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Abstract. In a system of spherical particles which is entirely immersed in fluid, an intruder is 

let free fall into the particles bed consisted of 220 particles with height about 13 particles 

diameter and width about 15 particles diameter, both are in average. The system is placed in a 

container with height of  40 cm  and width of 15 cm. Bed particles have the same diameter of 1 

cm, while the intruder has 4 cm. Water is the fluid with density of 1 g/cm
3
 and viscosity of 

8.90×10
-4

 Pa∙s, which is assumed to constant during the simulation. Intruder initial height is 

always the same and bed particles are let to be relaxed for about 2 s from its initial random 

configuration of  20×11 in height and width of bed particle diameter, before the intruder is 

dropped into the system. Bed particles has always the same density about 2 g/cm
3
, while 

intruder density ρint is varied from 2 to 4.5 g/cm
3
 with increment of 0.5 g/cm

3
. It is observed 

that higher ρint gives higher penetration depth after the density of 2.5 g/cm
3
. Density of 4.5 

g/cm
3
 and beyond will give similar final result, since the intruder already reached bottom of  

the container. An empirical model for penetration depth as function of ρint is proposed. 

1. Introduction 

Penetration of a larger object into a bed of grains is still interesting to investigage. It ranges from 

modeling of crater forming of due to meteor impact on planet surface [1], investigation of depth-

dependent resistance of penetration process [2], study of confinement influence [3], observing unified 

force of granular impact cratering [4], formulating granular bed viscosity [5], until seperation of two 

grains by one grain above [6]. In this work a whole system of spherical particles in two-dimension is 

immersed in fluid, so that both bed particles and intruder will be affected by drag force due to fluid 

viscosity and also by buoyant force due to fluid density. The intruder is released from a certain height 

z0 and gives impact to the bed. How far it can penetrate the bed is then reported. 

 

2. Simulation 

A spherical particle or grain i will have density of ρi, diameter of Di, and mass of 

 iii Dm 
 3

6
 , (1) 

where i = 1, 2, .., N, with index N is for the intruder, while 1 .. N – 1 are for the remaining particles. 

Due to its surrounding fluid environment with viscosity ηf and density ρf particle i will have viscous 

force (or drag) 
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 iifi vDD


6  (2) 

and buoyant force 

 gDB fii




 3

6
  (3) 

with g


 is earth gravity. Since the system is simulated on earth surface it will have also gravitational 

force 

 gDG iii




 3

6
 , (4) 

which differs from Eq. (3) in the sign and also the density. Position of particle i relative to particle j is 

 jiij rrr


 , (5) 

distance between two particles 

 ijijijij rrrr

 , (6) 

and unit vector 

 
ij

ij

ij
r

r
r



ˆ , (7) 

where for relative velocity and its unit vector can also be obtained using similar way. Using Eq. (6) 

and diameter of two particles, Di and Dj, an overlap 

   ijjiij rDD  ,0max , (8) 

can be calculated with 

  
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




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,,
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yx  (9) 

and 

  ijij

ij

ij v
dt

d



 sign , (10) 

with 

  







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


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.0,1

,0,0
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sign

x

x

x

x  (11) 

Using Eqs. (8) and (10) normal force on particle i due to particle j can be defined as [7] 

 ijijNijijNij vrkN ˆˆ  


 . (12) 

Then total force acted on particle i will be 

  



N

j

ijijiiii NGBDF
1

1


  (13) 

and 

 
i

i

i F
m

a
 1

  (14) 

is the acceleration. At every time t Eq. (14) can be written in its full form as 

        
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, (15) 
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that shows a coupled differential equation, which is difficult to solve it analytically. Using forward 

difference method velocity of particle i at time t + Δt can be obtained 

      tatvttv iii


  (16) 

and also the position 

      tvtrttr iii


 , (17) 

with initial condition  0ir


 and  0iv


 must be known for all particles. And for interaction between 

particles and the container walls, it is formulated similar to Eq. (12), where a flat wall can 

approximated with a spherical grain with large diameter, so that only one grain diameter is used and 

unit vector of relative positition will become the normal vector of the wall. The simulation will be 

performed from t = tbeg until t = tend time step Δt. 

 During the simulation three parameters are observed, which are vertical position of interuder zint, 

maximum vertical position of bed particle zmax, and average vertical position of bed partices 

 








1

1

avg
ˆ

1

1 N

i

irz
N

z


, (18) 

where vertical position of the intruder (with index N) is excluded. 

 

3. Results and discussion 

Values of parameters used in the simulation is shown in folowing Table 1, where all are represented in 

SI units. 

Table 1. Parameters values using in simulation. 

Symbol Value Unit 

g 9.87 m·s
-2

 

ηf 8.9×10
-4

 Pa·s 

ρf, ρbed 1000, 2000 kg·m
-3

 

ρint 2000, 2500, 3000, 

3500, 4000, 4500 
kg·m

-3
 

tbeg, tend, Δt, tint 0, 6, 0.001, 2 s 

N, Ny × Nz 221, 20×11 - 

Dbed, Dint 0.01, 0.04 m 

kN, γN 400, 0.1 N·m
-1

, N·s·m
-1

 

h, w, z0 0.4, 0.15, 0.18 m 

  

Simulation begins at t = tbeg with creating spherical particles in Ny × Nz grid with slightly 

pertubated randomly and let the system condensed until t = tint. After that time an intruder is 

let free falling from height z0, hit the bed, and begin to penetrate it, as shown in Fig. 1. 

 

Figure 1. Initial configuration, condensation, free falling, contacting, penetrating and collapsing. 
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Figure 1 shows the system with ρint = 2000 kg/m
3
 for time t at 0 s, 2 s, 2.02 s, 2.1 s, 2.21 s, 

2.28 s, 2.48 s, and 6 s. A typical time series of zmax, zavg, and zint for different value of ρint are 

shown in following Fig. 2. 
 

 
 (a) (b) (c) 

 
 (d) (e) (f) 

Figure 2. Time series of zmax, zavg, zint for various value of intruder density ρint: (a) 2000 kg/m
3
, 

(b) 2500 kg/m
3
, (c) 3000 kg/m

3
, (d) 3500 kg/m

3
, (e) 4000 kg/m

3
, and (f) 4500 kg/m

3
. 

 

Solid red line indicates position of most top bed particles, while solid blue line shows average vertical 

position of bed particles. Motion of intruder penetrating the bed is given by dashed blue line, which is 

steeper for larger intruder density. Final depth of intruder mostly achieved after 3-4 s. Intruder has 

already contact with bottom of container for interuder density 4000 kg/m
3
 and 4500 kg/m

3
. Peak 

between 2-3 s is due to collision of free falling intruder with the bed, which makes some bed particles 

rise their position higher than usual. 

 

      

      
 (a) (b) (c) (d) (e) (f) 

Figure 3. Condensed (top) and final (bottom) configuration for interuder density ρint: (a) 2000 kg/m
3
, 

(b) 2500 kg/m
3
, (c) 3000 kg/m

3
, (d) 3500 kg/m

3
, (e) 4000 kg/m

3
, and (f) 4500 kg/m

3
. 
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Since particles bed are randomly generated before it condensed for each density ρint there are five 

times repetition of simulation, which give average value of zavg, zmax, and zint as shown in Fig. 4. 

 

     
 

Figure 4. Condensed (left) and final (right) configuration for average value from five simulations. 

 

Configuration in Fig. 3 (top) is one of the results contributing to average value in Fig. 4 (left), while 

Fig. 3 (bottom) is related to Fig. 4 (right). We can also calculate the difference between final and 

condensed configuration, as given in Fig. 5 with standard deviation from 1.2×10
-4

 until 1.7×10
-2

 for the 

right figure. 

 

     

Figure 5. Difference of final and condensed configuration for: Δzmax,  Δzavg (left) and Δzint (right). 

 

It can seen from Fig. 5 (left) that Δzmax and Δzavg has order of 10
-2

, while from Fig. 5 (right) that Δzint 

has order of 10
-1

. It can understand since Δzmax and Δzavg have not change much, but Δzint is very 

dependent on initial configuration, that always be different. Monotonic increasing of Δzavg as 

increasing of ρint indicates an interesting result since it is already average values. 

 Polynomial regression is used in fitting Δzint as function of ρint and following relation 

 1

int

42

int

173

int

11

int 10585.510431.510861.110885.1   z , (18) 

is obtained with R
2
 = 0.983. From Fig. 5 (right) the fitting curve from Eq. (18) still lays in the range of 

error bar provided by standar deviation of simulation repetitions. Unfortunatelya, Eq. (18) does not 

hold for ρint < 2000 and ρint > 4500 as shown in Fig. 6. 
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Figure 6. Fitting simulation data zint with two models: Polynomial (dashed line), sigmoid (solid line). 

 

From experiment results, it can be deduced that smaller density will give smaller penetration depth and 

larger density will give constant value since the intruder already at the bottom of the container. Based 

on this physical facts another model is proposed using sigmoid function 

 
   min

0int

minmax

int
exp1

z
a

zz
z 







, (19) 

with Δzmin = 0.061 m, Δzmax = 0.167 m, a = 0.0026 m
3
/kg,  ρ0 = 3250 kg/m

3
, which hold for all range 

value of ρint. 

 

4. Conclusions 

Simulation of free falling intruder penetrating bed particles, where the whole system is immersed in 

fluid, has been performed. Larger density of intruder gives larger penetration depth with the limit of 

bed depth and container height. This feature can be accomodated by model using sigmoid function but 

not using polynomial function. 
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