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Abstract
An integrable anisotropic Heisenberg spin chain with nearest-neighbour 
couplings, next-nearest-neighbour couplings and scalar chirality terms is 
constructed. After proving the integrability, we obtain the exact solution of 
the system. The ground state and the elementary excitations are also studied. 
It is shown that the spinon excitation of the present model possesses a novel 
triple arched structure. The elementary excitation is gapless if the anisotropic 
parameter η is real while the elementary excitation has an enhanced gap by 
the next-nearest-neighbour and chiral three-spin interactions if the anisotropic 
parameter η is imaginary. The method of this paper provides a general way to 
construct integrable models with next-nearest-neighbour interactions.
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1.  Introduction

It is well known that the Heisenberg model has played an important role to account for 
magnetism in condensed matters. An interesting fact is that this model in one-dimension is 
exactly solvable [1]. Based on Bethe’s exact solution, the ground state energy [2], the low-
lying excitation spectrum [3] and the magnetization at zero temperature [4] had been studied 
extensively. This exact solution provided a benchmark to understand a variety of physical phe-
nomena in low-dimensions such as the Luttinger liquid behavior and the fractional excitations. 
In addition, this model also becomes a typical model in developing new theoretical methods to 
approach general quantum integrable systems [5–8].

Besides the Heisenberg model with nearest-neighbor (NN) exchanges, its generalization 
with next-nearest-neighbor (NNN) interactions, known as the J1 − J2 model, also attracted 
a lot of attentions [9–15]. The J1 − J2 model is interesting because there exists a topologi-
cal phase transition at the point of J2/J1 = 0.241 [16, 17]. At the Majumdar–Ghosh point, 
J2/J1 = 0.5, the model Hamiltonian degenerates into a projector operator and the ground state 
can be obtained exactly [18]. The ground state is two-fold degenerated and can be expressed 
by the direct product of spin singlets, supposed the number of site of the system is even.

Another interesting development is that Popkov and Zvyagin proposed an integrable two-
chain model, which can be mapped into a spin chain with NNN interaction and spin chi-
rality term [19–22]. Frahm and Rödenbeck constructed an integrable model of two coupled 
Heisenberg chains by taking the derivative of the logarithm of product of two transfer matrices 
with different spectral parameters [23]. Using the same idea, Frahm and Seel proposed stag-
gered six-vertex model [24], and Ikhlef, Jacobsen and Saleur constructed the Z2 staggered 
vertex model [25, 26]. Arnaudon, Poghossian, Sedrakyan and Sorba constructed a staggered 
model with staggered R-matrix and studied the integrable boundary terms [27]. The extra sca-
lar chirality terms are introduced in this kind of models for ensuring the integrability. Frahm 
and Rödenbeck studied the properties of the chiral spin liquid state in the system [28]. Wen, 
Wilczek and Zee [29] and Baskaran [30] proposed that the expectation value of the spin chiral-
ity operator can be used as the order parameter for chiral spin liquids [31]. Tavares and Ribeiro 
studied the thermodynamic properties of this kind of models by using the quantum transfer 
matrix method [32, 33]. Recently, the models with chirality terms have attracted renewed 
interest in the context of quantum spin liquids [34, 35].

In this paper, we propose a systemic method to construct integrable models with the NNN 
and the scalar chirality terms interactions. We use the anisotropic XXZ quantum spin chain as 
an example to show the validity of the method. The Hamiltonian of the integrable anisotropic 
J1 − J2 spin chain is

H =

2N∑
j=1

{
cos(2a)(σx

j σ
x
j+1 + σy

j σ
y
j+1) + cos ησz

jσ
z
j+1

− sin2(2a) cos η
2 sin2 η

�σj · �σj+2 +
(−1) ji sin(2a)

2 sin η
{
cos η�σj+1 ·(�σj

× �σj+2) + [cos(2a)−cos η]σz
j+1(σ

x
j σ

y
j+2−σy

j σ
x
j+2)

}}
,

�

(1.1)

where �σj ≡ (σx
j , σy

j , σz
j ) are the Pauli matrices at site j , a and η are the generic constants 

describing the coupling strengths, and the periodic boundary condition

�σ2N+j = �σj, j = 1, · · · , 2N,� (1.2)
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is imposed. The first two terms describe an anisotropic NN interaction, the third term is an 
isotropic NNN interaction (i.e. the J2 term) and the last one corresponds to an anisotropic 
chiral three-spin interaction. We shall show that the anisotropic J1 − J2 spin chain with the 
Hamiltonian (1.1) is integrable and can be exactly solved by the Bethe ansatz.

Some remarks are in order. (i) The hermitian of the Hamiltonian (1.1) requires that a must 
be real if η is imaginary (gapped regime), and a must be imaginary if η is real (gapless regime). 
(ii) The NN interactions are anisotropic while the NNN interactions are isotropic. (iii) The 
anisotropic scalar chirality terms are added to ensure the integrability of the system. (iv) The 
coupling strengths in the NNN terms and those in the scalar chirality terms are not independ-
ent but related by the parameters a and η. (v) The model degenerates into the conventional 
XXZ spin chain at the points of a = nπ with integer n. (vi) After parameterizing a = ā ε, 
η = ε and then taking the limit of ε → 0, our Hamiltonian (1.1) becomes

H =

2N∑
j=1

{
�σj · �σj+1 − 2ā2 �σj · �σj+2

+ (−1) jiā �σj+1 · (�σj × �σj+2)} .

�

(1.3)

The resulting Hamiltonian describe an integrable isotropic J1 − J2 spin chain model, which 
was studied previously by Frahm et al [28, 36].

The paper is organized as follows. The model is constructed and the integrability is proved 
in section 2. The exact energy spectrum and the Bethe Ansatz equations are derived in sec-
tion 3. The ground state energy and spinon elementary excitation for real η are given in sec-
tion 4 and the corresponding results with imaginary η are given in section 5. Section 6 is 
attributed to the concluding remarks. Detailed calculation and the results for the non-hermi-
tian case are given in appendices A and B.

2.  Model and integrability

Throughout, V  denotes a two-dimensional linear space and let {|m〉, m = 0, 1} be an orthogo-
nal basis of it. We shall adopt the standard notations: for any matrix A ∈ End(V), Aj  is an 
embedding operator in the tensor space V ⊗ V ⊗ · · ·, which acts as A on the j -th space and as 
identity on the other factor spaces. For B ∈ End(V ⊗ V), Bij is an embedding operator of B in 
the tensor space, which acts as identity on the factor spaces except for the i-th and j -th ones.

Let us introduce the R-matrix R0,j(u) ∈ End(V0 ⊗ Vj)

R0,j(u)=
1
2

[
sin(u+η)

sin η
(1+σz

0σ
z
j )+

sin u
sin η

(1−σz
0σ

z
j )

]

+
1
2
(σx

0σ
x
j + σy

0σ
y
j )

=
1

sin η




sin(u + η) 0 0 0
0 sin u sin η 0
0 sin η sin u 0
0 0 0 sin(u + η)


,

�

(2.1)
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where u is the spectral parameter. The R-matrix (2.1) satisfies the following relations

Initial condition : R0,j(0) = P0,j,
Unitary relation : R0,j(u)Rj,0(−u) = φ(u)× id,
Crossing relation : R0,j(u) = −σy

0Rt0
0,j(−u − η)σy

0,

PT-symmetry : R0,j(u) = Rj,0(u) = Rt0 tj
0,j (u),

� (2.2)

where φ(u) = − sin(u + η) sin(u − η)/ sin2 η, t0 (or tj ) denotes the transposition in the space 
V0 (or Vj) and P0,j  is the permutation operator possessing the property

Rj,k(u) = P0,jR0,k(u)P0,j.� (2.3)

The R-matrix satisfies the Yang–Baxter equation (YBE)

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3)

= R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2).
� (2.4)

We define the monodromy matrices [8, 37] as

T0(u) = R0,1(u + a)R0,2(u − a) · · ·R0,2N−1(u + a)

× R0,2N(u − a),

T̂0(u) = R0,2N(u + a)R0,2N−1(u − a) · · ·R0,2(u + a)

× R0,1(u − a),

�

(2.5)

where V0 is the auxiliary space, V1 ⊗ V2 ⊗ · · · ⊗ V2N is the physical or quantum space, 2N is 
the number of sites and a is the inhomogeneous parameter. From the YBE (2.4), one can prove 
that the monodromy matrix T(u) satisfies the Yang–Baxter relation

R1,2(u − v)T1(u)T2(v) = T2(v)T1(u)R1,2(u − v).� (2.6)

The transfer matrices are the trace of monodromy matrices in the auxiliary space

t(u) = tr0T0(u), t̂(u) = tr0T̂0(u).� (2.7)

Using the crossing symmetry in equation (2.2), we obtain the relations between transfer matri-
ces t(u) and ̂t(u)

t(u) = t̂(−u − η), t̂(u) = t(−u − η).� (2.8)

From the Yang–Baxter relation (2.6) and equation (2.8), one can prove that the transfer matri-
ces t(u) [or ̂t(u)] with different spectral parameters commute with each other. Meanwhile, the 
transfer matrices t(u) and ̂t(u) also commute with each other

[t(u), t(v)] = [̂t(u), t̂(v)] = [t(u), t̂(u)] = 0.� (2.9)

Therefore, both t(u) and ̂t(u) serve as the generating functions of all the conserved quantities of 
the system. We note that the transfer matrices t(u) and ̂t(u) can be diagonalized simultaneously.

The model Hamiltonian (1.1) can be constructed as (for details, see appendix A)

H = −N cos η[cos2(2a)− cos(2η)]
sin2 η

+ φ1−N(2a) sin η

×
{

t̂(−a)
∂ t(u)
∂u

∣∣
u=a + t̂(a)

∂ t(u)
∂u

∣∣
u=−a

}
.

�
(2.10)
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From the construction (2.10) and the commutation relation (2.9) of generating functions t(u) 
and ̂t(u), we conclude that the quantum spin chain (1.1) with the periodic boundary condition 
is integrable.

We note that if 2a = η , the transfer matrix t(a) is not a full rank matrix and does not have 
the inverse matrix. Thus we use two commutative transfer matrices t(u) and ̂t(u) to construct 
the Hamiltonian.

3.  Exact solution

Based on the integrability discussed in the previous section, the Hamiltonian (1.1) can be 
solved exactly via the algebraic Bethe Ansatz [6]. The matrix form of monodromy matrix 
T0(u) in the auxiliary space is

T0(u) =

(
A(u) B(u)
C(u) D(u)

)
� (3.1)

where A(u), B(u), C(u) and D(u) are the operators acting in the quantum space. We denote the 
all spins aligning up state as the vacuum state |0〉

|0〉 =

(
1
0

)

1

⊗ · · · ⊗

(
1
0

)

2N

.� (3.2)

The matrix elements of the monodromy matrix T0(u) acting on the vacuum state gives

A(u)|0〉 = a(u)|0〉, B(u)|0〉 �= 0,
C(u)|0〉 = 0, D(u)|0〉 = d(u)|0〉,� (3.3)

where

a(u) =
sinN(u + a + η) sinN(u − a + η)

sin2N η
,

d(u) =
sinN(u + a) sinN(u − a)

sin2N η
.

From equation (3.3), we know that the operator B(u) can be regarded as the creation opera-
tor of all the eigenstates of the system. Assume the eigenstates take the form

|λ1, · · · ,λM〉 =
M∏

j=1

B(λj)|0〉,� (3.4)

where M is the number of flipped spins and {λj} are the Bethe roots. From the Yang–Baxter 
relation (2.6), we obtain the commutative relations among the elements of monodromy matrix as

[A(u), A(v)] = [B(u), B(v)] = [C(u), C(v)] = [D(u), D(v)] = 0,

A(u)B(v) =
sin(u − v − η)

sin(u − v)
B(v)A(u) +

sin η

sin(u − v)
B(u)A(v),

D(u)B(v) =
sin(u − v + η)

sin(u − v)
B(v)D(u)− sin η

sin(u − v)
B(u)D(v),

[B(u), C(v)] =
sin η

sin(u − v)
[D(v)A(u)− D(u)A(v)].

�

(3.5)
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From the definition (2.7), the transfer matrix t(u) is

t(u) = A(u) + D(u).� (3.6)

Acting the transfer matrix t(u) on the Bethe state (3.4) and with the help of the commutation 
relations (3.5), we have

t(u)|λ1, · · · ,λM〉 = Λ(u)|λ1, · · · ,λM〉

+

M∑
j=1

Λj(u)B(λ1) · · · , B(λj−1)B(u)B(λj+1) · · ·

× B(λM)|0〉,

�

(3.7)

where

Λ(u) = a(u)
M∏

j=1

sin(u − λj − η)

sin(u − λj)
+ d(u)

M∏
j=1

sin(u − λj + η)

sin(u − λj)
,

Λj(u) =
sin η

sin(u − λj)

{
a(λj)

M∏
l �=j

sin(λj − λl − η)

sin(λj − λl)
− d(λj)

×
M∏

l �=j

sin(λj − λl + η)

sin(λj − λl)

}
.

�

(3.8)

The first term in equation (3.7) corresponds to the eigenvalue term, while the last terms in 
equation  (3.7) are the unwanted ones. The state (3.4) becomes an eigenstate (or the Bethe 
state) of the transfer matrix provided that the parameters {λj|j = 1, · · · , M} satisfy the Bethe 
Ansatz equations (BAEs)

[
sin(λj + a + η) sin(λj − a + η)

sin(λj + a) sin(λj − a)

]N

=

M∏
l �=j

sin(λj − λl + η)

sin(λj − λl − η)
,

j = 1, · · · , M.

�

(3.9)

For convenience, we put λj = iuj/2 − η/2 and a  =  ib for real η and λj = uj/2 − η/2 for 
imaginary η = iγ . The BAEs become

[
sinh 1

2 (uj − 2b − iη) sinh 1
2 (uj + 2b − iη)

sinh 1
2 (uj − 2b + iη) sinh 1

2 (uj + 2b + iη)

]N

=

M∏
l �=j

sinh 1
2 (uj − ul − 2ηi)

sinh 1
2 (uj − ul + 2ηi)

, j = 1, · · · , M

�

(3.10)

for real η. The period of Bethe roots is 2πi, thus the real part of Bethe roots locate in the inter-
val (−∞,∞), and

[
sin 1

2 (uj − 2a − iγ) sin 1
2 (uj + 2a − iγ)

sin 1
2 (uj − 2a + iγ) sin 1

2 (uj + 2a + iγ)

]N

=

M∏
l �=j

sin 1
2 (uj − ul − 2γi)

sin 1
2 (uj − ul + 2γi)

, j = 1, · · · , M

�

(3.11)
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for imaginary η = iγ. The period of Bethe roots is 2π, thus we fix the real part of Bethe roots 
in the interval [−π,π). From equations (2.8), (2.10) and (3.8) we obtain the eigenvalue of the 
Hamiltonian (1.1) in terms of the Bethe roots as

E=
N cos η[cosh2(2b)− cos(2η)]

sin2 η
− [cosh(4b)− cos(2η)]

×
M∑

j=1

{
1

cosh(uj + 2b)− cos η
+

1
cosh(uj − 2b)− cos η

}
,

�

(3.12)

where η is real and {uj } should satisfy the BAEs (3.10), or

E=
N cosh γ[cosh(2γ)− cos2(2a)]

sinh2 γ
− [cosh(2γ)− cos(4a)]

×
M∑

j=1

{
1

cosh γ − cos(uj + 2a)
+

1
cosh γ − cos(uj − 2a)

}
,

�

(3.13)

where η = iγ is imaginary and {uj } should satisfy the BAEs (3.11).
Next, we check above results numerically. Numerical solutions of the BAEs and exact 

diagonalization of the Hamiltonian (1.1) are performed for the case of 2N  =  4 and randomly 
choosing of model parameters. The results are listed in table 1 for real η and table 2 for imagi-
nary η. The missing lines mean there is no Bethe roots. The number of Bethe roots is equal 
to the number of flipped spins M. We note that the eigenvalues obtained by solving the BAEs 
are exactly the same as those obtained by the exact diagonalization of the Hamiltonian (1.1). 
The energies of the system are degenerated and there are only eight separated energy level. 
Therefore, the expression (3.12) or (3.13) gives the complete spectrum of the system.

4.  Ground state and elementary excitations for real η

In this section we study the ground state and elementary excitations of the system. First, we 
consider the real η case. Taking the logarithm of BAEs (3.10), we have

N[θ1(uj+2b)+θ1(uj−2b)] = 2πIj+

M∑
k=1

θ2(uj−uk),

j = 1, . . . , M,

� (4.1)

where

θn(x) = 2 arctan
tanh(x/2)
tan(nη/2)

.� (4.2)

Here the quantum number {Ij } are certain integers (or half odd integers) if M is odd (or even). 
For convenience, we define the counting function

Z(u)=
1

4π

[
θ1(u + 2b)+θ1(u − 2b)− 1

N

M∑
k=1

θ2(u−uk)

]
.� (4.3)

Obviously, Z(uj) = Ij/2N  corresponds to the equation  (4.1). In the thermodynamic limit, 
N → ∞, M → ∞ and N/M finite, taking the derivative of equation (4.3) with respect to u, 
we obtain

Y Qiao et alJ. Phys. A: Math. Theor. 53 (2020) 075205
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dZ(u)
du

=
1
2
[a1(u + 2b) + a1(u − 2b)]−

∫ ∞

−∞
a2(u − λ)

× ρ(λ)dλ

≡ ρ(u) + ρh(u),

�

(4.4)

where

an(x) =
1

2π
sin(nη)

cosh u − cos(nη)
,� (4.5)

ρ(x) and ρh(x) are the densities of particles and holes, respectively.

4.1.  Ground state

From the analysis of equation (4.1), we know that at the ground state, M  =  N which is half of 
the number of sites. Meanwhile, all the Bethe roots constrained by equation (4.1) are real and 
the corresponding quantum numbers are

Table 1.  Numerical solutions of the BAEs (3.10) for real η case, where η = 1, b  =  1, 
2N  =  4, n indicates the number of the energy levels and En is the corresponding energy. 
The energy En calculated from the Bethe roots is exactly the same as that from the exact 
diagonalization of the Hamiltonian (1.1).

u1 u2 En n

−2.0080  +  0.0000i 2.0080  +  0.0000i −100.4304 1

2.6286  +  0.0000i −−− −20.0748 2

−2.0253  −  3.1416i 2.0253  +  0.0000i −20.0748 2

0.0000  +  0.0000i −−− 5.0260 3

0.0000  −  3.1416i 0.0000  +  0.0000i 17.9135 4

0.0000  −  1.3032i 0.0000  +  1.3032i 18.1853 5

−−− −−− 22.2360 6

0.0000  −  3.1416i −−− 35.1235 7

−2.0777  −  3.1416i 2.0777  −  3.1416i 60.0091 8

Table 2.  Numerical solutions of the BAEs (3.11) for imaginary η case, where γ = 1, 
a  =  1 and 2N  =  4.

u1 u2 En n

−1.9566  +  0.0000i 1.9566  +  0.0000i −12.1765 1

−3.1416  +  0.0000i 0.0000  +  0.0000i −4.3247 2

−1.8439  +  0.0000i −−− −1.8476 3

−1.5708  −  0.9497i −1.5708  +  0.9497i −1.8476 3

−3.1416  +  0.0000i −−− 0.1830 4

−3.1416  −  1.1002i −3.1416  +  1.1002i 1.1932 5

0.0000  −  1.3426i 0.0000  +  1.3426i 2.9633 6

0.0000  +  0.0000i −−− 3.5122 7

−−− −−− 8.0199 8

Y Qiao et alJ. Phys. A: Math. Theor. 53 (2020) 075205
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Ij = −N − 1
2

,−N − 3
2

, · · · ,
N − 1

2
.� (4.6)

From equation  (3.12), we learn that each real Bethe root uj  contributes a negative energy. 
At the ground state, the Bethe roots should fill the whole real axis and leave no hole, i.e. 
ρh(u) = 0. This means that the density of particles ρg(u) at the ground state satisfies

ρg(u) =
1
2
[a1(u + 2b) + a1(u − 2b)]−

∫ ∞

−∞
a2(u − λ)

× ρg(λ)dλ.
�

(4.7)

Let us define the following Fourier transformation

f̃ (ω) =
∫ ∞

−∞
f (u)eiωudu,

f (u) =
1

2π

∫ ∞

−∞
f̃ (ω)e−iωudω.

�
(4.8)

Without losing generality, we consider the case η ∈ (0,π). Taking the Fourier transformation 
of equation (4.7), we obtain

ãn(ω) =
sinh(πω − 2δnπω)

sinhπω
.

ρ̃g(ω) =
cos(2bω)

2 cosh(η ω)
,

�

(4.9)

with δn ≡ nη
2π − � nη

2π � denoting the fractional part of nη
2π. Thus the solution of equation (4.7) is

ρg(u) =
1

8η

[
1

cosh(π(u+2b)
2η )

+
1

cosh(π(u−2b)
2η )

]
.� (4.10)

The Bethe root distribution at the ground state is shown in figure 1. The magnetization at the 
ground state is

1
2
−

∫ ∞

−∞
ρg(u)du = 0,� (4.11)

indicating a singlet ground state. The energy density at the ground state reads

eg =
cos η[cosh2(2b)−cos(2η)]

2 sin2 η
− cosh(4b)− cos(2η)

sin η

× 2π
∫ ∞

−∞
[a1(u + 2b) + a1(u − 2b)]ρg(u)du

=
cos η[cosh2(2b)−cos(2η)]

2 sin2 η
− cosh(4b)− cos(2η)

sin η

×
∫ ∞

−∞

sinh(πω − ηω) cos2(2bω)
sinh(πω) cosh(ηω)

dω.

�

(4.12)
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4.2.  Spinon excitations

Now we consider the elementary excitations. The simplest excitation is the case of one less 
spin flipped, i.e. M  =  N  −  1. Such a configuration is described by putting two holes in the 
Fermi sea. Meanwhile, all the Bethe roots constrained by equation (4.1) are real and the corre
sponding quantum numbers are

Ij = −N
2

,−N
2
+ 1, · · · ,−N

2
+ r − 1,−N

2
+ r + 1, · · · ,

− N
2
+ s − 1,−N

2
+ s + 1, · · · ,

N
2
− 1,

N
2

,
�

(4.13)

where 0  <  r  <  s  <  N. The positions of holes are denoted as uh
r  and uh

s . In this case all N  −  1 
quasi-momentum are real numbers and the total momentum is ∆K = π(r + s)/N. In the ther-
modynamic limit, the momentum of this excitation is calculated as

K = 2π
∫ ∞

uh
r

ρg(u)du + 2π
∫ ∞

uh
s

ρg(u)du

= arctan [e−
π(uh

r −2b)
2η ] + arctan [e−

π(uh
r +2b)
2η ]

+ arctan [e−
π(uh

s −2b)
2η ] + arctan [e−

π(uh
s +2b)
2η ].

�

(4.14)

The density of holes is

ρh(u) =
1

2N

[
δ1(u − uh

r ) + δ1(u − uh
s )
]

.� (4.15)

The corresponding Bethe root density becomes ρe(u) = ρg(u) + δρ(u) [7]. The density 
ρe(u) will deviate from ρg(u) by δρ(u) because of the presence of the two holes. From equa-
tions (4.4) and (4.15), we obtain

ρe(u) + ρh(u) =
1
2
[a1(u + 2b) + a1(u − 2b)]

−
∫ ∞

−∞
a2(u − λ)ρe(λ)dλ.

�
(4.16)

Figure 1.  The density of Bethe roots at the ground state with η = 1 and b  =  ia  =  1.
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After some calculations, we have

δρ̃(ω) = − 1
2N

eiωuh
r + eiωuh

s

1 + ã2(ω)
.� (4.17)

The excitation energy is

∆E = −4πN[cosh(4b)− cos(2η)]
sin η

∫ ∞

−∞
[a1(u + 2b)

+ a1(u − 2b)]δρ(u)du

=
4π[cosh(4b)− cos(2η)]

sin η
[ρg(uh

r ) + ρg(uh
s )]

= ε(uh
r ) + ε(uh

s ),

�

(4.18)

where

ε(u) =
4π[cosh(4b)− cos(2η)]

sin η
ρg(u).� (4.19)

We see that the energy of such an excitation is the summation of the energies of two holes. 
Here the two holes together carry spin-1, and each of them carries spin-1

2. These excitations 
are usually called spinons [38], a typical fractional excitation in the one-dimensional quantum 
systems. Spinon excitations are spin-triplet elementary excitations. Relative to the Neel state, 
the net spin carried by the flipped domain is one. Each domain boundary (kink or anti-kink) 
carries a spin of 12.

The dispersion relation of the spinon excitations can be derived from equations (4.14) and 
(4.18). The numerical results are shown in figure 2. From it, we see that the spinon excitation 
is gapless which can be reached by putting the holes at the points 0 or ±π. Meanwhile, if b is 
very small, the excitation spectrum is quite similar to that of the conventional XXZ model [7]. 
With the increasing of b, the excitation spectrum turns to the triple arched structure, which 
means the structure of the spinon excitation spectrum consists of overlapping continua with a 
triple arched upper boundary. Unlike the conventional J1 − J2 model, there is no dimerization 
in the present model for any real b. If b takes some imaginary values, dimerization indeed 
occurs as hinted from the solution of the BAE’s. However, in such a case the Hamiltonian is 
non-hermitian.

5.  Ground state and elementary excitations for imaginary η

In this section we study the ground state and elementary excitations of the system for imagi-
nary η = iγ. Without losing generality, we assume γ > 0. Similarly, let us introduce

an(x) =
1

2π
sinh(nγ)

cosh(nγ)− cos x
.� (5.1)

The Fourier transformation of an(x) is

ãn(ω)=
1

2π

∫ π

−π

eiωx sinh(nγ)
cosh(nγ)− cos x

dx=e−nγ|ω|.� (5.2)

Note that ω  takes values of integers. From the energy expression (3.13), we know that at the 
ground state the Bethe roots still take real values and fill the region (−π,π]. Using the similar 
procedure mentioned above, we find the density of Bethe roots at the ground state satisfies

Y Qiao et alJ. Phys. A: Math. Theor. 53 (2020) 075205
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ρg(u) =
1
2
[a1(u + 2a) + a1(u − 2a)]−

∫ π

−π

a2(u − λ)

× ρg(λ)dλ.
�

(5.3)

Using Fourier transformation we have

ρ̃g(ω) =
cos(2aω)

2 cosh(γ ω)
,

ρg(u) =
1

2π

∞∑
ω=−∞

e−iuω cos(2aω)
2 cosh(γω)

.
� (5.4)

The Bethe root distribution at the ground state is shown in figure 3. Interestingly, we find 
ρg(±π) = ρg(0) if a = π/4 + kπ/2, and k is an arbitrary integer. Please see the left one in 
figure 3. The total magnetization at the ground state is still zero. The energy density at the 
ground state reads

eg =
cosh γ[cosh(2γ)−cos2(2a)]

2 sinh2 γ
+

cos(4a)− cosh(2γ)
sinh γ

×
∞∑

ω=−∞

cos2(2aω)e−γ|ω|

cosh(γω)
.

�

(5.5)

Figure 2.  The dispersion relations between energy ∆E and momentum K of spinon 
excitations with η = 1, b = ia.
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In the thermodynamic limit, the momentum of spinion excitation is calculated as

K = 2π
∫ π

uh
r

ρg(u)du + 2π
∫ π

uh
s

ρg(u)du

=

∞∑
ω=−∞,
ω �=0

cos(2aω)
2iω cosh(γω)

[2(−1)ω − eiωuh
r − eiωuh

s ]

+ π − uh
r + uh

s

2
.

�

(5.6)

After some calculations similar with above real η case, we obtain the excitation energy

∆E = ε(uh
r ) + ε(uh

s ),� (5.7)

where

ε(u) =
4π[cosh(2γ)− cos(4a)]

sinh γ
ρg(u).� (5.8)

The dispersion relation of the spinon excitations can be derived from equations (5.6) and 
(5.7). The numerical results are shown in figure 4. From it, we see that if a is very small, 
the excitation spectrum is quite similar to that of the conventional XXZ model [7]. With the 
increasing of a, the excitation spectrum turns to the triple arched structure. Similar with real η 
case, there is also no dimerization in the present model for any imaginary η and real a.

From the excitation spectrum in figure 4, we also find that the elementary excitations pos-
sess a finite gap. Now we determine the values of the gap. Without losing generality, we assume 
a ∈ [0,π]. We should consider the positions of holes first. From figure 3, we know that there 
are two minimal points located at u  =  0 and u = π. As we mentioned before, ρg(π) = ρg(0) if 
a = π/4 or a = 3π/4. By detailed analysis, we conclude that ρg(π) < ρg(0) if 0 < a < π/4 
or 3π/4 < a < π and ρg(π) > ρg(0) if π/4 < a < 3π/4. Thus we put the holes at the point 
of π if a ∈ [0,π/4] ∪ [3π/4,π], and put the holes at the point of 0 if a ∈ (π/4, 3π/4). We note 
that only in the thermodynamic limit, two holes can be put at the same position. After some 
calculations, we obtain the energy gap of the model (1.1) in these intervals as

∆ =
4[cosh(2γ)−cos(4a)]

sinh γ

∞∑
ω=−∞

(−1)ωcos(2aω)
2 cosh(γω)

,� (5.9)

Figure 3.  The densities of Bethe roots at the ground state with γ = 1, a = π/4 (left); 
and γ = 1, a  =  1 (right).
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if a ∈ [0,π/4] ∪ [3π/4,π], and

∆ =
4[cosh(2γ)−cos(4a)]

sinh γ

∞∑
ω=−∞

cos(2aω)
2 cosh(γω)

,� (5.10)

if a ∈ (π/4, 3π/4).
The gap is shown in figure 5. From it, we see that the gap is enhanced by the NNN and chi-

ral three-spin interactions. At the points of a  =  0 and a = π, the gap takes its minimum, which 
is the same as that of the conventional XXZ spin chain, because that the model (1.1) degener-
ates into the conventional XXZ spin chain at these points. At the point of a = π

2 , the gap also 
takes its minimum. In this case the model (1.1) degenerates into the XXZ spin chain only with 
NN interaction where the couplings along the x and y  directions are negative. At the points 
of a = π

4  and a = 3π
4 , the gap arrives at its maximal value. This is because at the these points, 

the coupling strengths of NNN and chiral three-spin interactions reach their maximum and 
the NN couplings along the x and y  directions are zero. Besides, the gap also has the property

∆(a) = ∆(
π

2
− a) = ∆(

π

2
+ a) = ∆(π − a),

which means that the gap is symmetric with respect to the points of π4 , π2  and 3π
4 . This sym-

metry is different from that of the Hamiltonian, where the Hamiltonian is symmetric only with 
respect to π, i.e.

H(a) = H(π + a).

Figure 4.  The dispersion relations between energy ∆E and momentum K of spinon 
excitations with γ = 1.
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6.  Conclusion

In this paper, we study an integrable anisotropic J1 − J2 spin chain model with extra scalar 
chirality terms. By means of the Bethe Ansatz method, we obtain the exact solution of the 
system. The ground state and the novel structure of the elementary excitation spectrum are 
obtained. We find that the elementary excitation is gapless if the anisotropic parameter is real 
while the elementary excitation has a gap if the anisotropic parameter is imaginary. Moreover, 
it is shown that the spinon excitation spectrum of the model possesses a novel triple arched 
structure, which could be observed in experiments (e.g. inelastic neutron scattering of some 
quasi-one-dimensional magnetic materials). The method of this paper can be used to construct 
other integrable models with next-nearest-neighbour couplings.
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Appendix A.  Derivation of the Hamiltonian

Using the initial condition (2.2) of the R-matrix R(u) given by (2.1), we can evaluate the val-
ues of the transfer matrix ̂t(u) at some points: u = ±a:

Figure 5.  The gap with γ = 1.
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t̂(−a) = R2N,2N−1(−2a) · · ·R2N,2(0)R2N,1(−2a),
t̂(a) = R1,2N(2a)R1,2N−1(0) · · ·R1,2(2a).
� (A.1)

Taking the derivative of the transfer matrix t(u) with respect to u at the point of u  =  a, we have

∂ t(u)
∂u

∣∣
u=a=

N−1∑
j=1

R2N,1(2a)R2N,2(0) · · · [R′
2N,2j−1(2a)R2N,2j(0) + R2N,2j−1(2a)R′

2N,2j(0)]

· · ·R2N,2N−1(2a) + R2N,1(2a)R2N,2(0) · · ·R′
2N,2N−1(2a)

+ R2,3(2a)R2,4(0) · · ·R2,2N−1(2a)R′
2,2N(0)R2,1(2a),

�

(A.2)

where R′
i,j(u) =

∂
∂u Ri,j(u). Similarly we can calculate the derivative of t(u) at the point of 

u  =  −a

∂ t(u)
∂u

∣∣
u=−a=

N∑
j=1

R1,2(−2a) · · · [R′
1,2j−1(0)R1,2j(−2a) + R1,2j−1(0)R′

1,2j(−2a)]

· · ·R1,2N−1(0)R1,2N(−2a) + R1,2(−2a)R1,3(0) · · ·R1,2N(−2a)

+ R3,4(−2a)R3,5(0) · · ·R3,2N(−2a)R′
3,1(0)R3,2(−2a).

�

(A.3)

Substituting the above relations (A.1)–(A.3) into the expression (2.10), we obtain

H =

N∑
j=1

{R2j,2j−1(−2a)R′
2j,2j−1(2a) + φ1R2j+1,2j(2a)R′

2j+1,2j(−2a)

+ R2j+2,2j+1(−2a)P2j+2,2jR′
2j+2,2j(0)R2j+2,2j+1(2a)

+ R2j+1,2j(2a)P2j+1,2j−1R′
2j+1,2j−1(0)R2j+1,2j(−2a)}

− N cos η[cos2(2a)− cos(2η)]
sin2 η

.

�

(A.4)

The derivative of the R-matrix (2.1) reads

R′
0,j(u) =

1
2

[
cos(u + η)

sin η
(1 + σz

0σ
z
j ) +

cos u
sin η

(1 − σz
0σ

z
j )

]
.� (A.5)

The commutative relation between the permutation operators is

[P2,1, P2,0] =
1
4
[(1 + �σ2 · �σ1), (1 + �σ2 · �σ0)]

=
i
2
(σz

2σ
x
1σ

y
0 − σy

2σ
x
1σ

z
0 − σz

2σ
y
1σ

x
0

σx
2σ

y
1σ

z
0 + σy

2σ
z
1σ

x
0 − σx

2σ
z
1σ

y
0)

=
i
2
�σ2 · (�σ1 × �σ0).

�

(A.6)

Substituting equations (2.1), (A.5) and (A.6) into (A.4) and after some tedious calculations, 
we arrive at the form of the Hamiltonian (1.1).
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Appendix B.  Non-hermitian case

In this section, we consider the case that both a and η are real, which implies that the 
Hamiltonian (1.1) is non-hermitian. By the analysis of possible couplings in the Hamiltonian 
(1.1), we restrict the values of a in the interval [0,π]. It is easy to check that following identity 
holds

H(a,π + η) = H(π − a,π − η).� (B.1)

This means that the values of η can also be restricted in the interval (0,π). Then the parameters 
a ∈ [0,π] and η ∈ (0,π) can describe all the coupling strengths.

The Hamiltonian (1.1) possesses the PT-symmetry. However, the corresponding eigenval-
ues are real only if all the eigenfunctions are chosen as simultaneous eigenfunctions of the 
PT-operator [39]. Now, we study the condition of real energy spectrum.

Using the direct diagonalization method, up to 2N  =  12, we find that all the eigenvalues of 
the Hamiltonian (1.1) are real if a takes the values in some intervals. After detailed calculation, 
the intervals are determined as a ∈ [0, η/2] ∪ [(π − η)/2, (π + η)/2] ∪ [π − η/2,π]. We note 
that if η > π/2, these intervals are connected with each other and the parameter a fills the 
whole interval [0,π], which means that with an arbitrary a, all the eigenvalues of the model 
(1.1) are real.

The BAEs (3.9) are true for real a and real η. Put λj = iuj/2 − η/2 and the BAEs become
[
sinh 1

2 (uj − i(2a + η)) sinh 1
2 (uj + i(2a − η))

sinh 1
2 (uj + i(2a + η)) sinh 1

2 (uj − i(2a − η))

]N

=

M∏
l �=j

sinh 1
2 (uj − ul − 2ηi)

sinh 1
2 (uj − ul + 2ηi)

, j = 1, · · · , M.

�

(B.2)

From equations (2.10) and (3.8) we obtain the eigenvalue of the Hamiltonian (1.1) in terms 
of the Bethe roots as

E =
N cos η[cos2(2a)− cos(2η)]

sin2 η
− [cos(4a)− cos(2η)]

×
M∑

j=1

{
1

cosh(uj + 2ai)− cos η
+

1
cosh(uj − 2ai)− cos η

}
.

�

(B.3)

Solving the BAEs (B.2) with 2N  =  6 and substituting the values of Bethe roots into (B.3), 
we find that the eigenvalues calculated from the Bethe roots are exactly the same as those 
obtained from the exact diagonalization of the Hamiltonian (1.1). The energy spectrum is 
complete. Meanwhile, the intervals that all the eigenvalues are real keep unchanged.
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