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Abstract

Chlorophyll fluorescence has been widely used to monitor vegetation growth status and quantitative
remote sensing monitoring of vegetation biochemical content. Therefore, it is significant to accurately
measure the fluorescence information. In this study, the variation in fluorescence intensity of vivo
vegetation leaf with the change in detection angle on the basis of laser-induced fluorescence
technology was discussed. Experimental results demonstrated that the relationship between the
emission fluorescence intensity and detection angles could be explained by the cosine expression.
Then, two-step fluorescence intensity correction method was proposed. Firstly, the fluorescence
intensity was corrected based on the changing of cosine expression. Secondly, the fluorescence ratio
calculated based on the corrected fluorescence intensity. Results demonstrated that the effect of
detection angles on fluorescence signals can be efficiently eliminated compared to the traditional
spectral ratio method. Findings of this study may be valuable in promoting the applications of laser-
induced fluorescence in remote sensing to achieve accurate chlorophyll fluorescence information for
quantitative monitoring of plant nutrient stress.

1. Introduction

Laser-induced fluorescence (LIF) has elicited extensive attention in technological applications and scientific
investigations as soon as it is proposed, and its uniqueness can be regarded as a fluorescent material fingerprint
[1, 2]. The fluorescence spectral shapes and intensities are strongly dependent on the fluorophore properties [3].
LIF also exhibits superior sensitivity compared to other methods [4, 5]. Thus, LIF as a prime technology has been
comprehensively utilized in chemical, biological, and medical fields to measure DNA sequences, fluorophore
electronic structures, and complex biological macromolecules [6—10]. In recent decades, research interest in
monitoring vegetation that uses LIF in remote sensing has also increased [11-14]. LIF technology can monitor
vegetation capacity in the changes and transitions of the natural environment by biophysiological activities and
plant productivity [15-19].

Subhash and Mohanan [20] studied rice leaf red chlorophyll fluorescence spectra based on laser-induced
fluorescence technology and the fluorescence ratios can be used for monitoring rice nutrient stress. McMurtrey
etal[21] applied chlorophyll fluorescence spectrum to distinguish nitrogen fertilization levels in field corn. The
capability of LIF for monitoring crops status has been investigated, and they found that fluorescence intensity
ratio F685/F730 (the fluorescence intensity at 685 nm divided by that at 730 nm) is sensitive for the changing of
chlorophyll concentration when chlorophyll concentration does not significant reduction [3, 22, 23]. Gameiro
et al [24] used LIF technology as a fast and non-destructive mean to analyze the water stress of Arabidopsis. Gu
et al [25] discussed the effect of flooding and waterlogging on the fluorescence characteristics. Anderson et al [26]
analyzed the performance of LIF spectra for the assessment of the crop yield of cowpea (Vigna unguiculata (L)
Walp), and found that the fluorescence characteristics can be efficiently applied in analyzing the change in
photosynthetic activity. In addition, Yang et al[12, 19] thoroughly discussed the performance of fluorescence
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Figure 1. Emission schematic of excited fluorescence in leaf. D denotes the thickness of the leaf; Li (i = 1,2,3) is the optical path of
excited fluorescence on its way toward the leaf surface. Furthermore, 0°,45°, 60° are the different fluorescence detection angles.

parameters combined with multivariate analysis in the monitoring of N stress in paddy rice. What is more, leaf
nitrogen concentration monitoring on the basis of the combination reflectance spectrum with fluorescence
parameters was also investigated [27, 28].

In order to acquire the accurate fluorescence information, some influencing factors of fluorescence intensity
must be discussed in the application of fluorescence signals. Apostol et al[29, 30] investigated the effect of the
excitation wavelengths on the fluorescence characteristics in the remote detection of the nitrogen status of crops.
The effect of temperature and laser on the fluorescence signals was also discussed by investigators [31]. In
addition, our previous research analyzed the effect of the incidence angle on chlorophyll fluorescence signals
based on LIF-Lidar. In this situation, the incidence direction of excitation light is consistent with the direction of
the received signal. The changing of emission fluorescence intensity with incidence angles can be described by
using the cosine description [32]. However, few of researches considered the changing of detection angles (DAs).
Therefore, correcting the angular distribution of vivo vegetation leaf fluorescence intensity is critical for the
development of LIF technology in remote sensing from the leaf scale.

Unlike various applications of fluorescence [33—35], few investigations have been conducted on the angular
distribution of fluorescence intensity of vivo vegetation leaf. In this study, the fluorescence spectrum of vivo
vegetation leaf was measured at different DAs by using an improved version of the existing fluorescence
measuring system with different vegetation varieties. Then, the variation in fluorescence intensity with the
change in DAs was analyzed. Lastly, the performance of fluorescence ratio calculated based on the corrected
fluorescence intensity by using cosine expression for eliminating the effect of DAs on fluorescence signals was
analyzed.

2. Materials and experiment

2.1. Theory

Fluorescence refers to the phenomenon when fluorophore transfers part or all of its absorbed energy at longer
wavelengths after exposure to photons of a certain wavelength [36]. Previous investigations have indicated that
the excited fluorescence will be released in all directions with the same radiation quantity [37]. The pathway on
its way toward the leaf surface is different which can be illustrated in figure 1.

Figure 1 shows the optical path of the variation in excited fluorescence with the change in DAs in the leaf. The
leaf thickness is ranged from 100 to 300 um. The fluorescence intensity of vegetation leaf can be described as a
function of DAs. Related investigations have demonstrated that the emission fluorescence will be re-absorbed on
its way toward the leaf surface. In addition, the optical paths increase with DAs. According to previous researches
[13], the angular distribution of the fluorescence intensity can be assumed similar to the distribution of cosine.
However, the effect of reabsorption characteristics and internal structure on the fluorescence signal, the angular
distribution of fluorescence intensity can be assumed as [13, 32, 38]:

I(0)=a- cos(b x 0) + ¢ (1)

where 6 is the DA that is projected between the normal and the detection direction, a, b and c are the parameters
that describe vegetation characteristics. Thus, b = 0 indicates that the fluorescence intensity is unaffected by the
DAs. then, parameters a and c are related to the chlorophyll concentration and the excited light energy. b = 1
and ¢ = 0 show equation (1) is complete cosine expression. Given that the fluorescence intensity depends on the
chlorophyll concentration of the vegetation leaf, parameter a will be associated with the leaf chlorophyll

2



10P Publishing

J. Phys. Commun. 4(2020) 015017 JYanget al

'D‘-"'CL‘ ”7011
ngle g

Beam
Expander

Samples

Computer

Spectrometer

Figure 2. Laser-induced fluorescence schematic for measuring fluorescence signals with different detection angles. ICCD: intensified
change-coupled device.

concentration and the depth of penetration. In this study, the coefficient of determination (R?) in the fitting was
used to analyze the performance of the cosine expression.

2.2.Laser-induced fluorescence system

A schematic for measuring fluorescence intensity varying with DAs is illustrated in figure 2. To ensure the same
observational position when measuring the fluorescence intensity of different DAs, the leaf sample was placed
above the rotation axis of a rotator. The receiving fibres and rotating platform were fixed together by a steel plate
that could move around the rotation axis of the rotator. Furthermore, the optical axis of the receiving system and
the rotation axis of rotator were retained in the same plane and orthogonality when detection angle changed.
The excitation source was a 355 nm frequency-tripled Nd:YAG laser with output maximum peak energy and the
width per pulse being 30 mJ and 5 ns, respectively. Surelite I-20 included a Q-switch which was used to control
the output energy. Q-switch demonstrates the ratio of the total energy stored to the energy lost per unit time in
the chamber. The value of Q-switch was set to 340 and the output power of per pulse was 1.5 m] in this study
which will not damage the sample after the experiment. Then, the laser light through a 5x beam expander.
Emission fluorescence was measured using a spectrograph (SP-2558) and ICCD (PI-MAX). In addition, along-
pass filter of 355 nm was positioned between the sample and fibre to eliminate the effects of light reflected from
the sample. The fluorescence spectrum acquired ranged from 650 nm to 800 nm with a sampling interval

of 0.5 nm.

2.3. Materials

Six types of vivo vegetation leaf (including Chinensis Sims, Magnolia denudata Desr., Cinnamomum kotoense,
Viburnum odoratissinum, Paddy rice, and Bamboo) were used in our experiments for demonstrating the use of
the cosine expression to analyze the relationship between the fluorescence intensity and DAs. The samples were
collected from Jianghan Plain, China, which is located in the subtropical zone. The latitude and longitude of the
areaare 29 °26’-31°22’N and 111 °45’-115°05’E, respectively. All leaves were destructively sampled by random
cutting and stored in the freezer of —20 °C to keep the vivo of leaf and the stability of the composition.

3. Results and discussion

3.1. Fluorescence spectra

For each measurement, a single leaf of vivo vegetation was flattened completely and laid flat on top of the
measurement platform. In the measuring process, the optical axis of exciting light was perpendicular to the
measurement platform. The fluorescence spectrum of different DAs was acquired by rotating the receiving
system with a sampling interval of 5°. In addition, the distance between fibres and targets is about 2.1 m. The
range between fibres probe and excited light axis is about 2.5 cm. Thus, the initial angle was about 0.68° and
approximates 0°. In figure 3, pseudo-colour images of the vegetation leaf relative fluorescence intensities
(photon numbers) were used to demonstrate the variable relationship between the fluorescence intensity
and DAs.
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Figure 3. Pseudo-colour images of the variation in fluorescence signals with the change in detection angles: (a) Chinensis Sims,

(b) Magnolia denudata Desr., (c) Cinnamomum kotoense, (d) Viburnum odoratissinum, (e) Paddy rice, and (f) Bamboo. The emission
fluorescence wavelength (vertical-axis) and the detection angles (abscissa-axis) are used as axes. Detection angles range from 0° to 80°,
and the wavelength range is 650-800 nm. The incident angles and wavelength of the excitation light are 0° and 355 nm, respectively.
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Figure 4. Variation in fluorescence signals with the change in detection angles at different centre wavelengths: (A) 685 nm; (B) 740 nm.
(a,b, ¢, d, e, and frepresent Chinensis Sims, Magnolia denudata Desr., Cinnamomum kotoense, Viburnum odoratissinum, paddy rice, and
bamboo, respectively).

According to Saito et al [39], fluorescence signals of vegetation leaf are mainly contributed by the
chlorophyll, and the spectrum ranges from 650 to 800 nm. The centre wavelengths of fluorescence peaks are 685
and 740 nm, and these peaks are contributions of the centre pigment of Photosystem II and antennae
chlorophyll of Photosystem I, respectively. Figure 3 shows the variation in emitted fluorescence intensity with
the change in DAs for different vegetation species. The fluorescence intensities (at 685 and 740 nm) of these
plants were consistent as the DAs changed. The fluorescence intensities excited by the 355 nm laser decreased
with the increase in DAs. Figure 3 further demonstrates that the fluorescence intensity decreased to half of its
original value when DAs exceeded 40°. These findings will be useful for the application of fluorescence in
quantitative monitoring of plant nutrient stress.

3.2. Relationship between fluorescence signals and detection angles

The fluorescence signals of characteristic wavelengths at 685 and 740 nm were discussed separately in
quantitatively analyzing the changes in the fluorescence intensity as a function of DAs. Fluorescence signals of
different DAs were normalized to I(0°) = 1 in determining the angular distribution of fluorescence intensity.
Notably, the fluorescence intensity changed following a function of DAs (figure 4), and six types of species
exhibited the same results. Equation (1) was used to fit the average value of fluorescence intensities of the six
types of leaves at 685 and 740 nm. The results demonstrated that the R* was 0.946, and RMSE was equal to 2.07%
at 685 nm (figure 4(A)) the R* was 0.956, and RMSE was equal to 3.14% at 740 nm (figure 4(B)). Therefore, the
experimental results demonstrated that the correlation between fluorescence intensity and DAs was in
accordance with the cosine expression.

3.3. Correction of fluorescence signals
Then, the effect of DAs on the fluorescence intensity was eliminated to a certain extent by using the cosine
expression. The corrected fluorescence intensity changing with DAs is shown in figure 5.
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Figure 5. Correction of fluorescence signals based on the cosine expression at different centre wavelengths: (A) 685 nm; (B) 740 nm.
((a)—(f) represent Chinensis Sims, Magnolia denudata Desr., Cinnamomum kotoense, Viburnum odoratissinum, paddy rice, and
bamboo, respectively).
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Figure 6. Correction of fluorescence signals based on (A) the ratio of fluorescence F740/F685 (the fluorescence signal at 740 nm
divided by that at 685 nm); (B) the ratio of corrected fluorescence using cosine expression ((a)—(f) represent Chinensis Sims, Magnolia
denudata Desr., Cinnamomum kotoense, Viburnum odoratissinum, paddy rice, and bamboo, respectively).

Figure 5 shows the changing of corrected fluorescence intensity by using the cosine expression with the DAs.
The results demonstrated that the effect of DAs on the fluorescence intensity can be eliminated within 10% error
for all vegetation varieties when the DAs less than 50°. However, the error increases as the angle increases when
the DAs more than 55°. The main reason is that the fluorescence signal decreases as the DAs increases, resulting
in alower signal-to-noise ratio (SNR). In addition, excited fluorescence would be re-absorbed by the chlorophyll
on its way toward the leaf surface [40]. Figure 1 demonstrates that the optical path of excited fluorescence on its
way towards the leaf surface was added with the increase in DAs. Thus, the cosine expression exhibited the
potential for reducing the effect of the DAs on the chlorophyll fluorescence.

In order to efficiently eliminated the effect of the DAs on the fluorescence intensity, the fluorescence ratio
(F740/F685: the fluorescence intensity at 740 nm divided by that at 685 nm) was used based on the corrected
fluorescence intensity using the cosine expression. Then, the variation of fluorescence ratio with DAs was shown
in figure 6(B). In addition, the traditional fluorescence ratio based on the fluorescence intensity without
corrected was also conducted figure 6(A).

Figure 6 is the changing of fluorescence ratio (F740,/F685) with DAs. Figure 6(a) is the fluorescence ratio
based on the fluorescence intensity without corrected by using the cosine expression. The fluorescence ratio
decreases as the DAs increases. For the reflectance, the spectral ratio can efficiently eliminate the effect of the
geometrical factors on spectral information. However, the mechanism of LIF is different to the reflectance. LIF is
that the chlorophyll absorbs a photon of light with sufficient energy to excite an electron within the molecule to a
higher energy state. In addition, the emission spectra from the molecule will be re-absorbed by the chlorophyll
pigment and internal structure of leaf on its way toward the leaf surface. Relative researches demonstrated that
the fluorescence emitted between 680 and 695 nm was more strongly reabsorbed by the chlorophyll pigment in
the upper layer leaf cells than the fluorescence emitted between 730 and 750 nm [41]. Therefore, chlorophyll
pigment had little influence on the fluorescence peak at 740 nm.

Figure 6(b) is the fluorescence ratio based on the corrected fluorescence intensity changes with DAs. It can be
found that the effect of the DAs on fluorescence signals can be efficiently eliminated by using the fluorescence
ratio calculated based on the fluorescence intensity corrected by the cosine expression. The actual mechanism
was still difficult to determine in the present work. However, the possible interpretation is that the cosine
expression can eliminate the influence of reabsorption on the fluorescent signal to some extent. In addition, the
emission fluorescence might be affected by the internal organizational structure due to the scattering and the
pigment composition of the vegetation due to the absorption. Therefore, a detailed mechanism needs to be
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further studied. By comparison, it is found that the fluorescence ratio calculated by the corrected fluorescence
signal is superior to that calculated directly by the fluorescence signal. The cosine expression exhibited the
potential for efficiently reducing the effect of the DAs on the chlorophyll fluorescence, which can provide
reference for the further application of LIF technology in quantitative monitoring of agricultural biochemical
concentration.

4, Conclusion

This investigation presents the angular distribution characteristics of vivo vegetation leaf fluorescence intensity
induced by an ultraviolet laser (excitation wavelength is 355 nm). Numerical and experimental results
demonstrate that the variation in excited fluorescence intensity with the change in DAs is in accordance with the
cosine expression. Then, the fluorescence ratio calculated based on the fluorescence intensity corrected by the
cosine expression exhibited better performance for eliminating the effect of DAs on fluorescence intensity than
that calculated directly by the fluorescence intensity without cross corrected. The determination of the cosine
expression that governs fluorescence intensity distributions will be valuable for correcting the intensity
information of LIF to achieve accurate quantitative monitoring of plant nutrient stress and assessment of crops
productivity. The proposed fluorescence intensity corrected method can potentially promote LIF for
monitoring vegetation status and improving the accuracy of fluorescence intensity retrieved.
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