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Abstract. Modifying black hole horizon can drastically change the spectrum of quasinormal
modes. But if the modification is close enough to the horizon the early ringdown signal
remains almost unaltered, and well described by the quasinormal modes of the original GR
solution. I show how the original quasinormal modes emerge in the sum over the new modes.
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Einstein theory of gravity has a unique prediction for how perturbations around black
holes relax. This relaxation process that is called the ringdown phase is accompanied by
the emission of gravitational waves. Modifications of the Einstein theory or environmental
effects generically change those predictions, giving us the opportunity to test them against
observations, see e.g. [1].

Traditionally, the ringdown signal is characterized by the spectrum of the quasinormal
modes. These are the eigenmodes of the wave equation for linearized perturbations with
out-going boundary condition at infinity and in-going condition at the horizon (when there
is one). They appear as the complex poles of the retarded Green’s function in the frequency
space. For any stable system the quasinormal modes decay with time and hence they give a
useful description of the relaxation process. See [2, 3] for reviews.

Modifications of the Einstein theory or the background black hole solution can drasti-
cally change the quasinormal mode spectrum, nevertheless there are examples in which the
ringdown signal remains almost the same for a long time. The goal of this note is to explain
how this happens via a simple model.

It is a straight consequence of causality that at early times black hole ringdown signal
has to be identical to what GR predicts, provided any modification to the black hole solution
is close enough to the horizon. In particular, if the linearized perturbations experience the
same effective potential as in the Schwarzschild geometry until they reach large negative
values of tortoise coordinate

r + rg log(r − rg) ∼ −a� −rg, (1)

the effect of the modification is observed as “echoes”, arriving with a delay of order a with
respect to the early ringdown signal [4]. See [5–10] for further discussions of this scenario.1

To model this situation consider a 1 + 1− d wave equation[
∂2t − ∂2x + V1(x) + V2(x)

]
ψ(t, x) = 0 (2)

where V1(x) and V2(x) are hard barriers localized, respectively, at a1 and a2 < a1. What I
mean by hard barrier is that in isolation V1 and V2 have a spectrum of quasinormal modes
with characteristic frequency |ω| � 1/(a1− a2). This implies that for an initial perturbation
at x0 > a1, the observer at x > x0 receives an early response after

t1 ≡ x+ x0 − 2a1, (3)

which is characteristic of V1(x). For instance, if V1 is the effective potential for perturbations
on Schwarzschild background with gravitational radius rg, this response has an exponentially
falling profile exp(−λ(t − t1)), with λ ∼ 1/rg. The existence of the second barrier would
matter only after

t2 ≡ x+ x0 − 2a2, (4)

and the requirement of hardness is (t2 − t1)� rg.

In the very same regime, the spectrum of the quasinormal modes of the double-peak
potential is completely different. Indeed, they have a simple interpretation as a set of almost

1Echoes can also be caused by the reflection of the waves from matter distribution far from the horizon.
See e.g. [11, 12]. The focus here will be on modifications near the horizon, though a similar argument is
expected to apply to the latter case.
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stable bound-states, which are trapped between the two barriers. They have approximately
equidistant real parts

Re ωn '
nπ

a1 − a2
, (5)

with small imaginary part Im ωn = O(1/(a1 − a2)), resulting from the leakage through the
two hard barriers. The question is how the early signal matches the non-existing quasinormal
modes of an isolated V1 potential.

For a general potential V (x), the response at large positive x to an in-falling initial
perturbation ψ0 = δ(t+ x− x0), is

ψ(t, x) =

∫ ∞
−∞

dω

2π
R(ω)e−iω(t−(x+x0)), (6)

where R(ω) is the reflection coefficient. R(ω) and T (ω), the transmission coefficient, are
defined in terms of x→∞ behavior of the solution of[

−∂2x + V (x)
]
φ(x) = ω2φ(x), (7)

with the boundary condition φ(x→ −∞) = e−iωx:

φ(x→∞) =
1

T (ω)
e−iωx +

R(ω)

T (ω)
eiωx. (8)

For the double-peak potential, they can be easily related to R1,2(ω) and T1,2(ω), the reflection
and transmission coefficients from the first and the second barriers. We get (dropping the ω
arguments for brevity)

R

T
=

(
R1

T1T2
e−2iωa1 +

R2

T̄1T2
e−2iωa2

)
(9)

and
1

T
=

(
1

T1T2
+
R̄1R2

T̄1T2
e2iω(a1−a2)

)
, (10)

where R̄1(ω) = R1(−ω) and T̄1(ω) = T1(−ω).

Substituting R(ω) from (9) and (10) in (6), we can evaluate the ω integral using the
residue theorem. There is no singularity in the upper-half plane. At very early times, the
integration contour is closed in the upper-half plane and we get 0. For t1 < t < t2, the first
term in (9) becomes relevant,

ψ(t, x) =

∫ ∞
−∞

dω
R1e

−iω(t−(x+x0−2a1))

2π[1 + T1R2(R̄1/T̄1) exp(2iω(a1 − a2))]
. (11)

Closing the contour in the lower-half plane, we pick up the residues of the poles, which are
solutions {ωn} to

F (ω) = 1 + T1R2(R̄1/T̄1)e
2iω(a1−a2) = 0, (12)

while since |R1|2 + |T1|2 = 1, the poles of R1 in the numerator of (11) cancel with the poles
of T1 in the denominator. Hence, one obtains

ψ(t, x) '
∑
n

R1(ωn)

2(a1 − a2)
e−iωn(t−(x+x0−2a1)), (13)
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where I used the hard-barrier assumption to approximate

dF

dω

∣∣∣∣
ωn

' −2i(a1 − a2). (14)

(Since a1− a2 is the largest length scale in the problem, the dominant term in dF/dω comes
from taking the derivative of e2iω(a1−a2). The result can then be simplified using F (ωn) = 0.)

Note from (12) that |Im ωn| ∼ 1/(a1−a2), which is much smaller than the characteristic
time-scales of interest. Neglecting Im ωn and using the regular spacing (5) of the Re ωn, the
sum (13) can be approximated by the following integral

ψ(t, x) '
∫ ∞
−∞

dω

2π
R1(ω)e−iω(t−(x+x0−2a1)). (15)

This is the response of an isolated V1 potential, localized near a1.
Therefore, as long as there is a hierarchy between the characteristic frequency of two

separate features in the potential and their separation a1 − a2, the above argument shows
that at early times the response is well-described by the quasinormal modes of the closest
feature, as it should.
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