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CrossMark
Abstract
We analyze the cosmological solutions to the recently proposed nonlocal
quantum effective action for gravity with a cosmological term. We show that
the vacuum energy decays with a slow-roll parameter proportional to the
anomalous gravitational dressings
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1. Introduction

It was pointed out recently [1, 2] that Weyl anomalies in the renormalized quantum effective
action of gravity can have important consequences for the gravitational dynamics on cosmo-
logical scales. The relevant Weyl anomalies can be computed explicitly in a two-dimensional
model of gravity and are summarized by a nonlocal quantum effective action [3]. The resulting
quantum momentum tensor is nonlocal in general but simplifies for an isotropic and homo-
geneous universe and the cosmological equations can be solved analytically. The scale factor
exhibits power law expansion driven entirely by the slowly decaying vacuum energy [1, 3].

A four-dimensional phenomenological action (1) was proposed in [1, 2] motivated by these
two-dimensional results and from considerations of the local renormalization group [4-7].
This nonlocal action parametrizes possible Weyl anomalies arising from the renormalization
of composite operators. The resulting integro-differential equations describe the effective
classical dynamics of the spacetime metric at long distances.

The nonlocality may be surprising at first but one must bear in mind that the action (1)
should be regarded as the 1PI effective action and not the Wilsonian effective action. In gen-
eral, the 1PI effective action is expected to be nonlocal. A class of non-local generalizations
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of the Einstein—Hilbert term have been considered earlier to analyze cosmological evolution
[8—14] and can lead to interesting cosmology [15, 16]. The nonlocality that we consider is of
a very specific kind and is constrained by the requirement that the action should be a solution
of the local renormalization group equation. The main idea is that anomalous dimensions
of composite operators modify the trace of the quantum momentum tensor as encapsulated
by the local renormalization group equation. Therefore the momentum tensor itself must be
modified, which in turn can modify the gravitational dynamics. This reasoning suggests a
specific nonlocal generalization of Einstein Gravity.

In this paper we analyze the cosmological consequences of this action in a Robertson—
Walker spacetime. Somewhat surprisingly, the effective classical dynamics can be solved ana-
lytically even in four dimensions using the Weyl-invariant formulation discussed in [1, 2]. Our
main conclusion is that nonzero anomalous gravitational dressings lead to a slow quantum
decay of vacuum energy just as in two dimensions.

The paper is organized as follows. In section 2 we review the nonlocal four-dimensional
action proposed in [1, 2] and derive the cosmological evolution equations for an isotropic
and homogeneous universe. In section 3 we present the solutions to these equations which
describe an expanding universe with a decaying vacuum energy density. We give estimates of
the anomalous gravitational dressings and conclude with a discussion of the theoretical and
cosmological implications.

2. Quantum gravity at long distances

We are interested in the quantum effective action for the metric obtained by integrating out
the quantum fluctuations of various fields valid at distances large compared to the Planck
distance. The essential lesson that emerges from the study of the two-dimensional model
[1, 3] is that the physical coupling constants are the couplings of the gravitationally dressed
operators. The anomalous dimensions of the dressed operators are in principle different from
the anomalous dimensions of the undressed operators. This applies in particular to the square-
root of the determinant of the metric corresponding to the cosmological term as well as to
the Einstein—Hilbert term. The quantum effective action (1) should take into account these
anomalous gravitational dressings and can be obtained either by using the background field
method or as a solution of the local renormalization group equation [2].

2.1. A nonlocal action for gravity

The nonlocal action in the physical gauge is given by:
M2

= 7” /d“x\/?g (R[g] e Tr(®) 2Ae*FA<Ex>) (1)

where M, is the reduced Planck mass and the I';(¥,), i = K, A are the integrated anomalous
gravitational dressings. The field 3, is a nonlocal functional of the metric g,, defined by
[17-19]

I[g]

1
S = 5 [E9VRGiw) Fildl0). @
where
2
Filg) = Eile) = SV°Rlgl. Exle] = (R™7 Ryupo — 4R" Ry + R)lg]: ©
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and Gy(x,y) is the Green function of the Weyl covariant quartic differential operator

1 2

Aslg) = (V2)’ 4 2RV, V, + S (V'R)V, - SRV o

on the g,,, background satisfying
39 (x—y)
ALglGa(x,y) = 6W (x,y) = ——22. 5)
1[8]Ga(x.y) (%, ) N

For metrics related by a Weyl rescaling

g = ezzg(x) 77],“/ , (6)
the scalars F4 are related by

Fylg] = ™0 (Fafi] + 4 Aul] ) . @
and the operators A4 are related by

Aylg] = ™ Agfa]. ®)

One can choose a gauge in which ¥,(x) becomes the conformal factor of the metric with
respect to a reference metric 7, which satisfies the F-flatness condition F4[7j] = 0. The
expression (2) is obtained in this F-flat gauge by inverting (7). Note that the action (1) should
be regarded as the in-in effective action and hence one must impose retarded boundary condi-
tions. This ensures that the propagation is causal.

We emphasize that the action (1) is the result of having performed a path integral and is
not to be quantized further but is to be used for studying the effective classical dynamics. In
principle, the dressing functions can be computed ab initio in a given microscopic theory [2].
For now, we view these functions as a phenomenological parametrization of possible Weyl
anomalies and analyze the cosmological solutions of (1) in terms of these functions.

2.2. Weyl-invariant nonlocal action

The variation of (1) with respect to g, is very cumbersome because both A4 and F, have a
complicated dependence on the metric. The Weyl-invariant formulation discussed in [1, 2]
leads to considerable simplification by exploiting the fact that the spatially flat Robertson—
Walker metric is Weyl equivalent to the flat Minkowski metric.

In the Weyl-invariant formulation, one introduces a Weyl compensator field 2(x) and a
fiducial metric &, to write the physical metric as

8w =y, . ©)
With this arbitrary split, the physical metric is invariant under a ‘fiducial Weyl transformation’

Buy = €*Oh,,,  Qx) = Qx) — E(x). (10)
The fiducial metric can be further parametrized in terms of an F-flat reference metric 7,,, as

hyw = €0, (1n
Then, the Weyl factor 3, (x) is given by (2) evaluated on £,,,.. Equation (9) implies

Y =Q+ 5%, (12)
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and (10) implies that X, (x) is invariant under the fiducial Weyl symmetry. Let M be the UV
cutoff scale below the Planck scale. One can then define the gravitational coupling 2 by
_M

2
M, =

2 (13)
Henceforth we choose units so that My = 1. Substituting (9) and (12) into the action (1), one
obtains the Weyl-invariant quantum action

Ig[h, Q] = % /d“xx/—ihe“Q (R[hem] e Tr(24%) _ 2Ae_FA(Q+E”))
’ 2k
(14)
Using the Weyl transformation of the Ricci scalar and integrating by parts, we obtain

1
Iolh. Q] = 5 /dx [(R[h] re(1-TV)vop-6rdva. vzh) 22Tk _ 2Ae49—FA}
(15)

where dx = d*x v/—h and® I"i(") (Q + 3,) are the nth derivatives of the dressing functions.

The action (15) now has an enlarged gauge symmetry that includes local Weyl symmetry
in addition to diffeomorphisms. We have introduced an additional scalar degree of freedom
in the process, but the number of physical degrees of freedom remains unchanged. Using the
fiducial Weyl invariance one can choose a ‘physical gauge’ 2 = 0 so that the physical metric
is identified with the fiducial metric and one recovers the action (1). Alternatively, one can
keep 2 arbitrary and impose a scalar gauge condition on the fiducial metric such as F4[h] = 0.
In this F-flat gauge ¥, = 0 and X, = Q.

2.3. Evolution equations for cosmology

A homogeneous and isotropic universe is described by the Robertson—Walker metric. For
simplicity we consider the case when the spatial section is flat. In this case, one can choose
a gauge in which the fiducial metric h,, equals the flat Minkowski metric 7),,. Since this
is determined purely by the symmetry of the problem, the entire dynamics now resides in
the Weyl compensator. Moreover, the Minkowski metric is not only F-flat but Riemann-flat.
Consequently the variation of the nonlocal terms in the action (15) simplifies considerably.
Since F4[n] = 0, the variation of the Green function does not contribute, and we obtain

S = 4 / dy Gy (x.) 6F4[H](y) (16)

Furthermore, the quadratic terms involving the Riemann curvature tensors do not contribute
to the variation of F4/h] when evaluated around 7),,,, . The only nonzero variation comes from
the variations of the term linear in the curvatures:

SElH(3) = 3 V7 ORI (17

The total variation of 3, after an integration by parts is then given by

6 (x) = é / dy 6h" () (V .V — hu V) V2 Ga(x, ). (18)

©Henceforth, all covariant derivatives and contractions are with respect to the fiducial metric £,,,,.

4
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After performing the variation in the fiducial frame, it is convenient to rewrite the equations of
motion in terms of the gauge-invariant physical metric using (9). Under a Weyl transforma-
tion, the Einstein tensor transforms as [2]

E.ug] = Euwlh] + Dyu[h, QY
1
Dy h, Q) :=-2(V,V, —h,, V) Q+2 (v#vaﬂ + th|VQ|2> :
(19)

Substituting the above in the variation of (15) yields the equations of motion for the physical
metric
_ 2 (7K A
EP“/[g] =K (T/u/ + Tul/) (20)
where Tff,, is the momentum tensor of the ‘gravifluid’ [2], of purely geometric origin

1
K2 TK (x) = 2T (v,@ V.0 EUWWWZ)
+ ((Fg))z - F§(Z>) (Vi V.0~ an|VQ|2) - Fg) (ViVo — nm,Vz) Q
o / T T (V2O + [VOP) (VY = 00 V2) V2Gy(xy): (1)

and T/’}V is the momentum tensor of the ‘vacuum fluid’

2 A _ 204Tx—T
K TW(x) =—An,e k=LA

_ A aan / dyT ¥ (T, Y, — 0, V?) V2Ga(x,y) .

3
(22)
We emphasize that the contribution from the ‘gravifluid’ is purely geometric in origin and in

principle belongs to the left hand side of the equation (20) on the same footing as the Einstein
tensor. Since the fiducial metric is flat in this context, the equation (20) reduces to

D, Q) =r* (TS, +Th,) . (23)

2.4. Cosmological equations in an alternative gauge

As described in [2], it is possible to choose an alternative gauge in which the conformal factor

Y (x) is defined with respect to an R-flat reference metric T [20, 21]. In the R-flat gauge, the
expression for the conformal factor follows from the Weyl transformation of the Ricci scalar

Rlg] = e (R[] - 6V25, — 6]VE, ) . (24)
Imposing R[7] = 0 and inverting the above equation gives

S0 = (1= [ty e Rl ) 23
where G(x, ) is the Green function of the differential operator

(76 V2 + R)x [g] G(x,y) = 6@ (x,y). (26)
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To use this gauge in the quantum action, we express the fiducial metric as

7P Y, =Q+%,. (27)

We introduce the Weyl split (9) into the analog of the action (1) in the R-flat gauge with gravi-

hu =€

tational dressing functions’ fi(ig). The Weyl-invariant action then becomes

6], Q) = 2%2 /dx [(R[h] +6(1-TV)|vap -6 va. vi,,) 22Tk _ 2Ae49—FA}
(28)
where now I; = fi(Q + ih).
The equations of motion for a spatially-flat Robertson—Walker spacetime then follow from
the variation of this action around £,,,, = 7,,,. On a flat background, the variation of 2 (25)
receives no contribution from the variation of the Green function and is given by

5%, = /d4yé(x,y) 5 (V=hRy(y)) = /dy(Sh‘“’ (*V,LVV + hWVZ) é(x,y).
(29)
Furthermore, since R, =0, the equation (26) becomes the Green equation for the flat
Laplacian. Comparing with the Green equation (5) of A, on a flat background, we find that
the two Green functions are related through

~ 1
Glxy) = —¢ V2Gy(x,y). (30)
Introducing this in (29) we recover the same variation of 3;(x) in a flat background (18):
~ 1
5%, = < / dy 0h*" (V,,V,, — b, V) VZ Ga(x, ). (31)

Since h,,, is taken to be Minkowski, ¥, = %, = 0, and therefore Ti(Q) = f,(Q) As a result,
the equations of motion obtained in the two gauges are identical.

3. Quantum decay of vacuum energy

Thus far we have only required that the physical metric be Weyl equivalent to the Minkowski
metric. The equations derived in the previous section are valid generally as long as the Weyl
tensor of the physical metric vanishes. In a spatially-flat Robertson—Walker spacetime there is
further simplification because the scale factor of the physical metric is a function of only the
conformal time® 7. With our gauge choice of /,,,, = 1,,,, we can write

a(t) = e (32)

The momentum tensors (21) and (22) now simplify further and the integro-differential equa-
tion (23) reduce to an ordinary differential equation of the usual Friedmann—Lemaitre type but
for an effective quantum fluid with an unusual equation of state.

7 Note that Nuw = e Muv and X, = f)g + X5 As aresult, the integrated anomalous gravitational dressing func-
tions in the two gauges are related by a shift: I';(3,) = I'i(3, + X5).
8 Conformal time 7 is related to comoving cosmological time ¢ by dr = a%)'
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3.1 Effective quantum fluid

For the Robertson—Walker metric, the explicit form of G4(x,y) discussed in appendix B is actu-
ally not needed because its contribution to the momentum tensors is of the form

/ dyFIQ] (V.V, — 7, V) V2Ga(x,y) . (33)

The differential operator in the parenthesis vanishes when p = v = 7, so it does not contrib-
ute to the energy density. For all other components, the first term in the parenthesis vanishes
after integration by parts, and for the components y, v = i, the second term in the parenthesis
can be identified with the Green equation of A4[n]. It follows that the quantum momentum
tensors (21) and (22) correspond to perfect fluids, consistent with isotropy and homogeneity,
although they are not separately conserved.

The density and pressure of the vacuum fluid are given by

A
pa(t) = = e A pa(t) = wa(t) palt), (34)

o
wa(t) = (1 + §> . (35)

The density and pressure of the gravifluid after using the equations of motion are given by

1
A F;( : eFK*FA

px(t) = pl l—ifg) . px(t) = w(t) px(2), (36)
i -1 re
wi () = <—1+ I ) (37)
K K

We have written the expressions above in the ‘barotropic’ form with the effective pressure
proportional to the effective density, but the anomalous gravitational dressings I';(In a(t)) are
in general nontrivial functions of the comoving time. As a result, the barotropic indices w, and
wg are in general time-dependent’ and should be regarded as a convenient parametrization.
Combining the two contributions one obtains the total momentum tensor on the right hand
side of the equation (20). It is a perfect fluid with the effective density and pressure given by

A 1 x—T

pe(t) = el 1771“5;)6 KA pe(t) = we(t) pe(t) (38)

r®
)= (-1+3). 7= (F‘A‘)—F%‘)—K(l) . (39)
(1-Tg")
With this effective density, the equation of motion reduces to the first Friedmann equation

2

H? = L;’e (40)

9Recall that in classical cosmology the commonly encountered fluids have the barotropic index —1 for the cosmo-
logical constant, O for matter, and 1/3 for radiation.
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where H := a/a as usual. Note that our conclusions thus far follow purely from the symmetry
considerations of isotropy, homogeneity, and spatial flatness.

The momentum tensor for the gravifluid (36) is proportional to the cosmological constant
after using the equations of motion in a spatially-flat Robertson—Walker spacetime. As a result
the total momentum tensor for the effective fluid is proportional to the cosmological constant.
This implies that in the absence of the cosmological constant, the Minkowski metric continues
to be an exact solution of the new equation (20) in vacuum. On the other hand, for positive
cosmological constant, the classical de Sitter solution is no longer a solution of the quantum
equation (20) as we describe below.

The conservation equation for the effective fluid is

Pe = _3(pe + pe)H- 41)

A useful consistency check is that the expressions (38) and (39) satisfy the conservation equa-
tion. It is of course guaranteed by the fact that the nonlocal action (1) is coordinate invariant
and follows from the Bianchi identity. Note, however, that the gravifluid and the vacuum fluid
are not conserved separately for nonzero ['k.

3.2. Cosmology of the decaying vacuum energy

The expressions (38) and (39) for the effective density and pressure already give their func-
tional dependence on the scale factor. As discussed above, they automatically solve the con-
servation equation (41). Our task is then reduced to solving the equation (40) to obtain the
scale factor as a function of the cosmological time. Even though (40) is much simpler than an
integro-differential equation, it is nevertheless a complicated ordinary differential equation.
In general, the integrated anomalous dressings I'x and I'y are nontrivial functions of the scale
factor and this equation can be solved only numerically.
Analytic solutions are possible when 'k and I"y are both linear functions of €2

k() = vk Q(x), LA(Q) =74 Q(x), 42)

where ~; are constants'?. The barotropic index for both the vacuum fluid (35) and the gravi-
fluid (37) becomes constant. It is useful to consider this case to gain some understanding of
the resulting solutions. From (35) and (37) we obtain

ya —1

wA=—1+%A wg = 1 (43)

More interestingly, the effective fluid appearing on the right-hand side of the Einstein equa-
tions becomes also barotropic with index

we=—l+3. with 7=171—%. (44)
The cosmological solution to (20) is then given by
-
a 2
p0=pe (&) 0 aln =4 3007, @s)

10Tn two dimensions, I (2) and T'y (£2) are indeed linear functions with yx = 0 and 5 = 2 [3]. This is a conse-
quence of the conformal invariance of the timelike Liouville theory. In general, this need not be true, but it may be
possible to approximate the integrated anomalous gravitational dressings by linear functions for long enough time
intervals during the evolution of the universe.
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where pe., H., a, are the initial values at the beginning of universe at time ¢ = 0. The densities
of the vacuum fluid and the gravifluid are given by

pa(t) = (=) pe(t) s pi(t) = 7k pe(t) (46)
The conformal time as a function of the comoving time is given by

(1+21H,)5  wh 2
T =T, ~H,t)"v  where 7, = —v-——.
(v = 2)H.a.

2 (47)

The range of ¢ is 0 < ¢ < oo with the universe starting with scale factor a.. The range of 7 is
<

|7e] K7 <00 for v >2, (48)

—|r| T <0 for 0<y<2. (49)

As a function of 7, the scale factor and the density are given by

a(r) = au(2)7E . pelr) = per( )T (50)
T Ta
In the semiclassical approximation both anomalous dressings are expected to be small. A
spatially-flat Robertson—Walker solution is only compatible with A > 0. For positive v, our
model describes an expanding universe driven by an effective fluid with a barotropic index
that is slightly larger than its classical value —1. We arrive at the conclusion that the vacuum
energy density decays from its initial value p,, which could be of the order of the string scale
or the scale of supersymmetry breaking. The classical exponential expansion of de Sitter spa-
cetime is slowed down to a power law expansion as a result of the quantum anomalous gravi-
tational dressings. In the limit of vanishing -y, one recovers de Sitter spacetime with constant
density.
The quantum decay of vacuum energy and the dynamics of the Omega field provides a new
mechanism to drive slow-roll inflation in the early universe. It is convenient to define slow-roll
parameters as usual in terms of fractional change in the Hubble parameter and its derivative:

. _H  dH nd g G _ dlney 51
=" T T THAr M= Hen T HAr

For the solution
eH:% and 7y =0. (52)

The condition for accelerated expansion (& > 0) requires that ey should be less than one.
Slow-roll inflation requires that ey < 1. It is also necessary that 7y < 1 so that inflation
lasts long enough. Since ~ is small in the semiclassical approximation, all these conditions
would be satisfied. A generic prediction is that ny = 0. Thus, the quantum decay of vaccum
energy can drive slow-roll inflation in the early universe. For small , the scale factor expands
almost exponentially as a power law with a very high exponent. Nonzero ey measures the
deviation from exact exponential expansion but the parameter 75 vanishes as in exact de Sitter
spacetime.

In this model of inflation without an inflation or matter fields, inflation would last forever,
the energy density would eventually vanish and the universe would end up empty. In order
to end inflation, more realistic models with matter fields need to be considered. Matter fields
would already be present during the inflationary epoch (whose quantum fluctuations integral
gives rise to the low-energy effective action (1)), but their contribution to the evolution of the
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background metric would be negligible due to the effective density being dominant during this
period. One possibility for an inflationary end would be a phase transition triggered by a mas-
sive scalar field with m? turning negative. If the transition had high latent heat, it could reheat
the universe and trigger an exit into a hot big bang.

More generally, the motivation for the phenomenological action (1) and the general lesson
from this work is that renormalisation of composite operators leads to Weyl anomalies that
become encoded in metric-dependent, and hence position-dependent, gravitational dressings
of these operators as dictated by the renormalisation group. These dressings can be interpreted
as effectively enducing a position-dependence in the coupling constants of the corresponding
operators. In a model with scalars and fermions living on the background considered above,
this would lead to time-dependent physical coupling constants. This time-dependence could
then induce phase transitions, or particle-production as considered in models with parametric
resonances. It would be very interesting to explore concrete models of these mechanisms.

For a general functional form of the anomalous dressings I'x and I's, the equation (40) rep-
resents a novel generalization of the usual Friedmann equation because the equation of state
of the effective fluid is rather unusual. It is conceivable that this has interesting consequences
for early cosmology. Numerical integration may be necessary to find the time-dependence of
the scale factor. However, we see from (38) that as long as I'y — I'x is positive during the cos-
mological history, vacuum energy will decay. For negative ~y, the null energy condition would
be violated. In this case, the effective fluid could provide a model of phantom energy [22].

3.3. Broken time translation symmetry and stability

This novel mechanism for the decay of the vacuum energy raises the following puzzle. Unlike
the classical de Sitter solution, our quantum corrected slow-roll solution (45) breaks the global
time translation symmetry

R (53)

of the action (1) for a constant 7. If a solution breaks a global symmetry of an action, the
symmetry-transform of a given solution generates a new solution. This implies that if one
now considers a position dependent symmetry parameter 7(x) then the effective action for
m(x) must be derivatively coupled so that there is a flat direction and arbitrary constant 7 is
a solution of the equations of motion that follow from this effective action. Correspondingly,
one expects a Nambu—Goldstone like scalar fluctuation mode. In usual inflationary models
this scalar mode can be identified with a gauge-invariant combination of the inflaton and the
metric. This idea is the basis of effective field theories of inflation [23, 24]. Where is this
additional scalar degree of freedom? One could pose the puzzle slightly differently. Time
translation symmetry is part of the diffeomorphism group. How can quantum effects break
this symmetry?

The resolution of this puzzle is as follows. The scale factor of our solution has an initial
value a, at the initial value surface ¢ = 0. Since we are using semiclassical gravity, a, can be
taken to be of the order of the short-distance cutoff scale a little larger than the Planck length.
This means that, unlike the eternal de Sitter solution, one cannot continue this solution to
times earlier than ¢ = 0. The global time translation symmetry is thus explicitly broken by the
fact that one must cutoff the evolution with an initial value surface in the early universe and
impose initial conditions. Even though the action is invariant under the time translation sym-
metry, the initial conditions are not. Thus, one cannot apply the argument above to generate
new solutions from a given solution to deduce the existence of a propagating scalar degree of
freedom.

10
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One can state the result slightly differently. The nonlocal expression (2) for the Weyl fac-
tor follows from inverting (7) only if one discards all solutions of the homogeneous equation

A8, =0. (54)

These solutions correspond precisely to the would-be Nambu—Goldstone scalar fluctuations.
The initial conditions on ¥, on the initial value surface ensure that ¥, is determined entirely
in terms of the metric and is not an additional propagating field.

It is possible to reformulate the argument above using a local action. One can recast the
nonlocal action (1) in a local form [11, 25] by introducing two auxiliary scalar fields X (x) and
U (x) with the action

My o[ Tk (D) D) 1
Slg, 2, ¢ = > /d xv/—g |R[gle —2Ae + U (A - 2 Falgl )| - (55)

The equations of motion for the two auxiliary fields are
AgU(x) = R[g] T e 1% AT e A AS(x) = %F4[g].
(56)
The field ¥(x) acts therefore as a Lagrange multiplier for the condition 3 = 3, and we
recover (1) upon using its equation of motion in (55). This local action will reduce to the
original nonlocal action only if the homogeneous solutions of (56) are eliminated by imposing
an initial condition for ¥ and X that is similar to the initial condition for X, . This ensures that
the only propagating degrees of freedom are the usual tensor fluctuations of the metric and
there are no additional scalar fluctuations.

If a Lagrangian depends on higher time derivatives of the fields, then one should also worry
about the possibility of the Ostrogradsky instability [26]. We do not carry out the stability
analysis of our action in this paper but refer the reader to the stability analysis for a class of
nonlocal actions [10, 11] similar to the one we consider in this paper in the R-flat gauge in
section 2.4.

These conclusions are physically reasonable from the point of view of the original quantum
path integral. The action (1) is the quantum 1PI-effective action for the background metric
obtained by a semiclassical evaluation of the path integral at weak coupling. It would be
strange if one were to discover an extra scalar degree of freedom or unphysical instability in
this IR effective action if the starting point is a well-defined path integral.

3.4. Quantum gravity and De Sitter spacetime

The idea of vacuum energy decay caused by infrared quantum effects has been explored ear-
lier in four-dimensional gravity by several physicists. There is considerable divergence in the
literature about the final result [27-35] and more generally about infrared effects in nearly
de Sitter spacetime [36—48]. One of the new ingredients in the present work is to summarize
the quantum effects in terms of a gauge-invariant nonlocal action. This way of organizing
the analysis may be useful for future explorations since it separates the computation of the
anomalous dressings from the classical evolution. Since the effective action (1) is a solution to
the local renormalization group equation, it effectively sums up the leading logarithms. To see
this explicitly, one can expand the solution (50) for the scale factor for small :

a(t) = au ()7 = a (2) (D)= ~ BT [1 - %log (T> +] .

Tx T Tx T Tx
(57)

1
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One obtains the usual de Sitter solution when v = 0. For nonzero ~ there are logarithmic cor-
rections which add up to a small exponent which slows down the de Sitter expansion.

As it stands (1) should be regarded as a phenomenological parametrization in terms of the
integrated anomalous gravitational dressings. These anomalous dressings are computable
in a given microscopic theory. Renormalization of Newton’s constant and the cosmological
constant has been considered earlier in the literature [49-51]. One can extract the precise
logarithmic running from these results. The order of magnitude of the anomalous dimensions
is expected to be GA. If the UV cutoff is My then the vacuum energy is of order Mg, A is of
the order M3 /M2, and the Hubble scale is H = M3 /M,,. The anomalous gravitational dress-
ings would thus be of order H?/ Mg. In very early universe, for example if H is of order 0.1M,
then these estimates suggest that v and the slow-roll parameter would be of order 0.01. One
can thus obtain slow-roll inflation driven entirely by slowly decaying vacuum energy through
the nontrivial effective classical dynamics of the Omega field. This provides an example of
‘inflation without inflaton’ or what is termed ‘omflation’ in [1, 2]. A high value of H is ruled
out by current bounds on primordial gravitational waves but it is interesting that an alter-
native mechanism for inflation is possible. It is worth exploring if this mechanism can be
embedded in a realistic cosmology and if there are other ways to enhance anomalous dress-
ing, for example, by thermal effects. A systematic analysis of these effects will be presented
in [2, 52].

In the present era, the value of ~ is expected to be of order GA, which would be too small
to be observationally interesting. Nevertheless, one is led to the conclusion that, in principle,
the dark energy will eventually decay even if it happens extremely slowly. At a purely theor-
etical level, this provides a new perspective on quantum gravity in de Sitter spacetime. In a
quantum theory of gravity there are no gauge-invariant local observables because the met-
ric itself is dynamical. An important question, independent of any ultraviolet completion of
Einstein gravity, is to define gauge invariant observables for the three possible asymptotically
maximally symmetric spaces with zero, negative, and positive curvature. In asymptotically
Minkowski spacetime, the observables are the S-matrix elements. In asymptotically Anti de
Sitter spacetime the observables are the boundary correlation functions. In both cases, string
theory provides a consistent framework and precise prescriptions for obtaining well-defined
finite answers for these quantities. On the other hand, quantum gravity in asymptotically de
Sitter spacetime presents a number of conceptual difficulties. Considerations of de Sitter
entropy [53, 54] suggest that the Hilbert space might be finite-dimensional [55-57] but it
is not entirely clear what the gauge-invariant observables on this Hilbert space might be
[58-60]. Moreover, it has proved to be difficult to accommodate asymptotically de Sitter
spacetime within the framework of string theory. According to a no-go theorem, it is impos-
sible to obtain a de Sitter compactification in the classical supergravity limit [61, 62]; and all
known constructions in string theory [63—65] correspond to metastable vacua which decay
nonperturbatively.

Our results imply that perhaps it is not necessary to try to make sense of asymptotically
de Sitter spacetime if we take quantum effects into account even at the perturbative level.
If ~ is positive, the universe will be asymptotically Minkowski in the future. Hence the
Penrose diagram looks like a ‘house’ with a sloping roof in the asymptotic future and with
a floor on the initial spacelike surface in the asymptotic past where one must impose an
appropriate cutoff to avoid the initial singularity. In this case, the observables are the usual
cosmological observables computed for a given wavefunction of the universe defined on the
initial value surface.
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Appendix A. Nearly static coordinates

Static coordinates of de Sitter spacetime are useful for studying the thermodynamic properties
of the spacetime [66, 67]. Even thought there is no global timelike Killing vector in de Sitter
spacetime, the static coordinates provide a timelike future-oriented Killing vector in the static
patch. These are also the natural coordinates for a Schwarzschild-de Sitter solution. Is there
an analog of the static coordinates for our new solution?

Since our solution violates the de Sitter symmetry, we do not expect exactly static coordi-
nates. Indeed, it can be shown that no such exact static coordinates exist for our cosmological
solution (45). However, since any two Robertson—Walker metrics are Weyl equivalent, our
solution admits nearly static coordinates in which it is conformal to static de Sitter:

2 e 7 2p2 2 2 2 102
ds” = (1th2> |:—<1—hR)dT +md1€ +R sz ,(Al)
where constant /4 is defined as
h= 27 H.al.
2 (A.2)

In the limit of vanishing v, one recovers the static de Sitter metric.

Appendix B. Green function in Minkowski spacetime

The quartic Green equation (5) is Weyl invariant. Hence the Green function in a conformally
flat spacetime is the same as the Green function in Minkowski spacetime:

L, = dE d’k 1 —EA+iRAF
Gt %1, ") = / 2 (27)? ((E2 _k2)2> o o

where A7 :=t — ¢ and A% = ¥ — x’. As usual that the retarded Green function is obtained by
lowering the poles off the real axis in the E integral. The E integral gives

—iEAt 2 i\t R . 1 . .
/dE(E_i)zw _ TWZQ(AI) |:lkT (eflkAI + elkAt) 4 E (eflkAt _ elkA[):| . (B2)

The angular integrals can be readily performed to obtain

27 I . 1 ik| A% —ik| AX|
d¢ do . i 1 / KIAF 1 e e

9) elkx d f)e! |AX| cos O __ B.
/0 2w Jy 27 sin(9) e 2r J_, (cos f)e 27| AX| k (B.3)
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and we are left with the integral

LA T s A o .
2 ) — ik|AX] 1k|Ax\) ikAr _ ikAt
Grel(t9~xs r,x ) 87’[’|A)?| /0 72 7]{2 (e € (e € )

IAL [ iaz —ilaz i .
i > (ek|A|_e k|A\) (e kAt+ekAt)
(B.4)

Since the integrand is even, one can extend the integral: [ dk — 1 [ _dk. The integrand
has no poles so one can deform the contour slightly below the real axis and write the integrand
as a sum of exponentials with poles

- O(Ar) [ dk [1 / 4z A . » - -
Gt 70 3) = dk |1 ( ik(|AX|—Af) _ ik(JAR+AL)  ik(—|A¥—Ar) 1k(—mx\+m))
(B0 = e T | o [kz ¢ © © te

i % (eik(\Aﬂ—At) 1 kAT FA) _ Gik(—| AT AN _ eik(—|A)?\+At)):| )

(B.5)
This can be readily evaluated using the Cauchy residue theorem to obtain
L -1 — =X
Gt 30, 77) = &1 K=xD) (B.6)
8T
One can verify explicitly that it satisfies the Green equation:
0(t—r) 1 1 .
4oyt —r) L a2 (AN s 5B m) G3) (=
(0] = ViV3) i . {250 v (r)} o(t—r)o(X) = 0(1)0% (X). (B.7)

Note that this retarded Green function receives contribution not only from the points on the

light cone but also from the ‘wake’ inside the light cone in four dimensions. This phenomenon

occurs also in two dimensions for the Green function of the d’ Alembertian which is given by
1

GOt x;t x) = S0 =1 —x =) (B.8)

It is interesting to note that the Green function for the d’ Alembertian receives contributions

from within the light-cone for all odd dimensions but gets contributions from points precisely
on the light cone in all even dimensions except in two dimensions [68].
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