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Abstract

This paper concerns the application of Grassmann phase space theory (GSPT) to treat the dynamical
evolution of systems of identical fermions, such as ultracold gases of fermionic atoms. Phase space
theory (which originated from quantum optics) is increasing in importance since it overcomes certain
issues associated with other theoretical methods, such as Greens functions, variational methods,
quantum-Monte-Carlo equations, etc. In phase-space theory quantum states are represented by
quasi-probability distribution functions of phase space variables associated with canonical system
operators—such as annihilation, creation operators. Evolution is described via a Fokker-Planck
equation for the distribution function, which is equivalent to Ito stochastic equations for (time
dependent) stochastic phase space variables. Quantum correlation functions given as averages of
products of phase space variables over the quasi-probability distributions then become stochastic
averages of products of stochastic phase space variables. In GSPT, the phase space variables are
Grassmann numbers, but as computer representation of g-numbers is difficult, Grassmann phase
space methods were regarded as being computationally inaccessible. However, previous work using
the un-normalised B distribution shows that computer representation of Grassmann variables is
unnecessary. Stochastic averages of products for quantum correlation functions at later times are
related linearly to stochastic averages at earlier times via stochastic matrices only involving c-numbers.
Thus, GSPT calculations of quantum correlation functions now only involve c-number computations.
This paper presents the first correct numerical calculation of a quantum correlation function for a
fermionic system using stochastic methods based on Grassmann phase space theory, namely the time
dependence of the coherence between two Cooper pair states in a four-mode fermion system, where
the short and finite time solutions can be compared to known exact results. Good agreement between
the stochastic and exact results is found, showing that GPST is a valid approach for treating fermionic
systems. The treatment of time evolution involves a novel use of the eigenvalues and biorthogonal
column eigenvectors of a stochastically determined c-number matrix M and its transpose. Other
topics of interest in ultra-cold fermi gases for which the GSPT could be applied are highlighted, such as
the strong interaction regime for the BEC/BCS crossover achieved using magnetically tuned Feshbach
resonance techniques.

1. Introduction

1.1. Theoretical methods for non-relativistic many-body systems

Quantum dynamics is one of the most fundamental problems in modern physics since time-evolution is the
basis for any theoretical prediction, yet many-body complexity makes this an extremely challenging task in
quantum systems. New theoretical methods are always needed, and quantitative experiments with well-
understood interactions are vitally important to enable the testing of predictions. Also, for systems in
thermodynamic equilibrium, evolution associated with changes to external variables such as temperature can
also be thought of as a type of quantum dynamics. We will briefly review some of the recent developments
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relevant to ultracold atoms since these provide an exceptionally simple and well-understood physical
environment within which quantitative tests of dynamical theoretical predictions can be performed.

There is a wide range of theoretical treatments of the behaviour of many-body systems in non-relativistic
quantum systems, which are found in condensed matter physics, nuclear physics, quantum optics and more
recently in the physics of degenerate bosonic and fermionic atomic gases at low temperatures and density. These
include not only the more traditional Green function [1, 2], variational [3, 4], path integrals [5], mean field
theory [6] and stochastic Schrédinger equation-Quantum Monte Carlo [7] approaches, but also phase space
methods [8—12]. In most modern treatments, where the many-body systems involve identical particles, a second
quantisation approach [13, 14] is used.

There are well known issues regarding the theoretical methods described above. Path integrals and Monte-
Carlo methods for instance, are useful for bosons at thermal equilibrium. However, for quantum dynamics and
for fermions in particular, there are phase and sign problems, which severely limits their applicability. Also, the
simulations involved are often restricted to small sizes which are difficult to extrapolate to the true
thermodynamic limit [15-17]. The standard perturbation theory method, is applicable for certain problems, but
others involving large interaction strengths may contain expansions which generally do not converge and are of
infinite order due to alack of a small expansion parameter. Using the mean field theory approach, one has to
account for quantum fluctuations in atom numbers or limited coherence times and lengths [18]. Variational
methods require an assumption regarding a trial function for which the choice depends on trial and error or
experience. For Green functions, which have along history in condensed matter problems—being applied to
calculate properties of systems such as superfluids and superconductors [1, 19], a correct choice has to be made
regarding the Feynman diagrams relevant to the problem.

Phase-space representations on the other hand, are of increasing importance as a viable and successful
means to study exponentially complex quantum many-body systems from first principles [8—12]. These were
invented to describe lasers, but have been adapted to treat atoms instead of photons. Consequently, the
behaviour of bosonic photons and atoms is often treated using phase space methods in both quantum optics and
cold atom physics. Here, mode annihilation and creation operators are represented by c-number phase space
variables, with the density operator equivalent to a distribution function of these variables. Phase space methods
have also been introduced for treating fermionic systems [20], but differing choices have been made for the
phase space variables. Corney and Drummond [21] for example, introduce c-number variables associated with
pairs of fermion annihilation, creation operators. However, the anti-commutation rules for fermion
annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to
represent these operators [20]. However, in spite of the seminal work by Cahill and Glauber [20] (and a few other
treatments [12, 22-27]), the use of Grassmann phase space methods in quantum—atom optics to treat
fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in
particle physics.

The present paper is the first correct numerical application of Grassmann phase space theory (GPST) to
calculating a quantum correlation function (QCF) for a fermionic system (see section 1.2) for details). The QCF
involved is the coherence between two Cooper pair states in a four mode fermionic system, showing the
development of this coherence over finite times. This system has the advantage that the evolution is known via
standard matrix mechanics, so although the GPST method is not expected to reveal any new physics in this case,
it can be compared to a known exact result. New physics will be revealed when GPST is applied to systems not yet
completely understood, such as the BEC/BCS crossover in cold Fermi gases. As will be shown below, (see
sections 3.2, 3.3 for details) the evolution of the fermion QCF involves the stochastic calculation of a c-number
matrix M, and a novel method for determining the evolution is presented, based on using the numerical
eigenvalues and biorthogonal column eigenvectors of M and its transpose. Furthermore, the present paper
clearly demonstrates that numerical calculations based on GPST can be carried out using only c-numbers, and
without the need to represent Grassmann variables themselves on the computer —an issue previously thought to
restrict GPST to purely analytic applications (see section 1.2 for details).

Unlike variational methods, phase space methods do not require assuming a trial form for the quantum
state, and whereas Green function methods involve selecting which class of Feynman diagrams is important in
the process and which are to be discarded, phase space methods do not depend on making such selections. They
ultimately involve calculations with representative sets of stochastic trajectories that sample the distribution
function throughout the phase space, and their main limitation is a numerical constraint on the numbers of
trajectories that can be stored on a computer.

1.2. Phase space theory —Grassmann phase space variables
Thermal evolution based on a Matsubara equation [28] was treated using a Grassmann phase space theory by
Plimak, Collett and Olsen [22] for a 1D system of spin 1/2 fermions with zero-range interactions, and numerical
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results were presented for number correlations between pairs of fermions with various momentum, spin cases
(+kT, —=k|, —kT, +k|). These authors used an un-normalized B distribution function based on fermion
Bargmann coherent states [20] for which a Fokker-Planck equation (FPE) was obtained where the drift vector
only depended linearly on the Grassmann phase space variables—a feature the authors recognised as being vital
for numerical work. Plimak et al also introduced stochastic Grassmann variables, with those at a later time (or
inverse temperature, for thermal evolution) being related linearly to those at an earlier time by a stochastic
c-number transformation matrix 3~ '. However, rather than introducing Ito SE for the stochastic variables
themselves, they considered an Ito SE for the transformation matrix 3. Their fundamental equation was an
ansatz for determining the B distribution function at later times from that at an initial time, via substituting
stochastic Grassmann variables for the original non-stochastic phase space variable, multiplying by the
determinent (det 3) of the transformation matrix, and then taking a stochastic average of the resultant product.

The Grassmann phase space theory used in the present paper was developed by Dalton et al on a different
basisand is set outin [12, 24, 26] and [27]. Details are set out here in section 3. Extensive accounts of the
underlying Grassmann algebra and calculus may be found in [12, 20, 22] and [25]. Essentially, the phase space
method also involves representing the quantum density operator for the system by a Grassmann (un-normalized
B) distribution function [12, 22, 24, 26, 27] and [25] in a phase space where the phase space variables replacing
the fermion annihilation and creation operators are Grassmann variables. Quantum correlation functions
(QCF) can be related to experimentally measurable quantities, and theoretically to Grassmann phase space
integrals involving the distribution function with the fermion operators being replaced by phase space variables.
Evolution equations (over time or temperature) for the density operator lead to Fokker-Planck equations (FPE)
for the distribution function via the application of correspondence rules. However, unlike in [22], the FPE are
then replaced by Ito stochastic equations for stochastic Grassmann phase space variables themselves, which are
derived from the FPE. The QCF are now given by stochastic averages of products of these stochastic variables.
The stochastic averages of products at alater time can be shown to be related linearly to such stochastic averages
atan earlier time via matrices that only involve c-numbers. Even though these matrices involve stochastic
quantities such as Wiener increments, their non-dependence on Grassmann variables enables computations to
be carried out without having to represent Grassmann variables on the computer. The initial stochastic averages
of products are obtained from the initial density operator. A comparison of the present approach with that in
[22] is provided in the work of Polyakov [25], which confirmed the present formalism.

The utility of the theory can first be tested on some fermion systems that have been treated previously by
other methods. In this paper, we will numerically calculate the coherence between two Cooper pair states in a
simple four mode fermion system as a stochastic average [12, 24, 27]. The analytic short time and finite time
solutions for such coherence are known using analytic methods, so comparisons can be made with exact results.
Another test of the theory would involve a re-determination of the quantum correlation functions for
interacting spin 1/2 fermions which were previously calculated by Plimak et al [20], by a Grassmann phase space
approach involving a different treatment of evolution. Although based on a different Ito stochastic equation, the
numerical calculations of Plimak et al [20], nevertheless showed that a Grassmann phase space theory could be
used to calculate quantum correlation functions for a field-like situation involving a continuous range of
momentum values —implying that similar calculations could be carried out on topics such as the BEC/BCS
crossover.

1.3. Plan of paper

As the main potential application of Grassmann phase space theory will be to treat cold quantum gases of
fermionic atoms, we provide in section 2 a brief overview of current topics of interest in this area. In section 3 we
will review the various features of Grassmann Phase Space Theory starting with its key theoretical expressions,
followed by how it can be used in numerical calculations. In section 4 we will describe the Cooper pair model for
asystem of two spin 1/2 fermions with four modes, comparing the theoretical results obtained for the model
using analytical methods with the numerical results obtained for the QCF’s based on GPST stochastic
calculations. Section 5 summarises the paper. Various details are set out in Appendices, available as online
Supplementary Material.

2. Cold quantum gases

Research in the field of ultracold atomic gases has been a major activity since the 1990’s when Bose—Einstein
condensation was achieved for bosonic atoms [29-32]. Non-interacting untrapped bosonic atoms at zero
temperature form a BEC, with a macroscopic occupancy of the lowest single particle energy state, which is
possible due to the absence of the Pauli exclusion principle. Since the 2000’s ultracold gases of fermionic atoms
have also been prepared manifesting different effects. Non-interacting untrapped fermionic atoms at zero
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temperature form a Fermi gas, with each energy state only being occupied by two atoms with different spins due
to the Pauli exclusion principle. Consequently, energy states are filled up to the Fermi energy Er, whose
associated wave number kg is proportional to the inverse of the average separation between the atoms. In both
cases, the single particle states are plane waves with momentum #k.

Ultracold quantum gases have opened up new horizons in many-body physics, from novel quantum states of
matter to quantum computing applications. They provide a unique table-top paradigm for exploring the
properties of quantum many-body systems in nature, from the thermodynamics of high-temperature
superconductors to the hydrodynamics of QCD Quark gluon plasmas (QGPs). These gases are mainly made of
alkali metal atoms but also more recently other atoms as well as diatomic molecules. They can be fermionic or
bosonic with a wide variety of internal hyperfine spin structures. They can be made strongly or weakly
interacting, and both attractive and repulsive. They are contained in a variety of magnetic and optical traps in
one, two and three dimensions, including optical lattices.

For bosonic gases, there is a wide range of interesting topics which include Bose—Einstein condensation
(BEC) and superfluidity (flow without dissipation below a critical velocity v..). The BEC paradigm, was first
developed for non-interacting bosons, and later generalized to take into account repulsive interactions,
describes bosonic fluids like *He or ultracold Bose gases like ®Rb. Interactions are described in terms of a two-
body scattering length [33]. The condensate is a macroscopic occupation of a single quantum state that occurs
below a transition temperature T, which, even in strongly interacting Bose systems like “He, is of the same order
of magnitude as the quantum degeneracy temperature at which the inter-particle spacing becomes of the order
of the thermal de Broglie wavelength [34, 35].

For fermionic gases, not only do effects such as fermionic BCS superfluidity (based on large Cooper pairs of
two atoms with opposite spins and momenta and described in terms of the BCS theory (Bardeen, Cooper
Schrieffer [36])) occur, but also BEC superfluidity (based on tightly bound molecules of two fermionic atoms
with opposite spins) can be observed. It was proposed as early as 1950 by Fritz London (see [37] that fermionic
superfluidity for fermionic atoms is a pair condensate in momentum space, in contrast with a BEC of tightly
bound pairs in real space, and BCS theory then emphasised the different nature of BCS and BEC types of
suoperfluidity. The BCS paradigm, first developed for metallic superconductors, describes a pairing instability
arising from a weak attractive interaction in a highly degenerate system of fermions. The formation of pairs, and
their condensation, both occur at the same T, that is orders of magnitude smaller than the Fermi energy Er.
However, it was later realised [38—41], that the BCS theory provided a good qualitative description of both the
BEC and BCS regimes, as the two body scattering length is changed from being attactive (the BCS regime) to
being negative (the BEC regime). Experimentally, such changes in the two body scattering length can be achieved
using magnetically tuned Feshbach resonance [42—45] techniques. Studies involving Feshbach resonance have
led to ground-breaking observations, including the condensation of molecules, and to additional intensive
research relevant to the crossover physics, from a molecular Bose—Einstein condensate (BEC) to atomic Cooper
pairs in the BCS state (BEC/BCS crossover) [17, 41, 46, 47]. The calculation of the phase transition temperature
T.between the superfluid phases as a function of 1 /(kra) is also of interest. Near the crossover, the scattering
length becomes very large, and this corresponds to the so-called unitary regime where strong correlations occur,
and for which BCS theory involving mean field equations is no longer adequate. Figure 1 shows the phase
diagram associated with a Feshbach resonance, the variables being the inverse of the two fermion scattering
length and the temperature.

Various BEC/BCS crossover studies ([30, 48] -see figure 24) have shown that there is a smooth change in the
size of the Cooper pairs through the Feshbach resonance. However, it is expected that there is little correlation
between different Cooper pairs well away from the unitary regime. On the BEC side there should be little
relationship between the nearby positions of the pair of fermions in one tightly bound molecular Cooper pair,
and the positions of the pair of fermions in another. On the BCS side, there should be little relationship between
therelated k, —k momenta of the pair of fermions in one Cooper pair and the related /, —I momenta of the pair
of fermions in another. However, in the crossover regime, the positions (or momenta) of the four fermions in
any two Cooper pairs should be highly correlated. Figure 2 illustrates this effect.

A study of the BCS/BEC crossover regime—including the strong correlation unitary regime, would be a
worthwhile application for Grassmann phase space theory. The application would employ Fokker-Planck
equations and the related Ito stochastic equations either based on starting with a Matsubara equation [28],
which describes the temperature evolution of the system from an initial high temperature where the atomic
gas behaves classically, or starting with a Liouville-von Neumann equation, which describes time evolution.
Numerical methods will be used at first to study the two particle quantum correlation function which has the
form [49]:
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Figure 1. Ultracold Fermi gas phase diagram. Sketch of the BCS to BEC crossover for ultracold Fermi gases. When the scattering
length as passes through a pole, so that 1 /(kra;) — 0, one obtains a strongly correlated fluid, the unitary gas. The critical temperature
T for the phase transition only approaches the pairing temperature Tyg; in the limit 1/(kpa;) — —o0. The crossover region is the
strongly interacting regime, loosely defined as |1/ (kra,)| < 1. Note that we denote the scattering length by a in the text [31].
Reproduced from S4 de Mello C A R 2008 Phys. Today 61 (10) 45, with the permission of the American Institute of Physics.
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Figure 2. The BEC-BCS crossover. By tuning the interaction strength between the two fermionic spin states, one can smoothly cross
over from a regime of tightly bound molecules to a regime of long-range Cooper pairs, whose characteristic size is much larger than
the interparticle spacing. In between these two extremes, one encounters an intermediate regime where the pair size is comparable to
the interparticle spacing interaction. Reprinted from Ketterle W and Zwierlein M W 2008 Ultracold Fermi Gases, Proc. of
International School of Physics ‘Enrico Fermi’ ed M Inguscio et al (Amsterdam: IOS Press), with permission of IOS Press.

In the BCS theory, there is a smooth evolution in the BEC/BCS crossover in the size of the Cooper pair from the
situation for a tightly bound molecule to that for aloosely bound Cooper pair with no dramatic change at
resonance (see Ketterle [30]). It is expected that Grassmann phase space method would give similar results.

However, if higher order quantum correlations were studied, we might expect to see strong interaction
effects, such as inter-pair coherence lengths differing from intra-pair coherence lengths, which are attributed to
fluctuation correlations not included in the BCS mean field theory [48, 50-52]. Our hypothesis is that there is
little correlation between different Cooper pairs well away from the unitary regime, however, in the crossover
regime the positions of the four fermions in any two Cooper pairs should be highly correlated. As is well-known
[49], the two particle QCF in equation (2.1) can be found using Bragg spectroscopy. However, the four particle
QCE for describing one Cooper pair at r1, r, and another at 73, r4 is

()T, () W (r3) T (1) B (1) By (1) T (1) Ty (7). 2.2)

This cannot be found using standard Bragg spectroscopy, suggesting that a new form of Bragg spectroscopy will
be needed to fully study the strong interaction regime. On the theory side, the calculation of such QCF would be
an important application of Grassmann phase space theory.

More recently, quantized vortices in a rotating Fermi gas have provided a direct signature for the presence of
superfluidity in a strongly interacting Fermi gas, as they are a direct consequence of the existence of a
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macroscopic wave-function that describes the superfluid. It is beyond the scope of this paper to describe these
topics, but references such as [29, 30, 48, 50] provide a useful overview of the area.

Interacting fermions appear in a wide range of settings. The Grassmann phase space theory will be focused
on applications to the specific topic of strongly interacting Fermi gases [30, 51], whichprovide a well-controlled
and flexible environment to study many-body phenomena in strongly correlated systems. Generically, strong
interactions give rise to strong correlations. A strongly correlated system cannot be described by working
perturbatively from non-interacting particles or quasiparticles. In the case of electrons in condensed matter
systems, theories constructed from single-particle properties, such as the Hartree—Fock approximation, cannot
describe the problem at hand. In the case of fluids, the kinetic theories based on quasiparticle degrees of freedom,
in particular the Boltzmann equation, fail [31, 53]. Theoretically, strongly interacting Fermi systems represent a
challenging scenario to treat, as the large scattering length means there is no small parameter to describe the
interactions. Models based on simple perturbation theory are therefore no longer adequate to describe certain
system parameters. Experiments can provide useful information both revealing properties of these systems, and
establishing benchmarks for appraising different approximate theoretical approaches. For example, recent
experiments on ultracold Fermi gases have provided an unprecedented opportunity to test universality in the
laboratory, which in principle allows for the interior properties of hot dense neutron stars to be investigated on
earth [16].

3. Grassmann phase space theory

3.1. Summary of GPST features

As explained in section 1, in our work we follow the approach of Plimak, Collett and Olsen [23], in that we also
base our work on the un-normalized B distribution, but with Grassmann number phase space variables (g;, gf)
(rather than (g;, gi*)) associated with each mode. Quantum correlation functions (QCF), Fock state populations
and coherences are given by Grassmann phase space integrals over the B distribution function, with the mode
operators being replaced by Grassmann phase space variables. Fokker-Planck equations for the distribution
function are obtained, and these will involve Grassmann derivatives rather than c-number derivatives. The phase
space variables are then replaced by stochastic Grassmann variables. The QCF, etc (as in the boson case) are now
given by stochastic averages of products of the stochastic phase variables. However, unlike in [22], Ito stochastic
equations for the stochastic Grassmann variables are derived from the Fokker-Planck equation. An approach for
bosons described by Gardiner [54] is followed, where we equate the time derivative of the Grassmann phase
space average of an arbitrary function of the phase space variables to the stochastic average of the same function
when the Grassmann phase space variables are replaced by stochastic Grassmann variables. The time
dependence of the phase space average is determined from the FPE for the distribution function and the time
dependence of the stochastic average is determined from the Ito SE for the stochastic Grassmann variables, and
these time dependences are required to be the same. This establishes the relationship between the deterministic
and noise terms in the Ito SDE and the drift and diffusion terms in the FPE. It is a different approach to that
based on the ansatz of Plimak et al, and our Grassmann Ito SE for the stochastic Grassmann variables are not
equivalent to the c-number Ito SE for the transformation matrix obtained in [22]. A subsequent paper by
Polyakov [25] was in agreement with our formalism.

We then show how the Ito SE for the stochastic Grassmann variables can be applied in numerical
calculations of stochastic averages of products of these quantities needed for determining QCF, etc. Essentially,
the stochastic average of a product of Grassmann stochastic phase variables at the end of a small time interval is
related via a linear transformation to the set of stochastic averages of all the products of Grassmann stochastic
phase variables (of the same order) at start of the time interval. The key result is showing that the linear
transformation matrix M relating the stochastic Grassmann phase space variables at the end of a time interval to
those at its beginning just involves c-numbers, such as stochastic Wiener increments and quantities from the Ito
SE for the Grassmann stochastic phase variables. By dividing a finite time interval into small time intervals, the
stochastic average of product of Grassmann stochastic phase variables at the end of the finite time interval can be
obtained in steps from the stochastic averages of products of Grassmann stochastic phase variables at the initial
time. The numerical method for this process involves calculating the eigenvalues and eigenvectors of the linear
transformation matrix M and its transpose M ” for a suitably short time interval. Finally, the stochastic averages
of products of Grassmann stochastic phase variables at the initial time are obtained from the initial density
operator via expressions for QCF, Fock state populations and coherences, where the relevant phase space
integrals are related to initial stochastic averages of products of Grassmann stochastic phase variables.

In order to treat problems involving large particle numbers, it is often convenient to consider field
annihilation and creation operators rather than those for separate modes. A phase space theory based on fields
can be constructed for fermions, as is the case for bosons. The density operator is represented by a Grassmann
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distribution functional involving Grassmann fields associated with the field operators. The QCF etc are now
given via Grassmann functional integrals. The distribution functional satisfies a functional Fokker- Planck
equation (FFPE) involving Grassmann functional derivatives. Ito stochastic field equations (Ito SFE) can be
obtained which are equivalent to the FFPE. The detailed development of Grassmann phase space field theory is
covered in [12, 26, 27], but for reasons of space will not be outlined here.

In the next subsections we outline the separate mode treatment of Grassmann phase space theory.

3.2. Key theoretical expressions

3.2.1. Bargmann states

Fermion Bargmann coherent states are central to defining Grassmann phase space distribution functions. They
are defined for a set of Grassmann numbers ¢ = {g, ..., g, .., g,} forthemodesi = 1,2,..,nas

Ig)s = exp (Z(Ejgi))l(» = H (1+¢/g)l0) = H lg;)5- (3.1)

This is also an even Grassmann vector, but now only depends on g; and not on the complex conjugates gi*. For
the mode | ;) the Bargmann coherent state is

g = (1 + &7g)10) = [0;) — giL;), (3.2)

which is a superposition of the vacuum state and a one-fermion state [12, 24, 26].
|g; )5 only depends on g;and not on g *. The fermion Bargmann coherent state properties include the effect of

the annihilation and creation operators ¢; and EIT for eachmodei[12, 24, 26].

Cilgs = g 188
il
& gl = [— 8—&] 185
Fl
(g *lnti = <g+*|3[‘ agi+]’
(€ T*1s¢ = (¢7*Ing;" (3.3)
and they satisfy a completeness relation analogous to that for boson Bargmann coherent states, namely
f [ dg/"dg; exp(—¢* - ©)lg)s (gls = 1, (3.4)

whereg* - g =37, ¢" - g.

3.2.2. Density operator and unnormalized B distribution function
The canonical form of the density operator in terms of fermion Bargmann states can also be written in terms of
the unnormalized distribution function B as

p= f [T dg;" [T dgiBean(g> g )12 (g "I (3.5)

where [];dg,” = dg" - ~-dg " and [];dg; = dg, --- dg- one should note that the Grassmann differentials anti-
commute. Each fermion mode involves pairs of Grassmann phase space variables g, g.". The canonical
Grassmann phase space distribution function B,,(g, g + ) is obtained from Bargmann state matrix elements of
the density operator and is given by

Bun(g, g%) = f [1dg *T1dg (glsp g ™*)s x exp(g-g*+ g+*-g"), (3.6)

where [[;dg"* = dg** - ~dg " and [[,dg* = dg* - --dg. The Grassmann distribution function B(g, g*) in
equation (3.5) is unique, and is an even Grassmann function of {g;, gf} oforder 2" [12, 22, 24].

The un-normalized B(g, g*) distribution function is related to the normalized distribution function
P(g, g")via[12,24,26]

B(g, g*) = P(g, gHexp(—g - g"). (3.7)

The distribution function P(g, g*) is normalized to unity and could also be used to determine quantum
correlation functions [12], though this would require directly solving the Fokker-Planck equations. However, in
numerical calculations it is convenient to consider unnormalized forms of the distribution functions, as these
turn out to result in simpler Fokker—Planck equations, and lead to Ito equations linear in the Grassmann
variables—which can be treated numerically.
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3.2.3. QCEF, Fock state populations, coherences as phase space integrals
One set of important quantities that can be determined is that of the populations of, and coherences between, the
fermion Fock states. We consider two Fock states —each with p occupied modes —given by

|©(1}) = @D@ED-@EDI0)  12{m}) = @) )} )10) (3.8)

Quantum correlation functions etc are given by Grassmann phase space integrals (see [12], pp.140—-143).

Tr{@lj'...ﬁll'f)émq...fml} = (El'l"...éll'@mq Cmy) fH dg+H dglgmq & B, g X exp(g - g+)gl

(3.9

and for Fock states |®{I}) and |® {m}), the population and coherences are also phase space integrals given by
P(®{l}) = fH dg" 1 dg;g, - 8,B& g*)gl;r gl;r. (3.10)
C@(m); (1)) = fl‘[ dg;" T] de,g, - 2,B(& §) X g7 8- (.11)

3.2.4. Hamiltonian for cold quantum gases
The Hamiltonian for a fermion system involving one and two particle interactions, and may be written in terms
of one particle and two particle operators h (a) and V(a, b) = V (b, a)

A=Y h@ + %Zb V(a, b), (3.12)

where the sums are over the Nidentical particles and the expressions are invariant under any permutation of
these identical particles. In terms of annihilation and creation operators, the Hamiltonian given in first
quantization by equation (3.12), can be written in the second quantization form

Hf—Zh,JIC]-l- Zuqkeeee (3.13)
1]kl

hij = (¢ (a)] h(a)|¢ (@), (3.14)

v = (6;@ (¢ ()] V(a, b)| ¢y () |y (D)). (3.15)

The evolution of the quantum state allowing for both Hamiltonian dynamics and Markovian relaxation due to
coupling to an external reservoir is described by a master equation [12, 24]

0 , & ata
—p= —[H Pl + Z Tu(23) pSa — 08485 — 8.8, p)» (3.16)
ot 20
where for pairs fermion modes denoted a = i, jand b = k, [ the transition operators S, and relaxation
coefficients 'y, are S, = E]T & Sy = Ef Geand Iy = Tjg.

The symmetry features are

* * *
hij = hﬁ Vijkl = Vjilk = Ugjj Fzj;kl = Fkl;ij- (3.17)

3.2.5. Fokker-Planck equation—drift vector A and diffusion matrix D

Correspondence rules for replacing terms in the evolution equation for the density operator by equivalent terms
in the Fokker-Planck equation for the B distribution function can be obtained using equation (3.3). These are set
out as equation (45) in [24]. The Fokker-Planck equation for the B distribution function determines the
dynamics in phase space and can be written using right Grassmann derivatives:

— —

aiB(g, ghH = Z(APB(g, +))8— + E Z (DpqB(g, g*)) 88 (3.18)
¢ & pa=1 0g, 9g,

where & =8 8 5 ...,gn+.

3.2.6. Linearity of drift vector, bilinearity of diffusion matrix

The drift vector A is an odd Grassmann function, linearly dependent on the Grassmann variables. This key
linearity feature is dependent on using the B distribution function and is vital for numerical work. The diffusion
matrix D is even and is bilinearly dependent on the Grassmann variables. Unlike for bosons, it is an anti-
symmetric matrix Dy, = — D). For the Fokker-Planck equation equation (3.18), the drift vector A and the
diffusion matrix D can be written in terms of submatrices (where T 'is the transpose).
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e | - 4Tt
[A] = [W] [D] = [_(%ﬂT +37++]. (3.19)

For the master equation equation (3.16), the quantities giving the drift vector in terms of the Hamiltonian matrix
elements and relaxation coefficients are

_ 1 1
G = gt 2 (Efkikf)gf (320
j Jk
1 1
¢ == hig+ f(_r*i ) 3.21
SR b (321)

where ; and € are the submatrices of the drift vector A.
The quantities that define the sub-matrices submatrices # —, #+—, # +,, #17, of the diffusion
matrix D are

_ 1 1 o
Ty = Z[Evijklglgk + E(ng + ijil)gzgk] =75 (3.22)
kl
-1 1
Fit= Z[gvi‘?kzg;gf‘f'g(r?;jk + F;fjil)g]j_gl_‘—] =—-F4, (3.23)
kl
Fit =2 Tagg> Ty =2 Thg's =T (3.24)
kl Kl

In these submatrices,j = 1,2, ..., nand the c-number quantities, I'y, vjjxs etc are defined in
equations (3.14)—(3.17).

3.2.7. The stochastic and phase space averages
The Ito stochastic equations provide an equivalent determination of the phase space dynamics. As described in
the Introduction, phase space variables g, are replaced by time-dependent stochastic Grassmann variables g, (0.

The ith member of the stochastic ensemble of §p (t) is denoted by §i" (t),wherei = 1, ..., m. For an arbitrary
function F(g, g*) of the Grassmann phase space variables, the phase space average (F (g, g + )); and the
stochastic average F (§(¢), §1(¢)) of F(g, g") after the replacement by stochastic variables are given by

FEO, 370 = - [ @0, (3.25)
i=1

(F(g, gN) = f dg*dgF(g, g")B(g, g+, 1), (3.26)

where for short F(§(¢), §7(¢)), = f(gNPi(t))

The stochastic equations for the g (nare determined from the Fokker-Planck equation for the distribution
function B(g, g, t) by requiring the phase space average of an arbitrary function F (g, ¢") and stochastic
average of the same function to always coincide (see Gardiner, [54]). This will enable QCF, Fock state
populations and coherence to either be given by a phase space integral involving the distribution function or a
stochastic average involving the stochastic Grassmann phase space variables. Thus,

(F(g, gM) = FE®), g7 (1)). (3.27)

3.2.8. Ito equations for stochastic variables
The Ito stochastic equations for the stochastic Grassmann variables are given by

%gp(f) = CP(g(t) + Y BY @) Tu(ty), (3.28)

where the deterministic term C,,(§(¢)) and the noise factor Bf (§(¢)) are odd Grassmann functions, and are yet to
be determined. The I, (¢, ) are standard c-number Gaussian-Markov random noise terms These have the
following stochastic properties

L) =0 L L(n) = 6,46 — 1), (3.29)
L)L () () = 0, (3.30)

L)L) L) a(ty) = L) () T(t3)Tu(ty) + L) () Li(t) La(ts)
+ Lty L) (), (3.31)

with the stochastic average of any odd number product being zero, and that for any even number product being
determined from sums of products of the I,(#,) I},(¢,). More explicitly equations (3.29), (3.30) and (3.31) show

9
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that the stochastic averages of a single I is zero and the stochastic average of the product of two I" ’s is zero if they
are different, and delta function correlated in the time difference if they are the same. In addition, the stochastic
averages of products of odd numbers of I are zero, and stochastic averages of products of even numbers of I" are
the sums of products of stochastic averages of pairs of I'. At this stage, we justlist the ', viaa = 1,2, ..., i(n),
where the total number i(n) is expected to depend on the number of modes #. It will turn out that i (n) = 2n2.

3.2.9. The Uncorrelation property

An additional property is that any F (§(¢)) and the products of any I (¢, ) at later times ¢, are uncorrelated.
F@n)) L) Ly(53) Le(ty) - -Lik(t) = F(§(®) x La(t2) Ly(3) Le(ty) - - Lk(t), (3.32)

wheret; < ty, 3, ..., 1.

3.2.10. The integral form of the Ito equation —the Wiener increments

Together with the stochastic averaging properties, the uncorrelation property and stochastic properties of sums
and products, an expression for the time derivative of the stochastic average of F(¢, ™) can be derived, which
involves the C, (g(¢)) and BY (§(¢)) Grassmann functions in the Ito stochastic equations. The Ito stochastic
equation for g (¢) can also be written in the integral form

6§p(t) = CP(g'q(t))ét + > Bf(gq(t))éwu(t+), (3.33)
where
6§p(t) =g,(t + ot) — g,(0), (3.34)
is a Grassmann stochastic increment, and the Wiener stochastic variable &, and Wiener increment are
t 46t
@0 = [ dnl(w 6wu(t) = [ dnLuw). (3.35)
to t+
An important result for the stochastic average of the product of two Wiener increments is

S ()80, (1) = Gt (3.36)

which can easily be derived using equations (3.35) and (3.29).
The following results for stochastic averages of products of Wiener increments can also be obtained,

0w, (t) =0 (Swa(t,‘)éwb(t]’) = 6u,héij(6t), (3.37)

60, (t;) 6wy (t)) 6@, (tr) = 0, (3.38)

0w, (t;) 0wy (1)) 08, (1) 6Wa (1) = 6w, () 0wy (1) 0w, (t) 0Wa (1) + 6Wa(t;) 0w, (1) 6y (t;) 0wa (k1)
+ 0@, (t)6Wa(t) 0wy (t;) 0, (tr)
= {6a66ij0ca Ot + Oac OikOpa Ot + GaaOirOpc Oji} (61)2. (3.39)

3.2.11. Relation between FPE and Ito equations’ quantities

By equating the time derivatives of the two averages in equations (3.25) and (3.26) for an arbitrary function
F(g, ¢"), the following important relationships between A and D in FPE, and Cand B occurring in Ito SE are
found.

CP(g, g%) = —Ap(g ¢M)s (3.40)
[B(g, §7)B (g, §N)gp = Dgp(g> &). (3.41)

The detailed derivation is set outin [12].

The deterministic factor Cin the Ito SE is easily obtained as the negative of the drift vector A in the FPE (the
opposite sign to the boson case). As for bosons, the noise factor Bis related to the diffusion matrix D in the FPE
via BBT = D, butnow with DT = —D. Itis obtained via a construction process involving Takagi
factorization [55, 56].

From the bilinearity of the diffusion matrix elements we can write (see appendix A, equation (A.4))

2n
Dy = Y Qkgg, (3.42)
rs=1
where Qisa 2n* x 2n* complex and symmetric matrix (from Dy, = —D,,) of c-numbers. The rows {p, r} and

columns {g, s} of Qarelisted as 1, ..., 2n%. Using Takagi factorization [55, 56]- with the columns of K listed as
a =1, ..., 2n%we can write
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Q=K(K) Q=3 KIK, (3.43)
a
We choose B/ (g) in terms of c-numbers K, as alinear function of the Grassmann phase space variables
2n
Bl(g,8%) = Kl.g, (3.44)
r=1

Itis then easily shown that (BBT)M = D), which solves the equation for the noise factor B.

Hence, we have now found a matrix B such that BBY = D. As there are 2n? columns for K, it follows that the
number of Gaussian—-Markov or Wiener stochastic variables in the Ito equations is 2n” also. This contrasts to the
smaller number 21 for the boson case.

From the linearity of the drift vector elements we can write it in the form (see appendix A, equation (A.7)).

Ap®) = - LPg, (3.45)

where Lisa 2n X 2n matrix of c-numbers, with rows p and columns rwhich arelisted as 1, 2..., 2n.
Hence, we have from equation (3.40)

2n
Cr(g, gh) =>" L', (3.46)
r=1

3.2.12. Linear relation for Grassmann stochastic variables —The © matrix
By combining the results in equations (3.44), (3.46) for Bf (g) and C,(g), the Ito stochastic equations can now be
written

gt + 60 = X {8 + LPOE + 0, KL 6@a(14) } 8,(1)
=3, 6, (tHg.(1), (3.47)

. . . e 46t . e
where the Wiener increment is 6@, () = ft N dt T,(t)). Note there are 2n* increments. The quantity in
brackets ©,,,(t + ) only involves c-numbers, and equation (3.47) shows there is a linear relationship involving a
c-number stochastic transformation matrix between the Grassmann stochastic phase space variables at time ¢
and those at time t + 4t. If the evolution between t, and t; = ¢, , is divided into small intervals ¢; — ¢;,, with
i=0,...,nthen

U =20 . Op, (1) Oy s(1,5)... ©,,, (1), (t0)
=3 A1, 1) g, (o). (3.48)

This shows that the stochastic Grassmann variables at final time depend linearly on the SGV at earlier time via a
stochastic transformation matrix that involves only c-numbers. A similar feature applies in Plimak Collett and
Olsen [22]. This linearity feature is only present for the B distribution. For the P distribution the drift vector
C*(g) involves terms that depend cubically on the Grassmann variables. Although the P distribution function is
still equivalent to Ito stochastic equations, the third order feature of the drift vector results in the Ito equations
not being of use in numerical calculations [22, 24]. However, the P distribution function and its equivalent Ito
stochastic equations are still useful for formal theory.

The number of stochastic c-number Wiener increments involved is 2n?, which increases as square of
number of modes. A similar number of increments applies in the Gaussian phase-space treatment developed by
Corney and Drummond [21].

3.2.13. QCFs, populations and coherences as stochastic averages
The QCEF, Fock state populations, coherences are now given by stochastic average of product of stochastic
Grassmann variables instead of phase space integrals. Thus

P@{I): = @, (08, )& (- (), (3.49)
C@{m)s 1), = (-5, )&, (-, (1), (3.50)
Tr{@E) G &) D) En)} = @)@ ) PR - E DG 8- (3.51)
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3.2.14. General equations of QCFs —Stochastic evolution of QCF, populations and coherences

By d1V1d1ng the evolution between t,and t; = t,, ; into equal small intervals with ¢; |} = ¢; + 6t with

i =0, ..., n, then using equation (3.47) in each factor for a product of the stochastic Grassmann variables at time
t; + 6t, we can then place all the stochastic Grassmann variables for time #; together in order and finally take the
stochastic average of both sides to obtain the result

g}(ﬂ + 6t)§q(ti + 6t)--'§5(ti + 6t) - Z [@p,x(ti+) eq,y(ti+)--~ @s,u(ti+)]5tachastic Avg
X,y U

x &.(t)g,(ti)... g, (t)s (3.52)

where the uncorrelation property equation (3.32) - has been used. This shows that the stochastic average of
products of g(t; + 6t) attime t; + Ot given by sums over stochastic averages of products of the c-number
stochastic quantities in the square bracket in equation (3.52) times stochastic averages of the various products of
g, (t)) attime t;. The numbers of factors in such products of stochastic Grassmann variables is the same for times
t;and t; ;. This enables a set of stochastic averages of products of Grassmann stochastic variables of a given order
to be propagated over a number of small intervals in succession from an initial time to a final time. The c-number
quantities in the square bracket involve Wiener increments and quantities determined from the FPE using
equations (3.40), (3.41), (3.42), (3.43), (3.44) and (3.46). The stochastic averages of products of the g (t;) at the
initial timet, are determined from initial density operator at time #, using equation (3.51) (see [27],
equation (25)).

Thus, numerical calculations for the dynamical and thermal evolution of the QCF, Fock state populations
and coherences can be carried out without having to represent the Grassmann variables themselves on a
computer.

3.3. General numerical method
3.3.1. X vector for QCF of given order —Constructing the matrices X ), Mo, g and X,y s for the general case

We canlist the distinct g, ... § and g, g, ... §, occuring in equation (3.52) in a standard

orderg g, ,..38'¢ -8,

The distinct gp(t + 5t)§q(t + 6t)...g.(t + 6t)and gx(t)gy(t)... g,(t) become elements X3, X5, .., Xy of
column vectors, so equation (3.52) involves matrix multiplication.
Theresult is

Xi My, M, . My Xi
X, — | My My .. Mhn X |, (3.53)

XNLiee [ Mna Mo .. My XN,

[

3.3.2. M matrix and stochastic average of sums of products of theta matrices, permutation factors
The matrix elements My 4. . s};(x,y,..u} ar€ given in terms of stochastic average of products of © elements

M{p,q,..,s};{x,y,..,u} (t+) = Z S) ,;Lx(t+)® ,uy(tJr)--- @s,uu(t+) X (_I)P (3-54)
P

where P = (x — p, y — Hy ser U = {t,) are permutations of x, y, .., u fromthestandard order {x, y, .., u},
and (—1)? = +1, —1lifpermutation Pof x, y, ..,u iseven, odd.

3.3.3. Equations for QCF in terms of M matrix
We can divide the evolution between tj and t; = ¢, into smallintervals t; — t;; withi = 0, ..,nsothat

X(t) = M) x M) % .. M(t) x X (t) (3.55)

The vector ?(tf) listing the stochastic averages of distinct products of Ep (t7) at time ¢y is given by successively
applying matrix multiplication by M matrices to vector ?(to) listing products of g, (%) at time ¢, —same
numbers as for g (#7). The stochastic averages for f(to) are determined from the initial density operator at
time t.

Hence no computer representation of Grassmann variables is involved, thus enabling numerical calculations
for dynamical and thermal evolution.

If the time increments are equal to §t and the M matrices are the same, then equation (3.55) simplifies to

X(t) = (M(8)" x X (o) (3.56)
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3.3.4. Expression for M matrix in terms of eigenvalues and eigenvectors of M and M"
Let , be the eigenvector of M with eigenvalue /2

ME, = pé,. (3.57)
where the £, are normalized {Z §, = 1, where T'is the transpose operation.
Let 77, be the column eigenvector of M ” with eigenvalue v

MTTIV =un, (358)

14

The eigenvalues of M, M "are the same (M — vI| = |M — vI|)
Alittle algebra will lead to

pLE) = v &),
which if 4 = v could only be true if 7755,, = 0. Thus
(nf,fy) = 6u,u~ (3.59)

so the 7, {,, form biorthogonal set. We have chosen the norm of 77, such that nz £, =1
Assuming that the eigenvectors £, are linearly independent, one can then show that

M = Z 'ugunz;, (3.60)
i

3.3.5. Time evolution of QCFs in terms of eigenvalues and eigenvectors of M and M —Expressions for powers of M
The square of M is given by

M? =35, p€,mvé,m, = 3, 1w, m, (n,&,)
=3, 176,m), (3.61)

where we have used the orthogonality relation of equation (3.59) and 773 &, =1
Generalizing the result of equation (3.61) we have

M=% u"&wﬂ- (3.62)
v

Since the © matrices equal the unit matrix plus a correction of order ¢t, the eigenvalues of M may be written to a
good approximation as

po= el (3.63)
we see that
M=% eia,;néTfﬂnz(m)n = eiaﬂTgunZ(r“)%’ (3.64)
H o

where T = néT. For small 6T, a,, ~ 1andr, = 1. This expression can be used in conjunction with equation (3.56)
to determine the time evolution of the coherences and populations. In Egs. (3.63) and (3.64) we have written the
time interval (¢,— t,) and the time increment t in suitable dimensionless units as Tand 6T (see section 4.2.1).

3.3.6. Case of symmetric M
In the case where M is symmetric the eigenvectors of M and M Tare the same & . = 1,,and we now have the
simplified expressions

M =37 e g € (r,)
o
M= el Tg, fz(rﬂ)%, (3.65)
o

These expressions will be used to determine the finite time evolution of the coherence based on the analytic form
of the M matrix.

4. Cooper pair model

4.1. System of two spin % fermions
Here, we will treat a simple four mode problem involving two spin 1/2 fermions in free space in order to test
Grassmann phase space theory numerically. For this case we can obtain analytic results to compare with. We will
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consider the dynamical evolution of coherences between two distinct Cooper pair states in the situation where
the system is initially in one of these states, and where relaxation processes and external potentials are ignored. A
non-numerical initial treatment of how the two-fermion-number correlations develop, owing to coupling
between the two distinct Cooper pair states via the short-range interatomic interactions, is set outin [12, 24, 27].

4.1.1. Modes
The four modes involved are [12, 24, 27].
[6) = [P 1) [62) = ¢y )
|65) = |dy 1) [6) = 1y ) (4.1)

with momenta —k, +k, spin components —,+ and energies w. Their spatial mode functions are given by

6,0) = (+1{xD]dy) = %exp(ik D ) = (| (eDléy) = %exp(ik 0,

¢3<r>:<<+|<r|>|¢>3>=%exp<—ik-r> ¢4<r>=<<—|<r|>|¢>4>=%exp(—ik-r>, 4.2)

where the mode functions are box normalized in a volume V = L°.
The mode annihilation operators are denoted

EkT = 4 Ekl = 0, E—kT = E3> E—ki = & (4.3)
Allowing for only the above four modes the field operators for spin + and spin — fermions are

Ui(r) = &6,(r) + &¢5(0) V(1) = &6,(1) + &gy (). (4.4)

4.1.2. Hamiltonian
Hamiltonian dynamics will be considered based on equation (3.13), with coupling constant g describing the
interaction terms In first quantization the interaction between the fermions is given by

V= %Z bai,aj O (X; — 1)), (4.5)
i\j

@

where r denotes space and « denotes spin (T, | ). @ denotes the opposite spin to a.. The free fermion kinetic
energy is given by

N 1 >
T= ﬁg P (4.6)
Using the notation in equation (4.3) the Hamiltonian can be written in second quantization
H=H, + H, (4.7)
as the sum of one-fermion and two-fermion terms where
Hy = 7w (@ e+ &6 + &6 + &) &), (4.8)

A

g At AtA A At At A A AT AT A A At AT A A AT AT A A ~
H = ﬁ(cfcz' 66 + CZT(:1 a6 + cfc}cu:l + cIcchlq + chch 3+ C

N

At At A A AFATA A At AT A A At AT A A
+8'8 65+ 8a 66+ Hefua + defaw, (4.9)

and /7w = 7%k?/2M. Expressions for h;;and v, are obtained using equations (3.14), (3.15) above. As the spatial
mode functions are plane waves, normalised in a box V, consequently periodic boundary conditions based on
equation (4.2) result in many terms being zero and many terms being equal. The one-body terms are diagonal
and all equal. Several of the two-body terms are zero and the remainder are equal.. In terms of the general
notation in equations (3.14), (3.15), the non-zero hj;;and v;j; are

by = hy = h33 = hyy = 7w, (4.10)
and
hiy =Mz =y = hyy = hyy = h3y = 0, (4.11)
V212 = V2121 = V1414 = V4141 = V3232 = V2323 = V3434 = V4343 = K, (4.12)
V91432 = V4123 = V3214 = Vo341 = K, (4.13)
withk = g/V.
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4.1.3. Fock states
For the case of N = 2 fermions there are six different Fock states | ®,)

) |65) = &2]10),

l¢y) = &'¢]10) l¢,) = &/ &fl0
) |gs) = &5 E{10), (4.14)

|6,) = & &10) l¢s) =

ﬁ)

The states | ®5) and | &, ) are degenerate Cooper pair states—involving two fermions with opposite momenta and
opposite spins. The states | ®;) and | ®,) are non-magnetic, having one fermion in a spin + mode and one fermion
ina spin — mode. The states |®s) and | §s) are magnetic, with both fermions in either a spin + mode or a spin —
mode. These all have the same energy if fermion—fermion interactions are ignored.

4.1.4. Initial condition
We consider the case where the initial state is the pure Cooper pair state | D)

P(0) = |o3) (@3], (4.15)

with one fermion in mode | ¢, ,) the other in mode |¢ ). The initial condition shows that the only non-zero
initial stochastic averages are

@888 )—0 =1=—(@,88, 8 -0 (4.16)

The interaction term v/;43, E; EZT 46 with 1143, = g/V couples the Cooper pair state | ®5) to the other Cooper pair
state | @), which has one fermion in the mode | Py and the other inmode ¢ +)>, so anon-zero coherence
between state | ;) and state | ®,) should develop. This coherence is the one to be determined and whose presence
indicates coupling between Cooper pair states (each with two fermions with opposite momenta and spins) is
taking place. The work of Plimak et al [22] shows that this leads to anomalous number correlations of the form
(ko Ak — (Arke) (A, for the four cases (K, L) = (k, k), (k, —k), (—k, —k) and (—k, k). Non-
zero correlations for the (k, k) and (—k, —k) cases are unexpected. The anomalous number correlations are due

to the fact that true energy eigenstate is of the form w rather than just |®5) or |®y) [12, 24].

From the general results equations (3.49) and (3.50), the population for the Cooper pair state | ¢,) and its
coherence with the Cooper pair state | ¢,) are given by

P@:) = [ dg'dgB/ (g 82888,

=888'¢,) (4.17)

C(Py; O3) = f dgtdgBl (g, 8,88, &

=3,88,'% (4.18)

4.1.5. The ©~ and ©" matrices
The Ito equations are given in [12] and [24] - (see equations (93), (94), and Corrigenda) and will not be repeated
here. Because there is no cross-coupling between the g;and the gj+ in the diffusion matrix, the overall number of
Wiener increments involved is 16, which is less than the expected number 21> = 32. The Wiener increments
have been numbered 1, 2, ..., 16.

From inspection of the Ito equations we can then identify the elements of the © matrix equation (3.47) (refer
also to equations (3.44) and (3.45)) that link the stochastic phase space variables between times tand ¢t + 6t. This
matrix is given in two parts as follows, with ©~ linking the ¢’s and ©* linking the g*'s.

o=
1 2 3 4
1 — iwét + %(&El + ) 0 %(663 + 601) 0 !
0 1 — iwbt + (6@, + 6D1e) 0 X (5 + 6) 2 wro)
D 5w + 65) 0 1 — iwbt + (6@ + 8z) 0 3
0 (6w + 65) 0 1 — iwbt + (635 + 1e) |4

15
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Oft=
1 2 3 4
1+ iwbt + (6w + 6w 0 X sy + 5w 0 1
0 1 + iwdt + %(6@* + 6wt) 0 g(éw; + 6w 2
%(6@{ + 6@ 0 1 + iwdt + %*(6@1* + @) 0 3
0 %(5@ + 6wih) 0 1+ iwdt + %(6@2 + 6@1b) |4
(4.20)

These matrices only involve c-numbers. Here A = %
Applying the theory presented in previous sections for the Ito stochastic equations gives the coherence
between the two Cooper pair states at time t = dtas

C((I)4; (I)S)t:& = [{(1 — 1&.}61’) + %(6@6 + (5@16]} X {(1 — 1&]61’) + %(6@1 + 6@11]}
X {N(éw; - 6@*)} X {‘/F(éw; + 6@5)”
Stochastic Avg

V2 V2

X (€88, = o (4.21)

A direct evaluation of the stochastic average provides an expression for the short time behaviour of the
coherence. There are terms involving the stochastic averages of products of two, three and four Wiener
increments. Those involving three are always zero. Those involving four are sums of products of stochastic
averages of two Wiener increments. These are zero because those products involving 6@, ..., 6@;; such as
0060wy, = 6,100 = ... = 6,16 are all zero. From equations (3.37)—(3.39), 6@ 6@ = 6wy 6w = 0and
the only non-zero contributions are 6@y 65 = 6@y 6w, = Ot. Using equation (4.16) we can obtain the
coherence between two Cooper pair states | ¢;) and state | ¢,) correct to order 6t as

C(Py; By)imsy = (g/ihV) 1. (4.22)

This result demonstrates the onset of coherence between two Cooper pair states, one with a fermion in each
of ¢, ,, ¢ _and other withafermionineachof ¢, _, ¢, ,.Note that the resultis independent of the free-
evolution frequency w.

4.2. Analytical results

4.2.1. Elimination of free time evolution and dimmensionless time variables

From the form of the coupling matrices we see that the free evolution for all four modes has the same frequency
w, and as we have just seen w does not appear in the result for the short time coherence. To simplify the
numerical calculation of the coherence, one can eliminate the free evolution frequency w from the Ito stochastic
equations in [24] (see equations (93), (94), and Corrigenda).

Writing
hi(t) = g (1), B (1) = gHne (4.23)
we first note that
§;§;<§Z+g~m+ = fl’\l:%(]jl;rljl,: ... etc, (4.24)

for equal numbers of 1 and i .
We also introduce the dimensionless time variables 6T given by (¢/AV ) ét,and T = (g/%AV)t. The Wiener

~Y
increments 6@, are replaced by 6€), , now normalized in dimensionless interval 6T.

4.2.2. TIto equations for new stochastic variables
We can then show that by substituting equation (4.23) into the Ito equations (see equations (93) and (94) and
Corrigendain [24])
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(T + 6T) = O, (T) + Oy 3h5(T),
hy(T + 8T) = O3, (T) + 65,4ha(T),
h3(T + 8T) = O3, (T) + O53h5(T),
hy(T + 6T) = O}, (T) + O] 4ha(T),

where, with the new Wiener increments defined by ¢ 0=

B 1 o~ o
O,=1+ ﬁ(égl + 68h),
B 1 o~
O, =1+ E((SQs + 68he),

B 1~ o~
65, = ﬁ(éﬂs + 699),

B 1~ o~
Oy, = ﬁwﬂs + 6hs),

N M Kidwani and B ] Dalton

' (T + 8T) = O\l (T) + O3, (T),
Iy (T + 8T) = O,k (T) + Ok, (),
hiy (T + 6T) = 5.k, (T) + ©5,h; (1),

and @f] = (@gj)* and 6 ﬁi — 0 51+ This eliminates w from the calculation.

4.2.3. Two body QCF —special QCF for Cooper pair states populations and coherences

The C(®y; P5) coherence is then given by

C(®y; B3) = hylihy by .

hy (T + 6T) = ©},h, (T) + ©f b, (T).  (4.25)
\J&/7%V X 6&,thenon zero ©, ;are
— 1 ~ ~
O = E((SQa + 6hy),
1 Y Y
05, = — (6945 + 6),
2,4 \/Z ( 8 9)
— 1 ~/ ~
93,3 =1 + ﬁ(égl + 69“),
_ 1 ~ ~
O,a=1+ ﬁ(é% + 6C6), (4.26)
iy by (4.27)

In terms of the new quantities the coherence for a small time interval with 6T < 1is now based on the general

expression

1 ~ ~ 1 ~ ~Y
C(Dyg; P3)r—s7 = [{1 + —(6%% + 5916)} X {1 + —(6h + 5911)}
21 \/2—1

NEi

1 ~t ~t 1 ot vt
et e} ot )
{ (\/2—1)* s ’ (‘/2—1)* ’ ’ Stochastic Avg

x (hyhy E4+E1+)T:0»

where (W)T:o =1

(4.28)

Applying the same stochastic averaging techniques as in section 4.1.5, we confirm that the short time
coherence between two Cooper pair state | ;) and state | ¢,) correct to order étis

1 )
C(Py3 P3)=50 = 76T = (g/i/V)ét.

(4.29)

Asa first test of numerical calculations using Grassmann phase space theory we will evaluate the coherence
numerically for a small time interval with 6T < 1 based on the expression in equation (4.28).

4.2.4. Analytic results for the M matrix in terms of dimensionless time increment
For the Fock states | ¢) and state | ¢,) the populations are specified by X5, X,, and coherences by X6, X5;.

Xis = E4}~1151+;~14+ = P(®3);
Xop = 3ol B = P(Dy).

X16 = E4E1E2+E3+ = C((I)4; @3);

X = E3E2E1+E4+ = C(q)3; (1)4);

Coherences and populations invoving the other four Fock states |¢,), | ¢,), |#s) and | ) are specified by other
Xi’s. Alist of all the components of the X vector is given in appendix B.

Our focus is on determining the coherence between | ¢5) and | ¢,), given by X; 6. As only the population of
| ), given byX; s is initially non-zero, then the short-time coupling to the coherence X, will be determined by
the matrix element M(16,15). Hence we first determine this matrix element, using the same approach as in
section4.1.4.
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M(16, 15) = (-1)6,,6;,0; ,07 .

- (—1)[(1 + %(6?2’6 + 6?216))(1 + %(6?21 + 5?2“))

((J— (s + 6%))(@(652 + 653))]

StochAvg

= (- )((J_ ) (6% + 684) (8% + 68%5)

= (1 )*«653)2 + (655

= (—1)—.(6T + 6T)
—21
= l‘((ST). (4.30)
1

This shows that the population X5 is coupled to the coherence X4 to order §T. Using a similar approach we can
evaluate all the elements in the column 15 for the M matrix. This shows that the only non-zero elements in this
column are M(15, 15), M(16,15), M(21, 15) - M(22,15) is zero, so the population X;s is also coupled to the other
coherence X,; and to itself to order 6T. We can then similarly evaluate all the elements in the column 16 to find
that the only non-zero elements are M(15, 16), M(16, 16), M(22, 16) - M(21,16) is zero, so the coherence X/ is
also coupled to the populations X,, and X5 and to itself to order 6T'. Continuing in this way we find that for
columns 15, 16, 21 and 22 of the M matrix the only non-zero elements are M (15, 15), M (16, 15), M (21, 15)
and M(22,15)(=0) ; M(15, 16), M(16, 16), M(21,16)(=0) and M(22, 16); M(15, 21), M(16,21)(=0), M(21, 21)
and M(22,21); and M(15,22)(=0), M(16, 22), M(21, 22) and M(22,2). Some elements are of order §T°, and these
are zero to order 6T. Results for the evaluation of the elements in column 15 - M(15, 15), M(21, 15), M(22,15), M
(36,15) are typical, and can be found in appendix C. This means that coherences and populations other than
those specified by X5, X5, and Xy, X5; will not be coupled to the initial population X5, so only the 4 x 4 sub-
matrix of M specified by these elements will be required to determine the evolution of the populations X5, X5,
and coherences X4, X;;. This saved wasting time determining numerically all 36 x 36 elements of M.

To show this more formally to be the case for finite time T = n - 6T we have (in an obvious notation)

X (T) =M (u, v)M (v, w)....... M(y, z)M (z, 15)X;5(0) (4.31)

where the column or row indices v, w, ..., v, zare summed over. If the elements in the column 15 for M are zero
except for those inrows z = 15, 16, 21, 22 then in the first step M(z,15) X;5(0) will only be non-zero forz = 15,
16,21, 22.If in addition the elements in columns 16, 21, 22 are also zero except for those inrows y = 15, 16, 21,
22 then after the second step M(y,z) M(z,15) X;5(0) will only be non-zero for y = 15, 16,21, 22. So with all
elements in the columns 15, 16, 21, 22 zero except for those in rows 15, 16, 21, 22, we see that subsequent steps
leading to X,,(T) can only give a non-zero result for u = 15, 16,21, 22. This shows that if all elements of the 15,
16,21, 22 columns of M are zero outside of those in the 4 x 4 submatrix with these columns and with rows 15,
16,21, 22, then the evolution from the initial state | ¢,) (corresponding to X;5(0) = 1) could only give non-zero
results for the populations and coherences of | ¢,) and state | ¢,). Hence this confirms that only the elements
withinthe 4 X 4 submatrix of M with rows and columns 15, 16, 21, 22 are relevant to the evolution of these
populations and coherences.

4.2.5. Symmetry of matrix M
When evaluated analytically the matrix M can be shown to be symmetric. If the matrix element M, zis given by

Map =65 O 6, - Opy - (=DF, (4.32)

then Mg, is obtained via

0=0;-0-06,,-6,, (=D (4.33)

Also,if M, 3 = Othen M3, = 0. Although the o =.p may involve different Wiener increments (6 Q)i to those in

the ©jf, they can be seen to be in one-one correspondence, so when stochastic averaging occurs the outcome is
the same. Thisleads to the symmetry result

M, = M. (4.34)

A comparison of the expressions for M5 1sand M 15 illustrates the situation.
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4.2.6. Expression for 4 x 4 submatrix of M
Using the analytic results for the 16 elements of the4 x 4 submatrix in terms of dimensionless time increments given
in section 3.2.6 and apppendix C, we obtain its analytic form for Cooper pair states populations and coherences. With

Xis Misys Misie Mispr Misp (X5
Xis| | Miis Misie Misor Mis2a || Xis 435)
Xo1 M5 Moie Moo Moo || Xoi |’ '
X2 5T My15 M22,16 M22,21 M22,22 X 0
and A = g/i/AV , the analytic form of M is given by
1 1/isT —1/i6T 0
1/i86T 1 0 —1/16T
Mm=| % /oty (4.36)
—1/i6T 0 1 1/i6T
0 —1/isT 1/i6T 1

after dimensionless units defined by 6T = %61‘ have been introduced. Note that the analytic form of M is indeed
symmetric.

4.2.7. Analytic results for eigenvalues, eigenvectors for the4 x 4 M submatrix
For the analytic form of M given in equation (4.36), the eigenvalues and the eigenvectors are

iy =141020T, p,=1+1i.00T, py3=1+106T, p,=1—i26T (4.37)
corresponding respectively to the normalized eigenvectors
-1 1 0 -1
I |+1 110 111 1]-1
- = = = . 4.38
+1 1 0 +1
Hence the quantities defined in equation (3.63) arer, = r, = r3 = r, = 1
andag; =2,a, =0,a;3 =0, ag = —2.
4.2.8. Finite time evolution for the C (®y; ®3) coherence
Using equation (3.65) above one finds for (M) ;5
(M)s15=">_, e™TY, 16Y,,15(r,) /T
1
_ it D D pyr(ED D
NZENE NZENE
o7 (0) (+1) o (D (0)
4+ OTZL ) i 2 (4.39)
V2 2 V2 2
Therefore
(M)TG 5= 7lefi2T + leJrizT
’ 4 4
= i sin2T. (4.40)
21
Hence
C(¢4§ ¢3) = (M)?s,ls(XIS)O
= L sin2T, (4.41)

21

since (X;5)9 = 1. Theresult in equation (4.41) is in dimensionless units. Thus the analytic form of the finite time
coherence has a sinusoidal time dependence. We see that the coherence does not depend on the free evolution
frequency w, confirming the correctness of the above elimination of the free time evolution. The short time coherence
in equation (4.29) is easily confirmed by replacing T by 6T. The finite time coherence result in equation (4.41) can also
be obtained via a standard matrix mechanics treatment based on the Hamiltonian in equation (4.9).

4.3. Numerical results

Asindicated above, we have introduced a dimensionless time variable 6T given by (g/hV') 6t, and the coherence will
now be calculated numerically in the case of the short time regime for various T. The new Wiener increments 6 Q,
are normalized as in equation (3.36), but now with the interval being the dimensionless quantity §T. The stochastic
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average in equation (3.52) or (4.28) that is involved in calculating the coherence as a function of dimensionless time
6Twill now be carried out numerically based on the fundamental definition (equation (3.25)) of a stochastic average.
The result for short time 6T should be proportional to 6T (with a factor 1/1). The calculations were carried out using
MatLab, which allowed us to run six labs in parallel. The stochastic averaging was carried out over m = 1000
trajectories in each lab, and in each trajectory the normalized Wiener increments are obtained using the MatLab
command mvnrnd. for which the mean values of the random variables is set as zero and the covariance is set to
6T . Two other MatLab commands can be used for the same purpose, namely normrnd and randn for which the
mean values of the random values is set to zero and the standard deviation is set to /6T . We display a plot of the
numerically calculated coherence between states ¢; and ¢, for various choices of §T'in units of 1/iand for cases of

= 1000 trajectories in each case. The analytic result from equation (4.29) is also shown. The results have shown
that the numerical calculation of the coherence agrees well with the analytic formula.

We then calculate the same coherence, but now for a finite time interval with T ranging from 0 to 7 and based
on using equations (3.65), and with the same initial condition. We will compare the result with the analytic
expression given by equation (4.41). All calculations were carried out using a standard desk-top computer with
parallel processing facilities.

4.3.1. Numerical stochastic calculations of elementsin4 x 4 M submatrix—6T = 0.01

In this section the M matrix is now calculated stochastically based on the formula (3.54) set out in section 3.3.2.
The programming issues are discussed below in appendix D. Here we will only present results. Table 1 shows
typical results for the elements M(15, 15), M(15, 16), M(15, 21) and M(15, 22) in the row 15 of the important

4 x 4 submatrix of matrix M when the time increment is 6T = 0.01, and for the parallel processing run over six
labs where the ensemble size was 1 = 1000 in each lab. The table shows the percentage error (std error, average
error) is given by the magnitude of the difference between the stochastically determined value and the analytic
value, expressed as a percentage of the analytic value. The standard deviation is defined in the usual way based on
the difference in the results for each of the six labs from the analytic result, again expressed as a percentage of the
analytic result. The overall averages for each element are also given as well as an estimate of their percentage
errors. The tables for rows 16,21 and 22 of the4 x 4 submatrix of M are set out in appendix C.

Table 1. Table shows the numerical results for the imag and real parts of M(15, 15),M(15, 16), M(15, 21), M(15,22) across the 6 parallel processing
labs. The results were obtained using the MatLab parallel processing program for M4 x 4 matrix. The average matrix element, the average error
and the o error are also shown for each of these matrix elements. The remaining elements of Rows 16, 21, 22 are given in appendix C, tables C1-C3

M(Alpha,Beta) Row 15
£
57 =0.01
PP _Run_1 M(15, 15) M(15, 16) M(15, 21) M(15, 22)
m = 1000
{84_11_11_89)sucen (-48_11_13_42}ssccn (-42_13_11_28)siach (42_13_13_42)si0n
Real Img Real Img Real Img Real Img
Labl 0994628272  [-0.001412707 |-0.000035235 |-0.010266260 | 0.000139789 | +0.010152874 | 0.000103803 | +0.000000000
Lab2 1.003941551 | -0.000283385 |0.000015882 |-0.009033418 |-0.000091416 | +0.010813706 | 0.000093806 | +0.000000C00
Lab3 0.098606186  |-0.002130256 |-0.000005336 |-0.010379494 | 0.000100779 | +0.010239848 | 0.000100651 | +0.000000000
Laba 1.004606801 | +0.001032299 |-0.000062297 |-0.010062040 |-0.000047954 | +0.010520640 | 0.000106743 | +0.000000000
Lab5 1.002122085 | -0.000282594 | 0.000030534 | -0.009314542 | 0.000094503 | +0.009805886 | 0.000084811 | +0.000000000
Labb 0.999249308  [-0.001128745 |-0.000020466 |-0.010534714 [-0.000083637 | +0.010706543 | 0.000116638 | +0.000000000
Avg Value 1.0005257 -0.000606438i1 —0.00001281966 —0.009998411i | 0.00001867733 + 0.01037324Si I].,UICI?SSE—M
Avg Error % | 0.3031 | [ 5.4000 | 4.3795 5.2030
gError% | 0.3479 [ | 6.4506 [ 5.0842 10.7074 |

4.3.2. The numerical stochastic result for the M4 x 4 submatrix
The numerical calculation for the matrix M4 x 4 submatrix for 6T = 0.01 gave the following result.

M=
15 16 21 22
1.00053 — 0.000606438i  —0.0000128197 — 0.00999841; 0.0000186773 + 0.0103732: 0.000102075 + 0.1 15
—0.000011952 — 0.0100181 1.00053 — 0.000606438i 0.000107978 + 0.1 0.0000186773 + 0.0103732i (16
0.0000281993 + 0.0096536i 0.000096366 + 0.1 1.00053 — 0.000606438;  —0.0000128197 — 0.00999841: |21
0.000103714 + 0.1 0.0000281993 + 0.0096536i  —0.000011952 — 0.010018: 1.00053 — 0.000606438i 22

(4.42)
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Equation (4.42) shows the M matrix containing the numerical results for the imag and real parts of M(15,
15),M(15, 16), M(15,21), M(15, 22) across the 6 parallel processing labs for §T = 0.01.

Inspection of theabove 4 x 4 submatrix of M in equation (4.42) reveals certain symmetries in the numerical
results. Namely, the matrix element M(15, 15) is equal in value to that of M(16, 16) and so is the case for M(21,21) and
M(22,22), M(15, 16) and M(21, 22) and (M21, 15) and M(22, 16). The explanation of this is given in appendix C.3.

4.3.3. Numerical results for eigenvalues, eigenvectors for the 4 x 4 M submatrix

For reasons described in section 4.2.4 only the elements of the 4 x 4 submatrix of M for rows 15, 16,21 and 22
needed to be determined numerically, resulting in the matrix shown in equation (4.42). The eigenvalues,
eigenvectors of this matrix and its transpose will now be determined.

The tables 2—4 present the numerical results for the normalized eigenvectors for the stochastically
determined M and M " along with the eigenvalues and other quantities. In addition the results of calculating the
M matrix using equation (3.60) is also shown. The result for the M matrix may be compared with that in the
analytical form of M given by equation (4.36).

Numerical results for the eigenvalues of the4 X 4 M (or M Ty matrix

Table 2. Table shows the eigenvalues for the numerically calculated M or (M ) from the matrix as in tables 1 and C1-C3, (see also
equation (4.42)). The results were obtained using the MatLab parallel processing M 4 x 4 matrix program for 6T = 0.01 and m = 1000. A
separate Mathematica notebook was used for the biorthogonality calculation.

Matrix M or M"

U=1 U=2 U=3 U=+4

1.000 459 204 7
-+ 0.019 408 740 2i

1.000 639 455 6
— 0.000 607 701 2i

1.000 616 958 6
— 0.000 605 173 61

1.000 387 1829
— 0.020 621 617 2i

Numerical results for the normalized eigenvectors of the 4 X 4 M submatrix

Table 3. Table shows the normalized eigenvectors for the numerically calculated M4 X 4 matrix as in tables 1 and C1-C3 . The results were
obtained using the MatLab parallel processing M 4 x 4 matrix program for 6T = 0.01 and m = 1000. A separate Mathematica notebook
was used for the biorthogonality calculation.

Matrix M Normalised Eigenvectors

&

&

&

&

—0.508 654 768 3

— 0.000 020 846 2i
0.509 155519 3

-+ 0.000 195 526 01
—0.490 691 741 0

-+ 0.000 208 146 2i
0.491 174797 0

— 0.000 016 330 4i

0.519 242 300 4

+ 0.001 293 334 9i
0.498 329 763 6

— 0.001 010 689i
0.480 264 246 1

— 0.001 485 615 6i
0.501 405 244 5

+ 0.001 088 122 7i

—0.497 842 037 4

-+ 0.001 091 514 61
0.519 755 336 32

+ 0.001 260 703 4i
0.500 908 580 4

+ 0.001 124 057 0:
0.480 733 091 5

-+ 0.001 403 908 5i

0.508 651 874 0

-+ 0.000 231 187 01
0.509 152 537 3

— 0.000 102 135 4i
— 0.490 694 810 7

-+ 0.000 098 521 8i
— 0.491 1778720

-+ 0.000 246 859 8i

Numerical results for the normalized eigenvectors of the 4 x 4 M " submatrix

Table 4. Table shows the normalized eigenvectors for the numerically calculated M "as in tables 1 and C1-C3 . The results were obtained
using the MatLab parallel processing M 4 x 4 matrix program for 6T = 0.01 and m = 1000. A separate Mathematica notebook was used

for the biorthogonality calculation.

T

Matrix M" Normalised Eigenvectors

2

3

a4

—0.491 492 446 8

-+ 0.000 008 370 5i
0.491 009 081 6

— 0.000 200 318 2i
—0.509 484 794 0

— 0.000 203 914 7i
0.508 983 7221

-+ 0.000 029 113 8i

0.501 728 459 0

+ 0.001 101 114 5:
0.480 573 894 8

— 0.001 474 801 1i
0.498 651 046 9

— 0.000 999 125 8i
0.519 577 008 9

=+ 0.001 306 896 3i

—0.481 044 734 4

-+ 0.001 397 193 8i
0.501 233 261 4

+ 0.001 132 730 4i
0.520 092 231 9

+ 0.001 269 764 3i
—0.498 164 765 8

-+ 0.001 084 326 01

0.491 495 265 5

— 0.000 235 159 7i
0.491 011 888 4

— 0.000 086 737 4i
— 0.509 481 537 1

— 0.000 114 495 0i
—0.508 980 547 2

— 0.000 243 618 01
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Numerical results for quantities r, a

Table 5. Table shows the values of a,, and r,, (refer to equations (3.63), (3.65)) for the M
4 x 4 matrix. The results were obtained using the MatLab parallel processing M 4 x 4
matrix program for 6T = 0.01 and m = 1000. A separate Mathematica notebook was
used for the biorthogonality calculation.

a,andr, values
a a az ay
1.939 739 854 8 —0.060 731 285 6 —0.060 480 046 1 —2.061 071704 0
5 Iy I3 Ty
1.000 647 450 2 1.000 639 640 1 1.000 617 141 6 1.000 599 703 5

The results in table 5 are used in the calculations of the finite time behaviour of the coherence C(¢4; ¢3).

4.3.4. Numerical re-determination of 4 X 4 M matrix
In this subsection we confirm that the eigenvectors and eigenvalues for M and M " are accurate enough to
reconstruct via (3.60) the original matrix M from which they were obtained. This is an important check for the
accuracy of the numerical determination of the finite time behaviour.

After the nomalization of the eigenvectors of the matrices Mand M 7, the re-determined matrix M is given by

Table 6. Table shows the elements of the numerically calculated M using equation (3.60) and the eigenvectors shown in tables 3 and 4.
The eigenvalues used are as in table 2. The results were obtained using the parallel processing MatLab M 4 x 4 matrix program for
6T = 0.01and m = 1000.

Numerical M Matrix
Cl15 Cl16 C21 C22
R15 1.000 526 — 0.000 061 —0.000 013 — 0.009 998i 0.000 019 + 0.010 373i 0.000 102 + 0.i
R16 —0.000 012 — 0.010 0181 1.000 526 — 0.000 6061 0.000 108 + 0.7 0.000 019 + 0.010 373:
R21 0.000 028 + 0.009 654i 0.000 096 + 0. 1.000 526 — 0.000 6061 —0.000 013 — 0.009 998i
R22 0.000 104 + 0.i 0.000 028 2 + 0.009 654i —0.000 012 — 0.010 018: 1.000 526 — 0.000 6061

The results in table 6 for the matrix elements of the4 x 4 submatrix of M may be compared with
equation (4.42) and confirm that the expression in equation (3.60) in terms of the normalized eigenvectors and
eigenvalues results in an M with matrix elements which are consistent with the numerical stocahastic matrix
elements listed in equation (4.42).

4.3.5. Numerical results for short time coherence C(¢; ¢5) —effects of m, 6T

In this subsection we consider the effect on the accuracy of the numerical results for the short time coherence of
varying the ensemble size for the stochastic calculations and of changing the time interval. It was expected that
the accuracy would improve as the ensemble size becomes larger, and that for a given ensemble size the accuracy

Table 7. Table shows the std error for the numerically calculated imag(C) across the 6 parallel processing labs, for 6T < 1. The results were
obtained in run1 for the MatLab parallel processing C(¢4; ¢3) program for 6T € [0, 0.01] and m = 100,300,,1000.

The percentage error tables for C{®,; % ;), M = 10, 100, 300, 1000 for§T = 0.01 R1

5T7=0.01
PP_Run_1 M=10 M =100 M =300 M = 1000
Img(C) Std_Error Img(C) Std_Error Img(C) Std_Error Img(C) Std_Error

Lab1 -0.017508594 75.0899% |-0.011305942 13.0594% |-0.009977968 0.2203% —0.009881590 | 1.1841%
Lab2 -0.008375224 16.2478% |-0.009473180 5.2682% |-0.010710466 7.1047% -0.010367382 | 3.6738%
Lab3 —0.007840392 21.5961% [-0.008266465 17.3354% |-0.009146746 8.5325% —0.009901375 | 0.9862%
Laba -0,014369334 | 43.6933% |-0.012436634 24.3663% |-0.009371896 6.2810% -0,009718613 | 2.8139%
Lab5 -0.012442583 | 24.4258% |-0.010901453 9.0145% [-0.010985196 9.8520% -0.010523501 | 5.2350%
Lab6 —0.006108575 38.9103% [-0.008869558 11.3044% |-0.009233420 7.6658% —0.009694310 | 3.0569%

36.6605% 13.3914% 6.6094% 2.8250%
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would improve as the time interval gets shorter. This information will become important in determining what
ensemble sizes and time intervals will be suitable for numerical applications on more complex fermion systems.

Table 7 shows that for this 6T range the % error decreases as the ensemble size increases. For ensemble size
m = 1000, the avg % error is approximately 2.8%. The analogous results for a second run of the calculations
(Run_2)are given in table C4 in appendix C.

Stoch C(dJ‘:‘i'a) oT << 1, m=100, 300, 1000 , Analytic

L2 T T

0.002
0.0
L""‘ 006
g
= poost
Q01
s m = 100 L
D012 —8—m= 300
2L | ——m= 1000
Analytic
0014 i ] 1 H )
0001 0002 0003 0004 0005 0006 0007 0008 0009 001
5T

Figure 3. Figure shows the behaviour of the numerically calculated imag(C) and the analytic imag(C) versus 6T for 6T < 1. The results
were obtained using the MatLab parallel processing C(¢4; ¢3) program for 6T € [0, 0.01]and m = 100, 300, 1000.

- 1 Stoch C(¢4:4:3) aT << 1, m= 100, 300, 1000 , Analytic

25 T - - T T x T
—s—m= 100 T I
—&—m= 300 1

[ |—&—m= 1000
Analytic

Real(C)

0001 0002 0003 ) 0005 0006 0007 0008 0009 0D

Figure 4. Figure shows the behaviour of the numerically calculated real(C) and the analytic real(C) versus 6T for 6T < 1. The results
were obtained using the MatLab parallel processing C(¢4; ¢3) program for 6T € [0, 0.01]and m = 100, 300, 100.

Figures 3 and 4 display the behaviour of the numerically calculated imag(C) and real(C) for various time
intervals and various ensemble sizes, along with the analytic results. The time interval is small, 6T < 1.

The two figures show that for this 6T range the error decreases as the ensemble size increases. For ensemble
sizem = 1000, the stochastically calculated coherence C(¢4; ¢3) is in agreement with the analytic result with an
average std error of approximately 4% for the two program runs made. The figures also show that the error
increases as 6T increases, specially for smaller ensemble sizes. The error in both Real(C) and Imag(C) are of order
10 *at §T ~ 0.01 with m = 1000.

Figure 5 displays the results in a different way, showing the % error in C(¢,; ¢5) for two time intervals
6T = 0.01and 6T = 0.001, but based on different ensemble sizes.
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Figure 5. Figure shows the percentage error for C(¢4; ¢5) for different ensemble sizes m = 10, 100, 1000, for 6T = 0.001 and
6T = 0.01.

The figure shows that for both 6T values, the percentage error increases as 6T increases, and it approximately
scales inversely as </m for each 6T.

4.3.6. Numerical results for finite time coherence—based on4 x 4 M for 6T = 0.01
In this subsection we consider the accuracy of the numerical results for the finite time coherence for the
stochastic calculations using equations (3.25) and (3.64) with ensemble size mn = 1000 and with M 4 x 4
submatrix determined for time interval §T = 0.01.
Figures 6 and 7 display the behaviour of the numerically calculated inag(C) and real(C) for various time
intervals and various ensemble sizes, along with the analytic results. The time interval is no longer small, 6T ~ 1.
The two figures show that the numerically calculated coherence C(¢.,; ¢3) based on imag (M (16, 15))" and
real (M (16, 15))" is in good agreement with the analytical result. Figure 7 appears to show that the numerically
calculated real (M (16, 15))" for the coherence though still small, is larger than expected. However the scale for

Stoch C(¢4;¢'3) Finite interval T. Based on m = 1000, 4T = 0.01
0.6 T r T ' . .

—¥—m = 1000
—E&— Analytic

0.2

09

Imag(M 16,15)*N)

02

04

06 " L i L " L

Figure 6. Figure shows the behaviour of the numerically calculated imag (M (16, 15))" and the analytic imag (M (16, 15))" versus T
for the finite time calculation. The results were obtained using the MatLab parallel processing M 4 x 4 program for 6T = 0.01 and
m = 1000.
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Stoch C(d'd;dls) Finite interval T. Based on m = 1000, éT = 0.01

—#—m = 1000
—E— Analytic

Real(M16,15)"N)

Figure 7. Figure shows the behaviour of the numerically calculated real (M (16, 15))" and the analytic real (M (16, 15))" versus T for
the finite time calculation. The results were obtained using the MatLab parallel processing M 4 x 4 program for 6T = 0.01 and
m = 1000.

figure 7 is considerably smaller than that for figure 6 of imag (M (16, 15))" versus T. In both figures the
difference from the analytic results is of order 0.1.

4.3.7. Conclusion about the numerical test

The four mode Cooper pair system has been treated using Grassmann phase space theory methods. The
stochastic calculations for the short time behaviour and the finite time behaviour for C(¢g4; ¢3) have been
performed and have validated the approach by agreeing well with the corresponding analytic results for different
choices of time interval. However, the work on this simple problem has indicated that the desk top computer
(although parallel processing was used) would be inadequate for more complex calculations, and that the
supercomputer facility will be needed.

5. Summary and conclusion

In this paper we have outlined the theoretical methods used in cold atom physics and described phase space
theory approaches, including the recently developed Grassmann phase space theory for fermions. A brief
overview of the physics for cold atom physics, focusing on the BEC/BCS crossover in Fermi gases that is of
particular interest for applying Grassmann phase space theory was presented. We have set out the key equations
in Grassmann phase space theory and described how numerical calculations in GPST can be carried out. We
then applied GPST to a simple four mode Cooper pair model to test the validity of the stochastic approach by
comparing the numerical results to the analytic results for the short and finite time behaviour of a coherence
between two Fock states. In this first correct numerical application of GPST to a fermion problem, we have
found the numerical stochastic calculations based on GPST and the known analytic results for the four mode
Cooper pair model to be in good agreement, indicating that GPST is a valid approach. Furthermore, we have
shown that GPST can be applied in stochastic calculations without the need to represent Grassmann variables on
the computer. Numerical calculations are feasible because Grassmann stochastic variables at later times are
related linearly to such variables at earlier times via c-number stochastic quantities. GPST should be applicable
to topics involving larger numbers of modes and fermion numbers, though such application may require using a
super-computer with parallel processing capabilities. Large fermion number applications could be based on
using the Grassmann field version of GPST, which has also been developed (see [12, 25-27]).
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Appendix A. Drift, Diffusion in terms of Hamiltonian quantities

A.1. New drift, diffusion parameters .Z, L
We now write (see equations (3.22), (3.23) and (3.24))

FT — —= FHt — ++ 5+t
T = —Z M i1 88 S = Z M1 & &
kl Kl

gt — —+5 o+ gt — +—5t
Ty = Z M il 88 > T = Z M ki & 8
kl kl

(A.1)

(A.2)

—— — — 2 2 . . . —
where 4/~ , M+, 4+ and M~ arefour n* X n* c-number matrices. Also, we introduce matrices L, L™

via (see equations (3.20) and (3.21))

Al == Lig A =-> Li].*gj. (A.3)
i i
A.2.Form of diffusion matrix D and drift vector A
By writing the diffusion matrix elements in the form
2n
Dpy = 22 QH'g,8 (A4)
rys=1
one can see that Qisa 2n* x 2n? complex and symmetric matrix (from D,, = —D,p), where rows are listed

as p, rand columns listed as g, s. The non-zero elements of Q can be identified from the following table

& | 8| & | & | Q¥
S| 8& | & | & |y
& |8 | & & | i
& & |8& | & |iq
& 18 & | & | Min

From the explicit expressions in equations (3.22), (3.23), and (3.24) we see that .4~ —, .4 are symmetric

and .#/~7, //*~ are Hermitian.

Note thatin each n? x n? sub-matrix of Q, therows p, r are in one-one correspondence with the various

i, k and the columns g, s are in one-one correspondence with the various j, . The 3, k, j, lonly run from 1, .
andp,q,7,s = 1, ...,2n. For each row with a given form for 8 and S the matrix element Q% is given by the

M.

stated %{;‘(ﬁ when g, and g; are given in the same row, and zero otherwise. For example, with p and g both in the

range 1, ..., n the matrix element .42 vanishes if either ror sisin therange n + 1, n + 2, ..., 2n, since —Fl-]-_ -

does not involve any gk+ or gl+. Although the matrix Q could in principle have (211)? rows and (27)? columns,
with row and column indices as the joint quantities p, r or g, s, most of the elements would be zero. Taking this

into account, the matrix Q is only required to have 2n° rows and 2n? columns and can be formatted as

M= M
[Ql = [ﬂ+ %++]

where the rows are listed in each n* x #” submatrix asik and the columns are listed as jl. For each submatrix
,ﬂ‘-}‘cﬁ , specifying an element by ik (row) and jI (column) uniquely specifies the element for Q via the p, (row) and

qs (column) indices (from the 4 x 4 table for Q). An example for n = 2 illustrates the procedure:

p>rl,q, s — [11|1212122 (33|34 (43|44

11
12
21
22
33
34
43
44

Furthermore, by writing the drift vector in the form

Ap(g) = _ZLTpgr’

(A.5)

(A.6)

(A7)
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Lisa2n x 2nc-number matrix with rows p and columnsrlisted as 1,2, ..., 2n. The non-zero elements of L can
be identified from the following table

g | & | LF

S| & | Li

+ 7+

g,‘ gj Lij
wherei, j = 1,...,nand p, r = 1, ..., 2n. For each row with a given form for g, the matrix element I2is given
by the stated Lf}- when g, is given in the same row, and zero otherwise. For example, with pin therange 1, ..., n the

matrix element LY is zero if risin therangen + 1,n + 2,..., 21, since —%; does notinvolve any gj+ .The

matrix L has 2n rows and 21 columns, as the row and column indices are the joint quantities p and r. Thus, the
matrix L may be formatted as
L~ 0
w=|4 2 (A8)

0 L*

where therows arelistedineachn x 1 submatrix as iand the columns are listed as j. Again, for each submatrix
an element specified byi (row) and j (column) can also be listed for L via p (row) and r (column), where for each
submatrix 7j uniquely specifies p, r. An example for n = 2 illustrates the procedure:

plor—|1(2(3]|4
1 0
[L] = 2 0[0 (A9)
3 0fo
4 0]0

A.3. Drift Vector and diffusion matrix terms for the Cooper pair model
The drift and diffusion matrix quantities are obtained from equations (3.20) to (3.24), noting that there are no
relaxation terms In terms of quantities defined in section 4.1.2 we have (see [12], p211-212)

€ = iwg €, = iwg, €5 = iwg, €, = iwg, (A.10)
6 = —iwg" €y = —iwg by = —iwg  Gf = —iwg,. (A.11)
P K _ K
In =0 T =88 T3 =0 T =8t &%)
i in
K __ K P
T =78 Fn =0 T = (&g + 88y Fu =0
i i
_ K _ K
I3 =0 T3 = E(gz& + £.8) F33 =0 T3y = £g4g3’
Ty = E(glgz; + &%) Fp =0 F a3 = %g3g4 T =0 (A.12)
T ad T F++ _ K
Fit=0 F,= —ngg; Ft=0 F = —g(gfgfﬁ—g;g;),
K _ K
T = —gg; & In=0 7= —g(gf g +elehH  Fi=0,
g R s K
T =0 %2+=—%(g§g;+gﬁgj) 75 =0 931*:—%&*&*,
K , - K
974+l+ = —.—(g:gr—‘,—g;g;r) j,4+2+ =0 J”Z; = —.—g:g; ﬁzj =0. (A.13)
i7 i
and
Tt =0, Fio =0, ihj=1,2,3,4. (A.14)

From these results the matrix elements for the sub-matrices .#~—, ./#++, .4/~ and .4/~ canbe obtained. The
results for non-zero elements are

My = Mgy = Miygy = My, = Misyy = Miyss = Mizes = Myzz = N,

Mz = Mz = Msig = Moz = N, (A.15)
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with

21,2
A= nz% ﬁw:f;\l/([ (A.16)
1

For the other matrices, .#++ = (.4~ ")* and those of the matrices .#~+ and .4~ are zero. Here * means
taking the complex conjugate of c-numbers. In this case, the diffusion matrix has the simple form:

(D] = [_“g +gg++]. (A17)

Using these matrices the expressions for the quantities K7, and LY that specify the deterministic and noise terms
in the Ito stochastic equations equation (3.47) can be determined. The details are set out in appendix sections B.1
and D.

Appendix B. List of X, M quantities for Cooper Pair Model

B.1. Specific form of the X(,) 36 X 1 matrix elements h, qu PNJE;
~ & e+ ~ & et

X = 4~3];3+~4Jr X, = E4E3 ~2+E4 X5 = m
X, = hahohy By Xg = hahohy b Xo = huhoh, b,

X13 = E4E1E3+E4+ X14 = E;JIHE;V;;F X15 = E4E1E1+E4+

Xig = halihy by Xi7 = hyhuh, By Xis = haluhy, by
X9 = hshahy b, Xoo = h3hohy B, Xo1 = hsholy B
X = ~3 ~2 }~12+ ~3+ X3 = ~3 ~2 ~1+ ~3+ Xog = ~3 ~2 ~1+ ~2+
Xo5 = hshy ~3J714Jr Xog = h3hy ~2+~4+ Xo7 = hshy ElJrfl;r
Xos = hshyhy hy Xoo = hshyhy s Xso = hshihy By
Xa1 = halnhy by Xsp = halyhy By X3 = hahhy hy
Xoo = lolihy by Xss = hohihy s Xsg = by B, . (B.1)

B.2. List of elements O, ; O, ;O 507 ; offirstrowfor M, 536 x 36 matrix

M = 6,653,030, M, =0 M3 = 6,,0;5,07 6},

M, = (-1)6,,035507507, Ms=0 M s = 6,,0;5,07 61,
M7;=20 Mgsg=20 Moy=20
M10=0 M =0 M 1,=0
M 13 = 6,,05,07;6;, My =0 M5 = 6,,05,67,0;,
M6 = (*1)947,4@37,1@;3912 M7 =0 M5 = @47,4@37,19;,1912
M 19 = (—1)@;2@37’3@;)3@14 M =0 M = (—1)@;2@;3@%@14
M = (=1)(=1)0,,05;03;0;, M =0 My = (—1)6,,05 505,05,
M =0 M =0 M,y =0
Mips =0 M9 =0 Mz =0
M3 = 6,,05,03,0;, Mz =0 M3 = 6,,0;,67 0],
M3 = (—1)6;,03,07,6}, M35 =0 M3 = 6,05 ,67,07,. (B.2)

Note that some elements of M(cv, 3) are zero because one or more of the ©F involved is actually zero.
For the second row of M, g (M1 — M, 36) the first sub-indices of the ©s product terms will be changed
from4,3,3,4in 0] 505 5,07 5,0} 5 104,3,2,41.e.0, ;65 5 07 5 Oy 5 and will be fixed for the entire row, with
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the second sub-indices namely (3;, 3,, 33,04) having the same combinations as those of row 1 (for all row 2
elements). By the same token for the third row (M;; — M 3¢), the first sub_indices of the © s product terms will
be changed for the entire row to be O, ; ©; 52@&3@1 5, with the second sub-indices (3,, 32, 35,34) combinations
being the same as those of rows 1 and 2 (for all row 3 elements). It is to be noted that only the first sub-indices «
of M,, gare changing across the various rows, while it has one fixed combination for each row, while the second
sub-indices # combinations of M,, zare varying from one element to the next across the same row, but these
combinations are the same across the various rows.

To construct the M,, 3 various rows, then for each row we take as the first sub-indices o combination in the ©
product (0, 56, 5, o, 4 or, 3,)> one of the of the Grassmann variable’s product combinations (x, y, z, w) of the
X matrix. Therefore forrow 1,0y = 4, = 3, a3 = 3, oy = 4 whileforrow2,a; = 4,0, = 3,3 = 2,
a4 = 4andso on. For each row the o combination (a; cvai30v4) is fixed across the entire row. For each row we
then combine the fixed first sub-indices (a; i, 30r4) combination with each one of the 36 Grassmann variable’s

product combinations (x, y, z, w) of the X,y matrix. These will form the second sub-indices 3 combinations in
(03,560,594, 5,94, 5,)» of the © s product namely (5, 5,054)-

To summarize, the o combination is fixed for the same row but varies from one row to the next, while the §
combinations vary from one row element to the next, However these combinations are the same for various
M, grows.

Within this arrangement, and upon mapping the X, s, indices to the first set of sub-indices v of My, g
(r, s, v, u — «)and the X, indices to the second set of sub-indices F of M, 3(x, y, z, w — ) for the first
step, one finds that the X, 5;) matrix will have the same Grassmann variable combinations as that of the X,
matrix.

An analogous approach is applied to treat the columns of M.

Appendix C. Evaluation of stochastic averages

C.1. Analytic evaluation of the elements M (15, 15), M (21, 15), M (22, 15), M (36, 15) of column 15
M(15, 15) = (+1)6; 4,601,607 ,0; ,.

_ (—1)[(1 + %(556 + 6516))(1 n %(551 + 5(’5“))

1 ot ~t 1 a7t ot
x[14+ ——©Q + 80 ||1+ 60 + 68
( ( 2i )* ( : 11)]( (\/Z)* ( ‘ 16))]StochAvg
1 (C.1)

Here terms include stochastic average of products of zero, one, two, three, four §{2s, but no two §€2s are the
same, so only the products just involving 1 contribute.

M (21, 15) = (-1)0;5,0, 46,65 ,.

1 ~ ~ ]_ ~Y ~

=(=D|| —= (62 602 —— (692 60

( )[(ﬁ( g + 9)](\/5( s + 9))
1 ~+ o+ 1 ~+ ot

X (1 + (\/2_1')* 08 + 6Q11))[1 + (\/2—1')* (682 + 6916))]

StochAvg

2
1 ~ ~ ~ ~
=(-1 652 6§29) (65 662
( )((«/E))( g + 0829) (0825 + 0€2)
_(_ 1 0.2 O.\2

=( 1)(21,)((598) + (6€29)%)

— (—1)L(6T + 6T)

21

= 7i(5T). (C2)
1
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M (22, 15)

V2i

[

(ﬁ) (V2i)*

— 1 2
- 3G )*«698)

= (@D 4 OT) +

= (6T

G m)(

(68 )2 + (85%)? -

(+1)05,0;,0;,07 .

V2i

1 vt
— (602
oy

(L(éﬁg + 559))(L(6§8 + 659))

+ 5§§))

StochAvg

N M Kidwani and B ] Dalton

2
] (600 - 68037y + (85% - 6857 + (68%; - 688 ) + (85T - 68357

(6T)* + (6T)%)

M (36, 15) = ©,,0; 6] ,07,.

( L

(680)2 + (68%,)% -

= (%(558 + 659))(1 + %(551 + 5511))

(6% + 5911))(

1
(V2i)*

(6% + 551))

(653)? + (685 - (6339)%)
(C.3)
StochAvg
(C.4)

Terms include the stochastic average of products of two, three, four 6€2s, but no two 62s are the same, so all
products give zero.

C.2.Rows 16,21, 22 for matrix M 4 X 4 submatrix

Table C1. Table shows the numerical results for the imag and real parts of M (16, 15), M (16, 16), M (16, 21), M (16, 22) across the 6
parallel processing labs. The results were obtained using the MatLab parallel processing program for M4 x 4 matrix. The average matrix
element, the average error and the o error are also shown for each of these matrix elements.

MIAlpha,Beta) Row 16
87=0.01
PP _Run_1 M(16, 15) M(16, 16) M(16, 21) M(16, 22)
m = 1000
(~44_11_24_31)se0n (44_11_22_33)sscer (42_13_24_31)st0c (-42_13_22_33)sicer
Real Img Real Img Real Img Real Img
Labl 0.000026125 |-0.010445811 | 0.994628272 |-0.001412707 | 0.000123437 | +0.000000000 | 0.000139789 | +0.010152874
Lab2 -0.000137482 |-0.005766178 | 1.003941551 | +0.000283385 | 0.000103457 | +0.000000000 [-0.000091416 | +0.010813706
Lab3 0.000095509 | -0.009903980 | 0.998606186 |-0.002130266 | 0.000101516 | +0.000000000 | 0.000100778 | +0.010239848
Labd —0.000005378 |-0.005606351 | 1.004606801 | <0.001032285 | 0.000090849 | +0.000000000 |-0.000047954 | +0.010520640
Lab5 —0.000030777 | -0.010522694 | 1002122085 | —0.000282594 | 0.000110022 | +0.000000000 | 0.000094503 | +0.009805886
Labé —0.000019709 | -0.009863232 | 0.999249308 |—0.001128745 | 0.000118588 | +0.000000000 |—-0.000083637 | +0.010706543
| Avg Value | -0.000011952 -0.01001804i 1.0005257 —0.000506438i 1.0797816e—04 0.00001857733 ~ 0.010373245i
Avg Error % [ 3.0a79 0.3031 11.0285 43795
o Error % | 3.4388 0.3479 | 13.4984 5,0842
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Table C2. Table shows the numerical results for the imag and real parts of M(21, 15), M(21,16), M(21, 21), M(21, 22) across the 6 parallel
processing labs. The results were obtained using the MatLab parallel processing program for M4 x 4 matrix. The average matrix element,
the average error and the o error are also shown for each of these matrix elements.

MiAleha,Beta) Row 21
81 =0.01

PP _Run_1 M(21, 15) MI(21, 16) M(21, 21) M(21, 22)
m = 1000

(-31_24_11_84)suwen (31_24_13_42)s10en (33_22_11_44)sucen (-33_22_13_42)s10en

Real Img Real Img Real Img Real Img
Lab1 -0.000005239 | +0.009514253 | 0.000098798 | +0.000000000 | 0.994628272 |-0.001412707 |-0.000035235 |-0.010266260
Lab2 0.000064844 | +0.009720117 | 0.000092853 | +0.000000000 | 1.003941551 | +0.000283385 | 0.000015882 |—-0.009033418
Lab3 0.000047470 | +0.009835552 | 0.000103716 | +0.000000000 | 0.558606186 |-0.002130266 |-0.000005336 | -0.010379494
Lab4 —0.000033554 | +0.009897884 | 0.000096877 | 0.000000000 | 1.004606801 | +0.001032299 |-0.000062297 |-0.010062040
Lab5 0.000048607 | +0.009217449 | 0.000083007 | +0.000000000 | 1.002122085 |-0.000282594 | 0.000030534- |—-0.009314542
Lab6 0.000047068 | +0.009736277 | 0.000102945 | +0.000000000 | 0.959249308 [-0.001128745 |-0.000020466 |—0.010934714
| Avg Value | 0.00002815933 + 0.00965359i 9.636599e—05 1.0005257 —0.0006064381 | —0.00001281966 —0.0099984113i
Avg Error % [ 3.4640 5.8543 0.3031 [ 5.4000
o Error % [2.1507 7.8901 0.3479 | 6.4506

Table C3. Table shows the numerical results for the imag and real parts of M(22,15), M(22, 16), M(22,21), M(22, 22) across the 6 parallel
processing labs. The results were obtained using the MatLab parallel processing program for M4 x 4 matrix. The average matrix element,
the average error and the o error are also shown for each of these matrix elements.

M(Alpha,Beta) Row 22
=0.01
PP_Run_1 M(22, 15) M(22, 16) M(22, 21) M(22, 22)
m = 1000
(31_24_24_31)scer (-31_24_22_33)scen (~33_22_24_31)s10n (33_22_22_33}scer
Real Img Real Img Real Img Real Img
Labl 0.00009824% +0.000000000 |-0.000005239 | +0.009514253 | 0.000026125 —0.010445811 | 0.994628272 |-0.001412707
Lab2 0.000104835 | +0.000000000 | 0.000054844 | +0.009720117 [-0.000137482 [-0.009766178 | 1.003941551 | +0.000283385
Lab3 0.000113325 | +0.000000000 | 0.000047470 | +0.009835552 | 0.000095508  |—-0.009%03980 | 0.598606186 [-0.002130265
Lab4 0.000083835 | +0.000000000 |-0.00003355¢ | +0.009897884 |-0.000005378 |-0.008606351 | 1.004606801 | +0.001032288
Lab5 0.000098447 | +0.000000000 | 0.000048607 | +0.009217449 |-0.000030777 _ [-0.010522694 | 1.002122085 |-0.000282594
Lab6 0.000116551 +0.000000000 | 0.000047068 +0.009736277 |—0.000015709 —0.009863232 | 0.855249308 |-0.001128745
1.0371366e—04 0.00002819933 + 0.0096535%i | —0.000011552-0.010018041i | 1.0005257005 —0.000606438i
Avg Error % | 8.2033 | [ 3.4640 [ 3.0479 0.3031 |
GError% | 10.1224 [ 41507 [ 3.4388 0.3479 [
C.3. Symmetry considerations
_— Imag(M(15,i)), i=15,16,21, m = 1000, 4T=0.01 Imag(M(16,1)), I= 15,16, 22, m = 1000, 4T =0.01
T T T 0.015 - .
—#— Imag(M(15,15)) —+— Imag(M(16.15))
—&— imag(M(15,16)) b —&— Imag(M(16.16))
~©— Imag(M(15.21)) = 0019 —5— Imag(M(16.22)) ="
—¥%=" imag(M(15,15)Analytic}) ==+ Imag(M(16.15)Analytc)
—f—' Imag(M(15.16))Analytic) =<~ - Imag(M(16.16)Analytc)
- =D - imag(M(15.21)Analytic)| | 0.005 ~ > Imag(M(16.22)Analytc)
3 L e x—-—-:-,vz-):\:“—-‘—‘--—-—q:-—-:;_---i %
= *o e — <
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0005 -
0.015 A - g " i i
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Lab Number Lab Number

Figure C1. Figure displays clearly the symmetry between the various elements of the M4 x 4 submatrix.
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In Figure C1 note that for the first two plots (for img(15, 7)) where i = 15, 16, 22)), the curves for the stochastic
average points for M(15, 15) coincide exactly with that for M(16, 16) and that for M(15, 21) coincide exactly with
that for M(16, 22). This is because in the table of results file, the values in Column 1 of the first table (for row 15)
are identical to those in column 2 of the second table (for row 16). Similarly, the values in Column 3 of the first
table (for row 15), are exactly the same as those in column 4 of the second table (for row 16). This, in turn, is due
to the fact that the © product combinations for the elements M(15, 15) [44111144] and M(16, 16) [44112233]
(and for M(15,21) [—42131144] and M(16, 22) [—42132233]) although not exactly the same, yet they yield the
same results when their relevant © products are multiplied (same brackets of delta Wiener combinations butin a
different order. Similar arguments hold for the two plots for img(21, i) where i = 15,21, 22 and img(22, i) with
1= 16,21,22.

In other words and to be more precise: for each of Labs 1, 2, ..,6 there are 1000 choices made (by MatLab) for
each of the 16 independent Wiener increments (551, 6511, 653, 6514, 656, 6516,658, 659 and 65?, 65;,65:,

6 5;, ) ?le, 6 5?—6, 6 5;, 1 ﬁ; and the result for each specific element of the 4 x 4 matrix M calculated using
equation (3.47). These are then averaged to give the stochastic value for the matrix element. For different Labs,
the 1000 choices of the 16 Wiener increments will be different, hence the 6 independent (and different) results
for each specific element of M shown in tables 1 and C1-C3. The average of these for the 6 Labs is also quoted in
tables 1 and C1-C3, and amount to determining the stochastic averages for an ensemble size of

m = 6 x 1000 = 6000. It will be noticed that the results for the 6 Labs for certain pairs of matrix elements are
the same—for example M (15, 21) and M(16, 22). This is because the most important pairs of Wiener
increments are the same —for example M(15, 21) and M(16, 22) both involve (6 53 + 6 514) twice, both arising
from the same off-diagonal © matrix elements O, ,) and 6 ;. Other pairs of Wiener increments arising from
diagonal matrix elements ©; ;) and O, 4 or O, , and 65 ;) make negligible difference, since the leading terms
in these elements are order 1 (rather than order +/6T). The stochastic averaging process determines each 4 x 4
element to an accuracy of ca 4% for the effective ensemble sizes of 6000 independent calculations. The accuracy
is specified by the standard deviation of the results in the 6 Labs from the theoretical value for the matrix element
asshown in tables 1 and C1-C3

C.4. Results for Run 2 for the short time behaviour parallel processing program

Table C4. Table shows the std error for the numerically calculated imag(C) across the 6 parallel processing labs, for 6T < 1. The results were
obtained in run 2 for the MatLab parallel processing C(¢; ¢3) program for 6T € [0,0.01]and m = 100, 300, 1000.

The percentage error tables for C[®,; ¢3), M = 10, 100, 300, 1000 for §T = 0.01 R2

8T =0.01
PP _Run_2 M=10 M =100 M =300 M = 1000

Img(C) Std_Error Img(C) Std_Error Img(C) Std_Error Img(C) Std_Error

Lab1 -0.020201025 102.0103% |-0.010825259 8.2526% |-0.011142919 11.4292% -0.010656032 6.5603%
Lab2 -0.009525434 4.7457% —-0.008632182 13.6782% |-0.009663882 3.3612% -0.009799356 | 2.0064%
Lab3 -0.011987390 19.8739% |-0.011510730 15.1073% |-0.011623230 16.2323% |-0.010633817 | 6.3382%
Laba -0.015575553 55.7555% |-0.014368173 43.6817% |-0.011090911 10.9091% |-0.010480200 | 4.8020%
Labs -0.005507118 44.9288% [-0.009222784 7.7722% |-0.011276930 12.7693% |-0.010733943 | 7.3394%
Lab6 -0.012701387 27.0139% |-0.011184569 11.8457% |—0.011949510i 19.4951% | -0.010660227i | 6.6023%
42.3880% 16.7229% 12.3660% 5.6081%

Table C4 shows that for this 6T range the std error decreases as the ensemble size increases. For ensemble size
m = 1000, the avg std error is approximately 5.6%.

Appendix D. Programming considerations

D.1. Parallel Processing in MatLab - an overview
Parallel Computing entails the use of two or more processors in combination to solve a single problem. Serial
performance improvements have slowed, while parallel hardware has become ubiquitous. On the other hand,

Parallel programs are typically harder to write and debug than serial programs. Parallel speedup is a function of

time,iq

the number of cores where speedup (p) = where p is the number of cores.

time e, (cores)

MATLAB Parallel Computing Toolbox supports three types of parallelism. The one suited to a single
computer with multiple cores is Multithreaded parallelism, where one instance of MATLAB automatically
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generates multiple simultaneous instruction streams. Multiple processors or cores, sharing the memory of a
single computer, execute these streams. To make use of that concept we certain commands must be employed
within the source code. The process starts by opening a MATLAB pool, this is done using the *parpool’
command which creates workers (or labs) to do parallel computations. On the i7 processor at SUT there are 6
cores. The parpool commnad creates 6 labs A client and 5 normal labs (or workers) one equivalent to each core
present. The client is the head MATLAB session —creates workers, distributes work, receives results. The
Workers/Labs are independent, headless, MATLAB sessions. They do not share memory, and are created before
being used and destroyed after the program execution takes its course.

To make use of multithreaded parallelism, one uses the SPMD (single program multiple data). This
command explicitly and/or automatically divide work and data between workers/labs and communicate
between workers/labs. The data created before the SPMD block is copied to all workers, whereas the data created
within the SPMD block, is unique to worker, composite on client. Memory is not shared by the workers. Data
can be shared between workers using special data types: composite, distributed, codistributed. The parallel
processing toolbox also contains parallel for loop constructs and commands for tall arrays manipulation where
the processing for such arrays is distributed among the available workers with respect to their rows or columns.

D.1.1. The M 36 x 36 matrix program description

Atits first stage the program lists the © and © " four products forming the 1296 elements of Mp,j;,.(v, 3). At its
second stage, the second indices permutations for the ©"and ©* four products of Mp,;,, (v, 3) are correctly
performed. At the third stage the program makes use of an additional module to populate the Mp,;,, (o, 3)
matrix with the values of the ©"and © products of the surviving elements. This takes place after performing the
second indices permutations, to form the Mpyestochasric (v, 3) matrix. The population process involves inspecting
the digits corresponding to the ©"and © *products of each of the surviving elements, where the program
converts those digits to strings. For example, the digits accompanied with a minus sign forming the element M
(16,15), namely: (—)44112431 indicates that it is composed of the {©; ,07 ;67,07 | } product with a minus sign.
After considering the minus sign, the program converts 44112431 to a string, separates each two characters of
the resulting string, and then using iterative and conditional statements constructs (for loops and if statements),
itinspects the digital content of each two characters of the separated string successively. The program then
creates numeric variables with names relevant to the digital content of each couple of separated characters of the
original string, and gives values to those variables. Hence the variable 44 is assigned the value of © , , 11 the value
of O ;... etc. At the final stage the program calculates the stochastic average for each of the Mpresiochasiic (> 3)
elements, to form the M (v, 3) matrix for each member 7 of the ensemble wherei = 1,2, ..., m. The program
writes its intermediate steps and final output results to a file.

D.1.2. Parallel Processing program for the M 4 x 4 submatrix—evaluating rows 15, 16, 21, 22 —programming issues
After knowing the form and all the analytic values for the elements of the M(cv, 8) 36 x 36 matrix, a program was
coded to perform the numerical calculation and confirm stochastically the analytic values of the M matrix
elements of rows 15, 16, 21 and 22, namely: M(4, j) where i,j = 15, 16,21, 22.

To test the finite time behaviour and compare the numerical results with the analytical ones, a parallel
processing program was written to calculate the stochastic average of C(¢y; 3) for 6T 2 1. Initially the program
employed the M(a, ) 36 X 36 matrix, which was to be multiplied successively to obtain the stochastic average
of (M (16, 15))", where T = ndT. A considerable processing time was noted, as the program was evaluating all
the 1296 elements of the 36 x 36 M matrix for each member i of the ensemble. It then displayed the stochastic
averages of all the M elements in files (which included the above mentioned 16 elements of Rows 15, 16,21 and
22). Performing the calculation in that manner had proven to be extremely taxing in terms of complexity and
computer processing time. For example, even with the parallel processing capability utilized, only 10 members
of the ensemble were processed per hour. At this rate, it would have taken the program 4 days to process1000
ensemble members. Since the elements of Rows 15, 16, 21 and 22 are the main elements relevant to the
coherences and populations of the | ¢,) and | ¢ 5) states, a simpler parallel processing program was later developed
with the aim of reducing the processing time relevant to the initial C(; ;) for 6T 2 1program: This modified
program concentrated only on the 16 elements of the M (4 x 4), and was used to confirm the analytic values of
this submatrix for T = 0.01, and then to calculate the finite time behaviour for element M(16,15). The process
began by calculating the stochastic average values for all the matrix elements of the M4 X 4 submatrix, across
the 6 labs available, and then evaluating the average matrix element for each of the elements. The resulting
numerical M was found to be not quite complex symmetric as was the case with its analytic counterpart. One
then had to resort to biorthogonality to calculate the required finite time behaviour of the coherence C(¢y; ¢3)
from the final stochastic results for the 4 x 4 matrix M with 6T = 0.01. The calculation was quite informative,
asits results indicated that the stochastic approach does confirm the analytic result for the finite time behaviour
of C(¢4; ¢3) given by equation (4.41) (see also equation(3.65)), with T ranging from 0 to 7. To calculate the finite
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time behaviour of C(¢4; ¢3), a Mathematica program was used to calculate and normalize the eigenvectors for
the numerical M and M 7, then using biorthogonality as described in section 2.4.4 and appendix C (C.1- C.4),
these were used to obtain the values of r,, and a,, and consequently, using equation (3.61), reproduce and confirm
the numerical form obtained forM obtained earlier. M " was then calculated using equation (3.64) for Tranging
from 0 to 7r. The main ensemble size was chosen to be m = 1000 with sub-ensemble divisions for 6T = 0.01.
The M(cv, 3)4 x 4 reproduced submatrix was then employed to calculate the finite time behaviour of C(¢4; ¢3)
using equation (3.65) and a reasonable processing time was achieved. The program writes its intermediate steps
and output to 6 different files relevant to one client and 5 labs based on their unique labindices . It was apparent
afterwards that for problems involving many fermion modes (such as for the BEC/BCS crossover topic), it
would be inevitable to make use of SUT’s supercomputing facility.

D.1.3. Parallel Programming - C(¢; ¢5) program description
The first part of the C(¢4; ¢3) program for small 6T < 1 (the generation of the L and K matrices and the matrix
definitions of the § ?2-;(6 ,S\)J,;r) noise terms) was written using MatLab’ s parallel processing capabilities on the
SUT single processor with multiple cores. The program was then adapted to make use of multithreaded
parallelism, and randomly generate the ¢ ?2;(6 f(\2;+) noise terms sequences, calculate the ©~, O products
associated with the M4 x 4 submatrix for each member of the ensemble within each of the 6 labs, and then
finally calculate the various stochastic averages involved. The entire process was promising in terms of cutting
down processing time and the unnecessary repetition of program runs which were associated with the analogous
sequential program.

Overview of the C (¢);; ¢5) program for small 6T < 1 using the multi-threaded parallelism capability of
MatLab:

+ When starting the parallel processing pool associated with the SUT processor (Intel(R) Xeon(R) CPU E5-1650
v3,3.50 GHz, 3501 Mhz, 6 Core(s), 12 Logical Processor(s)) which has 6 cores, 6 labs (a client and 5 workers)
could be utilized, one for each core. The client’s main goal is to processes the program common code which is
used by all labs. The other five serving labs or workers process the pieces of code that depend on different data
sets[57].

+ The work between the client and the workers could be organized and synchronized using their unique
identification numbers (lab indices).

+ Using ‘SPMD’ (single program multiple data) blocks inside the source code, one can spread (or divide) the
processing of the pieces of code or modules which use different data sets among the different workers or labs.

+ The program opens 6 files (one for each lab) to display their processing results at the end of the program run.
This in addition to a seventh file to display the results of processing the common data within the client.

+ Bydefault, the MatLab client and MatLab workers use different random number generators, even if the
workers are part of alocal cluster on the same machine with the client. The random generation algorithm for
the client is by default (unless changed specifically) the Mersenne Twister algorithm (twister’), (which is not
quite suitable for some parallel processing purposes), the workers random generation algorithm is by default
the ’Combined Multiple Recursive’ CCombRecursive’ or 'mrg32k3a’) algorithm [57].

+ Since the MatLab command rng(’shuffle’) seeds the random number generator based on the current time, it
should not be used to set the random number stream on different workers, to ensure the generation of
independent streams. This is especially true when the command is sent to multiple workers simultaneously,
such as inside a parfor, spmd, or a communicating job.

+ Dueto noticeable repetition in the random generated sequences of the client, a module was written to change
its default Mersenne Twister based algorithm (Twister seed) to the combined recursive algorithm which is
similar to that of the workers. Another module was written to ensure the non-repetition of the workers’
random generation sequences (although the MatLab software design ensures that in most cases) which makes
use of their lab indices.

+ Inthe modified program, the main ensemble of size 1 is specified, the L, K matrices are built and the 6 ?2-;
and o ?ZJ; matrices are defined respectively (common data to be used by all labs including the client). The
processing is then transferred to the six available labs where different sets of § ?2;, and 6 ?f; noise terms are
randomly generated, where different values of 6T are assigned to each lab. Consequently, each of the 6 labs
processes analogous but different sets of data to produce different results (the stochastic averages) for the main
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ensemble size specified. Within each lab the main ensemble size can be subdivided by taking its subsets, as was
done before when using the sequential programs.

+ For m = 500 and for one run of the program, the parallel pool processes data and produces results relevant to
6 different C points (one for each lab) depending on 6 different 6T values assigned to each lab. In other words,
for size m = 500 ensemble with its subdivisions, each run of the program involves 6 different calculations
which are performed for the various stochastic averages involved within each lab, depending on different sets
of randomly generated noise terms and different values of 6T'. Therefore, for m = 500, 6 multiplied by
500 = 3000 records are processed for one run, 500 records for each lab.

D.1.4. Final remarks

The parallel pool processes 42 records in 30 min (actually 42 multiplied by 6 = 252 records (or ensemble
members’ calculations) across the 6 parallel processing labs available). Consequently, and with a simple
calculation (assuming the same number of records is processed in similar times), the program run takes
approximately 5.9 hours to reach completion for a size m = 500 ensemble, after which data for different 6 C
points for that ensemble size and its subdivisions can be gathered. This versus only one C point for a single run
for that ensemble size as was the case with the old sequential program, for which the run took 3.5 hrs to reach
completion. Therefore, the data needed for plotting the results for size m = 500 ensemble and its subdivisions
can be gathered in just two program runs, rather than in 10 runs. As it turned out, the processing time is not
exactly the same for the same number of records, and the program took about 3 hours and 40 minutes to process
data for ensemble of size m = 1000 (6000 records are processed in that case.)

The parallel processing capability could also be used for calculating ensemble averages of the M matrix
elements and this is expected to save processing time. For example, if each of 4 parallel processors calculates
ensemble averages of m = 100 random generations of the M matrix elements and then average the outcomes for
each processor, it should be equivalent to an ensemble average over m = 400 random generations, and achieved
with the processing time for one processor.
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