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Abstract.  We show that the symmetry-breaking gap of the quantum Ising 
model in the transverse field can be extracted from free evolution of the 
longitudinal magnetization taking place after a gradual quench of the magnetic 
field. We perform for this purpose numerical simulations of the Ising chains with 
either periodic or open boundaries. We also study the condition for adiabaticity 
of evolution of the longitudinal magnetization finding excellent agreement 
between our simulations and the prediction based on the Kibble–Zurek theory 
of non-equilibrium phase transitions. Our results should be relevant for ongoing 
cold atom and ion experiments targeting either equilibrium or dynamical aspects 
of quantum phase transitions. They could be also useful for benchmarking 
D-Wave machines.

Keywords: quantum quenches

M Białończyk and B Damski

Dynamics of longitudinal magnetization in transverse-field quantum Ising model: from symmetry-breaking gap to Kibble–Zurek mechanism

Printed in the UK

013108

JSMTC6

© 2020 IOP Publishing Ltd and SISSA Medialab srl

2020

20

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/ab609a

PAPER: Quantum statistical physics, condensed matter, integrable systems

1

Journal of Statistical Mechanics: Theory and Experiment

© 2020 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/ 20 /013108+27$33.00

mailto:bogdan.damski@uj.edu.pl
stacks.iop.org/JSTAT/2020/013108
https://doi.org/10.1088/1742-5468/ab609a
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ab609a&domain=pdf&date_stamp=2020-01-27
publisher-id
doi


Dynamics of longitudinal magnetization in transverse-field quantum Ising model: from symmetry-breaking gap to Kibble–Zurek mechanism

2https://doi.org/10.1088/1742-5468/ab609a

J. S
tat. M

ech. (2020) 013108

Contents

1. Introduction	 2

2. Idea	 3

3. Two spins	 7

4. Dynamics of periodic chains	 9

5. Dynamics of chains with open boundaries	 12

5.1.  Quenches stopping in ferromagnetic or paramagnetic phase..........................14

5.2.  Quenches to critical point...............................................................................15

6. Discussion	 21

Acknowledgments................................................................................. 22

Appendix A. Longitudinal magnetization in Jordan–Wigner- 
transformed periodic Ising chains................................................... 22

Appendix B. Diagonalization and time evolution of Ising  
chains with open boundaries........................................................... 24

B.1.  Diagonalization..............................................................................................24

B.2.  Equilibrium longitudinal magnetization.........................................................25

B.3.  Time evolution...............................................................................................25

References	 26

1.  Introduction

Quantum phase transitions take place when tiny changes of the external parameter, 
such as the magnetic field in spin models or the lattice height in cold atom setups, can 
induce radical changes in ground state properties of the system [1–4]. This can happen 
when the system is near the critical point separating its phases.

One of the typical features associated with quantum phase transitions is the sym-
metry-breaking phenomenon, where one of the phases of the thermodynamically-
large system has degenerate ground states, which do not respect the symmetry of the 
Hamiltonian. Such a degeneracy is typically lifted in finite systems, where a small 
energy gap between lowest-energy eigenstates of the Hamiltonian is present. Rapid 
disappearance of this gap with increase of the system size signals the onset of the 
symmetry-breaking phenomenon that is fundamentally important for understanding of 
both equilibrium and non-equilibrium phase transitions. It is thus very interesting to 
address the question how one can access the symmetry-breaking gap in real systems to 
observe emergence of such a compelling phenomenon.

We make a step forward in this direction by providing an explicit two-stage scheme 
for studies of the symmetry-breaking gap in the paradigmatic system undergoing a 
quantum phase transition: the quantum Ising model in the transverse magnetic field 
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[1]. In the first stage, the system is gradually driven to the desired value of the trans-
verse magnetic field (see [5–22] for studies of dierent aspects of dynamics of the 
quantum Ising model under similar driving). In the second stage, the system undergoes 
free evolution and oscillations of its longitudinal magnetization are recorded. They 
encode the symmetry-breaking gap.

While our studies target a specific model, we expect that they can be general-
ized to other, not necessarily exactly solvable systems, which can be experimentally 
approached in cold atom and ion simulators of various condensed matter models  
[4, 23]. In fact, while pursuing this work, we have come across a recent paper discussing 
experimental studies of the symmetry-breaking gap in a cold atom cloud [24]. We will 
first present our results and then compare the two approaches.

The outline of this paper is the following. We explain the idea behind our work 
in section 2. We illustrate in section 3 the concepts related to the symmetry-breaking 
gap and the equilibrium longitudinal magnetization in the simplest version of the Ising 
model composed of just two spins. We then discuss in section 4 dynamical extraction 
of those quantities from after-quench free evolution of the longitudinal magnetization 
in the periodic Ising chain composed of several spins. Next, we extend these studies in 
section 5 to systems composed of up to several hundreds of spins by considering Ising 
chains with open boundaries, where computations of the longitudinal magnetization 
can be more eciently done. The overall discussion of our results is presented in sec-
tion 6. Finally, technicalities related to the studies of the Ising chains with either peri-
odic or open boundaries are presented in appendices A and B.

2.  Idea

To explain the idea behind our proposal, we introduce the quantum Ising model in the 
transverse magnetic field g, whose Hamiltonian in the periodic chain can be written as 
[25]

H(g) = −
N∑
i=1

(
σx
i σ

x
i+1 + gσz

i

)
�

(1)
σx
N+1 = σx

1

where σx,y,z
j  is the Pauli matrix acting on the j th spin, N is the number of spins, and 

g � 0 is assumed in this work. Such a model has two phases: the ferromagnetic phase 
for 0 � g < 1 and the paramagnetic phase for g  >  1. The breaking of the Z2 symmetry 
of this model, associated with the σx

j → −σx
j  symmetry of the Hamiltonian, can be 

easily explained at g  =  0, when the two ground states have all spins aligned in the ±x 
direction

| →→→ · · ·〉, | ←←← · · ·〉.� (2)
Then an arbitrarily small perturbation along the x direction, say −h

∑
i σ

x
i  with h → 0+, 

makes | →→→ · · ·〉 the ground state of the system breaking the spin-flip symmetry sup-
ported by the Hamiltonian. Importantly, degeneracy of the ground state, in thermody-
namically-large systems, persists in the whole ferromagnetic phase.

https://doi.org/10.1088/1742-5468/ab609a
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The idea that we have is that one can initially set g  =  0 and prepare the system in 
one of the states given in (2), say

|ψ〉 = | →→→ · · ·〉.� (3)
We propose then to evolve the system according to the following protocol

g(t) =

{
gf + t/τQ for − gfτQ � t � 0

gf for t > 0� (4)

with τQ controlling the rate of driving the system to the magnetic field gf , where free 
evolution begins.

The natural observable for studies of the symmetry-breaking gap is the longitudinal 
magnetization

Mx = 〈σx
i 〉,� (5)

where the choice of the site index i is arbitrary in a periodic chain. Such an observable 
is sensitive to the way in which the symmetry is broken. Indeed, it is well known that

−M eq
x � Mx � M eq

x ,� (6)
where in the thermodynamically-large system [26]

M eq
x =

{
(1− g2)1/8 for 0 � g � 1

0 for g > 1
.� (7)

M eq
x  will be called the equilibrium longitudinal magnetization. It was obtained in the 

N → ∞ limit from the asymptotic form of the two-point correlation functions. We will 
study it in finite systems, where a dierent approach has to be employed (see below). 
Typical results that we obtain are illustrated in figure 1, where we see that M eq

x  is ana-
lytic when N < ∞. In such systems, the drop of the longitudinal magnetization is not 
as steep as in (7) on the ferromagnetic side. On the paramagnetic side, non-zero value 
of M eq

x  appears–see (27) and discussion around it.
The question now is how the symmetry-breaking gap can be extracted from dynam-

ics of the longitudinal magnetization. To explain that, we first note that the expecta-
tion value of the σx

j  operator vanishes in all eigenstates of Hamiltonian (1) for g  >  0. 
This can be proved with Wick’s theorem [27] in the fermionic representation of the 
Ising model, which we briefly introduce in appendix A. Non-zero value of the longitu-
dinal magnetization can be obtained by evaluation of (5) in a proper superposition of 
two eigenstates of the Hamiltonian. In fact, deceptively simple-looking initial state (3) 
is a macroscopic superposition of two eigenstates belonging to dierent sectors of the 
spectrum of Hamiltonian (1).

To understand this statement, we note that Hamiltonian (1) commutes with the 
parity operator,

P =
N∏
i=1

σz
i , [H,P ] = 0.� (8)

This leads to splitting of the Hilbert space into two subspaces, where the eigenstates have 
either  +1 or  −1 parity [28]. The symmetry-breaking gap δ is the dierence between the 
energies of the lowest-energy eigenstates in the negative and positive parity subspaces 

https://doi.org/10.1088/1742-5468/ab609a


Dynamics of longitudinal magnetization in transverse-field quantum Ising model: from symmetry-breaking gap to Kibble–Zurek mechanism

5https://doi.org/10.1088/1742-5468/ab609a

J. S
tat. M

ech. (2020) 013108

in the ferromagnetic phase, where the symmetry-breaking phenomenon takes place. 
Such a quantity, however, will be of key importance in our studies for any value of the 
magnetic field g. We will thus call it the symmetry-breaking gap even when it will be 
computed at the critical point or in the paramagnetic phase, which will simplify our 
discussion.

These features of the spectrum are illustrated in figure 2. A closed-form expression 
for δ was given in [28]

δ = gN
∫ 1

0

dt
4N

π

tN−3/2
√

(1− t)(1− g2t)

1− (gt)2N
for 0 � g < 1,� (9)

δ = 2g − 2 + g−N

∫ 1

0

dt
4N

π

tN−3/2
√
(1− t)(g2 − t)

1− t2N/g2N
for g > 1,� (10)

δ = 2 tan
( π

4N

)
at g = 1.� (11)

These expressions can be used for showing that δ vanishes exponentially (algebraically) 
with the system size deeply in the ferromagnetic phase (near the critical point) [28]. 
Deeply in the paramagnetic phase, δ is well-approximated by an expression that is 
obtained from (10) after neglecting the term containing the integral.

Besides the symmetry-breaking gap, there are also dynamical gaps ∆+ and ∆−. 
They are defined as energy gaps in subspaces of positive and negative parity between 
the ground state and the first excited state that can be populated during evolution 
starting from (3)–see figure 2. Their importance comes from the fact that commutation 
relation (8) prohibits dynamical transitions between the two parity subspaces. As a 
result, system’s excitation due to driving (4) depends on ∆±, the quench time τQ, and 
the initial state (3) for time evolution. It has nothing to do with the symmetry-breaking 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.2

0.4

0.6

0.8

1
M

x

g

eq

Figure 1.  The equilibrium longitudinal magnetization M eq
x  of periodic Ising chains. 

The curves, top to bottom, correspond to system sizes 2 (black), 12 (red), and ∞ 
(blue). The first of them comes from (26), the second one has been numerically 
obtained through exact diagonalization, the last one is given by (7).
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gap δ as long as there is no symmetry-breaking perturbation in the system, which is 
the case in our studies.

If we now note that σz| →〉 = | ←〉, which implies σz| ←〉 = | →〉, we see that the 
ground states in the positive and negative parity subspaces at g  =  0 can be written as

|GS±(g = 0)〉 = | →→→ · · ·〉 ± | ←←← · · ·〉√
2

,� (12)

which in turn allows us to cast initial state (3) to the following form

|ψ〉 = |GS+(g = 0)〉+ |GS−(g = 0)〉√
2

.� (13)

Next, we use (8) and employ time-dependent Schrödinger equation to arrive at

|ψ(t)〉 = |ψ+(t)〉+ |ψ−(t)〉,�
(14)

P |ψ±(t)〉 = ±|ψ±(t)〉.

-14

-13

-12

-11

-10
ei

ge
ne

ne
rg

y

-16

-15

-14

-13

-12

positive

negative

positive

negative

g=0.85 g=1.15

∆+

∆−

δ

parity

parity

parity

parity

Figure 2.  Lowest-energy levels of Hamiltonian (1) for N  =  12, which are populated 
during time evolution starting from state (3) and driven by quench protocol (4). 
Left panel: typical results in the ferromagnetic phase. The positive and negative 
parity ground states are nearly degenerate despite the relatively small system 
size. Right panel: typical results in the paramagnetic phase. The dynamical gaps 
in the positive and negative parity subspaces, ∆+ and ∆−, respectively, and the 
symmetry-breaking gap δ are marked to illustrate key quantities involved in our 
studies. Their values for the parameters used in this figure can be found in table 1.

Table 1.  The symmetry-breaking gap δ, the dynamical gaps ∆±, and the equilibrium 
longitudinal magnetization M eq

x  in the periodic Ising chain composed of N  =  12 
spins. The first column is obtained from (9)–(11), the next two columns come from 
(A.11), the fourth column is numerically obtained through exact diagonalization.

δ ∆+ ∆− M eq
x

g  =  0.85 0.028 747 1.13 2.00 0.8545
g  =  1 0.131 09 1.04 2.07 0.7407
g  =  1.15 0.341 67 1.27 2.30 0.6146

https://doi.org/10.1088/1742-5468/ab609a
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Finally, knowing that σx
i  has vanishing matrix elements in the positive and negative 

parity subspaces, which can be easily proven with the help of Wick’s theorem, we get

Mx(t) = 〈ψ(t)|σx
i |ψ(t)〉 = 〈ψ−(t)|σx

i |ψ+(t)〉+ c.c.� (15)
This expression can be very complicated for fast quenches, i.e. for small τQ in (4). 

However, if we assume that the driving is slow enough to be nearly adiabatic, then the 
following expression will properly approximate the exact result

Mx(t) = cos

(∫ t

−gf τQ

dt δ[g(t)]

)
〈GS−[g(t)]|σx

i |GS+[g(t)]〉.� (16)

Such an expression is still non-trivial because we are unaware of a closed-form expres-
sion for the above matrix element in an arbitrarily-sized system. If we now consider 
t  >  0, i.e. the free evolution stage in our problem, we will get from (16) that

Mx(t) = cos(δ(gf )t+ const)M eq
x (gf ),� (17)

which can be used for extracting the symmetry-breaking gap and the equilibrium lon-
gitudinal magnetization out of either numerical or experimental data.

The question now is what is the condition for adiabaticity in our system so that 
approximation (16) can be used. Clearly, the system is most prone to being excited near the 
critical point, where the dynamical gap ∆± is smallest, and the quantum version [5, 6, 29]  
of the Kibble–Zurek (KZ) theory of non-equilibrium phase transitions [30–33] can be 

used. A simple criteria then exists and is based on comparision between the system size 

and the non-equilibrium length-scale ξ̂  characterizing excitations resulting from the 
quench [34]. The latter, according to the KZ theory, scales with the quench time as

ξ̂ ∼ τ
ν/(1+zν)
Q ,� (18)

where z and ν are the critical exponents. These exponents describe disappearance of 
the dynamical gap and the correlation length, which are assumed to be proportional 
to |g − gc|zν and |g − gc|−ν, respectively, near the critical point gc. Comparing the two 
length scales, one gets the following condition for a crossover between adiabatic and 
non-adiabatic evolutions approaching or crossing the critical point

τQ ∼ N (1+zν)/ν ∼ N2,� (19)

where we substituted z = ν = 1 for the quantum Ising model in the transverse field. In 
other words, for quench times of the order of N2 or larger we expect the evolution to 
be nearly adiabatic.

3. Two spins

We illustrate here the quantities introduced in the previous section by showing how the 
symmetry-breaking gap and the longitudinal magnetization can be calculated in the 
simplest version of the Ising chain, the one with just two spins.

https://doi.org/10.1088/1742-5468/ab609a
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To start, we need eigenenergies and normalized eigenstates of (1), which for N  =  2 
read

EGS+ = −2
√

1 + g2, |GS+〉 = A−| ↑↑〉+ B−| ↓↓〉,� (20)

EGS− = −2, |GS−〉 =
| ↑↓〉+ | ↓↑〉√

2
,� (21)

EEX− = 2, |EX−〉 =
| ↑↓〉 − | ↓↑〉√

2
,� (22)

EEX+ = 2
√
1 + g2, |EX+〉 = A+| ↑↑〉+ B+| ↓↓〉,� (23)

where σz| ↑〉 = | ↑〉, σz| ↓〉 = −| ↓〉,

A± =
1

√
2
√

1 + g2 ± g
√

1 + g2
, B± = − g ±

√
1 + g2

√
2
√
1 + g2 ± g

√
1 + g2

,
� (24)

and EX± refers to the excited states in the corresponding subspaces.
Using these results, one immediately gets

δ = EGS− − EGS+ = 2
(√

1 + g2 − 1
)
,� (25)

which agrees with (9)–(11) for N  =  2.
It is then a standard exercise to show that the extremal values of the longitudinal 

magnetization in the state, which is an arbitrary superposition of |GS+〉 and |GS−〉, are

Mx = ±〈GS−|σx
i |GS+〉 = ±M eq

x

= ±1

2



√

1 +
g√

1 + g2
+

√
1− g√

1 + g2


 .� (26)

This formula is depicted in figure 1, where one easily notices its departures from 
thermodynamic limit expression (7). These dierences do not vanish in the whole para-
magnetic phase. In fact, for a periodic system composed of N spins, it is easy to show 
that the longitudinal magnetization does not vanish in the limit of g → ∞

M eq
x (g → ∞) =

1√
N
.� (27)

Such a simple result follows from elementary observation that in the limit of g → ∞ 
the positive parity ground state approaches | ↑↑↑↑ · · ·〉, while the negative parity one 
approaches

| ↓↑↑↑ · · ·〉+ | ↑↓↑↑ · · ·〉+ | ↑↑↓↑ · · ·〉+ · · ·√
N

.� (28)

https://doi.org/10.1088/1742-5468/ab609a
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4. Dynamics of periodic chains

We will discuss here dynamics of the longitudinal magnetization in a periodic Ising 
chain. There are dierent ways how one can approach this problem.

The most direct one is to work in the Fock space spanned by all combinations of 
up/down states of all spins such as | ↑↓↓↑ · · ·〉. Such a space can be then easily cut into 
positive and negative parity subspaces, where time evolutions can be independently 
performed. The advantage of such an approach is that it allows for easy computation 
of the longitudinal magnetization. The disadvantage is rather obvious: one has to keep 
track of 2× 2N−1 amplitudes, which highly limits the available system sizes.

Another approach relies on mapping the system onto non-interacting fermions via 
the Jordan–Wigner transformation (A.1). This reduces the problem to finding time-
evolution of N  −  1 two-level uncoupled systems (A.8), which can be straightforwardly 
numerically achieved. This is the most ecient way of getting wave-function (14). The 
problem with this approach, however, lies in the complexity of the computation of the 
longitudinal magnetization, which we explain in appendix A.

We will thus use the first above-mentioned approach, i.e. the direct numerical solu-
tion, to characterize dynamics of the N  =  12 periodic chain. In the next section, we will 
sacrifice the translational invariance by doing calculations in much larger chains with 
open boundaries, where such problems with computation of the longitudinal magneti-
zation are absent.

The results of our numerical simulations, starting from initial state (3) and employ-
ing quench protocol (4), are presented in figures 3–5, where we have chosen quench time 
τQ large-enough to ensure that evolutions will be nearly adiabatic. We see there that 
after stopping the driving, say for

0 � t � L,� (29)
there are periodic oscillations, which will be studied in various ways.

First, we will extract from numerical data the dierence between positions of the 
first two maxima of Mx(t) and use it to compute the frequency ω12 of oscillations. We 
will also get from such data half of the dierence between Mx(t) in the first maximum 
and the second minimum to obtain the oscillation amplitude A12. These quantities are 
illustrated in figure 3. The frequency ω12 and amplitude A12 estimate δ(gf ) and M eq

x (gf )
–see (17) for justification of this statement1. As far as numerical simulations are con-
cerned, the uncertainty of getting ω12 and A12 is negligible. This is perhaps the easiest 
way of characterization of after-quench oscillations as it requires observation of no 
more than two oscillation periods.

Second, we will fit the periodic function

Mx(t) = Afit cos(ωfitt+ const)� (30)
expecting that ωfit and Afit will estimate the same physical quantities as ω12 and A12. 
Such fitting will be done with NonlinearModelFit function from [35]. This function also 
provides uncertainty of the fitted parameters, which is negligible in our studies of ωfit 
and Afit. A few oscillation periods provide enough data for reaching the full potential 
of this technique.

1 Note that we work with � = 1, where the frequency and the energy can be directly compared.

https://doi.org/10.1088/1742-5468/ab609a
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Third, we will compute the discrete Fourier transform

M̂x(ωj) =
1

S

S−1∑
s=0

Mx(s∆t)eiωjs∆t,

∆t =
L

S
, ωj =

2πj

L
, j = 0, 1, . . . , S − 1,�

(31)

where S is the number of data points that we generate during free evolution. We will 
work with S being of the order of a few tens of thousands (its exact value is of marginal 

use in the following discussion). We will look for the global maximum of |M̂x| studying 
its position ωmax and value |M̂x(ωmax)|. The former will estimate δ. The latter, after 

multiplication by a factor of two, will be of the order of M eq
x . We will thus introduce 

Amax = 2|M̂(ωmax)| in analogy to the notation that we have used above. Both remarks 
follow from (17) and (31).

We have applied all these techniques to numerics from figures  3(a)–5(a) getting 
results that are presented in table 2. We see there very good agreement between the 
oscillation frequencies ω12 and ωfit and the values of the symmetry-breaking gap δ from 
table 1. Moreover, similar agreement is found between the oscillation amplitudes A12 
and Afit listed in table 2 and M eq

x  from table 1.
If we, however, use data from these tables to compare ωmax and Amax to the sym-

metry-breaking gap and the equilibrium longitudinal magnetization, we will find much 
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528 544 5600 0.03 0.06 0.09
0
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0.3

2π
M
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|M
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^

ω

(b)

(a)

(c)

ω12

2A
12

Figure 3.  Dynamics of the longitudinal magnetization in a periodic system for 
a nearly adiabatic quench that stops in the ferromagnetic phase at gf   =  0.85. 
The driving ends at the time t  =  0 and then free evolution begins. Panel (a): the 
black line shows numerics, while the red one shows adiabatic approximation (16). 
Panel (b): modulus of the discrete Fourier transform (31) of free evolution of the 
longitudinal magnetization around the symmetry-breaking gap δ marked by the 
vertical red dashed line. Data points are joined by line segments to guide the eye. 
Panel (c): magnification of the area around the third minimum from panel (a). 
The system size is N  =  12, the quench time is τQ = 40, and the time span of free 
oscillations used for computing (31) is L  =  1000.
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larger relative discrepancies. Estimation of the symmetry-breaking gap through ωmax is 
mostly aected by the spectral resolution of the Fourier transform

2π/L.� (32)
This is seen in figures 3(b)–5(b), where the horizontal spacing between the data points 
ranges between 0.006 and 0.02, which is non-negligible relative to δ. Estimation of 
the equilibrium longitudinal magnetization through Amax is additionally influenced by 

population of dierent Fourier modes decreasing |M̂(ωmax)| with respect to its adiabatic 
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Figure 4.  Dynamics of the longitudinal magnetization in a periodic system for a 
nearly adiabatic quench that stops at the critical point. This figure is organized in 
the same way as figure 3. The parameters are gf   =  1, N  =  12, τQ = 40, and L  =  300.
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Figure 5.  Dynamics of the longitudinal magnetization in a periodic system for 
a nearly adiabatic quench that stops in the paramagnetic phase. This figure  is 
organized in the same way as figure  3. The parameters are gf   =  1.15, N  =  12, 
τQ = 40, and L  =  300.
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value. This can be seen through Plancherel theorem. Finally, mismatch between the 

symmetry-breaking gap and the frequency grid {ωj} additionally aects |M̂(ωmax)|.
A good agreement that we have found using the first two approaches is the result 

of choosing so large quench time τQ, that evolutions are nearly adiabatic. If we now 
take a look at figures 3(c)–5(c), we will be able to notice small deviations from perfectly 
adiabatic solution (16). Similar features will be seen in the simulations of chains with 
open boundaries, which brings us to the next section of this work, where they will be 
discussed.

5. Dynamics of chains with open boundaries

We will study in this section dynamics of Ising chains with open boundaries. Such sys-
tems are described by the following Hamiltonian

H̃(g) = −
N−1∑
i=1

σx
i σ

x
i+1 −

N∑
i=1

gσz
i .� (33)

There are at least two reasons for their consideration.
First, they are more experimentally-relevant than the periodic chains as it is a very 

complicated task to engineer a periodic coupling between the spins (see e.g. [36] for an 
elaborate proposal how this might be achieved in a cold ion simulator of spin systems).

Second, computations of the longitudinal magnetization can be eciently done 
in the chains with open boundaries. It is so because the parity operator (8) does not 
appear during the diagonalization of Hamiltonian (33) and so both parity subspaces are 
diagonalized with one and the same set of transformations (see appendix A for expla-
nation why this is not the case in periodic chains and note that H̃ commutes with the 
parity operator). This allows for ecient evaluation of the longitudinal magnetization 
in systems composed of up to a few hundreds of spins, which is a major step forward 
with respect to our studies of periodic chains. This flexibility with respect to the system 
size allows us for systematic studies of the transition from the non-equilibrium regime, 
where the Kibble–Zurek theory describes the system’s excitation, to the nearly adia-
batic regime, which we have already begun to investigate in section 4.

Table 2.  Parameters describing free oscillations of the longitudinal magnetization 
from figures 3–5 (top to bottom). Symbols ω12, ωfit,…, Amax are defined around 
equations (30) and (31). The fitting leading to ωfit and Afit has been done on time 
intervals 0 � t � 4× 2π/δ(gf ) corresponding to four oscillation periods during free 
evolution.

ω12 ωfit ωmax A12 Afit Amax

gf   =  0.85 0.028 422 0.028 747 0.031 416 0.8620 0.8538 0.64
gf   =  1 0.131 14 0.131 08 0.125 66 0.7286 0.7397 0.65
gf   =  1.15 0.341 77 0.341 74 0.335 10 0.6178 0.6146 0.52
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Moving on to the actual calculations, we mention that technical details related to 
diagonalization of Hamiltonian (33) and time evolution that it generates are presented 
in appendix B. We only summarize here some basic formulae that are necessary for 
understanding of the following discussion.

After Jordan–Wigner mapping (A.1), the Hamiltonian is diagonalized by the 
Bogolubov transformation so that it finally reads

H̃ =
N∑
i=1

Ei

(
γ†
i γi − 1/2

)
,

� (34)

{γi, γ†
j} = δij, {γi, γj} = 0,

where the energies of single-particle excitations, defined in our work with respect to the 
ground state energy, are sorted in ascending order, E1 � E2 � · · · � EN, so that the 
symmetry-breaking gap is

δ = E1.� (35)
They are given by

Ei = 2
√

g2 − 2g cos θi + 1,� (36)

where θi’s are obtained from [37]
g sin[(N + 1)θ] = sin(Nθ), 0 < θ < π.� (37)

For g > N/(N + 1), θ1, . . . , θN are the real roots of (37). For 0 � g � N/(N + 1), 
most interestingly, there is one purely imaginary solution of (37), Re(θ1) = 0. Besides 
that, there are N  −  1 real roots of (37): θ2, . . . , θN . Equation (37) cannot be solved ana-
lytically for an arbitrary value of the magnetic field g. Its numerical solutions, relevant 
for the subsequent discussion, are collected in table 3.

Besides the symmetry-breaking gap, we are also interested in the longitudinal mag-
netization, which is now position dependent. Its equilibrium value in the Ising chain 
with open boundaries was recently discussed in [38], where it was analyzed how the 
‘ends’ of the chain aect its value. To minimize their influence on our results, we will 
focus our attention on the center of the system by calculating

Mx = 〈σx
N/2〉.� (38)

The equilibrium values of such defined longitudinal magnetization, for the parameters 
relevant for the subsequent discussion, are listed in table 4. The technical details of 
computation of (38) are discussed in appendix B.

An important thing now is to note that if we write the Schrödinger-picture wave-
function at the time the quench stops as

|ψ(t = 0)〉 =
∑

i1i2...iN

ai1i2...iN |i1i2 . . . iN〉,

∑
i1i2...iN

|ai1i2...iN |2 = 1,
� (39)
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|i1i2 . . . iN〉 =
(
γ†
1

)i1(
γ†
2

)i2
· · ·

(
γ†
N

)iN
|GS〉,

in = 0, 1 and γn|GS〉 = 0 for 1 � n � N,

then at times t  >  0

Mx(t) =
∑

j1j2...jN
i1i2...iN

aj1j2...jNai1i2...iN e
it
∑N

n=1( jn−in)En〈j1j2 . . . jN |σx
N/2|i1i2 . . . iN〉

� (40)

with

N∑
n=1

(in + jn) being odd.� (41)

If this condition is not satisfied, then the matrix element in (40) identically vanishes, 
which can be shown with Wick’s theorem. This feature impacts Fourier spectra of the 
longitudinal magnetization.

5.1. Quenches stopping in ferromagnetic or paramagnetic phase

We start discussion of our numerical simulations from the non-equilibrium quench that 
has been stopped in the ferromagnetic phase (figure 6). The first thing that catches our 
attention in this figure is ‘roughness’ of free evolution of Mx. To understand it, we need 
to look at modulus of its discrete Fourier transform.

By doing so, we first notice a series of peaks enumerated by A, B, etc whose maxima 
are placed at ωA, ωB, etc listed in table 5. If we now use data from table 3 and equa-
tions (40) and (41), we can note that within spectral resolution of the Fourier transform 
ωA, ωB, ωC, and ωD can be identified with E1, E3 − E1 − E2, E2, and E3, respectively.

Occupation of the Fourier modes around ωA is responsible for the oscillation period 
2π/δ(gf ) marked in the upper panel of figure 6. Next, we note that (i) ωB, ωC, etc are 

Table 3.  Energies of single-particle excitations relevant for deciphering the 
positions of marked maxima in figures 6, 7 and 9.

E1 E2 E3 E4 E5 E6 E7

gf   =  0.85, N  =  20 0.0217 0.470 0.730
gf   =  1, N  =  50 0.0622 0.187 0.311 0.435 0.558 0.681 0.803
gf   =  1.15, N  =  50 0.322 0.383 0.470

Table 4.  The equilibrium longitudinal magnetization in the Ising chain with open 
boundaries for the parameters relevant to the studies reported in figures 6–8.

M eq
x

g  =  0.85, N  =  20 0.8448
g  =  1, N  =  50 0.6188
g  =  1.15, N  =  50 0.4204
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larger by at least a factor of ten than ωA and (ii) |M̂x(ωA)| is larger by at least a fac-
tor of fifteen than |M̂x(ωB)|, |M̂x(ωC)|, etc. The (i) observation means that there will be 
high frequency oscillations on top of the base oscillation, whose frequency is approxi-
mated by ωA. The (ii) remark implies that they will have small amplitude relative to 
the amplitude of the base oscillation. Both features are nicely seen in the upper panel 
of figure 6. They explain small fluctuations of the data presented there.

A quite dierent situation is encountered when the quench stops in the paramagn
etic phase. This is illustrated in figure 7, where we see beats. A simple explanation of 
this observation comes again from the discrete Fourier transform, where we see two 

leading peaks centered around ωA and ωB. The beats result from the fact that |M̂x(ωA)| 
is comparable to |M̂x(ωB)|. Moreover, we note that ωA, ωB, and ωC are of the same order 

of magnitude, which eliminates high frequency oscillations seen in figure 6. Looking 
more quantitatively at the Fourier transform from figure 7, we notice that ωA, ωB, and 
ωC can be identified with E1, E2, and E3 within the spectral resolution of the Fourier 
transform (tables 3 and 5).

Finally, at the risk of stating the obvious, we mention that we recover adiabatic 
results, akin to those presented in figures 3 and 5, by increasing the quench times from 
figures 6 and 7. In the opposite limit of fast transitions, free evolution of the longitudi-
nal magnetization becomes noisy and so less interesting in the context of our studies.

5.2. Quenches to critical point

We will discuss now the transition to the adiabatic regime for evolutions ending at the 
critical point. Such evolutions are depicted in figure 8. For small τQ, we see a train 
of narrow peaks, whose amplitude decreases as time goes by. The magnetization in 
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Figure 6.  Upper panel: dynamics of the longitudinal magnetization in the Ising 
chain with open boundaries for the quench that stops in the ferromagnetic phase. 
The parameters are gf   =  0.85, N  =  20, and τQ = 10. δ is given by E1 from table 3 
(first row). Lower panel: modulus of the discrete Fourier transform of free evolution 
data, i.e. Mx(t  >  0), from the upper panel. The inset enlarges peaks B–D. L  =  1200 
has been used to compute the transform.
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between the peaks is nearly zero. As evolutions slow down, the decay of the peaks’ 
amplitude slows and the peaks’ width increases shrinking time intervals, where the 
system is unmagnetized in the longitudinal direction. By the time those intervals disap-
pear, the curve describing dynamics of the longitudinal magnetization has a triangular-
like shape. Further increase of the quench time brings the expected single-frequency 
dynamics characteristic of the adiabatic evolution (17).

The rather unusual shape of oscillations of the longitudinal magnetization for the 
fastest quenches from figure 8 comes from substantial population of several Fourier 
modes. This is illustrated in figure 9, where the subsequent Fourier peaks are centered 
at the energies of consecutive single-particle excitations (tables 3 and 5).

The question now is why the period of these oscillations is approximately given by 
2π/δ(g = 1). This would be an expected result for adiabatic evolutions, where the oscil-
lation pattern would be cosinusoidal (17). It may thus be a bit surprising that multi-
frequency oscillations from figure 8 exhibit the same period. This can be understood by 
noting that

Table 5.  The positions of maxima of |M̂x| marked in figures 6, 7 and 9.

ωA ωB ωC ωD ωE ωF ωG

gf   =  0.85, N  =  20 0.0209 0.241 0.471 0.728
gf   =  1, N  =  50 0.0628 0.188 0.308 0.434 0.559 0.685 0.804
gf   =  1.15, N  =  50 0.325 0.382 0.471
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Figure 7.  Upper panel: dynamics of the longitudinal magnetization in the Ising 
chain with open boundaries for the quench that stops in the paramagnetic phase. 
The parameters are gf   =  1.15, N  =  50, and τQ = 50. Lower panel: modulus of the 
discrete Fourier transform of the free evolution data from the the upper panel. 
The vertical red dashed lines in the lower panel show energies of the single-particle 
excitations from the third row of table 3. L  =  1200 has been used to compute the 
transform.
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Figure 8.  Free evolution of the longitudinal magnetization after quenches to the 
critical point in the Ising chain with open boundaries. The solid curves, from top to 
bottom, correspond to τQ = 2 (black), τQ = 20 (red), τQ = 73 (green), and τQ = 200 
(blue). The subsequent curves are shifted downward by a multiple of 1 to facilitate 
their comparison. The dashed black curve shows 0.557 cos(0.0622t+ 0.307) shifted 
downward by 2. It comes from the fit to the numerics for τQ = 73, which is close 
to the crossover quench time discussed in figure 10. The parameters are gf   =  1 and 
N  =  50. δ is given by E1 from table 3 (second row).
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Figure 9.  Modulus of the discrete Fourier transform of free evolution of the 
longitudinal magnetization of the fastest quench from figure  8: gf   =  1, N  =  50, 
τQ = 2. L  =  1000 is used to compute the transform. The inset shows (36) for g  =  1 
and N  =  50. The black dots in the inset are obtained from numerical solution of 
(37), while the solid red line shows (42) with δ(g = 1) given exactly by (B.4).
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Ei ≈ (2i− 1)δ(g = 1) ≈ (2i− 1)
π

N� (42)

for the lowest-energy modes–see the second row of table  3, (B.4), and the inset of 
figure 9. If such a relation would hold for all Ei’s, then the oscillations of the longi-
tudinal magnetization during free evolution would be perfectly adiabatic with the 2N 
period regardless of the quench time τQ. Relation (42), however, is approximate, which 
we also illustrate in the inset of figure 9. This explains quasi-periodicity of the oscilla-
tion pattern for the fastest quench in figure 8. For a bit slower, but still non-adiabatic 
quenches depicted in this figure, (42) properly captures these single-particle excitation 
energies that give the main contribution to the free dynamics of Mx(t). This is sucient 
for explanation of the oscillation period from figure 8.

This oscillation period is twice smaller than the oscillation period at the critical 
point of the periodic system, which can be trivially shown with (11). The linear depend
ence of the oscillation period on the system size, albeit with a dierent prefactor, was 
also observed in our earlier studies of the quantum Ising model [20], where we investi-
gated free dynamics of the transverse magnetization after quenches moving the system 
from the paramagnetic phase to the critical point. Finally, we mention that approx
imation (42) works only at the critical point, which explains why dierent dynamics 
have been observed in section 5.1.

To study quantitatively the crossover from the non-equilibrium to the adiabatic 
regime, which we depict in figure 8, we need some measure of the deviation of non-
equilibrium evolution from the adiabatic limit. A good measure should be easily numer
ically and experimentally accessible. It should be also stable against fluctuations of the 
data for Mx(t). Several options seem to be available.

First, one may analyze modulus of the discrete Fourier transform. For example, one 
can study how the global maximum around the symmetry-breaking gap grows with 
increasing τQ. Alternatively, one may research how the other extrema disappear in such 
a limit. This choice, however, is problematic for the reasons explained by the end of 
section 4. For example, there are limitations imposed by the spectral resolution of the 
discrete Fourier transform (32). To overcome them, either long free evolution times are 
needed or some fitting procedure allowing for precise interpolation of the properties of 

extrema of |M̂x| from sparse data. This is a complication aecting both numerical and 
experimental studies. The latter would be also aected by the fact that the Fourier 
transform is not directly measured and so its extraction out of Mx(t) will necessarily 
bring some inaccuracies that may play a role in the Kibble–Zurek scaling analysis.

Second, one may use a more straightforward approach by studying the amplitude 
and spacing of the first two peaks of Mx(t), just as in section 4. Such a method, however, 
is susceptible to fluctuations of the data. This can be improved by averaging results col-
lected for several peaks, but this would again require long free evolution times, which 
is problematic.

Third, one may fit (30) to free evolution of the longitudinal magnetization and 
study such obtained amplitude of oscillations Afit (figure 10). Such a procedure uses all 
information contained in Mx(t)–not only the one stored in the extrema of either Mx or 

|M̂x|–and so long evolution times are not needed. Moreover, it should work well with 
irregular data averaging out the fluctuations, which is of interest in the context of 
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high-precision numerical and experimental research. This is the approach that we will 
employ.

Before moving on, we again mention that the fitted amplitude Afit converges to 
M eq

x (gf ) in the adiabatic limit. For faster quenches, however, it underestimates the 
real amplitude of oscillations, which is seen in figure 8. This has no eect on our stud-
ies, which is perhaps best illustrated by the excellent agreement between the scaling 
exponent extracted out of the fitted amplitude and the predictions of the Kibble–Zurek 
theory (see below).

To proceed, we define the crossover quench time τ crossQ  by the condition∣∣∣∣
Afit(τQ)−M eq

x (gf )

M eq
x (gf )

∣∣∣∣ < η for τQ > τ crossQ ,� (43)

where η is the threshold set on the relative dierence between the fitted amplitude of 
oscillations and its asymptotic in τQ value. We will use in this formula the amplitude 
obtained by fitting (30) to Mx(t) for 0 � t � 12N , which corresponds to roughly 6 oscil-
lation periods in the chain with open boundaries. Moreover, we will set η = 10%, which 
should be large-enough to be experimentally-relevant and small-enough to describe the 
crossover to the adiabatic limit.

Our results for Afit, in the experimentally-relevant system composed of N  =  50 spins 
[39–41], are presented in figure 10(a), where we see that the fitting procedure produces 
a perfectly smooth curve monotonically approaching M eq

x (gf ). The threshold η is illus-
trated in figure 10(b).
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Figure 10.  Panel (a): the fitted amplitude of oscillations of the longitudinal 
magnetization after stopping the quench at the critical point of the Ising chain 
with open boundaries. The solid black line shows numerics in both panels. The 
dashed red line shows the result for perfectly adiabatic evolution to the critical 
point, which is given by the equilibrium magnetization (second row of table 4). 
Panel (b): the left-hand side of (43). The dashed blue line shows the threshold 
η = 10% from (43). Its intersection with the solid black line gives τ crossQ ≈ 72.83. 
The system size is N  =  50.
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Repeating such analysis for system sizes 20 � N � 300, we have obtained detailed 
results for the crossover quench time τ crossQ , which we present in figure 11(a). As we 
anticipate from (19) that

τ crossQ (N) ∼ Na,� (44)
where a  >  0 is the scaling exponent, we display results for τ crossQ  on a double logarith-
mic plot in figure 11(b). Instead of a straight line, we find in this figure a curve slightly 
bending upwards as the system size grows. This means that the exponent a increases 
with N. To quantify this observation, we fit

ln τ crossQ = a lnN + b� (45)
to numerical data from four dierent ranges of the system sizes. The results are col-
lected in table 6, where we see that a approaches the value of 2 for the largest system 
sizes that we consider. This is in a very good agreement with the Kibble–Zurek scaling 
argument (19), which is supposed to work best in the large-system limit. Finally, we 
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Figure 11.  Panel (a): the crossover quench time τ crossQ  as a function of the system 
size for quenches that stop at the critical point of the Ising chain with open 
boundaries (gf   =  1). Dots come from numerics, line segments join them to guide 
the eye. The threshold from (43) is η = 10%. Panel (b): data from the upper panel 
shown on a double logarithmic plot. The solid red line has the slope equal to  +2 
and the intercept fitted to the two largest-τQ data points.

Table 6.  The results of fitting (45) to numerical data in dierent ranges of the 
system sizes (either four or five data points are used for each linear regression). 
We provide one standard error in the brackets delivered by the LinearModelFit 
function from [35].

a b

20 � N � 30 1.75(1) −2.60(4)
38 � N � 62 1.871(3) −3.03(1)
70 � N � 142 1.92(1) −3.26(6)
200 � N � 300 1.970(4) −3.48(2)
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notice that the increase of a with N is monotonic, leaving no doubts about stability of 
the procedure of extraction of τ crossQ  from the free evolution data for the longitudinal 
magnetization.

6. Discussion

The goal of this work was to investigate how the symmetry-breaking gap, which is of 
crucial importance in the discussion of quantum phase transitions, can be studied with 
the help of quantum quenches. We have chosen for this purpose an exactly solvable 
model, the quantum Ising model in the transverse field, and analyzed its dynamics after 
quenches induced by the gradual change of the magnetic field. These quenches start 
from the easy-to-prepare broken-symmetry ground state at the vanishing magnetic 
field. They bring the system to the desired value of this field, where the symmetry-
breaking gap can be read from the subsequent free-evolution dynamics of the longitu-
dinal magnetization. In this way a small symmetry-breaking gap can be seen through 
large-amplitude oscillations of the longitudinal magnetization.

We have discussed dierent ways of analyzing the oscillatory dynamics of such 
magnetization showing that one can also extract the equilibrium longitudinal magneti-
zation out of them. All this can be accurately done if the quench is slow enough, which 
we have studied in the context of the Kibble–Zurek theory of non-equilibrium phase 
transitions. An excellent agreement between predictions of this theory and the dynam-
ics of the longitudinal magnetization has been found.

Although our studies have been done in the Ising model, they can be extended to 
other systems exhibiting the symmetry-breaking phenomenon. For example, the Ising-
like ones with long-range interactions that are typically found in cold ion and atom 
emulators of spin systems (see e.g. [4, 23, 36, 42, 43]). These systems provide a promis-
ing platform for experimental realization of the studies discussed in our work for two 
reasons. First, their size is finite rather than thermodynamic making their symmetry-
breaking gap large-enough to be experimentally measurable. This should not be taken 
for granted because it is not the case in traditional condensed matter setups discussed 
in the context of phase transitions. Second, there has been substantial progress in the 
experimental studies of the dynamics of such systems (see e.g. [39–41]).

Another promising platform for implementation of our ideas is provided by D-Wave 
machines, which can be also used for simulations of spin models (see e.g. [44]). Quite 
interestingly, D-Wave-based investigations of non-equilibrium Kibble–Zurek dynam-
ics of the one-dimensional quantum Ising model in the transverse field were recently 
reported in [45]. It should be thus possible to use our predictions for critical assessment 
of the performance of such devices.

Talking about experimental realizations, the symmetry-breaking phenomenon was 
recently experimentally investigated in [24]. These studies were done in a cold atom 
cloud, where each atom was simulating the 16-spin Lipkin–Meshkov–Glick model. This 
is the Ising-like model with the nearest-neighbor spin–spin interactions replaced with 
identical couplings between all the spins. Besides exploration of a dierent Hamiltonian, 
these interesting studies dier from our work in the following aspects. First, the quenches 
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start in the paramagnetic phase. Second, the initial state for them occupies one of the 
parity subspaces and so the symmetry-breaking perturbation is used to populate the 
other one as well. Third, perhaps most importantly, they are limited to one, rather 
small system size, and they do not explore the non-adiabatic Kibble–Zurek dynamics of 
the longitudinal magnetization, which is of considerable importance in our work.

Finally, we mention that we hope that this work will trigger interest in the exper
imental studies of the symmetry-breaking phenomenon, which could lead to quantita-
tive insights into the very nature of quantum phase transitions. This would be most 
interesting in systems that can be neither analytically nor numerically studied in the 
foreseeable future.
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Appendix A. Longitudinal magnetization in Jordan–Wigner-transformed periodic 
Ising chains

We will explain here the source of diculties in computation of the longitudinal mag-
netization in the free fermion representation of the periodic Ising model. While doing 
so, we will also derive expressions for dynamical gaps ∆±, which have been introduced 
in section 2.

Such a representation comes from employment of the Jordan–Wigner transformation

σz
i = 1− 2c†ici, σx

i = (ci + c†i )
∏
j<i

(
1− 2c†jcj

)
,

�

(A.1)
{ci, c†j} = δij, {ci, cj} = 0,

after which Hamiltonian (1) reads

H(g) = −
N−1∑
i=1

fi,i+1 − g
N∑
i=1

(cic
†
i − c†ici) + fN,1P, fi,j = c†icj − cic

†
j − cicj + c†ic

†
j.

�

(A.2)

The complication one encounters now is that the parity operator is not quadratic in fer-

mionic ci and c†i operators. This can be found by combining (8) with (A.1). As a result, 
Hamiltonian (A.2) is non-quadratic. Its exact analytical diagonalization is still possible, 
but the price one has to pay is that one has to split the Hilbert space into positive 
and negative parity subspaces imposing dierent boundary conditions on the fermionic 
operators in those subspaces [28]. This is realized by going to the momentum space
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cj =
e−iπ/4

√
N

∑
k

cke
ikj,� (A.3)

and choosing dierent quantization schemes for momenta in the positive and negative 
parity subspaces,

k+ = ± π

N
,±3π

N
, . . . ,±N − 1

N
π,� (A.4)

and

k− = 0,±2π

N
,±4π

N
, . . . ,±N − 2

N
π, π,� (A.5)

respectively. These expressions are valid for even N (see [28] for comprehensive discus-
sion of the Ising diagonalization intricacies). Therefore, dierent transformations are 
used to diagonalize the two parity subspaces in periodic chains. No such complications 
appear in the chains with open boundaries, where the parity operator is absent in 
Jordan-Winger-transformed Hamiltonian (B.1).

Combining the results of [5] and [28], time-dependent wave-function (14) can be 
obtained from

|ψ+(t)〉 =
∏
k+>0

(
uk+(t)− vk+(t)c

†
k+
c†−k+

)
|vac〉,

� (A.6)

|ψ−(t)〉 = e2itc†0
∏

0<k−<π

(
uk−(t)− vk−(t)c

†
k−
c†−k−

)
|vac〉,

� (A.7)
where the state |vac〉 is annihilated by all ck operators and time evolution of the 
Bogolubov modes is governed by

i
d

dt

(
vk
uk

)
= 2

(
g − cos(k) − sin(k)

− sin(k) cos(k)− g

)(
vk
uk

)
.� (A.8)

Computation of the time-dependent longitudinal magnetization in our periodic sys-
tem is now reduced to evaluation of

Mx(t) = 〈ψ−(t)|c1 + c†1|ψ+(t)〉+ c.c.� (A.9)

If we now put (A.6) and (A.7) into (A.9) and then transform ck± operators to the 
position space inverting (A.3)–so that all operators are defined on the same Hilbert 
space–we will quickly realize how complicated the resulting expression is. This obstacle 
discourages us from using the free fermion representation in our studies of periodic 
chains.

Finally, having (A.8) at hand, one can find by diagonalization of the 2× 2 Hamiltonian 
that the energy gap for excitation of the pair of ±k fermionic modes is

4
√
g2 − 2g cos(k) + 1.� (A.10)

The smallest value of that gap, in each of the parity subspaces, is the dynamical gap 
∆±–see also figure 2. Thereby,
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∆+ = 4
√

g2 − 2g cos(π/N) + 1, ∆− = 4
√

g2 − 2g cos(2π/N) + 1.� (A.11)

Appendix B. Diagonalization and time evolution of Ising chains  
with open boundaries

We will briefly summarize here technicalities related to diagonalization of the Ising 
chain with open boundaries, computation of its longitudinal magnetization, and its 
time evolution.

B.1. Diagonalization

We follow here [46] providing an early take on this subject. The diagonalization begins 
with Jordan–Wigner spin-to-fermion mapping (A.1) transforming Hamiltonian (33) to 
the following quadratic form

H̃ = Ψ†HΨ,

Ψ† = (c†1 . . . c
†
N c1 . . . cN),� (B.1)

H =

(
A B

−B −A

)
,

where A and B are N ×N tridiagonal matrices

Aij = g δi,j − 1/2 δi,j+1 − 1/2 δi+1,j,

Bij = 1/2 δi,j+1 − 1/2 δi+1,j.�
(B.2)

We mention in passing that we have corrected a misprint from [46] in the expression 
for Bij.

Next, for every value of the magnetic field g, one can perform the Bogolubov 
transformation

Ψ = βΓ,�
(B.3)

Γ† = (γ†
1 . . . γ

†
N γ1 . . . γN)

choosing real orthogonal matrix β in such a way that (B.1) is diagonal. This leads to 
(34) and the related equations (35)–(37). Two remarks are in order now.

First, as a self-consistency check of our calculations, we have verified that energies 
of single-particle excitations, which we have obtained from numerical diagonalization 
of H, very well agree with the results coming from (36) combined with (37).

Second, the symmetry-breaking gap can be analytically calculated from (37) only at 
the critical point, where

δ(g = 1) = 4 sin
π

4N + 2
≈ π

N
.� (B.4)
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This is about twice larger than the symmetry-breaking gap in the periodic chain (11).

B.2. Equilibrium longitudinal magnetization

To compute the equilibrium longitudinal magnetization M eq
x , we evaluate (38) in the 

state

|GS〉+ γ†
1|GS〉√
2

,� (B.5)

where |GS〉 is the ground state annihilated by all γi operators. This leads to the follow-
ing expression for the longitudinal magnetization after employment of Wick’s theorem

M eq
x = 〈GS|γ1 σx

N/2|GS〉.� (B.6)

The operator γ1σ
x
N/2 can be conveniently written as

γ1σ
x
N/2 = γ1 aN/2 bN/2−1aN/2−1 . . . b1 a1, ai = ci + c†i , bi = ci − c†i .� (B.7)

Using Wick’s theorem again, one can show that

〈GS|γ1 σx
N/2|GS〉 = Pf(G),

G =




0 〈γ1 aN/2〉 〈γ1 bN/2−1〉 〈γ1 aN/2−1〉 · · · 〈γ1 a1〉
0 〈aN/2 bN/2−1〉 〈aN/2 aN/2−1〉 · · · 〈aN/2 a1〉

0 〈bN/2−1 aN/2−1〉 · · · 〈bN/2−1 a1〉
...
0




,� (B.8)

where Pf stands for Pfaan, the lower triangle of the G matrix can be obtained by the 
relation G  =  −GT, and the expectation values are calculated in the ground state |GS〉. 
Pfaans of skew-symmetric matrices can be eciently computed using Hausholder 
transformation [47].

B.3. Time evolution

We work in the Heisenberg picture. Our evolutions start at time t0 from the equal 

superposition of the two lowest-energy eigenstates of H̃[g(t0)]

|GS[g(t0)]〉+ γ†
1|GS[g(t0)]〉√
2

.� (B.9)

Two remarks are in order now.
First, initial state (B.9) for time evolution is constructed in the same way as for 

evolutions in periodic chains. In particular, the two states in (B.9) have dierent pari-
ties. In fact, it is perhaps worth to say again that Hamiltonian H̃ for the Ising chain 
with open boundaries commutes with the parity operator. Therefore, its eigenstates can 
be labeled with the ±1 parities. Moreover, expectation values of the σx

i  operators in all 
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eigenstates of H̃ are zero. The very same properties are found in periodic chains, which 
have been discussed in sections 2–4.

Second, using quench protocol (4), one gets g(t0 = −gfτQ) = 0 and the initial state 
(B.9) is given by (3). It is numerically convenient for us, however, to begin evolutions 
from the slightly non-zero g, which we do by choosing t0 such that g(t0)  =  0.001.

Time-dependent longitudinal magnetization (38) is then expressed as

Mx(t) = Re〈GS[g(t0)]|γ1 σx
N/2(t)|GS[g(t0)]〉,� (B.10)

where the operator γ1 is defined at time t0. The matrix element in this equation can be 
computed just as (B.8) expect ai and bi operators are now time dependent. Thus, we 
need to know their time evolution, which can be extracted from

Ψ(t) = U(t)Ψ(t0),� (B.11)
where the N ×N unitary matrix U(t) can be obtained by solving

d

dt
U(t) = −2iHU(t)� (B.12)

with the initial condition U(t0) = 1. Equation (B.12) can be derived from the Heisenberg 

equations for the ci(t) and c†i (t) operators. We solve it numerically with the Suzuki-
Trotter method of order two with the time step smaller or equal to 0.01 [48]. We have 
checked that such a procedure produces well-converged results.

Having U(t) and the Bogolubov matrix β at the time t0, we can relate ci(t) and c†i (t) 
operators to γi and γ†

i  appearing in the diagonal form of H̃[g(t0)]. Namely,

Ψ(t) = W (t)Γ, W (t) = U(t)β,� (B.13)
where the matrix W has the following structure

W =

(
C D

D C

)
� (B.14)

with C and D being N ×N complex matrices. Transformation (B.13) can be used to 
compute all correlation functions, from time-dependent version of (B.8), needed for get-
ting (B.10). For example, after straightforward manipulations one can show that

〈ai aj〉 =
N∑
k=1

(
CikDjk + CikCjk +DikDjk +Dik Cjk

)
.� (B.15)
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