
1

Classical and Quantum Gravity

Spacetime granularity from finite-
dimensionality of local observable algebras

Matti Raasakka

Micro and Quantum Systems group, Department of Electronics and Nanoengineering, 
School of Electrical Engineering, Aalto University, Espoo, Finland

E-mail: matti.raasakka@aalto.fi

Received 25 August 2019, revised 19 November 2019
Accepted for publication 4 December 2019
Published 27 January 2020

Abstract
There are important indications that nature may be locally finite-dimensional, 
i.e. that any spatially bounded subsystem can be described by a finite-
dimensional local observable algebra. Motivated by these ideas, we show 
that operational spacetime topology is described by an atomistic Boolean 
algebra if (i) local observable algebras are finite-dimensional factors, (ii) the 
intersection of two local algebras is also local, and (iii) the commutant of 
a local algebra is also local. Thus, in this case, spacetime has a point-free 
granular behavior at small scales.

Keywords: spacetime topology, quantum gravity, local finite-dimensionality

1.  Introduction

The aim of this paper is to show that, by rather general assumptions, local finite-dimension-
ality of physics leads to modifications of spacetime topology at small scales. By local finite-
dimensionality we mean that physics in any bounded spacetime region O can described in 
terms of a finite-dimensional Hilbert space of states HO ∼= Cn, n ∈ N. Accordingly, also the 
local observable algebra AO ⊂ B(HO) associated to any bounded spacetime region is a finite-
dimensional factor, and thus isomorphic to a full matrix algebra.

There are several reasons to suspect that nature should be fundamentally locally finite-
dimensional, even though quantum field theory (QFT) is not. (See, e.g. [1] for a recent 
argument.) The high energy divergencies of QFT suggest that we should think of QFT as 
an effective theory to be replaced by some other model of physics in the deep UV. Gravity 
becomes, of course, relevant at the Planck scale, which will necessarily modify the theory. 
The most basic motivation for local finite-dimensionality is the belief that it should not be 
physically possible to store an infinite amount of information into an arbitrarily small space-
time region. This belief is backed up by Bekenstein’s bound on the entropy of gravitational 
systems: the entanglement entropy of the QFT vacuum state restricted to a spatial subregion is 
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always UV divergent, whereas according to Bekenstein’s seminal work [2, 3] (and later works 
by others, e.g. [4, 5]) bounded gravitating systems should be able to carry only a finite amount 
of entropy. Thus, gravity should somehow regulate the UV behavior of quantum fields, per-
haps through a UV cut-off at the Planck scale. Indeed, if the total energy in a spatial region 
of linear size l exceeds the value EBH ∼ l/G, the region forms a black hole and thus cannot 
be observed from the outside. A cut-off to the total energy of bounded systems leads imme-
diately to a locally finite-dimensional theory, because only a finite number of field modes can 
be excited in this case. If nature is fundamentally locally finite-dimensional, QFT must then 
arise as an infinite-dimensional approximation to the more accurate finite-but-extremely-high-
dimensional model of physics in macroscopic spacetime regions.

Our motivation to study locally finite-dimensional quantum physics comes more specifi-
cally from attemps to understand gravity as an effective phenomenon arising from the sta-
tistical properties of QFT. Jacobson and collaborators [6–9] have shown that gravity may 
emerge from the entanglement first law for quantum field states if the theory has a physical 
UV cut-off at the Planck scale (and satisfies a number of other physically motivated assump-
tions), which leads to a finite entanglement entropy of the restricted vacuum state. The gravi-
tational constant G is then related to the entanglement entropy density η on spatial 2-surfaces 
via G = 1/4η. When the UV cut-off is removed, η → ∞ and thus gravitational interactions 
vanish as G → 0. A related argument for the necessity of local finite-dimensionality for the 
emergence of gravity stems from the fact that, due to the Hadamard condition [10] (and gen-
eralizations thereof [11]), finite-energy states in QFT have the same UV divergence structure 
as the vacuum state. Therefore, finite-energy perturbations of the vacuum cannot change the 
effective geometry associated with the area law, and gravitational effects à la Jacobson cannot 
appear. Finite dimensionality of the local algebras allows physical perturbations to change the 
effective background geometry of the system associated with the area law. Of course, for any 
macroscopic region the dimensionality of the local algebra is extremely large, and therefore 
it takes a highly energetic perturbation to change the entanglement entropy of the system sig-
nificantly, which may explain the weakness of gravity at macroscopic scales.

A common argument against finite-dimensionality of physics is the implied violation of 
Lorentz invariance, which might be carried over from the UV into the IR by perturbative 
corrections [12]. However, when we discuss local regions of spacetime (even in Minkowski 
spacetime), Lorentz transformations cannot be defined inside a local region, since such a 
region is never preserved under Lorentz transformations. Therefore, Lorentz invariance can-
not be required inside a local region. Of course, the descriptions of local regions connected 
by global Lorentz transformations should still agree in the case of Minkowski spacetime. 
Despite local finite-dimensionality, the global algebra is still infinite-dimensional, and thus 
allows for global Lorentz symmetry. In this context it is relevant that a UV cut-off cannot 
be implemented in a Lorentz invariant manner, since the energy of any excitation can be 
arbitrarily increased by a Lorentz boost. On the other hand, e.g. the maximal spatial volume 
of a non-extendible spatial hypersurface inside the local region is invariant under diffeomor-
phisms. Perhaps the dimensionality of a local system could be related to the maximal spatial 
volume. Another possibility is the holographic principle [13, 14], according to which the 
local dimensionality is related to the area of the spatial boundary of a region. We will tenta-
tively assume the former option in the following, but our argument for spacetime granularity 
should be general enough to cover the latter one as well.

Of course, when gravity becomes relevant we should not expect to have global Lorentz 
symmetry in general, but (at most) local Lorentz covariance in agreement with the equiva-
lence principle. In [15] we showed how local Lorenz covariance may appear in the locally 
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finite-dimensional context as transformations between local thermal Hamiltonians: if the local 
algebras associated to minimal spatial regions are isomorphic to the observable algebra of a 
qubit (i.e. a 2-by-2 matrix algebra), then local thermal states on any two of these minimal local 
algebras can be transformed to each other via a unique SL(2,C) transformation of the thermal 
Hamiltonian. In this way we can recover a Lorentz connection on the minimal local spacetime 
regions. In this paper, however, we will focus rather on the topological consequences of local 
finite-dimensionality. We will stay agnostic about the exact form of the local subalgebras, 
except for the assumption that they are finite-dimensional factors.

Our discussion in the rest of this paper will rely on the formalism of algebraic QFT, which 
is fundamentally based on the assignment of algebras of local operators to bounded space-
time regions. However, the existence of local observables in a quantum gravitational theory 
is highly doubtful [16–19]1. For example, Giddings et al [18, 19] have argued that a quantum 
gravitational theory cannot possess any local observables, as any particle-creating operator 
will obtain a gravitational dressing, which extends infinitely far and is impossible to neu-
tralize, as soon as gravity is turned on. In particular, they show that if diffeomorphisms are 
treated as gauge transformations, then there are no gauge-invariant local observables even 
in the first order in the gravitational coupling. These results are not easy to evade, because 
the lack of local diffeomorphism-invariant observables is true even in the classical theory 
[20]. Indeed, it is intuitively clear that local observables cannot be invariant under arbitrary 
spacetime transformations. However, here it is important to distinguish between partial and 
complete observables, as defined by Rovelli [21]. There is no actual need to require that the 
local algebras we consider in this paper be invariant under spacetime transformations. We can 
allow spacetime transformations to have a non-trivial isomorphic action on the local algebras, 
mapping them to each other, as is the case also in generally covariant QFT [22]. In this case, 
we are considering algebras of partial observables (instead of complete observables), which 
can be localized even if the theory has diffeomorphism invariance [21]. While the local partial 
observable algebras transform under spacetime transformations, so do the local states, thus 
keeping the expectation values (the actual predictable experimental data) invariant. On the 
other hand, the technical arguments in [16–19] as we understand them essentially require that 
some geometric quantities (e.g. the metric) are fundamental dynamical variables in the theory. 
In contrast, in our view spacetime geometry need not be necessarily directly observable, but 
it may be possible to understand it as an effective description of the statistical properties of 
quantum states of matter and radiation (excluding gravity). From this perspective, the non-
local aspects of gravitational interactions may arise from the non-local properties of quantum 
statistics, rather than the non-locality of observables.

In this paper, we mostly draw inspiration from the works [23–25], which develop methods 
to extract spacetime structure from the net of local operator algebras in the algebraic QFT 
setting. The main idea of our approach is to assume that the set of observable algebras asso-
ciated to local regions is somehow already provided to us, which we then use to understand 
the necessary properties of a compatible spacetime topology. However, the ultimate goal in 
this direction of research would be to extract spacetime structure directly from the algebraic 
and statistical properties of observables. (See, e.g. [23–30] for a small subset of works in this 
direction.) In order to guarantee background-independence without explicit diffeomorphism-
invariance, it should be possible to formulate the theory in a way that does not directly refer 
to spacetime geometry, but only to the algebraic and statistical relations between quantum 
operators, while the effective spacetime geometry is extracted a posteriori. With this goal in 

1 I thank Ted Jacobson for bringing [17] to my attention, and an anonymous referee for pointing out [16].
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mind, in [31] we formulated a spacetime-free framework for quantum theory. In particular, 
there should be some inherent way to define causal relations and locality without the reference 
to some background geometry. The extraction of locality from dynamics has been explored, 
for example, by Cotler et al [32], but a totally satisfactory background-independent approach 
is still lacking. If such an approach was succesful, then the effective notion of locality would 
be the one to use in the definition of local observable algebras.

Let us then summarize the contents of the paper. In section 2 we review the formalism of 
algebraic QFT, and work out the relationship between spacetime topology and the net of local 
operator algebras. In section 3 we modify the formalism introduced in the previous section by 
replacing the infinite-dimensional algebras of QFT by finite-dimensional ones, and explore 
the implications of this change on the associated spacetime topology. We find that space-
time topology must be significantly modified when the finite-dimensionality of local algebras 
is manifest, presumably at the Planck scale. In particular, there must exist minimal space-
time regions, although continuous spacetime transformations are still possible. Accordingly, 
Planck scale topology of spacetime turns out have features of both discreteness and continuity. 
We finish with a summary and some final remarks in section 4.

2.  Algebraic QFT and spacetime topology

All observations of spacetime properties are performed in practice by studying the propaga-
tion of quantum fields in spacetime. Therefore, the operational information about spacetime 
geometry must be encoded into the structure of QFT. On the other hand, QFT models are 
usually built on top of a fixed background geometry. In this section, we will study the exact 
relationship between spacetime topology and QFT, and show how spacetime topology can be 
recovered from the algebraic properties of QFT. In particular, we will adopt the view that the 
physical meaning to a spacetime region is given exactly by the observables localized in that 
region.

The starting point for the algebraic formulation of QFT is that we associate to any caus-
ally convex2 open spacetime region O with compact closure an algebra of operators AO, the 
local observable algebra, whose self-adjoint elements are the observables localized inside the 
region O. (See, e.g. [33] for a recent accessible review of algebraic QFT, or [34, 35] for more 
thorough textbook expositions.) As already mentioned, in QFT the local observable algebras 
are infinite-dimensional and in physically relevant models, more specifically, hyperfinite type 
III1 von Neumann factors [36]. As there is only one hyperfinite type III1 von Neumann factor 
up to isomorphisms, it is really the inclusion relations of local algebras, which encode the 
physical properties of a QFT model. The inclusion relations AO1 ⊂ AO2  of the local algebras 
must obviously reflect spacetime topology, since any observation localized in O1 must also be 
localized inside O2 if O1 ⊂ O2. More specifically, if O1 ⊂ O2 is a proper inclusion, then in 
physically relevant models AO1 is a proper unital subalgebra of AO2. The partially ordered set 
of operator algebras index by spacetime regions is called the net of local algebras.

The correspondence between local algebras and spacetime regions is not one-to-one as 
such, because any two regions with the same causal completion are associated with the same 
local algebra due to the causal dynamics of the field(s).

Definition 2.1.  The causal complement Oc of a spacetime region O consists of all the 
points, which cannot be connected to O by a causal (i.e. everywhere light- or time-like) 

2 A spacetime region is causally convex if it contains entirely any causal curve between any two of its points.
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curve. The causal completion of a spacetime region O is obtained as the double-complement 
(Oc)c =: Occ. A spacetime region O is called causally complete if Occ = O.

Definition 2.2.  A Cauchy slice Σ of a spacetime region O is a spacelike codimension-1 
hypersurface in O, such that any inextendible causal curve in O intersects Σ exactly once.

Classically, initial data on any Cauchy slice Σ of O determines the state of the field system 
in the whole of Occ if the system obeys causal (hyperbolic) evolution equations and Occ is 
globally hyperbolic. On the algebraic level this implies that, due to the dynamical evolution 
of the system, spacetime regions sharing the same Cauchy slice are associated to the same 
local algebra. Accordingly, we may restrict to consider causally complete spacetime regions 
in order to have one-to-one correspondence between spacetime regions and local algebras.

Both the set of causally complete open spacetime regions with compact closure and the set of 
local operator algebras can be seen to form order-theoretical lattices. The rest of the paper relies 
significantly on the theory of lattices. For lattice theory basics, we refer the reader to [37, 38].

Definition 2.3.  A lattice L is a partially ordered set, in which any two elements A, B ∈ L 
have a least upper bound (join) A ∨ B ∈ L and a greatest lower bound (meet) A ∧ B ∈ L, de-
fined in terms of the ordering as

A ∨ B = inf{C ∈ L : C � A, C � B},
A ∧ B = sup{C ∈ L : C � A, C � B}.
� (1)

In a complete lattice every subset K ⊂ L has a greatest lower bound and a least upper bound.

In particular, we will consider the following two lattices:

Definition 2.4.  Let O ⊂ M be a causally complete open subset with compact clo-
sure of a globally hyperbolic Lorentzian manifold M. Then, Lcc(O) is the lattice, 
whose elements are the causally complete open subsets O1 ⊂ O. The order-relation in 
Lcc(O) is given by O1 < O2 ⇔ O1 � O2. The join and the meet are given, respec-
tively, by O1 ∨ O2 = (O1 ∪ O2)

cc ∈ Lcc(O) and O1 ∧ O2 = O1 ∩ O2 ∈ Lcc(O) for any 
O1,O2 ∈ Lcc(O). (The intersection of two causally complete regions is again causally com-
plete, but the same is not true for the union.) Lcc(O) is a complete lattice with the least element 
∅ and the greatest element O.

Definition 2.5.  Let O ⊂ M be as above. Then, Lalg(O) is the lattice, whose elements 
are the local observable algebras AO1 associated to the elements of Lcc(O) through the 
map A : O1 �→ AO1. The order-relation in Lalg(O) is given by AO1 < AO2 ⇔ AO1 ⊂ AO2 
as a proper unital subalgebra. The join and the meet in Lalg(O) are given, respectively, 
by AO1 ∨ AO2 = A(O1∪O2)cc ∈ Lalg(O) and AO1 ∧ AO2 = AO1∩O2 ∈ Lalg(O) for any 
AO1 ,AO2 ∈ Lalg. Lalg(O) is a complete lattice with the least element A∅ ∼= C and the greatest 
element AO

3.

Assumption 2.1.  The two lattices Lcc(O) and Lalg(O) are isomorphic, Lcc(O) ∼= Lalg(O).

Since the map A : Lcc(O) → Lalg(O),O1 �→ AO1 is bijective, this assumption essentially 
requires that O1 < O2 ⇔ AO1 < AO2, so that A  gives an order-isomorphism between the 

3 The least element A∅ ∼= C is the algebra generated by the common unit element shared by all the local algebras. 
The completeness of Lalg(O) can be shown, e.g. by noticing that φ : B �→ inf{AO1 ∈ Lalg(O) : B ⊂ AO1}, where 
B ⊂ AO is any subfactor of type III1 (not necessarily local), is a closure operation in the lattice of all subfactors of 
type III1 ordered by inclusion.
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two lattices. This property that larger causally complete spacetime regions have larger algebras 
is generally satisfied by all physical QFT models, as far as we know. It is also the mathemati-
cal formulation of the idea that a spacetime region is operationally defined by the observables 
that are localized in it. Therefore, assumption 2.1 seems physically well-motivated.

Drawing inspiration from [23–25], we will now study some details of the recovery of spa-
cetime topological structure from the lattice of local algebras.

2.1.  Open regions and topology

Since the causally complete regions form a base for the spacetime topology, an arbitrary open 
region can be expressed as the union of some set of elements in Lcc(O), by definition. The 
meet operation in Lcc(O), however, is not directly the union of regions, but its causal com-
pletion. Therefore, we cannot directly use the meet operation in Lcc(O) to define arbitrary 
spacetime regions. Instead, we may identify arbitrary spacetime regions as certain subsets in 
Lcc(O). To that end, we need a recall few more basic definitions from lattice theory, and prove 
a couple of propositions.

Definition 2.6.  Let L be a complete lattice with the least element 0, and ω ⊂ L a subset of 
elements. ω  is called a down-set in L if A ∈ ω and B  <  A imply B ∈ ω. The down-sets of L 
constitute themselves a complete lattice Lds(L), ordered by inclusion, with the least element 
{0} and the greatest element L. The meet and the join in Lds(L) are given by the set-theoretic 
union and intersection, respectively, i.e. ω1 ∨ ω2 = ω1 ∪ ω2 and ω1 ∧ ω2 = ω1 ∩ ω2

4.

Definition 2.7.  Let L be a complete lattice with the least element 0, and Lds(L) the lattice 
of its down-sets. The pseudo-complement ω∗ ∈ Lds(L) of an element ω ∈ Lds(L) is given by

ω∗ = sup{ω′ ∈ Lds(L) : ω ∩ ω′ = {0}}.� (2)

The double-pseudo-complementation ω �→ (ω∗)∗ =: ω∗∗ defines a closure operation in 
Lds(L). The ∗∗-closed down-sets in Lds(L), which satisfy ω∗∗ = ω, form a complete lattice 
L∗∗

ds (L) with the meet ω1 ∨ ω2 = (ω1 ∪ ω2)
∗∗ and the join ω1 ∧ ω2 = ω1 ∩ ω2.

Definition 2.8.  A complete lattice L is called a frame (also a complete Heyting algebra 
or a locale, depending on the context) if the distributive law A ∧ (∨iBi) = ∨i(A ∧ Bi) holds 
for arbitrary collections of elements {Bi}i ⊂ L. An equivalent condition is that L satisfies 
the finite distributive law A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) for all A, B, C ∈ L, and the map 
A �→ A ∧ B preserves the suprema of directed sets in L for all B ∈ L.

Proposition 2.1.  Let L be a complete lattice. Then the lattice L∗∗
ds (L) of ∗∗-closed  

down-sets in L is a frame5.

Proof.  Let us first show that if x ∈ ω∗∗ such that x  >  0, then there exists y ∈ ω such that 
0 < y � x. First we note that x cannot belong to ω∗ if there exists y ∈ ω such that 0 < y � x, 
because then also y ∈ ω∗, which contradicts ω ∩ ω∗ = {0}. In fact,

ω∗ = {x ∈ L : �y ∈ ω s.t. 0 < y � x},� (3)

4 Notice that the union and the intersection of down-sets is again a down-set.
5 Even though this proposition seems like a basic result in lattice theory, we were not able to find it in the literature. 
Accordingly, we include the proof here for completeness.
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since this property defines a down-set, which cannot be further enlarged without violating the 
condition ω ∩ ω∗ = {0}. Since ω∗∗ ∩ ω∗ = {0}, the claim follows.

Let us then show that for all ω1,ω2 ∈ Lds(L)

ω1 ∩ ω2 = {0} ⇔ ω∗∗
1 ∩ ω2 = {0}.� (4)

As we just showed, for any x ∈ ω∗∗
1  there exists y ∈ ω1 such that 0 < y � x. Now, since 

ω∗∗
1 ∩ ω2 is a down-set, if x ∈ ω∗∗

1 ∩ ω2 then also y ∈ ω∗∗
1 ∩ ω2, and consequently y ∈ ω1 ∩ ω2. 

Thus,

ω∗∗
1 ∩ ω2 �= {0} ⇒ ω1 ∩ ω2 �= {0}.� (5)

By negating this implication, we get ω1 ∩ ω2 = {0} ⇒ ω∗∗
1 ∩ ω2 = {0}. The implication in 

the other direction is trivial, as ω1 ⊂ ω∗∗
1  and the intersection operation is monotonic.

Let us show next that ω1 ∩ ω∗∗
2 = (ω1 ∩ ω2)

∗∗ for all ω1 ∈ L∗∗
ds (L) and ω2 ∈ Lds(L). We 

get an equivalent statement (ω1 ∩ ω∗∗
2 )∗ = (ω1 ∩ ω2)

∗ by taking pseudo-complements on both 
sides, since the pseudo-complement is unique for elements in L∗∗

ds (L). Here,

(ω1 ∩ ω∗∗
2 )∗ = sup{ω′ ∈ Lds(L) : (ω1 ∩ ω∗∗

2 ) ∩ ω′ = {0}},
(ω1 ∩ ω2)

∗ = sup{ω′ ∈ Lds(L) : (ω1 ∩ ω2) ∩ ω′ = {0}}.
� (6)

By the previous result

ω∗∗
2 ∩ (ω1 ∩ ω′) = {0} ⇔ ω2 ∩ (ω1 ∩ ω′) = {0}.� (7)

Thus, the two sets in (6) are the same, and hence (ω1 ∩ ω∗∗
2 )∗ = (ω1 ∩ ω2)

∗.
It then follows immediately from ω1 ∩ ω∗∗

2 = (ω1 ∩ ω2)
∗∗ that L∗∗

ds (L) satisfies the finite 
distributivity law ω1 ∧ (ω2 ∨ ω3) = (ω1 ∧ ω2) ∨ (ω1 ∧ ω3) for all ω1,ω2,ω3 ∈ L∗∗

ds (L):

ω1 ∧ (ω2 ∨ ω3) = ω1 ∩ (ω2 ∪ ω3)
∗∗

= (ω1 ∩ (ω2 ∪ ω3))
∗∗

= ((ω1 ∩ ω2) ∪ (ω1 ∩ ω3))
∗∗

= (ω1 ∧ ω2) ∨ (ω1 ∧ ω3).

�

(8)

Since the meet operation in L∗∗
ds (L) is just the set-theoretical intersection, and the order rela-

tion in L∗∗
ds (L) is given by the set-theoretical inclusion, the preservation of suprema is imme-

diate.� □ 

Now, let us define the lattice of open subsets in O, which captures the topology of O. Open 
subsets of a topological space equipped with the set-theoretical union and intersection as the 
join and the meet operations, respectively, form also a frame. Thus, a frame is often consid-
ered to define a topological space in terms of open sets without referring to points [39, 40].

Definition 2.9.  The set T (O) of open subsets in O constitute a frame when equipped with 
the ordering relation O1 < O2 ⇔ O1 � O2 for O1, O2 ∈ T (O). The join and the meet in 
T (O) are given by the usual set-theoretical union and intersection, i.e. O1 ∨ O2 = O1 ∪ O2 
and O1 ∧ O2 = O1 ∩ O2, respectively.

Proposition 2.2.  Let O be a causally complete open spacetime region with a compact 
closure. Let T (O) be as defined above (i.e. the topology of O), and L∗∗

ds (Lcc(O)) the lattice of 
∗∗-closed down-sets of Lcc(O). Then, T (O) ∼= L∗∗

ds (Lcc(O)).

M Raasakka﻿Class. Quantum Grav. 37 (2020) 045014
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Proof.  Let φ : T (O) → Lds(Lcc(O)) map the open spacetime region O ∈ T (O) to the 
down-set φ(O) ∈ Lds(Lcc(O)), which is the set of causally complete regions contained in the 
region O. φ is clearly injective (assuming the usual Hausdorff topology on O). We want to 
show that φ is also surjective to the set L∗∗

ds (Lcc(O)).
The left-inverse of φ is given by χ : Lds(Lcc(O)) → T (O),ω �→ ∪O1∈ωO1, i.e. 

χ ◦ φ = idT (O). We will show in the following that φ ◦ χ = (·)∗∗, which proves that φ is sur-
jective to L∗∗

ds (Lcc(O)). Now, first of all, notice that ω1 ∩ ω2 = {∅} ⇔ χ(ω1) ∩ χ(ω2) = ∅ 
for all ω1,ω2 ∈ Lds(Lcc(O)): if χ(ω1) ∩ χ(ω2) �= ∅, there would be some non-empty caus-
ally complete region contained in χ(ω1) ∩ χ(ω2), which would belong to ω1 ∩ ω2. Also, 
if ω1 ∩ ω2 �= {∅}, it is clear that χ(ω1) ∩ χ(ω2) �= ∅. Accordingly, φ(cl(χ(ω))⊥) = ω∗, 
where cl(O)⊥ ∈ T (O) is the complement of the closure of O ∈ T (O): clearly, cl(χ(ω))⊥ 
is the largest open set in T (O), which does not overlap with χ(ω). Consequently, we get 
ω∗∗ = φ(cl(χ(φ(cl(χ(ω))⊥)))⊥) = φ(χ(ω)).

Finally, it is easy to see that ω1 < ω2 ⇔ χ(ω1) < χ(ω2) for any ω1,ω2 ∈ L∗∗
ds (Lcc(O)), 

which shows that φ is a lattice isomorphism.� □ 

Since Lcc(O) ∼= Lalg(O), and the lattice T (O) of open subsets of O captures the topology 
of O, we may recover the topology of O as the frame L∗∗

ds (Lalg(O)) of ∗∗-closed down-sets in 
the lattice Lalg(O) of local observable algebras of QFT.

2.2.  Points

Spacetime points x ∈ O are in one-to-one correspondence with the sets of open spacetime 
regions Kx = {O1 ∈ T (O) : x ∈ O1}. The sets Kx can be uniquely characterized order-theor
etically as completely prime filters in the frame T (O) ∼= L∗∗

ds (Lcc(O)) [39, 40].

Definition 2.10.  Let L be a lattice. A non-empty subset F ⊂ L is called a filter if

	(1)	�F is an up-set, i.e. x ∈ F, y � x ⇒ y ∈ F, and
	(2)	�for all x, y ∈ F there exists z ∈ F  s.t. z � x and z � y.

A filter F is completely prime if for any subset B ⊂ L the following implication holds:

∨B ∈ F ⇒ ∃x ∈ B s.t. x ∈ F.� (9)

Since Lcc(O) ∼= Lalg(O), we may define ‘spacetime points’ just as well as the completely 
prime filters in L∗∗

ds (Lalg(O)) ∼= T (O).

Remarkably, the above results provide the inverse to the initial construction of the net of 
local algebras starting from a spacetime region O (which could also be the whole spacetime). 
We can indeed recover the topology of spacetime from the net of local algebras, and thus 
give it an operationally well-defined meaning. However, the structure of the lattice of local 
algebras Lcc(O) is significantly modified in the locally finite-dimensional case, as we will see 
in the next section, and therefore local finite-dimensionality implies definite modifications to 
spacetime topology at scales where it is manifest.
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3.  Implications of local finite-dimensionality for topology

Let us now suppose that the local algebras AO are, in fact, finite-dimensional. To be more 
precise, we will assume the following.

Assumption 3.1.  Let O be a spacetime region inside which any Cauchy slice has a finite 
spatial volume. Then the corresponding local observable algebra AO is a finite-dimensional 
factor.

Any local observable algebra is thus isomorphic to the algebra of n-by-n complex matrices, 
from hereon denoted by Mn, for some n ∈ N. We will again consider the ordering relation

A1 < A2 ⇔ A1 ⊂ A2 as a proper unital subalgebra� (10)

for the local algebras. As already argued above, the physical meaning to a spacetime region is 
given by the observations that can be made inside that region. Therefore, we expect assump-
tion 2.1 to remain valid, and postulate that Lcc(O) ∼= Lalg(O) still holds for the lattice Lcc(O) 
of causally complete spacetime subregions, which provides a base for the topology of O. 
Thus, the topology of O may still be obtained as the frame L∗∗

ds (Lalg(O)).

3.1.  Lattice of all subfactors

What kind of modifications does the change to finite-dimensional factors imply for the lattice 
of local algebras? To set the stage, let us first consider the lattice Lsub(A) of all subfactors of a 
finite-dimensional factor A ∼= Mn. Some basic properties of the lattice of local subfactors will 
follow directly from the properties of Lsub(A) together with some simple physically motivated 
assumptions about the local subfactors. Notice that even though the structure of Lsub(A) is 
fairly easy to understand, it is still not totally trivial. For example, it is not a finite lattice, since 
there are continuous families of subfactors given by unitary transformations.

Let us recall further basic definitions from lattice theory.

Definition 3.1.  Let L be a complete lattice with the greatest element 1 and the least element 
0. L has finite length if any chain of elements 0 < A1 < A2 < . . . < 1 consists of only a finite 
number of elements.

Definition 3.2.  Let L be a complete lattice with the greatest element 1 and the least ele-
ment 0. L is complemented if every element A ∈ L has a complementary element A′ ∈ L such 
that A ∨ A′ = 1 and A ∧ A′ = 0.

Definition 3.3.  An atomic element A ∈ L of a lattice L with the least element 0 is such that 
there does not exist another element B ∈ L such that 0  <  B  <  A. A lattice L is called atomic 
if for every non-atomic element B ∈ L there exists an atomic element A ∈ L such that A  <  B. 
A lattice is called atomistic if every element B ∈ L is the join of a set of atomic elements.

Next we explore some basic properties of Lsub(A).

Proposition 3.1.  The subfactors of a finite-dimensional factor A  form a complete atomis-
tic lattice Lsub(A) of finite length, when equipped with the ordering relation

A1 < A2 ⇔ A1 ⊂ A2 as a proper unital subalgebra� (11)

for any two subfactors A1,A2 ⊂ A.
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Proof.  Let us again note that any finite-dimensional factor A  is isomorphic to Mn for some 
n ∈ N. Moreover, any unital inclusion of a full matrix algebra to another is of the form

Mm �→ U(Mm ⊗ n)U∗ ⊂ Mmn,� (12)

where m, n ∈ N, U is some unitary in Mmn, and the tensor product is defined with respect to 
some arbitrary basis. Accordingly, if A1 < A2 for A1 ∼= Mm and A2 ∼= Mm′, then m′ must be 
divisible by m. The least element is the trivial subfactor C n = {c n : c ∈ C} ∼= C, where n 
denotes the n-by-n identity matrix, and the greatest element is A  itself. Thus, the maximum 
length of a chain of elements in Lsub(A) for A ∼= Mn is the number of prime factors in n, 
which is obviously finite. This shows that Lsub(A) has finite length. Completeness of Lsub(A) 
is trivial.

Complementation on Lsub(A) is given by taking the commutant,

A′
1 = {a′ ∈ A : [a, a′] = 0 ∀ a ∈ A1}� (13)

for all A1 ∈ Lsub(A). The lattice complement properties are trivial to check, since for finite-
dimensional algebras B ∨ C ∼= B⊗ C if B,C ⊂ A are mutually commuting subfactors.

As already noted, a unital inclusion Mm ⊂ Mm′ of the form (12) is only possible if m′ is di-
visible by m. Accordingly, Mp does not contain any proper non-trivial subfactors for p  prime. 
Mn for any n ∈ N can be factorized into a tensor product as Mn ∼= ⊗kMpk, where { pk}k are 
the prime factors of n with multiplicity. Accordingly, Mn has subfactors U(Mpk ⊗ n/pk)U

∗, 
where U is any unitary in Mn. (Notice that a reordering of tensor product factors is also a uni-
tary operation.) These are atomic elements in Lsub(A) for A ∼= Mn, since they do not contain 
any other proper subfactors besides the trivial one C n ∼= C. Moreover, they provide all the 
atomic elements, since the tensor factorization is unique up to unitary transformations.

Finally, let us show that Lsub(A) is atomistic. Any subfactor of Mn can be expressed as 
U(Mm ⊗ n/m)U∗ for some unitary U in Mn. Accordingly, it can be expressed in terms of the 
atomic elements as

U(Mm ⊗ n/m)U∗ = U((⊗kMqk)⊗ n/m)U∗,� (14)

where now {qk} are the prime factors of m. This is the smallest subfactor containing all the 
atomic subfactors

U(((⊗k<l qk)⊗Mql ⊗ (⊗k>l qk))⊗ n/m)U∗ = UV(Mql ⊗ n/ql)V
∗U∗,

� (15)

where V  is a unitary, which moves the tensor product factors appropriately. Since any subfac-
tor can be expressed as the least upper bound of atomic factors, the lattice Lsub(A) is atomistic. 
Notice, however, that the choice of atomic elements is not unique.� □ 

3.2.  Lattice of local subfactors

Now, let us consider the lattice Lalg(O) of local subfactors of a local observable algebra AO. 
The elements of Lalg(O) constitute obviously a subset of the elements of Lsub(AO), the lat-
tice of all subfactors in AO. The challenge in trying to understand the structure of the lattice 
of local subfactors is that, as we do not introduce a classical background geometry from the 
outset, without the reference to a classical background it is not clear which subfactors of AO 
are local. The question of what determines if a factor is local or not is rather intricate, as it 
should depend on the dynamics of the system. In [32], for example, a tensor factorization of 
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the Hilbert space was deemed local if the Hamiltonian operator could be written as a sum of 
terms each coupling only a finite number of tensor product factors. However, for our purposes 
it suffices to make a couple of basic assumptions about the properties of Lalg(O):

Assumption 3.2.  The intersection of two local subfactors is again a local subfactor, so 
that the subset of local subfactors is closed under the meet operation.

Note that the intersection of two subfactors is always a subfactor—the locality part of this 
assumption is non-trivial. We expect this assumption to hold for any reasonable notion of local 
subsystems. In particular, it clearly holds for the notion of locality used in [32], when local 
subsystems are defined as arbitrary collections of tensor product factors in a local factorization 
of the Hilbert space.

Assumption 3.3.  The commutant of a local subfactor is again a local subfactor.

This assumption relates to the Haag duality property in algebraic QFT, which states that 
A(O)′ = A(Oc), and is generally satisfied in the vacuum sector [33]. It is also satisfied by the 
notion of locality used in [32]. Notice that if B,C ⊂ AO are two local subfactors such that 
B ⊂ C , then the two assumptions together imply that the relative commutant

B′
C = {c ∈ C : [b, c] = 0 ∀ b ∈ B} ⊂ C ⊂ AO� (16)

is also a local subfactor, because this is the intersection of B′ and C .
In the following, we will explore some basic properties of Lalg(O) in the finite-dimensional 

case.

Proposition 3.2.  Lalg(O) is a complete complemented lattice of finite length.

Proof.  Assumption 3.2 implies that the elements of Lalg(O) form a topped ∩-structure in 
Lsub(AO), as considered in [38]. This is equivalent with the property that the surjective map

cc : Lsub(AO) → Lalg(O) ⊂ Lsub(AO), B �→ inf{C ∈ Lalg(O) : A ⊂ C},
� (17)

which maps an arbitrary subfactor B of AO to the smallest local subfactor of AO containing 
B, is a closure operator in Lsub(AO). The fact that Lalg(O) is obtained from Lsub(AO) via a 
closure operator implies that Lalg(O) is complete (with the least element C and the greatest 
element AO), when equipped with the same ordering relation6.

Assumption 3.3 makes Lalg(O) a complemented lattice, where the complement is given by 
the commutant, as in Lsub(AO).

The finite length of Lalg(O) follows immediately from the finite length of Lsub(AO).� □ 

Proposition 3.3.  Lalg(O) is atomistic.

Proof.  Let B1 ∈ Lalg(O) such that B1 �= C. Either B1 is atomic, or it can be decomposed 
as B1 = B2 ∨ (B2)

′
B1

 for some local subfactor B2 < B1. By assumptions 3.2 and 3.3 also 
the relative commutant (B2)

′
B1

 of B2 inside B1 is local, and so also (B2)
′
B1

< B1. We can 
then iterate this splitting of local subfactors until we reach atomic elements. Since Lalg(O) has 
finite length, this will take only a finite number of steps.

6 Notice, however, that the join operation in Lalg(O) is not the same as in Lsub(AO), but is obtained through the 
closure from the latter.
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Since B1 ∼= B2 ⊗ (B2)
′
B1

 for any B2 ⊂ B1, the decomposition of B1 by such iterated 
splitting will result in a tensor product factorization of B1 into atomic local subalgebras. Ac-
cordingly, any non-trivial local subfactor B1 ∈ Lalg(O) is a join of atomic elements. Moreo-
ver, it is always possible to choose mutually commuting atomic subfactors, as the factors in a 
tensor product factorization commute.� □ 

3.3.  Granularity of spacetime topology

Now, according to our assumption 2.1 Lalg(O) ∼= Lcc(O), and thus the lattice of causally 
complete spacetime regions Lcc(O) is also atomistic. This implies the existence of minimal 
spacetime regions, and thus the non-existence of spacetime points. We can still define arbi-
trary spacetime regions in a point-free manner as ∗∗-closed down-sets in Lcc(O), though, and 
consider the topology of spacetime based on this notion of regions. This leads naturally to a 
kind of point-free granularity of spacetime.

Let us articulate more clearly two basic consequences of the atomistic nature of Lcc(O) in 
terms of spacetime topology.

Corollary 3.1.  There exist atomic elements in T (O) ∼= L∗∗
ds (Lcc(O)) corresponding to 

minimal spacetime regions: any atomic element A ∈ Lcc(O) gives rise to a minimal non-
trivial ∗∗-closed down-set A = {∅,A} ∈ L∗∗

ds (Lcc(O)). Let A1,A2 ∈ Lcc(O) be two differ-
ent atomic elements. Then A1 ∧ A2 = {∅}, i.e. the intersection of any two minimal spacetime 
regions is empty.

The triviality of the intersection of two minimal regions can be intuitively understood, as 
any such intersection would have to lead to a smaller region than the minimal regions, but 
there does not exist any such regions. The existence of minimal regions does not necessarily 
imply a discrete structure of spacetime in the usual sense, however, as there may exist continu-
ous transformations which preserve the locality of regions. (Whether such transformations 
exist depends again on the notion of locality inherited from the dynamics of the system.) 
Unintuitively enough, if the system has continuous transformations which preserve locali-
zation, there exist unitary transformations arbitrarily close to the identity which produce a 
non-overlapping spacetime region, when applied to a minimal region. The non-overlapping 
property of minimal regions makes them somewhat point-like, although they have finite 
volume.

Corollary 3.2.  Let O1 ∈ Lcc(O). Then O1 = ∨iAi  for some finite set {Ai}i of atomic ele-
ments, i.e. any causally complete region can be obtained as the causal completion of a union 
of a finite number of minimal spacetime regions.

The expression of a causally complete spacetime region O as a causal completion of a set 
of minimal regions is not unique, in general, but (especially in the presence of symmetries) 
there can be several different choices for the set {Ai}i of atomic elements, e.g. corresponding 
to different local tensor product structures on AO

7.
We address the structure of the topology T (O) ∼= L∗∗

ds (Lalg(O)) more carefully through the 
following propositions.

7 Cotler et al [32] have shown that generically there exists (at most) only one tensor product structure, which is k-
local with respect to a given Hamiltonian. However, a generic Hamiltonian does not have any symmetries.
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Proposition 3.4.  Let L be a complete atomistic lattice. Then L∗∗
ds (L) is a complemented 

atomistic frame, i.e. an atomistic Boolean algebra.

Proof.  L∗∗
ds (L) is a frame by proposition 2.1. Let ω ∈ L∗∗

ds (L), B ∈ ω, and

αB = {A ∈ L : A � B, A atomic}.� (18)

Obviously, B ∈ ω ⇒ αB ⊂ ω, since ω  is a down-set. However, the implication holds also in 
the other direction, αB ⊂ ω ⇒ B ∈ ω: since αB ∩ ω∗ = {0}, B ∈ (ω∗)∗ = ω  by the defini-
tion of the pseudo-complement. As L is atomistic, we may then obtain the elements in ω  by 
arbitrary joins of atomic elements in ω , and therefore any ω ∈ L∗∗

ds (L) is uniquely specified 
by its atomic elements. Let αω ⊂ L be a collection of atomic elements in ω ∈ L∗∗

ds (L). Notice 
that α ∪ {0} is a down-set. We then have ω = (α ∪ {0})∗∗ = ∨A∈α{0, A}, which is the small-
est ∗∗-closed down-set containing all the atoms in α. Thus, L∗∗

ds (L) is atomistic.
To show that L∗∗

ds (L) is complemented, note that ω∗ (as the largest down-set with trivial 
intersection {0} with ω) contains all the atoms not in ω . Since ω  and ω∗ together contain all 
the atoms in L, (ω ∨ ω∗)∗ = {0} and so ω ∨ ω∗ = (ω ∨ ω∗)∗∗ = L for all ω ∈ L∗∗

ds (L). Thus, 
ω∗ is a proper complement, and L∗∗

ds (L) is complemented.� □ 

Proposition 3.5.  Let L be a complete atomistic lattice, and Latom(L) the lattice of subsets 
of atoms in L, ordered by inclusion. Then L∗∗

ds (L) ∼= Latom(L).

Proof.  Let φ : Latom(L) → L∗∗
ds (L) map α ∈ Latom(L) to the ∗∗-closed down-set 

(α ∪ {0})∗∗ = ∨A∈α{0, A}. The inverse map φ−1 maps ω ∈ L∗∗
ds (L) to the set of atoms con-

tained in ω . It is easy to see by the discussion in the proof of Proposition 3.4 that the join and 
meet are preserved,

φ(α1 ∨ α2) = φ(α1 ∪ α2) = (φ(α1) ∪ φ(α2))
∗∗ = φ(α1) ∨ φ(α2),

φ(α1 ∧ α2) = φ(α1 ∩ α2) = φ(α1) ∩ φ(α2) = φ(α1) ∧ φ(α2),
� (19)

so φ is a lattice isomorphism.� □ 

Since in the locally finite-dimensional case Lalg(O) is a complete atomistic lattice, by prop-
osition 3.4 the topology of spacetime T (O) ∼= L∗∗

ds (Lalg(O)) is given by an atomistic Boolean 
algebra. Since by proposition 3.5 T (O) ∼= Latom(Lalg(O)), the minimal local subalgebras in 
Lalg(O) correspond to indivisible non-overlapping chunks of spacetime, out of which any 
spacetime region can be constructed. The fact that T (O) is complemented implies that the 
spacetime regions O ∈ T (O) should be thought of as both open and closed (i.e. clopen). In 
particular, this prevents the definition of lower dimensional boundaries between regions as the 
intersection of their closures.

Proposition 3.6.  Completely prime filters in Latom(L) are of the form

FA = {B ⊂ Latom(L) : A ∈ B}, A ∈ L atomic.� (20)

Proof.  The claim follows directly from the definition of Latom(L).� □ 

Thus, the completely prime filters in T (O) ∼= L∗∗
ds (Lalg(O)) ∼= Latom(Lalg(O)) are 

uniquely associated with the atomic elements in Lalg(O). As the completely prime filters in 
L∗∗

ds (Lalg(O)) corresponded to spacetime points in the QFT case, this is another sense in 
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which the minimal spacetime regions are point-like. However, at the same time, the spacetime 
regions are considered to occupy a finite volume. Therefore, one should rather have in mind 
a kind of cellular decomposition of spacetime into minimal regions. Accordingly, we infer a 
kind of point-free granularity of spacetime in the locally finite-dimensional case.

4.  Summary and discussion

In this paper we examined the consequences of local finite-dimensionality of physics for 
spacetime topology. For operational reasons, we postulated that the lattice Lcc(O) of causally 
complete spacetime subregions of a spacetime region O is isomorphic to the lattice Lalg(O) 
of local subfactors of the local observable algebra AO (assumption 2.1). As the set of caus-
ally complete spacetime regions provides a base for spacetime topology, we were able to 
equate the lattice T (O) of arbitrary open subsets of O (i.e. the topology of O) with the lat-
tice L∗∗

ds (Lcc(O)) of ∗∗-closed down-sets in Lcc(O) (proposition 2.2). Our method for deriv-
ing spacetime topology T (O) from the lattice local observable algebras Lalg(O) can then be 
expressed in one line as

Lalg(O) ∼= Lcc(O) → L∗∗
ds (Lcc(O)) ∼= T (O).� (21)

We showed that in the case of QFT we recover the usual topology of spacetime from the lattice 
of local subfactors Lalg(O) as T (O) ∼= L∗∗

ds (Lalg(O)).
We then went on to study the locally finite-dimensional case, and introduced three basic 

assumptions about the local observable algebras in a locally finite-dimensional model:

	 1.	�Local observable algebras associated to spatially bounded spacetime regions are finite-
dimensional factors (assumption 3.1).

	 2.	�The intersection of two local observable algebras is another local observable algebra 
(assumption 3.2).

	 3.	�The commutant of a local observable algebra is another local observable algebra (assump-
tion 3.3).

Using these assumptions, we inferred that in the locally finite-dimensional case the lattice of 
causally complete spacetime regions is a complete complemented atomistic lattice of finite 
length (propositions 3.2 and 3.3). This implies the existence of minimal spacetime regions, 
and thus the non-existence of spacetime points. More specifically, T (O) ∼= L∗∗

ds (Lalg(O)) was 
shown to be an atomistic Boolean algebra, which is isomorphic with the lattice Latom(Lalg(O)) 
of subsets of atoms in Lalg(O), ordered by inclusion (propositions 3.4 and 3.5). Thus, local 
finite-dimensionality of physical systems leads to a specific type of point-free granularity of 
spacetime.

Of course, the assumptions we made along the way could be further weakened. Indeed, the 
logic of the derivation seems general enough to allow for various possible extensions and mod-
ifications. For example, one could consider local observable algebras with non-trivial centers. 
On the other hand, one could abandon assumption 3.3 altogether. In the finite-dimensional case 
assumption 3.3 implies that the local observable algebra A  is generated by any local subfactor 
B ⊂ A and its relative commutant B′

A, which is also a local algebra, so that A ∼= B⊗B′
A. 

However, this does not usually hold in gauge theory. In the absence of assumption 3.3 we can 
still show that Lalg(O) atomic, since it is of finite length, but not necessarily atomistic. In this 
case, T (O) ∼= L∗∗

ds (Lalg(O)) is still an atomic frame, but not necessarily complemented (i.e. 
a Boolean algebra).
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As explained in the introduction, for physical reasons we expect the finite-dimensionality 
of local algebras manifest when gravitational effects become relevant. Thus, the (naive) expec-
tation is that the point-free granularity of spacetime associated with the atomicity of topology 
should become evident in high energy physics only close to the Planck scale. Accordingly, 
the experimental consequences of the small scale granularity of spacetime topology are 
expected to be extremely weak at macroscopic scales. The derivation of some more precise 
experimental consequences of the proposed spacetime granularity would however require 
the formulation of a concrete model, which would be locally finite-dimensional, and whose 
infinite-dimensional limit would coincide with some physical QFT model8. This is a highly 
interesting direction of research, and one that is being pursued by several authors [41–43], but 
is unfortunately outside the scope of this particular paper. Nevertheless, it is interesting to us 
that one can rigorously infer something concrete about the Planck scale structure of spacetime 
by such rather general assumptions as we have made here.
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