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Abstract.  We consider a finite-size periodically driven quantum system of 
coupled kicked rotors which exhibits two distinct regimes in parameter space: a 
dynamically-localized one with kinetic-energy saturation in time and a chaotic 
one with unbounded energy absorption (dynamical delocalization). We provide 
numerical evidence that the kinetic energy grows subdiusively in time in a 
parameter region close to the boundary of the chaotic dynamically-delocalized 
regime. We map the dierent regimes of the model via a spectral analysis of 
the Floquet operator and investigate the properties of the Floquet states in the 
subdiusive regime. We observe an anomalous scaling of the average inverse 
participation ratio (IPR) analogous to the one observed at the critical point 
of the Anderson transition in a disordered system. We interpret the behavior 
of the IPR and the behavior of the asymptotic-time energy as a mark of the 
breaking of the eigenstate thermalization in the subdiusive regime. Then 
we study the distribution of the kinetic-energy-operator o-diagonal matrix 
elements. We find that in presence of energy subdiusion they are not Gaussian 
and we propose an anomalous random matrix model to describe them.
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1.  Introduction

Chaos and energy absorption are intimately related. Ecient energy absorption occurs 
when the driving is resonant with some natural frequencies of the system and chaos 
develops around resonances [1, 2]. If the driving amplitude is large enough, all the 
phase space is chaotic and the energy diusively increases up to the so-called infinite-
temperature value. For smaller values of the amplitude, the KAM theorem states that 
only a part of the phase space is chaotic [3, 4]. Nevertheless, in the many-body case, 
this fact gives rise to a chaotic web uniformly spread in the phase space. Along this 
web, diusion in phase space can occur giving rise to a slow energy increase up to the 
T = ∞ value, possibly after a prethermal behavior [2, 5–8].

In the quantum case, the route leading to chaos, energy absorption and T = ∞ 
thermalization is dierent. In this case a central role is played by the properties of 
the Floquet states, the eigenstates of the stroboscopic periodically-driven dynamics 
[9, 10]. There is thermalization when these states are strongly entangled and locally 
equivalent to the thermal T = ∞ density matrix. In this case the local observables 
asymptotically relax to the T = ∞ thermal ensemble with fluctuations vanishing in the 
thermodynamic limit [11–15]. This is a form of the so-called eigenstate thermalization 
[16–18], where thermal behavior appears because of the properties of the eigenstates of 
the dynamics. There is a chaotic and thermalizing behavior when the eigenstates of the 
dynamics behave as the eigenstates of a random matrix6 [19–21].

6 This is rigorously true in the case of a driven system. In the autonomous case, the eigenstates of the Hamiltonian 
behave as the eigenstates of a random banded matrix [13], in order to ensure energy conservation.
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Usually, there is correspondence between classical and quantum chaos. If the 
classical dynamics is chaotic and thermalizing, the quantum eigenstates obey eigen-
state thermalization and the Hamiltonian (or the Floquet Hamiltonian in the driven 
case—see later) behaves as a random matrix in physical bases [16, 19, 21–28]. Despite 
these expectations, there are exceptions. The best known is the quantum kicked rotor  
[29–32]. This non-integrable model describes a free rotor perturbed by a time-periodic 
kick with strength K. In the classical case, when K is below some threshold, the system 
is quasi-integrable according to the KAM theory; here there is no energy absorption. 
On the opposite, when K is very large, the phase space is fully chaotic and the system 
absorbs energy which increases linearly and diusively in time. The quantum behavior 
is completely dierent: quantum interference hinders energy absorption for all values 
of K and the kinetic energy linearly increases until a saturation value is reached [33]. 
This phenomenon is called dynamical localization and the reason behind it is that the 
wave function of the rotor is localized in the angular momentum representation. This 
form of localization has been found [31] to be equivalent to the Anderson localization 
of a particle hopping in a static, one-dimensional disordered lattice [34].

This is a remarkable result and many eorts have been devoted to see if dynami-
cal localization survives when many interacting rotors are considered. When many 
interacting classical rotors are considered, chaos has a stronger eect on energy absorp-
tion. As stated above, even a partly chaotic phase space is enough to have diffusion in 
phase space, and this fact translates in a diusive long-term dynamics, possibly after 
a transient [5, 7, 35–37]. In the quantum case the behavior is dierent and dynamical 
localization can persist for a finite number of rotors [38–42]. Nevertheless, it disappears 
in the thermodynamic limit, when the number of rotors tends to infinity [38] (although 
it can persist in the thermodynamic limit in other systems [43, 44]).

Even in the absence of localization, quantum eects can alter the energy absorption 
dynamics. A way in which this can happen is the induction of a sub-diusive energy 
increase, a regime where the kinetic energy does not increase linearly and diusively 
but as a power law with exponent smaller than 1. This regime up to now has only been 
found in mean-field studies [38] and one might be tempted to think that it can appear 
only in the peculiar conditions where mean field is valid (thermodynamic limit, infinite-
range interactions).

A hint that this might not be true comes from studies of localization in space. In 
Anderson models with mean-field interactions a breaking Anderson localization and 
consequent subdiusion in space have been observed [45–48] even away from the mean-
field limit. Indeed, subdiusion in space for ergodic disordered models near the MBL 
transition has been theoretically predicted in [49] and experimentally observed in [50].

Motivated by the emergence of subdiusive behaviors in disordered systems in the 
boundary region between localized and ergodic regimes, we want to study the case of a 
periodically-driven system exhibiting two separated regimes, a dynamically-localized one 
and an ergodic one. We focus on the case of L  =  3 interacting quantum kicked rotors: 
indeed, this is the minimal case in which a transition from a dynamically-localized regime 
to a delocalized one can be observed [38]. As it appears in other periodically-driven 
[51–53] as well as time-independent, few-body models [54], we show that in our system 
subdiusion occurs not in the space but in the momentum domain, manifesting itself 
in the energy absorption process. In particular, we observe a parameter region where 
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quantum eects determine a dynamics dierent from the classical one even in the absence 
of localization: indeed, a subdiusive power-law heating is observed in contrast with the 
linear, diusive classical one. We show that the subdiusion manifests in a region of the 
parameters space with dynamical delocalization near the boundary with the localized 
region, in analogy with the results relative to systems undergoing the MBL transition.

An example of this subdiusion is shown in figure 1 where we compare it with the 
corresponding classical dynamics. We see that after a transient, the quantum and the 
classical evolutions are completely dierent, the first being subdiusive and the second 
diusive (as appropriate for an essentially chaotic classical dynamics). Subdiusion 
is a genuinely quantum phenomenon originating from interference, with no classical 
counterpart. It is therefore important to connect this subdiusion to the quantum 
properties of the model, especially to its Floquet states which are the eigenstates of the 
stroboscopic dynamics.

We find that, in the subdiusive regime, the kinetic-energy matrix elements in the 
Floquet basis show anomalous distributions, dierent from the pure Gaussians [19, 23–28]  
of the fully chaotic and thermalizing case. This behavior has already been observed 
in ergodic disordered systems, near the transition to many-body localization, where 
two-time correlators show a subdiusive behavior in space [55, 56]. We can provide 
an interpretation of the anomalous distribution of the matrix elements. Indeed we see 
the same distributions if we consider a random-matrix model with fluctuations of the 
matrix elements decaying as a power law with the distance from the diagonal.

The paper is organized as follows. In section  2 we describe the model and the 
details of the numerical exact-diagonalization analysis we perform on it. In section 3 
we show the power-law behavior in time of the kinetic energy. We map the dierent 
regimes we observe in figure 2: we find a dynamically-localized regime and a delocal-
ized one where numerics suggests unbounded energy absorption. Subdiusion occurs 
close to the boundary of the dynamically-delocalized region in parameter space. We 
focus on the subdiusive regime and show that in this regime the eigenstate ther-
malization is broken. We can see this fact by studying the properties of the Floquet 
states: the inverse participation ratio (IPR) distributions show long tails and there are 

Figure 1.  Growth in stroboscopic time of the kinetic energy per rotor E(n): it is 
linear in the classical system (light-colored line) and subdiusive in the quantum 
one (dark-colored line). Other parameters: K/k̄ = 2.0, J/k̄ = 0.3, L  =  3, k̄ = 5.0.
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large IPR fluctuations. The breaking of eigenstate thermalization is reflected also in 
the asymptotic value of the energy with a truncated Hilbert space. We also study the 
o-diagonal matrix elements of the kinetic-energy operator in the Floquet basis: we 
find that the distributions of these matrix elements have long tails and are dierent 
from a Gaussian, marking the fact that the dynamics is not perfectly chaotic (similar 
distributions appear in cases of anomalous thermalization in many-body systems [55, 
56]). In section 4 we interpret the distributions of the o-diagonal matrix elements of 
the kinetic-energy operator: we show that they can be derived from a model based on a 
random matrix with fluctuations of the matrix elements decaying as a power law with 
the distance from the diagonal. In section 5 we draw our conclusions.

2. The model

The model we consider is described by the following Hamiltonian:

Ĥ(t) = Ĥ0 +
+∞∑

n=−∞

δ(t− nT )V̂ (θ)

Ĥ0 =
L∑

j=1

p̂2j
2Im. i.

, V̂ (θ) =
L∑

j=1

[
K cos θ̂j + J cos(θ̂j − θ̂j+1)

]
,

�

(1)

Figure 2.  Dynamical regimes of the model. K and J are the kicking strengths; 
K is the amplitude of a kick which acts on each rotor separately while J couples 
nearest-neighboring rotors. k̄ is the eective Planck constant. All these definitions 
are in equation  (1) and in the discussion below. The dynamically localized and 
delocalized regimes respectively coincide with the regions in which the averaged 
level spacing ratio 〈r〉 assumes the Poisson value or the circular orthogonal 
ensemble one. The numerics suggests a limited growth of the kinetic energy and 
an unbounded heating in the dynamically-localized regime and in the delocalized 
one respectively. The horizontal lines represent the intervals in K/k̄ where the 
subdiusion of the kinetic energy has been observed for dierent values of J/k̄. 
System size L  =  3, eective Planck’s constant k̄ = 5.0.
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with a time-independent kinetic term and an angle-dependent periodic perturbation; 
in particular, K is the strength of the kick acting on each single rotor and J is the 
amplitude of a nearest-neighbor coupling term. With a proper redefinition [21] of the 
operators and the constants K and J in the Hamiltonian in equation (1) we set the time 
period T and the inertia momentum Im. i. to 1. We choose periodic boundary conditions 
such that L+ 1 ≡ 1; we impose the canonical commutation relations to the angle and 

angular momentum operators, namely [p̂j, p̂k] = [θ̂j, θ̂k] = 0 and [θ̂j, p̂k] = ik̄ δj k, where 
k̄ = �T/Im. i.. The Hilbert space in which the system evolves is H =

⊗L
j=1 Hj where 

Hj is the Hilbert space of a single rotor. The basis vectors in the angular momentum 
representation are indicated with |p〉 = |p1, ... pL〉, where p̂j is the angular momentum 
of the j th rotor. The spectrum of the operators p̂j is unbounded; moreover, due to the 

2π-periodicity of the wave function with respect to each of the θ̂j operators, it is dis-

crete with eigenvalues pj = k̄mj with mj ∈ Z.
In general, the stroboscopic dynamics of periodically-driven quantum systems is 

studied by introducing the Floquet operator ÛF, defined as the time propagator over 
one period. In our case, we have

ÛF = e−iĤ0/(2k̄)e−iV (θ̂)/k̄e−iĤ0/(2k̄),� (2)

where we set the initial time in the middle of the free evolution in order to make the 
time inversion symmetry explicit. We can numerically diagonalize this unitary operator 
in the form

ÛF |ψβ〉 = e−iµβ |ψβ〉 ,� (3)

where the eigenstates |ψβ〉 are the so-called Floquet states and the eigenvalue phases µβ 
the corresponding quasienergies [9, 10].

Our analysis is based on the full exact diagonalization of the Floquet operator, 
through which we infer its spectral properties and we compute the exact dynamics of 
the system. Since the local Hilbert space Hj relative to each site has infinite dimension, 
a local truncation is necessary in order to write the Floquet operator matrix: we fix a 
maximum value for the angular momentum on each site mmax ∈ N and consider only 
angular momentum eigenstates with eigenvalue |pj| � mmax so that the dimension of 
the whole Hilbert space is ML, with M = 2mmax + 1. We restrict our analysis to the 
subspace invariant under the following symmetry transformations: spatial translation 

(j′ = j + 1), spatial inversion (j′ = L− j) and global momentum parity (p′j = −pj∀j), 
so that the dimension of the Hilbert subspace we deal with is D  =  ML/(4L).

3. Subdiusion and breaking of eigenstate thermalization

In this section we study the subdiusion behavior of the energy (section 3.1) and relate 
it with the properties of the Floquet states and of the o-diagonal matrix elements of 
the kinetic energy operator in the Floquet basis. We discuss the last point in section 3.2. 
We see that the distributions are not Gaussian, exactly as occurs in cases of anomalous 
thermalization in many-body systems [55–57]. In section 3.3 we study the properties of 
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the Floquet levels and we see that subdiusion is associated to an average level spacing 
ratio very near to the ergodic value. Nevertheless, the Floquet states do not obey the 
eigenstate thermalization, as we see in section 3.4 by studying the properties of the IPR 
distribution of the Floquet states. Moreover, for the local Hilbert space truncations M 
we can reach, the system does not thermalize to T = ∞ when there is subdiusion. This 
suggests that in our case subdiusion appears in association with breaking of eigenstate 
thermalization. This is dierent from the known many-body cases, where subdiusion 
is associated to thermalization in the thermodynamic limit [55–57]. Honestly, due to 
numerical limitations, we do not know if a thermalization behavior is attained in the 
limit M → ∞ and if this would imply a breaking of subdiusion in the long time.

3.1. Energy evolution

We start studying the kinetic-energy dynamics, showing examples of power-law increase 
in time of this quantity. The stroboscopic dynamics of a given initial state |ψ0〉 is given 

by |ψ(n)〉 = (ÛF)
n|ψ0〉. The observable on which we focus is the kinetic energy of the 

system per rotor defined as E(n) = 〈ψ(n)|Ĥ0|ψ(n)〉/L, that can be re-written as

E(n) =
∑
β,γ

H 0
β γ e

−in(µβ−µγ) ψβψγ,� (4)

where H 0
β γ = 〈ψβ|Ĥ0|ψβ〉/L and ψβ = 〈ψβ|ψ(0)〉. We analyze the dynamics of the sys-

tem focusing on the kinetic energy operator defined in equation (4). We choose as initial 
state the momentum eigenstate |0〉 in which all the rotors have zero angular momen-
tum. Let us consider figure 3 in which we plot the growth of the kinetic energy for a 
choice of the values of J/k̄ and K/k̄ and dierent values of M. In this figure we can 
distinguish two regimes. The former occurs at intermediate times: the dynamics of the 
system is independent on the truncation, while its duration increases with M. The lat-
ter occurs at long times: the energy tends to an asymptotic value which depends on the 
truncation M. In the following we separately analyze these two regimes. We postpone 
the analysis of the long-time asymptotic regime to section 3.5 and here we focus on the 
intermediate-time dynamics.

In order to analyze this regime we measure the power-law exponent of the kinetic 
energy growth for dierent values of J/k̄ and K/k̄. We observe a region in the param
eter space in which the heating process in the classical system is very dierent from 
the quantum one, as in the first case heating is linear, while in the second we find 
E(n) ∼ nα with α < 1 (see figure 1). The power-law heating is not due to the local 
truncation, as we checked by computing the dynamics for several values of M, as it 
is shown in figure 3. Although we cannot exclude a priori that dierent regimes may 
arise at longer times, the available time scales and the truncation values are enough to 
claim the existence of a genuine quantum regime, dierent from the classical one, as it 
is evident from figure 1. We repeat the same procedure for a grid of values of J/k̄ and 
K/k̄ and we compute the power law coecient. In figure 4 we plot α as a function of 
K/k̄ for dierent values of J/k̄; the lower boundary in the interval of K/k̄ values is that 
of the dynamically-delocalized regime, while the upper one is determined by numerical 
limitations. Even though a clear dependence of α from the parameters K and J is miss-
ing we notice that α seems to increase as J is increased.

https://doi.org/10.1088/1742-5468/ab6de4


Slow heating in a quantum coupled kicked rotors system

8https://doi.org/10.1088/1742-5468/ab6de4

J. S
tat. M

ech. (2020) 024008

3.2. Distribution of the o-diagonal matrix elements

Subdiusion corresponds to the breaking of the perfect chaoticity of the dynamics. 
From one side this can be already seen from the fact that a perfectly chaotic classical 
dynamics leads to diusion and not subdiusion. From the quantum perspective this 
can be seen by observing the properties of the Floquet states and noticing that they 

Figure 3.  The increase in stroboscopic time of the kinetic energy per rotor is 
plotted for K/k̄ = 2.2 and J/k̄ = 0.3. The power law appears for all the values of 
the truncation we consider, from M  =  39 (lighter curve) to M  =  51 (darker curve). 
The time at which the growth stops depends on the saturation value of the energy, 
which increases with M. It is evident that the larger is M, the longer the time 
window where the power law persists, the better the fit. Other parameters: L  =  3, 
k̄ = 5.0.

Figure 4.  The power-law exponent α is plotted for J/k̄ = 0.3, 0.5, 0.7 and some 
values of K/k̄. It appears that the exponent increases as J/k̄ is increased while 
a clear behavior is not clear in the interval of K/k̄ we can consider within the 
maximum truncation M we can achieve in our simulations. The error bars are 
obtained by measuring the exponents over dierent time intervals whose length 
is one order of magnitude and then evaluating their semi-dispersion. Other 
parameters: L  =  3, k̄ = 5.0.

https://doi.org/10.1088/1742-5468/ab6de4


Slow heating in a quantum coupled kicked rotors system

9https://doi.org/10.1088/1742-5468/ab6de4

J. S
tat. M

ech. (2020) 024008

have properties dierent from perfect eigenstate thermalization. In order to do that, 
we start considering that the diusion dynamics is given by the o-diagonal matrix 
elements of the energy operator Ĥ0 in the Floquet basis (see equation (4)). This sug-

gests to inquire the behavior of the distribution of the o-diagonal elements H 0
βγ with 

γ �= β, in order to interpret the power-law increase behavior of the energy (a similar 
analysis was performed to interpret an anomalous thermalization behavior in [55] pos-
sibly associated with subdiusion behavior in space [56]). If we had a perfect chaotic 
behavior, the operators expressed in the basis of the Floquet states should behave as a 

perfect random matrix [58], therefore the matrix elements H 0
βγ should be distributed 

according to a Gaussian.

We plot the distribution of H 0
βγ/Σ (where Σ is the variance of the distribution of 

the H 0
βγ) for many subdiusive cases in the upper panels of figure 5. We find indeed a 

significant deviation from a Gaussian behavior, as it should have been expected being 
the corresponding behavior of E(n) dierent from the perfectly chaotic diusion. (One 
of the distributions of figure 5—right panel corresponds to the subdiusion depicted 
in figure 3.) In order to do a comparison, we plot in the lower panel of figure 5 the 
distribution for a case which is fully thermalizing without any subdiusion (at least for 
the truncations we have access to). We see that it is an (almost) perfect Gaussian, in 
agreement with the expectations from random matrix theory. From this comparison 
we see that the behavior of the distribution of the o-diagonal elements and the time 
behavior of the energy are intimately connected.

3.3. Level-spacing ratio analysis and dynamical regimes

Here we consider the properties of the Floquet quasienergies. In particular, in order to 
understand if the dynamics is chaotic, we study the average level spacing ratio [59]. It 
is defined as

〈r〉 = 1

D − 2

D−2∑
β=1

min{λβ,λβ+1}
max{λβ,λβ+1}

,� (5)

where λβ = µβ+1 − µβ. If the dynamics is chaotic, the Hamiltonian should behave as 
a random matrix in the angular momentum basis: the level spacings λβ obey the cir-
cular orthogonal ensemble (COE) distribution and the average level spacing ratio is 
〈r〉 � 0.5269 (the Floquet operator belongs to the circular orthogonal ensemble of sym-
metric unitary matrices [11, 21, 60]).

On the opposite, a regular non-thermalizing behavior generically corresponds to 
a Poisson distribution [61] of the λβ; in this case the average level spacing ratio is 
〈r〉 � 0.386. These considerations are important for the energy absorption. As we exten-
sively analyzed in [38], a chaotic behavior corresponds to Floquet states delocalized 
in the angular momentum basis and to energy absorption. On the opposite, a regular 
behavior corresponds to localized Floquet states and then to dynamical localization.

In figure 6 we plot 〈r〉 as a function of K/k̄ for dierent values of J/k̄. In figure 2 
we map the regimes we observe in our model into the parameter space. We recognize 
the light-blue region on the right where 〈r〉 acquires the COE value and the energy 
increases up to a value scaling with the truncation. This is the chaotic dynamically 

https://doi.org/10.1088/1742-5468/ab6de4
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delocalized region where the system heats up without a bound. This heating does not 
always correspond to full chaoticity and diusive energy behavior: subdiusion occurs 
in the delocalized regime, close to its boundary. This is strictly reminiscent of the 
subdiusion in space domain occurring in the delocalized phase near the transition to 
MBL [49, 50]. Going on with our description of the diagram of figure 2, we find on the 
left a red region which we define ‘dynamically localized’ because we have numerically 
verified that the energy saturates after a transient to a value independent of the trun-
cation (see an example in figure 9(b)). This fact marks the presence of dynamical local-
ization. Here 〈r〉 takes the Poisson value and the dynamics is regular-like. In between 
the localized and the delocalized region there is an intermediate regime where 〈r〉 has 
a value in between Poisson and COE. Here it is not easy to characterize the energy 
dynamics and we postpone the analysis of this regime to a future publication.

3.4.  Inverse participation ratio

In order to explore the eigenstate thermalization breaking related to subdiusion we 
have to consider the localization properties of the Floquet states. This can be real-
ized by looking at the average inverse participation ratio (IPR) [62, 63] in the angular 
momentum basis, defined as

Figure 5.  Distributions normalized by the variance Σ of the o-diagonal elements 

of H 0
βγ . Numerical parameters: (left panel) J/k̄ = 0.7, (right panel) K/k̄ = 2.2, 

(lower panel) K/k̄ = 10.0, J/k̄ = 10.0. k̄ = 5.0, L  =  3, Mmax = 41.
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〈IPR〉 = 1

D

∑
β

∑
m

|〈ψβ|m〉|2q,� (6)

where q  =  2 is an exponent whose meaning will be clarified later. Given a state |ψ〉 
which is uniformly delocalized over all the states of the angular momentum basis, one 
finds that its IPR satisfies IPRψ ∼ 1/D.

Let us focus on the delocalized region of the parameter space (see figure 2). We 
remind that we are in the truncated Hilbert space whose dimension is D  =  ML/(4L). 
If we suppose that there is eigenstate thermalization, then all the Floquet states are 
locally equivalent to the T = ∞ density matrix. They behave as random states and are 
fully delocalized, we can therefore infer that they should satisfy 〈IPR〉 ∼ 1/D as well. 
We find, instead, 〈IPR〉 ∼ 1/Dδ with δ < 1. This fact occurs in a wide range of param
eters inside the delocalized region, as we can see in figure 7. In figure 7(a) we show some 
example of the scaling of the IPR with M at a fixed value of J/k̄ and some values of 
K/k̄ chosen in the dynamically-delocalized regime, while in panel (b) the corresponding 
exponent δ is plotted versus K/k̄ (dark line). From a physical point of view this fact 
marks the breaking of eigenstate thermalization near the boundary of the delocalized 
region which we have already discussed from a dierent point of view in section 3.

Breaking of eigenstate thermalization implies that the Floquet states are not all 
equivalent, so we expect large fluctuations from one state to the other. In order to esti-
mate the fluctuations in the IPR, we consider the scaling of the logarithmic average of 
the IPR, defined as

IPR log = exp〈ln IPR〉,� (7)

where 〈(. . .)〉 = 1
D

∑
β(. . .)β. We find a scaling of the form IPR log ∼ 1/Dη; we plot the 

scaling exponent η versus K/k̄ in figure 7(b) (lighter curve). We see that the exponents 
δ and η are similar and near 1 for high values of K/k̄. Here all the Floquet states are 
similar (small fluctuations) and obey eigenstate thermalization (full delocalization). 

Figure 6.  The behavior of the average ratio 〈r〉 against K/k̄ for dierent values 
of J/k̄. The error bars are obtained by averaging over the values obtained with 
dierent values of M. In this plot the maximum value of M which has been used is 
Mmax = 39. Other parameters: L  =  3, k̄ = 5.0.
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eigenstate thermalization is broken and large fluctuations in the IPRs of the Floquet 
states emerge. We would like to emphasize that the eigenstate thermalization break-
ing witnessed by δ, η < 1 in figure 7 and the subdiusion with α < 1 occur in the same 
parameter range (see figure 4): further research will be devoted to investigate the rela-
tion between these two results.

In order to better understand the origin of the fluctuations of the Floquet IPRs, we 
have focused on their distributions. To this purpose we have considered a fixed value 
of J/k̄ and computed the distributions for some values of K/k̄, as shown in figure 8(a): 
the distributions exhibit a power-law tail for smaller values of K/k̄ which tends to 
disappear as K/k̄ is increased. This observation is in agreement with the behavior of 
the exponents δ and η discussed above: a long tail means large fluctuations and then 
δ �= η. Moreover, a long tail means coexistence of more localized and more delocalized 
states with states not completely localized. A last remark regards the behavior of the 

Figure 7.  (a) The behavior of the average IPR versus M is plotted for J/k̄ = 0.3 
and K/k̄ = 2.5, 3.0, 10.0 (from lighter to darker colors). For this values the system 
is delocalized and the 〈IPR〉 scales as a power law with the dimension of the Hilbert 
space. (b) Exponent δ relative to the scaling of the 〈IPR〉 (darker curve) and η 
relative to the scaling of the logarithmic average (lighter curve). Other parameters: 
L  =  3, k̄ = 5.0.
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distributions with M, which is shown in figure 8(b). In the presence of fluctuations 
(δ �= η—left panel of figure 8(b)) a small fraction of localized states persists as M is 
increased, as it emerges from the right extreme of the power law-tail. Dierently, in 
absence of fluctuations and with δ = 1, all the states are delocalized and the whole dis-
tribution shifts to lower values of the IPR as M is increased (figure 8(b)).

It is worth noting that similar scaling properties of the IPRs have been found at the 
Anderson transition point of a three-dimensional disordered lattice [64–66] and across 
the MBL transition [67]: the eigenstates exhibit an anomalous scaling of the prob-
ability distribution momenta [68] and they are said to have a multifractal structure. 
In our analysis, we focused on the averaged second momentum, namely the 〈IPR〉. By 
computing the exponent δ for higher momenta (q  >  2), a set of fractal dimensions can 
be obtained for characterizing a single state. Multifractal states are also character-
ized through their probability distribution correlation functions and their level spac-
ing distributions. The mapping existing between this rotors model and a disordered 
L-dimensional lattice [38] suggests the existence of multifractal properties also in our 
case. This multifractal analysis, which may help understanding the intermediate region 
in figure 2, is left for future work.

3.5. Asymptotic behavior of the energy

The asymptotic behavior of the kinetic energy is governed by the diagonal matrix ele-

ments H 0
ββ: at long times, the system reaches the infinite-time averaged kinetic energy, 

defined as

Figure 8.  (a) Distributions of the IPR at a fixed value of J/k̄ and dierent values 
of K/k̄. The power law tails disappear as K/k̄ increases and the system becomes 
fully ergodic. (b) Distributions of the IPRα at dierent values of M in a case in 
which there are fluctuations (left, K/k̄ = 2.6) and in a case in which there are not 
(right, K/k̄ = 4.0). Numerical parameters: J/k̄ = 0.3, L  =  3, k̄ = 5.0.
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En→∞ = lim
T →∞

1

T

T∑
n=0

E(n) =
∑
β

|ψβ|2H 0
ββ.� (8)

The value of En→∞ is independent of M in the case of dynamical localization: the ini-
tial state evolves until it reaches an asymptotic state which is localized in the angu-
lar momentum space. On the other side, when the dynamics is ergodic the system is 
expected to reach the so called infinite-temperature state, defined as

ρT→∞ =
1

D

∑
β

|ψβ〉〈ψβ|.� (9)

This state is the equivalent, in the infinite-temperature case, of the equilibrium ther-
mal state which is reached by time-independent ergodic systems at a given temper
ature T. The corresponding expectation value of the energy, obtained by taking 

E(T = ∞) = Tr[Ĥ0 ρT→∞]/L, is:

E(T = ∞) =
k̄2

2LD

∑
m

|m|2.� (10)

In the case of delocalized dynamics the ratio I(M) defined as

I(M) =
En→∞

E(T = ∞)� (11)

should be O(1) with respect to the truncation M. Dierently, in the dynamically-
localized regime the averaged, infinite-time energy is constant with respect to M, while 
E(T = ∞) ∼ M2, so we have I(M) ∼ M−27. In figure  9 we plot the ratio I(M) at 
a fixed value of J/k̄ for some choices of K/k̄ in the dynamically-delocalized regime 
(a) and in the localized one (b). In the latter case we find the expected power-law 
behavior of I(M); in the former case we find that I(M) does not change significantly 
with M in the interval we can access with simulations. Notice that in case of ergodic-
ity one would expect, in particular, I(M) = 1, and this occurs for the thermalizing 
case K/k̄ = J/k̄ = 10. In the other subdiusive cases, we observe that I(M) increases 
towards 1 as K/k̄ is increased in the range of accessible values of K/k̄. Nevertheless, 
due to numerical limitations, we cannot distinguish whether I(M) tends to 1 for larger 
values of M, independently of K/k̄. The diusion and thermalization occurring for large 
kick parameters may suggest that in the fully ergodic regime each rotor evolves as if 
it interacts with an external bath. Hence some of the phenomenology we observe may 
have connections with the results in [69–71].

We remark the strong dependence of I(M) on K/k̄, in opposition with the behav-
ior of the subdiusion exponent α (see figure 4). Nevertheless, we see that I(M) is 
significantly smaller than 1 in the same interval where there is subdiusion and no 

7 This relation comes by observing that the infinite temperature energy of a single rotor can be re-written as 
k̄2

2M

∑mmax

m=−mmax
m2.
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eigenstate thermalization (see figures  4 and 8(b)), marking the connection between 
these phenomena.

4. Analysis of the random-matrix model

We have seen in the previous section that the operator Ĥ0 does not look like a random 

matrix in the Floquet basis, as the anomalous distributions of H 0
βγ of figure 5 testify. 

Here we build a model which can reproduce these distributions. The rationale is the 
following. In the chaotic case, the operators look like random matrices in the Floquet 
state basis [58]. On the opposite, in the localized case the Hamiltonian (Ĥ0) looks like a 
banded random matrix [72, 73] and one can argue that the operators showing localiza-
tion appear as banded random matrices in the Floquet basis (otherwise they would be 
delocalized). We construct a model interpolating between these two conditions. It is a 
random matrix where the elements are Gaussian distributed, but the variance of this 
distribution depends on the position inside the matrix and gets smaller as the distance 

Figure 9.  (a) The ratio I(M) is plotted for several values of K/k̄ at J/k̄ = 0.3 and 
in the case K/k̄ = 10.0 and J/k̄ = 10.0. Note that the ratio is O(1) with respect 
to M. (b) I (M ) plotted for K/k̄ = 0.4 and J/k̄ = 0.3 in the dynamically-localized 
regime. The points follow a power law with slope α = −1.94± 0.016 while the 
dashed curve has the expected slope  −2. Other parameters: L  =  3, k̄ = 5.0.
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from the diagonal is increased. In particular, it depends as a power law on the distance 

from the diagonal, so we assume that H0
βγ for γ �= β is a Gaussian random variable 

with variance

σβ,γ = σ|β−γ| =
1

|β − γ|b
,� (12)

with b some real non-negative number. In the limit b  =  0 we recover the standard 
random-matrix behavior, while in the limit b → ∞ we move towards a banded random 
matrix behavior.

In order to show the validity of our model, we can use it to fit the distributions of 

H0
βγ/Σ (figure 5) obtained through exact diagonalization. To do the fit, we adjust the 

parameter b in order to numerically minimize the quantity

dlog(b) =

∫ ∞

−∞
dx

∣∣∣log(P (x))− log(P
(b)
model(x))

∣∣∣ .� (13)

We perform some plots of dlog(b) versus b. For small values of b, our numerics gives us 
distributions restricted to a too narrow interval, that’s why we have a non-physical 
increase of dlog(b) (we do not show this interval of b in figure 10). For larger values of 
b we find a physical minimum. The minimum we find is very shallow and we cannot 
clearly determine it, being overwhelmed by fluctuations (figure 10). Nevertheless, we 
find values of b for which the agreement between the distributions resulting from ED 
and those from this model is good (see figure 11). Notice the very clear fluctuations at 
large deviations, giving rise to the wigglings of dlog. From our results, we see that b is 
closer to 0 for large K. This is in agreement with the physical expectation that these 
cases are more chaotic and then closer to a pure random matrix condition.

Figure 10.  dlog versus b. Numerical parameters: J/k̄ = 0.7, k̄ = 5.0, L  =  3, 
Mmax = 41.
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5. Conclusions

In conclusion we have studied the energy subdiusion in an interacting quantum kicked 
rotors model. We have noticed that this is a purely quantum phenomenon and, through 
a numerical analysis, we have mapped the dierent dynamical regimes in the param
eter space. We have considered the subdiusion and the asymptotic properties of the 
energy. About the latter, the absence of full thermalization in the truncated Hilbert 
space is strictly related to an anomalous behavior of the Floquet states, marking the 

Figure 11.  Comparison of the exact-diagonalization distributions of H0
βγ/Σ and 

the ones of the eective random-matrix model of equation (12) with appropriate 
choice of b. Notice the quite good agreement. Numerical parameters: J/k̄ = 0.7, 
k̄ = 5.0, L  =  3, Mmax = 41.
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breaking of eigenstate thermalization. Subdiusion is associated to anomalous non-
Gaussian distributions of the o-diagonal matrix elements of the energy in the Floquet 
basis. These distributions are well described by a model of anomalous random matrices.

Future directions of research include the application of the anomalous random 
matrix model to subdiusion in ergodic systems near the MBL transition [49, 50, 
55–57]. It would be also worth investigating the nature of the intermediate region: by 
exploiting the mapping between the rotors model and the disordered Anderson one, 
a possible way would be analyzing the possible multi-fractal structure of the Floquet 
states.
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