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Abstract. Lahar disaster is an event of material transport such as sand, gravel, and rocks 

following volcanic eruption that is triggered by intense rainfall. The disaster on the slope volcano 

induces a potential loss that include casualty, damage or loss of property, and environmental 

disruption. Therefore, a system of lahar flood warning system is needed to help determining the 

status of flood disasters on the volcano slope. In this study the system of lahar vulnerability 

estimation is developed. The target area is a river on Merapi volcano Indonesia. Naïve Bayes 

Classifier Method is applied to classify areas categorized as flood-prone zones or safe zones. 

The determining factors are spatially distributed rainfall intensity from X-band weather radar, 

topographical factor, and soil type. This research has produced a flood disaster status 

determination system on the slopes of Merapi with an accuracy rate of 84.6%, from the results 

of taking 10% of the training data. The output of this system is an information system shown in 

vulnerability map that provides information about the status of susceptible zones to lahar flow. 

1.  Introduction 

High runoff in the mountains initiated by high intense rainfall, produces high energy to transport deposit 

volcanic materials such as a mixture of rock, sand and gravel. Lahar is known as volcanic material flow 

due to the flow of water that occurs on the slopes of a volcanic mountain [1]. The negative impact of 

this disaster is very high that includes potential loss due to death, injury, illness, life threatened, loss of 

security, damage or loss of property, and disruption of community activities. Therefore, a system is 

needed to help determine the status of flood disasters on the volcano slope. 

Mapping and evaluation of lahar hazards as decision support system on Google maps is necessary 

for showing disaster-prone status. Previous studies have applied multi-criteria evaluation, system 

simulation, and probability-based analysis for flood risk assessment mapping using integrated GIS-

based method. Benefits of using the Analytic Hierarchy Process method to map and analyze flood risks 

using Geographic Information System technology has been shown by Chen et al. [2]. Research in risk 

evaluation of flood and landslide hazards by using Bayesian approach has been conducted by some 

researchers [3,4]. However, few studies are dealt with the utilization of Bayesian method specifically 

for lahar vulnerability assessment. 

Naïve Bayes is one type of Bayes Network approaches. This method classifies random data in risk 

assessment [5]. In recent years the Naïve Bayes method has been widely used for studies related to 

natural disaster events such as earthquakes, ecological risks, and health risk assessments [6]. Naïve 
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Bayes algorithm is a method of grouping data based on simplified Bayes regulations. In this algorithm 

the attribute value of a class will not affect the value of the attribute in other classes. So the Naïve Bayes 

algorithm assumes that all nodes do not have interdependency or are independent [5,7]. This method is 

simple and requires small historical data. Therefore, it is regarded as a suitable approach for hazard 

mapping in volcanic regions which usually experiences data scarcity due to disaster attack.  

Eruption of Merapi volcano Indonesia in 2010 has caused lahar disaster in almost all rivers along the 

flanks in the following rainy season. During that time, 130 million m3 material was ejected as lava and 

tephra material. Merapi eruption in October 2010 has caused mudflow in the subsequent rainy season. 

Lahar movement is formed by complex process of hydrological and physical factors [8]. Data mining 

technique is useful for integrating past information of the rainfall dynamics and lahar occurrence to 

estimate the status of lahar risk in particular region.  

This research was conducted by integrating Naïve Bayes Classifier method with Google Maps to 

evaluate and map flood hazards on the slopes of Mount Merapi to support multimodal volcanic disaster 

mitigation. Prediction of an event occurrence is applied on the datasets based on the risk factors of 

rainfall, terrain slope, and soil type. It is expected that the estimation of lahar status spatially can assist 

the government in disaster management activities on the slopes of Mount Merapi. 

2.  Research method 

2.1.  Study area 

Study area is Mount Merapi in Yogyakarta Special Province, Indonesia (Figure 1). Merapi volcano is 

one of the volcanoes that erupts very frequently in Indonesia. This mountain has been active since 1900 

until now with short periods of dormant (on average, no more than 3.5 years) [9]. Gendol River is a river 

along Merapi flank that is vulnerable in lahar or debris flow. The watershed is divided into three: 

upstream, middle stream, and downstream. 

 

 

Figure 1. Map of study area showing Merapi Volcano summit and Gendol River for upstream (dark 

purple), middle stream (brown), and downstream (light purple). 

2.2.  Debris flood factors 

The factors of debris flooding considered in this study are topographical slope gradient, soil type, and 

rainfall. 
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2.2.1.  Slope gradient. The gradient of the land surface is one of the triggers for lahar flooding. Altitude 

and slope are used to measure the slope gradient in a particular vulnerable time. Surfaces that have a 

steeper slope are more likely to experience flooding because the energy of water flow is higher and the 

slope tends to be instable. Figure 2 shows the topographical map showing the elevation of specific area 

above mean sea level and the river catchment. This data is obtained from Shuttle Radar Topography 

Mission/SRTM NASA global dataset with 30 m resolution. The slope factor in fraction is then calculated 

from this data is obtained during data processing. 

 

 

Figure 2. Topographical condition of Merapi volcano. 

2.2.2.  Type of soil. In the Figure 3, the soil type data used in the study. The data is taken from 

FAO/UNESCO Soil Map of the World at 1 km spatial resolution. Gendol watershed comprises of two 

types of soil namely Andosol and Arenosol. According to the Indonesian Center for Agricultural Land 

Resources Research and Development, Andosol is a soil that consists of fine soil fractions and is mostly 

composed of volcanic ash, other vitric pyroclastic materials. Arenosol top soil is classified as loam and 

loamy sand. Loam soil texture comprises of sand, silt, and clay with 42%, 39%, and 19% fraction 

respectively, while loamy sand soil texture comprises of 83%, 11%, and 6% of sand, silt, and clay 

respectively. 

 

Figure 3. Soil type showing that the light purple is Andosol and dark purple is Arenosol. 

2.2.3.  Rainfall. Rainfall intensity (mm/h) is obtained from X-band multiparameter radar which is 

located in Merapi Museum. It provides fine spatial and temporal resolution of 250 m and 3 minutes 

respectively. Figure 4 shows the example of rainfall data in upper Gendol river basin. Rainfall and lahar 

events during rainy season in 2016 and 2017 are used in this study. 

 

 

Figure 4. Example of rainfall data in upper Gendol river basin. 
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2.3.  Classification 

Classification is one process in Naïve Bayesian method that groups the data based on the rules to 

distinguish them into classes. The rule of slope classification is 0°–3°, 3°–6°, 6°–10°, 10°–15°, and more 

than 15° as very flat, flat, moderate steep, steep, and very steep respectively [10]. The rule of rainfall 

follows the rainfall lahar threshold that is normalized based on minimum and maximum value. This 

classification process will form a model that is able to group the output to the specific classes, namely 

“occur” and “not-occur”. Through this procedure, it can be interpreted that the classification is a model 

that receives input that is able to think about these inputs and provide answers to their thoughts as an 

output. 

2.4.  Naïve Bayes algorithm 

Naïve Bayes algorithm is a method of classifying data based on simplified Bayes rules. Bayes’ theorem 

gives the probability of an event based on the prior information of condition related to the event [11]: 

 

𝑃(𝑐𝑙𝑎𝑠𝑠|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝑐𝑙𝑎𝑠𝑠) ∙ 𝑃(𝑐𝑙𝑎𝑠𝑠)

𝑃(𝑑𝑎𝑡𝑎)
 

(1) 

 

where P(class|data) is a posterior probability or the probability of a class given an event after seeing the 

event, P(data|class) is the probability of an event such that the event belongs to a particular class, 

P(class) is a prior probability or past event occurrence probability, and P(data) is usually neglected.  

In this algorithm the attribute value of a class will not give impact the value of the attribute in other 

classes [7,12] or independent [5,13,14]. This algorithm can be used to assess hazards spatially that is 

integrated using the Geographic Information System (GIS) [15-17]. Figure 5 explains the flow of the 

Naïve Bayes Classifier Method. 

 

 

Figure 5. Procedure of Naïve Bayes algorithm. 
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2.5.  System design 

The method used in the design of this system is the Waterfall Method. The waterfall design plan is one 

of the design models of the Software Development Life Cycle. Waterfall Model is the basis of process 

activities consisting of software requirements preparation, design, implementation, testing and 

maintenance which are explained below.  

2.5.1.  Requirements analysis. In this stage, the problems and goals are recognized and identified, i.e. 

developing a system for determining the status of flood disasters on the slopes of Merapi. The problem 

faced is to conduct reliable mapping and evaluation of flood hazards for assisting the decision making 

process by displaying the status of hazardous and safe regions on Google maps using the rainfall, soil 

type, and slope parameters. 

2.5.2.  System design. The system design diagrams are used to illustrate the workings of the system or 

use case diagram (Figure 6). Unified Modeling Language (UML) is used in this study to explain the 

design of the system created. The following is the design described in the Use Case Diagram. The user 

has four access rights, i.e. inputting rainfall data, adding pin in the maps, managing the spatial data, and 

viewing the status result in the map.  

 

 

Figure 6. Use case diagram. 

 

All data are managed in the database system. The database tables include the area position, the coordinate, 

the attribute parameter, and the Bayesian parameter. Figure 7 shows the database implementation. 

 

 
Figure 6. Use case diagram. 
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Figure 7. Database implementation. 

2.6.  Writing program code 

In this stage, the activities are making the system design formed into a program that is ready to operate. 

This system was built using the PHP (Hypertext Prepocessor) programming language with the Laravel 

framework or framework. The Laravel Framework uses a method of development based on MVC 

(Model-View-Controller). 

2.7.  Program testing 

Stages of testing are used to ensure the system being built is feasible and in accordance with needs. 

Testing on this system uses black box. Black box testing focuses on ascertaining the functional 

requirements of the software made whether the system built accordingly can solve the existing problem. 

In this application, the model is also tested as a stage after the data training.  

2.8.  Program implementation and maintenance 

After the model is established and perform a good results, the model can be implemented. This 

maintenance phase activity includes the use of programs, repairs and improvements to the system. 

3.  Results and discussion 

3.1.  Model interface 

In this following chapter, the results of the display development procedure are elaborated. The menu 

consists of main menu, upload menu, add area menu, area detail menu, and river flow list menu. 

3.1.1.  Main display menu. Figure 8 shows the main menu that contains the display of spatial map when 

the application is run. The points are the grid over the Gendol catchment that will be specified based on 

rainfall, slope factor, soil type, and lahar occurrence status. 
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Figure 8. Display of main menu. 

3.1.2.  Upload menu. Figure 9 is the upload menu used to upload the data input. This menu allows the 

data in CSV format being input in the model, i.e. rainfall intensity, slope factor, and soil type. This data 

will be processed and classified under the Naïve Bayes algorithm to obtain the regional status. 

Afterward, the classification results will be displayed in the main menu. 
 

 

Figure 9. Display of input data menu. 

3.1.3.  Menu of adding and selecting the area. In this menu, the user can add the target area as well as 

select the designated sub-basin that will be analysed. Figure 10 is the menu for these purpose. 
 

 

Figure 10. Display of area selection menu. 
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3.1.4.  Spatial data menu. Figure 11 is the menu of grid data of each watershed specified by geographic 

position. Each grids contains information about rainfall, slope, soil type, and lahar occurrence that is 

shown in spatial format. In this menu, it is possible for user to add and delete the data. 

 

 
Figure 11. Spatial information menu. 

3.2.  Data training and model testing  

3.2.1.  Data training. In the data training stage, debris flow occurrences and the contributing factors are 

processed through data training stage. The number of data is determined from the number of varied spatial 

data (grid) and temporal data. Rainfall, slope, and soil type are processed as independent variables in 

Naïve Bayes algorithm.  

3.2.2.  System testing. A trial was conducted to test the functionality of the application consisting of input 

to output processes. The results are summarized in table 1. The results indicate that the system is 

performed as expected. 

 

Table 1. Functional testing results. 

Scenario Expected results Test result 

Admin enters CSV rain data Successfully entered CSV rain data According to expectations 

Admin sees the status on maps Successfully see status on maps According to expectations 

Admin manages pins on maps Successfully managed the pin on maps According to expectations 

Admin performs area data management Successfully managed area data According to expectations 

3.2.3.  Algorithm testing of the Naïve Bayes method. The trial was conducted by comparing the results 

of manual calculations using MS Excel with calculations performed by the system. This test assesses 

whether the output of manual calculation and the application produces the same results. The result of 

prior probability calculation is shown in Table 2. Prior probability is calculated by averaging the 

probability of “Occur” or “Vulnerable” and “Not-occur” or “Safe” of each class according to Eq. (1). In 
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figure 12, the modeling indicates the same result where the prior probability of “vulnerable” and “safe” 

status is 0.1667 and 0.8333 respectively. 

 

Table 2. Algorithm testing results for prior probability from manual calculation. 

Prior Probability Likelihood 

0.1667 Danger 

0.8333 Safe 

 

 

Figure 12. Algorithm testing results for prior probability from model calculation. 

 

The next procedure is the testing of classification process. Using manual calculation, one case is taken 

as an example. The result of categorization is shown in table 3. At the same time, the model is also run 

for classification, which is shown as the probability of an attribute being in a specific class (figure 13). 

The modelling result indicates the same result as manual calculation. 

 

Table 3. Algorithm testing results for attribute classification from manual calculation 
 

Rain Slope Type of Soil Rescaled Rain Rescaled Slope 

0 0.53 An Low Steep 

 

 

Figure 13. Algorithm testing results for attribute classification from model calculation. 

 

The last stage of the model process is obtaining the posterior probability from model running. The 

comparison of manual and model calculation is shown in table 4 and figure 14. The final likelihood 

value obtained from the model calculation is the same as the maximum value of probability from manual 

calculation indicating reliability of the model. 

 

Table 4. Calculation of posterior probability manually. 

Posterior Probability Status 

0,002116567 Safe 

0,010743975 Danger 

 

 

Figure 14. Calculation of posterior probability by using the model. 
 

Rain    Slope       Type of Soil  Rescaled Rain Rescaled  
                                                                                Slope 
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3.2.4.  Discussions on the model performance. The performance of overall system is tested using black 

box method that introducing previously unseen data to the model which is 10% from all data. Confusion 

matrix table is used along with the accuracy index. The matrix of model testing is given in Table 8. The 

number of actual events are 166 which is divided into “safe” and “danger” status. From 115 data “safe”, 

51 of them is estimated as “danger”. While, in terms of accuracy, among 332 data, 281 of them is 

predicted correctly by the model. To determine the accuracy of the method, the correct data will be 

divided by the overall test data multiplied by 100, resulting in an accuracy of 84.6%. 

From this evaluation, it can be inferred that system for determining lahar disaster status using Naïve 

Bayes Classification Method gives satisfactory results. This system is expected to be useful for disaster 

mitigation in Merapi region, particularly for decision maker under emergency situation. The method is 

promising though some improvement is still needed. The future studies will be directed to the inclusion 

of more data training from other river basin and the consideration of other contributing factors to develop 

a more reliable system as the number of training data is essential for developing a robust model. The 

robust model is expected to support the existing system of Merapi lahar soft countermeasure. 
 

Table 5. Confusion matrix. 

Confusion Matrix 
Estimation 

Safe Danger 

Actual 

Event 

Safe 115 51 

Danger 166 0 

 

Table 6. Estimation accuracy. 

Correct 281 

Wrong 51 

Accuracy 84.63855 

4.  Conclusions 
A system of lahar flood warning system is needed to help determining the status of flood disasters on the 
volcano slope is developed by using Naïve Bayes Classifier Method. The attribute is spatially distributed 
rainfall intensity from X-band weather radar, topographical factor, and soil type. This performance of the 
model is proven that is shown by 84.6% rate of accuracy. The output of this system is an information 
system shown in vulnerability map that provides information about the status of susceptible zones to lahar 
flow. The model will be useful to contribute to current mitigation system in Merapi to reduce the negative 
impact of lahar. Future studies is still needed to provide more reliable timely prediction by introducing 
more data on geomorphological factors. 
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