 + g2

2

) (
v2

1 + v2
2

)
−gN

√
g2

1 + g2
2 v

2
2

−gN
√
g2

1 + g2
2 v

2
2 g2

N

(
u2

2 + v2
2 + 4u2

3

)
 . (2.2)

The choice of the VEVs and couplings required in the present scenario is mainly dictated
by the DM phenomenology. Since in this work we are interested to see the freeze-in aspect
of the SU(2)N vector bosons (as mentioned in section 1), we require the gauge coupling
gN to be extremely small (. O(10−10)) in order to keep the lightest gauge boson out of
equilibrium. We will carefully evaluate the correct order of the coupling and explore effects
of such small coupling in the DM phenomenology. An immediate consequence of this is that
gN . O(10−10) results in a very large u2 ∼ O(1010) GeV for mX ∼ O(TeV). Therefore
v2 � u2 and gN � g1,2, which ensures small Z–Z ′ mixing [20]. This hides Z ′ of this
model from being observed at the LHC, and adds to the freedom of choosing mZ′ as a free
parameter. This should again be contrasted to the case in [21], where there is a minimum
limit on MX1,2,3 > 1 TeV, f or the degenerate vector boson DM case to respect the bound
from Z ′ search data. Furthermore, owing to u3 � u2, it is clear that the X boson masses
are nearly degenerate, i.e. mZ′(mX3) ' mX .

With this particle content at our disposal, we can write the most general scalar potential
as [13]:

V = µ2
ζ Tr(ζ†ζ) + µ2

ΦΦ†Φ + µ2
χχ
†χ+ µ2

∆ Tr(∆†∆) + (µ1Φ̃†ζχ+ µ2χ̃
†∆χ+ H.c.)

+
1

2
λ1[Tr(ζ†ζ)]2 +

1

2
λ2(Φ†Φ)2 +

1

2
λ3 Tr(ζ†ζζ†ζ) +

1

2
λ4(χ†χ)2 +

1

2
λ5[Tr(∆†∆)]2

+
1

4
λ6 Tr(∆†∆−∆∆†)2 + f1χ

†ζ̃†ζ̃χ+ f2χ
†ζ†ζχ+ f3Φ†ζζ†Φ + f4Φ†ζ̃ ζ̃†Φ

+ f5(Φ†Φ)(χ†χ) + f6(χ†χ) Tr(∆†∆) + f7χ
†(∆∆† −∆†∆)χ+ f8(Φ†Φ) Tr(∆†∆)

+ f9 Tr(ζ†ζ) Tr(∆†∆) + f10 Tr[ζ(∆†∆−∆∆†)ζ†],

(2.3)

where

Φ̃† = (φ0,−φ+), χ̃† = (χ2,−χ1), ζ̃ =

 ζ+
2 −ζ+

1

−ζ̄0
2 ζ̄0

1

 . (2.4)

3The Hessian (H) is a multi-dimensional matrix in the field space of the scalar potential, consisting of

second-order partial derivatives with respect to the fields (φi): H = ∂2V
∂φi∂φj

.
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Since u3, v1, v2 � u2 as argued above, the minimization conditions yield the following condi-
tions for the VEVs to the scalar potential parameters:

u2
2 ≈ −

µ2
χ

λ4
(2.5)

v2
1 ≈ −

µ2
Φ + f5u

2
2

λ2
(2.6)

v2 ≈ −
µ1v1u2

µ2
ζ + f1u2

2

(2.7)

u3 ≈ −
µ2u

2
2

µ2
∆ + (f6 + f7)u2

2

(2.8)

where from the last line it follows that unless u2 � µ∆, we should have µ2 ≈ u3.
The SU(2)N triplet scalars ∆1,2,3, remain complex with masses given by4

m2
∆1
≈ −4f7u

2
2 −

2µ2u
2
2

u3
, (2.9)

m2
∆2
≈ −2f7u

2
2 −

2µ2u
2
2

u3
, (2.10)

m2
∆3
≈ 2

u2
2 µ2

u3
. (2.11)

Note that since µ2 ≈ u3, ∆3 is at the same scale as u2, and f7 determines the mass
differences between ∆1, ∆2 and ∆3 as before [18]. The rest of the neutral physical scalars of
our model are:

h =
1√

v2
1 + v2

2

(
v1Re(φ2) + v2Re(ζ0

2 )
)
, (2.12)

ξ0
2 =

1√
v2

1 + v2
2

(
−v2Re(φ2) + v1Re(ζ0

2 )
)
, (2.13)

ξ0
1 ≈

1√
v2

2 + u2
2

(
−u2ζ

0
1 + v2χ1

)
, (2.14)

η0 ≈ −1√
v2

1 + u2
2(1 + v2

1/v
2
2)

(
u2Im

(
φ0

2

)
+
u2v1

v2
Im
(
ζ0

2

)
+ v1Im (χ2)

)
, (2.15)

with masses given by:

m2
h ≈ 4λ2v

2
1, (2.16)

m2
ξ0
2
≈ −2µ1u2v1

v2
, (2.17)

m2
η0 ≈ −

2µ1u2v1

v2

(
1 + (v2/v1)2

)
, (2.18)

m2
ξ0
1
≈ 2 (f2 − f1)

(
u2

2 + v2
2

)
− 2µ1u2v1

v2
− 4f10u

2
3, (2.19)

m2
χR2
≈ 4λ4u

2
2. (2.20)

4See appendix A for more details.
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Scale |µ1| . 10−9 GeV |µ1| . 10−9 GeV, f1 = f2

O(1013 GeV) ∆1,2,3, ζ
−
1 , ξ

0
1 , χ

R
2 ∆1,2,3, χ

R
2

O(1 TeV) H+, η0, ξ0
2 , n1, n2 H+, η0, ξ0

1 , ξ
0
2 , ζ
−
1 , n1, n2

O(100 GeV) W±, Z,H, t

O(1 GeV) X,Z ′, b, c, τ

O(< 1 GeV) e, µ, νe, νµ, s, u, d

Table 3. Spectrum of physical particles appearing at different scales assuming gN ∼ 10−13, compat-
ible with freeze-in requirement of X(X̄). In the dark matter analysis we will further assume f1 ≈ f2,
such that both ζ−,01 are brought down to ∼TeV scale.

From the two charged scalars, ζ−1 doesn’t mix and is physical, while H+ is an admixture
of φ+ and ζ+

2 :

H+ =
1√

v2
1 + v2

2

(
v2φ

+ + v1ζ
+
2

)
. (2.21)

The masses of the charged scalars in terms of the scalar potential parameters and VEVs are
as follows:

m2
ζ−1
≈ 2(f2 − f1)u2

2 −
2µ1u2v1

v2
− 4f10u

2
3, (2.22)

m2
H+ = 2

(
v2

1 + v2
2

)(
f3 − f4 −

µ1u2

v1v2

)
. (2.23)

The VEV u2 being very large, dictates the scalar masses predominantly. Note that χ2

and ∆1,2,3 are at the same scale as u2. For other scalars, dominant contribution arises from
the presence of terms proportional to µ1u2v1/v2 (except the SM Higgs). If we require the
masses of these new scalars to be at TeV scale, we should have m ∼ 10

√
µ1u2 ∼ 1 TeV, which

requires |µ1| . 10−9 GeV. In that case, H+, η0, ξ0
2 can all be at O(1 TeV) scale. Without

any further assumptions ∆1,2,3, ξ
0
1 , ζ

−
1 , χ

R
2 are all around the u2 scale and very heavy:

O(1013 GeV).

However, as we will demonstrate the freeze-in of X is mainly dictated by ζ0,−
1 decays,

and a large m
ζ0,−
1

mass will produce over abundance of the DM. In order to avoid the

overabundance of X, we need m
ζ0,−
1

. 10 TeV; which can be achieved by setting f2 = f1

and cancelling the over powering u2 term (see eq. (2.22)). In table 3 we have listed the
physical particles in our model (including SM) with their corresponding mass scales that fit
the freeze-in requirement for the vector boson DM. It is also important to mention here that
the correct DM relic density via freeze in of X allows mX to vary in a large range between
few GeV’s to few hundred GeV’s, but the heavier DM masses are constrained by BBN data.
Therefore we have listed them in the range of O(1 GeV) in table 3. Similarly, n1,2 masses
can also be as large as ∼ O(105) GeV depending on the Yukawa coupling as we demonstrate
in the next section although they have been classified to lie in O(1 TeV) in the table 3.

We would like to verify the alignment limit of the chosen vevs in the model. At low
energies, we can identify SU(2)L scalar doublets (Φ, ζ̃2) of our model with (Φ1,Φ2) of the

– 7 –



J
C
A
P
0
2
(
2
0
2
0
)
0
2
9

usual two Higgs doublet model (2HDM) [22–24]. In our case tanβ = v2/v1 � 1, while
tanα ≈ −v1/v2, where β and α diagonalize the mass-squared matrices of the scalars and
pseudoscalars respectively. Therefore, we have an approximate alignment as in Type-I case
of 2HDM i.e. cos(β − α) ≈ 0, in the decoupling limit (v2 � v1 � u2). We would like to
emphasize here that this alignment results in recovering a CP-even scalar mass eigenstate
with similar gauge, Yukawa and self interactions at tree level as those of the SM Higgs boson.5

The leading contribution to this approximation is given by:

cos(β − α) ≈ (
√

2− 1)
v2

v1
+O

(
λ2v

2
2

µ1u2

)
≤ 1.7× 10−3 (2.24)

which satisfies the CMS limits on type-I 2HDM safely lies within the CMS limits on Higgs
couplings [25].

3 Neutrino mass

As already elaborated in [13, 18], the generation of light neutrino mass is a novel feature
of this model addressed together with DM. In principle, the light neutrino mass generation
mechanism is independent of DM phenomenology. However, we will take a quick tour of
the neutrino sector here and advocate a subtle phenomenological connection to the freeze-in
prospect of the DM, in the light of mass scales introduced in table 3.

The gauge and S invariant Yukawa terms responsible for neutrino mass generation in
this model are given by:

fζ
[(
νLζ

0
1 + eLζ

−
1

)
n1R +

(
νLζ

0
2 + eLζ

−
2

)
n2R

]
(3.1)

f∆

[
n1n1∆1 + (n1n2 + n2n1) ∆2/

√
2− n2n2∆3

]
. (3.2)

The lepton number is conserved in (3.1) with n carrying L = 1, and is broken to lepton
parity, i.e. (−1)L by the nn terms in (3.2). After SSB we have the following mass terms for
the neutrinos:

fζ v2 νLn2R − fL∆ u3 n2Ln2L − fR∆ u3 n2Rn2R + h.c. (3.3)

where fζ and f∆ are 3 × 3 matrices and f∆ is further classified to address left handed
(fL∆) and right handed (fR∆) Yukawa couplings separately. The neutrino mass matrix in the
(νL, n2R, n2L) basis is then given by:

Mν =


0 mD 0

mD m′2 M

0 M m2

 , (3.4)

where each entry is a 3 × 3 matrix with mD = fζ v2, m′2 = fR∆ u3, m2 = fL∆
∗
u3, and M is

a free Dirac mass term in M (n2Ln2R + n2Rn2L). Thus, the inverse seesaw neutrino mass is
given in the form (assuming fR∆ ' fL∆ ' f∆):

mν '
m2
Dm2

M2
= f2

ζ f∆

( v2

M

)2
u3. (3.5)

5Note that, since no scalar induces a charge breaking VEV, hence the photon remains identically massless
independent of the decoupling limit.
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Figure 1. L.h.s.: contours showing light neutrino massmν ∼ 0.1 eV for different choices of the Yukawa
coupling f∆ = {10−5, 10−6} (in blue and red respectively) in fζ − u3 plane when u3 ∼ O(100 GeV)
and M ∼ O(TeV). R.h.s.: contours satisfying light neutrino mass (mν ∼ 0.1 eV) in fζ–f∆ plane for
two different choices of n1,2 masses M : {104, 105}GeV (in red and blue curves respectively) with
u3 = 100 GeV.

From here we see that if we assume u3 ∼ O (100 GeV) and M ∼ O (1 TeV), we can
generate light neutrino mass in the correct ballpark for f∆ ∼ O

(
10−6

)
and fζ ∼ O(1). This

is shown in the l.h.s. of figure 1 where the two contours correspond to light neutrino mass
mν ∼ 0.1 eV for smaller values of f∆ : {10−5, 10−6} in blue and red respectively. One can
however, choose a less fine-tuned f∆ ∼ O (1) at the expense of making the RHNs super heavy
∼ 105 GeV. This is depicted in the r.h.s. of figure 1 where we have chosen a fixed u3 = 100 GeV
and obtained contours of correct neutrino mass (mν ∼ 0.1 eV) for two different choices of
M : {104, 105}GeV (red and blue curves respectively) in the plane of fζ − f∆. We would
like to mention here that the second choice of heavy n1,2 is more desirable as it does not
require the Yukawa couplings to be extremely fine-tuned, i.e. ∼ O(10−6) and secondly will
help us in addressing the freeze-in of X(X̄) as the only possible decay mode of ζ±,01 . More
interestingly, it will also distinguish the collider signature of this model from that of the
WIMP example [18] (details in section 5).

4 Dark sector

In this set-up we assume X to be the lightest non-zero S charge particle and hence a DM
candidate as stated in section 2. This choice is even more natural when gN is considered small
as we have here for the freeze-in of X. Because of this, X is not in thermal equilibrium in the
early universe and is produced via the decay or annihilation of an odd-S particle that can be
in thermal bath. Therefore, in our model, X can be produced via freeze-in from the decays
of the scalar triplet ∆ (figure 2) and the bi-doublet scalar components ζ0,±

1 (figure 3) when
kinematically accessible. It is important to note that the decay occurs before and after the
decoupling of the heavier particle from the thermal bath and we carefully illustrate how the
‘late decays’ can contribute significantly to the relic density of DM. To be compatible with
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Degenerate ∆ (f7 = 0) Non-degenerate ∆ (f7 6= 0)

Production mechanism of ∆ Freeze-Out Freeze-In Freeze-Out Freeze-In

Scalar quartic coupling f8 O(1) O(10−12) O(1) O(10−12)

Table 4. Different production scenarios for ∆’s, and their dependence on f7,8 couplings. Throughout
this study the freeze-in of X is assumed.

Figure 2. Decay of ∆’s at tree level to tt̄ (left) and decay of ∆3 via 1-loop to SM neutrinos (right).

the required relic abundance via freeze-in, the coupling requires to be gN ∼ 10−15–10−10,
which in turn results in a very high mass scale for the ∆’s as explained in section 2. The
mass hierarchy among different components of the ∆ (namely, ∆1,2,3) is controlled by the
parameter f7. If we assume f7 = 0 then all three components have the same mass. ∆’s can be
produced from the Higgs quartic interaction, which is a function of f8. Therefore, freeze-in
production of ∆ requires f8 ∼ 10−12, while for freeze-out: f8 ∼ 1. The Feynman graph for
the production of ∆ is shown in figure 4. For simplification, we assume f9,10 � f8 so that
the ∆ ↔ ζ mixing and conversions can be neglected. We will show that ∆’s are naturally
stable in the freeze-in scenario (for gN ∼ 10−15–10−10, f8 ∼ 10−12), and we have {∆1,2,3}
as long-lived relics that contribute to the DM abundance in addition to X(X̄). Different
production possibilities of ∆, depending on the choice of the model parameters and possible
degeneracy is classified in table 4.

We primarily focus on the degenerate scalar triplet scenario with f7 = 0 and calculate
the yield of the DM components ({X,∆1,2,3}) via freeze-in by solving Boltzmann equations
(BEQ) in subsection 4.1.

4.1 Degenerate ∆’s with f8 ∼ O(10−12)

The masses of particles in ∆ triplet are degenerate if f7 = 0. In this case, ∆1,2,3 can decay via
the tree level diagram on the l.h.s. of figure 2. This diagram is only possible after the EWSB
when ∆3 mixes with the Higgs via f8

(
Φ†Φ

)
tr
(
∆†∆

)
. The effective vertex for ∆3 → tt̄ decay

is ∼ f8mtu3/m
2
∆3

. Since m∆3 ∼ O(1013 GeV) and f8 ∼ O(10−12) in the freeze-in scenario,
the decay vertex factor is tiny. This results in a very large lifetime for ∆3. As an estimate,
if we set m∆3 = 1013 GeV, f8 = 10−12 and u3 = 100 GeV, this decay width turns out to be
2 × 10−57 GeV, which dubs into ∼ 6 × 1032 sec in terms of decay lifetime. This is of course
much larger than lifetime of the universe, which is ∼ 1017 sec. This makes all of the ∆’s
stable.6

6If we calculate the lifetime of ∆1 from the decay ∆1 → X̄X̄tt̄ turns out to be 6 × 1034 sec for similar
choices of gN = 10−13, f8 = 10−12 and mX = 5 GeV.
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Figure 3. Left: decay of ζ0,±
1 to ζ0,±

2 and X resulting in production of X via freeze-in for gN ∼
O
(
10−13

)
. Right: decay of ζ±2 to SM final states after SU(2)N is broken.

On the other hand, the loop-induced decay of ∆3 to SM neutrinos (r.h.s. of figure 2), is
possible even before the EWSB mediated by Yukawa couplings with n2. The decay width for
this process7 is understandably small as it is proportional to the SM neutrino mass. Even if
we assume the Yukawa couplings involved in this decay to be fζ ∼ O(1) and f∆ ∼ O(10−6),
the decay width turns out to be ∼ 4.75 × 10−65 GeV for mn2 ∼ 1 TeV and mζ2 ∼ 200 GeV.
Therefore, with a lifetime of 1041 sec, we conclude that ∆3 (and hence ∆1,2) is always a
long-lived relic. X is kinematically stable and the prime DM candidate of the model with
mX < mζ1 ,m∆2 . If we further assume gN ∼ O(10−13), then ζ0,−

1 → X + ζ0,−
2 will produce X

via freeze-in mechanism (l.h.s. of figure 3). Note that after spontaneous breakdown of SU(2)N ,
bi-doublet ζ breaks into two doublets, i.e.

(
ζ0

1 , ζ
−
1

)
&
(
ζ0

2 , ζ
−
2

)
. After the electroweak SSB,

ζ0,−
2 components will decay as shown in the r.h.s. of figure 3. As mentioned above, we are

assuming f9,10 � f8 for simplicity, such that ∆↔ ζ conversion is negligible. In the following
subsection we calculate abundance for both X and ∆ using appropriate BEQ.

4.1.1 Computation of yield for ∆ and X

Let us first estimate the yield of ∆, which become stable due to small f8 and contribute to
DM relic density as elaborated in the last section. The rate of change of number density of
∆ is governed by the following BEQ:

ṅ∆i + 3Hn∆i =

∫
dΠΦ dΠΦ∗ dΠ∆i dΠ∆∗i

(2π)4δ4(pΦ + pΦ∗ − p∆i − p∆∗i
)

×
[
|M|2ΦΦ∗→∆i∆∗i

fΦfΦ∗(1 + f∆i)(1 + f∆∗i
)

−|M|2∆i∆∗i→ΦΦ∗ f∆if∆∗i
(1 + fΦ)(1 + fΦ∗)

]
,

(4.1)

where dΠi ≡ d3pi/(2π)32Ei is the phase space factor, and number density is given by

ni =
gi

(2π)3

∫
d3p fi(p), (4.2)

where gi denotes the effective relativistic degrees of freedom and H is the Hubble constant.
Following figure 4, the only way of producing ∆ or depleting its number density occurs
through the quartic interaction with Higgs (H). We are focusing on the freeze-in production

7The amplitude for the loop diagram has been computed manually and cross-checked using Package-X [26].
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Figure 4. Production of ∆ via contact interaction from the annihilation of SM Higgs before EWSB.
This channel is proportional to the coupling f8.

of ∆ before EWSB and after SSB of SU(2)N . Higgs can then produce a pair of superheavy
∆ only beyond the threshold center-of-mass (C.O.M) energy s ≥ 4m2

∆.
Now, assuming negligible initial abundance for ∆i’s, we can set f∆i = 0. We can

also neglect the Pauli-blocking/stimulated emission effects, i.e. fi � 1. Therefore, eq. (4.1)
simplifies to

ṅ∆i + 3Hn∆i =
T

512π6

∫ ∞
4m2

∆

ds dΩ |M|2ΦΦ∗→∆i∆∗i
PΦΦ∗ P∆i∆∗i

K1(
√
s/T )/

√
s, (4.3)

where, T is the temperature, s is the C.O.M energy of the production process ΦΦ∗ → ∆i∆
∗
i

and we defined Pij as [27]:

Pij ≡
[
s− (mi +mj)

2
]1/2 [

s− (mi −mj)
2
]1/2

2
√
s

=

√
s

4
−m2

i . (4.4)

Since |M|2ΦΦ∗→∆i∆∗i
= f2

8 , eq. (4.3) simplifies to:

S · Ẏ∆ =
T · f2

8

512π5

∫ ∞
4m2

∆

ds
√
s− 4m2

∆

√
s− 4m2

ΦK1(
√
s/T )/

√
s, (4.5)

where the number density is converted to comoving yield, scaled as Y∆ = n∆/S and S =
2π2gS? T

3/45 is the entropy and mΦ = 0. Using Ṫ ≈ −T · H, and x ≡ m∆/T we rewrite
eq. (4.5) as:

dY∆

dx
=

45Mpl f
2
8 x

3

1024 gS?
√
gρ? 1.66π7m4

∆

∫ ∞
4m2

∆

ds
√
s− 4m2

∆K1(x ·
√
s/m∆), (4.6)

so the yield for ∆i can be written as:

Y∆i =
0.10588Mpl f

2
8

π7m∆i

∫ ∞
0

dx
x2

gS?
√
gρ?
·K1(x)2 ≈ 3.244× 10−7

(
Mpl

m∆i

)
f2

8 , (4.7)

where the last equality only holds if we assume a constant relativistic DOF g? ≈ 100 during
the freeze-in of ∆i’s. The total relic abundance of ∆’s, i.e. Ω∆ = 3Ω∆i owing to its degeneracy
is given by

Ω∆ · h2 = 3×
2970m∆ Y

∞
∆i

cm−3

1.88× 10−29 g · cm−3
≈ 1021f2

8 . (4.8)
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We see that for f8 ∈ 6.19× [10−13, 10−12], we get relic density in the correct ball park, when
the corresponding relic density of ∆ is Ω∆ ·h2 ≈ [%1,%100] of the observed DM relic density.

We now focus on X. The relic abundance of X is coming from the ζ0,−
1 decays (see

figure 3). We also assume that n1,2 is heavier than ζ1, so that ζ1 → ζ2 + X constitutes
100% decay branching fraction of ζ1. The contributions from the ∆ decays in figure 2, are
exceedingly slow for small f8. This makes ∆ a DM candidate (as explained before) with neg-
ligible contribution to the freeze-in production of X. The production of X from annihilation
(ζ1ζ1 → XX) is much more suppressed due to the presence of g2

N in the amplitude and can
be neglected. Therefore, the contribution to the number density of X can then be written as:

ṅX̄ + 3HnX̄ = 2

∫
dΠX̄ dΠζ1 dΠζ2(2π)4δ4(pζ1 − pζ2 − pX̄)

×
[
|M|2ζ1→X̄+ζ2

fζ1(1 + fX̄)(1 + fζ2)− |M|2ζ2+X̄→ζ1 fζ2fX̄(1 + fζ1)
]

= 2

∫
dΠζ1 e

−(Eζ1−µζ1)/T ′ e−(mζ1/Eζ1 )θ(t−tD)Γ·(t−tD) (2mζ1gζ1) Γζ1→ζ2+X̄ ,

(4.9)

where θ is the step function, tD is the ζ decoupling time from the SM particles, and the factor
of 2 arises from same contribution of ζ0

1 and ζ−1 decays to X production. It is important
to note that when ζ1 is in thermal equilibrium with the hot plasma, T = T ′, but after ζ1

decouples: T 6= T ′. We have set fX̄ = 0 in accordance with freeze-in prescription and used:

Γ ≡ Γζ1→ζ2+X̄ =

∫
1

2mζ1

|M|2
ζ1→X̄+ζ2

gζ1
(2π)4δ4(pζ1 − pζ2 − pX̄) dΠX̄ dΠζ2 , (4.10)

where gζ1 = 1. Since ζ is a cold relic then Eζ1 ≈ mζ1 for t > tD, which simplifies eq. (4.9):

ṅX̄ + 3HnX̄ = 2e−θ(t−tD)Γ·(t−tD)

∫
d3pζ1

(2π)3 γζ1
e−(Eζ1−µζ1)/T ′ Γζ1→ζ2+X̄

=
m2
ζ1

Γζ1→ζ2+X̄

π2
T ′K1(mζ1/T

′) e
µζ1
T ′ e−θ(t−tD)Γ·(t−tD),

(4.11)

where γζ1 = Eζ1/mζ1 . Using the comoving yield YX̄ = nX̄/S and Ṫ ≈ −T ·H we have:

dYX̄
dT

=−
m2
ζ1

Γζ1→ζ2+X̄

π2

T ′

T H S
K1(mζ1/T

′) e
µζ1
T ′ e−θ(t−tD)Γ·(t−tD), (4.12)

The presence of T ′ in BEQ segregates the equation to the cases (i) before decoupling
and (ii) after decoupling of ζ1 from thermal bath. It is important to relate temperature T ′

to the decoupling temperature (TD). Throughout our calculations we use (see appendix B):

T ′ =

(
R(tD)

R(t)

)2

· TD, m− µ(T ′) =
T ′

TD
· (m− µD), (4.13)

for cold relics. We now express T ′ in terms of the temperature of the hot plasma (T ) using
the conservation of entropy, i.e. S = S ·R3(t) = gS? T

3R3(t) = const.:8

T ∝ (gS? )
−1
3 R−1. (4.14)

8gS? and gρ? are the effective number of relativistic degrees of freedom for entropy and energy respectively.
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Now, since at the decoupling T ′D = TD, we then have:

T ′ =

(
gs?(T )

gs?(TD)

) 1
3
(
gρ?(T )

gρ?(TD)

) 1
4
(
T 2

TD

)
, (4.15)

Using the definitions of S and H we get BEQ after decoupling as

dYX̄
dT

∣∣∣∣
t>tD

=−
90MPlm

2
ζ1

Γ

1.66(4π4)

(
T ′

T 6

)
K1(mζ1/T

′)

gS? (T )
√
gρ?(T )

eµζ1/T
′
e−Γ·(t−tD)

=−
90MPlm

2
ζ1

Γ

6.64π4

(
1

T 4 TD

)
K1(mζ1/T

′) eµζ1/T
′

[gS? (TD)gS? (T )2]1/3 [gρ?(TD)gρ?(T )]
1/4

× exp

[
−

0.301ΓMpl√
gρ?

(
1

T 2
− 1

T 2
D

)]
,

(4.16)

while for t < tD we have:

dYX̄
dT

∣∣∣∣
t<tD

=−
90MPlm

2
ζ1

Γ

1.66(4π4)T 5

K1(mζ1/T )

gS? (T )
√
gρ?(T )

eµζ1/T , (4.17)

Changing the variable from T → x = mζ1/T yields:

dYX̄
dT

=
dx

dT

dYX̄
dx

=
−x2

mζ1

· dYX̄
dx

, (4.18)

µζ1
T ′

= α(x, xD)

(
x2

xD

)
− xD, (4.19)

where

α(x, xD) ≡
[
gs?(xD)

gs?(x)

]1/3 [gρ?(xD)

gρ?(x)

]1/4

,

η(x, xD) ≡ α(x, xD) gs?(x)
√
gρ?(x).

(4.20)

Using above, the BEQs before and after decoupling eq.’s (4.16) &(4.17) become:

dYX̄
dx

=


90

6.64π4 gs?(x)
√
gρ?(x)

Σζ x
3K1(x), x < xD

90x2xD Σζ
6.64π4 η(x,xD)

K1

[
α(x, xD)

(
x2

xD

)]
e

[α(x,xD)x2−x2
D]

xD e
−

0.301 Σζ√
g
ρ
?

(x2−x2
D)

, xD < x

(4.21)

where we defined

Σζ ≡
MPl Γ

m2
ζ1

. (4.22)

The total X̄ yield from ζ decays is given by:

Y∞X̄ =
90 Σζ

6.64π4

∫ xD

0

x3K1(x)

gs?(x)
√
gρ?(x)

dx

+

∫ ∞
xD

e

−0.3 Σζ√
g
ρ
?(x)

(x2−x2
D) xD · x2

η(x, xD)
K1

[
α(x, xD)

(
x2

xD

)]
e
α(x,xD)x2−x2

D
xD dx

 ,

(4.23)
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Figure 5. The evolution of the relic abundances Ω∆ · h2 and ΩX · h2 as a function of x = Mζ1/T for
four different cases with ΩX/ΩDM = {%25,%50,%75,%99} from top-left to bottom-right respectively.
We have also assumed gN = 10−13,M∆ = 1013 GeV, Mζ2 = 200 GeV, MX = 5 GeV. The green dotted
line corresponds to Ω∆ + ΩX = ΩDM · h2 = 0.1198, and the dashed magenta curve is the contribution
just from the late ζ1 decays, i.e. after ζ1 decoupling for x ≥ xD.

The second integral within the parenthesis (from xD to ∞) indicates the contribution of the
late decays of ζ1 (after its decoupling from thermal bath) to the production of DM (X). We
would like to point out that an elaborate estimation of such contribution has not been carried
out before in literature. The relic abundance of X and X̄ is then given by

ΩX
DM · h2 = 2× ΩX · h2 = 2×

2970mX Y
∞
X cm−3

1.88× 10−29 g · cm−3
, (4.24)

where the factor of two is due to the contribution from both X and X̄. Note that, eq. (4.23)
is practically independent of the model concerned (except for the couplings and masses ap-
pearing in Σζ) as it solely involves the number of degrees of freedom gs∗ and gρ∗ and the
dimensionless quantity xD which for all practical purposes can be taken to be xD ∼ 25.
Hence this is a generic expression for computing yield in all such cases where the DM is
produced via freeze-in from the decay of a heavy species before and after its decoupling from
the thermal bath.

In figure 5 we have plotted the evolution of the relic abundances of ∆ and X as a
function of the dimensionless parameter x = Mζ1/T . The parameters in figure 5 are chosen
such that Ω∆ + ΩX = ΩDM · h2 = 0.1198. We have chosen four different values of mζ ,
to generate four different relative contributions of X and ∆ to the total relic density as
ΩX/ΩDM = {%25,%50,%75,%99} from top-left to bottom-right respectively. The evolution
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of yield for ∆ (shown by solid blue line in each of the plots) follows the familiar pattern of
freeze-in production, which initially increases with x, and finally becomes constant as the
temperature of the universe falls below the mass of ∆. For X (the solid magenta curve), note
that the first point where the relic abundance function flattens is around x & 10, where the
exponential suppression inside the Bessel function becomes dominant. However, the function
then rises for a second time, and captures the contribution from the decay after decoupling of
ζ. First of all, the second rise in freeze-in curve for X shows that the yield from decays after
the decoupling can be as large as the yield before decoupling. This indicates the importance
of the late decay to be considered for correct evaluation of freeze-in relic density. The effect
of late decay can be understood in more details from eq. (4.21). The share from the second
integral (x > xD) in eq. (4.21) is at first suppressed by K1[xD] and therefore it takes a long
time (not until x ∼ 104) for the yield to build up to an amount comparable to the yield before
xD. This happens because the asymptotic exponential suppression in K1(αx2/xD) cancels
out the increasing exponential term exp(αx2/xD). This gain stops later as the exponential
suppression from the decays becomes dominant around x ∼ 10 ·mζ1/

√
MPlΓ ∼ (5 ·104–105).9

The sole contribution of the late decays to the yield are separately plotted by dashed magenta
curves in each plot in figure 5, to show the exact x for the late rise of the yield. It is also
clear that if the decay rate was much faster, the second integral would become suppressed
and we wouldn’t see any effect of late production.

The behaviour of the relic abundance of X (for two sample sets of values of mX) as
a function of gN is plotted in figure 6. We see that for small values of gN , the abundance
remains the same. This is because for these values of gN the decay rate is so small that
the decays before the freeze-out of ζ1 can be neglected and the freeze-out yield of ζ1 is the
same for different gN values. After ζ1 freezes out, all of them will eventually decay to X
and changing gN will only vary the time scale of these decays. However, beyond a threshold
value of gN (characteristic to specific mX), relic density rises sharply with gN as a function
of ∼ g2

N as the yield in is proportional to the decay width in case of freeze-in. This is in
contrast to the freeze-out scenario where relic density is inversely proportional to annihilation
cross-section. As we explain in the next section, smaller values of gN are ruled out by the
constraints from the BBN (indicated by dashed curves in figure 6).

4.1.2 Bounds on decaying relic particles from BBN and CMB

Standard BBN may be significantly perturbed by the energy injections due to both neutral
decays [14] ζ0

1 → X + ζ0
2 and charged decays [15] ζ−1 → X + ζ−2 . In the case of decaying

electrically charged particles with τ > 100 seconds, the existence of bound states between
nuclei and the relics may significantly change nuclear reaction rates. Here, we analyze the
decays with 0.05 s < τ < 100 s using the results from ref. [14], and rule out the ones with
τ > 100 s for simplicity. As a result, this puts a lower bound on gN , depending on different
choices of DM masses. The hadronic branching ratio (Bh) for ζ0

1 decays is B1
h ≈ 0.695, and

for ζ−1 depends on parameters like Mn2 , fζ . We can assume for heavy n2 and/or small fζ ,
the weak decays ζ−1 → X̄ + ζ−2 → X̄ + ζ0

2 + W− become dominant and so the hadronic
branching ratio of the charged component is B2

h ≈ 0.9. Therefore, for a conservative bound
we assume hadronic branching for the both cases to be Bh = 1 throughout our analysis. We
also assume that the mass difference (m−ζ1 −m

0
ζ1

) generated during the EWSB is negligible

compared to their masses before EWSB. We then extrapolate the results in [14] for arbitrary

9Assuming mζ1 ∼ 300–700 GeV, mζ2 = 200 GeV, mX = 5 GeV, we have Γ ∼ 10−23–10−21 GeV, where
gρ? ∼ 10.75.
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Figure 6. The relic abundance of X as a function of gN for Mζ1 = 600 GeV, Mζ2 = 200 GeV.
The dashed regions are ruled out from the BBN bounds. The green dotted line corresponds to
ΩDM · h2 = 0.1198.

mζ1 . The total energy of the resulting quarks in these decays is taken to be the same as mζ1

following [14]. We use the relation in eq. (4.25) to convert the bounds on the relic abundance
(ΩBBN

ζ1
) of ζ1 (assuming it was stable) to bounds on the DM (X) relic abundance (from ζ1),

i.e. ΩX
DM. Given that nζ1 = nX , and Ωi ∝ mi · ni we have:

ΩX
DM ≤

(
mX

mζ1

)
· ΩBBN

ζ1 , (4.25)

where ΩBBN
ζ1

corresponds to the abundance of the decaying species (ζ1 in this case), which is
fixed from BBN depending on its hadronic branching ratio and lifetime (or in other words
gN ) [14]. The dashed portions in figure 6 are thus ruled out by the BBN bound since smaller
values of gN are discarded in order to prevent prolonged decays that may disturb the standard
BBN mechanism.

A decaying long-lived DM candidate can be constrained by various observations. For
example, it can alter the ionization and heating history of the CMB and its power spec-
trum [16]. Decays to several decay modes e.g. bb̄, WW , µµ̄ can also be constrained by the
AMS-02 precise measurements of the antiproton/proton (p/p̄) fraction [17], as no evidence of
new source of antiproton has been found in these data. This in turn, results in the following
bounds on the hadronic decay life time of the DM [16]:

CMB: τ(DM→ bb̄) ' 1024 s, (4.26)

AMS-02: τ(DM→ bb̄) ' 1027 s. (4.27)

As we already have shown, the ∆’s have lifetime comparable to that of the universe.
Now, if we set mX = 5 GeV, gN = 10−12 and f8 = 10−11 then for u3 = 100 GeV we obtain
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the following decay width and corresponding decay lifetime for the ∆’s:

Γ
(
∆1 → X̄X̄bb̄

)
= 4.1× 10−60 GeV −→ τ∆1 ∼ 1036 sec (4.28)

Γ
(
∆2 → X̄bb̄

)
= 5.1× 10−59 GeV −→ τ∆2 ∼ 1035 sec (4.29)

Γ
(
∆3 → bb̄

)
= 1.2× 10−58 GeV −→ τ∆3 ∼ 1034 sec . (4.30)

All these decay rates turn out to be much longer than the bounds mentioned in eq. (4.26),
and so only the bounds from the ζ1 decays are relevant for final estimate of allowed parameter
space. Note that, since some of the energy of ∆1 goes into X̄’s, the actual bounds are smaller,
and these numbers are conservative.

4.1.3 Summary of available parameter space

The relic density allowed parameter space for X is plotted in mζ1 − mX plane in figure 7
for different choices of gN = {10−12, 10−13, 10−14, 10−15} (clockwise from top left). Each
plot contains several contours corresponding to a specific percentage of the total DM den-
sity coming from X (numbers inside parenthesis). Therefore, each curve corresponds to a
specific value of f8 such that the rest of the DM abundance (100% − the percentage in the
parenthesis) is coming from ∆. This is possible because the relic density of X and that of
∆ are uncorrelated in the model. We see from the plots that constant ΩX curves rises in
mζ1–mX plane for larger mX and then takes a sharp turn to decrease the required mζ1 to
satisfy relic density and then rises again. In order to interpret the shape of the contours in
figure 7, let’s first take a look at the parameter space assuming the late decays are ignored.
This is shown in figure 8 with the dashed upward moving faint lines in the background. These
contours basically correspond to constant relic density (ΩXh

2), which is mainly dictated by
ΩX ∝ c ≈ mX · Σζ , since the second integral in eq. (4.23) is to be ignored. Therefore, it
is straightforward to see that the larger is the value of mX , the smaller Σζ has to be and
therefore mζ will needs to be larger as Σζ ∝ 1/m2

ζ . It is also clear, for small mX (as we
require larger Σζ) the second integral in eq. (4.23) has smaller contribution due to exponen-
tial suppression from Σζ . This is reflected in figure 8 where the case with late decays and
the case without them merge together at low mX . As we trace these contours from low mX

region (left) to high mX regions (right), we observe a departure for the curves where the late
decays are involved. Now, with larger mX , Σζ decreases. This increases the contribution
from the late decays as the second integral in eq. (4.23) is proportional to e−Σζ . Therefore,
if we compare the case with late decay (Σ1

ζ) to that without late decay (Σ2
ζ), it is easy to

see that:

Σ1
ζ > Σ2

ζ ;

=⇒ m1
ζ1 < m2

ζ1 , (4.31)

which is reflected in the drop of the curve beyond certain mX .
We can estimate the value of mX for which this change of behaviour happens. As

mentioned at the end of subsection 4.1.1, the exponential suppression in the second integral
becomes notable around xe ∼ mζ1/

√
MPlΓ = 1/

√
Σζ . Since the yield from the second integral

becomes relevant around xobs ∼ 104 (see figure 7), we can use xe . xobs as a criterion for
this change. Let’s start from low mX region and trace the constant c contours for which
ΩX · h2 ≈ 0.1198. Using eq. (4.23) and 4.24 we obtain c ≈ 10−7 for the cyan dashed curve
where 100% contribution to the relic abundance comes from X. Now, since xe ≈

√
MX/c,
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Figure 7. Parameter space of the model satisfying relic abundance constraint in mζ1–mX plane when
gN = {10−12, 10−13, 10−14, 10−15} (clockwise from top left) and Mζ2 = 200 GeV are kept fixed for
each plot. Each contour satisfies total relic abundance of ΩDM ·h2 = 0.1198 for different choices of the
scalar quartic coupling f8. The numbers inside the parentheses are the percentage of DM comprised
of X. The dashed portion in each curve is ruled out by the BBN constraints.

this criterion transmits to MX . 10 GeV. If we choose the curve for 5% yield instead, we get
c ∼ 10−8 and MX . 1 GeV. This explains the sharp turn in all of the curves that happens
around MX ≈ 1–10 GeV. Also note that as mζ1 is lowered and mX is increased, we get into
a region where the decay rate is so slow that it violates the BBN bounds (dashed region).
As mX is increased even further, all the contours converge to the kinematically forbidden
boundary i.e. Mζ1 = MX+Mζ2 . This characteristic feature is reflected in each plot in figure 7
for different choices of gN with Mζ2 fixed at 200 GeV.

4.2 Degenerate ∆’s with 2mX < m∆ and f8 ∼ O(1)

In this case let us first compute the lifetime of the ∆’s assuming f8 ∼ O(1). We once again
recall here that m∆ ∼ O(1013) GeV. Let us choose mX = 5 GeV and gN ∼ O(10−13) for
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Figure 8. Parameter space of satisfying the relic abundance constraint for gN = 10−13 in mζ1–mX

plane. The opaque dotted curves in the background are the corresponding contours if the late decays
are ignored. The dashed regions are ruled out by the BBN constraints.

which X yields relic density in correct ballpark. We then find, Γ∆3 → tt̄ = 1.3× 10−35 GeV
which dubs into a lifetime of ∼ 5× 1011 sec� τuniverse. With the same set of parameters, we
find Γ∆2→Xtt = 5.5×10−36 GeV, which gives rise to a lifetime of ∼ 1011 sec. The decay width

for ∆1 turns out ot be Γ∆1→XXtt̄ = 4.5×10−37 GeV, with a lifetime of ∼ 1012 sec. Therefore,
with f8 ∼ O(1) we end up with a situation where all of the triplet scalar components are
unstable and don’t contribute to the DM relic abundance. Therefore we end up with a single
component X DM set up. The initial freeze-out abundance of ∆’s (before they decay to X)
is determined by

σ(∆i∆
∗
i → ΦΦ∗) · vrel =

f2
8

32πm2
∆i

≈ 10−28 · f2
8 , (4.32)

which yields a freeze-out abundance for ∆ at the order of:

ΩFO
∆ · h2 ≈ 1018 (4.33)

If we use the fact that the number of X’s produced from the decays of ∆, i.e. nFI
X ∼ nFO

∆ , we
then see that ΩFI

X = (mX/m∆)ΩFO
∆ is about 6 orders of magnitude higher than the correct

DM abundance, which rules out this scenario with f8 ∼ O(1).

5 Collider search

Possible collider signatures of this model in the context of usual freeze-out ofX was elaborated
in [18]. It was pointed out that, the only field connecting the dark sector (having SU(2)N
charge) with the SM is the scalar bi-doublet. Therefore, the charged and neutral components
of the scalar bi-doublet can be produced at the LHC via the diagrams shown in the top
panel of figure 9. We should also note that the other scalars, namely the SU(2)N doublet
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Figure 9. Top: associated and pair production of heavy charged scalars at the LHC via charged
current (l.h.s.) and neutral current (r.h.s.) interaction. Bottom: variation of production cross section
of pp→ ζ±1 ζ

0
1 , ζ

+
1 ζ
−
1 at the LHC with ECM = 14 TeV. Contributions are from charged current (solid)

and neutral current (dashed) interactions for δm = 1 MeV.

(χ) and triplet (∆) possess Higgs portal interactions. However, we have assumed all those
portal couplings to be small to satisfy the Higgs data (see section 2). In particular, the
Higgs portal coupling (f8) between the triplet (∆) and SM doublet (φ) was assumed to be
small to address correct freeze-in production of the triplet components, which serve as DM.
Therefore, the other particles do not have any chance of being produced at the LHC. The
variation of production cross-section of the charged and neutral components of the scalar bi-
doublet at the LHC with respect to its mass mζ1 for ECM = 14 TeV is shown in the bottom
panel of figure 9. It should be noted that charge current contribution is more pronounced
than the neutral current contribution which we pointed out in our earlier analysis [18]. We
have implemented the model in CalcHEP [28] and used CTEQ6l [29] as a representative parton
distribution function for generating this process. The SM gauge coupling is mostly responsible
for the production of the bi-doublet components at the LHC. The Higgs portal interactions
are again assumed to be small to be compatible with the Higgs data.

If the additional neutrinos (n1, n2) are lighter than ζ±,01 (which is quite legitimate in
WIMP scenario even after addressing correct neutrino mass generation), then these bi-doublet
scalars can further decay to neutrinos and SM leptons (ζ+

1 → `++n1R) via Yukawa interaction
given in eq. (3.2), giving rise to the following signatures in colliders [18]:

• Single lepton with missing energy (1`± + /ET ) due to charged current interaction.

• Opposite sign di-lepton with missing energy (`+`− + /ET ) due to neutral current inter-
action.

In the WIMP-like freeze-out scenario of X, therefore this model may leave an imprint
of leptonic signal excess at the colliders. However, in the present framework, we assume
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Figure 10. Decay of the charged components of the scalar bi-doublet which is kinematically possible
since mζ+1

−mζ01
≡ δm > 0.

that the DM production is from the decay of ζ1 → ζ2 + X, and the additional neutrinos
(n1, n2) to be heavier than ζ1. It is understandable that the DM analysis will be modified
by the corresponding decay branching ratio if n1,2 are lighter than ζ1. It is also instructive
to remind that heavier n1,2 (∼ 106 GeV) arises naturally when we assume the Yukawa in a
legitimate ball park f∆ ∼ 0.1 via a large u3 ∼ 100 GeV to address the required neutrino mass
(see section 3). However, one may still assume the presence of lighter n1,2 (∼TeV) with fine
tuned f∆ ∼ 10−7 and mn1R < mζ1 , yielding single lepton and di-lepton signature as before.
However in that case, the DM production will be further suppressed and appropriate decay
branching ratios have to be assumed.

Therefore, in the light of DM analysis performed here, the neutrinos (n1,2) are heavier
than the scalar bi-doublet ζ±1,2, ζ

0
1,2. As a result, these scalars can not decay to RHN plus

SM leptons. Due to radiative correction, there should be a small mass splitting between the
charged and neutral components of the bi-doublet: δm. As a result, the charged scalars, once
produced, can undergo the decays shown in figure 10 via off-shell W or via off-shell n1,2R

to ζ0
1 + `+ ν`.

Note that the diagram in the l.h.s. of figure 10 involves the vertex ζ+
1 ζ

0
1W , which is

proportional to gL(p1 + p2)µ where p1 and p2 are the momenta of the incoming and outgoing
scalars, while the other vertex involves only the SM gauge coupling gL. The diagram on the
r.h.s. of figure 10, on the other hand, only depends on the Yukawa coupling fζ , which we
assume to be ∼ O(1). Since n1R is heavy, these decays are dominated by the W -mediated
process as in the l.h.s. of figure 10. In table 5, we show a couple of sample points with
two different mass splitting, where 99% of the branching is carried away by the W -mediated
decay as mW � mn1R . Also note that in the limit δm � mζ1 , the decay width mostly
depends on δm (which controls the phase space) and not on mζ±1

. For example, if we fix

δm = 0.1 GeV, then for mζ±1
= 1.2 TeV, the decay width is 3.127×10−18 GeV, which changes

to 3.126× 10−18 GeV for mζ±1
= 1.5 TeV. For δm ∼ O(100 MeV) this model can give rise to

charge track and/or displaced vertex [8, 30] at the colliders that can be probed by current
or future experiments [31, 32]. A heavy stable charged particle (HSCP) such as ζ+

1 in our
model, will typically travel with a velocity β ≡ v

c < 1. Hence, as it passes through the silicon
detectors, it produces an ionizing track with higher ionization energy loss rate (larger dE/dx)
compared to the SM particles [33]. Also, if the HSCP decays outside the detectors, the time
of flight (TOF) measured by the muon system will be longer than that of relativistic muons.
These two features can distinguish non-standard HSCPs from the SM particles.
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Figure 11. Left: the variation of production cross section of pp → ζ±1 ζ
0
1 , ζ

+
1 ζ
−
1 at the LHC with

ECM = 13 TeV (solid black curve) and ECM = 14 TeV (dashed black curve). The red solid curve
shows the bound from CMS searches for HSCP at

√
s = 13 TeV and luminosity 12.9 fb−1. The

vertical dashed line shows the minimum mass that is allowed by the CMS exclusion limit; right:
decay length of ζ+

1 → ζ0
1 + `− + ν̄` (in meter) in terms of mass splitting δm ∼ O(100 MeV) (in GeV).

We show the possibilities of displaced vertex or stable charged track segregated via dashed red line
at collider assuming a legitimate mζ±1

= 1.2 TeV.

δm (GeV) Br(ζ±1 → ζ0
1 , `
±, νL) (via W ) Br(ζ±1 → ζ0

1 , `
±, νL) (via n1R)

0.1 0.99 0.0007

0.5 0.99 0.0007

Table 5. Decay branching ratio of ζ±1 → ζ0
1 , `
± via W and via n1R. Here we have chosen mζ1 =

1.2 TeV and δm = 100 MeV with RHNs of mass M = 105 GeV.

Typically, for cτ . O(10 m) the searches for HSCPs are done via displaced vertex
signatures, while for cτ > O(10 m) a sizable fraction will decay only after crossing the tracker
and/or muon chamber [33]. We use the CMS bound on HSCP production cross-section at
the LHC [34] to constrain the mass of ζ1 in our model. The ζ1 production cross-section is
plotted in the l.h.s. of figure 11 with respect to ζ1 mass. We have also shown the limit from
the CMS tracker+TOF analysis [34] (for luminosity of 12.9 fb−1) with a solid red curve. As
one can see, these constraints rule out mζ±1

. 1 TeV. We have tabulated the decay lengths

for some selected values of δm with mζ±1
= 1.2 TeV in table 6. The same is also shown in

r.h.s. of figure 11 where we have plotted the variation of the decay length with respect to
mass splitting δm for mζ±1

= 1.2 TeV. As mentioned, the decay length decreases as the mass

splitting δm increases. We have indicated a red dashed line, above which (cτ > 10 m) the
model can give rise to stable charged track and below (cτ . 10 m) displaced vertex signature.

6 Summary and conclusions

In this draft, we have analysed FIMP realization of a non-abelian vector boson DM in SU(2)N
extension of the SM. Non-abelian cases are important for several reasons, one because they
require non-minimal extensions in the scalar sector for spontaneous symmetry breaking of
the additional SU(2)N and therefore serve as an important framework to elaborate on Higgs
physics in light of the present data. The model at hand also addresses neutrino mass genera-
tion and therefore neutrino mass constraint plays an important role in identifying the allowed
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δm (GeV) Γ (GeV) L = cτ (m)

0.1 3.12× 10−18 63.05

0.3 7.58× 10−16 0.26

0.5 9.76× 10−15 0.20

Table 6. Decay lengths for the three-body decay of ζ±1 assuming maximum the radiative mass
splitting δm of 500 MeV for mζ±1

= 1.2 TeV, RHN mass M = 105 GeV and fζ ∼ O(1).

parameters of the model together with DM constraints. For example, this exercise has led us
to conclude (i) scalar triplets are super heavy (of the scale of SU(2)N breaking), (ii) sterile
neutrinos assumed in the model can also be naturally heavier than scalar bi-doublet. Now,
both of these two conclusions have immense phenomenological consequence. Therefore, the
exercise performed in this analysis can serve as a benchmark to address non-thermal DM
production together with neutrino mass and Higgs phenomenology.

One of the important outcomes of this analysis turns out to be out-of-equilibrium decay
of a heavier particle to DM. In the present context, scalar bi-doublet ζ0,±

1 decays into its

lighter partner ζ0,±
2 plus DM X, and this is solely responsible for non-thermal production of

the DM. The production of DM occurs after SU(2)N symmetry breaking (∼ 1012 GeV) and
before electroweak symmetry breaking. We find that, the decay of ζ0,±

1 provides a significant

contribution to DM relic density even after the freeze-out of ζ0,±
1 from thermal bath. This

results in a sharp deviation of relic density contour in Mζ1–MX allowed plane compared to
the case where the late productions are neglected. The impact of this conclusion can be made
in a generic and model independent way, to demand that any particle in thermal bath whose
decay is slow enough (∼ 10−24 GeV) can contribute significantly after freeze out and alter the
available parameter space to a significant extent. We provide with a generic expression for
the DM yield including the late decays that may serve useful in identifying such contributions
for any model.

It is also important to note the connection between the dark sector and neutrino sector
addressed in this model. The requirement of having a freeze-in vector boson DM makes the
SU(2)N scalar triplet (∆), assumed for neutrino mass generation through inverse seesaw,
superheavy (∼ 1012 GeV). The decay modes of the neutral component of the triplet (to tt̄
or to νν̄) turns out to be extremely small, thanks to small gN and f8 couplings. Therefore
they are stable and serve as additional DM components in the model. It is intriguing to note
that the correct relic density (or under abundance) for ∆ can only be addressed if they are
also produced non-thermally through Higgs quartic interaction. CMB data constrains the
decay life time of long lived DM particles to hadronic final states (∆→ bb̄ in our case) to be
greater than τ(DM → bb̄) ' 1024 s. However, since the correct relic density is achieved for
τ∆ ' 1036 s, this bound does not affect that part of the parameter space where ∆ is a viable
DM candidate.

There are other constraints as well. For example, bounds from AMS-02 constrains life
time of hadronically decaying DM (again ∆ → bb̄ in our case) while BBN data constrains
life time of semi-stable hadronically decaying charged and neutral particle (ζ0,±

1,2 in our case).
The last bound crucially tames down a large allowed parameter space of our model by ruling
out DM masses above ∼ 50 GeV and gN . 10−14. Constraints from CMB and AMS-02 turn
out to be less sensitive due to the very long life time of scalar triplet DM.
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The same model has been studied for WIMP realization as mentioned before. It is
therefore important to identify the difference in their phenomenological implication. While
freeze-in makes the DM insensitive to direct search, the WIMP can be detected via future
direct search experiments. It is important to note that WIMP-like X is allowed upto ∼TeV,
but FIMP realization restricts it within ∼ 50 GeV. The most crucial distinction however
may arise from collider searches. While the WIMP realization could provide a signal excess
in single or opposite sign di-lepton events associated with large missing energy, the FIMP
case predicts stable charge track or displaced vertex signature, thanks to the production of
scalar bi-doublet in the model. The decay of ζ±1 → ζ0

1 here is restricted by the mass splitting
of the order of δm ∼ 100 MeV due to loop corrections. If δm . 0.1 GeV, then the decay
can lead to a stable charge track, while for δm . 0.5 GeV, we may see displaced vertex
signature. On the contrary, in the WIMP realization, ζ±1 can easily decay to n1R thanks to
the Yukawa coupling (which is unlikely in FIMP realization due to a heavier n1R) and serves
as an interesting phenomenological consequence of the model.
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A Scalar states

Using the minimization conditions in eq. (2.5), we find the following massless Goldstone
bosons:

1√
v2

1 + v2
2

(
−v1φ

+ + v2ζ
+
2

)
(A.1)

1√
v2

1 + v2
2

(
−v1Im

(
φ0

2

)
+ v2Im

(
ζ0

2
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(A.2)

1√
u2

2 + 2u2
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2
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v2ζ
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1 + u2χ1 +

√
2u3∆2

)
(A.3)

1√
u2

2 + 4u2
3 + v2

1

(
v1Im

(
φ0

2

)
− u2Im (χ2) + 2u3Im (∆3)

)
, (A.4)

where the orthogonal state to (A.1) and (A.3) yields a heavy charged scalar field (H+), and a
physical complex scalar field (ξ0

1) respectively. The orthogonal state to (A.2) & (A.4) yields
another physical real scalar field (η0).

In the Higgs sector, the 4× 4 mixing matrix spanning
(
Re(φ2),Re(ζ0

2 ),Re(χ2),Re(∆3)
)

is given by
2v2

1λ2 − u2v2µ1

v1
u2µ1 2f5u2v1 2f8u3v1

u2µ1 2v2
2 (λ1 + λ3)− u2v1µ1

v2
2f1u2v2 2 (f9 + f10)u3v2

2f5u2v1 2f1u2v2 2u2
2λ4 − v1v2µ1

u2
2u2 (u3(f6 + f7) + µ2)

2f8u3v1 2 (f9 + f10)u3v2 2u2 (u3(f6 + f7) + µ2) 2u2
3 (λ5 + λ6)− u2

2µ2

u3


(A.5)
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which approximately yields a 2× 2 block spanning
(
Re(φ2),Re(ζ0

2 )
)

given by:

M2
{φR2 ,ζ0R

2 } ≈
(

2v2
1λ2 − u2v2µ1

v1
u2µ1

u2µ1 −u2v1µ1

v2

)
. (A.6)

The resulting mass eigenstates are given in section 2. We have also used the fact that
the mixing term for (Im(χ2), Im(∆3)) is negligible compared to ∆3’s mass term, and so ∆3

remains complex, with m2
∆3
≈ 2u2

2 µ2/u3.

B Evolution of chemical potential

Let d3p d3x be the phase space element at temperature T and d3p′ d3x′ is that at temperature
TD. Since the distance scales as R and the momentum (of a free particle) scales as R−1, we
can write:

d3p′d3x′ =

(
R

RD

)3

d3p

(
RD
R

)3

d3x = d3pd3x. (B.1)

Since N = n.R3 is fixed we have

f(p)d3pd3x = f(p′)d3p′d3x′ = f(p′)d3pd3x =⇒ exp

(
E − µ
T

)
= exp

(
E′ − µD
TD

)
. (B.2)

We consider two cases:

(a) Hot Relic: if particles are relativistic at the time of decoupling (E ' p), then:

exp

(
p− µ
T

)
= exp

(
p′ − µD
TD

)
= exp

(
p− (RD/R).µD
TD.(RD/R)

)
. (B.3)

Hence, for hot relics: TD = R(t)
R(tD) · T and TD = TD

T · µ.

(b) Cold Relic: if the particles are non-relativistic at the time of decoupling, then: E '
m+ p2

2m .

exp

(
E − µ
T

)
= exp

(
p2/2m+m− µ

T

)
≡ exp

(
p
′2/2m+m− µD

TD

)

= exp

(
p2/2m+ (RD/R)2.(m− µD)

TD.(RD/R)2

)
.

(B.4)

Comparing TD = T
(
R
RD

)2
with m − µ =

(
RD
R

)2
· (m − µD) implies µ(t) = m +

(µD −m) T
TD

.
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C Decay rate for ζ1 → ζ2 +X

Using

L 3 i gN√
2
X+

[
ζ0

2∂µζ
0
1 − ζ0

1∂µζ
0
2

]
+
i gN√

2
X−

[
ζ0

1∂µζ
0
2 − ζ0

2∂µζ
0
1

]
(C.1)

+
i gN√

2
X+

[
ζ+

2 ∂µζ
−
1 − ζ

−
1 ∂µζ

+
2

]
+
i gN√

2
X−

[
ζ+

1 ∂µζ
−
2 − ζ

−
2 ∂µζ

+
1

]
(C.2)

+
g2
N

2

[
ζ0

1ζ
0
1 + ζ0

2ζ
0
2 + ζ−1 ζ

+
1 + ζ−2 ζ

+
2

]
X+X−, (C.3)

the amplitude squared can be written as:

M|2 =
g2
N

2

[
pµXp

ν
X

m2
X

− gµν
]

(p1 + p2)µ(p1 + p2)ν

=
g2
N

2

[(
m2

1 −m2
2

)2
m2
X

+m2
X − 2(m2

1 +m2
2)

]
,

=
g2
N

2m2
X

λ(m2
1,m

2
X ,m

2
2)

(C.4)

where we used

EX =
m1

2

[
1 +

m2
X −m2

2

m2
1

]
, (C.5)

pf =

√
λ(m2

1,m
2
X ,m

2
2)

2m1
, (C.6)

λ(a, b, c) ≡ (a− b− c)2 − 4bc, (C.7)

and so we have

(p1 + p2) · pX = 2m1EX −m2
X = m2

1 −m2
2, (C.8)

(p1 + p2)2 = 2(m2
1 +m2

2)−m2
X , (C.9)

therefore the decay rate is given by

Γ =

(
g2
N

32π

)
λ(m2

1,m
2
X ,m

2
2)

3
2

m3
1m

2
X

. (C.10)

D Decoupling time for ζ1ζ
∗
1 ↔ SM

For the cold relic ζ1, the decoupling time xD can be determined using [35]:

xD = ln [Λ]− 1

2
ln (ln [Λ]) , (D.1)

where Λ is given by:

Λ = 0.038
gζ1mζ1MPl√

g?
σ(ζ1ζ1 → SM) (D.2)
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and we assume the decoupling occurs before the EWSB so this cross section can be written as:

σ(ζ1ζ1 → SM) = σ(ζ1ζ1 → νLνL) + σ(ζ1ζ1 → (W3,B)→W+W−) (D.3)

where we use:

σ(ζ1ζ1 → νLνL) =
f2
ζm

2
ζ1

8π
(
m2
ζ1

+m2
n

)2 , (D.4)

σ(ζ1ζ1 →W+W−) =
g4

2

32πm2
ζ1

. (D.5)

Since n is very heavy the gauge interaction dominates the cross section.

f5u
2
2 + f8u

2
3 + f4v

2
2 + µ2

2 +
µ1u2v2

v1
+ λ2v

2
1 = 0

µ2
ζ + f1u

2
2 + f9u

2
3 + f10u

2
3 + f4v

2
1 +

µ1u2v1

v2
+ λ1v

2
2 + λ3v

2
2 = 0

µ2
χ + f6u

2
3 + f7u

2
3 + f5v

2
1 + f1v

2
2 + λ4u

2
2 + 2µ23u3 +

µ1v1v2

u2
= 0

µ2
∆ + f6u

2
2 + f7u

2
2 + f8v

2
1 + f9v

2
2 + f10v

2
2 + λ5u

2
3 + λ6u

2
3 +

µ23u
2
2

u3
= 0

(D.6)

f5u
2
2 + f8u

2
3 + f4

(
v2

2 + v2
ζ1

)
+ µ2

2 +
µ1u2v2

v1
+ λ2v

2
1 = 0

µ2
ζ + f1u

2
2 + f9u

2
3 + f10u

2
3 + f4v

2
1 +

µ1u2v1

v2
+ λ1v

2
2 + λ3v

2
2 + λ1v

2
ζ1 + λ3v

2
ζ1 = 0

µ2
χ + f6u

2
3 + f7u

2
3 + f5v

2
1 + f1v

2
2 + f2v

2
ζ1 + λ4u

2
2 + 2µ23u3 +

µ1v1v2

u2
= 0

µ2
∆ + f6u

2
2 + f7u

2
2 + f10

(
v2

2 − v2
ζ1

)
+ f9

(
v2

2 + v2
ζ1

)
+ f8v

2
1 + λ5u

2
3 + λ6u

2
3 +

µ23u
2
2

u3
= 0

µ2
ζ + f2u

2
2 + f9u

2
3 − f10u

2
3 + f4v

2
1 + λ1v

2
2 + λ3v

2
2 + λ1v

2
ζ1 + λ3v

2
ζ1 = 0 .
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