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Abstract

We propose thatthe gauge principle of d-dimensional Euclidean quantum gravity
is Weyl invariance in its stochastic (d + 1)-dimensional bulk. Observables are
defined as depending only on conformal classes of d-dimensional metrics. We
work with the second order stochastic quantization of Einstein equations in a
(d + 1)-dimensional bulk. There, the evolution is governed by the stochastic
time, which foliates the bulk into Euclidean d-dimensional leaves. The internal
metric of each leaf can be parametrized by its unimodular part and conformal
factor. Additional bulk metric components are the ADM stochastic lapse and
a stochastic shift. The Langevin equation determines the acceleration of the
leaf as the sum of a quantum noise, a drift force proportional to Einstein
equations and a viscous first order force. Using Weyl covariant decomposition,
this Langevin equation splits into irreducible stochastic equations, one for
the unimodular part of the metric and one for its conformal factor. For the
first order Langevin equation, the unphysical fields are the conformal factor,
which is a classical spectator, and the stochastic lapse and shift. These fields
can be gauge-fixed in a BRST invariant way in function of the initial data of
the process. One gets observables that are covariant with respect to internal
reparametrization in each leaf, and invariant under arbitrary reparametrization
of the stochastic time. The interpretation of physical observable at finite
stochastic time is encoded in a transitory (d + 1)-dimensional phase where the
Lorentz time cannot be defined. The latter emerges in the infinite stochastic
time limit by an abrupt phase transition from quantum to classical gravity.
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1. Introduction

It has been proposed in [1] that quantum gravity might obey the laws of stochastic quantization
[2], governed by a second order rather than first order stochastic equation. One theoretical motiv-
ation is the suppression of the problem of Lorentz time, which one systematically encounters
in the standard QFT formulations. A physical motivation for using stochastic quantisation in
[1] was to predict that Lorentz time can only emerge as a signature of the exit of inflation by an
abrupt phase transition from quantum to classical gravity, which gives also a heuristic description
to primordial cosmology as well as to the ultra-short distance scattering of point-like particles.

In this paper we refine the definition of the Langevin equation for gravity of [1] making it
genuinely geometric in the stochastic bulk. We arrive at the important conclusion on the defi-
nition of observables: the statement that observables in 2-dimensional gravity depend only on
the conformal classes of metrics [3] can be extended to d > 2. We thus claim that the gauge
symmetry principle of observables in d-dimensional Euclidean gravity is the invariance under
Weyl symmetry in a (d + 1)-dimensional bulk M, modulo the internal reparametrization of
its Euclidean d-dimensional leaves X..

Our proposal for the definition of quantum gravity is in fact inspired by the observation that
what really matters in classical gravity is the propagation of conformal classes of spatial met-
rics. To the best of our knowledge, this property was firstly advocated in the physical literature
in [4], where some of the Einstein equations of motions were cornered out as dictating only
physically irrelevant propagation of constraints. See also the more recent works [5], where the
‘relativity of local size’ is implemented to find solutions to the Einstein equations and equa-
tions in York’s conformal technique to solve the initial value problem. This implies that the
initial physical data for solving Einstein equations of motion only concern conformal classes
of spatial metrics, and our definition of observables of quantum gravity implies this classical
property*. It will indeed appear that the conformal factor is left invariant in the last steps of the
stochastic time evolution where it is not submitted to relevant quantum effects.

In practice, we propose that in quantum gravity observables must be reparametrization
covariant functionals of the unimodular part of the metric, that is, the physics of quantum
gravity is carried by conformal classes of metrics. This is motivated by the work of York [4],
which demonstrated the role of conformal classes of spatial metrics in the description of the
evolution in classical gravity and the observables. We show in our quantization procedure
that functionals of the unimodular part of the metric possess emblematic properties at late
stochastic time. We emphasize that defining unimodular classical gravity has been one of the
early ideas of Einstein, in view of the existence a non-vanishing cosmological constant. Papers
have investigated the notion of unimodular gravity, as e.g. [7] and enclosed references. There
are basically two standard formulation of unimodular gravity: one imposes det(guv) = 1 as
a gauge choice while the other imposes it as a constraint. Our point of view is that in a formal
perturbative treatment of quantum gravity using the Einstein action as a classical action plus
BRST invariant gauge-fixing term, one can do a BRST invariant gauge-fixing of the metrics
g with gauge functions /det(guv) — 1 and Oguv, where guov is the unimodular part of the
metrics, which gives a gauge-fixed BRST local action that defines a perturbation expansion
for the correlators of guov, while y/det(guv) = 1. In this way any given classical solution of
Einstein equations can be rewritten as a unimodular metric by an appropriate choice of coor-
dinates system. We can then extend it at the perturbative quantum level using a unimodular
propagating metric, while the conformal factor is spectator. This is compatible with the con-
clusion that we draw in this paper by studying the stochastic quantization of gravity.

#In fact, mathematicians found already in 1925 the relevance of Weyl symmetry for solving Einstein equations [6].
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We postulate the existence of the stochastic bulk, whose leaves host a Euclidean d-dimen-
sional theory. The quantum stochastic bulk correlators asymptote to the ones of classical
Euclidean gravity at infinite stochastic time. This is of course a completely different frame-
work than the classical approach of [4], where it was showed that it is the d-dimensional
Lorentz spacetime itself that can be foliated by spatial (d — 1)-dimensional leaves, and only
conformal classes of spatial metrics matter when solving the classical Einstein evolution.

It must be clear also that the theory is not conformal gravity at late stochastic time, since
the stochastic evolution is based on Einstein equations of motion, which are not Weyl covari-
ant. Having equations of motion that are not scale invariant is actually not in contradiction
with the postulate that quantum observables of quantum gravity are Weyl invariant functionals
of the metric. In fact this definition of observables does not imply that the dynamical evolution
in the stochastic bulk is Weyl invariant.

Because we propose that the gauge principle for quantum gravity observables is that of
Weyl symmetry, a BRST invariant gauge-fixing of the unphysical fields will be needed. By
using an ADM type parametrization for the stochastic bulk [7], the unphysical geometrical
fields will be identified as the conformal factor of the d-dimensional metric (in the first order
Langevin theory) and the lapse and shift functions of the (d 4 1)-dimensional stochastic bulk.
The gauge-fixing procedure will be implemented in the (d + 1)-dimensional quantum field
theory defined by stochastic quantization, namely within the context of equivariant topologi-
cal quantum field theory.

Contrarily to standard d-dimensional quantization methods, stochastic quantization pos-
sesses the ingredients to clarify under which circumstances can one get an ‘emerging’ Lorentz
time, by checking (a hard task) the possibility of an analytic continuation of the stochastic
time correlators of the unimodular metric on each Euclidean d-dimensional leaf, computed at
a finite stochastic time.

Let us stress that having an acceleration term in the stochastic time evolution equation of the
metric, heuristically motivated in [1], is a new input which in cosmological models could explain
the exit from inflation by a sharp transition and the emerging of the classical Lorentz time. Such
an acceleration tensor along the normal of each leaf has not been often used in the geometry of
foliated spaces and its investigation is quite inspiring for visualizing the dynamics of leaves.

This work makes precise the idea that there is no limit of infinite stochastic time in the
quantum phase of gravity except for iz = 0, modulo some formal perturbations for taking into
account the possibility of emitting and absorbing perturbative traceless gravitons (namely,
excitations of the unimodular part of the classical backround g,,,). Such perturbative modifi-
cations are in fact compatible with the framework of stochastic quantization. In fact, instead
of having a hypothetical d-dimensional equilibrium distribution for correlators of the metric
in the 7 = oo limit and A # 0, there are oscillations in the stochastic time because of the
acceleration term. These oscillations express the dynamics of quantum gravity. They may
sharply stop by a brutal transition toward classical gravity where, effectively, the limit at
infinite stochastic time can be reached, and the whole theory can be directly computed using
standard Euclidean QFT methods in d dimensions. The effects of quantum gravity can thus
only manifest themselves at finite stochastic time, within the framework of a (d + 1)-dimen-
sional quantum field theory, giving a specific ultra-short distance physics [1].

A non-trivial part of the program for building covariant Langevin equations of gravity
relies on the equivariant topological supersymmetry hidden in all Langevin equations [2, 8].
Indeed, in the case of stochastic quantization of a system with local symmetries, one needs
additional gauge degrees of freedom in the stochastic bulk [9, 107°.

3 In appendix , we sketch for the sake of completeness the improvements needed to define stochastic quantization of
a theory with gauge invariance and impose a gauge restoring force along its gauge orbits.
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In this paper the equivariance is with respect to Diffs; x Weyl ,(, namely the semi-direct
product of the d-dimensional diffeomorphism symmetry in each leaf and the Weyl symmetry
in the whole bulk. In fact M is asssumed to be ¥ x R and Diffy acts on ¥ and hence on M
and on the space of metrics on M. This equivalence allows a proper definition of observables,
in the same spirit of the definition of topological observables in a topological quantum field
theory. We remark that although the product structure ¥ x R of M seem to prevent topology
changes of the leaf ¥ in the T-evolution, we will postulate that the metric on M satisfies a
highly non-linear second order Langevin equation (3.1). Solutions to such equations typi-
cally develop singularities in the course of time evolution, even though the initial data are
completely smooth. Some of these singularities can be interpreted as topology changes of the
leaf ¥ in the 7-evolution. However, we will be mostly concerned with the smooth solutions
without topology change in this paper.

To achieve our program, some difficulties have to be overcome by decomposing irreducibly
all quantities under the representation of Diffs, X Weyl . This is in fact a necessary task to
get the correct covariant expression of the stochastic time acceleration of the metric. For this,
we have used the ADM decomposition, substituting basically the Lorentz time of the current
ADM formalism [7] with the stochastic time, with a different dynamics led by d-dimensional
Einstein equations of motions plus additional forces to ensure well-defined drift forces along
the gauge orbit directions. To unravel the Weyl covariance and implement the unimodular
decomposition we found the recent work of [11] extremely useful, in the spirit of [6]. More
recent works have dealt with Weyl symmetry, in a similar fashion as our here, in various dispa-
rate domains, such as scale-invariant gravity [12], holography [13] and hydrodynamics [14].

The unimodular decomposition implemented in this paper will be dictated by a change
of field variables which is pivotal to our results expressing observables as Weyl invariant
functionals. We call this method the ‘golden rule’, which allows us to decompose neatly all
geometrical quantities in function of Weyl invariant X-tensors plus terms depending on the
conformal factor. In fact, our ‘golden rule’ bears some technical and conceptual similarities
with the ‘dressing field method” used in [15].

Compared with a vast literature on quantum gravity, the novelty in our work is to postulate
that time is not a fundamental parameter to order phenomena. Rather it may (or may not)
emerge, depending on the configuration of the stochastic leaves at a given value of the sto-
chastic time. Moreover, we give a physical meaning to the so-called stochastic time. We claim
that the latter is a physical microscopic time that is an alternative to the Lorentz time, when
the latter does not exist.

Prior to establishing a rigorous connection between the Dirac observables, say in the
Wheeler—de Witt quantization, and the observables that we introduce, we point out a sub-
stantial conceptual difference between our approach and the traditional methodology. In the
former, one first defines a Euclidean quantum field theory using a more general stochastic
quantization process and ask afterward the physical interpretation of the correlators of the
metrics in each constant stochastic time leaf. In the latter, one relies on the validity at the
quantum level of the classical notions such as Dirac observables, as in [16]. Often, the pres-
entation does not resolve key problems such as constraints posed by Wheeler—de Witt or the
indefiniteness of path integrals in gravity.

In cases where the Wheeler—de Witt superspace technique does lead to well defined com-
putations in quantum gravity, we can reproduce these results by the stochastic approach
because they are obtained from a well defined 4-dimensional path integral. Some perturbative
aspects of quantum gravity enters the discussions of Dirac observables, as in [17], but they
can also be accommodated within the context of stochastic quantization, which is generally
well defined at infinite stochastic time, order by order in perturbation theory, using relevant
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cutoffs. In cases where statistical physics is described directly in term of a Boltzmann distri-
bution, Langevin-equation techniques are not needed, and the situation in Euclidean quantum
field theory is completely analogous. Notice, however, that for Dirac observables, the gauge
symmetry comes only from diffeomorphisms, but the superspace analysis could perhaps be
enriched by the use of Weyl invariance. Indeed, this invariance plays a key role in our defini-
tion of the observables, as well as in the work of York.

This article is structured as follows. Section 2 introduces the technical structure to describe
the stochastic bulk: its ADM decomposition and the speed and acceleration of the leaves.
Section 3 is devoted to the Langevin equation and its covariance on the stochastic leaves. We
then analyze various contributions from the Langevin equation, both physically and math-
ematically. To enlighten the Weyl properties of the Langevin equation, section 4 deals with
the decompositions into the traceless and trace parts of various quantities. The ‘golden rule’
described above is made explicit in section 5 to perform the unimodular decomposition of the
traceless and trace parts of the Langevin equations. Eventually, section 6 discusses the observ-
ables in the quantum stochastic bulk. There we show the presence of a residual x-independent
Weyl symmetry which is used, together with the BRST symmetry, to localize the conformal
factor. We then specialize to some relevant sub-cases of the Langevin equation. This is possi-
ble because we use a second order Langevin equation which involves a physical dimensionful
parameter AT, whose value defines the relative strength between the acceleration and viscous
effects in the second order Langevin equation.

After concluding remarks in section 7, appendix sketches a proof of the invariance of the
gauge-invariant-observables evolution under the addition of a gauge fixing restoring term in
the first order Langevin equation.

2. ADM decomposition of the stochastic bulk

To put in a geometrical framework the heuristic second order Langevin equation depicted in
[1], the language of foliation inside the stochastic bulk is most useful.

If we call x* the coordinates of classical Euclidean Einstein d-dimensional gravity with
metric g,,,,(x) and action § = [ dx,/gR(g,.,)(x) (in suitable units), the basic idea of stochas-
tic quantization is the extension

= A= (x,71),

g (x) = (8" (x.7), g7 (x), 77 (x,7)). 2.1

The aim is to define a quantum field theory in the {x, 7} space, with a flow of correlators of
the x- and 7-dependent fields, toward a certain limit when 7 — o,

To describe this geometrical system, it is appropriate to use the ADM parametrization [7]
for the pseudo-Euclidean squared length

ds* = —N?d7? + (dx* + N*dr)g,, (dx” + N”dr) (2.2)

of any given infinitesimal line element in the stochastic bulk’. In this expression N* = N’gh™
is the stochastic shift vector and N is the lapse, such that g, = —N 24N, wN#. The determi-
nant of the (d + 1)-dimensional metric is —N*g, where g = det(g,,) > 0.

% For renormalizable theories such as Yang—Mill, 7-dependent correlators flow smoothly when 7 — oo toward the
correlators of the standard path integral in d-dimensions, but in gravity the situation is different because there is no
equilibrium distribution for /& # 0 and there is no smooth limit to classical gravity.

" The signature of the total (d + 1)-dimensional metric is (—, +, -+, +).
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There is no demand for full reparametrization invariance in the total space M = {(x*,7)}.
Rather, the pseudo-Euclidean (d + 1)-dimensional bulk M is foliated by the stochastic time
7, with equal-stochastic-time Euclidean d-dimensional leaves ¥ = X(x*, 7) having internal
Euclidean metric g, (x, 7). Upper indexes u,v ... are lowered by the d-dimensional tensor
guv(x,7) in a way that preserves the reparametrization symmetry of X. The foliation using
the coordinate 7, gives an absolute meaning to 7, modulo some possible one-dimensional
reparametrization 7 — 7 = 7/(7).

For this reason, we can postulate that N* = N?ghT = N*(x) is T-independent. This con-
dition is preserved by diffeomorphisms on ¥ of the form x* — x'#(x), whose infinitesimal
transformations are represented by the Lie derivative £ ? along a 7-independent vector field
&M (x) (the operation £ ? only involves g,,,,). Note however that N, = g, is x- and T-depend-
ent, as well as N(x, 7).

This decomposition is for a different purpose from that of [7], where the Minkowski time
was used to define the foliation. Here the foliation parameter is the stochastic time. The physi-
cal meaning differs completely.

We will shortly consider Weyl covariance in our presentation: it dilates locally the metric
fields but not the coordinates x* and 7. Equation (2.2) shows that N* is Weyl invariant from
the beginning, since dx* + N*d7 must be a Weyl invariant one-form. This condition is the tip
of an iceberg, made of all Weyl transformations of fields and curvatures in M. The technology
is as in, e.g. [11], where it is actually used in the different context of standard Hamiltonian
classical gravity.

Symmetrization is defined as T(,,) = 1(Tuv + T,,,) and V, is the Levi-Civita connection
of X with Christoffel coefficients T} (8., (x, 7)) (involving no 7 derivatives). The Riemann
tensor of ¥, R“ ng(g,w), is derived from the Christoffel symbols by the standard formula,
except that g, is function of x* and 7. We will now define the speed and acceleration of ¥
along its normal vector.

2.1. Speed and acceleration of a leaf

Each leaf X in the foliation is defined at a fixed value of stochastic time 7, has internal metric
&uv(x, 7) and normal vector in the stochastic bulk N with corresponding one-form n:

1 NH
N=N'Oy=—0, — —0,, n = Nydx* = —Ndr, (2.3)
N N
where we have normalized it as NyN4 = —1.

Following e.g. [18], we can define the projector onto X as
Py =6+ N*Ng, P840 = 8u» P'sNa=0. 24

This projector allows to extend objects defined on the hypersurface to the full stochastic bulk.
The extrinsic curvature (second fundamental form) of a leaf in X represents the variation of
the internal metric along the hypersurface-orthogonal direction N. Hence

1 1
Ky = §£N 8uv = E(NAaAg;w + auNAgAu + &,NAg#A), 2.5)
which gives the explicit result

1

K, = —
KON

1
(arg;w - Naaagmx - auNagau - auNagua) = 7(67—gpw - vugu-r - vugm-)-
2N
(2.6)
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Its trace is

1
K =g"K,, = ﬁ(aT In /g — V,.N"). 2.7)
The extrinsic curvature can be extended in M using the projector P4,
Kap = P'AP"pK,0. (2.8)
One can verify
KTT = NNNVKM/’ KT;L = NaKOéIL = NaKl“l = KI“" (29)

It is convenient to define the N-independent stochastic speed D.g,, of a leaf along its
normal as

D‘rg/,u/ = 2NK[I4V = ‘rgp,u - vp,gu‘r - vygpfr (210)

and introduce the rate of evolution of this speed, which we call the acceleration 7y, of the leaf
along its normal N

Yo = N£N(D'rgw/) = (87' - Naaa)D‘rguV - 2D‘rga(,u8u)Na- 2.11)

The acceleration 7,,,, is the specific part of the (d + 1)-dimensional Riemann tensor Rscp
that is covariant in the leaf at constant 7 and contains the term 872. &uv but no derivative of the
lapse function N.

Both the speed D;g,,,, and acceleration 7,,,, are covariant tensors in the leaf with respect to
diffeomorphisms with 7-independent parameters £ (x). Moreover N and N* are respectively
a scalar and a vector for such diffeomorphisms, denoted from now on as Diffs.

Let us stress again that both Drg,,, and 7y, are constructed to be independent on N. This
plays an important role for understanding the stochastic evolution of the leaves.

3. The leaf-covariant Langevin equation

The necessity of an acceleration term in the stochastic evolution of the metric g, (x, 7) was
suggested in [1] on the basis of physical arguments, so that the Langevin equation equates to
a combination of a drift force proportional to Einstein equations of motion, a viscous force
containing 0- g, and a noise 7),,,, multiplied by the square root of the Planck constant VR In
fact [1], discusses the consequences for primordial cosmology and the short distance behavior
of particles of such a second order Langevin equation for the stochastic quantization of grav-
ity. We will make this equation Diffs-covariant.

Beyond specific arguments for Gravity, one may generically justify the need of a stochastic
acceleration term as follows: in the stochastic evolution of a massive particle with drift force
U’(x), the Langevin theory considers Newton laws of mechanics for a large number of par-
ticles with this conserved drift force plus some uncertainties and loss of information on the
details of the evolution. The original Langevin equation was actually a second order one

mx = —U'(x) — ax + (.

It is often a hard task to prove that one can neglect the ‘inertial’ term mx, getting the simpli-
fied Langevin equation

ax = —U'(x) + B,

where 3 can be eventually related to the statistical temperature of the system. One must prove
case by case that the acceleration term can be neglected when approaching an equilibrium.

7
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The existence of an equilibrium itself must be demonstrated, depending on the chosen poten-
tial U. The possibility of a phase transition is a delicate question. Appendix sketches how to
generalize the Langevin equation when there is gauge symmetry, by defining at the same time
both the stochastic evolution of gauge degrees of freedom and their stochastic gauge-fixing.

For the stochastic quantization of gravity it was suggested in [1] that the acceleration term
of the Langevin equation is essential and cannot be neglected since one cannot softly approach
the limit 7 — oo because otherwise there would be a Euclidean equilibrium distribution in
quantum gravity, which is not the case.

We must address the geometric aspects of the second-order Langevin equation of gravity
by giving a leaf-covariant formulation of it, with the understanding that the leaf is the analog
of a particle with internal structure g,,,, and trajectory parametrized by 7. The Diffs-covari-
ance of the stochastic process will be obtained by giving a central role to the leaf-tensors
D g, and me

For this purpose, we postulate that the second-order Langevin equation is

08

AT’YMV = —NGHVPUK
po

_DTg,uv +2Ng/u/ + \/ﬁnm/a 3.1
where AT is the dimensionful constant introduced in [1].

The X-tensor G0 is a function of g, that will be defined in equation (4.1), while
NG p0(8ap)is a kernel that factors Einstein equations of motion. A discussion of its decom-
position in trace and traceless parts will shortly follow.

In order to get a scalar in each leaf with the right conformal weight, the factor N must be
equal to

N = aN,N" + BN?, (3.2)

where o and /3 are numbers. To have an equilibrium distribution at 7 = oo independent of the
choice of the kernel N G po, the noise distribution is related to the kernel in the following

way®

1 — —l o
(Flal )" = [l Flid ex0 [ 5 [ astr Bnaph =t 67100,
(3.3)
We will use later the freedom in the choice of the coefficients o and 8 and choose

a=1, B=0 (3.4)

that will facilitate examining the properties of the stochastic process for observables which we
will define by demanding Weyl invariance.

The principle of stochastic quantization is that correlation functions of the noise are defined
as an input [2], given by (3.3). Correlation functions of the fields are then computable at all
possible values of the stochastic time 7 because g,,, = g, (1) is @ composite function of 7
if 7o solves the Langevin equation (3.1) with suitable initial conditions.

Indeed, with suitable initial conditions at an arbitrarily chosen initial value of the sto-
chastic time, the differential equation (3.1) determines g, (x, 7) as a function g, [Nag(x, 7)]
of the noise 7, (x, 7). Notice that for 7 = 0, the Langevin equation is nothing but a flow
equation toward the solutions of classical equations of motion, in which case the correlations
functions are just exactly centered on the solution of the flow equation. Since all correlation

8 The theorem about the kernel independence property for observables, and thus of the arbitrariness of the param-
eters needed in its expression, is a general property [2], and can be proven e.g. by transforming the Langevin equa-
tion in a Fokker—Planck equation. See appendix.
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functions of the noise 7,,,, (x, 7) are computable by equation (3.3) after inserting the solution
of the Langevin equation in any given functional O[g,, ], if one substitutes the correlation
functions O[g,.,,|(1)(x, 7) in place of F in equation (3.3), one gets

<< O[guu} >>T = /[dmw] O[g,“, (77)] €Xp [_ % /ddxdT\/gnocﬂ N_I(G_l)aﬁpanpff}' (3.5)

Each term in the Langevin equation (3.1) has a natural interpretation as follows. We will be
especially concerned with their covariance.

The speed Drg,, of (2, g,w) is the completion of the viscous force 9-g,, by the term
2V (,Ny). The Lie derivative in M, as it is written in (2.5), is a full stochastic bulk operation.
However, one can define an intrinsic Lie derivative in X, £ ?(x)gm, = ZV( ng), with a param-
eter equal to the X-vector £*(x). The term 2V, g,,), contained in D g,,,, enforces a drift force
with parameter N* = N?gHT along the orbits of Diffy; in the space of metrics g,,,. It repro-
duces an infinitesimal action of Diffs; within X on the space of metrics g,,,, with a parameter
N*, which expresses the non-triviality of the foliation. Thus, in the leaf’s speed (2.10) of the
quantum field stochastic evolution, the term 2V, N, provides a gauge restoring force along
the gauge orbits of diffeomorphisms for observables that are non-reparametrization invariant
(as depending on unphysical longitudinal degrees of freedom, which manifest themselves
anyway in virtual processes).

The term 2Ng,,, reproduces a Weyl rescaling of the metric with a parameter equal to the
lapse N. This gauge restoring force is needed for extracting Weyl dependent observables, and
the choice of N will not affect the evolution of Weyl-invariant ones.

The lapse N and shift vector N* are thus fields that play the role of parameters for gauge-
fixing restoring forces for unphysical degrees of freedom in the Langevin stochastic evolution
along orbits of the gauge symmetry Diffs, x Weyl .

In fact, N* and N are the gravitational analogue of the additional gauge field component A,
in the stochastic quantization of a gauge field A,,, which gives a gauge fixing restoring force
along the orbits of Yang—Mills transformations and defines the Yang—Mills Parisi-Wu equa-
tion in the complete space of gauge field configurations [9, 10, 19]. The choices of N* and
N do not influence the 7 = oo limit of the correlation functions of physical observables’. So,
following the general strategy of [9, 10], we will perform functional integration over N(x, 7)
and N*(x) in the supersymmetric formulation of the Langevin equation, followed by some
BRST gauge-fixing on N*1°,

The way to obtain a supersymmetric representation of correlators ({ O[g,..] )™, where the
noise have been integrated out, is standard, as originally stated in [2] and [8]. Formally, it
relies on determinant identities and the argument can be made systematic in the context of
topological quantum field theory, by imposing in (3.5) the Langevin equation (3.1) relating
N and g, in a (stochastic) equivariant BRST invariant way. This transforms (3.5) into a
supersymmetric path integral involving an equivariant Q supersymmetry acting on the field
g, and its topological ghosts ¥, and ¥ ,,,,. One gets a (d + 1)-dimensional TQFT path int-
egral whose fields variables are g,,,,, ¥, and @W with a Q-exact action that localizes the path
integral to the solution of the Langevin equation (3.1) [9, 10]. The link between the Langevin
equation and its supersymmetric representation explains the choice that physical observables

% Appendix sketches a general proof that the first order stochastic evolution of gauge invariant observables is not
affected by additional gauge-fixing restoring terms in the Langevin equation. Any given choice of vector field N
gives the same evolution for an observable that is reparametrization invariant.

10 The Weyl gauge restoring force term 2Ng,,, in the Langevin equation (3.1) was not discussed in [1]. We now
understand that such a Weyl symmetry restoring force is necessary in view of correctly defining observables.

9
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should be the restricted set of functionals (( O[g,,,] )", where &, is the unimodular part of
&uv to be introduced shortly.

4. Irreducible decomposition of the Langevin equation and its kernel

We will irreducibly decompose each term of the Langevin equation (3.1) in its traceless and
trace parts, term by term. We need also to discuss the positivity of the noise distribution, which
is fundamental to guarantee convergence.

The presence of the kernel NG, in front of Einstein equations of motion in (3.1) is
necessary. Indeed, one must lower the indexes of the equations of motion appearing in the
Langevin equation to get a covariant equation. Since NG, is a function of g, N* and
N, the noise of (3.1) is currently named a multiplicative noise in the language of statistical
mechanics [20].

The expression of the kernel reflects the gauge symmetry of the theory and the tensor
Guvpo 1s fixed by requiring Diffys-covariance. It is symmetric in pv and po, so its general
form is

1
Guupa(x7 7_) = E(g,upgya + g/_mgup) - Ag/.u/gpcn 4.1)
where A is a dimensionless constant. This tensor is nothing but a Wheeler—DeWitt metric [21]
d(d+1)

over the space of metrics g, of any given leaf in a linear space with dimension . In our

2
case, we are free to choose the value of A, since we have the kernel-independence theorem
for the equilibrium distribution, valid for all kernels that give a well-defined evolution. This is
in contrast to what happens in the different context when one uses a Wheeler—DeWitt metric
and the ADM formalism to tentatively quantize gravity in the temporal gauge. In this other
situation, one gets a fixed value of the parameter A by a decomposition in d — 1 dimensions of
d-dimensional Einstein gravity, which implies the damaging occurrence of a pseudo-Euclid-
ean metric over the space of (d — 1)-dimensional spatial metrics. In our case, the question is
different, and for defining the stochastic quantization of Euclidean gravity, we can use any
value of A that ensures the positivity of the noise distribution.

The choice of the parameter A actually controls the Euclidean or pseudo-Euclidean signa-
ture of the kernel (4.1) through the sign of 1 — A\d.

Indeed the $d(d + 1) eigenvalues of G, are

(1 =X, 1,1,...,1). 4.2)
The positivity of G, is thus warranted if one chooses the parameter A to satisfy
1
A< 4.3
p (4.3)

Notice that also N is guaranteed to be positive with our choice (3.4).
For a more transparent discussion of the positivity of the noise weight, one can decompose
Gvpo in traceless and trace parts. Since g1 g?° Gupo = d(1 — d\) one has

1 —dX

Gut/po = GZVPU + Tguugpoy (44)
with the traceless part
, 1 1
G;wpa = 7(g,upgm7 + guagup) — 5 8uv8po- (4.5)

2 d
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Denoting 7 = gH"'n,,,,, the noise 7),,,, splits in traceless and trace parts:
T 1
M = My + 8y 1- (4.6)

Defining the inverse G~' by (G™')***?Gysap = 8{, 0%, one has

|
(G107 = S (""" + 8"78"") +

Thus the definition of noise distribution (3.3) is

T dg‘“’g”". 4.7

(Fls))" = [ ianlanty) Finals] exp [~ [ aaar NE (™ + )]
(4.8)
This verifies that the Gaussian distribution has a positive definite weight under the already
spelled condition (4.3).
The gravity classical drift-force in the Langevin equation (3.1) is the multiplication of the
Einstein tensor

oS 1
Ef° = —— =RP? — —Rg"°
08 po 28 4.9)
by the positive kernel N'G,,,p0. Its decomposition into the traceless and trace parts is
, (1-d)@2—d)
NGul/pa'Ep = NElT“/ + Tguy NR, (410)

where E,Tw =R, — éRgW is indeed traceless.
Analogously, the stochastic speed decomposes into the traceless and trace parts as

2
D;gu = DZgW + EgWDTln V8

4.11)
where we defined
— — 1
D;In\/g =0-In/g — V,N¥, (4.12)
T _ 2
Drguw = 0-8 — 2V (N, — ngDrln V8. (4.13)
The stochastic acceleration 7,,,, decomposes as
— AT 1
Vv =V T V8w (4.14)
where the trace and traceless parts are
Y= ng,-yHV =g""(0r - Naaa)D’rg/w —28"" D780 0,N, (4.15)
1
yiy = (0r —N%04)Drguv — 2D; 800N — Eglw'y. (4.16)

By projecting onto the trace and traceless parts, we have finally decomposed the Langevin
equation (3.1) in irreducible representations with respect to the internal diffeomorphism sym-
metry of the leaves:

AT7+2DTln\/§:f%[(lfd)\)(Zfd)R+2dN+\/ﬁn, (4.17)

1
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AT~ + Dlg., = —NEL, +Vhnl,. (4.18)

These irreducible decompositions play a central role in our analysis of the Langevin equation.
We can already observe that there is no dependence on derivatives of the lapse function N.

5. Weyl transformation and unimodular decomposition

We just achieved the decomposition of the Langevin equation in irreducible traceless and trace
parts.

We now go a step further, by expressing these equations in function of the unimodular part
of the metric, the conformal factor and all other rescaled Weyl-invariant fields.

The change of field variables that extracts explicitly their Weyl weight will illuminate some
properties of the Langevin equation of gravity. In particular, it will allow us to decompose
neatly the algebraic dependence on N, with additional linear terms to the preexisting one in
the gauge restoring force 2Ng,,,. Using scale invariant fields turns out to be useful to define
gravity observables and reveal their Ward identities.

A Weyl transformation of the metric is defined by

ds? — Qs>  or  gap — Q%gus, (5.1

where the Weyl factor Q(x, 7) is a function of all the coordinates. Weyl transformations do
not act on the coordinates but form a gauge symmetry. There is no practical need to introduce
a Weyl gauge field for our purpose, although it would make sense mathematically to do so.

The way ds? transforms implies the following Weyl transformation laws of all metric field
components of the (d + 1)-dimensional ADM parametrization (2.2):

N QN, g = Vgu.,  N*— NF, Ve Q4 /s (5.2)
The infinitesimal version of Weyl transformations, d,,, with w the infinitesimal abelian param-
eter, is

1
0wN = wN, 0w8uv = 2W8 ouNF =0 6‘“& log /g = w. (5.3)

To extract Weyl-independent components in all fields, we use the decomposition of the metric

- . ~ 1
gy in its unimodular part g,,,, and conformal factor a = /g7'".

The field ¢ = loga is in fact convenient to express the conformal factor dependence. One
has

S = (\/g)_%gm,, a= (\/g)ﬁ =expo 5.4
and hence
5w§uu =0, 6w¢ = w. (5.5)

As already stated, the shift vector N is Weyl invariant from the beginning.
The ADM fields of the (d + 1)-dimensional space—except ¢—can be transformed into
Weyl-invariant fields by appropriate rescaling:

Nt =N*, N=a'N, Suv = a_zgl“,, g = a’g. (5.6)
Twe checked that the unimodular decomposition of all curvature tensors agree with [11]. Notice however that our
definition of K differs from the one in [11], due to our ‘golden rule’.

12
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All the curvatures and Lie derivatives involved in the Langevin equation of gravity can be re-
expressed using these fields. Modulo a rescaling factor, they are made of terms involving only
the hat fields and of other terms involving derivatives of ¢.

In what follows, every time an index p is raised or lowered on a hatted quantity, using the
unimodular part of the metric, one gains a factor of a® or a2 respectively (e.g. N, = a~2N,,).
To perform the unimodular decomposition of the Langevin trace and traceless equations, one
must proceed by successive steps. Hatted quantities are defined by applying the following
‘golden rule’: for any given tensor W, W is defined from W replacing all fields by their hat
rescaled ones. In particular, since ¢ = loga = le log /g, one has (;3 = % log /g = 0 because
8, has unit determinant. In general, the application of this rule guarantees the Weyl-invariance
of the hatted quantities, since they are built out of Weyl-invariant objects only.

A useful observation is that the Christoffel symbols decompose as I'), = f‘{fp + X4, (6],
with

~ 1, . R R
Flljp = igua(augap + apgau - 6agup)s 5.7

20, =0,00046,0,0 — 8"8,p0a0. (5.8)

Let us start with the unimodular decomposition of the various terms in (4.17) and (4.18).
Consider first the Ricci tensor and curvature scalar of g,,,. One has

R;w = IAe,uV - (d - z)ﬁuauqs - guu@agaﬁaﬁgb + (d - 2)8p¢8u¢ - (d - z)g;waagbgaﬁaﬁqsis 9)

R = gu R = exp(~26) (R = 2(d = 18" (V06 + %aﬂwm)).
(5.10)
From now on, the ‘hat X-covariant derivative’ V u is defined as V, with the Christoffel sym-
bols I, replacedAby f‘y‘p. Likewise k,w and R are obtained just like R, and R but using the
hatted quantities F,‘,‘p and g,,,. Defining Egy = IAQW — éiegu,,, one has

1 d—2

Epy = Ry = ~8uR — (d = 2)(V,,006 = 0,60,0) + — 8w (Vadsd — 0u6050),
=El, — (d—2)(Vu0,0 — 0,00,9)". (5.11)
The scalar factor A/ decomposes as
N =exp(2¢) N (5.12)
The trace of the stochastic speed is
D,In\/g = d(3; — N"d,)p — V,N" = dd, ¢ — V ,N", (5.13)

where V,,N* = 8, N* because g, is unimodular and
dr = 0, — N"9,. (5.14)
The traceless part of the stochastic speed is
. o s 2. & e AT
DTg,, = exp(20) (aTgW — 2V, + S8 Vol ) = exp(20)D7 g

(5.15)
One has thus the following decomposition:
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D‘rgp,l/ = eXP(2¢) (brg;u/ + Zguuér(b) . (516)

The first term in the right hand side of this equation is an example of the golden rule, with
ng;u/ = a‘rguu _Zﬁ(uﬁy)' (517)
Notice in particular that, while the trace term is not Weyl covariant due to the ¢ dependence,
the traceless part is Weyl covariant. Stated differently, a Weyl transformation affects only the
trace of the stochastic speed.

Consider now the acceleration 7, as it is defined in (2.11). Its unimodular decomposition
is

Y = exp(26) (G + 2800026 + 48, (0:0)* + 4D 8, 0:0).  (5.18)
Here again the golden rule is at work:

A = 0-Dr gy — 2D 8o (u00)N°. (5.19)
Consequently the trace part is

N =4+ 2dD2 ¢ + 4d(D- ¢)* — 809V N*, (5.20)

and the traceless part is
T =& (%fu + 4<§T¢i)f§uy), (5.21)

where ngw, is defined in (5.15). Notice that 4 and fAlew, which (in our knowledge) are yet
unknown quantities in the literature, are also given by the golden rule.
One must also decompose using unimodular variables the noise, for which we require

M = €PN 1 =000, 1 =1 (5.22)

Putting everything together, one gets the following expression for the traceless part of the
second order Langevin equation (4.18):
AT(@ZV n 457¢D5g,w) + D 2y = —N (BT, — (d = 2)(V,u0,6 — 0,60,8)") + VAil,.
(5.23)
As a result of our choice for the kernel, this equation is homogeneous in ¢ with an overall
linear dependence on N,
The trace part of (4.18) is:

AT (3 + 2dB2 ¢ + 4d(8,0)? — 80,V ,N") + 2(dDr¢p — V. N™)

= %/(1 —d)\)(d—2) (ie —2(d - 1)g"" (V0,0 + %amam)) + 2d exp(¢)N + V).

(5.24)

In d = 2 the traceless part does not depend on ¢, and so are the observables we are looking
for. In this case the use of the unimodular part g,,,, amounts to that of the Beltrami differential.
See the comment just below.

For d > 2, the traceless parts depends on ¢, but it is homogeneous, a property that we shall
shortly interpret.

For completion, by using the unimodular parametrization of the noise, one gets the noise
distribution in the following form:
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(Fli) )™ = [ 0li0af,) Fliifu) exp [~ 5 [ atxarexp(-2000 (ki + )]
(5.25)

The result of [4] that the classical evolution is determined by the conformal classes of met-
ric g,,,, suggests that we may consider g,, and ¢ as the independent field variables of gravity,
where only g,,,, is physical. If correct, and we will show it in the first order Langevin theory,
this would mean that the stochastic time evolution of the conformal factor is basically irrel-
evant for physical observables, which we claim being Weyl invariant.

We remark that defining observables as only depending on the unimodular part of g,,,, ensures
from the beginning that the physical quantum graviton, seen as an excitation of g,,,,, must be
traceless and symmetric. This traceless property is obvious in classical and semi-classical grav-
ity, but it must rely on some symmetry principle in any given attempt of defining quantum grav-
ity. Our definition of quantum observables is compatible with the classical property.

What has been done above for d > 2 is quite a striking generalization of the case d = 2
[22], where one can use efficiently the Beltrami differential ¢ = p%; as the only fundamen-

tal field variable of the 2-dimensional metric, with g,, = ﬁ (lﬁ ’f) Despite of the fact
that in 2 dimensions g,,, does not propagate but intervenes only through its constant moduli,
the (complex) Beltrami 1-form dz + pdz is actually the physical field in 2-dimensional grav-
ity because the conformal factor is decoupled, and possibly substituted with an additional
Liouville field in non critical dimensions. If needed, the latter is seen as a Wess—Zumino field
within the context of a conformal theory, for one has to compensate the conformal anomaly
[3, 22]. For d > 2, one has of course the very non-trivial propagation of g,,,, in contrast to the
case d = 2, but, nonetheless, the definition of observables is analogous.

6. Observables

From now on we will focus on the choice that N satisfies (3.4), i.e.
N = N®N,,. 6.1)

This will allow us solve algebraically for N in the regime AT = 0 and obtain a consistent def-
inition of the expectation value of observables O[g,,,/] so that it depends only on the unimodu-
lar part of the metric. The analysis is simpler when AT = 0, a situation that we now detail.

6.1 AT=0

Consider the Langevin equations (5.23) and (5.24) with AT = 0. In the supersymmetric form-
ulation, the path integral of correlators of the unimodular part of the metric is

(Ol = [ aNIaN)d8,,)106) Olg) exp [ - [ ataar SP20)
1
1-Xd

(10785 + NN (ED, ~ (d = 2)(V 1056 — 8,60,0)")|* + (@8- — Von%)-
A
2

(1—dA\)(d—2) (ie —2(d - 1)(VP050 + L;za%aﬂqs)) - 2dexp(d))NH2 + susy terms)].
(6.2)
We have only made explicit the bosonic part of the (d 4 1)-dimensional action. The part
susy terms contains fermionic terms that form a fermionic path integral that takes care of the
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Jacobian of the map between the fields and the noise, which ensures the stochastic supersym-
metry. See e.g. [8—10] for details'?. There is no need here to make these terms explicit.

Because O[g,,,,] is Weyl invariant, this path integral is invariant under the Weyl transforma-
tion defined in (5.6), but it depends on the parameter 7, as readily seen in (6.2).

This x-independent Weyl symmetry of the path integral representation of observables
{Olguw] )7 is nothing but a dilatation of the lapse function N by the same factor every-
where in any given leaf. It is a symmetry under any reparametrization of the stochastic time
7 — 7/(7), which is a sophisticated generalization of the worldline reparametrization invari-
ance of the relativistic particle theory.

The invariance of the path integral (6.2) can be indeed explained by a BRST symmetry
operation s using an abelian anticommuting ghost w(7), which completes the anticommuting
vector ghost £#(x) accounting for diffeomorphisms in each leaf. The operator s acts on all
fields as a nilpotent graded differential operation with

ng/ = i?g/u/
=
s = fg ¢ +w(r)

SN* = ££N" = €7 0,N" — NV 0,,¢". (6.3)
The condition s> = 0 on &, and ¢ implies the following transformations of the ghosts
s (x) = £"0,€",

sw(T) = 0. (6.4)
The s invariance of the action is achieved provided N transforms as

sN = s(exp(—qS)(éTgb - éﬁﬂﬁlﬁ) _ exp(=¢)N"No

4d
(1—d\)(d—2) (ie —2(d = 1) (VP00 + %a%aw))), (6.5)

Since sN is an s-exact expression of g,,,,, N H ¢, &* and w and since s2 = 0 on these fields, one
has eventually s2N = 0 on all fields. We will shortly eliminate N by its equation of motion, so
there is no need to write sN explicitly.

Using the x-independent Weyl invariance and the BRST symmetry we just defined, one can
localize ¢ in an s-invariant way to the gauge choice

P(x, 7) = ¢(x) = Py (6.6)

We thus reach the conclusion that the conformal factor is a spectator in the stochastic evo-
lution of observables, which is just given by some initial condition. More precisely, we found
that, for observables ({ O[g,.,] ))7, we can use a conformal factor ¢,y that is independent of 7
in a BRST invariant way. Therefore in the 7 evolution it remains equal to some arbitrarily cho-
sen initial data ¢,y which is thus a stochastic time independent background for the evolution

12 The total action, including fermionic terms, is Q exact under the topological stochastic BRST operator

0% = \il,w + £§g,w, Q&H = —PH 4 £V, &M, Q<i>" = £Y0, P — V9, &, following the same pattern as the
stochastic quantization of the Yang—Mills case. The details of the by-now standard method is not worth being dis-
played here, since we only want to come back to the Langevin equation after the decoupling of the conformal factor
by a consistent gauge-fixing. In fact this decoupling preserves Q symmetry, so that we can go back to the Langevin
equation after showing how it works in the bosonic sector only.
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of observables. In the classical limit, which is the only possible limit when 7 = 0o, it becomes
the standard conformal factor in general relativity.

Notice furthermore that N has a 7 evolution that is basically governed by the internal and
external conformal scalar curvatures of the leaf R(,., (x,7)) and K (&, (x, 7)), according to
its equation of motion
N = exp(-0)(@6 — a8~ FLEDN Ny g3y 2)(R—2d ~ 1)(FP 050 + L 20%000) ).

(6.7)

For unphysical correlators, which are ¢ dependent, one can also proceed to the elimination
of N, but one obtains a path integral that is not s-invariant: ¢ is no more a spectator and has
a T-evolution.

After the elimination of the lapse function N by its algebraic equation of motion, the path
integral (6.2) reads (skipping the ghost term dependence that ensures Weyl BRST invariance)

TGXP( %¢{x})

(Ol ) = [1887)(08,0 )06 10) O] exp [~ o [ atuar 2

(1D 2ps + N*Na(E}, — (d = 2)(Vp0s sy — Doy O biay) )| + susy termS)]~ (6.8)

This is eventually the genuine path integral definition for physical observables.

Because one functionally integrates over all possible N“(x), and because the action is
invariant under diffeomorphisms in each leaf, one must do a BRST invariant gauge fixing on
N (x) to get a propagation with no zero modes in g,,,. Indeed, exploiting the reparametriza-
tion invariance of the observables and the action, we can use for example the gauge fixing
choice N*(x) = 8,&""(x, 7). This gauge fixing is a good candidate for fixing the internal
reparametrization gauge in (6.8), as can be seen for instance by doing an expansion of g,
around a classical background with a small excitation. To regularize potential singularities
in space of g, (x, 70), one may in fact add to the gauge fixing function a nowhere vanishing
constant vector n* chosen in the initial leaf, that is,

NH(x) = 8,8 (x,70) + n*. (6.9)

Having obtained (6.8) and defined the gauge choice (6.9), we can come back to the Langevin
equation and eliminate the susy ferms by doing the usual change of variables that connects the
Langevin equation to its supersymmetric representation. This equation, which only depends
on a transverse noise has the form

Dlgps = ~NNa(Ep, — (d = 2)(V 05015y = 01y 0o diy)” + VI,
(6.10)
with a positive g,,,-Gaussian-norm for the noise nﬁy. In (6.10), the 7-Weyl symmetry is mani-
fest and ¢,y is just a spectator. It could be called the Parisi-Wu equation of gravity. The
regime with AT = 0 should hold near the end of the transition where gravity becomes clas-
sical. The Langevin equation (6.10) could have been postulated from the beginning, for it is a
consistent equation, if one postulates the 7-Weyl symmetry of observables. Nonetheless, it is
a rewarding fact that it has been extracted from the geometrical equation (3.1), involving all
ingredient of the foliated (d + 1)-dimensional space.
A non-trivial and interesting feature that has been developed in this section is that for
computing physical observables, one can fix the lapse and shift of the foliation (6.5) and (6.9)
in function of ¢,y and g, (x,70). The conformal factor b1y = ¢(x, 7o) is a spectator in the
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stochastic process, fixed by its initial condition. In contrast, the lapse N(x,7) has a T-evo-
lution, determined by both the extrinsic and intrinsic scalar curvatures of each leaf.

6.2. AT #£0

This situation has a profound difference with respect to the previous one, and it is the one
that was heuristically predicted in [1], because of the acceleration term that provides oscil-
lations of functions of 7, at a scale of AT, giving creations and annihilation of quanta in the
(d + 1)-dimensional theory.

Indeed, in the acceleration term of the traceless part of the Langevin equation, there is a
term proportional to 9, ¢:

pve
6.11)

The additional term AT(?ylV + 457¢I§Z§MV) brings new insightful physics. Two main
regimes can be distinguished.

AT (3%, + 49, 0D 8 ) + Digus = —N(Ef, = (d = (V006 — 0,00,6)") + V]

1. The regime 4%, > 49, ¢D”3,,. In this case, ¢ is still non dynamical, as it is for the
first order equation. Consequently it can be gauge fixed again as in (6.6). This scenario,
although technically harder and conceptually different due to the second order term, can
be treated using the same analysis as for AT = 0. That is, one can solve algebraically
the trace part for N, inject the result in the traceless part and gauge fix ¢. The result is
a traceless second-order Langevin equation for g,,. Notice however that there are oscil-
lations here due to the second order term, such that an equilibrium distribution is not
reachable. This indicates that this regime is probing deeper in the stochastic bulk, but it
is an intermediate step in the stochastic evolution, because the conformal factor is still
non-dynamical. Mathematically this is encoded in the fact that, although the leaves are
oscillating, the conformal factor is dictated by its initial value. To further analyze this
case, we report explicitly its traceless Langevin equation in the simplified situation where
N®and ¢y, are constant:

- = . n~ [~ lAA R
AT(aig;w)T + a'rg;w = _N(R,uu - gRg;w> + \/ﬁn;{u (612)

This situation is thus a typical second order Langevin theory [1], but for the unimodular
part of the metric.

2. The regime 47, < 40,¢D’3,,,. This means that, deep in the stochastic bulk, the Weyl
part of the symmetry (6.3), allowing to set (6.6), is lost. Therefore the stochastic tem-
poral evolution of the unimodular part of the metric is influenced by the evolution of the
conformal factor, which is no more a spectator. We must thus compute the evolution of
observables doing the path integral over the field ¢ (x, 7) as well. This is a non-trivial task,
although it is a well-defined problem. The idea is the following: the stochastic evolution
starts with some initial configuration at a fixed stochastic time 79 in the bulk. Stochastic
second order quantum effects make the temporal evolution of g, (70,x) and ¢(7p,x)
rapidly oscillate. At a late time, an abrupt transition brings the full Langevin equation to
the first order one. There, the evolution of g, does not depend on the one of ¢, and
we retrieve the physics discussed in the AT = 0 case, with a well-defined equilibrium
distribution at late stochastic time. The simplified case with N® and ¢y,, constant now
reads
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Dr 8 (1 + AT, ¢) = —J\“/(ie,w - éiegw) +Vhil,. (6.13)
It is clear that, as long as AT # 0, there is a coupling between the evolution of g,
and ¢. In other words, the stochastic evolution is not unimodular in the deep bulk. Here
observables are therefore functionals of ¢ and the discussions of the previous section are
no longer applicable. This regime constitutes an appealing direction of investigation, with
its complete understanding yet to unravel.

In both cases, one must separates the regime where the acceleration term dominates the
friction and vice-versa. In the former the theory is dominated by oscillations, where there
cannot be an equilibrium, i.e. the theory remains (d + 1)-dimensional with no possibility of
defining a Lorentz time in each leaf. See [1] for some heuristic description of the resulting
physics for AT # 0. The latter is instead the situation treated in the previous section, where it
is certain that an equilibrium solution at late time exists. This regime can stop when there is a
fluctuation where effectively gravity becomes classical, so one can neglect the noise because
it is factorized by /%, in which case one quickly reaches the equilibrium at large values of 7,
such that the theory can be computed in the bulk, with the possibility of using a Lorentz time,
just by solving classical equations of motion. This, in its cosmological application, means that
we passed the phase transition marked by the inflation.

7. Conclusion

In the series of work [4] it was clearly mentioned that what matters when solving the classical
Einstein equations of motion is the propagation of conformal classes of spatial metrics. In fact
the issue of giving a role to Weyl symmetry for the Einstein theory can be traced back to a time
as remote as 1925 [6]. In order to be consistent with the well-established property that the equa-
tions of motion of classical gravity make no relevant difference between metrics in the confor-
mal class, although the gravity action is not Weyl invariant, we raised as a principle the definition
of quantum gravity observables of the metrics as covariant functionals of their unimodular parts.

In fact, beyond technical difficulties, the definition of the observables of a theory is a notion
that goes prior to the choice of the method that one chooses to quantize a classical theory. So,
we pointed out that the gauge symmetry that determines the observables of gravity is generally
Weyl invariance.

To render this explicit, we proposed to use stochastic quantization for defining quantum
gravity, a feature that we originally introduced with the motivation that it allows to bypass the
question of the impossibility of defining the Lorentz time when quantum gravity is switched
on. We have proposed a seemingly consistent way to define the observables of Euclidean
quantum gravity.

We have shown that the various properties of stochastic quantization define a process
where Weyl symmetry is maintained for physical observables along their propagation in sto-
chastic time. The theory predicts the stochastic lapse and shift being determined as a function
of initial conditions. Ward identities imply that the conformal factor is physically irrelevant
in quantum gravity, at least at late stochastic time. Specifically, this holds for the first order
Langevin equation and the second order in the regime where the g,,,, fluctuations are greater
than 0. ¢. We found also another second order regime, opposite to the one just depicted, where
Weyl symmetry is absent due to temporal evolution of ¢. This scenario is not treatable with the
analysis of this paper. It deserves further study.
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The physical irrelevance of the conformal factor in first order stochastic quantum gravity
is an unexpected and pleasant generalization of the soluble case of two dimensions. We now
believe that Weyl invariance should be postulated as the gauge symmetry principle of gravity
in general. On the other hand reparametrization invariance is an internal freedom of the theory
encoding the fact that one can choose mathematically any (consistent) set of coordinates in
each leaf of a foliation of the (d 4 1)-dimensional space {x, 7}, determined by the stochastic
time evolution.

One cannot exclude the possibility that a conformal anomaly can occur. If it is the case,
there will be no conceptual difficulty to establish the conformal invariance of quantum gravity
by introducing a Wess—Zumino field, following basically the same pattern as [3], where the
Liouville field for non-critical strings in the case d = 2 was introduced.

We conclude with a remark concerning the geometrical setup of this work. Having a
d-dimensional theory connected to a (d + 1)-dimensional one is a feature shared by many
modern constructions. For instance this happens in holography, where one defines a gravita-
tional theory in d 4 1 dimensions which is related to a d-dimensional matter theory living on
its boundary. Although here we use an extra dimension to discuss the stochastic enhancement
of the boundary theory, we have a stochastic flow analogous to a holographic RG flow.

Appendix. On the gauge fixing restoring forces

In this appendix we sketch a proof that for the first order Langevin equation additional gauge
fixing restoring terms do not modify the evolution of gauge invariant observables, as it was
introduced for the Yang—Mills theory in [19].

Consider the generalization of the first order Langevin equation ag = —U’(g) + Sn when
we have a quantum field theory with a gauge symmetry. Replace ¢ by a ¢(x,7) and U(q)
by its action I[¢]. Let §8"¥°(x, 7) be the gauge transformation of ¢ with a local parameter €.
The gauge invariance of the action means 08" =°(I) = 0 and a gauge invariant observable is a
functional Og_; with

0061

/ Arde 05 (o, 7)) 52 =

The generalization of the Langevin equation with a kernel K and a gauge restoring force along
the orbits of the gauge transformation depending on an arbitrarily chosen functional v(y) is

890 _ ol gauge
2 - K(&p + o (ga)) t, (A2)

with the probability distribution for the noise

(A.1)

(Fnx ) = [nler Flntso ) exp [~ [ arantea )& o).
(A3)
The products by K of f—; and 65""%°(¢p) are respectively drift forces along the physical excita-
tions of ¢ and unphysical gauge excitations of ¢, respectively. 65" ¢ (¢) can be called a sto-
chastic gauge fixing force with field parameter v.
Equation (A.2) implies a Fokker—Planck equation that computes equal-stochastic-time cor-
relators, with

(Olp(x. )] )7 = / [dgly P(3,7) Ol (Ad)
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and

OP’(p, T ) ) ol
T foipky g rreren. s

If v is a local function of ¢, the equilibrium distribution is defined when 7 — co and
depends on v in a non-local way. Equation (A.5) shows also that if there is a normalizable
stationary distribution P?(p, 7 = 00) for the equilibrium distribution that is reached smoothly,
it is independent on K.

On the other hand, if one performs a supersymmetric representation of the Langevin equa-
tion (A.2), locality can be enforced by functionally integrating over all possible choices of v,
introduced as an independent field. One must then proceed to a BRST-invariant gauge fixing
of v, a task that can be done in a way that is compatible with stochastic supersymmetry.

Now we can compute ({ W )7 using the Fokker—Planck equation (A.5). After an
integration by parts one gets

<<8O[ /[d(p /dyK C%Py - (;Zy —5§auge(@y))5i%}0[¢(x’ 7)l.
(A.6)
)

Since on the right hand side [ dy 65"*(¢y)) 3, acts as a gauge transformation with parameter

v on functionals of ¢, we see that if O is a gauge invariant functional, the last term cancels and

the evolution ({ W NT of Olp(x, )] is independent on v.

On the contrary, the evolution of non gauge invariant observables depends on the choice of
v, whose presence is actually necessary in order to define the evolution itself.

To compute both gauge-invariant and non-gauge-invariant correlators, one either defines a
clever choice of v or considers v as an independent field and integrates over all possibilities
with a BRST-invariant gauge fixing of v.

Both strategies are legitimate, provided the choice of function v or gauge fixing gives a
well defined result.

As always, there are good choices of gauge versus bad choices. One expects good classes
of gauges governed by some parameters. For instance in the Yang—Mills case, the class of
gauges v = As = ad, A, determines a perfectly well defined stochastic gauge-fixing, with
a a free parameter. In this case, one can in fact prove rigorously in perturbation theory that
physical correlators are a-independent [10].

In this paper devoted to gravity, we did the gauge choice of equations (6.6) and (6.9).

When we have acceleration, the dependence on v is more subtle. However, when the evo-
lution is dominated by the friction and we are near the equilibrium, the theorem applies.
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