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Abstract

In astronomy, long-exposure observations are one of the important ways to improve signal-to-noise ratios (S/Ns).
In this Letter, we apply a deep-learning model to de-noise solar magnetograms. This model is based on a deep
convolutional generative adversarial network with a conditional loss for image-to-image translation from a single
magnetogram (input) to a stacked magnetogram (target). For the input magnetogram, we use Solar Dynamics
Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms at the center of the
solar disk. For the target magnetogram, we make 21-frame-stacked magnetograms, taking into account solar
rotation at the same position. We train a model using 7004 pairs of the input and target magnetograms from 2013
January to 2013 October. We then validate the model using 707 pairs from 2013 November and test the model
using 736 pairs from 2013 December. Our results from this study are as follows. First, our model successfully de-
noises SDO/HMI magnetograms, and the de-noised magnetograms from our model are mostly consistent with the
target magnetograms. Second, the average noise level of the de-noised magnetograms is greatly reduced from 8.66
to 3.21 G, and it is consistent with that of the target magnetograms, 3.21 G. Third, the average pixel-to-pixel
correlation coefficient value increases from 0.88 (input) to 0.94 (de-noised), which means that the de-noised
magnetograms are more consistent with the target ones than the input ones. Our results can be applied to many
scientific fields in which the integration of many frames (or long-exposure observations) are used to improve the
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1. Introduction

The simplest way to reduce noise is to take longer exposures
(or stack) observations. The signal-to-noise ratio (S/N) is
defined as the ratio of signal to noise. Photon noise increases in
proportion to the square root of time, and signal increases in
proportion to time. Thus, high S/Ns can be obtained by
increasing the exposure time or stacking observations (Birney
et al. 2006). For example, the Hubble Space Telescope has
generated ultra-deep field images by using long exposure times
of up to several days (Beckwith et al. 2006). However, this
method has the disadvantage of taking a lot of time to reduce
noise from observed data.

There have been a few attempts to reduce the noise levels
of solar magnetograms. Wang et al. (1995) and Chae et al.
(2001) examined weak and small magnetic field structures such
as solar intranetwork or small bipoles by integrating 4096
frames of magnetograms taken at Big Bear Solar observatory.
Schrijver et al. (1997) stacked Michelson Doppler Imager
(MDI) magnetograms to obtain a sequence of high-resolution
magnetograms and to determine the polarity pattern on solar
quiet region more clearly. DeForest (2017) presented a set of
algorithms based on locally adaptive filters to reduce noise in
astrophysical images including solar magnetograms.

The Solar Dynamics Observatory (SDO;, Pesnell et al. 2012)
is a spacecraft mission with three instruments that investigates
how solar magnetic field is generated and structured, and how
this stored magnetic energy is released into the heliosphere and
geospace as solar wind, energetic particles, and variations in
the solar irradiance (Pesnell et al. 2012). The Helioseismic and
Magnetic Imager (HMI; Scherrer et al. 2012; Schou et al. 2012)

is an onboard instrument of the SDO, and is designed to
measure the Doppler shift, intensity, and magnetic field at the
solar photosphere; it has continuously observed the data near
solar surface since 2010 (Scherrer et al. 2012; Schou et al.
2012). The HMI magnetogram is acquired from multiple
narrow spectral bands. This instrument has two charge-coupled
device (CCD) cameras: one is the “front camera” that observes
45 s cadence line-of-sight (LOS) magnetograms, and the other
is the “side camera” that observes 720s cadence vector
magnetograms. Liu et al. (2012) calculated the average noise
level of SDO/HMI magnetograms by assuming that the noise
level in a magnetogram is the standard deviation of a best-fitted
Gaussian fitting function of the histogram of magnetic flux
densities. They reported that the average noise level of SDO/
HMI 45's magnetograms is about 10.2G and that of 720s
magnetograms is about 6.3 G.

Recently, a deep neural network (DNN; Lecun et al. 2015)
and machine-learning algorithm called “Deep Learning” has
been developed. DNN is a kind of artificial neural network that
has been developed to learn how humans think and recognize
an object using their deep hierarchical layer structures. The
convolutional neural network (CNN; Lecun et al. 1998) is
the most popular deep-learning method in the field of image
processing and computer vision. In general, CNN models
consist of convolution filters that extract features from
their data sets. The generative adversarial network (GAN;
Goodfellow et al. 2014) is another popular deep-learning
method used for several generative tasks. Generally, a GAN
consists of two networks: one is generative network (generator)
and the other is discriminative network (discriminator). The
purpose of the generator is to generate realistic fake data, and
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the purpose of the discriminator is to distinguish fake data from
real data. Their purposes are adversarial to each other, which
gives the appearance of competition between the two networks.
Based on this adversarial training, we expect the generator to
produce a substantial amount of realistic data that the
discriminator cannot distinguish, which is the optimal state
for the generator. The deep convolutional generative adversar-
ial network (DCGAN; Radford et al. 2015) is a combined
model of CNN and GAN used for stable training and output.
Based on DCGAN, several methods have been suggested to
solve the various types of image-generation tasks (e.g., Isola
et al. 2016; Ledig et al. 2016). Kim et al. (2019) suggested a
DCGAN model to generate solar magnetograms using SDO/
AIA images, and then applied the model to Solar Terrestrial
Relations Observatory /Extreme Ultraviolet Imager (STEREO/
EUVI) images to produce solar farside magnetograms. Park
et al. (2019) applied both CNN and DCGAN models to the
generation of solar ultraviolet (UV) images from SDO/HMI
LOS magnetograms, then compared the results from two
models.

There have been a few attempts to apply deep learning to the
de-noising of solar data. Diaz Baso et al. (2019) developed a
CNN model to de-noise solar data and applied it to pairs of
synthetic magnetograms from simulations with and without
noise. They also applied their model to pairs of magnetograms
and their deconvolved ones by Swedish 1 meter Solar
Telescope. From both applications they obtained de-noised
magnetograms with much less noise.

In this Letter, we apply a DCGAN model to the de-noising
of solar magnetograms using real observation data sets. For
the data sets, we make pairs of original SDO/HMI LOS
magnetograms the input, and 21-frame stacked ones the target;
the stacked ones have much lower noise levels. The model
outputs are de-noised magnetograms and they are compared
with the target magnetograms. This Letter is organized as
follows. The data will be described in Section 2, and the model
in Section 3. Results are given in Section 4, and a brief
summary is presented in Section 5.

2. Data

We use SDO/HMI LOS 45 s magnetograms from 2013
January to 2013 December. For the input magnetogram, we
select a patch at the center of solar disk with size of 256 by 256
(about +76”8). For the target magnetogram, we integrate 21
magnetograms that include 10 frames before and 10 frames
after the input magnetogram considering solar rotation. The
stacked magnetogram has an approximately 15 minute
exposure time. We use magnetograms with a range of —100
G for minimum and 100 G for maximum. As a result, we make
8447 pairs of input and target magnetograms with a 1 hr
cadence. Then we separate our data sets into training,
validation, and test in chronological order. We select 707 pairs
from 2013 November for the validation data set, 736 pairs from
2013 December for the test data set, and the remaining 7004
pairs for training data set.

3. Method

Our model is based on the model by Park et al. (2019). They
modified the model of Isola et al. (2016), who suggested a
general purposed solution based on a conditional generative
adversarial network (cGAN; Mirza & Osindero 2014) and

Park et al.

DCGAN to resolve the image-to-image translation problems.
Several authors suggested that the results from DCGAN
models could be more realistic than those from CNN models
(Isola et al. 2016; Ledig et al. 2016). Park et al. (2019) also
reported that the generated solar UV images from DCGAN
models are clearer than those from CNN models in most
passbands, so we follow them. More details about our model
and codes are available at our GitHub repository.’

Figure 1 shows the main structure of our model based on
DCGAN. The purpose of the generator (G) is to generate
target-like magnetograms (de-noised, hereafter) using input
magnetograms. The purpose of the discriminator (D) is to
distinguish pairs of the input magnetograms and target ones,
called “Real Pair,” and pairs of the input ones and de-noised
ones, called “Fake Pair.” To train our model, we use two loss
functions: one is L1 loss (mean absolute error, L), which is
given by

1 N
Li(G) = NZIW - MP|, (1

where i is a pixel number, MI, M T, and MP are the input,
target, and de-noised magnetograms, respectively. The gen-
erator tries to minimize the L, which means that the generator
trains itself to minimize the difference between the M7, and
MP. The other is cGAN loss (Legan), which is given by

L.gan(G, D) = log(DM!, MT)) + log(1 — D(M!, MP)),
()

where G is the generator, D is the discriminator, D(M!, MT) is
the probability calculated by the discriminator using the Real
Pair, and D(M!, MP) is the probability calculated by the
discriminator using the Fake Pair. The discriminator tries to
maximize the L.gan to well distinguish between the Real Pair
and the Fake Pair. On the other hand, the generator tries to
minimize the L.gany to make the discriminator difficult
to distinguish between the Real Pair and the Fake Pair. We
expect the L.gan contributes to generating realistic de-noised
magnetograms. The final loss function is given by

G* = argming maxp Lcgan (G, D) + ALi(G), 3)

where ) is the relative weight of the L.gan and the L. In this
work, we used 100 for the relative weight, like Isola et al.
(2016). To minimize or maximize the losses, we use the
adaptive momentum estimation solver (Kingma & Ba 2014) as
an optimizer for both the discriminator and the generator. We
save the generator in every 10,000 iterations, so we acquire 50
generator networks while the generator and the discriminator
are alternatively trained for 500,000 iterations. Here one
iteration refers to when one pair of images is trained in our
model. In the validation step, we compare the target
magnetograms with the de-noised ones by the 50 generators
using the validation data set, and then we select the best model
among the saved 50 generators. In the test step, we estimate the
model performances of the selected generator in the valida-
tion step.

3 htps: //github.com/eunsu-park /solar_magnetogram_denoising
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Figure 1. Flowchart and structures of our proposed model. G is the generator, D is the discriminator, M’ is an input magnetogram, M is a target magnetogram, and
MP is a de-noised magnetogram by the generator. The blue box is a Real Pair (M’, M™), and the red box is a Fake Pair (M’, MP).

4. Results and Discussion

Figure 2 shows input, target, and de-noised magnetograms
(output), and the difference between target and de-noised
magnetograms for three specific regions. As shown in Figure 2,
the input magnetograms are quite noisy but the target and de-
noised ones are much less noisy. Impressively, the de-noised
magnetograms are quite consistent with the target ones, which
is also evident in the difference image between them.

To test our results, we calculate the noise levels of the input,
target, and de-noised magnetograms by applying a Gaussian
fitting to the histogram of magnetic flux densities. We assume
the standard deviation of the Gaussian fitting as the noise level
of magnetograms (Liu et al. 2004, 2012). Figure 3 shows
histograms of magnetic flux densities for the input, target, and
de-noised magnetograms in Figure 2. As shown in Figure 3, the
histograms for the de-noised magnetograms are similar to those
of the target ones, and their noise levels are almost the same.
Table 1 shows the average values of the noise levels for
validation and test sets. Our model significantly reduces the
average noise level from 8.66 to 3.21 G, which is comparable
to that of target magnetograms, 3.21 G.

In addition to the noise levels, we calculate five types of
metrics between target magnetograms and de-noised (or input)
ones. The first metric is the pixel CC (higher is better). The
second is the RE (smaller is better) of the total unsigned

magnetic flux (TUMF, ®;), which is given by
REZ' — (@Penoised _ (I);Farget) /(b;l“arget’ ( 4)

where i is a serial number of test samples. This value
corresponds to the overestimation (RE; > 0) or underestimation
(RE; < 0) that our method attributes to the TUMF. The third
metric is the linear fitting of TUMF between the target
magnetograms ((DT) and the de-noised ones (<I’D ), which is
given by ®” = A®” + B. The fourth metric is the NMSE
(smaller is better) of the magnetic field (B;) given by

NMSEi _ Z (BJ]_)enoised _ B}Farget)z/z (B}Fargel)z’ (5)

where i is a serial number of test samples and j is a pixel
number. The last metric is the peak S/N (higher is less noisy),
which is used as a quality measurement between a original
image and a compressed image, given by

(6)

peakS/N, = ZOlogm( MAX, ],

JVMSE;

where i is a serial number of test samples, MAX; is the length
of data range, and MSE,; is the mean squared error between
target and input (or de-noised) magnetograms. The peak S/N
value becomes higher when an image is less noisy and becomes
zero when an image has no noise.
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Figure 2. Three examples of comparisons between input, target, and de-noised magnetograms. The first column represents input magnetograms, the second column
represents target magnetograms, the third column represents de-noised magnetograms from our model, and the last column represents the difference maps between de-
noised and target magnetograms.

Table 1
The Average Noise Levels, Pixel-to-pixel Correlation Coefficient (Pixel CC), Relative Error (RE) of the Total Unsigned Magnetic Flux (TUMF), Linear Fitting of
TUMF, Normalized Mean Squared Error (NMSE), and Peak S/N of Validation and Test Data Sets

Input Target De-noised (ours) Median Gaussian Bilateral

Noise Level Validation 8.74 3.24 3.24 4.61 430 4.41

Test 8.66 3.21 321 457 427 436
Pixel CC Validation 0.88 1 0.94 0.93 0.95 0.94

Test 0.88 1 0.94 0.93 0.95 0.94
RE Validation 0515 0 0.001 0.013 0.041 0.053

Test 0.529 0 0.001 0.012 0.043 0.053
Linear Fitting (120 Mx) Validation 0.920" + 4.55 o7 0.999" + 0.08 0.980" + 0.26 0.97®" + 0.56 0.970" + 0.60

Test 0.900" + 4.66 o 0.999" + 0.08 0.960" + 0.36 0.960" + 0.58 0.960" + 0.67
NMSE Validation 0.31 (0.23) 0 0.12 (0.07) 0.13 (0.09) 0.09 (0.06) 0.11 (0.08)

Test 0.31 (0.23) 0 0.12 (0.07) 0.13 (0.09) 0.09 (0.06) 0.12 (0.08)
Peak S/N Validation 28.49 100 32.53 32.03 33.36 32.59

Test 28.53 100 32.62 32.17 33.53 32.72

Note. The value in between parenthesizes corresponds to NMSE for pixels larger than the noise level.
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Figure 3. Three examples of histograms of magnetic flux densities from input, target,

and de-noised magnetograms. The red lines represent the histograms of input

magnetograms, the green lines represent the histograms of target magnetograms, and the blue lines represent the histograms of de-noised magnetograms from our

model. The dates and times are the same as those of Figure 2.

Table 1 shows the average values of the five metrics between
target magnetograms and de-noised (input) ones. The average
CC value increases from 0.88 (input) to 0.94 (de-noised),
which means that the de-noised magnetograms are more
consistent with the target ones than the input ones. The average
RE value of the de-noised magnetograms greatly decreases
from 0.529 to 0.001. In view of RE, our model slightly

overestimates the TUMF but the error is quite small, about
0.1%. The linear fitting of TUMF between the target
magnetograms and the de-noised ones is very close to the
perfect line. The average NMSE value decreases from 0.31 to
0.12. The NMSE is sensitive to pixels having small magnetic
flux densities. The average NMSE value, when we consider
only the area higher than the noise level, is 0.07, which
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Figure 4. Application of our model to a full-disk SDO/HMI magnetogram at 2017 September 5 00:00 UT. The first column represents original SDO/HMI
magnetograms, and the second column represents de-noised magnetograms from our model. The noise levels of (a), (a’), (b), and (b) are 10.20, 4.05, 11.79, and

4.91 G, respectively.
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becomes much smaller. The average Peak S/N value between
the target magnetograms and the de-noised ones is 32.62 dB,
while the value between the target ones and the input ones is
28.53 dB. In conclusion, all four metric values are greatly
improved when we consider the de-noised magnetograms
generated by our deep-learning model.

We compare our results with conventional smoothing
methods such as median, Gaussian, and bilateral methods.”*
Optional parameters of these methods are determined by
looking for the best correlations with target images in the
training data sets. More details about these methods and their
optional parameters are described in the Appendix. Overall
metric scores from these methods are similar to those from our
model. However, the average noise level of the de-noised
magnetograms is noticeably smaller than those from these
methods. The linear-fitting results of our method are better than
those of the other methods. A visual comparison among the
methods is given in the Appendix.

We have made our model by training the magnetograms
taken at the solar center. To look for a possible application of
our model, we apply the model to two different regions: the
solar center and near the limb. Figure 4 shows an example
of the application to full-disk SDO/HMI magnetogram at
00:00 UT on 2017 September 5. The first region, denoted by
(a) and (2’) in Figure 4, is located at solar center, but is four
times wider area than our data sets. The second region, denoted
by (b) and (b’) in Figure 4, is located near the limb, but is four
times wider than our data sets. A careful comparison between
the input magnetogram and the de-noised one for two regions
shows that noise signals in the input ones are successfully
removed in the de-noised ones. The noise level in the first
region decreases from 10.20 to 4.05 G, and in the second
region from 11.79 to 4.91 G.

5. Conclusion and Summary

In this Letter, we have applied a deep-learning method based
on DCGAN to the de-noising of solar magnetograms. We have
selected 8447 pairs of SDO/HMI magnetograms as the input
and their corresponding stacked magnetograms as the target.
We have separated our data sets into training, validation, and
test sets in chronological order. We have trained our model
using 7004 pairs from 2013 January to 2013 October. Then
we have validated the model using 707 pairs from 2013
November, and tested 736 pairs from 2013 December.

The main results of this study are as follows. First, our model
successfully generates the de-noised SDO/HMI magneto-
grams, and the de-noised magnetograms are much more
consistent with the target magnetograms than the input ones.
Second, our model greatly reduces the noise levels of the input
magnetograms. The average noise level of the de-noised
magnetograms is 3.21 G, which is quite lower than that of the
input ones (8.66), and is consistent with that of the target
magnetograms, 3.21 G. It is also noted that the average noise
level of the de-noised magnetograms is even lower than that of
SDO/HMI 720 s magnetograms calculated by Liu et al. (2012),
6.3 G. Third, all five metric values (CC, RE, linear fitting,
NMSE, and peak S/N) of the de-noised magnetograms are
much better than those of the input ones. Fourth, we applied the
trained model to a full-disk SDO/HMI magnetogram to show a

4 https: //cs.nyu.edu/fergus /teaching /comp_photo/5_image_proc_noise_
bilateral.pdf
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possibility of the application of our model from the solar center
to solar limb. Then we found that the application is quite
successful in that the noise level of the de-noised magnetogram
is greatly improved.

In this Letter, we have demonstrated that a deep-learning
model based on DCGAN can be used to generate the de-noised
magnetograms by training many pairs of single and stacked
ones. Our de-noised magnetograms can be used for several
studies on small magnetic structures; canceling magnetic
features, magnetic flux emergence, solar surface motions,
magnetic turbulence at the photosphere, and so on (Livi et al.
1985; Schrijver et al. 1997; Chae et al. 2001; Abramenko 2018).
This idea can be applied to many astronomical areas because
S/Ns are not large due to insufficient photons. There are a few
necessary conditions to apply this model to data. First, there
should be enough data sets for training and test. Second, the
integration of frames (or long-exposure observations) has to be
successfully made. Third, there should be little significant
motions of features during the integration. As a good example
of application, our preliminary results show that this method is
successfully applied to make Sloan Digital Sky Survey images
de-noised (Park et al. 2019). Furthermore, our method can be
applied in many scientific fields in which the integration of
many frames are used to improve the S/N.
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Appendix
Smoothing Methods

The result of our median smoothing for a given pixel p is
given by

M|[I], = median(/, € S), @)

where I, is an intensity at a pixel ¢ in window size S. The size
of the median filter is set to be 3 by comparing the results of
training data sets.

The results of our Gaussian smoothing for a given pixel p is
given by

qes

where G, is a Gaussian function with ¢, and /, is an intensity at
pixel ¢ in window size S. The size of the Gaussian filter and o


http://numpy.org
http://keras.io
http://tensorflow.org
http://sunpy.org
https://cs.nyu.edu/fergus/teaching/comp_photo/5_image_proc_noise_bilateral.pdf
https://cs.nyu.edu/fergus/teaching/comp_photo/5_image_proc_noise_bilateral.pdf
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Figure 5. Two examples of the results of our model and three smoothing ones. The first column represents the results of our model, the second column represents the
results of the median smoothing, the third column represents the results of the Gaussian smoothing and the last column represents the results of the bilateral smoothing.
The first row represents the magnetograms from the methods, and the second row represents the difference maps between the results and target magnetograms.

are set to be 3 and 1 by comparing the results of training

data sets.
The results of of bilateral smoothing for a give pixel p is
given by

1
B[], = WZ G.(|lp — qIDGx (L, — I,D1,, )
P qgeS

where W, is a normalized factor, o, is spatial extent of the
kernel, o, is a minimum amplitude of an edge and 7, is an

intensity at pixel ¢ in window size S. The size of the bilateral
filter, o,, and o, are set to be 3, 10, and 10 by comparing the
results of training data sets.

Figure 5 shows the results of our model and three smoothing
ones for two examples. As shown in Figure 5, difference maps
among these methods are similar to one another. Our visual
inspection shows that the quality of magnetograms from our
method are significant better than those from three smoothing
methods. This is consistent with the fact that the noise levels of
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the magnetograms from our model are smaller than those of the
three smoothing methods.
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