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1.  Introduction

Cone-beam CT (CBCT) has been widely used for inter-fractional daily patient positioning and tumor target 
alignment verification in radiotherapy treatments (Verellen et  al 2007, Simpson et  al 2010). Similar to the 
planning CT, CBCT images provide a 3D representation of patients’ organs and tumors. CBCT images further 
support online evaluation of treatment delivery accuracy and the necessity of treatment plan adaptation during 
the course of treatment (Jaffray et al 2002, Hvid et al 2018). CBCT images may also allow early assessment of 
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Abstract
To improve image quality and CT number accuracy of fast-scan low-dose cone-beam computed 
tomography (CBCT) through a deep-learning convolutional neural network (CNN) methodology 
for head-and-neck (HN) radiotherapy.

Fifty-five paired CBCT and CT images from HN patients were retrospectively analysed. Among 
them, 15 patients underwent adaptive replanning during treatment, thus had same-day CT/CBCT 
pairs. The remaining 40 patients (post-operative) had paired planning CT and 1st fraction CBCT 
images with minimal anatomic changes. A 2D U-Net architecture with 27-layers in 5 depths was built 
for the CNN. CNN training was performed using data from 40 post-operative HN patients with 2080 
paired CT/CBCT slices. Validation and test datasets include 5 same-day datasets with 260 slice pairs 
and 10 same-day datasets with 520 slice pairs, respectively. To examine the impact of differences in 
training dataset selection and network performance as a function of training data size, additional 
networks were trained using 30, 40 and 50 datasets. Image quality of enhanced CBCT images were 
quantitatively compared against the CT image using mean absolute error (MAE) of Hounsfield units 
(HU), signal-to-noise ratio (SNR) and structural similarity (SSIM).

Enhanced CBCT images reduced artifact distortion and improved soft tissue contrast. Networks 
trained with 40 datasets had imaging performance comparable to those trained with 50 datasets and 
outperformed those trained with 30 datasets. Comparison of CBCT and enhanced CBCT images 
demonstrated improvement in average MAE from 172.73 to 49.28 HU, SNR from 8.27 to 14.25 dB, 
and SSIM from 0.42 to 0.85. The image processing time is 2 s per patient using a NVIDIA GeForce 
GTX 1080 Ti GPU.

The proposed deep-leaning methodology was fast and effective for image quality enhancement of 
fast-scan low-dose CBCT. This method has potential to support fast online-adaptive re-planning for 
HN cancer patients.
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treatment response and be a prognostic factor of treatment outcomes (van Timmeren et al 2017, Shi et al 2019). 
However, parameters for acquiring CBCT images are often chosen for fast scanning to increase high clinical 
throughput and low imaging dose to avoid any long term risks (de Gonzalez and Darby 2004). The resultant 
fast-scan low-dose (FSLD) CBCT images are associated with poor image quality (high noise, low contrast, scatter 
artifacts, etc) (Sykes et al 2005) which precludes the use of these images for adaptive re-planning during the 
course of radiotherapy (Kurz et al 2015).

Adaptive re-planning is particularly important in patients receiving head and neck (HN) radiotherapy as 
weight loss and tumor regression may result in large anatomic changes that could affect accurate dose deliv-
ery to radiotherapy targets, organs at risk (OARs), or both (Simone et al 2011). Numerous mathematical algo-
rithms have been proposed to improve FSLD CBCT image quality, including iterative reconstruction (IR) with 
compressed sensing (CS) algorithms (Sidky et al 2006, Tian et al 2011, Yu and Wang 2010, Jia et al 2011, Chen 
et al 2008, Xu et al 2014). CS-based IR algorithms reconstruct CBCT images from under-sampled projections, 
using a priori sparsity properties of the images by total variation (TV) regularization (Sidky et al 2006, Tian et al 
2011), soft-thresholding regularization (Yu and Wang 2010), tight frame (TF) regularization (Jia et al 2011), or 
prior images (Chen et al 2008, Xu et al 2014). The resulting image quality is improved and may be comparable 
to images with high imaging dose (Sidky et al 2006, Tian et al 2011, Yu and Wang 2010, Jia et al 2011, Chen et al 
2008, Xu et al 2014). However, IR algorithms for CBCT have high computational complexity, thus have not been 
commonly implemented for clinical use. Alternatively, conventional analytic reconstruction algorithms, such 
as filtered back-projection, remain the mainstream due to fast computation. Deep learning approaches, par
ticularly convolution neural networks (CNNs), have emerged as a potential solution to overcome computational 
complexity of prior reconstruction algorithms and inherent poor image quality of CBCT (Hansen et al 2018, 
Kida et al 2018, Landry et al 2019, Liang et al 2019). These approaches have demonstrated promising results for 
CBCT by applying denoising networks to generate synthetic CT images.

Most CNN-based approaches using supervised training for CBCT mainly focus on prostate cancer (Hansen 
et al 2018, Kida et al 2018, Landry et al 2019), whereas the only one study for HN used an unsupervised network 
CycleGAN (Liang et al 2019). In this work, we present an efficient method to improve FSLD CBCT image quality 
for HN cancer patients using a U-Net CNN. The scope of the present study is primarily on the network construc-
tion, feasibility assessment, and image quality improvement evaluation. Herein, a deep learning U-Net CNN is 
constructed through direct mapping from the CBCT images to the corresponding CT images in order to generate 
high quality CBCTs, a.k.a. synthetic CTs. The main challenge of the present study is that the FSLD CBCT images 
that we used are with low signal-to-noise ratio, low soft tissue contrast, and high scatter artifacts.

2.  Methods and materials

2.1.  Network design and architecture
The present study used a U-Net (Ronneberger et al 2015) architecture with an encoder-decoder path. As shown 
in figure 1, the network is built with a series of convolution layers involving stride 1  ×  1 convolutional layers, 
stride 2  ×  2 convolutional layers (down-sampling process), and transposed convolutional layers (up-sampling 
process) with skip connections (add operation). The kernel size is 3  ×  3 in all convolutional layers except in the 
last one, where the kernel size is 1  ×  1. The root filter number is 32 and the filter number is doubled after each 
down-sampling process. Batch normalization (BN) (Ioffe and Szegedy 2015) and rectified linear units (ReLU) 
(Nair and Hinton 2010) are used after each convolutional layer.

Compared with the architecture of the original published U-Net (Ronneberger et al 2015), our approach 
differed in several key areas: (1) the max-pooling layers were replaced by convolution kernels of stride 2 to keep 
more subtle features in the down-sampling process (Springenberg et al 2014); (2) the up-convolution 2  ×  2 was 
replaced with bilinear interpolation up-sampling with a 3  ×  3 convolution layer to avoid checkerboard artifacts 
(Odena et al 2016); (3) the skip-add operation was used instead of the skip-concatenation to be GPU memory 
efficient.

2.2.  Network training
For all experiments the networks were trained using a full-size CBCT slice and two adjacent slices, i.e. 3-channel 
data were used as the network input. The original CBCT used for the study is denoted as oCBCT, while the 
network output is denoted as enhanced CBCT (eCBCT). Mean absolute error (MAE) was used as the loss 
function (Zhao et al 2016), which measures the pixel-wise difference between eCBCT images IeCBCT ∈ Rm×n and 
the label CT images ICT ∈ Rm×n:

LossMAE =
1

m × n

∑
x

∑
y

‖IeCBCT(x, y)− ICT(x, y)‖1.
� (1)
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The adaptive moment estimation (Adam) algorithm (Kingma and Ba 2014) was used as the optimizer. The 
initial learning rate was 0.001, which was then automatically reduced by 80% once the training loss stopped 
reducing for 20 epochs. The mini-batch size is 2. The number of total epochs in each training was 1000.

The network was implemented using Tensorflow (Martín et al 2015) 1.8.0 and Keras (Chollet and others 
2015) 2.2.4, and trained using an NVIDIA GeForce GTX 1080 Ti GPU. Training a single network took approxi-
mately 25 h for 1000 epochs.

2.3.  Metrics for evaluation
In this study, MAE, signal-to-noise ratio (SNR) and structural similarity (SSIM) (Wang et al 2004) were used 
to evaluate the performance of the prediction from different trained networks between eCBCT IeCBCT  and CT 
ICT  slices. The definition of MAE is given in (1).

SNR is defined as the ratio of signal power to the noise power with a unit of decibels (dB). It is defined as

SNR = 10 · log10[

∑
x

∑
y
[ICT(x, y)]2

∑
x

∑
y
[ICT (x, y)− IeCBCT (x, y)]2

].
� (2)

SSIM is a perceptual metric that quantifies image quality degradation. It is used for measuring the similarity 
between two images and is calculated as

SSIM =
(2µeCBCTµCT + C1)(2δeCBCT&CT + C2)

(µeCBCT
2 + µCT

2 + C1)(δ2
eCBCT + δ2

CT + C2)
� (3)

where µ denotes the mean value, δ2 denotes the variance and the parameters C1 = (k1Q)
2 and C2 = (k2Q)

2 are 
two veriables to stabilize the division with weak denominators, where k1 = 0.01 and k2 = 0.02. Q  is the dynamic 
range of the pixel-values.

2.4.  Experimental datasets
2.4.1.  CT and CBCT image acquisition
This retrospective study was approved by the institutional review board (IRB) and a total of 55 HN cancer 
patients who completed radiotherapy treatment with daily CBCT image guidance were identified. Among these 
55 patients, the planning-CT and first fraction CBCT (one to three weeks apart) from the 40 post-operative 
HN patients were rigid registered. Anatomic similarity was visually and quantitatively confirmed based on a 
criterion that boundary differences between the two images were  <5 mm (5 pixels) for the external contour, 
bony anatomy, and internal cavities (nasal cavity, oral cavity, etc). The 15 remaining CT/CBCT pairs were from 
patients who received offline adaptive re-planning during the treatment process. In these 15 patients, a new 
simulation CT (re-sim CT) was obtained during the course of treatment typically due to tumor shrinkage and/
or subsequent changes in adjacent organs. Therefore, these patients had the re-sim CT and a CBCT acquired 
on the same day. The pairing of re-sim CT and same-day CBCT ensured minimal anatomic variation between 
the two imaging studies. The CBCT and re-sim CT images for these 15 patients were also rigid registered and 
confirmed  <5 mm anatomic deviation.

Figure 1.  U-Net architecture. Grey boxes correspond to multi-channel feature maps. The numbers of channels are shown. Arrows 
denote convolution layers or operations.

Phys. Med. Biol. 65 (2020) 035003 (12pp)
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CT simulation images were obtained on a Brilliance Big Bore CT scanner (Philips Health) using the follow-
ing parameters: 120 kVp tube voltage and 400–500 mAs exposure. The matrix size of simulation CT images was 
512 × 512 × 144 with a pixel size of 1.17 mm  ×  1.17 mm and slice thickness of 3.00 mm. CBCT images were 
acquired with the XVI onboard imager system on an Elekta Synergy Linac (Ekekta, Sweden) using a tube volt
age of 100 kVp and an exposure of 18.2 mAs (10 mA and 10 ms per projection). The number of projections per 
scan was 182 frames for a 205° (–45°–160°) rotation. The mode of reconstruction was set to fast reconstruction 
(<60 s). The matrix size of raw CBCT images was 270 × 270 × 88 with a pixel size of 1.00 mm  ×  1.00 mm and 
slice thickness of 3.00 mm.

2.4.2.  Image pre-processing
The data pre-processing workflow is shown in figure 2. For each patient, the CT and CBCT images were co-
registered through grey scale rigid transformation. The matrix size of aligned CT and CBCT images was 
270  ×  270  ×  88. Pixel values outside the field of view (FOV) were set to the Hounsfield unit (HU) of air (–1000). 
The images were further center-cropped to 256  ×  256 pixels in the transverse plane. In the Z dimension, only 
the center 52 slices were used and the rest were discarded due to the severe CBCT photon scatter artifacts at the 
superior and inferior extent of the image stack.

2.4.3.  Training, validation, and testing datasets
Data were divided into three subsets for (1) network training, (2) validation, for monitoring the training process 
and tuning network hyper-parameters and (3) testing, for evaluating the network performance. The evaluation 
results were not boot-strapped for network re-optimization.

2.4.4.  Datasets arrangement
The network was trained using different size datasets and combinations to verify training sufficiency. Specifically, 
among the 55 datasets, five from the same-day CT/CBCT pairs were used for validation, which include a wide 
spectrum of variable head positions (as shown in supplementary materials figure S1 (stacks.iop.org/PMB/65/035003/
mmedia)). The remaining 50 datasets were divided amongst five groups, with Group 1 containing the rest of 10 same-
day CT/CBCT datasets and Group 2–5 containing the 40 post-operative patient datasets (10 datasets per group, as 
shown in the first row in table 1). A total of 15 networks were trained using 30, 40, and 50 datasets formed from 
various combinations of dataset groups, as indicated by table 1. The five networks trained using five groups differ only 
by the random initialization of the network weights and have different shuffling of the batches. In order to eliminate 
the impact of loss fluctuations, the average evaluation loss of the last 100 epochs (No. 900–1000) was calculated.

3.  Results

3.1.  Network optimization
The results of the average evaluation loss are shown in figure 3. A lower evaluation loss value is indicative of 
improved/superior network training performance. The worst values are seen in the three-group data training, 

Figure 2.  Workflow for image pre-processing of CT and CBCT datasets.
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indicating 30 datasets are insufficient to obtain a well-trained network (paired t-test with four-group and five-
group, p < 0.05). Lower evaluation loss can be achieved by both four-group and five-group datasets, with no 
significant difference (paired t-test, p > 0.1). This indicates that an improved network can be obtained using 
four groups of datasets with less training time. Therefore, in the subsequent study, Network 6 with four-group 
datasets setup was used for generating the main results unless noted otherwise. In this setting, patient images 
from 40 post-operative patient datasets (73%) were used for training, 5 same-day CT/CBCT datasets (9%) for 
validation, and 10 remaining same-day CT/CBCT datasets (18%) for testing.

3.2.  Quantitative assessment for the enhanced CBCT image quality
Figure 4(a) shows the testing results of all 50 patients using five-fold cross-validation (exclude five same-day 
patients used in network optimization) from networks trained by four groups (Networks 6–10) in table 1. All 
eCBCT images had significant improvement in MAE, SNR, and SSIM compared with the oCBCT (in all paired 
t-test, p � 0.01). As shown in figure 4(b) based on 50 patients, the average MAE of HU improved from 167.46 
to 49.24 HU, the average SNR improved from 8.50 to 14.54 dB and the average SSIM increased from 0.44 to 
0.84. Using the 10 same-day testing patients (main results, network 6), the average MAE of HU improved from 
172.73 to 49.28 HU, the average SNR from 8.27 to 14.25 dB, and the average SSIM from 0.42 to 0.85. Figure 5 
shows the histograms of oCBCT, eCBCT, and re-sim CT for the 10 testing datasets. The range of the HU value 
is from  –1000 to 1000 with 512 bins. The HU histogram of oCBCT displays significant shifts in low density/
air and soft tissue/muscle regions, whereas the HU histogram of eCBCT is much closer to that of re-sim CT for 
both regions. The Chi-squared distance of the histograms (Zhang et al 2007) was suppressed from 9.46 × 106 
(oCBCT) to 1.26 × 106 (eCBCT).

Table 1.  The dataset arrangements for cross evaluation. Network 6 (four groups training) is the main result in this work.

Group 1 

(same-day)

Group 2 (post-

operative)

Group 3 (post-

operative)

Group 4 (post-

operative)

Group 5 (post-

operative)

Five groups, network 1 ★ ★ ★ ★ ★
Five groups, network 2 ★ ★ ★ ★ ★
Five groups, network 3 ★ ★ ★ ★ ★
Five groups, network 4 ★ ★ ★ ★ ★
Five groups, network 5 ★ ★ ★ ★ ★

Four groups, network 6 — ★ ★ ★ ★
Four groups, network 7 ★ — ★ ★ ★
Four groups, network 8 ★ ★ — ★ ★
Four groups, network 9 ★ ★ ★ — ★
Four groups, network 10 ★ ★ ★ ★ —

Three groups, network 11 — — ★ ★ ★
Three groups, network 12 — ★ — ★ ★
Three groups, network 13 — ★ ★ — ★
Three groups, network 14 — ★ ★ ★ —
Three groups, network 15 ★ ★ ★ — —

★: used in the training; —: not used in the training.

Figure 3.  Average evaluation loss of 900-1000 epochs using three-, four- and five-group training data. X-axis denotes five models 
shown in the table 1 and Y-axis denotes the loss.

Phys. Med. Biol. 65 (2020) 035003 (12pp)
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3.3.  Qualitative assessment for the enhanced CBCT image quality
Seven representative image slices from a testing dataset are shown in figure  6. The display window is  
W  =  950 HU, L  =  181 HU. The values of MAE, SNR and SSIM are shown at the bottom of each panel. The trained 
network significantly improved the SNR and SSIM of eCBCT compared with oCBCT images. The HU difference 
between eCBCT and CT were reduced to 25% of those values for oCBCTs. Overall image quality seemed much 
improved from a representative slice shown in figures 6(a)–(c). Small but critical structures, i.e. the optic nerves, 
were enhanced in eCBCT (figures 6(d)–(f)). High-Z streak artifacts were reduced in the dental regions in eCBCTs 
(figures 6(g)–(i)). Soft tissue contrast of parotid regions was improved (figures 6(j)–(l)); however, surgical clips 

Figure 4.  Quantitative measures in image quality of eCBCT and oCBCT against the corresponding CT image. (a) spider charts 
showing all 50 patients. Grey lines: oCBCT; Orange lines: eCBCT; (b) histogram figure showing average all 50 patients and the 10 
patients with same-day images. Grey bars: oCBCT; Orange bars: eCBCT.

Figure 5.  HU Value histograms of oCBCT (grey), eCBCT (orange), and re-sim CT (blue) for all 10 testing patients (each with paired 
same-day CT/CBCT).

Phys. Med. Biol. 65 (2020) 035003 (12pp)
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Figure 6.  The oCBCT images (left column), eCBCT images (middle column) and reference CT images (right column). (a)–(c) 
The representative image slices which have similar metrics to the average of the full testing data; (d)–(f) optic nerve regions; (g)–(i) 
dental regions; (j)–(l) parotid regions; (m)–(o) submandibular gland (SMG) regions; (p)–(r) Brainstem regions; (s)–(u) cord 
regions.

Phys. Med. Biol. 65 (2020) 035003 (12pp)
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(small white dots in the image) may also be suppressed in the denoising process of the network (figures 6(m)–
(o)). Soft tissue contrast was greatly enhanced with corrected HU values for regions of brainstem (figures 6(p)–
(r)) and cord (figures 6(s)–(u)). HU-line profiles were taken for figures 6(a)–(c), (p)–(l), and (s)–(u) and shown 
in figures 7 (a)–(c), respectively. As the network removed most artifacts on the oCBCT images and minimize the 
differences of HU values between oCBCT and CT images, eCBCT HU profiles are much smoother and closer to 
the corresponding CT HU profiles, especially in the soft-tissue areas.

3.4.  Computation time
After training, the average time to enhance a single oCBCT image slice is 13 ms. Complete processing of a CBCT 
dataset for one patient takes less than 15 s, which includes loading the oCBCT raw data, pre-processing, network 
computing (13 ms/slice  ×  52 slices), and saving the network predictions.

4.  Discussions

The CNN-based method we developed in this study aims to improve image quality of FSLD CBCTs obtained 
from routine image-guided radiotherapy and daily treatment verification. The improvement was evaluated 
for image uniformity, SNR, contrast resolution, and image similarity in comparison with standard-dose CT. 
Networks were trained to map from oCBCT to CT images, in order to create an eCBCT. Compared with oCBCT 
images, eCBCT images demonstrated a substantial improvement in HU number accuracy and small anatomical 
structure integrity. Furthermore, for eCBCT images, the CNN visually suppressed noise and scatter artifacts, as 
well as streaky beam hardening artifacts in dental areas, which is consistent with the previous publication from 
our group (Yuan et al 2019). Most recently, Liang et al published a similar study on CBCT image improvement for 
HN cancer using CycleGAN (Liang et al 2019), which showed CBCT image quality improvement, but was unable 
to suppress metal and dental artifacts because they were shown in both CT and CBCT images.

As shown in figure 3, the three-group training data demonstrated suboptimal results with high valida-
tion loss. When using the four-group training dataset, evaluation loss decreased significantly (paired t-test, 
p < 0.05). When five groups of datasets were used for training, there was no significant improvement (paired 
t-test, p > 0.1), with a slight increase in the average loss. Therefore, the four-group dataset including 40 inde-
pendent sets was an optimal and sufficient size for training in this study.

For this supervised CNN, CT and CBCT image pairs with matching anatomy were used to train the network. 
Identifying matched CT/CBCT pairs is extremely challenging in a retrospective setting. Table 2 summarized 
the number of training data and imaging parameters in previous publications with the same aim in improving 
CBCT image quality based on deep-learning CNN methods (Hansen et al 2018, Kida et al 2018, Landry et al 2019, 
Liang et al 2019) and CT-assisted intensity correction methods (Hu et al 2008, Park et al 2015, Xu et al 2015). Our 
study used the highest number of datasets for training, compared to the other three supervised deep-learning 
CNN-based studies (Hansen et al 2018, Kida et al 2018, Landry et al 2019). In addition, the present study also 
utilized a relatively large sample size for testing with the same-day CT/CBCT, which includes a wide range of 
variable treatment positions in terms of head tilt, treatment region size, and dental artifacts. Most importantly, 
the re-sim CT represents the ground truth of patients’ anatomy on the day when the corresponding CBCT was 

taken, which serves as a precise image verification.
The training data used in this study are from post-operative patients and include the planning CT and CBCT 

performed on the first day of treatment. Non-operative patients were excluded in order to ensure minimal ana-
tomic differences between the CT and CBCT. As validated in Dinkla et al 2019, acceptable results were achieved 
using up to a maximum of 28 d separation between the CT and MR image pairs, which were aligned by deform-
able image registration (DIR) to prevent mismatch between the image pairs. For our study, grey-scale-based rigid 
registration was considered sufficient in registering each image pair, given careful dataset screening as we men-
tioned above. In addition, we preliminarily evaluated a pixel-value based commercial DIR algorithm in the initial 
phase of our study, but concluded that it was not superior to the rigid registration due to inherent deformation 
errors associated with significant image artifacts from the FSLD CBCT images. Furthermore, to assess test dataset 
performance, Network 6 trained with all post-operative image pairs was compared with Network 7–10 trained 
with both same-day and post-operative image pairs. Based on the four-group dataset cross validation experi-
ments shown in table 1 and figure 3, no significant difference was noted in terms of the network performance. 
Therefore, the training dataset obtained from post-operative patient datasets is comparable to the same-day 
dataset for this study.

The most challenging aspect of this study is the use of FSLD CBCTs. The oCBCT images were acquired with 
a very low scanning mAs parameters, in order to reduce daily patient imaging dose. Images were acquired for 
each patient using the XVI S10 filter and 10  ×  10 protocol, with the exposures of 10 ms and x-ray tube current of  
10 mA per projection for 182 projections. Table 2 compared the CBCT imaging parameters of the present work 
with previous publications on prostate (Hansen et al 2018, Kida et al 2018, Landry et al 2019) and HN (Hu et al 

Phys. Med. Biol. 65 (2020) 035003 (12pp)
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Figure 7.  HU line profiles taken at three regions at (a) figures 6(a)–(c), (b) figure 6(p)–(l), (c) figures 6(s)–(u). The right column 
shows HU profiles of the red dashed lines in the left column. Y axes: HU; X axes: pixels.

Phys. Med. Biol. 65 (2020) 035003 (12pp)
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2008, Park et al 2015, Xu et al 2015) cancer sites. Amongst the three deep-learning CNN-based studies, Landry 
et al (2019) used 20  ×  20 protocol for CBCT acquisition and the number of projections was between 346 and 
357, whereas Hansen et al (2018) used 40  ×  40 protocol and the number of projections was between 350 and 717. 
Amongst the studies using conventional algorithms for HN CBCT (Hu et al 2008, Park et al 2015, Xu et al 2015), 
Xu et al (2015) adopted the CBCT scanning protocol of 0.4 mAs/projection and 364 projections; Park et al (2015) 
used 0.1 mAs/projection and 343 projections; Hu et al (2008) acquired CBCT with 0.1 mAs/projection and 650 
projections. In all, the FSLD protocol (0.1 mAs, 182 projections) that we used in the present study is beneficial to 
patients, but resulted in large image quality degradation for oCBCTs (average HU difference in oCBCT versus CT 
in our study: 167 [130–209] HU; average HU difference in Landry et al (2019): 104 [91–119] HU). Nevertheless, 
the image quality improvement shown in eCBCT is slightly better in HU number corrections compared to Lan-
dry et al (2019) (the present study: 49 [31–74] HU, Unet1 in Landry et al (2019): 51 [43–62] HU, Unet2 in Landry 
et al (2019): 88 [75–105] HU, Unet3 in Landry et al (2019): 58 [49–69] HU).

Our present study showed promising results using a U-Net CNN for creating synthetic CT with FSLD CBCTs; 
however the limitations of the study should be noted. A multi-slice 2D CNN was used in this study due to the 
limitation of the GPU memory. Given the 3D nature of CBCT images, a 3D CNN may have greater capability to 
remove noise and streaky artifacts in CBCT images (Çiçek et al 2016, Milletari et al 2016). One way to reduce the 
memory requirement of a 3D CNN is to use patch-based training. However, 3D patch-based training may not 
have equivalent performance with the full-image/volume-based training due to the receptive fields being limited 
to the patch size. Additionally, long streaky or scatter artifacts can cause long-range correlations, which may not 
be captured by patch-based training. Therefore, the performance of a patch-based 3D network is not necessarily 
superior to a 2D network. To demonstrate this, two 3D U-Net networks, (1) a depth-5 U-Net trained using patch-
based data (32 × 32 × 32, 50% overlap) and (2) a simpler depth-3 U-Net trained using full-size 3D volume, 
were evaluated as part of our preliminary assessment. The former has four down-sampling processes and the 
latter only has two. As shown in the figure 8, 3D patch-based training has a bias issue as the intensity of the entire 
image can be mismatched. This mismatch may result in degraded image quality compared to 2D-UNet results. 
In comparison, volume-based training shows in general equivalent image quality metrics compared to that of 
the 2D-UNet with slightly inferior soft-tissue contrast and spatial resolution due to its simpler architecture. Our 
future study will include setting up multi-GPUs in order to further explore 3D volume-based training network 
for improving FSLD CBCTs. The second limitation is that very small structures, such as surgical clips, were not 
well preserved in eCBCT. As shown in figure 6, the spatial resolution in eCBCT is inferior compared to the refer-
ence CT. One possible solution is to modify the loss functions to focus on very small structures, image boundary, 
and soft tissue. Finally, soft tissue contrast improvement of the tumor areas in the test datasets is limited due to 
the use of post-operative patients (tumor regions removed after surgery) for network training. Figures 9(a)–(d) 
show an example from the testing dataset with tumors present. Our trained CNN provided little enhancement 
in the gross tumor areas compared to the original CBCT. This could be a limitation of the FSLD CBCT. For 
those oCBCT from non-operative HN cancer patients, tumor area enhancement would require matching train-
ing data and more optimized imaging scanning parameters. A prospective clinical trial is underway to include 

Table 2.  The comparison between our method and Ref (Hansen et al 2018, Kida et al 2018, Landry et al 2019, Liang et al 2019) and (Hu et al 
2008, Park et al 2015, Xu et al 2015).

Image processing 

method

Training 

dataset size

Testing 

dataset size

oCBCT scan 

dose (mAs)

oCBCT 

MAE (HU)

eCBCT 

MAE (HU)

Current study (HN) Supervised CNN 40 10 18.2 167 49

[130—209] [31—74]

Kida et al (2018) (prostate) Supervised CNN 16 4 350 — —
Hansen et al (2018) (prostate) Supervised CNN 15 8 560–1147.2 144 46

Net1 in Landry et al (2019) (prostate) Supervised CNN 27 8 138–142 104 51

[91–119] [43–62]

Net2 in Landry et al (2019) (prostate) Supervised CNN 27 8 138–142 104 88

[91–119] [75–105]

Net3 in Landry et al (2019) (prostate) Supervised CNN 27 8 138–142 104 58

[91–119] [49–69]

Liang et al (2019) (HN) Unsupervised 81 20 — 69 30

CNN [80–68] [35–25]

Xu et al (2015) (HN) Monte Carlo 

simulation-based

— — 145.6 — —

Park et al (2015) (HN) CT-prior-based — — 34–69 — —
Hu et al (2008) (HN) ROI mapping — — 65 — —
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non-operative HN cancer patients for network training and to explore the clinical feasibility of applying the 
proposed method to facilitate online evaluation of treatment delivery accuracy for plan adaptation during treat-
ment. Future work will also include testing the feasibility and accuracy of direct dose calculation on eCBCT given 
improved image quality in tumor area and normal tissues.

5.  Conclusions

The proposed deep-leaning based method is demonstrated to be fast and effective for enhancing FSLD CBCT. 
Quantitative and qualitative comparisons showed improved image quality in terms of soft tissue contrast, SNR, 
and HU number accuracy with the eCBCT datasets. This study has its potential utility for fast online-dose 
verification and adaptive re-planning of radiotherapy for HN cancer patients.
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