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Abstract
We analyze the cosmological solutions to the recently proposed nonlocal 
quantum effective action for gravity with a cosmological term. We show that 
the vacuum energy decays with a slow-roll parameter proportional to the 
anomalous gravitational dressings

Keywords: cosmology, inflation, Weyl anomaly

1.  Introduction

It was pointed out recently [1, 2] that Weyl anomalies in the renormalized quantum effective 
action of gravity can have important consequences for the gravitational dynamics on cosmo-
logical scales. The relevant Weyl anomalies can be computed explicitly in a two-dimensional 
model of gravity and are summarized by a nonlocal quantum effective action [3]. The resulting 
quantum momentum tensor is nonlocal in general but simplifies for an isotropic and homo-
geneous universe and the cosmological equations can be solved analytically. The scale factor 
exhibits power law expansion driven entirely by the slowly decaying vacuum energy [1, 3].

A four-dimensional phenomenological action (1) was proposed in [1, 2] motivated by these 
two-dimensional results and from considerations of the local renormalization group [4–7]. 
This nonlocal action parametrizes possible Weyl anomalies arising from the renormalization 
of composite operators. The resulting integro-differential equations  describe the effective 
classical dynamics of the spacetime metric at long distances.

The nonlocality may be surprising at first but one must bear in mind that the action (1) 
should be regarded as the 1PI effective action and not the Wilsonian effective action. In gen-
eral, the 1PI effective action is expected to be nonlocal. A class of non-local generalizations 
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of the Einstein–Hilbert term have been considered earlier to analyze cosmological evolution 
[8–14] and can lead to interesting cosmology [15, 16]. The nonlocality that we consider is of 
a very specific kind and is constrained by the requirement that the action should be a solution 
of the local renormalization group equation. The main idea is that anomalous dimensions 
of composite operators modify the trace of the quantum momentum tensor as encapsulated 
by the local renormalization group equation. Therefore the momentum tensor itself must be 
modified, which in turn can modify the gravitational dynamics. This reasoning suggests a 
specific nonlocal generalization of Einstein Gravity.

In this paper we analyze the cosmological consequences of this action in a Robertson–
Walker spacetime. Somewhat surprisingly, the effective classical dynamics can be solved ana-
lytically even in four dimensions using the Weyl-invariant formulation discussed in [1, 2]. Our 
main conclusion is that nonzero anomalous gravitational dressings lead to a slow quantum 
decay of vacuum energy just as in two dimensions.

The paper is organized as follows. In section 2 we review the nonlocal four-dimensional 
action proposed in [1, 2] and derive the cosmological evolution equations  for an isotropic 
and homogeneous universe. In section 3 we present the solutions to these equations which 
describe an expanding universe with a decaying vacuum energy density. We give estimates of 
the anomalous gravitational dressings and conclude with a discussion of the theoretical and 
cosmological implications.

2.  Quantum gravity at long distances

We are interested in the quantum effective action for the metric obtained by integrating out 
the quantum fluctuations of various fields valid at distances large compared to the Planck 
distance. The essential lesson that emerges from the study of the two-dimensional model 
[1, 3] is that the physical coupling constants are the couplings of the gravitationally dressed 
operators. The anomalous dimensions of the dressed operators are in principle different from 
the anomalous dimensions of the undressed operators. This applies in particular to the square-
root of the determinant of the metric corresponding to the cosmological term as well as to 
the Einstein–Hilbert term. The quantum effective action (1) should take into account these 
anomalous gravitational dressings and can be obtained either by using the background field 
method or as a solution of the local renormalization group equation [2].

2.1.  A nonlocal action for gravity

The nonlocal action in the physical gauge is given by:

IG[g] =
M2

p

2

∫
d4x

√
−g

(
R[g] e−ΓK(Σg) − 2Λ e−ΓΛ(Σg)

)
� (1)

where Mp  is the reduced Planck mass and the Γi(Σg), i = K,Λ are the integrated anomalous 
gravitational dressings. The field Σg is a nonlocal functional of the metric gµν defined by 
[17–19]

Σg(x) =
1
4

∫
d4y

√
−g G4(x, y)F4[g](y) ,� (2)

where

F4[g] = E4[g]−
2
3
∇2R[g] , E4[g] = (RµνρσRµνρσ − 4RµνRµν + R2)[g] ;

�

(3)
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and G4(x,y ) is the Green function of the Weyl covariant quartic differential operator

∆4[g] =
(
∇2)2

+ 2Rµν∇µ∇ν +
1
3
(∇νR)∇ν − 2

3
R∇2� (4)

on the gµν background satisfying

∆x
4[g]G4(x, y) = δ(4)(x, y) :=

δ(4)(x − y)√
−g

.� (5)

For metrics related by a Weyl rescaling

gµν = e2Σg(x) η̄µν ,� (6)

the scalars F4 are related by

F4[g] = e−4Σg(x) (F4[η̄] + 4∆4[η̄] Σg) ,� (7)

and the operators ∆4 are related by

∆4[g] = e−4Σg ∆4[η̄] .� (8)

One can choose a gauge in which Σg(x) becomes the conformal factor of the metric with 
respect to a reference metric η̄µν which satisfies the F-flatness condition F4[η̄] = 0. The 
expression (2) is obtained in this F-flat gauge by inverting (7). Note that the action (1) should 
be regarded as the in-in effective action and hence one must impose retarded boundary condi-
tions. This ensures that the propagation is causal.

We emphasize that the action (1) is the result of having performed a path integral and is 
not to be quantized further but is to be used for studying the effective classical dynamics. In 
principle, the dressing functions can be computed ab initio in a given microscopic theory [2]. 
For now, we view these functions as a phenomenological parametrization of possible Weyl 
anomalies and analyze the cosmological solutions of (1) in terms of these functions.

2.2.  Weyl-invariant nonlocal action

The variation of (1) with respect to gµν is very cumbersome because both ∆4 and F4 have a 
complicated dependence on the metric. The Weyl-invariant formulation discussed in [1, 2] 
leads to considerable simplification by exploiting the fact that the spatially flat Robertson–
Walker metric is Weyl equivalent to the flat Minkowski metric.

In the Weyl-invariant formulation, one introduces a Weyl compensator field Ω(x) and a 
fiducial metric hµν to write the physical metric as

gµν = e2Ω(x)hµν .� (9)

With this arbitrary split, the physical metric is invariant under a ‘fiducial Weyl transformation’ 

hµν → e2ξ(x)hµν , Ω(x) → Ω(x)− ξ(x) .� (10)

The fiducial metric can be further parametrized in terms of an F-flat reference metric η̄µν as

hµν = e2Σh(x)η̄µν .� (11)

Then, the Weyl factor Σh(x) is given by (2) evaluated on hµν. Equation (9) implies

Σg = Ω+ Σh� (12)
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and (10) implies that Σg(x) is invariant under the fiducial Weyl symmetry. Let M0 be the UV 
cutoff scale below the Planck scale. One can then define the gravitational coupling κ2 by

M2
p =

M2
0

κ2 .� (13)

Henceforth we choose units so that M0  =  1. Substituting (9) and (12) into the action (1), one 
obtains the Weyl-invariant quantum action

IG[h,Ω] =
1

2κ2

∫
d4x

√
−h e4Ω

(
R[he2Ω] e−ΓK(Ω+Σh) − 2Λ e−ΓΛ(Ω+Σh)

)
.

� (14)
Using the Weyl transformation of the Ricci scalar and integrating by parts, we obtain

IG[h,Ω] =
1

2κ2

∫
dx

[(
R[h] + 6 (1 − Γ

(1)
K ) |∇Ω|2 − 6Γ(1)

K ∇Ω · ∇Σh

)
e2Ω−ΓK − 2Λ e4Ω−ΓΛ

]

� (15)

where dx ≡ d4x
√
−h and6 Γ(n)

i (Ω + Σh) are the nth derivatives of the dressing functions.
The action (15) now has an enlarged gauge symmetry that includes local Weyl symmetry 

in addition to diffeomorphisms. We have introduced an additional scalar degree of freedom 
in the process, but the number of physical degrees of freedom remains unchanged. Using the 
fiducial Weyl invariance one can choose a ‘physical gauge’ Ω = 0 so that the physical metric 
is identified with the fiducial metric and one recovers the action (1). Alternatively, one can 
keep Ω arbitrary and impose a scalar gauge condition on the fiducial metric such as F4[h]  =  0. 
In this F-flat gauge Σh = 0 and Σg = Ω.

2.3.  Evolution equations for cosmology

A homogeneous and isotropic universe is described by the Robertson–Walker metric. For 
simplicity we consider the case when the spatial section is flat. In this case, one can choose 
a gauge in which the fiducial metric hµν equals the flat Minkowski metric ηµν. Since this 
is determined purely by the symmetry of the problem, the entire dynamics now resides in 
the Weyl compensator. Moreover, the Minkowski metric is not only F-flat but Riemann-flat. 
Consequently the variation of the nonlocal terms in the action (15) simplifies considerably.

Since F4[η] = 0, the variation of the Green function does not contribute, and we obtain

δΣh(x) =
1
4

∫
dy G4(x, y) δF4[h](y) .� (16)

Furthermore, the quadratic terms involving the Riemann curvature tensors do not contribute 
to the variation of F4[h] when evaluated around ηµν . The only nonzero variation comes from 
the variations of the term linear in the curvatures:

δF4[h](y) = −2
3
∇2 δR[h] .� (17)

The total variation of Σh after an integration by parts is then given by

δΣh(x) =
1
6

∫
dy δhµν(y) (∇µ∇ν − hµν∇2)∇2 G4(x, y).� (18)

6 Henceforth, all covariant derivatives and contractions are with respect to the fiducial metric hµν.
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After performing the variation in the fiducial frame, it is convenient to rewrite the equations of 
motion in terms of the gauge-invariant physical metric using (9). Under a Weyl transforma-
tion, the Einstein tensor transforms as [2]

Eµν [g] = Eµν [h] + Dµν [h,Ω] ,

Dµν [h,Ω] := −2
(
∇µ∇ν − hµν∇2)Ω+ 2

(
∇µΩ∇νΩ+

1
2

hµν |∇Ω|2
)

.
� (19)

Substituting the above in the variation of (15) yields the equations of motion for the physical 
metric

Eµν [g] = κ2 (TK
µν + TΛ

µν)� (20)
where TK

µν is the momentum tensor of the ‘gravifluid’ [2], of purely geometric origin

κ2 TK
µν(x) = 2Γ(1)

K

(
∇µΩ∇νΩ+

1
2
ηµν |∇Ω|2

)

+
(
(Γ

(1)
K )2 − Γ

(2)
K

) (
∇µΩ∇νΩ− ηµν |∇Ω|2

)
− Γ

(1)
K

(
∇µ∇ν − ηµν∇2)Ω

− e−2Ω+ΓK

∫
dyΓ(1)

K e2Ω−ΓK (∇2Ω+ |∇Ω|2)
(
∇µ∇ν − ηµν∇2)∇2G4(x, y) ;

�

(21)

and TΛ
µν is the momentum tensor of the ‘vacuum fluid’ 

κ2 TΛ
µν(x) = −Λ ηµν e2Ω+ΓK−ΓΛ

− Λ

3
e−2Ω+ΓK

∫
dyΓ(1)

Λ e4Ω−ΓΛ
(
∇µ∇ν − ηµν∇2)∇2G4(x, y) .

� (22)
We emphasize that the contribution from the ‘gravifluid’ is purely geometric in origin and in 
principle belongs to the left hand side of the equation (20) on the same footing as the Einstein 
tensor. Since the fiducial metric is flat in this context, the equation (20) reduces to

Dµν [η,Ω] = κ2 (TK
µν + TΛ

µν

)
.� (23)

2.4.  Cosmological equations in an alternative gauge

As described in [2], it is possible to choose an alternative gauge in which the conformal factor 
Σ̃g(x) is defined with respect to an R-flat reference metric η̃µν [20, 21]. In the R-flat gauge, the 
expression for the conformal factor follows from the Weyl transformation of the Ricci scalar

R[g] = e−2Σ̃g

(
R[η̃]− 6∇2Σ̃g − 6|∇Σ̃g|2

)
.� (24)

Imposing R[η̃] = 0 and inverting the above equation gives

Σ̃g(x) = − ln

(
1 −

∫
ddy

√
−g G̃(x, y)R[g](y)

)
,� (25)

where G̃(x, y) is the Green function of the differential operator
(
−6∇2 + R

)x
[g] G̃(x, y) = δ(4)(x, y) .� (26)
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To use this gauge in the quantum action, we express the fiducial metric as

hµν = e2Σ̃h η̃µν , Σ̃g = Ω+ Σ̃h .� (27)

We introduce the Weyl split (9) into the analog of the action (1) in the R-flat gauge with gravi-
tational dressing functions7 Γ̃i(Σ̃g). The Weyl-invariant action then becomes

IG[h,Ω] =
1

2κ2

∫
dx

[(
R[h] + 6 (1 − Γ̃

(1)
K ) |∇Ω|2 − 6 Γ̃(1)

K ∇Ω · ∇Σ̃h

)
e2Ω−Γ̃K − 2Λ e4Ω−Γ̃Λ

]

� (28)

where now Γ̃i = Γ̃i(Ω + Σ̃h).
The equations of motion for a spatially-flat Robertson–Walker spacetime then follow from 

the variation of this action around hµν = ηµν. On a flat background, the variation of Σ̃h (25) 
receives no contribution from the variation of the Green function and is given by

δΣ̃h =

∫
d4y G̃(x, y) δ (

√
−h Rh(y)) =

∫
dy δhµν

(
−∇µ∇ν + hµν∇2) G̃(x, y) .

� (29)
Furthermore, since Rη = 0, the equation  (26) becomes the Green equation  for the flat 
Laplacian. Comparing with the Green equation (5) of ∆4 on a flat background, we find that 
the two Green functions are related through

G̃(x, y) = −1
6
∇2G4(x, y) .� (30)

Introducing this in (29) we recover the same variation of Σh(x) in a flat background (18):

δΣ̃h =
1
6

∫
dy δhµν (∇µ∇ν − hµν∇2)∇2 G4(x, y).� (31)

Since hµν is taken to be Minkowski, Σh = Σ̃h = 0, and therefore Γi(Ω) = Γ̃i(Ω). As a result, 
the equations of motion obtained in the two gauges are identical.

3.  Quantum decay of vacuum energy

Thus far we have only required that the physical metric be Weyl equivalent to the Minkowski 
metric. The equations derived in the previous section are valid generally as long as the Weyl 
tensor of the physical metric vanishes. In a spatially-flat Robertson–Walker spacetime there is 
further simplification because the scale factor of the physical metric is a function of only the 
conformal time8 τ . With our gauge choice of hµν = ηµν, we can write

a(τ) = eΩ(τ) .� (32)

The momentum tensors (21) and (22) now simplify further and the integro-differential equa-
tion (23) reduce to an ordinary differential equation of the usual Friedmann–Lemaître type but 
for an effective quantum fluid with an unusual equation of state.

7 Note that η̃µν = e2Ση̃ η̄µν  and Σg = Σ̃g +Ση̃. As a result, the integrated anomalous gravitational dressing func-
tions in the two gauges are related by a shift: Γ̃i(Σ̃g) = Γi(Σ̃g +Ση̃).
8 Conformal time τ  is related to comoving cosmological time t by dτ = dt

a(t).
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3.1.  Effective quantum fluid

For the Robertson–Walker metric, the explicit form of G4(x,y ) discussed in appendix B is actu-
ally not needed because its contribution to the momentum tensors is of the form

∫
dy F[Ω]

(
∇µ∇ν − hµν∇2)∇2G4(x, y) .� (33)

The differential operator in the parenthesis vanishes when µ = ν = τ , so it does not contrib-
ute to the energy density. For all other components, the first term in the parenthesis vanishes 
after integration by parts, and for the components µ, ν = i, the second term in the parenthesis 
can be identified with the Green equation of ∆4[η]. It follows that the quantum momentum 
tensors (21) and (22) correspond to perfect fluids, consistent with isotropy and homogeneity, 
although they are not separately conserved.

The density and pressure of the vacuum fluid are given by

ρΛ(t) =
Λ

κ2 eΓK−ΓΛ , pΛ(t) = wΛ(t) ρΛ(t),� (34)

wΛ(t) =

(
−1 +

Γ
(1)
Λ

3

)
.� (35)

The density and pressure of the gravifluid after using the equations of motion are given by

ρK(t) =
Λ

κ2

Γ
(1)
K

1 − Γ
(1)
K

eΓK−ΓΛ , pK(t) = wK(t) ρK(t) ,� (36)

wK(t) =

(
−1 +

Γ
(1)
Λ − 1

3
− Γ

(2)
K

3Γ(1)
K (1 − Γ

(1)
K )

)
.� (37)

We have written the expressions above in the ‘barotropic’ form with the effective pressure 
proportional to the effective density, but the anomalous gravitational dressings Γi(ln a(t)) are 
in general nontrivial functions of the comoving time. As a result, the barotropic indices wΛ and 
wK are in general time-dependent9 and should be regarded as a convenient parametrization.

Combining the two contributions one obtains the total momentum tensor on the right hand 
side of the equation (20). It is a perfect fluid with the effective density and pressure given by

ρe(t) =
Λ

κ2

1

1 − Γ
(1)
K

eΓK−ΓΛ , pe(t) = we(t) ρe(t)� (38)

we(t) =
(
−1 +

γ

3

)
, γ =

(
Γ
(1)
Λ − Γ

(1)
K − Γ

(2)
K

(1 − Γ
(1)
K )

)
.� (39)

With this effective density, the equation of motion reduces to the first Friedmann equation

H2 =
κ2ρe

3
� (40)

9 Recall that in classical cosmology the commonly encountered fluids have the barotropic index  −1 for the cosmo-
logical constant, 0 for matter, and 1/3 for radiation.

T Bautista et alClass. Quantum Grav. 37 (2020) 045012
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where H := ȧ/a as usual. Note that our conclusions thus far follow purely from the symmetry 
considerations of isotropy, homogeneity, and spatial flatness.

The momentum tensor for the gravifluid (36) is proportional to the cosmological constant 
after using the equations of motion in a spatially-flat Robertson–Walker spacetime. As a result 
the total momentum tensor for the effective fluid is proportional to the cosmological constant. 
This implies that in the absence of the cosmological constant, the Minkowski metric continues 
to be an exact solution of the new equation (20) in vacuum. On the other hand, for positive 
cosmological constant, the classical de Sitter solution is no longer a solution of the quantum 
equation (20) as we describe below.

The conservation equation for the effective fluid is

ρ̇e = −3( pe + ρe)H .� (41)

A useful consistency check is that the expressions (38) and (39) satisfy the conservation equa-
tion. It is of course guaranteed by the fact that the nonlocal action (1) is coordinate invariant 
and follows from the Bianchi identity. Note, however, that the gravifluid and the vacuum fluid 
are not conserved separately for nonzero ΓK .

3.2.  Cosmology of the decaying vacuum energy

The expressions (38) and (39) for the effective density and pressure already give their func-
tional dependence on the scale factor. As discussed above, they automatically solve the con-
servation equation (41). Our task is then reduced to solving the equation (40) to obtain the 
scale factor as a function of the cosmological time. Even though (40) is much simpler than an 
integro-differential equation, it is nevertheless a complicated ordinary differential equation. 
In general, the integrated anomalous dressings ΓK  and ΓΛ are nontrivial functions of the scale 
factor and this equation can be solved only numerically.

Analytic solutions are possible when ΓK  and ΓΛ are both linear functions of Ω:

ΓK(Ω) = γK Ω(x), ΓΛ(Ω) = γΛ Ω(x) ,� (42)

where γi  are constants10. The barotropic index for both the vacuum fluid (35) and the gravi-
fluid (37) becomes constant. It is useful to consider this case to gain some understanding of 
the resulting solutions. From (35) and (37) we obtain

wΛ = −1 +
γΛ
3

wK = −1 +
γΛ − 1

3
.� (43)

More interestingly, the effective fluid appearing on the right-hand side of the Einstein equa-
tions becomes also barotropic with index

we = −1 +
γ

3
, with γ = γΛ − γK .� (44)

The cosmological solution to (20) is then given by

ρe(t) = ρe∗

(
a
a∗

)−γ

, a(t) = a∗(1 +
γ

2
H∗t)

2
γ ,� (45)

10 In two dimensions, ΓK(Ω) and ΓΛ(Ω) are indeed linear functions with γK = 0 and γΛ = 2β2 [3]. This is a conse-
quence of the conformal invariance of the timelike Liouville theory. In general, this need not be true, but it may be 
possible to approximate the integrated anomalous gravitational dressings by linear functions for long enough time 
intervals during the evolution of the universe.
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where ρe∗, H*, a* are the initial values at the beginning of universe at time t  =  0. The densities 
of the vacuum fluid and the gravifluid are given by

ρΛ(t) = (1 − γK) ρe(t) , ρK(t) = γK ρe(t) .� (46)

The conformal time as a function of the comoving time is given by

τ = τ∗(1 +
γ

2
H∗t)

γ−2
γ where τ∗ :=

2
(γ − 2)H∗a∗

.� (47)

The range of t is 0 � t < ∞ with the universe starting with scale factor a*. The range of τ  is

|τ∗| � τ < ∞ for γ > 2 ,� (48)

−|τ∗| � τ < 0 for 0 � γ < 2 .� (49)

As a function of τ , the scale factor and the density are given by

a(τ) = a∗(
τ

τ∗
)

2
γ−2 , ρe(τ) = ρe∗(

τ

τ∗
)−

2γ
γ−2 .� (50)

In the semiclassical approximation both anomalous dressings are expected to be small. A 
spatially-flat Robertson–Walker solution is only compatible with Λ � 0. For positive γ , our 
model describes an expanding universe driven by an effective fluid with a barotropic index 
that is slightly larger than its classical value  −1. We arrive at the conclusion that the vacuum 
energy density decays from its initial value ρe∗ which could be of the order of the string scale 
or the scale of supersymmetry breaking. The classical exponential expansion of de Sitter spa-
cetime is slowed down to a power law expansion as a result of the quantum anomalous gravi-
tational dressings. In the limit of vanishing γ , one recovers de Sitter spacetime with constant 
density.

The quantum decay of vacuum energy and the dynamics of the Omega field provides a new 
mechanism to drive slow-roll inflation in the early universe. It is convenient to define slow-roll 
parameters as usual in terms of fractional change in the Hubble parameter and its derivative:

εH := − Ḣ
H2 = −d lnH

Hdt
and ηH :=

ε̇H

HεH
=

d ln εH

Hdt
.� (51)

For the solution

εH =
γ

2
and ηH = 0 .� (52)

The condition for accelerated expansion (ä > 0) requires that εH should be less than one. 
Slow-roll inflation requires that εH � 1. It is also necessary that ηH � 1 so that inflation 
lasts long enough. Since γ  is small in the semiclassical approximation, all these conditions 
would be satisfied. A generic prediction is that ηH = 0. Thus, the quantum decay of vaccum 
energy can drive slow-roll inflation in the early universe. For small γ , the scale factor expands 
almost exponentially as a power law with a very high exponent. Nonzero εH measures the 
deviation from exact exponential expansion but the parameter ηH  vanishes as in exact de Sitter 
spacetime.

In this model of inflation without an inflation or matter fields, inflation would last forever, 
the energy density would eventually vanish and the universe would end up empty. In order 
to end inflation, more realistic models with matter fields need to be considered. Matter fields 
would already be present during the inflationary epoch (whose quantum fluctuations integral 
gives rise to the low-energy effective action (1)), but their contribution to the evolution of the 
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background metric would be negligible due to the effective density being dominant during this 
period. One possibility for an inflationary end would be a phase transition triggered by a mas-
sive scalar field with m2 turning negative. If the transition had high latent heat, it could reheat 
the universe and trigger an exit into a hot big bang.

More generally, the motivation for the phenomenological action (1) and the general lesson 
from this work is that renormalisation of composite operators leads to Weyl anomalies that 
become encoded in metric-dependent, and hence position-dependent, gravitational dressings 
of these operators as dictated by the renormalisation group. These dressings can be interpreted 
as effectively enducing a position-dependence in the coupling constants of the corresponding 
operators. In a model with scalars and fermions living on the background considered above, 
this would lead to time-dependent physical coupling constants. This time-dependence could 
then induce phase transitions, or particle-production as considered in models with parametric 
resonances. It would be very interesting to explore concrete models of these mechanisms.

For a general functional form of the anomalous dressings ΓK  and ΓΛ, the equation (40) rep-
resents a novel generalization of the usual Friedmann equation because the equation of state 
of the effective fluid is rather unusual. It is conceivable that this has interesting consequences 
for early cosmology. Numerical integration may be necessary to find the time-dependence of 
the scale factor. However, we see from (38) that as long as ΓΛ − ΓK is positive during the cos-
mological history, vacuum energy will decay. For negative γ , the null energy condition would 
be violated. In this case, the effective fluid could provide a model of phantom energy [22].

3.3.  Broken time translation symmetry and stability

This novel mechanism for the decay of the vacuum energy raises the following puzzle. Unlike 
the classical de Sitter solution, our quantum corrected slow-roll solution (45) breaks the global 
time translation symmetry

t → t + π� (53)

of the action (1) for a constant π. If a solution breaks a global symmetry of an action, the 
symmetry-transform of a given solution generates a new solution. This implies that if one 
now considers a position dependent symmetry parameter π(x) then the effective action for 
π(x) must be derivatively coupled so that there is a flat direction and arbitrary constant π is 
a solution of the equations of motion that follow from this effective action. Correspondingly, 
one expects a Nambu–Goldstone like scalar fluctuation mode. In usual inflationary models 
this scalar mode can be identified with a gauge-invariant combination of the inflaton and the 
metric. This idea is the basis of effective field theories of inflation [23, 24]. Where is this 
additional scalar degree of freedom? One could pose the puzzle slightly differently. Time 
translation symmetry is part of the diffeomorphism group. How can quantum effects break 
this symmetry? 

The resolution of this puzzle is as follows. The scale factor of our solution has an initial 
value a* at the initial value surface t  =  0. Since we are using semiclassical gravity, a* can be 
taken to be of the order of the short-distance cutoff scale a little larger than the Planck length. 
This means that, unlike the eternal de Sitter solution, one cannot continue this solution to 
times earlier than t  =  0. The global time translation symmetry is thus explicitly broken by the 
fact that one must cutoff the evolution with an initial value surface in the early universe and 
impose initial conditions. Even though the action is invariant under the time translation sym-
metry, the initial conditions are not. Thus, one cannot apply the argument above to generate 
new solutions from a given solution to deduce the existence of a propagating scalar degree of 
freedom.
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One can state the result slightly differently. The nonlocal expression (2) for the Weyl fac-
tor follows from inverting (7) only if one discards all solutions of the homogeneous equation

∆4Σg = 0 .� (54)

These solutions correspond precisely to the would-be Nambu–Goldstone scalar fluctuations. 
The initial conditions on Σg on the initial value surface ensure that Σg is determined entirely 
in terms of the metric and is not an additional propagating field.

It is possible to reformulate the argument above using a local action. One can recast the 
nonlocal action (1) in a local form [11, 25] by introducing two auxiliary scalar fields Σ(x) and 
Ψ(x) with the action

S[g,Σ,ψ] =
M2

p

2

∫
d4x

√
−g

[
R[g]e−ΓK(Σ) − 2Λe−ΓΛ(Σ) +Ψ

(
∆4Σ− 1

4
F4[g]

)]
.� (55)

The equations of motion for the two auxiliary fields are

∆4Ψ(x) = R[g] Γ(1)
K e−ΓK(Σ) − 2ΛΓ

(1)
Λ e−ΓΛ(Σ) ; ∆4Σ(x) =

1
4

F4[g].
� (56)

The field Ψ(x) acts therefore as a Lagrange multiplier for the condition Σ = Σg, and we 
recover (1) upon using its equation of motion in (55). This local action will reduce to the 
original nonlocal action only if the homogeneous solutions of (56) are eliminated by imposing 
an initial condition for Ψ and Σ that is similar to the initial condition for Σg . This ensures that 
the only propagating degrees of freedom are the usual tensor fluctuations of the metric and 
there are no additional scalar fluctuations.

If a Lagrangian depends on higher time derivatives of the fields, then one should also worry 
about the possibility of the Ostrogradsky instability [26]. We do not carry out the stability 
analysis of our action in this paper but refer the reader to the stability analysis for a class of 
nonlocal actions [10, 11] similar to the one we consider in this paper in the R-flat gauge in 
section 2.4.

These conclusions are physically reasonable from the point of view of the original quantum 
path integral. The action (1) is the quantum 1PI-effective action for the background metric 
obtained by a semiclassical evaluation of the path integral at weak coupling. It would be 
strange if one were to discover an extra scalar degree of freedom or unphysical instability in 
this IR effective action if the starting point is a well-defined path integral.

3.4.  Quantum gravity and De Sitter spacetime

The idea of vacuum energy decay caused by infrared quantum effects has been explored ear-
lier in four-dimensional gravity by several physicists. There is considerable divergence in the 
literature about the final result [27–35] and more generally about infrared effects in nearly 
de Sitter spacetime [36–48]. One of the new ingredients in the present work is to summarize 
the quantum effects in terms of a gauge-invariant nonlocal action. This way of organizing 
the analysis may be useful for future explorations since it separates the computation of the 
anomalous dressings from the classical evolution. Since the effective action (1) is a solution to 
the local renormalization group equation, it effectively sums up the leading logarithms. To see 
this explicitly, one can expand the solution (50) for the scale factor for small γ:

a(τ) = a∗(
τ

τ∗
)

2
γ−2 = a∗(

τ∗
τ
) (

τ

τ∗
)

−γ
2−γ ∼ a∗τ∗

τ

[
1 − γ

2
log

(
τ

τ∗

)
+ . . .

]
.

� (57)
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One obtains the usual de Sitter solution when γ = 0. For nonzero γ  there are logarithmic cor-
rections which add up to a small exponent which slows down the de Sitter expansion.

As it stands (1) should be regarded as a phenomenological parametrization in terms of the 
integrated anomalous gravitational dressings. These anomalous dressings are computable 
in a given microscopic theory. Renormalization of Newton’s constant and the cosmological 
constant has been considered earlier in the literature [49–51]. One can extract the precise 
logarithmic running from these results. The order of magnitude of the anomalous dimensions 
is expected to be GΛ. If the UV cutoff is M0 then the vacuum energy is of order M4

0, Λ is of 
the order M4

0/M2
p, and the Hubble scale is H = M2

0/Mp. The anomalous gravitational dress-
ings would thus be of order H2/M2

p. In very early universe, for example if H is of order 0.1Mp  
then these estimates suggest that γ  and the slow-roll parameter would be of order 0.01. One 
can thus obtain slow-roll inflation driven entirely by slowly decaying vacuum energy through 
the nontrivial effective classical dynamics of the Omega field. This provides an example of 
‘inflation without inflaton’ or what is termed ‘omflation’ in [1, 2]. A high value of H is ruled 
out by current bounds on primordial gravitational waves but it is interesting that an alter-
native mechanism for inflation is possible. It is worth exploring if this mechanism can be 
embedded in a realistic cosmology and if there are other ways to enhance anomalous dress-
ing, for example, by thermal effects. A systematic analysis of these effects will be presented 
in [2, 52].

In the present era, the value of γ  is expected to be of order GΛ, which would be too small 
to be observationally interesting. Nevertheless, one is led to the conclusion that, in principle, 
the dark energy will eventually decay even if it happens extremely slowly. At a purely theor
etical level, this provides a new perspective on quantum gravity in de Sitter spacetime. In a 
quantum theory of gravity there are no gauge-invariant local observables because the met-
ric itself is dynamical. An important question, independent of any ultraviolet completion of 
Einstein gravity, is to define gauge invariant observables for the three possible asymptotically 
maximally symmetric spaces with zero, negative, and positive curvature. In asymptotically 
Minkowski spacetime, the observables are the S-matrix elements. In asymptotically Anti de 
Sitter spacetime the observables are the boundary correlation functions. In both cases, string 
theory provides a consistent framework and precise prescriptions for obtaining well-defined 
finite answers for these quantities. On the other hand, quantum gravity in asymptotically de 
Sitter spacetime presents a number of conceptual difficulties. Considerations of de Sitter 
entropy [53, 54] suggest that the Hilbert space might be finite-dimensional [55–57] but it 
is not entirely clear what the gauge-invariant observables on this Hilbert space might be 
[58–60]. Moreover, it has proved to be difficult to accommodate asymptotically de Sitter 
spacetime within the framework of string theory. According to a no-go theorem, it is impos-
sible to obtain a de Sitter compactification in the classical supergravity limit [61, 62]; and all 
known constructions in string theory [63–65] correspond to metastable vacua which decay 
nonperturbatively.

Our results imply that perhaps it is not necessary to try to make sense of asymptotically 
de Sitter spacetime if we take quantum effects into account even at the perturbative level. 
If γ  is positive, the universe will be asymptotically Minkowski in the future. Hence the 
Penrose diagram looks like a ‘house’ with a sloping roof in the asymptotic future and with 
a floor on the initial spacelike surface in the asymptotic past where one must impose an 
appropriate cutoff to avoid the initial singularity. In this case, the observables are the usual 
cosmological observables computed for a given wavefunction of the universe defined on the 
initial value surface.
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Appendix A.  Nearly static coordinates

Static coordinates of de Sitter spacetime are useful for studying the thermodynamic properties 
of the spacetime [66, 67]. Even thought there is no global timelike Killing vector in de Sitter 
spacetime, the static coordinates provide a timelike future-oriented Killing vector in the static 
patch. These are also the natural coordinates for a Schwarzschild-de Sitter solution. Is there 
an analog of the static coordinates for our new solution? 

Since our solution violates the de Sitter symmetry, we do not expect exactly static coordi-
nates. Indeed, it can be shown that no such exact static coordinates exist for our cosmological 
solution (45). However, since any two Robertson–Walker metrics are Weyl equivalent, our 
solution admits nearly static coordinates in which it is conformal to static de Sitter:

ds2 =

(
e2hT

1 − h2R2

) γ
γ−2

[
−(1 − h2R2) dT2 +

1
1 − h2R2 dR2 + R2 dΩ2

2

]
,

� (A.1)
where constant h is defined as

h :=
2 − γ

2
H∗ aγ/2

∗ .
� (A.2)

In the limit of vanishing γ , one recovers the static de Sitter metric.

Appendix B.  Green function in Minkowski spacetime

The quartic Green equation (5) is Weyl invariant. Hence the Green function in a conformally 
flat spacetime is the same as the Green function in Minkowski spacetime:

G(t,�x; t′, �x′) =
∫

dE
2π

d3k
(2π)3

(
1

(E2 − k2)2

)
e−iE∆t+i�k.∆�x� (B.1)

where ∆t := t − t′ and ∆�x = �x − �x′. As usual that the retarded Green function is obtained by 
lowering the poles off the real axis in the E integral. The E integral gives
∫

dE
e−iE∆t

(E − k)2(E + k)2 =
2πi
4

θ(∆t)
[

i∆t
k2

(
e−ik∆t + eik∆t)+ 1

k3

(
e−ik∆t − eik∆t)

]
.� (B.2)

The angular integrals can be readily performed to obtain
∫ 2π

0

dφ
2π

∫ π

0

dθ
2π

sin(θ) ei�k.�x =
1

2π

∫ 1

−1
d(cos θ)eik|∆�x| cos θ =

1
2πi|∆�x|

(
eik|∆�x| − e−ik|∆�x|

k

)
� (B.3)
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and we are left with the integral

Gret(t,�x; t′, �x′) =
θ(∆t)

8π|∆�x|

∫ ∞

0

dk
2π

[
1
k2

(
eik|∆�x| − e−ik|∆�x|

) (
e−ik∆t − eik∆t)

+
i∆t
k

(
eik|∆�x| − e−ik|∆�x|

) (
e−ik∆t + eik∆t)

]
.

� (B.4)

Since the integrand is even, one can extend the integral: 
∫∞

0 dk → 1
2

∫∞
−∞ dk. The integrand 

has no poles so one can deform the contour slightly below the real axis and write the integrand 
as a sum of exponentials with poles

Gret(t,�x; t′, �x′) =
θ(∆t)

16π|∆�x|

∫ ∞

−∞

dk
2π

[
1
k2

(
eik(|∆�x|−∆t) − eik(|∆�x|+∆t) − eik(−|∆�x|−∆t) + eik(−|∆�x|+∆t)

)

+
i∆t
k

(
eik(|∆�x|−∆t) + eik(|∆�x|+∆t) − eik(−|∆�x|−∆t) − eik(−|∆�x|+∆t)

)]
.

� (B.5)
This can be readily evaluated using the Cauchy residue theorem to obtain

Gret(t,�x; t′, �x′) =
θ(t − t′ − |�x − �x′|)

8π
.� (B.6)

One can verify explicitly that it satisfies the Green equation:

(∂4
t −∇2

x∇2
x)
θ(t − r)

8π
=

1
8π

[
2δ(t − r)∇2

(
1
r

)]
= δ(t − r)δ(3)(�x) = δ(t)δ(3)(�x).� (B.7)

Note that this retarded Green function receives contribution not only from the points on the 
light cone but also from the ‘wake’ inside the light cone in four dimensions. This phenomenon 
occurs also in two dimensions for the Green function of the d’Alembertian which is given by

G(2)
ret (t, x; t′, x′) =

1
2
θ(t − t′ − |x − x′|).� (B.8)

It is interesting to note that the Green function for the d’Alembertian receives contributions 
from within the light-cone for all odd dimensions but gets contributions from points precisely 
on the light cone in all even dimensions except in two dimensions [68].
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