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Abstract
Finding the least measurement settings to determine an arbitrary pure state 
has been long known as the Pauli problem. Peres conjectured that two 
unbiased bases may be sufficient to determine a pure state up to some finite 
ambiguities. Here we find that the Peres conjecture is correct in the case d  =  3 
where a pure state is determined up to at most six candidates states and is 
incorrect in the case of d  =  4 for which a counterexample is constructed. 
We observe that the target state can be picked out from candidates states by 
an adaptive two-outcome measurement. We thus provided a minimal qutrit 
tomography protocol constituted of three measurements in contrast to the four 
measurements required in previous non-adaptive method. We also reduce a 
five-measurement protocol for a pure qudit state into three full-dimensional 
measurements and one two-outcome measurement protocol, which exhibits 
robustness to the usual white noise thus also applies to nearly pure state.
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(Some figures may appear in colour only in the online journal)

L-L Sun et al

Minimal determination of a pure qutrit state and four-measurement protocol for pure qudit state

Printed in the UK

075305

JPHAC5

© 2020 IOP Publishing Ltd

53

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/ab64a2

Paper

7

1

10

Journal of Physics A: Mathematical and Theoretical

IOP

2020

1751-8121/ 20 /075305+10$33.00  © 2020 IOP Publishing Ltd  Printed in the UK

J. Phys. A: Math. Theor. 53 (2020) 075305 (10pp) https://doi.org/10.1088/1751-8121/ab64a2

https://orcid.org/0000-0002-0572-488X
mailto:yusixia@ustc.edu.cn
mailto:zbchen@nju.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ab64a2&domain=pdf&date_stamp=2020-01-27
publisher-id
doi
https://doi.org/10.1088/1751-8121/ab64a2


2

Introduction

In quantum mechanics, a quantum state contains maximum information about the system, 
capable of predicting the outcome statistics of all possible measurements. A converse problem 
is firstly considered by Pauli, which is referred to as the Pauli problem [1, 2], on what is the 
minimal number of measurements (each of which is performed sufficient many of runs so that 
probabilities are obtained without statistical errors), that are needed to specify the pure state 
uniquely among other pure states [3–11]. The answer to this problem is important as estimat-
ing an pure quantum state is one central task in quantum information processing.

In quantum theory, the most general measurement is represented by a positive-operator-
valued measure (POVM) {ξi � 0}, satisfying 

∑
i ξi = I . The probability corresponding to the 

outcome i is given by Born’s rule Pi = Tr(ρξi). POVMs are called informationally complete 
[3–6] if the statistics from them are sufficient to determine any pure state (among other pure 
states). It has been shown that three measurement bases are not enough in dimensions d � 3. 
In [5], Jaming constructed POVMs with four properly chosen orthonormal bases, which are 
prefixed, while the minimal number of measurements needed for an adaptive protocol is still 
unknown. Adaptive protocol permits optimizing the latter measurement bases with the infor-
mation obtained from previous measurements. This technique can significantly reduce the 
resource and shows advantages over the pre-fixed measurements schemes [12, 13]. Goyeneche 
et al, introduced a five measurements adaptive protocol which enables one to estimate a phys-
ical state with straightforward calculations. Can we also develop some adaptive protocols with 
less than or equals to four measurements, i.e. at least as good as the pre-fixed measurement 
protocols? 

By investigating Peres’ consideration about pure state determination (for finite dimensional 
system) [14] we indeed find such an adaptive protocol. Peres considered a particular version 
of Pauli’s problem and conjectured that measurements onto two mutually unbiased bases 
should be sufficient to determine a pure state to finite candidate states. A justification is that 
two unbiased measurements yield the same number of independent parameters with those 
needed to parameterize an unknown physical state. This consideration captures the following 
question: to what extend the mutually unbiased measurements can determine a finite dimen-
sional pure state. In the case of continuous variables, there is a two-parameter family of wave 
functions with the same momentum and position distributions [15].

In this paper, we shall consider discrete systems and show that the Peres’ conjecture is 
correct in d  =  3, in which case we prove that two unbiased measurements can settle the state 
down to at most six candidate states, while Peres’ conjecture is incorrect in the case of d  =  4 
since there is a counter example. Moreover we observe that given a set of finite number of 
candidate states an adaptive dictomatic measurement can pick out the target state. As applica-
tions, we first present a minimal tomography protocol for pure qutrit state with three meas-
urements. Secondly, we can reduce a previous five-measurement adaptive protocol for pure 
qudit states into a 4-meausrement protocol involving three full-dimensional and a dictomatic 
measurements. We then show this protocol is robust to white noise and can apply to nearly 
pure states.

Peres’ conjecture in the case of d = 2, 3, 4

Peres has conjectured that, as two mutual unbiased measurements yield the same number of 
independent parameters as those needed for characterizing a pure state, their statistics should 
be sufficient to determine an arbitrary pure state up to finite ambiguities [14]. If this conjecture 
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is correct, it provides a new viewpoint to solve Pauli’s problem. In the following, we shall 
examine Peres’ conjecture in the cases of d = 2, 3, 4 in details.

Peres’ conjecture is easily seen to be true in the qubit case, i.e. d  =  2. As shown in figure 1, 
a pure qubit state can be represented as one point on the surface of the Bloch sphere, and two 

unbiased measurements σx,σz determine an unknown pure state up to at most two possible 

pure states: for an unknown pure state |Φ〉 = sin θ
2 |0〉+ cos θ

2 eiϕ|1〉, measurement of σz deter-
mines the angle θ, i.e. state must lie on the circle c0,ϕ while the measurement of observable 
σx restricts the state to the circle c+,ϕ′. Since two circles intersect at most at two points, the 
unknown state is determined up to two candidates {|Φ〉, |Φ′〉}.

Now, we prove that Peres’ conjecture is correct in dimension d  =  3. For a qutrit we con-
sider two unbiased Von Neuman measurements {|0〉, |1〉, |2〉} with and {|θ0〉, |θ1〉, |θ2〉} where

|θm〉 =
1√
3

∑
n∈{0,1,2}

ei 2mnπ
3 |n〉.� (1)

An arbitrary pure state can always be cast into the following form

|Φ〉 =
∑

n∈{0,1,2}

αneiϕn |n〉
� (2)

with αn � 0, 
∑

n α
2
n = 1, and ϕ1 = 0. Via the first measurement one can obtain the coeffi-

cients α2
n = |〈n|Φ〉|2 with n ∈ {0, 1, 2}. Via the second measurement one obtains probabilities 

Pm = |〈θm|Φ〉|2 through which we aim to determine those phases ϕn. For this purpose we 
introduce a different set of data

Qj =
∑

m∈{0,1,2}

ei −2mjπ
3 Pm

=
1
3

∑
m∈{0,1,2}

ei −2mjπ
3

∣∣∣∣∣∣
∑

n∈{0,1,2}

αneiϕn ei −2mnπ
3

∣∣∣∣∣∣

2

=
1
3

∑
m,n,k∈{0,1,2}

αnαkei(ϕn−ϕk)ei 2m(k−n−j)π
3

=
∑

n∈{0,1,2}

αnαn+jei(ϕn−ϕn+j)

�

(3)

satisfying Q0  =  1 and Q∗
j = Q2−j for j �= 0. In what follows we shall show that this set of 

data suffices to determine those phases in the case of d  =  3, which proves Peres’ conjecture 
in this case.

In the case of d  =  3, we have two independent conditions encoded in the following complex 
data

Q1 = α1α0e−iϕ1 + α2α1eiϕ1−iϕ2 + α0α2eiϕ2

:= xe−i(δ+ε) + yei2δ + zei(ε−δ)
� (4)

where we have denoted x = α1α0, y = α2α1, and z = α0α2 together with 2δ = ϕ1 − ϕ2 and 
2ε = ϕ1 + ϕ2. We note that 0 � ϕ1,2 < 2π so that −π < δ < π leading to sin δ �= 0. If two of 
α′s are zero then the first measurement determines the state already. If there is one coefficient, 
e.g. α2 = 0, then we have y   =  z  =  0 and the phase ϕ1 can be read off directly from the phase 
of Q1. In what follows we assume x, y, z > 0 and we rewrite condition equation (4) as
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xe−iε + zeiε = Q1eiδ − yei3δ� (5)

which, by denoting r = Re Q1 and t = Im Q1, i.e. Q1 = r + it, gives rise to the following two 
equations

(z + x) cos ε = r cos δ − t sin δ − y cos 3δ,� (6)

(z − x) sin ε = r sin δ + t cos δ − y sin 3δ.� (7)

By eliminating variable ε we obtain

∆+∆− = ∆−(r cos δ − t sin δ − y cos 3δ)2

+∆+(r sin δ + t cos δ − y sin 3δ)2,
�

(8)

with ∆± = (x ± z)2. Since sin δ �= 0 the variable u = cot δ is well defined and it holds

cos 3δ
sin δ

=
u(u2 − 3)

1 + u2 ,
sin 3δ
sin δ

=
3u2 − 1
1 + u2

� (9)

and equation (7) becomes a polynomial equation of 6 degree about u

∆+∆−(1 + u2)3 =
∆+∆−

sin6 δ

= ∆−
(
(ru − t)(1 + u2)− yu(u2 − 3)

)2

+∆+

(
(r + tu)(1 + u2)− y(3u2 − 1)

)2

=

6∑
k=0

ckuk,

�

(10)

Figure 1.  Peres’ conjecture in the case of d  =  2.

L-L Sun et alJ. Phys. A: Math. Theor. 53 (2020) 075305



5

in which

c0 = ∆−t2 +∆+(r + y)2,� (11)

c1 = −2t∆−(r + 3y) + 2t∆+(r + y),� (12)

c5 = −2t∆−(r − y) + 2t∆+(r − 3y),� (13)

c6 = ∆−(r − y)2 +∆+t2.� (14)

In what follows, we shall show that the above polynomial equation (10) is nontrivial (thus it has 
finite solutions), i.e. not an identity, in the case of x, y, z > 0. If this is not the case one should 
have c1 = c5 = 0 since the left-hand-side has only even powers of u, from which it follows 
c1 − c5 = 32xyzt = 0 enforcing t  =  0, which leads to c0 = ∆+(r + y)2, c6 = ∆−(r − y)2, 
and

c2 = ∆−(r + 3y)2 + 2∆+(r + y)(r − 3y)� (15)

c4 = ∆+(r − 3y)2 + 2∆−(r − y)(r + 3y).� (16)

To vanish identically we should have c0 = c6 and c2 = c4. However it turns out that

0 = c4 − c2

= ∆−((r − y)2 − 16y2)−∆+((r + y)2 − 16y2)

= 64xy2z > 0,

�
(17)

a contradiction. To sum, as long as x, y, z > 0 the polynomial equation (10) is nontrivial which 
means at most six solutions for u. In the case of x �= z, ε can be uniquely determined by equa-
tions (6) and (7). In the case of x  =  z, i.e. ∆− = 0, the polynomial equation (10) becomes a 
nontrivial polynomial of degree at most three and thus there are at most three solutions for u 
and from equation (6) two solutions of ε are possible so that we have in total at most six solu-
tions in all cases.

It should be noted that the constraints on the non-vanishing of all the amplitudes can be 
lifted. If there are two α’s are zero the first measurement suffice. Suppose that there are 
one vanishing coefficient, e.g. α2 = 0 such that y   =  z  =  0, then we have only to determine 
ϕ1 = δ + ε which is exactly the phase of Q1. Therefore in this case two unbiased measure-
ments are sufficient to determine a general pure qutrit state up to finite candidate states.

In the case of d  =  4, we consider the following family of pure states (containing infinite 
elements) and which disprove the conjecture since all of them yield the same distributions for 
unbiased measurements, and the measurements fail to determine state to finite ambiguities.

|Φφ〉 ∝ |0〉+ eiφ|1〉+ eiφ|2〉 − |3〉� (18)

with φ being arbitrary and two measurements {|n〉} and {|un〉} where

|u0〉 =
1
2
(|0〉+ |1〉+ |2〉+ |3〉),� (19)

|u1〉 =
1
2
(|0〉+ |1〉 − |2〉 − |3〉),� (20)

|u2〉 =
1
2
(|0〉 − |1〉 − |2〉+ |3〉),� (21)
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|u3〉 =
1
2
(|0〉 − |1〉+ |2〉 − |3〉).� (22)

It is easy to check that these two measurements are unbiased and both probabilities |〈n|Φφ〉|2 
and |〈un|Φφ〉|2 are independent of φ for all n = 0, 1, 2, 3, and the two measurement can not 
determine the state up to finite candidate states.

Indeed, for any four-dimensional pure state there exist two unbiased measurements not 
capable of determining the state up to finite ambiguities. This is because any pure state can be 
obtained by performing a unitary operation U on, for example, |Φ0〉 which is defined in equa-
tion (18). Note that the unbiased measurements are still unbiased after the unitary operation 
U, and they yield the same distributions on the state after U operation.

Adaptive 2+1 protocol for pure qutrit state

Now we proceed with Peres’ conjecture holding in d  =  3 and a pure state |Φ〉 is determined 
up to some finite ambiguities {|Φi〉} by them. To finally determine the state, we can choose a 
two-outcome measurement {|φ〉〈φ|, 1 − |φ〉〈φ|}, where |φ〉 is chosen such that {|〈Φi|φ〉|2} are 
all different from each other. As |〈Φ|φ〉|2 must lie in the set {|〈Φi|φ〉|2}, the candidate which 
is compatible with the yielding binary distribution is the target state, and the ambiguities are 
thus removed. Obviously, this step need information from previous measurement thus it is 
adaptive. Note, such measurement settings are always available. See that, if state |φ〉 does not 
meet the requirement, then there are i, j so that |〈φ|Φi〉| = |〈φ|Φj〉|, and |φ〉 then can be param
eterized by strictly-less independent parameters than that needed for a general state, and each 
binary combination of candidate states define a lower-dimensional subspace with measure 
zero, the union of them is also lower-dimensional. This implies that |φ〉 can even be picked at 
random, and it is nearly impossible to take by chance a state violating the requirement.

The above proof and argument lead to a minimal pure qutrit tomography protocol directly. 
In contrast to the currently non-adaptive method using minimal four measurements with 12 
outcomes, our adaptive measurement protocol composites of three measurements with 8 out-
comes. By the first unbiased measurement, we can obtain the amplitude. The second unbiased 
measurement can determine the phases up to a finite set. While there is no general analytic 
formula available to calculate these phases, we have to find them numerically. For this pro-
pose, we can construct a family states with the amplitudes keeping constant (determined by 
the first measurement) and uniformly assigning random values to phases {ϕ1,ϕ2}. These 
states predict the probabilities {Pm({ϕn})} for the second measurement on each assignment. 
We introduce a cost function

c({ϕn}) ≡
∑

m

|Pm({ϕn})− Pm|,

and it must equal to zero when {ϕn} corresponds to a candidate state. For the finiteness of the 
post-processing, we find sufficiently small values of the cost function c which can be regarded 
as zero within allowed errors. In the following, we apply the method to determine a pure qutrit 
state.

As an example let us determine the following pure state in the three-dimensional Hilbert 
space

|Φ〉 = |0〉+ ei π2 |1〉+ ei π3 |2〉√
3

.

L-L Sun et alJ. Phys. A: Math. Theor. 53 (2020) 075305
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To do so we shall at first perform the measurement on the computational basis {|0〉, |1〉, |2〉}, 
yielding probabilities |αn|2 = 1

3 from which the target state is determined up to two unknown 
phases: |Φϕ1,ϕ2〉 = (|0〉+ eiϕ1 |1〉+ eiϕ2 |2〉)/

√
3. And then we perform the second measure-

ment on the unbiased basis {|θ〉} that yields probabilities {Pm}. We assign 1000 values evenly 
from (0, 2π) to (ϕ1,ϕ2), the assignments give 1000 × 1000 states {|Φϕ1,ϕ2〉}. The cost func-
tion c(ϕ1,ϕ2) is shown in figure 2. It shows six phase vectors,

{π
2

,
π

6
}, {5π

3
,
π

6
}, {π

2
,
π

3
},

{11π
6

,
π

3
}, {5π

3
,

3π
2
}, {11π

6
,

3π
2
}

�

(23)

as the numerical solution to c(ϕ1,ϕ2) = 0.
Lastly, we perform a third measurement which is a dichotomic POVM {|φ〉〈φ|, 1 − |φ〉〈φ|} 

with, for a instance, |φ〉 =
√

2
2 |0〉+ 1

2 ei π4 |1〉+ 1
2 ei π6 |2〉. The resulting probabilities read 

{0.81, 0.39, 0.74, 0.54, 0.04, 0.12}, respectively, corresponding to six candidate states. The 
statistics of the third measurement should be compatible with |〈Φ|φ〉|2 = 0.74 from which the 
state can be uniquely determined. In total, this protocol only requires measuring two mutually 
unbiased and one dichotomic observables while at least four measurements are required in a 
pre-fixed measurement schemes [7].

We now apply the analytic approach to this case. As x  =  z, the equations  (6) and (10) 
become

2 cos ε =

√
3 + 1
2

cos δ −
√

3 − 1
2

sin δ − cos 3δ,� (24)

(3 + 2
√

3)u3 + u2 − (1 − 2
√

3)u + 1 = 0,� (25)

with three solutions u = cot δ ∈ {−1,
√

3, 2 +
√

3} such that δ ∈ {−π/4,π/6,π/12} to the 
cubic equation (25). For each δ equation (24) gives rise to two possible ε ∈ {π/12,π/3, 5π/12} 
and π − ε from which the numerical solution equation  (23) can be reproduced by noting 
ϕ1,2 = ε± δ.

Adaptive 3+1 protocol for pure qudit state

For given d whenever Peres’ conjecture holds true, we always have an adaptive 2  +  1 protocol 
similar to qutrit case. For higher dimensional cases, however, Peres’ conjecture remains a 
conjecture, here we shall propose instead an adaptive 3  +  1 protocol. It has been shown that 
any pure state can be determined by statistics from the following five measurements [3]:

B1 = {|2j − 1〉, |2j〉},� (26)

B2 = { 1√
2
(|2j − 1〉 ± |2j〉)},� (27)

B3 = { 1√
2
(|2j〉 ± |2j + 1〉)},� (28)

B4 = { 1√
2
(|2j − 1〉 ± i|2j〉)},� (29)

L-L Sun et alJ. Phys. A: Math. Theor. 53 (2020) 075305
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B5 = { 1√
2
(|2j〉 ± i|2j + 1〉)}.� (30)

One can assume d is even (generalizing to the case of odd d is trivial), where j ∈ {1, 2, · · · d
2} 

and the addition of labels is carried out modulo in d. As statistics from the measurement 
on B1 determine the amplitudes, one can construct the other four bases with {|2j − 1〉, |2j〉} 
which have non-zero amplitudes. With the statistics from all the measurements, one can easily 
deduce an analytical expression for all the parameters [3].

We shall now show below that three measurements B1, B2, and B3 determine the unknown 
state up to some finite ambiguities, thus we can give a 3  +  1 measurements protocol. According 
to the amplitudes determined by measurement B1, we relabel the amplitudes to ensure that 
αi � αi+1. This arrange would bring advantage in the following calculations. See that,

{
P2j,± =

1
2

∣∣∣α2j ± α2i−1ei(ϕ2j−1−ϕ2j)
∣∣∣
2
}

� (31)

obtained from measurement B2 determine each relative phase up to two possibilities:

ϕ2j − ϕ2j−1 = π ± (π − arccosβ2j)� (32)

where βj := Pj,+−Pj,−
2αjαj−1

. Similarily, the measurement B3 determines the relative phases as

ϕ2j+1 − ϕ2j = π ± (π − arccosβ2j+1) .� (33)

Solving the linear system equations (32) and (33) iteratively, the phases can be determined 
up to the 2d−1 ambiguities denoted by phase vectors −→ϕ µ, with each vector corresponding to 
state |Φµ〉.

Figure 2.  The discriminant equation  cϕ1,ϕ2  is depicted. Any zero value indicates 
a candidate state. This figure shows six candidate states compatible with the second 
measurements.
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To remove the ambiguities, we also introduce a two-outcome measurement 
{|φ〉〈φ|, 1 − |φ〉〈φ|} and, require |φ〉 to satisfy the constraint: µ �= ν , |〈φ|Φµ〉|2 �= |〈φ|Φν〉|2. 
By introducing this procedure, we reduce the five bases down to three, with the resulting proto
col referred to as 3  +  1 protocol here.

There are unavoidable processing errors, such as white noise, in a real experiment. Here we 
show that our 3  +  1 protocol is robust to white noise and thus can apply to nearly pure states 
as (with 1 � λ)

ρ′ = (1 − λ)|Φ〉〈Φ|+ λ

d
I.� (34)

Note that a pure state is mainly determined by the its large amplitudes and the corresponding 
phases. We can restrict ourselves on the accuracy of the estimation of these essential terms. In 
the presence of white noise, the statistics from measurements can be obtained by averaging the 
probability p  from measurement on |Φ〉〈Φ| with a white noise into p′ → (1 − λ) p + λ

d . So the 
amplitudes would be estimated as α′2

i = (1 − λ)α2
i +

λ
d , and the relative error of amplitude 

reads

|α′
i − αi|
αi

=
|1 − dα2

i |
2dα2

i
λ.� (35)

For the phases estimation using equations (32) and (33), the phases are estimated iteratively 
in an increasing order of amplitudes, from α1 to αn−1. In a real experiment, the outcome 
statistics is subject to statistical errors, and these errors would accumulate in the recursive 
estimations. Note that the phases corresponding to large amplitudes are more important than 
those corresponding to the small ones, we can reduce the error accumulations by estimating 
them in early stage of estimations. For this, we rearrange the label after the first measurement 
to ensure that αi � αi+1 and then construct the second and the third measurement with this 
rearranged setting. For the state equation (34) and the phase estimations equations (32) and 
(33), we have P′

j,+ − P′
j,− = (1 − λ)(Pj,+ − Pj,−) and the relative error of βj on the right hand 

side of equations (32) and (33) reads

|β′
j − βj|
βj

=
λ

2d

(
1
α2

j
+

1
α2

j−1

)
.� (36)

When 2dα2
i � λ the relative errors equations  (35) and (36) are small and the estimation 

are accurate. The errors are significant when 2dα2
i � λ, however, we need not worry about 

them since the amplitudes are negligible, of order λ/2d , so that the corresponding phases are 
inessential.

Our method applies to the cases when the estimated state is known to be pure or almost 
pure. The three measurements B1, B2, and B3 determine {ρii} and the real parts in ρi,i+1, ρi+1,i, 
which, together with the statistics from the measurement {|φ〉〈φ|, 1 − |φ〉〈φ|}, are sufficient 
to determine a pure state while insufficient for a mixed one. For a general case without the 
purity assumption, the statistics from the three measurements allow a weak purity certifica-

tion, tr(ρ2) �
∑

i=1,··· ,d α
2
i +

∑
j=1,··· , d

2

1
2 [( p2j,+ − p2j,−)

2 + ( p2j+1,+ − p2j+1,−)
2], (here, the 

last two terms come from the real parts in ρi,i+1, ρi+1,i). This certification is not sufficient 
strong, hence the assumption on the purity is generally needed.

In summary, we have proved that Peres’ conjecture is correct in the case of d  =  3 that ena-
bles us to propose a minimal adaptive protocol to determine an unknown pure qutrit state. In 
the mean time we have shown that Peres’ conjecture is incorrect in the case of d  =  4. Also, we 
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have shown that our two-outcome measurement to pick out the target state out of a finite num-
ber of states used in the qutrit determination protocol can also apply to arbitrary dimensional 
pure state tomography. As an application we improve the five-measurement protocol into a 
3  +  1 protocol, i.e. three full dimensional measurements and one two-outcome measurement. 
By analysing the effect of white noise to our 3  +  1 protocol, we find that our protocol is robust 
and therefore also applies to nearly pure state.

Acknowledgment

We thank Yong-Shun Song for helpful discussion. This work has been supported by the 
Chinese Academy of Sciences, the National Natural Science Foundation of China under 
Grant No. 61125502, and the National Fundamental Research Program under Grant No. 
2011CB921300.

ORCID iDs

Sun Liangliang  https://orcid.org/0000-0002-0572-488X

References

	 [1]	 Pauli W 1958 Handbuch der Physik vol 5 (Berlin: Springer)
	 [2]	 Moroz B Z and Perelomov A M 1994 Theor. Math. Phys. 101 1200–4
	 [3]	 Goyeneche D, Cañas G, Etcheverry S, Gómez E S, Xavier G B, Lima G and Delgado A 2015 Phys. 

Rev. Lett. 115 090401
	 [4]	 Flammia S T, Silberfarb A and Caves C M 2005 Found. Phys. 35 1985
	 [5]	 Weigert S 1992 Phys. Rev. A 45 11
	 [6]	 Finkelstein J 2004 Phys. Rev. A 70 052107
	 [7]	 Carmeli C, Heinosaari T, Schultz J and Toigo A 2015 Eur. Phys. J. D 69 179
	 [8]	 Renes J M, Kohout R B, Scott A J and Caves C M 2004 J. Math. Phys. 45 2171
	 [9]	 Jaming P 2014 Appl. Comput. Harmonic Anal. 37 413
	[10]	 Li N, Ferrie C, Gross J A, Kalev A and Caves C M 2016 Phys. Rev. Lett. 116 180402
	[11]	 Heinosaari T, Mazzarella L and Wolf M M 2013 Commun. Math. Phys. 318 355–74
	[12]	 Mahler D H, Rozema L A, Darabi A, Ferrie C, Blume-Kohout R and Steinberg A M 2013 Phys. 

Rev. Lett. 111 183601
	[13]	 kalev A and Hen I 2015 New J. Phys. 17 093008
	[14]	 Peres A 1993 Quantum Theory: Concepts and Methods (Dordrecht: Kluwer)
	[15]	 Corbett J V and Hurst C A 1978 J. Australas. Math. Soc. 20 182

L-L Sun et alJ. Phys. A: Math. Theor. 53 (2020) 075305

https://orcid.org/0000-0002-0572-488X
https://orcid.org/0000-0002-0572-488X
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1007/s10701-005-8658-z
https://doi.org/10.1103/PhysRevA.45.7688
https://doi.org/10.1103/PhysRevA.45.7688
https://doi.org/10.1103/PhysRevA.70.052107
https://doi.org/10.1103/PhysRevA.70.052107
https://doi.org/10.1140/epjd/e2015-60230-5
https://doi.org/10.1140/epjd/e2015-60230-5
https://doi.org/10.1063/1.1737053
https://doi.org/10.1063/1.1737053
https://doi.org/10.1016/j.acha.2014.01.003
https://doi.org/10.1016/j.acha.2014.01.003
https://doi.org/10.1103/PhysRevLett.116.180402
https://doi.org/10.1103/PhysRevLett.116.180402
https://doi.org/10.1007/s00220-013-1671-8
https://doi.org/10.1007/s00220-013-1671-8
https://doi.org/10.1007/s00220-013-1671-8
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1103/PhysRevLett.111.183601
https://doi.org/10.1088/1367-2630/17/9/093008
https://doi.org/10.1088/1367-2630/17/9/093008
https://doi.org/10.1017/S0334270000001569
https://doi.org/10.1017/S0334270000001569

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Minimal determination of a pure qutrit state and four-measurement protocol for pure qudit state﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿Introduction
	﻿﻿﻿Peres﻿’﻿ conjecture in the case of ﻿﻿
	﻿﻿﻿Adaptive 2﻿+﻿1 protocol for pure qutrit state
	﻿﻿﻿Adaptive 3﻿+﻿1 protocol for pure qudit state
	﻿﻿﻿Acknowledgment
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


