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Abstract
We study the motion of N particles moving on a two-dimensional triangular 
lattice, whose sites are occupied by either left or right rotators. These rotators 
deterministically scatter the particles to the left (right), changing orientation 
from left to right (right–left) after scattering a particle. This interplay between 
the scatterers and the particle’s motion causes a single particle to propagate 
in one direction away from its initial position irrespective of the system’s 
configuration of scatterers, i.e. the state of the medium through which the 
particle moves. For multiple particles we show that the particles’ dynamics 
can be vastly different. Specifically, we show that a particle can become 
entangled with another particle potentially causing the particle’s trajectory to 
become periodic and that this can happen when the particles have the same 
or differing speeds. We describe two classes of periodic orbits based on the 
particles’ initial velocities. We also describe how a particle with an unbounded 
past trajectory implies that some, possibly other, particle(s) has an unbounded 
future trajectory in this and other related multiparticle models.

Keywords: multiparticle system, entanglement, periodic orbit,  
dynamic transition

(Some figures may appear in colour only in the online journal)

1.  Introduction

In this paper we consider the dynamics of a particular class of particle systems which are 
multiparticle extensions of what are referred to as Lorentz lattice gas (LLG) models. In a LLG 
a single particle moves along the bonds of a lattice, from lattice site to lattice site. When the 
particle arrives at a lattice site, it encounters a scatterer that modifies the particle’s motion 
according to a given scattering rule.

S McGinnis and B Webb

Multiparticle dynamics on the triangular lattice in interacting media

Printed in the UK

075207

JPHAC5

© 2020 IOP Publishing Ltd

53

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/ab661e

Paper

7

1

18

Journal of Physics A: Mathematical and Theoretical

IOP

2020

1 Author to whom any correspondence should be addressed.

1751-8121/ 20 /075207+18$33.00  © 2020 IOP Publishing Ltd  Printed in the UK

J. Phys. A: Math. Theor. 53 (2020) 075207 (18pp) https://doi.org/10.1088/1751-8121/ab661e

https://orcid.org/0000-0002-0586-2246
mailto:telestew@yahoo.com
mailto:bwebb@mathematics.byu.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ab661e&domain=pdf&date_stamp=2020-01-27
publisher-id
doi
https://doi.org/10.1088/1751-8121/ab661e


2

Such systems are studied to understand the basic principles that underly dynamic processes 
such as diffusion, propagation, etc as a particle or collection of particles moves through some 
medium [1–7]. In this setting the collection of scatterers model the system’s medium. The 
assumption that the scatterers remain fixed at a particular lattice sites, i.e. are not moved by 
scattering the particle, models the case in which the particle’s collision with the system’s 
medium only effects the velocity of the particle such as when the individual elements that 
make up medium are large relative to the size of the particles.

The study of a single particle goes back to Lorentz’ original model of conductance in which 
he assumes that electrons passing through a conductor moved independent of each other [8]. 
In a LLG it is likewise assumed that the particles moving through the system’s medium are 
either small enough or have some other property so that we can neglect particle-to-particle 
interactions. Thus, an understanding of a single particle’s motion through the medium is suf-
ficient to understand the passage of many particles through the medium.

The scattering rules that have been investigated in LLGs are typically physically motivated 
rules such as what are referred to as rotators and mirrors, which are used to deflect the trajec-
tory of incoming particles away from the scatterers [3, 9–13]. These rules can allow for the 
scatterers to be fixed in which case the scatterer, once determined, has a single orientation. 
A scatterer can also be what is referred to as flipping where its orientation can change over 
time. In LLGs where the scatterers are fixed, determining the particle’s dynamics is related 
to problems in percolation theory [11, 14–17]. In the case of flipping scatterers the system is 
much more dynamic and determining the system’s behavior has connections to problems in 
kinetic theory [18–20].

In LLGs which have flipping scatterers the standard rule for when a scatter flips, i.e. changes 
orientation, is when it collides with a particle [1, 10, 21–23]. LLGs with flipping scatterers 
are some of the simplest models in which there is an interaction between the system’s par-
ticles and the system’s medium. However, in such systems there is potential for one particle 
to indirectly effect the trajectory of another particle through the medium, in which case the 
‘Lorentz’ assumption of noninteraction does not hold. In such systems it is therefore natural 
to consider, as we do, multiple particles. The challenge is that the complexity of the system 
greatly increases with the number of particles. This is likely the major reason few, if any, rig-
orous results exist in this setting although numerous results are known for the single particle 
case (see previous references).

In general, the trajectory of the single particle in a LLG is determined by the particular 
choice of (i) lattice, (ii) scattering rule, and (iii) initial configuration of scatters on the lat-
tice. A wide variety of dynamics has been observed in these LLGs, depending on the choice 
of these three features (see, for instance, [3–5, 12, 14]). A major goal in the study of these 
Lorenz systems is to find unifying principles describing what combination of (i)–(iii) results 
in systems with certain types of statistical behavior. This goal naturally extends to multiparti-
cle variants of LLG systems.

In this paper, we study the motion of N � 2 particles on a regular two-dimensional lattice, 
in which the lattice is fully occupied by flipping scatterers. The particular type of scatterers 
we consider here are flipping rotators, which rotate the particle’s velocity either to its left or 
its right, depending on whether the scatterer is oriented to the left or the right, i.e. is a left or 
right scatterer, respectively. Furthermore, the scatterers flip or change orientation after scatter-
ing a particle, flipping either from right to left or from left to right, depending on their original 
orientation, respectively.

Although a number of our results hold for general LLGs (see the results in section 4 and 
specifically remark 4.4), for the sake of concreteness, for the majority of the paper we will 
consider the flipping rotator model on the regular triangular lattice. In most LLGs the system’s 
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initial configuration of scatterers has a significant impact on the particle’s dynamics (see, for 
instance, [3, 21–23]). In the case of the triangular lattice the model’s initial configuration is 
much less relevant, which is our primary reason for using this model as a stepping stone for 
rigorously analyzing multiparticle systems in interacting media (see theorem 1 in this paper 
and [10] for more details).

In this model we show that, as opposed to the nearly linear motion of a single particle, 
the trajectories of multiple particles in this model can become entangled both over short and 
arbitrarily long time scales. The entanglement can result in both periodic and aperiodic tra-
jectories that are not possible in the single particle model. Moreover, these types of entangled 
trajectories both occur when the particles have the same speed and in specific cases when the 
particles have different speeds.

In the case of periodic orbits we show that not only do different types of periodic orbits 
exist–depending on the initial positions and velocities of the particles–but also that these peri-
odic structures can have arbitrarily large size and period (see theorem 2). We also show that, 
conversely, if some particle in the model has an unbounded and therefore aperiodic past then 
some potentially other particle must have an unbounded future. That is, if a particle with an 
unbounded past becomes entangled with another particle causing the particle’s motion to 
become periodic, some other particle must inherit this unbounded motion and escape to infin-
ity (see theorem 3 and figure 7).

As mentioned, we also consider the case in which particles have different speeds. Although 
this complicates the analysis of our model we are able to show that periodic structures can still 
exist between particles with differing speeds (see figure 8). However, we are only able to find 
relatively few such structures for a very limited number of particles with different speeds. We 
do give a sufficient condition involving the ratio of the particles speeds that guarantees that no 
periodic trajectories can form it this ratio is too high, i.e. if one particle is moving much faster 
than the other (see theorem 4).

The paper is organized as follows. In section 2 we introduce the multiparticle model we 
will consider throughout the majority of the paper and describe the motion of a single particle 
in this model. In section 3 we begin our analysis of the multiparticle system by describing 
mutual and nonmutual interactions. We then discus the notion of particle entanglement and 
in the specific case of periodic trajectories note that periodic trajectories can be classified as 
either regular or irregular (see proposition 3.2). In section 4 we consider the case of aperi-
odic behavior. Here we discuss unbounded behavior and describe consequences of the time-
reversability of our and related models including the equivalence of periodic and bounded 
trajectories. In section 5 we consider the effect of differing speeds on the particle’s dynamics 
and show that some properties remain in this generalization of the multiparticle model while 
others do not. Section 6 consist of a number of open problems and some closing remarks.

We note that although the main results of this paper are proven rigorously, the paper is 
written so that it can be followed without the need for the reader to work through the various 
proofs.

2. The multiparticle model

In this section we describe the specific multiparticle model which we will consider throughout 
this paper. The lattice over which the particles move is the triangular lattice T = (T,B), with 
sites T and bonds B. This lattice consists of regular triangles with sides of unit length, so that 
each lattice site has six nearest neighbors with which it shares a lattice bond of length 1 (see 
figure 1).
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Our main object of study in this paper is the motion of a number of particles p1, . . . , pN  as 
they move from their initial positions on the lattice along the lattice bonds from lattice site to 
lattice site. By way of notation we let ri(t) ∈ R2 denote the position and vi(t) ∈ R2 denote the 
velocity of particle p i at time t � 0 for i = 1, . . . , N. We let ri = ri(0) and vi = vi(0) denote 
the ith particle’s initial position and initial velocity, respectively, at time t  =  0.

For the sake of simplicity we will initially assume that each particle moves with constant 
unit speed. Later in section 5 we will remove this assumption to illustrate how varying speeds 
effect the collective dynamics of the particles in this model. Since, for the moment, each par-
ticle moves with unit speed, the particle p i is at some lattice site at each time t +�ti where 
t ∈ N = {0, 1, 2, . . . } with displacement �ti ∈ [0, 1). We define the particle p i’s trajectory 
as the discrete sequence of lattice sites {ri(t +�ti)}t∈N ⊆ T, where we consider only the 
discrete times t = 0 +∆ti, 1 +∆ti, 2 +∆ti, . . . for each particle instead of all time t � 0. 
Since the velocity of the particle does not exist at the moment it is scattered, we let vi(t +�ti) 
denote the velocity of the particle immediately after it is scattered, i.e. immediately after it 
leaves a lattice site.

We also assume that the displacement �ti �= �tj for i �= j so that no two particle’s arrive at 
the same lattice site at the same point in time. This is not a strong assumption in the sense that 
if we choose any probability measure on [0, 1) absolutely continuous with respect to Lebesgue 
measure then the probability of �ti = �tj for i �= j is zero. Lastly, and without loss in general-
ity, we assume that �t1 = 0 and �ti < �ti+1.

Particles moving along the same bond in opposite directions do not interact when they 
meet. This is the ‘Lorentz’ property of the system. However, at each lattice site h ∈ T, we 
assume that there is a scatterer, which rotates the velocity of the incoming particle, either to 
its left or to its right, by an angle of θ = ±2π/3, depending on the scatterer’s orientation. 
This is shown in figure 1, where we use the convention, here and throughout the paper, that a 
closed circle denotes a left rotator and an open circle denotes a right rotator, respectively. As 
mentioned in the introduction, when a particle collides with a scatterer it flips the scatterer’s 
orientation either from right to left or left to right, respectively.

Note that each scatterer is, initially at time t  =  0, either a left scatterer or a right scatterer, 
i.e. is oriented either to the left or to the right. With this in mind, we let C = C(0) denote this 
initial configuration of scatterers and let C(t +�ti) denote the configuration of scatterers on 
the lattice at time t +�ti for t ∈ N and i = 1, . . . , N. The configuration C(t +�ti) consists 
of the collection of all the individual orientations of each scatter on the lattice at time t +�ti. 
For each lattice site h ∈ T we let

Figure 1.  Upon arriving at a left (right) rotator, indicated by a closed (open) circle, the 
particle’s velocity is rotated to its left (right) by an angle of θ = ±2π/3. Immediately 
after the particle is scattered by the left (right) rotator the rotator’s orientation flips so 
that it becomes a right (left) rotator.
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C(t +�ti, h) ∈ {−1, 1} for h ∈ T, t � 0 and i = 1, . . . , N

denote the orientation of each scatterer at site h at time t +�ti. The orientation 
C(t +�ti, h) = −1 indicates, that at time t +�ti the scatterer at lattice site h is a left scat-
terer, whereas the orientation C(t +�ti, h) = 1 indicates, that the scatterer is a right scatterer. 
Furthermore, we let C(h) ≡ C(0, h) denote the initial orientation of the scatterer at h ∈ T at 
time t  =  0.

Suppose each particle p i has initial position ri and initial velocity vi. Then for an ini-
tial configuration C, we call I = (r̄, v̄, C) an initial condition where r̄ = (r1, . . . , rN) and 
v̄ = (v1, . . . , vN) are the collection of initial positions and velocities, respectively, of these 
particles. For an initial condition I, the ith particle’s deterministic equations of motion are 
given by

ri(t +�tj+1) =

{
ri(t +�ti) + (�ti+1 −�ti)R[C(t +�ti, ri(t +�ti))]vi(t +�ti) if j = i
ri(t +�tj) + (�tj+1 −�tj)vi(t +�tj) otherwise

� (1)

vi(t +�tj+1) =

{
R[C(t +�ti, ri(t +�ti))]vi(t +�ti) if j = i
vi(t +�tj) otherwise� (2)

C(t +�tj+1, h) =
{
−C(t +�tj, h) if h = rj(t +�tj)
C(t +�tj, h) otherwise� (3)

for t ∈ N, 1 � i � N , and 0 � j � N  where �tN+1 = 1. Equation (1) gives the dynamics of 
the ith particle describing its piecewise linear motion between successive scatterings. The 
rotation operator R : {−1, 1} → R2×2 in equation (2) is the rotation matrix

R[z] =
[

cos
( 2π

3 z
)

sin
( 2π

3 z
)

− sin
( 2π

3 z
)

cos
( 2π

3 z
)
]

where z ∈ {−1, 1},� (4)

which describes how the velocity of the particles are rotated, when a particle arrives at a scat-
terer. Equation (3) describes the flipping motion of the scatterers.

Given an initial condition I, each of the particle’s motion over the lattice is uniquely deter-
mined for all t � 0 by equations  (1)–(3). This leads us to the following definition, which 
describes the general type of LLG we consider in this paper.

Definition 1 (The multiparticle model).  Let (T , I, N) denote the LLG with N � 1 par-
ticles p1, p2, . . . , pN, initial condition I = (r̄, v̄, C), and equations of motion given by (1)–(3). 
We will call this the multiparticle model on the triangular lattice with N particles and initial 
condition I.

In the case that N  =  1 we have a single particle and the following is known to hold.

Theorem 1 (Propagation of a single particle for any initial condition [10]).  For 
any initial configuration of scatterers on a triangular lattice, the single particle in the (T , I, 1) 
model propagates in one particular direction through a strip on the lattice.

That is, the trajectory of a single particle is confined to a strip in the triangular lattice, 
which is a region of the lattice bounded by two adjacent parallel lines. The motion of the par-
ticle in the strip is in a single direction in that any motion back towards its initial position is 
quickly blocked and the particle is forced forward (see figure 2). A large part of [10] is devoted 
to describing the details of this blocking mechanism. The single particle propagates in that its 
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square-displacement ∆(t) = ||r1(0)− r(t)||2 has the property that ∆(t) ∼ t2, which up to a 
constant is the fastest a particle moving with unit speed can move through the lattice (see [21] 
for details).

It is worth noting that if the single particle in the (T , I, 1) model is observed from a distance 
its motion appears to be nearly linear as the particle moves in essentially a single direction 
in a strip that is two lattice sites wide. In this sense the particle can be thought of as having 
a motion that is approximately the motion of a particle moving through empty space under 
Newtonian laws of motion. However, the particle is in fact colliding with scatterers at every 
time step t for all t ∈ N. In the following section we consider how this nearly linear motion 
of a single particle can be effected by the presence of other particles as they move through the 
lattice.

It is worth noting that for a general LLG system the initial configuration of scatterers can 
be either random or ordered according to some fixed rule. Since the dynamics of the parti-
cle are deterministic, the evolution in the case of a a random initial configuration is called a 
deterministic walk in a random environment [24, 25]. A common question of study in such 
systems is what feature dominates the dynamics: the deterministic motion of the particle or 
the randomness of the medium. The (T , I, 1) model and its variant on the hexagonal lattice 
[22] are two systems in which the deterministic nature of the system’s dynamics dominate 
the particle’s motion, leading to propagation and periodic dynamics, respectively. However, 
in the analogous system on the square lattice the opposite is true and the particle’s dynamics 
is dominated by the randomness of the system’s medium. Consequently, the particle’s motion 
mimics a random walk as it diffuses over the lattice [3].

Compared to a random walk on the triangular lattice, the particle in the (T , I, 1) model 
(with random initial configuration) appears to have very regular motion. In the more gen-
eral multiparticle (T , I, N) model it is unknown to what extent a random initial configuration 
effects the motion of the particles. In the following section we give examples of situations in 
which the deterministic nature of the model dominates the particle’s motion in ways not pos-
sible in the single particle model.

Figure 2.  The path of a single particle p 1 with initial position r1 = (0, 0) indicated 
by the square, initial velocity v1 = (1/2,

√
3/2), and initial displacement ∆t1 = 0 is 

shown in which the particle moves through a horizontal strip for a randomly generated 
configuration of scatterers. The scatterer’s initial orientation on the strip are shown. The 
numbers at each site in the strip indicate the time t = 1, 2, . . . , 49 the particle arrives at 
each site, respectively.
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3.  Multiple particles, entanglement, and periodic behavior

The behavior of a single particle is important in the multiparticle model in that if a particle 
does not interact with another particle beyond some point in time then its motion from then on 
will be the nearly linear motion described in theorem 1. In fact, it is worth reiterating that par-
ticles in this model are assumed not to interact with each other. They do, however, indirectly 
interact in that as one particle moves through the lattice it modifies the scatterers it collides 
with effecting the trajectory of other particles that later collide with these same scatterers.

This notion of an indirect interaction is defined as follows.

Definition 2 (Particle interactions).  Suppose in the (T , I, N) model that particle p i col-
lides with the scatterer at lattice site h ∈ T at times t0 and t1, where t0 < t1. Then p i interacts 
with particle p j  for i �= j at time t1 if between time t0 and t1 particle p j  collides with the scat-
terer at h ∈ T an odd number of times. More generally, p i interacts with a number of other 
particles if between consecutive collisions of p i with a particular scatterer these particles col-
lectively collide with the same scatterer an odd number of times.

Roughly speaking, particle p i interacts with another particle or some number of particles 
if, when p i returns to a previously visited scatterer, it finds the orientation of the scatterer has 
been flipped. It is worth noting that this notion of an interaction is potentially nonmutual in 
that p i may interact with p j  but p j  may not interact with p i (see figure 3).

One of the main differences between a single particle’s trajectory and the trajectory of 
multiple particles is that two, or possibly more particles, can get entangled. By entangled we 
mean the following.

Definition 3 (Multiparticle entanglement).  A subset S of the particles in the (T , I, N) 
model become entangled if each particle in this subset interacts an infinite number of distinct 
times with at least one other particle in S and this is not true for any proper subset of S.

In the simplest case, two particles are said to entangle if at least one of the particles con-
tinues to influence the trajectory of the other. An important special case of entanglement is a 
periodic orbit. The trajectory of a particle p i is periodic if there is a smallest time τi < ∞, such 
that the particle’s position satisfies ri(t +�i + τi) = ri(t +�i) for each t ∈ N or equiva-
lently ri(t) = ri(t + τi) for all t � 0. If this is the case we call τi the particle’s period. The size 
of a periodic orbit is the number of distinct lattice sites the particle visits in one period of its 
motion.

The reason a particle with a periodic trajectory is entangled is that if there is a last time the 
particle interacts with another particle, then its trajectory is thereafter as described in theorem 

Figure 3.  Left: particle p 2 interacts with particle p 1, shown in red and blue respectively, 
resulting in a deflection of its linear motion to the left. The interaction is nonmutual as 
particle p 1 does not interact with p 2 but continues its motion to the right. Right: a mutual 
interaction between p 1 and p 2 is shown, which causes the motion of p 1 to deflect to the 
left and the motion of p 2 to deflect to the right.
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1, which is nonperiodic. It is worth noting that even if a particle in the (T , I, N) model has a 
periodic trajectory the behavior of the LLG as a system may not be periodic. The reason is that 
the multiparticle model (T , I, N) is referred to as periodic if there is a τ > 0 such that each of

r̄(t + τ) = r̄(t), v̄(t + τ) = v̄(t), and C(t + τ) = C(t) for all t � 0.� (5)

If it is periodic then each particle’s trajectory is also periodic. However, if only a fraction of 
the particles in the model have a periodic trajectory then the model as whole is not periodic.

The simplest form of periodicity is considered on the following example.

Example 3.1.  Consider the two particle system (T , I, 2) with particles p 1 and p 2 shown in fig-
ure 4. The positions of p 1 and p 2 are indicated by the blue and red dot for t = 0, 1/2, 1, . . . , 5/2, 
respectively. The corresponding blue and red arrows indicated the particle’s velocity respec-
tively. The particle’s displacements are ∆t1 = 0 and ∆t2 = 1/2 so that exactly one particle is 
at a site at times t  =  k/2 for k = 0, 1, 2, . . .. The two particles move periodically either clock-
wise or counterclockwise on a single triangle forming the smallest possible periodic orbit both 
in terms of size and period, both of which are 3.

One of the main results in this paper is that periodic orbits can be arbitrarily large in both 
size and period. This is a consequence of the existence of highly regular periodic orbits which 
can be extended indefinitely.

Theorem 2 (Existence of arbitrarily large periodic trajectories in the multiparticle 
model).  For any N � 2 there exist periodic trajectories in the multiparticle model (T , I, N). 
Moreover, these trajectories can have arbitrarily large size and period.

Proof.  Consider first the case in which N  =  2. Note that the two particles p 1 and p 2 in fig-
ure 5 have periodic trajectories of size s(d) = 3d + 1 and period τ(d) = 4 + 4(d − 1), where 
d = ||h1 − h2|| is the distance between the two lattice sites h1, h2 ∈ T. As both τ(d) and s(d) 
are unbounded functions of the length d the (T , I, N) model can have periodic orbits of arbi-
trarily large period and size for N  =  2.

For N  >  2 suppose p 1 and p 2 have the periodic trajectories shown in figure 5. We let the other 
N  −  2 particles have noninteracting trajectories that run in strips parallel to this periodic orbit 
(see figure 2). This can be done by giving each particle the proper initial position, velocity, and 
configuration of scatterers in a neighborhood of its initial position as described in [10]. In this 
way the particles p 1 and p 2 do not interact with p3, . . . , pN. This proves the result.� □ 

Not all periodic trajectories have the form of the periodic trajectories shown in figure 5. 
In figure 6 a number of much more irregular periodic trajectories are shown. To distinguish 
between regular and irregular periodic trajectories we divide all possible particle velocities 
into two sets

V1 = {(1, 0), (−1/2,
√

3/2), (−1/2,−
√

3/2)} and V2 = {(−1, 0), (1/2,−
√

3/2), (1/2,
√

3/2)}.

If a two-particle periodic orbit has particles whose velocities have matching parity, i.e. the 
particles’ initial velocities belong to the same set, we say that the periodic orbit is regular. 
Otherwise, it is irregular. Note that the periodic orbit in figure 5 is regular, whereas the peri-
odic orbits in figure 6 are irregular.

One can show that regular orbits have a smoother boundary than irregular orbits. 
Specifically, irregular orbits can have corners, which are triangles that share a side with only 
one other triangle in the orbit. No corners are possible in regular orbits (see figures 5 and 6). 
This is formally stated in the following proposition.
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Figure 4.  The simplest period orbit in the (T , I, N) model is shown consisting of two 
particles moving along the vertices of a single triangle in opposite directions. The 
positions of the particles p 1 and p 2 are shown in blue and red, respectively, at times 
t = 0, 1/2, 1, . . . , 5/2; with blue and red arrows indicating their respective velocities. 
The displacement of these particles are ∆t1 = 0 and ∆t2 = 1/2. At each time t the 
orientation of each scatterer on the triangle is shown.

Figure 5.  The periodic trajectories of two particles p 1 and p 2 are shown in blue and 
red, respectively. Here r1 and r2 indicate initial positions and arrows indicate initial 
velocities. The displacements ∆t1 and ∆t2 can be any nonequal numbers in [0, 1) but 
are shown for simplicity as ∆t1 = ∆t2 = 0. The periodic obits of each point have size 
s(d) = 3d + 1 and period τ(d) = 4 + 4(d − 1) where d = ||h1 − h2||.

Figure 6.  Four irregular periodic orbits consisting of two particles each are shown 
with periods τi for i = 1, 2, 3, 4. In each figure the initial position and velocity of the 
particle’s are indicated by a red and blue arrow, respectively.
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Proposition 3.2.  Suppose two particles form a periodic orbit in the (T , I, 2) model. If the 
particles have matching parity, the periodic orbit cannot have corners. If the two particles do 
not have matching parity then the orbit can have corners.

Proof.  First, note that if a particle moving at unit speed has velocity v(t) ∈ Vi then 
v(t + 1) ∈ Vi for i = 1, 2. That is, any particle in the (T , I, N) model for any N � 1 has veloci-
ties that are either in V1 or V2 but not both for all time. Hence, the directions a particle can 
move are fixed by the particle’s initial velocity.

Suppose then that two particles p 1 and p 2 belong to the same periodic orbit and that these 
particles have matching parity. By way of contradiction, suppose that the periodic orbit has a 
corner. Note that a particle can only arrive at this corner c by traveling first along some bond 
b1 then leaving along some other bond b2 or first along b2 then along b1.

If particle p 1 arrives at c by moving along b1 then it cannot ever arrive at c by moving along 
b2. The reason is that moving along b1 and b2 towards c are velocities that belong to different 
sets V1 and V2 and particle p 1 can only have velocities in one. Since p 2 is assumed to have the 
same parity then p 2 can only ever arrive at c by moving along b1.

Since the rotator at c must flip an even number of times during one period of the periodic 
orbit and must be visited at least once, there must be a second time a particle arrives at c. Both 
the first and second time the particles must travel first down b1 and leave along b2. The second 
time, however, the rotator at c has flipped its orientation so this second particle cannot leave 
along b2, a contradiction. Since there is a similar contradiction if p 1 arrives at c by moving 
along b2, the periodic orbit cannot have a corner if the particles have the same parity.

Conversely, the periodic orbit can have corners if the particles do not have matching parity 
as can be seen in figure 6.� □ 

It is currently unknown whether any irregular periodic orbits can be decomposed and 
extended ad infinitum similar to the regular periodic trajectories in figure  5. Moreover, 
although we have done extensive numerical testing, no tangles involving more than two par-
ticles have been found. It is therefore unknown whether the multiparticle model (T , I, N) can 
have periodic dynamics if N is odd. If N is even then it is possible, for instance, to create N/2 
nonoverlapping copies of the orbit shown in figure 5, which results in periodic dynamics of 
the entire system.

We note that by slightly weakening the definition of periodicity it is possible to refer to 
parts of aperiodic systems as periodic. To make this precise we write Ω ⊂ T  if Ω is a subset of 
the triangle lattice consisting of some subset of lattice sites and the bonds between them. If Ω 
has only a finite number of lattice sites we say Ω is finite or bounded.

Definition 4 (Local periodicitiy).  Let Ω ⊂ T . If the restriction (Ω, I, N) of the multipar-
ticle model (T , I, N) to Ω is periodic then we say (T , I, N) is locally periodic on Ω.

It is relatively straightforward to create a multiparticle model (T , I, N) which is locally 
periodic for some Ω ⊂ T  but overall aperiodic. For instance, combining the trajectories in 
figures 2 and 5 in a nonoverlapping way results in such a system where if we let Ω contain 
the two particle periodic orbit we have local periodicity. However, if we slightly modify our 
multiparticle model by allowing an infinite number of particles it is possible to have a system 
in which each trajectory is periodic but the overall system is aperiodic.
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Example 3.3.  Consider the infinite multiparticle model (T , I,∞) in which we have N = ∞ 
particles. Suppose each particle is part of a pair of entangled periodic particles of the form 
shown in figure 5, none of these pairs interact with any other particles, and there is no largest 
periodic orbit. Then each trajectory is periodic but the system taken as a whole is aperiodic 
since there is no τ < ∞ such that r̄(t) = r̄(t + τ) for t � 0. In fact, although this model is 
aperiodic, if Ω is any subset of T that is the union of a finite number of these periodic orbits 
then (T , I, N) is locally periodic on Ω.

It is also worth mentioning that not all entangled orbits are necessarily periodic. For 
instance, the two particle periodic orbit in figure 5 can be modified such that the particles p 1 
and p 2 move to the right indefinitely. Although neither of the particles have a periodic trajec-
tory in this situation the two particles are entangled for all time. In fact, much more compli-
cated entanglements than this can be found in the (T , I, N) model. (We save the analysis of 
these more complex entanglements for a latter paper.)

In the following section we more closely investigate what it means for a system to be ape-
riodic and what consequences this has on the past and future of the system.

4.  Aperiodic behavior in the multiparticle model

To understand what happens if a particle’s trajectory is not periodic we first note that the 
dynamics of the particles p1, . . . , pN  are invertible, i.e. the system’s equations of motion are 
time-reversible. We can use this time-reversibility to show that the particles in the (T , I, N) and 
related models each have a periodic trajectory if and only if they stay in a finite subset Ω of 
the (infinite) lattice H for all time.

To show that each particle’s equations of motion (1)–(3) can be reversed, we note that 
these equations describe the ith particle’s motion in forward time. That is, given ri(t +�tj), 
vi(t +�tj), and C(t +�tj) for i = 1, 2, . . . , N we can compute each of these quantities at time 
t +�tj+1. In the following proposition, these quantities are shown to exist in reverse time, i.e. 
given ri(t +�ti), vi(t +�ti), and C(t +�ti) these quantities can be found at time t +�tj−1, 
(see equations (6)–(8)). The fact that these equations exist implies that, the particle’s motion 
is time-reversible. Therefore, we can recover the state of the multiparticle model at any time 
t  <  0 if we know the system’s initial state. This is summarized in the following proposition.

Proposition 4.1 (Time-reversability).  For the initial condition I = (r̄, v̄, C), the parti-
cle p i in the (T , I, N) model has the time-reversed equations of motion given by

ri(t +�tj−1) = ri(t +�tj)− (�tj −�tj−1)vi(t +�tj)� (6)

vi(t +�tj−1) =

{
R−1[C(t +�ti, ri(t +�ti))]vi(t +�ti+1) if j = i + 1
vi(t +�tj) otherwise

� (7)

C(t +�tj−1, h) =
{
−C(t +�tj, h) if h = rj−1(t +�tj−1)

C(t +�tj, h) otherwise� (8)

for t ∈ Z, 1 � i � N , and 0 � j � N  where �t−1 = −1 +�tN. Here

ri(t +�ti) = ri(t +�ti+1)− (�ti+1 −�ti)vi(t +�ti+1)

rj−1(t +�tj−1) = rj−1(t +�tj)− (�tj −�tj−1)vi(t +�tj)
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in (7) and (8), respectively, so that each quantity at time t +�tk−1 is given in terms of quanti-
ties from one step in the future at time t +�tk.

The proof of this proposition is based on the observation that in the (T , I, N) model, if 
the ith particle’s velocity v(t +�tj) is known at time t +�tj, then there are only three pos-
sibilities for what the particle’s velocity could have been at the previous time t +�tj−1. If 
the particle does not encounter a scatter at time t +�tj−1, i.e. i �= j − 1, then its velocity is 
unchanged. If it encounters a right rotator at time at time t +�tj−1, then the particle’s veloc-
ity v(t +�tj−1) will be one of the the other two possibilities. If the particle encounters a left 
rotator at time t +�tj−1 then v(t +�tj−1) will be the third possibility. Since it is possible to 
uniquely recover v(t +�tj−1), based on the type of scatterer the particle encounters at this 
time, it is possible to uniquely determine the particles position ri(t +�tj−1). Therefore, it is 
possible not only to know the particle’s future trajectory but also its past. A proof of proposi-
tion 4.2 is the following.

Proof.  To prove the proposition note that by substituting j   +  1 for j  in equations (6)–(8) 
results in the equations of motion

ri(t +�tj) = ri(t +�tj+1)− (�tj+1 −�tj)vi(t +�tj+1)� (9)

vi(t +�tj) =
{

R−1[C(t +�ti, ri(t +�ti))]vi(t +�ti+1) if j = i
vi(t +�tj+1) otherwise

� (10)

C(t +�tj, h) =
{
−C(t +�tj+1, h) if h = rj(t +�tj)
C(t +�tj+1, h) otherwise� (11)

for t ∈ Z, 1 � i � N , and −1 � j � N − 1. The goal is to show that evolving each of the 
particle’s position, velocity, and the configuration of scatterers on the lattice first forward in 
time by equations (1)–(3) then back in time by equations (9)–(11) results in these quantities 
at the present time.

Going in this order, by inserting ri(t +�tj+1) and vi(t +�tj+1) from equations (1) and 
(2), respectively, into right-hand side of equation (9) for the case j   =  i yields the equation

ri(t +�ti) = ri(t +�ti) + (�ti+1 −�ti)R[C(t +�ti, ri(t +�ti))]vi(t +�ti)

− (�ti+1 −�ti)R[C(t +�ti, ri(t +�ti))]vi(t +�ti)

= ri(t +�ti).

Hence, by evolving the ith particle’s position first forward in time using equations  (1)–(3) 
then backward in time using equations (6)–(8) as given by equations (9)–(11) we recover the 
particle’s present state. For the case j �= i we similarly have

ri(t +�tj) = ri(t +�tj) + (�tj+1 −�tj)vi(t +�tj)

− (�tj+1 −�tj)vi(t +�tj)

= ri(t +�tj).

S McGinnis and B Webb﻿J. Phys. A: Math. Theor. 53 (2020) 075207



13

To verify the same for the particle’s velocity we insert vi(t +�ti+1) from equation (2) into 
the right-hand side of equation (10). For the case j   =  i this yields

vi(t +�ti) = R−1[C(t +�ti, ri(t +�ti))]R[C(t +�ti, ri(t +�ti))]vi(t +�ti)

= vi(t +�ti).

For j �= i, vi(t +�tj) = vi(t +�tj+1) = vi(t +�tj) where the first equality follows from 
equation (10) and the second from equation (2). Hence, evolving the particle’s velocity for-
ward in time then back results in the particle’s present velocity.

To verify that this property also holds for the model’s configuration of scatterers we insert 
equation (3) into the right-hand side of (11). This yields

C(t +�tj, h) =
{
−C(t +�tj+1, h) if h = rj(t +�tj)
C(t +�tj+1, h) otherwise

=

{
−(−C(t +�tj, h)) if h = rj(t +�tj)
C(t +�tj, h) otherwise

= C(t +�tj, h)

where the first equality follows from equation (11) and the second from equation (3). As be-
fore, evolving the scatterer’s configuration at lattice site h first forward then backward in time 
recovers the scatterer’s present orientation. This implies that the system’s equations of motion 
(1)–(3) are time reversible and are given by equations (9)–(11).� □ 

Suppose each particle in the (T , I, N) model remains in a subset Ω ⊂ T  for all t � 0. If 
Ω is finite we say that the trajectory of each particle is bounded for t � 0. If this is the case 
there must be two integer-valued times 0 � t1 < t2 at which r̄(t1) = r̄(t2), v̄(t1) = v̄(t2), and 
C(t1) = C(t2). This is because of the discrete nature of the lattice. Each particle p i can only 
assume a finite number of positions along the sites and bonds of Ω as each particle moves with 
unit speed and we only consider times t +∆ti  for i = 1, 2, . . . , N and t ∈ N. Similarly, there 
are only a finite number of velocities the particle can have and there are only a finite number of 
scattering configurations possible on Ω. Therefore, at some first time t2 each of the particle’s 
position, velocities, and the configuration of scatterers on Ω must be the same as at some pre-
vious point in time t1 < t2. Hence, the system’s behavior must be periodic for all time t � t1 
with period τ = t2 − t1 > 0. However, this behavior may be only eventually periodic.

Formally, the multiparticle model’s motion is said to be eventually periodic with period 
τ < ∞, if there is a t*  >  0, such that

r̄(t) = r̄(t + τ), v̄(t) = v̄(t + τ), and C(t) = C(t + τ) for all t � t∗.

Importantly, if t*  =  0, we do not consider the system’s behavior to be eventually periodic, 
since it is then periodic with period τ .

However, since the dynamics of the (T , I, N) model is time-reversible by proposition 4.2, 
then it dynamics cannot be eventually periodic only periodic (see for instance [26]). This 
implies that if the trajectory of each particle in the (T , I, N) model is bounded then the sys-
tem’s dynamics are periodic.

Being periodic has additional consequences as (T , I, N) is time reversible. That is, if the 
(T , I, N) model is periodic, i.e. equation (5) holds for all t � 0, then this equation also holds 
for t  <  0 so that the system is periodic for all time. The reason is that if at some time t  <  0 
the systems dynamics are not periodic but become periodic at time t  =  0 then the system’s 
dynamics are eventually periodic, which is not possible.

S McGinnis and B Webb﻿J. Phys. A: Math. Theor. 53 (2020) 075207



14

Since being periodic for all time implies that the trajectory of each particle is bounded for 
all time, i.e. each particle stays in a finite set Ω for all time t ∈ (−∞,∞), this implies the fol-
lowing result.

Proposition 4.2 (Equivalence of boundedness and periodicity).  The following 
are equivalent:

	 (i)	�The trajectory of each particle in the (T , I, N) model is bounded for t � 0.
	(ii)	�The trajectory of each particle in the (T , I, N) model is bounded for all time t ∈ (−∞,∞).
	(iii)	�The (T , I, N) model is periodic for t � 0.
	(iv)	�The (T , I, N) model is periodic for all time t ∈ (−∞,∞).

It is unknown whether a single particle in the (T , I, N) model with N  >  1 can have an ape-
riodic trajectory but also be bounded. The reason is that it may be possible for a particle to 
remain in a bounded region but sequentially interact with an aperiodic particle over longer and 
longer time intervals and thereby inherit the other particle’s aperiodicity.

An important consequence of the previous proposition is that if a single particle has an 
unbounded trajectory in backward (forward) time then some other particle has an unbounded 
trajectory in forward (backward) time. The reason is that if some particle has an unbounded 
past, for instance, then it cannot have a bounded future as this would violate proposition 4.2. 
Hence, some possibly different particle must have an unbounded future.

This is summarized in the following theorem.

Theorem 3 (Unbounded past and future).  If some particle in the (T , I, N) model has 
an unbounded past (future) then some particle in the model has an unbounded future (past).

It is worth noting that a particle in the (T , I, N) model can have both an aperiodic past and 
a periodic future or an aperiodic future and a periodic past. This is demonstrated in the follow-
ing example that illustrates theorem 3.

Example 4.3.  In figure 7 (left) a particle with an unbounded past, shown in red, collides 
with a number of particles with periodic trajectories. In the process the particle becomes en-
tangled in a new periodic orbit with one of the other six particles. Since the red particle has an 
unbounded past then theorem 3 implies that at least one of the other five particles must have an 
unbounded future. In fact, all other particles escape to infinity as can be seen in figure 7 (right).

Remark 4.4.  Proposition 4.2 and theorem 3 hold for any multiparticle lattice system in 
which the equations of motion are time reversible. That is, the fact that at least one particle 
in the system inherits an unbounded future from some particle’s unbounded past is a feature 
shared by any such model. This is worth emphasizing as there are few rigorous results for 
multiparticle lattice systems with an arbitrary number of particles.

5.  Multiparticle model for particles with different speeds

In the previous sections each of the particles in the (T , I, N) model is considered to move 
at unit speed or more generally at the same speed. Here, we consider the case in which the 
particles can move at different but fixed speeds. That is, each particle p i is given the initial 
velocity vi ∈ R2 where ||vi(t)|| = ||vi|| > 0 for all t at which vi(t) exists.

To understand to what degree we might expect particles with varying speeds to have peri-
odic verses aperiodic behavior, we note the following. If we were to randomly choose the 
particles’ speed in the (T , I, N) model based on some probability measure on [0,∞) that is 
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absolutely continuous with respect to Lebesgue measure then the probability of a periodic 
trajectory will be zero. The reason is the following result.

Proposition 5.1.  In the (T , I, N) model with N � 2 if ||vi||/||vj|| is irrational for i �= j then 
particles p i and p j  cannot be part of the same periodic orbit. Consequently, if ||vi||/||vj|| is 
irrational for all 1 � i, j,� N then each particle has an (unbounded) aperiodic trajectory.

Proof.  If particles p i and p j  are part of the same periodic orbit of period τ > 0 then 
both ||vi|| · τ  and ||vj|| · τ  are whole numbers. The reason is ||vk|| · τ  is the length of the 
path that particle p k takes in one period of its orbit for k = i, j. Since the triangular lat-
tice we are using has bond with unit length this distance must be a positive integer. Thus, 
||vi||/||vj|| = (||vi|| · τ)/(||vj|| · τ) must be a rational number. The result then follows.� □ 

If a single particle does not interact at any point in time with any other particle then its tra-
jectory, irrespective of the particle’s speed, will be as described in theorem 1, i.e. the particle 
will propagate in a single direction in a strip of width 1. A natural question is whether two or 
more particles can become entangled when the particle’s move at rationally related speeds, 
i.e. when the ratio of their speeds ||vi||/||vj|| is a rational number. As it turns out, this can hap-
pen as is demonstrated in the following example.

Example 5.2.  Consider the two particle system with particles p 1 and p 2 shown in figure 8. 
Here p 1 has speed ||v1|| = 1 and p 2 has speed ||v2|| = 2. The trajectory of the two particles are 
entangled forming a periodic orbit with period τ = 36 and size s  =  13.

Although we have run extensive numerical tests for finding other such orbits, we have only 
found one other periodic trajectory for particles with different speeds. The other periodic orbit 
is similar to the one in figure 8 in that it consists of two particles one with speed 1 and the other 
with speed 2. Whether entanglements can happen for only two particles and whether they can 
happen only for particles moving the same speed (see section 3) or for one particle moving 
twice as fast as the other (see example 5.2) remains an open question.

Figure 7.  Left: a particle, shown in red, with an unbounded past approaches three pairs 
of particles with periodic orbits indicated by dashed lines of the type shown in figure 4. 
Center: the red particle collides with the light blue periodic orbit causing a chain reaction 
in which the trajectory of all particles is effected. Right: the yellow, purple, blue, green, 
and black particles escape off to infinity. The remaining two particles, which include 
the red particle with the unbounded past, become entangled in a periodic orbit indicated 
by the dashed line.
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We note that in the case of N  =  2 particles, if one particle is moving much faster than the 
other it, is not possible for the two to form a periodic orbit.

Theorem 4.  In the (T , I, 2) model if ||v1||/||v2|| � 30 then for any initial condition both 
particles escape to infinity.

Proof.  The proof that a single particle always propagates in a strip of width one is based on 
the notion of blocking mechanisms. A blocking mechanism of a particle is simply part of the 
particle’s trajectory in which the particle is guaranteed to move one lattice site away from its 
initial position. During a blocking mechanism the particle cannot move back more than one 
lattice site towards its initial position. The original proof of theorem 1 is based on the fact that 
a single particle’s trajectory can be partitioned into disjoint blocking mechanisms (see [10] 
for more details). Each blocking mechanism has a duration of 2–7 time-steps for a particle 
moving at unit speed. Moreover, the first complete blocking mechanism a particle experiences 
after time zero happens within 10 time steps.

Note that in the (T , I, 2) model if p 2 never interacts with p 1 then both particles must escape 
to infinity. For the case in which p 2 does interact with p 1 we suppose, without loss in general-
ity, that ||v1|| = 1 and ||v2|| = 1/30. If p 2 interacts with p 1 at time t* then there is some time 
t1 < t∗ at which r(t1) = r(t∗) = h where time t1 was the last time p 1 visited lattice site h and 
p 2 visited h at some time between t1 and t2. By checking each blocking mechanism, the largest 
number of steps it takes for a particle traveling at unit speed to return to a previously visited 
lattice site is 6. Hence, letting t1  =  0 then t∗ � 6. As ||v2|| = 1/30 this means only at some 
time t2 � 30 − 6 = 24 can p 2 reach a lattice site adjacent to h. In particular, between times 
t*  =  0 and t2  =  24 particle p 2 is on a single lattice bond adjacent to h.

Note that by time t2  =  24 that p 1 will have passed at least through its first, second, and third 
blocking mechanisms, where the first is guaranteed within 10 time steps and the other two in 
7 steps a piece. Since each blocking mechanism moves the particle one lattice site away from 
its initial position and p 2 could only have arrived at a site distance one from this site at time 
t2  =  24 then ||r1(t2)− r2(t2)|| � 2. Importantly, p 1 cannot revisit r2(t2) since it lies at least 
distance 2 in the opposite direction from the one it is moving in its strip.

The claim then is that beyond time t2  =  24 particle p 2 cannot interact with parti-
cle p 1. The reason is that the slowest p 1 can move through each blocking mechanism is 
||v1(bl)|| � 1

7 · 1 = 1
7 since the longest blocking mechanism moves the particle a distance 

1 in 7 unit steps and the particle is moving at unit speed. Similarly, the fastest that p 2 can 
move through a blocking mechanism is ||v2(bl)|| � 1

2 · 1
30 = 1

60. Hence, in at most seven time 
steps p 1 will have moved another lattice site along its strip away from its initial position not 
encountering any lattice sites p 2 has visited since before time t  =  0, since it cannot visit r2(t1) 
or r2(t1). Continuing in this manner, as p 1 moves much faster through any blocking mech
anism than p 2 then it follows that p 2 cannot interact with p 1 beyond time t*  =  6. Hence, both 
particles escape to infinity.� □ 

Figure 8.  A two particle periodic orbit in which particle p 1, shown in purple, has speed 
||v1|| = 1 and particle p 2, shown in red, has speed ||v2|| = 2. The particles have period 
τ = 36.
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The situation is much more complicated if we want to determine whether periodic orbits 
can or cannot exist for particles with differing speeds if N  >  2. The reason is that even if one 
particle is moving much faster than the others, a second slower particle can still interact with 
the faster particle possibly sending it toward a third or fourth, etc. Ruling out the possibil-
ity that the fast particle is not somehow caught between a number of much slower particles 
is quite challenging and how to extend proposition 5.1 to the case in which there are N  >  2 
particles is an open question.

6.  Conclusion

In this paper we consider how moving from the single particle LLG model (T , I, 1) to a mul-
tiparticle model (T , I, N) changes the dynamics of the system. In the original system a single 
particle has a ‘nearly’ linear motion, at least viewed macroscopically, so that the particle 
appears to move in one direction as if in a vacuum. However, the microscopic interaction with 
the system’s medium means that two noninteracting particles can become entangled in a peri-
odic motion, etc which is a behavior that would not be observed if the particles were moving 
through empty space.

This dramatic change in dynamics can also be observed in other LLG models. If the same 
system considered in this paper is put on the hexagonal lattice, our numerical experiments 
indicate there is a transition from periodic dynamics for a single particle (see [21]), to subdif-
fusive behavior for multiple particles. Similarly, on the square lattice a single particle will 
have an aperiodic and therefore unbounded trajectory, but our numerical experiments show, 
similar to what is observed in this paper, that multiple particles in this model can become 
entangled and form periodic trajectories. Currently, it is unknown whether rigorous results 
similar to those in this paper can be established for these other related multiparticle systems, 
although proposition 4.2 and theorem 3 can be directly extended to these related models.

For the (T , I, N) model considered in this paper there are also a number of open questions. 
Although many different periodic orbits have been identified, it is still unknown whether peri-
odic orbits involving more than two particles exists. Similarly, it is unknown whether periodic 
orbits involving particles with different speeds, other than those given in section 5, exist and 
whether orbits other than the one given in figure 5 can be infinitely extended.

It may also be possible to study this system in the limiting case where N = ∞ using tech-
niques from statistical mechanics. However, it is worth noting that this is not that same as 
studying this model in the case where N < ∞ and we place a finite version of the triangular 
lattice on the torus, etc. If the lattice is finite then by our results the particles trajectories, no 
matter the number, will be periodic. This is likely not the case on the infinite triangular lat-
tice, in which we fix some initial density of particles, since particles could travel infinitely far, 
especially if there is a low density of other particles.
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