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Abstract

The collapse barrier, δc, of the field clusters located in the low-density environment is deterministic rather than
diffusive, unlike that of the wall counterparts located in the superclusters. Analyzing the data from the Mira-Titan
simulations for 11 different cosmologies, including the standard ΛCDM cosmology at various redshifts, we
investigate the evolution of the deterministic collapse barrier of the field clusters and explore its dependence on the
background cosmology. Regardless of the background cosmology, the deterministic δc exhibits a universal
behavior of having a higher value than the Einstein–de Sitter spherical collapse barrier height of δsc=1.686, at
z=0, but gradually converging down to δsc as the dominance of dark energy diminishes with the increment of z. A
significant difference among different cosmologies, however, is found in its convergence rate, as well as in the
critical redshift zc, at which δc=δsc. Showing that the convergence rate and critical redshifts can distinguish even
between the degenerate cosmologies, which yield almost identical linear growth factor and cluster mass functions,
we suggest that the evolution of the deterministic collapse barrier of the field clusters should be a powerful
complementary probe of cosmology.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Cosmological models (337)

1. Introduction

Ever since Press & Schechter (1974) derived an analytic
formula for the cluster mass function based on the excursion set
theory, its power and usefulness as a cosmological probe has been
widely demonstrated and well appreciated in the field of the large-
scale structure (e.g., Fan et al. 1997; Wang & Steinhardt 1998;
Vikhlinin et al. 2009; Basilakos et al. 2010; Ichiki & Takada
2012; Benson et al. 2013; Planck Collaboration et al. 2014). The
excursion set theory basically depicts the gravitational growth and
collapse of an overdense region into a bound object as a random
walk process confined under a barrier whose height is determined
by the underlying dynamics. In the original formulation of Press
& Schechter (1974), who adopted the spherical dynamics, the
height of the collapse barrier has a constant value, δsc, being
independent of the cluster mass. Various N-body experiments,
however, revealed that the original Press–Schechter mass function
failed to match well the numerical results at quantitative levels,
implying the inadequacy of the spherical dynamics (Bond &
Myers 1996 and references therein).

In the subsequent works, which employed more realistic
ellipsoidal dynamics to analytically derive the excursion set mass
function, the height of the collapse barrier was deemed no longer
a constant value, but a decreasing function of the cluster mass,M,
to account for the fact that the collapse process deviates further
from the spherical dynamics on the lower-mass scales (e.g., Bond
& Myers 1996; Chiueh & Lee 2001; Sheth et al. 2001; Sheth &
Tormen 2002). Although better agreements with the numerical
results were achieved by employing the mass-dependent
ellipsoidal collapse barrier, the purely analytic evaluation of the
cluster mass function had to be relinquished, on the ground that
no unique condition for the ellipsoidal collapse exists unlike the
case of the spherical collapse (Bond & Myers 1996; Chiueh &
Lee 2001; Sheth et al. 2001). It was required to empirically
determine the functional form of the ellipsoidal collapse barrier
height by fitting the analytic formula to the numerical results,

which in turn inevitably weakened the power of the cluster mass
function as a probe of cosmology. Besides, the high-resolution
N-body simulations revealed that even on the fixed mass scale the
collapse barrier height exhibited substantial variations with the
environments as well as with the cluster identification algorithms
(e.g., Robertson et al. 2009 and references therein). These
numerical findings casted down an excursion set based analytic
modeling of the cluster mass function, leading the community to
acquiesce in relying on mere fitting formulae with multiple
adjustable parameters (e.g., Tinker et al. 2008).
The excursion set modeling of the cluster mass function,

however, attracted a revived attention when Maggiore & Riotto
(2010a, 2010b) brought up an insightful idea that the collapse
barrier height should be treated as a stochastic variable rather
than a deterministic value. Ascribing the diffusive scatters of the
collapse barrier height to the incessant disturbing influence from
the surrounding on the clusters, Maggiore & Riotto (2010a)
successfully incorporated the concept of the stochastic barrier
height into the excursion set theory with the help of the path
integral method and showed that the accuracy of the generalized
excursion set mass function with stochastic collapse barrier
was considerably improved even though it has only a single
parameter, DB, which measures the degree of the stochasticity of
δc, whose ensemble average coincides with δsc.
Corasaniti & Achitouv (2011a, hereafter, CA) derived a more

accurate mass function by extending the formalism of Maggiore
& Riotto (2010a) to the ellipsoidal collapse case where the
ensemble average, dá ñc , does not coincide with δsc but drifts away
from it, depending on the cluster mass scale. As a tradeoff of
introducing an additional parameter, β, to quantify the deviation
of dá ñc from δsc, Corasaniti & Achitouv (2011a) won two-fold
achievement: matching the numerical results as excellently well
as pure fitting formula and simultaneously providing much
deeper physical understanding about the cluster abundance and
its evolution (see also Corasaniti & Achitouv 2011b). Notwith-
standing, the efficacy of the generalized excursion set mass
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function as a cosmological diagnostics was not greatly elevated
by introducing the concept of a stochastically drifting collapse
barrier due to the obscurity in the choice of the joint probability
density functions of δc expressed in terms of the two parameters,
DB and β (Achitouv et al. 2014 and references therein).

It was Lee (2012) who fathomed that for the case of the field
clusters embedded in the lowest-density environments, the
collapse barrier height would behave deterministically (i.e.,
DB=0), as the degree of the surrounding disturbance as well
as ambiguity in the identification of the field clusters would be
negligibly low in the underdense regions. Defining the field
clusters as those which do not belong to superclusters, Lee
modified the CA formalism by setting DB=0, and confirmed
its validity against the N-body results at various redshifts for
the case of the currently favored cosmological constant Λ and
cold dark matter (ΛCDM) model. The analysis of Lee (2012)
also found a clear trend that the value of β gradually dwindles
away to 0 as the redshift z increases, which indicates that at
some critical redshift, zc, the deterministic collapse barrier
height, δc, for the field clusters will become equal to δsc.

This trend may be physically understood by the following
logic. The high-z field clusters correspond to the highest peaks
in the linear density field whose gravitational collapse proceeds
spherically (Bernardeau 1994). At high redshifts z>0.7 where
the dark matter (DM) density exceeds that of dark energy (DE),
the universe is well approximated by the Einstein–de Sitter
(EdS) cosmology in which δsc=1.686 (Gunn & Gott 1972).
We speculate that as the convergence rate of the universe to the
EdS model is quite susceptible to the background cosmology,
the deterministic collapse barrier of the field clusters would
evolve differently among different cosmologies. The aim of
this paper is to examine if the concept of the deterministic
collapse barrier for the field clusters is valid even in wCDM
(dynamical DE with equation of state w + CDM) cosmologies
(Sections 2.1–2.2) and to explore whether or not the evolution
of β, i.e., the deviation of the deterministic collapse barrier
from the EdS spherical collapse value of δsc=1.686, can be
used as a complementary probe of cosmology (Section 2.3).

2. Abundance of the Field Clusters in Dark-energy Models

2.1. A Brief Review of the Analytic Model

The excursion set modeling of the cluster mass function
relates the differential number density of the clusters, dN/dlnM,
to the multiplicity function, f (σ), as (Reed et al. 2003)
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with º +a D1 1 B( ), k k= a˜ , κ=0.475, upper incomplete
gamma function Γ(0, x) and complementary error function erfc
(x). The statistical properties of the randomly drifting collapse
barrier, δc, are described by the two parameters, DB and β, in
Equations (2)–(6). The former, called the diffusion coefficient,
is related to the scatters of δc from its ensemble average, while
the latter, called the drifting average coefficient, measures how
much the ensemble average of δc drifts away from the
deterministic height of the spherical collapse barrier δsc on a
given mass scale (Corasaniti & Achitouv 2011a, 2011b).
Lee (2012) suggested that for the case of the field clusters the

collapse barrier height should be deterministic (i.e., DB=0)
rather than stochastic, as the field clusters would experience the
least disturbance from the surroundings. Setting DB=0 in
Equation (2) and putting it into Equation (1), Lee modified
the CA formalism to evaluate the mass function of the field
clusters, dN d MlnI , as
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which has a single coefficient, β. Empirically determining the
values of β at three different redshifts (z=0, 0.5, 1) through
numerical adjustment process, Lee (2012) confirmed the
validity of Equation (8) for the ΛCDM case. In the following
subsections, we will test this analytic model against the
numerical results from N-body simulations performed for
various wCDM cosmologies and investigate how β evolves in
different cosmologies.

2.2. Comparison with the Numerical Results

To investigate if Equation (8) can be validly applied to the case
of a wCDM cosmology where the DE equation of state, w,
evolves with time, we resort to the Mira-Titan simulation
conducted by Heitmann et al. (2016) on a periodic box of
(2100Mpc)3 with 32003 DM particles of individual mass
mdm∼1010Me for 10 different wCDM cosmologies (designated

2
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as M001, M002, M003, M004, M005, M006, M007, M008,
M009, and M010), as well as for the ΛCDM case (see also Habib
et al. 2016; Heitmann et al. 2019). The initial condition of each
cosmology was specified by seven parameters, {Ωm, Ωb, h, σ8, ns,
w0, and wa}, under the common assumption of a spatially flat
geometry (Ωde+Ωm=1), no neutrino (Ων=0) and evolution of
w given as w=w0+waz/(1+z) (Chevallier & Polarski 2001;
Linder 2003).

For the ΛCDM case (w0=−1, wa=0), the other five
cosmological parameters were set at the best-fit values from the
Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP7;
(Komatsu et al. 2011). For the wCDM cosmologies, the values
of the seven key cosmological parameters, including w0 and

wa, were deliberately chosen to be in the ranges that embrace
the WMAP7 constraints (for details, see Heitmann et al.
2009, 2016). Table 1 lists the values of the key cosmological
parameters for each of the 11 different cosmologies from the
Mira-Titan simulation (see also Table 3 in Lawrence et al.
2017). Figure 1 plots the linear power spectra at the present
epoch, P(k), and the linear growth factor, D(z), for the 11
cosmologies (in the top and bottom panels, respectively),
computed by the CAMB code (Lewis et al. 2000). Note that the
three models, M003, M005, and M008 are almost indis-
tinguishable from the ΛCDM model in P(k), while the two
models, M007 and M009, yield D(z) the shapes of which are
very similar to that for the ΛCDM case.

Figure 1. Linear density power spectra (top panel) and linear growth factors (bottom panel) from the Mira-Titan simulations for the cases of the ΛCDM and 10
different dynamical wCDM cosmologies (Heitmann et al. 2016).

Table 1
Key Cosmological Parameters for the 11 Models from the HACC Simulations

Cosmology Ωm Ωb h σ8 ns w0 wa

ΛCDM 0.2648 0.04479 0.7100 0.8000 0.9630 −1.0000 0.0000
M001 0.3871 0.05945 0.6167 0.8778 0.9611 −0.7000 0.6722
M002 0.2411 0.04139 0.7500 0.8556 1.0500 −1.0330 0.9111
M003 0.3017 0.04271 0.7167 0.9000 0.8944 −1.1000 −0.2833
M004 0.3642 0.06710 0.5833 0.7889 0.8722 −1.1670 1.1500
M005 0.1983 0.03253 0.8500 0.7667 0.9833 −1.2330 −0.0445
M006 0.4354 0.07107 0.5500 0.8333 0.9167 −0.7667 0.1944
M007 0.2265 0.03324 0.8167 0.8111 1.0280 −0.8333 −1.0000
M008 0.2570 0.04939 0.6833 0.7000 1.0060 −0.9000 0.4333
M009 0.3299 0.05141 0.6500 0.7444 0.8500 −0.9667 −0.7611
M010 0.2083 0.03649 0.7833 0.7222 0.9389 −1.3000 −0.5222
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Heitmann et al. (2016) compiled the catalogs of the DM
halos identified by applying the friends-of-friends (FoF)
algorithm with a linking length of b dc p¯ with bc=0.168 and
mean particle separation dp¯ to each particle snapshot in the
redshift range of 0.0�z�4.0. Following the same procedure
of Lee (2012), we analyze the FoF halo catalogs from each
Mira-Titan universe to numerically determine the mass
functions of the field clusters and the associated errors as well.

1. Make a sample of the cluster halos with masses larger
than Mc=3×1013 h−1Me out of the halo catalog at a
given redshift in the range of 0�z�zc∼1. The
catalogs at higher redshifts, z>zc, are excluded from the
analysis on the ground that the field clusters at z>zc are
too rare to yield statistically significant results.

2. Apply to the above sample the FoF algorithm with a
linking length of b d2 c c¯ with mean cluster halo separation
dc¯ to find a supercluster as a cluster of clusters each of
which consists of two and more cluster halos. This
specific choice of the linking length was made by Lee
(2012) to guarantee that the degree of the disturbance
from the surroundings on the field clusters is indeed
negligible (i.e., DB=0) (see Figure 2 in Lee 2012).

3. Find the cluster halos in the sample which appertain
to none of the identified superclusters as the field clusters
and count them, dNI, in the logarithmic mass bin,

+M M d Mln , ln ln[ ].

4. Split the field clusters into eight Jackknife subsamples
according to their positions and separately determine
dN d MlnI from each subsample. Evaluate the Jackknife
errors in the measurement of dN d MlnI as one standard
deviation scatter around the ensemble average over the
eight subsamples.

Now that the mass functions of the field clusters from the
Mira-Titan simulations are all determined, we compare them
with Equation (8) by adjusting the single coefficient, β. For this
comparison, the spherical barrier height, δsc, is set at the EdS
value of 1.686, as it varies only very weakly with the
background cosmology (e.g., Eke et al. 1996; Pace et al. 2010).
We employ the χ2-statistics to determine the best-fit value of β
and estimate the associated error, σβ, as bI1 , where Iβ is the
Fisher information given as c bºbI d d2 2 2 at the best-fit value
of β, at each redshift for each cosmology.
Figure 2 plots the numerical result (filled circles) as well as

Equation (8) with the best-fit value of β (red solid line) for 11
different cosmologies at z=0. In each panel, the analytic mass
function with the best-fit β for the ΛCDM case is shown as
dotted line for comparison. Figures 3–4 plot the same as
Figure 2, but at z=0.4 and z=0.78, respectively. As can be
seen, Equation (8) with the best-fit β is quite successful in
matching the numerically determined mass functions of the
field clusters for all of the 11 cosmologies at all of the three
redshifts. As emphasized in Lee (2012), the modified CA

Figure 2. Numerically obtained mass functions of the field clusters (filled circles) compared with the analytic formula (red solid lines) for 10 different dynamical
wCDM cosmologies as well as for the ΛCDM case at z=0.
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formalism with DB=0 describes well not only the shape but
also amplitude of the mass function of the field clusters even
though it has only a single parameter, β. The good agreements
between the analytical and numerical results shown in
Figures 2–4 prove that the modified CA formalism with the
deterministic collapse barrier for the field clusters can be
legitimately extended to the wCDM cosmologies.

It is, however, worth mentioning here that the analytic model
for the field cluster mass function, Equation (8), is found to be
valid in the limited redshift range z zc, which we suspect is
due to the failure of the assumption DB=0 at higher redshifts
z>zc∼1. The low abundance of the clusters with M�Mc at
z>zc makes it difficult to properly identify the superclusters
via the FoF algorithm, which in turn contaminates the
identification of the field clusters. In other words, the field
clusters identified via the FoF algorithm at z>zc may not be
isolated enough to satisfy the condition of DB=0.

2.3. Evolution of the Drifting Collapse Barrier

Figure 5 plots the best-fit value of β determined in
Section 2.2 versus z for the 11 cosmologies, revealing the
presence of a strong anticorrelation between β and z. We
discover an universal behavior of β(z) from all of the 11
cosmologies: it monotonically declines toward 0 as the redshift
increases up to z�1. In the range of 0�z�0.3, it declines
relatively slowly with z, while in the higher z-range it drops

quite rapidly down to zero. The drifting coefficient, β(z), from
each of the 11 cosmologies is, however, manifestly different
from one another in its declining rate and amplitude as well as
in the critical redshift at which β(z) becomes zero.
Although δsc/σ(M, z) may play a partial role to induce the

cosmology dependence of β(z), we believe that it should not be
the main contribution. First of all, the spherical collapse barrier
height, δsc, has been known to be quite insensitive to the
background cosmology as mentioned in Section 2.2. For the
case of flat ΛCDM models, Eke et al. (1996) showed that δsc
changes very mildly from 1.686 to 1.67 as Ωm changes from 1
to 0.1. Even for the case of flat wCDM models, the weak
dependence of δsc was rigorously proved by Pace et al. (2010),
who directly solved the nonlinear differential equation of the
density contrast in the spherical collapse process to find that the
value of δsc(z) for the wCDM models remain very similar to
that for the ΛCDM model in the whole redshift range.
Regarding the cosmology dependence of σ(M, z), it depends

on the background cosmology only through D(z) and P(k).
Whereas, as can be seen in Figure 5, β(z) differs even among
those models which have the same shapes of D(z) and P(k).
Therefore, the cosmology dependence of β(z) witnessed in
Figure 5 should come mainly from another channel, which we
believe is the departure of δc from δsc. In different cosmologies,
the nonspherical collapse in the nonlinear regime would
proceed differently, resulting in the cosmology dependence of
the degree of the departure of δc from δsc, which is described by

Figure 3. Same as Figure 2, but for at z=0.4.
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the single parameter, β(z), for the case of the field cluster
abundance.

Without having a physical model for the effect of the
background cosmology on the departure of δc from δsc at the
moment, we find the following fitting formula useful to
quantitatively describe the ways in which β(z) differs among
the 11 cosmologies and to efficiently assess the statistical
significances of their differences:

b b= --z
q

z zsinh
1

, 9A
z

c
1( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

where three adjustable parameters, βA, qz, and zc, denote the
amplitude, redshift dispersion and critical redshift of β(z),
respectively. The overall amplitude, βA, quantifies how much δc
departs from the EdS value of δsc at z=0, the critical redshift
parameter, zc, quantifies when δc becomes equal to δsc, while
the inverse of the redshift dispersion, 1/qz, quantifies the rate at
which δc converges to δsc, as z increases. The best-fit values of
(βA, qz, zc) and their associated errors s s sb , ,q zA z c( ) are obtained
by fitting Equation (9) to the empirically determined β(z) in
Section 2.2 with the help of the ordinary least square code (see
Table 2).

Figure 6 shows how well Equation (9) with three best-fit
parameters (red solid line) describes the empirically determined
β(z) (filled circles), comparing the best-fit β(z) for each of the
10 wCDM cosmologies with that for the ΛCDM case (dotted

line). It is interesting to see that the three cosmologies, ΛCDM,
M007, and M009, which produce almost identical mass
functions of the field clusters at all redshifts (Figures 2–4),
can still be distinguished by their distinct β(z). The differences
in the best-fit values of the critical redshifts, Δzc, between the
ΛCDM and M007 (M009) cases is as high as sD3.47 zc

( sD5.89 zc). Here, the errors, sDzc is calculated through the error
propagation as s s sº +D zc zc,1

2
,2

2 1 2
zc ( ) where szc,1 and szc,2

are the errors in the measurements of zc for the ΛCDM and

Figure 4. Same as Figure 2, but for at z=0.78.

Figure 5. Redshift evolution of the drifting coefficient, β, for 11 different DE
cosmologies.
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M007 (M009) cases, respectively. Note also that β(z) can also
distinguish between the two cosmologies, M002 and ΛCDM,
although both of the cosmologies yield quite similar linear
growth factors and field cluster mass functions (Figure 1). The
difference, Δzc, between the two cosmologies is found to be as
significant as sD14 zc.

The evolution of β(z) also allows us to distinguish not only
between the wCDM and ΛCDM cosmologies but also among
different wCDM cosmologies themselves. For instance, the two
wCDM cosmologies, M001 and M006, are found to have
almost no difference in their field cluster mass functions.

Nevertheless, they can be distinguished by the sD6.7 zc

differences in the best-fit values of zc. These results clearly
indicates a potential of β(z) to complement the cluster mass
function in discriminating the candidate cosmologies.

3. Summary and Discussion

Numerically determining the field cluster mass functions at
various redshifts from the Mira-Titan simulations for 11
different DE cosmologies (10 different wCDM and one ΛCDM
cosmologies) whose key cosmological parameters are chosen
to be in the range covering well the WMAP7 constraints, we
have shown that the numerical results at all redshifts for all 11
cosmologies agree very well with the analytic model obtained
by Lee (2012) through a modification of the generalized
excursion set formalism (Figures 2–4). The success of the
analytic model has validated the key assumptions of Lee (2012)
that for the field clusters the collapse barrier can be deemed
deterministic and thus that their excursion set mass function
can be fully characterized by a single drifting coefficient, β,
which measures the degree of the departure of the collapse
barrier height from the spherical height, δsc. It has been found
that β(z) exhibits a universal tendency of converging to zero
with the increment of z and that its convergence rate as well as
the value of critical redshift, zc at which β(z)=0 depends
strongly on the background cosmology (Figure 5). Noting that
β(z) differs even among those cosmologies that are degenerate
with one another in the linear power spectrum, linear growth

Figure 6. Linear fits (red solid lines) to the numerically obtained β(z) (filled circles) for 11 different DE cosmologies.

Table 2
Best-fit Parameters for the Evolution of the Drifting Coefficient

Cosmology βA qz zc

ΛCDM −0.141±0.008 0.289±0.033 1.024±0.014
M001 −0.147±0.008 0.388±0.045 1.456±0.018
M002 −0.135±0.005 0.343±0.026 1.302±0.014
M003 −0.138±0.006 0.252±0.026 1.394±0.011
M004 −0.163±0.008 0.303±0.032 1.068±0.014
M005 −0.111±0.005 0.186±0.018 0.872±0.009
M006 −0.152±0.005 0.285±0.021 1.311±0.012
M007 −0.116±0.007 0.229±0.031 1.106±0.019
M008 −0.124±0.005 0.269±0.021 0.859±0.007
M009 −0.120±0.006 0.147±0.019 0.903±0.015
M010 −0.123±0.004 0.199±0.013 0.759±0.005
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factor and cluster mass function, we suggest that β(z) should be
in principle useful to discriminate the candidate cosmologies.

Nevertheless, as the 11 Mira-Titan cosmologies differ not
only in their DE equation of states (w w, a0 ) and DE density
parameters (Ωde) but also in the values of the other five key
cosmological parameters (h, Ωm, Ωb, ns, σ8), the detected strong
cosmology dependence of β(z) cannot be entirely ascribed to
the differences among the 11 models in the values of w0, wa

and Ωde. In other words, our work has demonstrated the
usefulness of β(z) as a discriminator of wCDM cosmologies
from the ΛCDM model, but not as a complementary probe of
DE equation of state.

A more comprehensive investigation should be carried out to
sort out the sole effect of the DE equation of state on β(z)
before claiming it as a probe of DE in practice. What will be
highly desirable is to examine how sensitively β(z) reacts to the
variations of the DE equation of state and density parameter by
determining its shapes from a series of N-body simulations
each of which has a different DE equation of state but the same
values of the other key cosmological parameters. What will be
even more highly desirable is to construct a theoretical formula
for β(z) from a physical principle. Although Equation (9) is a
mere fitting formula expressed in terms of an inverse sine
hyperbolic function with three adjustable parameters, its
general success in matching β(z) for all of the 11 cosmologies
(Figure 6) hints a prospect for finding a physical formula
similar to it and directly linking its three parameters to the
initial conditions. This physical formula, if found and verified
to be robust, would allow us to probe not only the DE equation
of state and density parameter but also the other alternative
cosmologies such massive neutrinos, modified gravity and etc,
with β(z). Our future work is in this direction.
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