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Abstract
The task of testingwhether quantum theory applies to all physical systems and all scales requires
considering situationswhere a quantumprobe interacts with another system that need not obey
quantum theory in full. Important examples include the cases where a quantummass probes the
gravitational field, forwhich a unique quantum theory of gravity does not yet exist, or a quantum field,
such as light, interacts with amacroscopic system, such as a biologicalmolecule, whichmay ormay
not obey unitary quantum theory. In this context a class of experiments has recently been proposed,
where the non-classicality of a physical system that need not obey quantum theory (the gravitational
field) can be tested indirectly by detectingwhether or not the system is capable of entangling two
quantumprobes. Here we illustrate some of the subtleties of the argument, to dowith the role of
locality of interactions and of non-classicality, and performproof-of-principle experiments
illustrating the logic of the proposals, using aNuclearMagnetic Resonance quantum computational
platformwith four qubits.

A recently proposed class of experiments has brought the possibility of testing quantum effects in gravity closer
to current experimental capabilities [1, 2]. The remarkable feature of these experiments is that they are based on
a general argument, whereby if an intermediate system (which need not obey quantum theory) canmediate
entanglement between two quantum systems, then it itselfmust be non-classical. By a systembeing non-classical
wemean, following [1], that the systemhas at least two non-commuting variables. This is a weaker property than
displaying full quantum coherence: itmeans, operationally, that the systemhas at least two variables with the
property that they cannot bemeasured simultaneously to an arbitrarily high accuracy. (Note that the two
variables do not have to be fully complementary, but a degree of non-commutativity is necessary to generate
some amount of entanglement in the quantumprobes.)This is a remarkably general argument, which can be
applied to anymediator whatever its physical origin happens to be. It therefore generalises theoretical
considerations [3, 4], which date back to Feynman’s andDeWitt’s arguments for the quantisation of gravity,
aiming at hybrid systems (those composed of a quantumprobe system, that obeys quantum theory, and another
systemwhose dynamics and scale are not fully specified). The argument sets a novel paradigmwhichwill be
crucial for the exploration of tests beyond currently knowndynamical laws, specifically towitness non-
classicality in systems thatmay not obey quantum theory.

Inpreparation for an actual experiment involving superposedmasses interacting through gravity, in this paper
we intend to further clarify the logic of the argument, using a quantumsimulation. Specificallywe shall illustrate how
the degree of non-commutativity of relevant variables of the entanglementmediator relates to thefinal entanglement
of the probes, in a specific quantummodel, and the important role of locality of interactions in the argument.

Based on this, we also propose an experimental simulation using fourNuclearMagnetic Resonance (NMR)
qubits arranged in a linear chain. The local transfer of entanglement takes place fromone end of the chain to the
other, through amediator whichmay be non-classical, in the sense that itmay have a pair of non-commuting
observables. In this simulation, themediator is the third qubit in the chain, which can either be undisturbed or
undergo dephasing, which simulates the classical limit inwhich only one observable of the qubit can be accessed,
effectivelymaking it behave like a classical bit.We show thatmediated entanglement disappears in the presence
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of complete dephasing, which corresponds to themediator behaving classically, i.e. not being able to access at
least two non-commuting degrees of freedom.

1.Quantumgatemodel

The idea of the test of non-classicality is elegant and can be illustrated via a quantum simulation, as follows.
Consider three systems: two qubits,Q1 andQ2, and another system S (themediator), which is only assumed

to have a classical observableT, meaning one that can in principle be perfectlymeasured. Thismediator system
could be the gravitational field, for example, but could bemore general.

Suppose that they are all initialised in a state where they are not entangled and that interactions are allowed
betweenQ1 and S, and betweenQ2 and S, but (and this is essential)not betweenQ1 andQ2. If at some point later
in the evolutionQ1 andQ2 become entangled, then one can infer that Smust have at least another variableW
that is complementary toT, meaning thatT andW cannot be perfectlymeasured by the same device. ThereforeT
andW can be represented as two non-commuting degrees of freedomof S.

For the purpose of our simulation, the formation of entanglement through non-commuting degrees of
freedomof themediator can bemodelled in a number of equivalent ways using quantum theory. In [3] two of us
proposed aHamiltonianmodel in linear quantum field theory, applicable to either gravity or electromagnetism,
where the system S is treated as a single harmonic oscillator, whileQ1 andQ2 are twomasses that can be put into
spatial superpositions of two different locations.Herewe focus instead on two quantumnetworkmodels, with
the aimof eventually realising a quantum simulation of the effect.

Thefirst network is chosen so that the interaction betweenQ1 andQ2 is symmetric,mirroring the original
quantumfield theoryHamiltonian interaction.

To uncover the role of the non-commuting variables of themediator S inmediating entanglement, it is
illuminating to resort to theHeisenberg picture for quantum information (see, for example, [5, 6]). The
Heisenberg picture ismore suitable to track the information transfer residing in non-commuting observables,
which establishes entanglement. The two pictures are, of course, equivalent, but theHeisenberg one ismore
direct for our purposes.

Consider a chain of four qubits, A, B, C, andD. Let qxα denote an operator representing the x-component of
qubitα, and similarly for the y and z components. These operators act on the 24-dimensionalHilbert space of
the four qubits.We have qzαqxα=iqyα, =aq idz

2 and likewise for all the other components, while components
of different qubits commute. If the gateU(tn) operates between time tn and tn+1, we shall denote by

( ) ( ) ( ) ( ) ( )†=a a+O t U t O t U t 1n n n n1

the operator representing the observableO of systemα after its action. The initial conditions arefixed by
choosing particular values for qxα(t0), qyα(t0), qzα(t0), for allαʼs, and by theHeisenberg state ρH. The state of each
qubitα at time t is completely specified by at least two components, e.g. {qxα(t), qzα(t)}. The state of the joint
system is likewise reconstructed given all of the observables in the set {qxα(t), qzα(t)}, because

( ) ( ) ( ) ( ) ( ) ( ) ( )† =a a a a+ +U t q t q t U t q t q t 2n x n z n n x n z n1 1

by unitarity. Therefore for present purposes it is enough to track the evolution of {qxα(t), qzα(t)} only.
Suppose one intends to entangle qubits A andDby local interactions existing only between qubits A andB, B

andC, andC andD,whilemore distant pairs, such as A andD, are not allowed to interact directly. In this case,A
andD correspond toQ1 andQ2, whileB andC represent themediator S. TheHamiltonian of the qubits is
assumed to contain nearest neighbour interactions on the chain, but not to couple qubits A andDdirectly.We
choose a representation such that the initial conditions are expressed as ( ) = Ä ºÄq t Z id qz z0

3
A A

, whereZ is a
Paulimatrix, and so on.We choose theHeisenberg state to be ∣ ∣r = ñá0 0H , the+1 eigenstate of the

operator ( )+ Äid Z1

2
4.

A symmetric way of performing themaximally entangling gate betweenA andD is represented by the circuit
infigure 1. First one applies a Bell gate betweenA andB, and betweenD andC; then one performs a controlled
phase on qubits B andC; and finally one applies CNOT gates betweenA andB, andD andC. The gates applied at
their respective times are represented as follows:

( ) ( ( )) ( ( )) ( ) ( )= + + -a b a a bt id q t id q t q t 3CNOT n z n z n x n,
1

2

1

2

( ) ( ( )) ( ( )) ( ) ( )= + + -a b a a bt id q t id q t q t 4CPH n z n z n z n,
1

2

1

2

( ) ( ( ) ( )) ( )= +a a aH t q t q t
1

2
5n z n x n

The resulting evolution of theHeisenberg descriptors {qxα(t), qzα(t)} at each of the four times indicated in the
figure is shown in table 1.
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From this table, one can compute the degree of entanglement between qubits A andD after time t3. Themost
straightforwardmeasure to use is the sumof correlations in two complementary directionswritten as

{ ( ( ) ( ) ( ) ( ))} ( )r= +E q t q t q t q tTr 6AD H x z z x3 3 3 3A D A D

which for the this network has a value of 2. Disentangled states cannot exceed the value of 1 as far as this
observable is concerned (which therefore alsomakes it a useful entanglement witness inmore general contexts,
very closely related to Bell’s inequalities).

By tracking the evolution of the descriptors in the table one can see the explicit role of locality of interactions,
which coupleQ1 andQ2 separately with themediator S, but notQ1 andQ2 directly [1, 2, 7]. The descriptors of
systemD at time t3 (representingQ2 in the simulation) become dependent on the descriptors of A (representing
Q1 in the simulation) at time t0, and similarly for the descriptors of A at time t3, via a sequence of nearest-
neighbour interactions.

Nowwe can relate thefinal degree of entanglement betweenA andD to the degree of non-classicality of the
mediator. A andDbecome entangled at time t3 because at time t1 and t2 the non-commuting degrees of freedom
qzB, qxB, and qzC, qxC, of qubits B andChave acted asmediators. The relevant degree of non-classicality of the
mediator represented by each of the qubits B andCwill be taken to be the normof the operators [qxα(t), qzα(t)],
that is, the commutator between the two observables that are relevant for the couplings between themediator
qubits B andC and the two qubits to be entangled, A andD. This is a dynamical quantity, which is of course
invariant under unitary dynamics.We have seen that in this networkmaximal entanglement can be achieved,
corresponding tomaximal degree of non-commutativity of themediator (indeed, the x and z components
responsible for the entanglement aremaximally complementary observables of themediating qubits). However,
even a small amount of entanglement on the probes is sufficient to conclude the existence of non-classical
variables of themediator, even though these need not bemaximally complementary.We shall now simulate the
transition to a classicalmediator via introducing decoherence on qubits B andC, which affects that degree of
non-commutativity and therefore the capacity of themediator to create entanglement.

1.1.Decoherence
Wewill now simulate the transition between the case where themediator S consists of a fullyfledged two-qubit
system, and the case where it consists of a hybrid systemwith a lower degree of non-classicality. This will be
represented in our simulation by applying some decoherence to qubits B andC. Specifically, we apply a phase-
flip channel with intensity p at time t2, after the phase gate and before the final CNOT gates in the above network,
to both qubits B andC separately.

Wewill consider the regimewhere the decoherence rate is faster than the timescales overwhich the
observables of the qubits B andC can bemeasured. In such a situation, we can consider themediator to be
described by an effective description, where the descriptors of qubits B andC are acted upon by the noisy
operation. Tomodel this effective system (equivalent to qubit B andC each ‘dressed’ by decoherence), we shall

Figure 1.A symmetric quantumnetwork generating entanglement between pairs of distant qubits.

Table 1.Heisenberg Picture Representation—symmetric network. For each time t, thefirst slot is the x
component qxα(t), the second slot is the z component qzα(t), expressed as a function of the descriptors at
time t0.

Qubit A Qubit B Qubit C Qubit D

t0 { }q q,x zA A { }q q,x zB B { }q q,x zC C { }q q,x zD D

t1 { }q q q,z x xA B A { }q q q,x z xB B A { }q q q,x z xC C D { }q q q,z x xD C D

t2 { }q q q,z x xA B A { }q q q q q,x z x z xB C D B A { }q q q q q,x z x x zC B A D C { }q q q,z x xD C D

t3 { }q q q q,z z x xA C D A { }q q q q,x z x zB C D B { }q q q q,x z x zC B A C { }q q q q,z z x xB D A D
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use theHeisenberg picture representation of noisy channels, where for a general observableOα(t) of qubitα, the
phase-flip channel has the effect

( ( )) ( ) ( ) ( ) ( )†å=a aE O t M t O t M t 7
a

a a

where theMa are theKraus operators of the channel: ( ) =M t p id0 , ( ) ( )= - aM t p q t1 z1 . Note that after
this operation, the generators of the algebra of qubitαundergoing decoherence are affected as

( ( )) ( ) ( )=a aE q t q t , 8z z

( ( )) ( ) ( ) ( )= -a aE q t p q t1 2 . 9x x

The effect of decoherence on the overall entanglement generation can be retrieved by computing the
evolution of the components of the qubits, as in table 2. Computing again the degree of entanglement on qubits
A andD at time t3, we see that it is reduced by a factor (1 –2p) compared to equation (6).

Correspondingly, the degree of commutativity of the variables of each decohered qubit involved in
entanglement generation is reduced by the factor (1 –2p) compared to the case without decoherence:

[ ( ( )) ( ( ))] ( )[ ( ) ( )] ( )= -a a a aE q t E q t p q t q t, 1 2 , . 10z x z x

This is the dual of the channel’s action on quantum states, which need not preserve the inner product
between two generic quantum states. Themediator S consisting of qubits B andC together with the environment
that decoheres both of the qubits, can be effectively described as a physical systemwhose descriptors are the
decohered versions of the generators of qubits B andC. This can be seen as a special case of a hybrid quantum–

classical dynamics, closely related to the proposals reviewed in [8].
In the limiting case of complete dephasing, p=1/2, the entanglement vanishes and so does the degree of

non-commutativity between the different components of themediator consisting of the fully decohered
mediator qubits B andC, thereby simulating the transition of themediator to a completely classical system. The
physical interpretation of this is that in the limit ofmaximal decoherence the qubitsmediating the interaction
become effectively two classical bits, in that only their z component can be used for information processing.
Their x and y components become effectively suppressed, and the qubits are turned into effectively classical
systemswith only one classical Boolean observable, along z.

This is a powerful illustration of the fact that themediator Smust have at least two non-commuting
observables tomediate entanglement betweenA andD: if the degree of commutativity (i.e. non-classicality) of
the relevant variablesmediating entanglement is reduced, the final entanglement is too.Of course themediator
in this quantum simulation obeys the laws of quantum theory, but this scenario serves to illustrate themore
general principle of the argument for non-classicality, which could also apply to systems that are not necessarily
quantum, e.g. quantumgravity. Note also that having entanglement created in this way is a sufficient condition
for non-classicality of themediator. Not having entanglement, on the other hand,may ormay not imply the
classicality of themediator. One important difference between thismodel and the field-theorymodel, when the
mediator is, for example, gravity, is that in the linearisedHamiltonian the interaction between the qubits is weak
—it cannot bemodelled as a Bell gate. But this is only a superficial difference and that interaction, despite its
weakness, still leads tomaximal entanglement at the end, as explained in [1, 2].

1.2. An asymmetric equivalent formulation
In the next section, wewill illustrate the idea of the test with an experimental simulation in anNMR spin system
[9, 10]with four qubits. For this simulation it ismore convenient to use an alternative asymmetric discretised
network, as shown infigure 2. In this alternative network the qubits A, B andD are fully quantum,while the
qubit C could undergo decoherence. The logic is to prepare amaximally entangled pair on the qubits A andB
and then transfer the entanglement to qubit D via two swap gates acting locally on qubits B andC and qubits C
andD. See table 3, where this process is described in theHeisenberg picture.

At the end of the process, in the absence of decoherence, qubits A andD aremaximally entangled (i.e. at time
t3 thewitness in equation (6) has value 2). In the presence of dephasing the transfer of entanglement does not

Table 2.Heisenberg Picture Representation—symmetric networkwith decoherence. A dephasing channel is applied to each of qubits B and
C after time t2.

Qubit A Qubit B Qubit C Qubit D

t0 { }q q,x zA A { }q q,x zB B { }q q,x zC C { }q q,x zD D

t1 { }q q q,z x xA B A { }q q q,x z xB B A { }q q q,x z xC C D { }q q q,z x xD C D

t2 { }q q q,z x xA B A {( ) }- p q q q q q1 2 ,x z x z xB C D B A {( ) }- p q q q q q1 2 ,x z x x zC B A D C { }q q q,z x xD C D

t3 {( ) }- p q q q q1 2 ,z z x xA C D A {( ) }- p q q q q1 2 ,x z x zB C D B {( ) }- p q q q q1 2 ,x z x zC B A C {( ) }- p q q q q1 2 ,z z x xB D A D
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happen, because the dephasing causes a progressive reduction of the non-classicality of the systemC. This
achieves exactly what the fully symmetric scenario we described earlier does, but ismore conducive to the
experiments we performedwithNMR. In this network, it is enough to have one qubit ‘classicalised’ in order to
prevent establishment of entanglement across the chain, thusmaking it easier to realise viaNMR simulation.
More specifically, in the simulationwe realise a version of the above networkwhere the two SWAP gates are
achieved through a sequence of n partial SWAP gates, which can potentially be interrupted by decoherence on
qubit C. Such decoherence is easily simulated by applyingZ gates probabilistically with p=0 for the simple
quantum case and p=1/2 for the completely dephased classical case.

NMR systems operate at room temperature, which is high in comparisonwith the energy gap between spin
states, and soNMR spin states are normally highlymixed, with only a small excess population in the lower
energy state. Preparation of a pure initial NMR state is only possible in special cases [11], and insteadmost
quantum information processing (QIP) experiments are performed using pseudo-pure states [12, 13], or
effective pure states [14, 15] of the form

( ) ∣ ∣ ( )r = - + ñá 1 0 01 11

where 1 is themaximallymixed state of the spin system and ∣ ñ0 is the desired initial state. As themaximallymixed
state does not evolve under unitary transformations and is not detectable inNMRexperiments, pseudo-pure
states behave exactly like pure states except that the signal intensity is reduced to a fraction ò.

The poor scaling of this signal intensity with the number of qubitsmeans that conventional NMR cannot be
used to performQIPwith large numbers of qubits [16].More fundamentally, the absence of entanglement in
thermal pseudo-pure states has led some authors to questionwhetherNMRdevices are really quantumat all
[17], implying thatNMR experimentsmay be only simulations of simulations. It has, however, proved
impossible to develop a fully classicalmodel ofNMRQIP [18], andNMRquantum computations run using
entangled states produce identical results to thosewith pseudo-pure states with the exception of the increased
signal size [19].

A second issuewhich arises inNMRQIP is the absence of true projectivemeasurements, as theNMR signal
detection corresponds to ensemble averagedweakmeasurements. Thismakes a convincingNMR
implementation of the symmetric circuit (figure 1) challenging, but in the case of the asymmetric circuit
(figure 2) a particularly simple observation scheme can be usedwhich immediately demonstrates the transfer or
otherwise of the entangled state along the chain.

2. Experimental simulation

Our experimental qubits are the four 13Cnuclei in fully labelled crotonic acid dissolved in deuterated acetone
[20] at 300 K, as shown infigure 3. Experiments were performed on a 600MHzVarianUnity Inova
spectrometer. The 13CNMR spectrumof the thermal equilibrium statewith 1Hdecoupling, shown at the
bottom, shows that the fourmultiplets (one from each spin as indicated) are well separated and so can be
individually addressed. The spin system can be approximated by a linear chain, with strong nearest-neighbour

Figure 2.An asymmetric quantumnetwork transferring the entanglement between a neighbouring pair of qubits to a distant pair of
qubits.

Table 3.Heisenberg Picture Representation—asymmetric network.

Qubit A Qubit B Qubit C Qubit D

t0 { }q q,x zA A { }q q,x zB B { }q q,x zC C { }q q,x zD D

t1 { }q q q,z x xA B A { }q q q,x z xB B A { }q q,x zC C { }q q,x zD D

t2 { }q q q,z x xA B A { }q q,x zC C { }q q q,x z xB B A { }q q,x zD D

t3 { }q q q,z x xA B A { }q q,x zC C { }q q,x zD D { }q q q,x z xB B A

5

J. Phys. Commun. 4 (2020) 025013 GBhole et al



couplings andmuchweaker next-nearest-neighbour couplings. Fortuitously the long-rangeAD coupling is
large enough to be easily resolved, rendering the detection of long-range entanglement straightforward. The
circuit implemented in our experiment is shown infigure 4.NMR experiments with this spin systemhave
recently been used [21] to simulate spinfoam vertex amplitudes for loop quantumgravity.

2.1. Initial state preparation
Apseudo-pure initial state (PPS)was prepared by spatial averaging following themethods in [22, 23]. The use of
robust GRAPEpulses, as described below, was found to almost double the observed signal intensity, whichwas
then enhanced still further using the nuclearOverhauser effect from 1Hnuclei to generate a non-thermal initial
state with enhanced polarization [24].We chose the initial state ∣ ñ1100 as this leads to a singlet entangled state,
which is themost robust of the four Bell states to naturally occurring decoherence processes.

2.2. RobustGRAPEpulses
All the gates used in the PPS preparation sequence as well as the quantum circuit were implemented using
GRAPE [25]. In addition to four 13Cnuclei (the systemqubits) crotonic acid also contains five 1Hnuclei
(environment qubits)which have strong interactionswith the systemqubits. (The remaining three nuclei
comprise two 16Onuclei, which are spin-0 and so can be safely ignored, and a sixth 1Hnucleus in the hydroxyl
groupwhich undergoes rapid chemical exchange, averaging out its interactions with themain spins [9]). The
traditional approach is to apply 1Hdecoupling to the environment qubits throughout the experiment, usually
with a composite pulse based broadband decoupling sequence such asWALTZ-16 [26]. In principle such
decoupling can completely trace out the environment qubits, leaving a simple four-spin system. In practice,
however, it is not possible to achieve completely effective decouplingwithout using highRF powers which are
ruled out by hardware limits and the effects of sample heating.Our simulations suggest that imperfect 1H
decoupling is themain source of errors in currentNMR implementations ofGRAPE pulses in crotonic acid.

Here we adopt a quite different approach: leaving the 1Hnuclei untouched throughout the pulse sequence
which implements quantum logic gates, and applying decoupling only during the final detection stage. In this
case the 1Hnuclei are entirely passive, and can be thought of as providing afixed frequency shift, which is
different in eachmolecule, depending on the hydrogen spin states in that particularmolecule. As there arefive
hydrogen spins there are 25=32 possible spin states, although these give rise to only 16 distinct frequency shifts,
as the three hydrogens attached to carbonA, forming amethyl group, are completely equivalent. TheGRAPE

Figure 3.Themolecular structure andHamiltonian parameters (offset frequencies and spin–spin couplings) for 13C labelled crotonic
acid. Themultiplet labelled S comes from the solvent, deuterated acetone.Measured T2 relaxation timeswere around 1.3 s for each
spin, while T1 varied between 10 s for spinA and 22 s for spinD.

Figure 4.The quantumnetwork for the simulation. TheZ gates shown in grey are applied probabilistically to simulate decoherence, as
described in themain text. The gates in each dashed box are repeated n times.
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pulses are then designed by optimising for all 16 backgroundHamiltonians simultaneously, defining the overall
fidelity as the average of the individualfidelities [25].

This approach completely avoids errors arising from imperfect decoupling, as decoupling is not applied
duringGRAPE pulses or free evolution periods. As usual it is possible to design pulses which can tolerate the RF
amplitude inhomogenity over themacroscopic sample, by evaluating the fidelity over a range of RF amplitudes.
Although preparing suchGRAPEpulses is computationally expensive, one can greatly speed it up by employing
subsystemmethods [27] and usingGRAWME [28] during the initial stages of the optimisation.

2.3. SWAP gates and dephasing
The SWAP gates were implemented in eight stages using

( )=U 12SWAPBC BC8

and similarly forUCD. Poor experimental results are obtained if the sameGRAPEpulse is applied repeatedly, as
the small errors which inevitably occur in any experimental implementation build up linearly on repeated
application [29]. InsteadmultipleGRAPE pulses were designed for each gate, by using different random starting
points in theGRAPE search. As each pulse has different implementation errors the total errorwill only grow
with the square-root of the number of gates, leading to visibly better results.

Dephasing can be implemented using either spatial averaging, usingmagnetic field gradients [12], or by
temporal averaging [15], inwhich spectra are recorded bothwith andwithout the application ofZ gates at any
given point and the results combined. Temporal averaging has the advantage that it ismuch simpler to
implement selective dephasing on a single qubit, but if performed naively requires 2n separate experiments,
where dephasing is applied at n separate points, rendering such experiments infeasible in all but the simplest
cases [30].

Insteadwe adopted themethod of randomized temporal averaging [15], inwhich exhaustive averaging is
replaced by averaging over a sample of possible sequences. Specifically, we designed two further gates,

=V Z UBC C BC and =V Z UCD C CD, and used a randomly chosen sequence ofU andV gates, containing four of
each.When the number of stages is small, as used here, the final result depends on the precise pattern of gates
used, and so results were averaged over 16 different dephasing patterns.

2.4.Detection
Entangled states are not directly detectable inNMR: the observed signal depends on the expectation values of
single-spin off-diagonal operators [31], and these are all zero for entangled states. Here, however, we use an
indirect witness [32], which corresponds effectively tomeasuring the observable in equation (6).

Consider the initial entangled state of qubits A andB, and the effect of performing aHadamard operation on
qubit A before observing theNMR spectrum. This will generate a pair of lines in themultiplet of transitions of
spin A, onewith positive intensity and another with negative intensity, called an antiphase doublet. However it
also generates another antiphase doublet in themultiplet of spin B, even though spin Bwas not directly excited.
There are no signals in themultiplets corresponding to spins C orD. In general, if we have an entangled singlet
state between two qubits then applying aHadamard gate to one of themgenerates antiphase doublets in both
multiplets, sowe can very easily follow the progress of the entangled state fromAB toADby applying a
Hadamard to qubit A and observing the signal on spins B, C andD.

2.5. Experimental results
The experimental results are shown infigure 5. Each spectrum is obtained after applying aHadamard gate to
spin Awith a two step phase cycle to reduce errors [10]; the 1H environment nuclei were decoupled throughout
signal acquisition. Individualmultiplets were then cut out of spectra like that shown infigure 3, permitting an
expanded horizontal scale, and then rearranged into spin order. Antiphase signal on both spins r and swith a
coupling Jrs indicates that spins r and swere entangled; smaller peaks are due to remaining experimental errors.

AnAB singlet state was initially prepared, as shown by the antiphase doublets split by JAB on both spins A and
B in spectrum (a). The transfer of entanglement from spins A andB to spins A andD is clearly seen in (b), while
dephasing suppresses this transfer as shown in (c). This suppression can be seen as a generalisation of the
quantumZeno effect inNMR [33]where rapid dephasing suppresses coherent evolution. The phase shift on
spin B in spectrum (c) arises from the zz component of the SWAPHamiltonianwhich commutes with the
dephasing process and so is not suppressed by the Zeno effect.

The small additional peaks are due to experimental errors, and simulations suggest that these can be largely
modelled byweak uniformdepolarisation during the SWAP process. This apparent depolarisation arises from
the accumulation of small errors in theU andV gates, which can be treated as randombecause of theway in
which particular implementations of these gates are selected from a larger set.
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3. Conclusions

Wehave illustrated, with our theoretical analysis and the experimental simulation, the relevance of non-
commuting degrees of freedom in the physical systemmediating an entangling gate between two spatially
separated qubits. The capacity to generate entanglement can thus be used as an indirect witness of non-
classicality in physical systems that need not obey quantum theory, such as amacroscopic systemor the
gravitational field [34]. It is also important to note that in the argument the two probes are assumed to be fully
quantum, so that full quantum tomography can be performed on them, and the standard quantum concepts of
entanglement can be applied. It is an interesting open question to consider an evenmore general scenario, where
the probes are not fully quantum, but can still exhibit some formofmore-than-classical correlation (e.g.
quantumdiscord, [35–37]). Future applications of this general schemewill include exploring experimental
schemes towitness non-classicality in bio-molecules, including living systems, which are notorious for being
hard tomanipulate directly, but can easily be accessed by quantumprobes [37]. Also, a worthwhile future
experimental direction is to probe different regimes of decoherence and their effect on entanglement transfer.
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