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Abstract
This paper concerns the application ofGrassmann phase space theory (GSPT) to treat the dynamical
evolution of systems of identical fermions, such as ultracold gases of fermionic atoms. Phase space
theory (which originated fromquantumoptics) is increasing in importance since it overcomes certain
issues associatedwith other theoreticalmethods, such asGreens functions, variationalmethods,
quantum-Monte-Carlo equations, etc. In phase-space theory quantum states are represented by
quasi-probability distribution functions of phase space variables associatedwith canonical system
operators—such as annihilation, creation operators. Evolution is described via a Fokker-Planck
equation for the distribution function, which is equivalent to Ito stochastic equations for (time
dependent) stochastic phase space variables. Quantum correlation functions given as averages of
products of phase space variables over the quasi-probability distributions then become stochastic
averages of products of stochastic phase space variables. InGSPT, the phase space variables are
Grassmann numbers, but as computer representation of g-numbers is difficult, Grassmann phase
spacemethods were regarded as being computationally inaccessible. However, previouswork using
the un-normalised B distribution shows that computer representation ofGrassmann variables is
unnecessary. Stochastic averages of products for quantumcorrelation functions at later times are
related linearly to stochastic averages at earlier times via stochasticmatrices only involving c-numbers.
Thus,GSPT calculations of quantumcorrelation functions nowonly involve c-number computations.
This paper presents the first correct numerical calculation of a quantum correlation function for a
fermionic systemusing stochasticmethods based onGrassmann phase space theory, namely the time
dependence of the coherence between twoCooper pair states in a four-mode fermion system,where
the short andfinite time solutions can be compared to known exact results. Good agreement between
the stochastic and exact results is found, showing that GPST is a valid approach for treating fermionic
systems. The treatment of time evolution involves a novel use of the eigenvalues and biorthogonal
column eigenvectors of a stochastically determined c-numbermatrixM and its transpose. Other
topics of interest in ultra-cold fermi gases forwhich theGSPT could be applied are highlighted, such as
the strong interaction regime for the BEC/BCS crossover achieved usingmagnetically tuned Feshbach
resonance techniques.

1. Introduction

1.1. Theoreticalmethods for non-relativisticmany-body systems
Quantumdynamics is one of themost fundamental problems inmodern physics since time-evolution is the
basis for any theoretical prediction, yetmany-body complexitymakes this an extremely challenging task in
quantum systems.New theoreticalmethods are always needed, and quantitative experiments withwell-
understood interactions are vitally important to enable the testing of predictions. Also, for systems in
thermodynamic equilibrium, evolution associatedwith changes to external variables such as temperature can
also be thought of as a type of quantumdynamics.Wewill briefly review some of the recent developments
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relevant to ultracold atoms since these provide an exceptionally simple andwell-understood physical
environment withinwhich quantitative tests of dynamical theoretical predictions can be performed.

There is awide range of theoretical treatments of the behaviour ofmany-body systems in non-relativistic
quantum systems, which are found in condensedmatter physics, nuclear physics, quantumoptics andmore
recently in the physics of degenerate bosonic and fermionic atomic gases at low temperatures and density. These
include not only themore traditional Green function [1, 2], variational [3, 4], path integrals [5], meanfield
theory [6] and stochastic Schrödinger equation-QuantumMonteCarlo [7] approaches, but also phase space
methods [8–12]. Inmostmodern treatments, where themany-body systems involve identical particles, a second
quantisation approach [13, 14] is used.

There are well known issues regarding the theoreticalmethods described above. Path integrals andMonte-
Carlomethods for instance, are useful for bosons at thermal equilibrium.However, for quantumdynamics and
for fermions in particular, there are phase and sign problems, which severely limits their applicability. Also, the
simulations involved are often restricted to small sizes which are difficult to extrapolate to the true
thermodynamic limit [15–17]. The standard perturbation theorymethod, is applicable for certain problems, but
others involving large interaction strengthsmay contain expansions which generally do not converge and are of
infinite order due to a lack of a small expansion parameter. Using themeanfield theory approach, one has to
account for quantumfluctuations in atomnumbers or limited coherence times and lengths [18]. Variational
methods require an assumption regarding a trial function forwhich the choice depends on trial and error or
experience. ForGreen functions, which have a long history in condensedmatter problems—being applied to
calculate properties of systems such as superfluids and superconductors [1, 19], a correct choice has to bemade
regarding the Feynman diagrams relevant to the problem.

Phase-space representations on the other hand, are of increasing importance as a viable and successful
means to study exponentially complex quantummany-body systems from first principles [8–12]. Thesewere
invented to describe lasers, but have been adapted to treat atoms instead of photons. Consequently, the
behaviour of bosonic photons and atoms is often treated using phase spacemethods in both quantumoptics and
cold atomphysics. Here,mode annihilation and creation operators are represented by c-number phase space
variables, with the density operator equivalent to a distribution function of these variables. Phase spacemethods
have also been introduced for treating fermionic systems [20], but differing choices have beenmade for the
phase space variables. Corney andDrummond [21] for example, introduce c-number variables associatedwith
pairs of fermion annihilation, creation operators. However, the anti-commutation rules for fermion
annihilation, creation operators suggests the possibility of using anti-commutingGrassmann variables to
represent these operators [20]. However, in spite of the seminal work byCahill andGlauber [20] (and a few other
treatments [12, 22–27]), the use ofGrassmann phase spacemethods in quantum—atomoptics to treat
fermionic systems is rather rare, though fermion coherent states usingGrassmann variables are widely used in
particle physics.

The present paper is thefirst correct numerical application ofGrassmann phase space theory (GPST) to
calculating a quantum correlation function (QCF) for a fermionic system (see section 1.2) for details). TheQCF
involved is the coherence between twoCooper pair states in a fourmode fermionic system, showing the
development of this coherence over finite times. This systemhas the advantage that the evolution is known via
standardmatrixmechanics, so although theGPSTmethod is not expected to reveal any new physics in this case,
it can be compared to a known exact result. Newphysics will be revealedwhenGPST is applied to systems not yet
completely understood, such as the BEC/BCS crossover in cold Fermi gases. Aswill be shown below, (see
sections 3.2, 3.3 for details) the evolution of the fermionQCF involves the stochastic calculation of a c-number
matrixM, and a novelmethod for determining the evolution is presented, based on using the numerical
eigenvalues and biorthogonal column eigenvectors ofM and its transpose. Furthermore, the present paper
clearly demonstrates that numerical calculations based onGPST can be carried out using only c-numbers, and
without the need to represent Grassmann variables themselves on the computer –an issue previously thought to
restrict GPST to purely analytic applications (see section 1.2 for details).

Unlike variationalmethods, phase spacemethods do not require assuming a trial form for the quantum
state, andwhereasGreen functionmethods involve selectingwhich class of Feynman diagrams is important in
the process andwhich are to be discarded, phase spacemethods do not depend onmaking such selections. They
ultimately involve calculations with representative sets of stochastic trajectories that sample the distribution
function throughout the phase space, and theirmain limitation is a numerical constraint on the numbers of
trajectories that can be stored on a computer.

1.2. Phase space theory –Grassmannphase space variables
Thermal evolution based on aMatsubara equation [28]was treated using aGrassmann phase space theory by
Plimak, Collett andOlsen [22] for a 1D systemof spin 1/2 fermionswith zero-range interactions, and numerical
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results were presented for number correlations between pairs of fermionswith variousmomentum, spin cases
+  -  -  + k k k k, , , .( ) These authors used an un-normalizedB distribution function based on fermion
Bargmann coherent states [20] for which a Fokker-Planck equation (FPE)was obtainedwhere the drift vector
only depended linearly on theGrassmann phase space variables—a feature the authors recognised as being vital
for numerical work. Plimak et al also introduced stochastic Grassmann variables, with those at a later time (or
inverse temperature, for thermal evolution) being related linearly to those at an earlier time by a stochastic
c-number transformationmatrixβ−1. However, rather than introducing Ito SE for the stochastic variables
themselves, they considered an Ito SE for the transformationmatrixβ. Their fundamental equationwas an
ansatz for determining theB distribution function at later times from that at an initial time, via substituting
stochastic Grassmann variables for the original non-stochastic phase space variable,multiplying by the
determinent (detβ) of the transformationmatrix, and then taking a stochastic average of the resultant product.

TheGrassmann phase space theory used in the present paperwas developed byDalton et al on a different
basis and is set out in [12, 24, 26] and [27]. Details are set out here in section 3. Extensive accounts of the
underlyingGrassmann algebra and calculusmay be found in [12, 20, 22] and [25]. Essentially, the phase space
method also involves representing the quantumdensity operator for the systemby aGrassmann (un-normalized
B) distribution function [12, 22, 24, 26, 27] and [25] in a phase spacewhere the phase space variables replacing
the fermion annihilation and creation operators areGrassmann variables. Quantum correlation functions
(QCF) can be related to experimentallymeasurable quantities, and theoretically toGrassmann phase space
integrals involving the distribution functionwith the fermion operators being replaced by phase space variables.
Evolution equations (over time or temperature) for the density operator lead to Fokker-Planck equations (FPE)
for the distribution function via the application of correspondence rules. However, unlike in [22], the FPE are
then replaced by Ito stochastic equations for stochastic Grassmann phase space variables themselves, which are
derived from the FPE. TheQCF are now given by stochastic averages of products of these stochastic variables.
The stochastic averages of products at a later time can be shown to be related linearly to such stochastic averages
at an earlier time viamatrices that only involve c-numbers. Even though thesematrices involve stochastic
quantities such asWiener increments, their non-dependence onGrassmann variables enables computations to
be carried outwithout having to represent Grassmann variables on the computer. The initial stochastic averages
of products are obtained from the initial density operator. A comparison of the present approachwith that in
[22] is provided in thework of Polyakov [25], which confirmed the present formalism.

The utility of the theory can first be tested on some fermion systems that have been treated previously by
othermethods. In this paper, wewill numerically calculate the coherence between twoCooper pair states in a
simple fourmode fermion system as a stochastic average [12, 24, 27]. The analytic short time and finite time
solutions for such coherence are known using analyticmethods, so comparisons can bemadewith exact results.
Another test of the theorywould involve a re-determination of the quantum correlation functions for
interacting spin 1/2 fermions whichwere previously calculated by Plimak et al [20], by aGrassmann phase space
approach involving a different treatment of evolution. Although based on a different Ito stochastic equation, the
numerical calculations of Plimak et al [20], nevertheless showed that aGrassmann phase space theory could be
used to calculate quantum correlation functions for afield-like situation involving a continuous range of
momentumvalues –implying that similar calculations could be carried out on topics such as the BEC/BCS
crossover.

1.3. Plan of paper
As themain potential application ofGrassmann phase space theory will be to treat cold quantum gases of
fermionic atoms, we provide in section 2 a brief overview of current topics of interest in this area. In section 3we
will review the various features of GrassmannPhase Space Theory starting with its key theoretical expressions,
followed by how it can be used in numerical calculations. In section 4wewill describe theCooper pairmodel for
a systemof two spin 1 2 fermionswith fourmodes, comparing the theoretical results obtained for themodel
using analyticalmethodswith the numerical results obtained for theQCF’s based onGPST stochastic
calculations. Section 5 summarises the paper. Various details are set out in Appendices, available as online
SupplementaryMaterial.

2. Cold quantumgases

Research in the field of ultracold atomic gases has been amajor activity since the 1990ʼs whenBose–Einstein
condensationwas achieved for bosonic atoms [29–32]. Non-interacting untrapped bosonic atoms at zero
temperature form aBEC,with amacroscopic occupancy of the lowest single particle energy state, which is
possible due to the absence of the Pauli exclusion principle. Since the 2000ʼs ultracold gases of fermionic atoms
have also been preparedmanifesting different effects. Non-interacting untrapped fermionic atoms at zero
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temperature form a Fermi gas, with each energy state only being occupied by two atomswith different spins due
to the Pauli exclusion principle. Consequently, energy states arefilled up to the Fermi energy EF, whose
associatedwave number kF is proportional to the inverse of the average separation between the atoms. In both
cases, the single particle states are planewaves withmomentum ÿk.

Ultracold quantum gases have opened up newhorizons inmany-body physics, fromnovel quantum states of
matter to quantum computing applications. They provide a unique table-top paradigm for exploring the
properties of quantummany-body systems in nature, from the thermodynamics of high-temperature
superconductors to the hydrodynamics ofQCDQuark gluon plasmas (QGPs). These gases aremainlymade of
alkalimetal atoms but alsomore recently other atoms aswell as diatomicmolecules. They can be fermionic or
bosonicwith awide variety of internal hyperfine spin structures. They can bemade strongly orweakly
interacting, and both attractive and repulsive. They are contained in a variety ofmagnetic and optical traps in
one, two and three dimensions, including optical lattices.

For bosonic gases, there is a wide range of interesting topics which include Bose–Einstein condensation
(BEC) and superfluidity (flowwithout dissipation below a critical velocity vc). The BECparadigm, wasfirst
developed for non-interacting bosons, and later generalized to take into account repulsive interactions,
describes bosonic fluids like 4He or ultracold Bose gases like 87Rb. Interactions are described in terms of a two-
body scattering length [33]. The condensate is amacroscopic occupation of a single quantum state that occurs
below a transition temperatureTc, which, even in strongly interacting Bose systems like 4He, is of the same order
ofmagnitude as the quantumdegeneracy temperature at which the inter-particle spacing becomes of the order
of the thermal de Broglie wavelength [34, 35].

For fermionic gases, not only do effects such as fermionic BCS superfluidity (based on large Cooper pairs of
two atomswith opposite spins andmomenta and described in terms of the BCS theory (Bardeen, Cooper
Schrieffer [36])) occur, but also BEC superfluidity (based on tightly boundmolecules of two fermionic atoms
with opposite spins) can be observed. It was proposed as early as 1950 by Fritz London (see [37] that fermionic
superfluidity for fermionic atoms is a pair condensate inmomentum space, in contrast with a BECof tightly
bound pairs in real space, and BCS theory then emphasised the different nature of BCS andBEC types of
suoperfluidity. The BCS paradigm,first developed formetallic superconductors, describes a pairing instability
arising fromaweak attractive interaction in a highly degenerate systemof fermions. The formation of pairs, and
their condensation, both occur at the sameTc that is orders ofmagnitude smaller than the Fermi energy EF.
However, it was later realised [38–41], that the BCS theory provided a good qualitative description of both the
BEC andBCS regimes, as the two body scattering length is changed frombeing attactive (the BCS regime) to
being negative (the BEC regime). Experimentally, such changes in the two body scattering length can be achieved
usingmagnetically tuned Feshbach resonance [42–45] techniques. Studies involving Feshbach resonance have
led to ground-breaking observations, including the condensation ofmolecules, and to additional intensive
research relevant to the crossover physics, from amolecular Bose–Einstein condensate (BEC) to atomicCooper
pairs in the BCS state (BEC/BCS crossover) [17, 41, 46, 47]. The calculation of the phase transition temperature
Tc between the superfluid phases as a function of k a1 F( ) is also of interest. Near the crossover, the scattering
length becomes very large, and this corresponds to the so-called unitary regimewhere strong correlations occur,
and forwhich BCS theory involvingmeanfield equations is no longer adequate. Figure 1 shows the phase
diagram associatedwith a Feshbach resonance, the variables being the inverse of the two fermion scattering
length and the temperature.

Various BEC/BCS crossover studies ([30, 48] -see figure 24) have shown that there is a smooth change in the
size of theCooper pairs through the Feshbach resonance.However, it is expected that there is little correlation
between different Cooper pairs well away from the unitary regime.On the BEC side there should be little
relationship between the nearby positions of the pair of fermions in one tightly boundmolecular Cooper pair,
and the positions of the pair of fermions in another. On the BCS side, there should be little relationship between
the related -k k, momenta of the pair of fermions in oneCooper pair and the related -l l, momenta of the pair
of fermions in another. However, in the crossover regime, the positions (ormomenta) of the four fermions in
any twoCooper pairs should be highly correlated. Figure 2 illustrates this effect.

A study of the BCS/BEC crossover regime—including the strong correlation unitary regime, would be a
worthwhile application forGrassmann phase space theory. The applicationwould employ Fokker-Planck
equations and the related Ito stochastic equations either based on starting with aMatsubara equation [28],
which describes the temperature evolution of the system from an initial high temperature where the atomic
gas behaves classically, or starting with a Liouville-vonNeumann equation, which describes time evolution.
Numericalmethods will be used at first to study the two particle quantum correlation functionwhich has the
form [49]:

y y y yá ñ   r r r r . 2.11 2 2 1( ( ) ( ) ( ) ( )) ( )† †   
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In the BCS theory, there is a smooth evolution in the BEC/BCS crossover in the size of the Cooper pair from the
situation for a tightly boundmolecule to that for a loosely boundCooper pair with no dramatic change at
resonance (seeKetterle [30]). It is expected that Grassmann phase spacemethodwould give similar results.

However, if higher order quantum correlationswere studied, wemight expect to see strong interaction
effects, such as inter-pair coherence lengths differing from intra-pair coherence lengths, which are attributed to
fluctuation correlations not included in the BCSmeanfield theory [48, 50–52]. Our hypothesis is that there is
little correlation between different Cooper pairs well away from the unitary regime, however, in the crossover
regime the positions of the four fermions in any twoCooper pairs should be highly correlated. As is well-known
[49], the two particleQCF in equation (2.1) can be found using Bragg spectroscopy. However, the four particle
QCF for describing oneCooper pair at r1, r2 and another at r3, r4 is

áY Y Y Y Y Y Y Y ñ       r r r r r r r r . 2.21 2 3 4 4 3 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† † † †       

This cannot be found using standard Bragg spectroscopy, suggesting that a new formof Bragg spectroscopywill
be needed to fully study the strong interaction regime.On the theory side, the calculation of suchQCFwould be
an important application ofGrassmann phase space theory.

More recently, quantized vortices in a rotating Fermi gas have provided a direct signature for the presence of
superfluidity in a strongly interacting Fermi gas, as they are a direct consequence of the existence of a

Figure 1.Ultracold Fermi gas phase diagram. Sketch of the BCS toBEC crossover for ultracold Fermi gases.When the scattering
length as passes through a pole, so that k a1 0F s( ) , one obtains a strongly correlated fluid, the unitary gas. The critical temperature
Tc for the phase transition only approaches the pairing temperatureTpair in the limit  -¥k a1 .F s( ) The crossover region is the
strongly interacting regime, loosely defined as <k a1 1F s∣ ( )∣ . Note that we denote the scattering length by a in the text [31].
Reproduced from Sá deMello CAR2008 Phys. Today 61 (10) 45, with the permission of the American Institute of Physics.

Figure 2.The BEC-BCS crossover. By tuning the interaction strength between the two fermionic spin states, one can smoothly cross
over from a regime of tightly boundmolecules to a regime of long-range Cooper pairs, whose characteristic size ismuch larger than
the interparticle spacing. In between these two extremes, one encounters an intermediate regimewhere the pair size is comparable to
the interparticle spacing interaction. Reprinted fromKetterleWandZwierleinMW2008Ultracold FermiGases, Proc. of
International School of Physics ‘Enrico Fermi’ edM Inguscio et al (Amsterdam: IOS Press), with permission of IOS Press.
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macroscopic wave-function that describes the superfluid. It is beyond the scope of this paper to describe these
topics, but references such as [29, 30, 48, 50] provide a useful overview of the area.

Interacting fermions appear in awide range of settings. TheGrassmann phase space theory will be focused
on applications to the specific topic of strongly interacting Fermi gases [30, 51], whichprovide awell-controlled
andflexible environment to studymany-body phenomena in strongly correlated systems. Generically, strong
interactions give rise to strong correlations. A strongly correlated system cannot be described byworking
perturbatively fromnon-interacting particles or quasiparticles. In the case of electrons in condensedmatter
systems, theories constructed from single-particle properties, such as theHartree–Fock approximation, cannot
describe the problem at hand. In the case offluids, the kinetic theories based on quasiparticle degrees of freedom,
in particular the Boltzmann equation, fail [31, 53]. Theoretically, strongly interacting Fermi systems represent a
challenging scenario to treat, as the large scattering lengthmeans there is no small parameter to describe the
interactions.Models based on simple perturbation theory are therefore no longer adequate to describe certain
systemparameters. Experiments can provide useful information both revealing properties of these systems, and
establishing benchmarks for appraising different approximate theoretical approaches. For example, recent
experiments on ultracold Fermi gases have provided an unprecedented opportunity to test universality in the
laboratory, which in principle allows for the interior properties of hot dense neutron stars to be investigated on
earth [16].

3.Grassmannphase space theory

3.1. Summary ofGPST features
As explained in section 1, in ourworkwe follow the approach of Plimak, Collett andOlsen [23], in that we also
base ourwork on the un-normalizedB distribution, but withGrassmann number phase space variables +g g,i i

( )
(rather than (gi, g

i
*)) associatedwith eachmode.Quantum correlation functions (QCF), Fock state populations

and coherences are given byGrassmann phase space integrals over theB distribution function, with themode
operators being replaced byGrassmann phase space variables. Fokker-Planck equations for the distribution
function are obtained, and these will involve Grassmann derivatives rather than c-number derivatives. The phase
space variables are then replaced by stochastic Grassmann variables. TheQCF, etc (as in the boson case) are now
given by stochastic averages of products of the stochastic phase variables. However, unlike in [22], Ito stochastic
equations for the stochastic Grassmann variables are derived from the Fokker-Planck equation. An approach for
bosons described byGardiner [54] is followed, wherewe equate the time derivative of theGrassmann phase
space average of an arbitrary function of the phase space variables to the stochastic average of the same function
when theGrassmann phase space variables are replaced by stochastic Grassmann variables. The time
dependence of the phase space average is determined from the FPE for the distribution function and the time
dependence of the stochastic average is determined from the Ito SE for the stochastic Grassmann variables, and
these time dependences are required to be the same. This establishes the relationship between the deterministic
and noise terms in the Ito SDE and the drift and diffusion terms in the FPE. It is a different approach to that
based on the ansatz of Plimak et al, and ourGrassmann Ito SE for the stochastic Grassmann variables are not
equivalent to the c-number Ito SE for the transformationmatrix obtained in [22]. A subsequent paper by
Polyakov [25]was in agreement with our formalism.

We then showhow the Ito SE for the stochastic Grassmann variables can be applied in numerical
calculations of stochastic averages of products of these quantities needed for determiningQCF, etc. Essentially,
the stochastic average of a product of Grassmann stochastic phase variables at the end of a small time interval is
related via a linear transformation to the set of stochastic averages of all the products of Grassmann stochastic
phase variables (of the same order) at start of the time interval. The key result is showing that the linear
transformationmatrixM relating the stochastic Grassmann phase space variables at the end of a time interval to
those at its beginning just involves c-numbers, such as stochasticWiener increments and quantities from the Ito
SE for theGrassmann stochastic phase variables. By dividing afinite time interval into small time intervals, the
stochastic average of product of Grassmann stochastic phase variables at the end of thefinite time interval can be
obtained in steps from the stochastic averages of products of Grassmann stochastic phase variables at the initial
time. The numericalmethod for this process involves calculating the eigenvalues and eigenvectors of the linear
transformationmatrixM and its transposeMT for a suitably short time interval. Finally, the stochastic averages
of products of Grassmann stochastic phase variables at the initial time are obtained from the initial density
operator via expressions forQCF, Fock state populations and coherences, where the relevant phase space
integrals are related to initial stochastic averages of products of Grassmann stochastic phase variables.

In order to treat problems involving large particle numbers, it is often convenient to consider field
annihilation and creation operators rather than those for separatemodes. A phase space theory based onfields
can be constructed for fermions, as is the case for bosons. The density operator is represented by aGrassmann
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distribution functional involvingGrassmannfields associatedwith thefield operators. TheQCF etc are now
given viaGrassmann functional integrals. The distribution functional satisfies a functional Fokker- Planck
equation (FFPE) involvingGrassmann functional derivatives. Ito stochastic field equations (Ito SFE) can be
obtainedwhich are equivalent to the FFPE. The detailed development ofGrassmann phase space field theory is
covered in [12, 26, 27], but for reasons of space will not be outlined here.

In the next subsectionswe outline the separatemode treatment ofGrassmann phase space theory.

3.2. Key theoretical expressions
3.2.1. Bargmann states
FermionBargmann coherent states are central to definingGrassmann phase space distribution functions. They
are defined for a set of Grassmann numbers º ¼ ¼g g g g, , , ,i n1{ } for themodes i=1,2,.., n as

å  ñ = ñ = + ñ = ñg c g c g gexp 0 1 0 . 3.1B
i

i i
i

i i
i

i B

⎛
⎝⎜

⎞
⎠⎟∣ (ˆ ) ∣ ( ˆ )∣ ∣ ( )† †

This is also an evenGrassmann vector, but nowonly depends on gi and not on the complex conjugates g .
i
* For

themode j ñi∣ the Bargmann coherent state is

ñ = + ñ = ñ - ñg c g g1 0 0 1 , 3.2i B i i i i i∣ ( ˆ )∣ ∣ ∣ ( )†

which is a superposition of the vacuum state and a one-fermion state [12, 24, 26].
ñgi B∣ only depends on gi and not on g

i
*. The fermion Bargmann coherent state properties include the effect of

the annihilation and creation operators cî and cî
† for eachmode i [12, 24, 26].

ñ = ñ

ñ = -
¶


¶
ñ

á = á -
¶
¬

¶

á = á

+ +
+

+ + +

c g g g

c g
g

g

g c g
g

g c g g

,

,

,

, 3.3

i B i B

i B

i

B

B i B

i

B i B i

* *

* *

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ ∣ ∣

ˆ ∣ ∣

∣ ˆ ∣

∣ ˆ ∣ ( )

†

†

and they satisfy a completeness relation analogous to that for boson Bargmann coherent states, namely

ò - ñ á =dg dg g g g gexp 1, 3.4
i

i i B B* *( · )∣ ∣ ˆ ( )

where = å g gg g .i i i* *· ·

3.2.2. Density operator and unnormalized B distribution function
The canonical formof the density operator in terms of fermion Bargmann states can also bewritten in terms of
the unnormalized distribution functionB as

ò r = ñ á+ + +dg dg B g g g g, , 3.5
i

i
i

i can B B*ˆ ( )∣ ∣ ( )

where =+ + +dg dg dgi i n1
· ·· and =dg dg dgi i n 1 - one should note that theGrassmann differentials anti-

commute. Each fermionmode involves pairs of Grassmann phase space variables +g g,i i
. The canonical

Grassmann phase space distribution function +B g g,can( ) is obtained fromBargmann statematrix elements of
the density operator and is given by

ò  r= á ñ ´ ++ + + + +B g g dg dg g g g g g g, exp , 3.6can
i

i
i

i B B* * * * *( ) ∣ ˆ ∣ ( · · ) ( )

where =+ + +dg dg dgi i n1
* * *· ·· and =dg dg dgi i n 1

* * *· ·· . TheGrassmann distribution function +B g g,( ) in
equation (3.5) is unique, and is an evenGrassmann function of +g g,i i

{ }of order 2n [12, 22, 24].
The un-normalized +B g g,( ) distribution function is related to the normalized distribution function

+P g g,( ) via [12, 24, 26]

= -+ + +B g g P g g g g, , exp . 3.7( ) ( ) ( · ) ( )

The distribution function +P g g,( ) is normalized to unity and could also be used to determine quantum
correlation functions [12], though this would require directly solving the Fokker-Planck equations.However, in
numerical calculations it is convenient to consider unnormalized forms of the distribution functions, as these
turn out to result in simpler Fokker–Planck equations, and lead to Ito equations linear in theGrassmann
variables—which can be treated numerically.
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3.2.3. QCF, Fock state populations, coherences as phase space integrals
One set of important quantities that can be determined is that of the populations of, and coherences between, the
fermion Fock states.We consider two Fock states –eachwith p occupiedmodes –given by

F ñ = ñ F ñ = ñl c c c m c c c.. 0 .. 0 3.8l l l m m mp p1 2 1 2∣ { } (ˆ )(ˆ ) (ˆ )∣ ∣ { } (ˆ )(ˆ ) (ˆ )∣ ( )† † † † † †

Quantumcorrelation functions etc are given byGrassmann phase space integrals (see [12], pp.140–143).

ò r = á ñ = ´+ + + + +Tr c c c c c c c c dg dg g g B g g g g g g... ... ... ... ... , exp ... .

3.9

l l m m l l m m
i

i
i

i m m l lp q p q q p1 1 1 1 1 1
{ˆ ˆ ˆ ˆ ˆ } ˆ ˆ ˆ ˆ ( ) ( · )

( )

† † † †

and for Fock states F ñl∣ { } and F ñm∣ { } , the population and coherences are also phase space integrals given by

ò F = + + + +P l dg dg g g B g g g g... , ... . 3.10
i

i
i

i l l l lp p1 1
( { }) ( ) ( )

ò F F = ´+ + + +C m l dg dg g g B g g g g; ... , ... . 3.11
i

i
i

i l l m mp p1 1
( { } { }) ( ) ( )

3.2.4. Hamiltonian for cold quantum gases
TheHamiltonian for a fermion system involving one and two particle interactions, andmay bewritten in terms
of one particle and two particle operators h aˆ ( ) and =V a b V b a, ,ˆ ( ) ˆ ( )

å å= +H h a V a b
1

2
, , 3.12f

a a b,

ˆ ˆ ( ) ˆ ( ) ( )

where the sums are over theN identical particles and the expressions are invariant under any permutation of
these identical particles. In terms of annihilation and creation operators, theHamiltonian given infirst
quantization by equation (3.12), can bewritten in the second quantization form

å å u= +H h c c c c c c
1

2
, 3.13f

i j
ij i j

i j k l
ijkl i j l k

, , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )† † †

f f= á ñh a h a a , 3.14ij i j( )∣ ˆ ( )∣ ( ) ( )

u f f f f= á á ñ ña b V a b a b, . 3.15ijkl i j k l( )∣ ( )∣ ˆ ( )∣ ( ) ∣ ( ) ( )

The evolution of the quantum state allowing for bothHamiltonian dynamics andMarkovian relaxation due to
coupling to an external reservoir is described by amaster equation [12, 24]

år r r r r
¶
¶

= + G - -
t i

H S S S S S S
1

,
1

2
2 , 3.16

a b
ab b a a b a b

,

ˆ [ ˆ ˆ ] ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( )† † †

where for pairs fermionmodes denoted ºa i j, and ºb k l, the transition operators Sâ and relaxation
coefficientsΓab are =S c ca j i

ˆ ˆ ˆ† , =S c cb l k
ˆ ˆ ˆ† and G º G .ab ij kl;

The symmetry features are

u u u= = = G = Gh h . 3.17ij ji ijkl jilk klij ij kl kl ij; ;* * * ( )

3.2.5. Fokker-Planck equation—drift vector A and diffusionmatrix D
Correspondence rules for replacing terms in the evolution equation for the density operator by equivalent terms
in the Fokker-Planck equation for the B distribution function can be obtained using equation (3.3). These are set
out as equation (45) in [24]. The Fokker-Planck equation for theB distribution function determines the
dynamics in phase space and can bewritten using rightGrassmann derivatives:

å å¶
¶

= -
¶
¶

+
¶
¶

¶
¶

+ +

¬

=

+

¬ ¬

t
B g g A B g g

g
D B g g

g g
, ,

1

2
, , 3.18

n

p
p

p

n

p q
pq

q p

2 2

, 1

( ) ( ( )) ( ( )) ( )

where º ¼ ¼+ +g g g g g, , , , ,p n n1 1 .

3.2.6. Linearity of drift vector, bilinearity of diffusionmatrix
The drift vectorA is an oddGrassmann function, linearly dependent on theGrassmann variables. This key
linearity feature is dependent on using theB distribution function and is vital for numerical work. The diffusion
matrixD is even and is bilinearly dependent on theGrassmann variables. Unlike for bosons, it is an anti-
symmetricmatrix = -D D .pq qp For the Fokker-Planck equation equation (3.18), the drift vectorA and the
diffusionmatrixD can bewritten in terms of submatrices (whereT is the transpose).
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= =
- +

- +

-

+

-- -+

-+ ++A D . 3.19
T

C

C

F F

F F

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥[ ] [ ]

( )
( )

For themaster equation equation (3.16), the quantities giving the drift vector in terms of theHamiltonianmatrix
elements and relaxation coefficients are

å å= - + G-

i
h g g

1 1

2
, 3.20i

j
ij j

jk
kikj jC ⎜ ⎟⎛

⎝
⎞
⎠ ( )

å å= + G+ + +

i
h g g

1 1

2
, 3.21i

j
ij j

jk
j kikj* *C ⎜ ⎟⎛

⎝
⎞
⎠ ( )

where -
iC and +

iC are the submatrices of the drift vectorA.
The quantities that define the sub-matrices submatrices --F , +- -+,F F ,, ++F , of the diffusion

matrixD are

å u= + G + G = --- --

i
g g g g

1 1

2
, 3.22ij

kl
ijkl l k lijk kjil l k jiF F

⎡
⎣⎢

⎤
⎦⎥( ) ( )

å u=
-

+ G + G = -++ + + + + ++

i
g g g g

1 1

2
, 3.23ij

kl
ijkl k l lijk kjil k l ji* * *F F

⎡
⎣⎢

⎤
⎦⎥( ) ( )

å å= G = G = --+ + +- + -+g g g g, . 3.24ij
kl

jkil l k ij
kl

jkil l k ji*F F F ( )

In these submatrices i, j=1, 2,K, n and the c-number quantities,Γkikj, νijkl etc are defined in
equations (3.14)–(3.17).

3.2.7. The stochastic and phase space averages
The Ito stochastic equations provide an equivalent determination of the phase space dynamics. As described in
the Introduction, phase space variables gp are replaced by time-dependent stochastic Grassmann variables g tp ( ) .

The ithmember of the stochastic ensemble of g tp ( ) is denoted by g t
i
p ( ) , where i=1,K,m. For an arbitrary

function +F g g,( ) of theGrassmann phase space variables, the phase space average á + ñF g g, t( ) and the
stochastic average +F g t g t,( ˜( ) ˜ ( )) of +F g g,( ) after the replacement by stochastic variables are given by

å=+

=

F g t g t
m

f g t,
1

, 3.25
m

i
pi

1

( ( ) ( )) ( ( )) ( )  

á ñ =+ + + +F g g dg dgF g g B g g t, , , , , 3.26t ∬( ) ( ) ( ) ( )

where for short =+F g t g t f g t, t pi( ( ) ( )) ( ( ))  
The stochastic equations for the g tp ( ) are determined from the Fokker-Planck equation for the distribution

function +B g g t, ,( ) by requiring the phase space average of an arbitrary function +F g g,( ) and stochastic
average of the same function to always coincide (seeGardiner, [54]). This will enableQCF, Fock state
populations and coherence to either be given by a phase space integral involving the distribution function or a
stochastic average involving the stochastic Grassmann phase space variables. Thus,

á ñ =+ +F g g F g t g t, , . 3.27t( ) ( ( ) ( )) ( ) 

3.2.8. Ito equations for stochastic variables
The Ito stochastic equations for the stochastic Grassmann variables are given by

å= + G +
d

dt
g t C g t B g t t , 3.28p

p

a
a
p

a( ) ( ( )) ( ( )) ( ) ( )  

where the deterministic term C g tp ( ˜( )) and the noise factor B g ta
p ( ˜( )) are oddGrassmann functions, and are yet to

be determined. The G +ta( ) are standard c-numberGaussian-Markov randomnoise terms These have the
following stochastic properties

d dG = G G = -t t t t t0 , 3.29a a b ab1 1 2 1 2( ) ( ) ( ) ( ) ( )

G G G =t t t 0, 3.30a b c1 2 3( ) ( ) ( ) ( )

G G G G = G G G G + G G G G
+ G G G G

t t t t t t t t t t t t

t t t t , 3.31
a b c d a b c d a c b d

a d b c

1 2 3 4 1 2 3 4 1 3 2 4

1 4 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

with the stochastic average of any odd number product being zero, and that for any even number product being
determined from sums of products of the G Gt ta b1 2( ) ( ).More explicitly equations (3.29), (3.30) and (3.31) show
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that the stochastic averages of a singleΓ is zero and the stochastic average of the product of twoΓ ʼs is zero if they
are different, and delta function correlated in the time difference if they are the same. In addition, the stochastic
averages of products of odd numbers ofΓ are zero, and stochastic averages of products of even numbers ofΓ are
the sums of products of stochastic averages of pairs ofΓ. At this stage, we just list theΓa via a=1,2,K, i(n),
where the total number i(n) is expected to depend on the number ofmodes n. It will turn out that =i n n2 2( ) .

3.2.9. TheUncorrelation property
An additional property is that any F g t( ˜( )) and the products of anyΓa(t+) at later times t+ are uncorrelated.

G G G G = ´ G G G GF g t t t t t F g t t t t t , 3.32a b c k l a b c k l1 2 3 4 1 2 3 4( ( )) ( ) ( ) ( ) · ·· ( ) ( ( )) ( ) ( ) ( ) · ·· ( ) ( ) 

where t1<t2, t3,K, tl.

3.2.10. The integral form of the Ito equation –theWiener increments
Togetherwith the stochastic averaging properties, the uncorrelation property and stochastic properties of sums
and products, an expression for the time derivative of the stochastic average of +F g g,( )  can be derived, which
involves the C g tp ( ( )) and B g ta

p ( ( )) Grassmann functions in the Ito stochastic equations. The Ito stochastic
equation for g tp ( ) can also bewritten in the integral form

åd d dw= + +g t C g t t B g t t , 3.33p
p

q
a

a
p

q a( ) ( ( )) ( ( )) ( ) ( )   

where

d d= + -g t g t t g t , 3.34p p p( ) ( ) ( ) ( )  

is aGrassmann stochastic increment, and theWiener stochastic variable wa andWiener increment are

ò òw dw= G = G
d

+
+

+
t dt t t dt t . 3.35a

t

t

a a
t

t t

a1 1 1 1
0

( ) ( ) ( ) ( ) ( ) 

An important result for the stochastic average of the product of twoWiener increments is

dw dw d d=+ +t t t, 3.36a b a b,( ) ( ) ( ) 

which can easily be derived using equations (3.35) and (3.29).
The following results for stochastic averages of products ofWiener increments can also be obtained,

dw dw dw d d d= =t t t t0 , 3.37a i a i b j a b ij,( ) ( ) ( ) ( ) ( )  

dw dw dw =t t t 0, 3.38a i b j c k( ) ( ) ( ) ( )  

dw dw dw dw dw dw dw dw dw dw dw dw

dw dw dw dw

d d d d d d d d d d d d d

= +

+

= + +

t t t t t t t t t t t t

t t t t

t . 3.39

a i b j c k d l a i b j c k d l a i c k b j d l

a i d l b j c k

ab ij cd kl ac ik bd jl ad il bc jk
2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

{ }( ) ( )

           
   

3.2.11. Relation between FPE and Ito equations’ quantities
By equating the time derivatives of the two averages in equations (3.25) and (3.26) for an arbitrary function

+F g g,( ) , the following important relationships betweenA andD in FPE, andC andB occurring in Ito SE are
found.

= -+ +C g g A g g, , , 3.40p
p( ) ( ) ( )

=+ + +B g g B g g D g g, , , . 3.41T
qp qp[ ( ) ( )] ( ) ( )

The detailed derivation is set out in [12].
The deterministic factorC in the Ito SE is easily obtained as the negative of the drift vectorA in the FPE (the

opposite sign to the boson case). As for bosons, the noise factorB is related to the diffusionmatrixD in the FPE
via =BB DT , but nowwith = -D DT . It is obtained via a construction process involving Takagi
factorization [55, 56].

From the bilinearity of the diffusionmatrix elements we canwrite (see appendix A, equation (A.4))

å=
=

D Q g g , 3.42pq

n

r s
rs
pq

r s

2

, 1

( )

whereQ is a ´n n2 22 2 complex and symmetricmatrix (from = -D Dpq qp) of c-numbers. The rows {p, r} and
columns {q, s} ofQ are listed as ¼ n1, , 2 2. Using Takagi factorization [55, 56]- with the columns ofK listed as
= ¼a n1, , 2 2 we canwrite
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å= =Q K K Q K K . 3.43T
rs
pq

a
r a
p

s a
q

, ,( ) ( )

Wechoose B ga
p ( ) in terms of c-numbers Kr a

p
, as a linear function of theGrassmann phase space variables

å=+

=

B g g K g, . 3.44a
p

n

r
r a
p

r

2

1
,( ) ( )

It is then easily shown that =BB DT
pq pq( ) , which solves the equation for the noise factorB.

Hence, we have now found amatrixB such that =BB DT . As there are 2n2 columns forK, it follows that the
number ofGaussian–Markov orWiener stochastic variables in the Ito equations is 2n2 also. This contrasts to the
smaller number 2n for the boson case.

From the linearity of the drift vector elements we canwrite it in the form (see appendix A, equation (A.7)).

å= -A g L g , 3.45p
r

r
p

r( ) ( )

where L is a ´n n2 2 matrix of c-numbers, with rows p and columns rwhich are listed as n1, 2 ..., 2 .
Hence, we have from equation (3.40)

å=+

=

C g g L g, . 3.46p
n

r
r
p

r

2

1

( ) ( )

3.2.12. Linear relation for Grassmann stochastic variables –TheQmatrix
By combining the results in equations (3.44), (3.46) for B ga

p ( ) andCp(g), the Ito stochastic equations can nowbe
written

d d d dw+ = å + + å

= å Q

+

+

g t t L t K t g t

t g t , 3.47

p r p r r
p

a r a
p

a r

r p r r

, ,

,

{ }( ) ( ) ( )

( ) ( ) ( )

 





where theWiener increment is òdw = G
d

+ +

+
t dt ta t

t t
a1 1( ) ( ) . Note there are 2n2 increments. The quantity in

bracketsQ +tp r, ( ) only involves c-numbers, and equation (3.47) shows there is a linear relationship involving a
c-number stochastic transformationmatrix between theGrassmann stochastic phase space variables at time t
and those at time t+δt. If the evolution between t0 and = +t tf n 1 is divided into small intervals  +t ti i 1with
i=0,K, n then

= å Q Q Q

= å L
¼

+
-
+ +g t t t t g t

t t g t

...

, . 3.48

p f r s z p r n r s n y z z

z p z f z

, , .. , , 1 , 0 0

, 0 0

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

 



This shows that the stochastic Grassmann variables atfinal time depend linearly on the SGV at earlier time via a
stochastic transformationmatrix that involves only c-numbers. A similar feature applies in PlimakCollett and
Olsen [22]. This linearity feature is only present for theB distribution. For the P distribution the drift vector
Cp(g) involves terms that depend cubically on theGrassmann variables. Although the P distribution function is
still equivalent to Ito stochastic equations, the third order feature of the drift vector results in the Ito equations
not being of use in numerical calculations [22, 24]. However, the P distribution function and its equivalent Ito
stochastic equations are still useful for formal theory.

The number of stochastic c-numberWiener increments involved is 2n2, which increases as square of
number ofmodes. A similar number of increments applies in theGaussian phase-space treatment developed by
Corney andDrummond [21].

3.2.13. QCFs, populations and coherences as stochastic averages
TheQCF, Fock state populations, coherences are now given by stochastic average of product of stochastic
Grassmann variables instead of phase space integrals. Thus

F = + +P l g t g t g t g t... ... , 3.49t l l l lp p1 1
( { }) ( ( ) ( ))( ( ) ( )) ( )   

F F = + +C m l g t g t g t g t; ... ... , 3.50t l l m mp p1 1
( { } { }) ( ( ) ( ))( ( ) ( )) ( )   

r = + + +Tr c c c c c c g g g g g g... ... ... exp ... . 3.51l l l m m m m m l lp q q p1 2 2 1 1 1
{(ˆ )(ˆ ) (ˆ ) ˆ (ˆ ) (ˆ )(ˆ )} ( ) ( ) ( · )( ) ) ( )† † †      

11

J. Phys. Commun. 4 (2020) 015015 NMKidwani and B JDalton



3.2.14. General equations of QCFs –Stochastic evolution of QCF, populations and coherences
By dividing the evolution between t0 and = +t tf n 1 into equal small intervals with d= ++t t ti i1 with
i=0,K, n, then using equation (3.47) in each factor for a product of the stochastic Grassmann variables at time

d+t ti , we can then place all the stochastic Grassmann variables for time ti together in order and finally take the
stochastic average of both sides to obtain the result

åd d d+ + + = Q Q Q

´
¼

+ + +g t t g t t g t t t t t

g t g t g t

... ...

... , 3.52

p i q i s i
x y u

p x i q y i s u i Stochastic Avg

x i y i u i

, ,
, , ,( ) ( ) ( ) [ ( ) ( ) ( )]

( ) ( ) ( ) ( )

  

  

where the uncorrelation property equation (3.32) - has been used. This shows that the stochastic average of
products of d+g t ti( ) at time d+t ti given by sums over stochastic averages of products of the c-number
stochastic quantities in the square bracket in equation (3.52) times stochastic averages of the various products of
g tz i( ) at time ti. The numbers of factors in such products of stochastic Grassmann variables is the same for times
ti and +ti 1. This enables a set of stochastic averages of products of Grassmann stochastic variables of a given order
to be propagated over a number of small intervals in succession froman initial time to afinal time. The c-number
quantities in the square bracket involveWiener increments and quantities determined from the FPE using
equations (3.40), (3.41), (3.42), (3.43), (3.44) and (3.46). The stochastic averages of products of the g tz 0˜ ( ) at the
initial timet0 are determined from initial density operator at time t0 using equation (3.51) (see [27],
equation (25)).

Thus, numerical calculations for the dynamical and thermal evolution of theQCF, Fock state populations
and coherences can be carried outwithout having to represent theGrassmann variables themselves on a
computer.

3.3. General numericalmethod
3.3.1. X vector for QCF of given order –Constructing thematrices a bX M,t ,( ) and d+X t t( ) for the general case
Wecan list the distinct g g g...p q s   and g g g...x y u   occuring in equation (3.52) in a standard
order -

+ + +g g g g g g... ...n n n1 1 1 2
      .

The distinct d d d+ + +g t t g t t g t t...p q s( ) ( ) ( )   and g t g t g t...x y u( ) ( ) ( )   become elementsX1,X2, ..,XN of

column vectors , so equation (3.52) involvesmatrixmultiplication.
The result is

=

d+ + +

X
X

X

M M M

M M M

M M M

X
X

X
.

..

..
.. .. .. ..

..
. . 3.53

N t t

N

N

N N N N t t
N t

1

2

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

1

2

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )

3.3.2. M matrix and stochastic average of sums of products of thetamatrices, permutation factors
Thematrix elements M p q s x y u, ,.., ; , ,..,{ } { } are given in terms of stochastic average of products ofΘ elements

å= Q Q Q ´ -m m m+
+ + +M t t t t... 1 3.54p q s x y u

P
p q s

P
, ,.., ; , ,.., , , ,x y u

( ) ( ) ( ) ( ) ( ) ( ){ } { }

where m m m=   P x y u, ,..,x y u( ) are permutations of x y u, , .., from the standard order x y u, , ..,{ },
and - = + -1 1, 1P( ) if permutation P of x y u, , .., is even, odd.

3.3.3. Equations forQCF in terms of M matrix
Wecan divide the evolution between t0 and = +t tf n 1 into small intervals  +t ti i 1with =i n0, .., so that


= ´ ´ ´

+
-
+ +X t M t M t M t X t... 3.55f n n 1 0 0( ) ( ) ( ) ( ) ( ) ( )

The vector

X tf( ) listing the stochastic averages of distinct products of h tp f( ) at time tf is given by successively

applyingmatrixmultiplication byMmatrices to vector

X t0( ) listing products of g tz 0( ) at time t0 —same

numbers as for g tp f( ) . The stochastic averages for

X t0( ) are determined from the initial density operator at

time t0.
Hence no computer representation ofGrassmann variables is involved, thus enabling numerical calculations

for dynamical and thermal evolution.
If the time increments are equal to dt and theMmatrices are the same, then equation (3.55) simplifies to

d


= ´


X t M t X t 3.56f
n

0( ) ( ( )) ( ) ( )
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3.3.4. Expression for M matrix in terms of eigenvalues and eigenvectors of M and MT

Let xm be the eigenvector ofMwith eigenvalueμ

x mx=m mM . 3.57( )

where the ξμ are normalized x x =m m 1T , whereT is the transpose operation.

Let ην be the column eigenvector ofMTwith eigenvalue ν

h nh=n nM . 3.58T ( )

The eigenvalues ofM,MTare the same ( n n- = -M I M IT∣ ∣ ∣ ∣)
A little algebrawill lead to

m h x n h x=m n m n ,T T( ) ( )

which if m n¹ could only be true if h x =m n 0.T Thus

h x d=m n m n. 3.59T
,( ) ( )

so the ημ, ξμ formbiorthogonal set.We have chosen the normof ημ such that h x =m m 1.T

Assuming that the eigenvectors ξν are linearly independent, one can then show that

å mx h=
m

m mM , 3.60T ( )

3.3.5. Time evolution ofQCFs in terms of eigenvalues and eigenvectors of M and MT–Expressions for powers of M
The square ofM is given by

mx h nx h mnx h h x

m x h

= å å = å

= å

m n m m n n mn m n m n

m m m

M

, 3.61

T T T T

T

2

2

( )

( )

wherewe have used the orthogonality relation of equation (3.59) and h x =n n 1.T

Generalizing the result of equation (3.61)wehave

å m x h=
m

m mM . 3.62n n T ( )

Since theΘmatrices equal the unitmatrix plus a correction of order δt, the eigenvalues ofMmay bewritten to a
good approximation as

m = m
dmr e , 3.63ia T ( )

we see that

å åx h x h= =
m

d
m m m

m
m m mm m dM e r e r , 3.64n ia n T T n ia T T T

T( ) ( ) ( )

whereT=nδT. For small δT, aμ∼1 and rμ¤1. This expression can beused in conjunctionwith equation (3.56)
to determine the time evolutionof the coherences andpopulations. InEqs. (3.63) and (3.64)wehavewritten the
time interval (tf− t0) and the time increment δt in suitable dimensionless units asT and δT (see section 4.2.1).

3.3.6. Case of symmetric M
In the case whereM is symmetric the eigenvectors ofM andMTare the same ξμ=ημ andwe nowhave the
simplified expressions

å

å

x x

x x

=

=

m

d
m m m

m
m m m

m

m d

M e r

M e r . 3.65

ia T T

n ia T T T
T

( )

( ) ( )

These expressions will be used to determine the finite time evolution of the coherence based on the analytic form
of theMmatrix.

4. Cooper pairmodel

4.1. Systemof two spin 1

2
fermions

Here, wewill treat a simple fourmode problem involving two spin 1/2 fermions in free space in order to test
Grassmann phase space theory numerically. For this case we can obtain analytic results to comparewith.Wewill
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consider the dynamical evolution of coherences between two distinct Cooper pair states in the situationwhere
the system is initially in one of these states, andwhere relaxation processes and external potentials are ignored. A
non-numerical initial treatment of how the two-fermion-number correlations develop, owing to coupling
between the two distinct Cooper pair states via the short-range interatomic interactions, is set out in [12, 24, 27].

4.1.1.Modes
The fourmodes involved are [12, 24, 27].

f f f f

f f f f

ñ = ñ ñ = ñ

ñ = ñ ñ = ñ
+ -

- + - -

,

, 4.1
k k

k k

1 , 2 ,

3 , 4 ,

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ( )

withmomenta- +k k, , spin components- +, and energiesω. Their spatialmode functions are given by

f f f f

f f f f

= á+ á ñ = = á- á ñ =

= á+ á ñ = - = á- á ñ = -

V
i

V
i

V
i

V
i

r r k r r r k r

r r k r r r k r

1
exp

1
exp ,

1
exp

1
exp , 4.2

1 1 2 2

3 3 4 4

( ) ( ∣ ∣)∣ ( · ) ( ) ( ∣ ∣)∣ ( · )

( ) ( ∣ ∣)∣ ( · ) ( ) ( ∣ ∣)∣ ( · ) ( )

where themode functions are box normalized in a volumeV=L3.
Themode annihilation operators are denoted

= = = =  -  - c c c c c c c c, , , . 4.3k k k k1 2 3 4ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )

Allowing for only the above fourmodes the field operators for spin+ and spin− fermions are

f f f fY = + Y = ++ -c c c cr r r r r r . 4.41 1 3 3 2 2 4 4
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

4.1.2. Hamiltonian
Hamiltonian dynamics will be considered based on equation (3.13), with coupling constant g describing the
interaction terms Infirst quantization the interaction between the fermions is given by

å d d= -a a

a

V
g

r r
2

, 4.5
i j

i j i j
,

,ˆ ( ) ( )¯

where r denotes space andα denotes spin  ,( ). a denotes the opposite spin toα. The free fermion kinetic
energy is given by

å=
a

aT
M

p
1

2
. 4.6

i
i
2ˆ ( )

Using the notation in equation (4.3) theHamiltonian can bewritten in second quantization

= +H H H , 4.70 1ˆ ˆ ˆ ( )

as the sumof one-fermion and two-fermion termswhere

w= + + +H c c c c c c c c , 4.80 1 1 2 2 3 3 4 4ˆ (ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( )† † † †

= + + + + + + +

+ + + +

H
g

V
c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c

c c c c c c c c c c c c c c c c

2

, 4.9

1 1 2 2 1 2 1 1 2 1 4 4 1 4 1 1 4 3 2 2 3 2 3 3 2 3 4 4 3 4 3 3 4

1 4 2 3 4 1 3 2 3 2 4 1 2 3 1 4

ˆ (ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( )

† † † † † † † † † † † † † † † †

† † † † † † † †

and w =  k M22 2 . Expressions for hij and νijkl are obtained using equations (3.14), (3.15) above. As the spatial
mode functions are planewaves, normalised in a boxV, consequently periodic boundary conditions based on
equation (4.2) result inmany terms being zero andmany terms being equal. The one-body terms are diagonal
and all equal. Several of the two-body terms are zero and the remainder are equal.. In terms of the general
notation in equations (3.14), (3.15), the non-zero hij and νijkl are

w= = = = h h h h , 4.1011 22 33 44 ( )
and

= = = = = =h h h h h h 0, 4.1112 13 14 23 24 34 ( )

n n n n n n n n k= = = = = = = = , 4.121212 2121 1414 4141 3232 2323 3434 4343 ( )

n n n n k= = = = , 4.131432 4123 3214 2341 ( )

withκ=g/V .
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4.1.3. Fock states
For the case ofN=2 fermions there are six different Fock states F ña∣

f f f

f f f

ñ = ñ ñ = ñ ñ = ñ

ñ = ñ ñ = ñ ñ = ñ

c c c c c c

c c c c c c

0 0 0 ,

0 0 0 , 4.14

1 1 2 2 3 4 3 1 4

4 2 3 5 1 3 6 2 4

∣ ˆ ˆ ∣ ∣ ˆ ˆ ∣ ∣ ˆ ˆ ∣
∣ ˆ ˆ ∣ ∣ ˆ ˆ ∣ ∣ ˆ ˆ ∣ ( )

† † † † † †

† † † † † †

The states F ñ3∣ and F ñ4∣ are degenerate Cooper pair states—involving two fermionswith oppositemomenta and
opposite spins. The states F ñ1∣ and F ñ4∣ are non-magnetic, having one fermion in a spin+mode and one fermion
in a spin−mode. The states F ñ5∣ and F ñ6∣ aremagnetic, with both fermions in either a spin+mode or a spin−
mode. These all have the same energy if fermion–fermion interactions are ignored.

4.1.4. Initial condition
Weconsider the casewhere the initial state is the pureCooper pair state F ñ3∣

r f f= ñá0 , 4.153 3ˆ ( ) ∣ ∣ ( )

with one fermion inmode f ñ+k∣ ( ) the other inmode f ñ- -k∣ ( ) . The initial condition shows that the only non-zero
initial stochastic averages are

= = -+ +
=

+ +
=g g g g g g g g1 , 4.16t t4 1 1 4 0 4 1 4 1 0( ) ( ) ( )       

The interaction term n c c c c1432 3 2 4 1ˆ ˆ ˆ ˆ† † with n = g V1432 couples theCooper pair state F ñ3∣ to the other Cooper pair
state F ñ4∣ , which has one fermion in themode f ñ-k∣ ( ) and the other inmode f ñ- +k∣ ( ) , so a non-zero coherence
between state F ñ3∣ and state F ñ4∣ should develop. This coherence is the one to be determined andwhose presence
indicates coupling betweenCooper pair states (eachwith two fermionswith oppositemomenta and spins) is
taking place. Thework of Plimak et al [22] shows that this leads to anomalous number correlations of the form
á ñ - á ñá ñ +  -  +  -n n n nk k k kˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) , for the four cases = - - -K L k k k k k k, , , , , ,( ) ( ) ( ) ( ) and -k k,( ). Non-
zero correlations for the (k, k) and - -k k,( ) cases are unexpected. The anomalous number correlations are due

to the fact that true energy eigenstate is of the form
F ñ F ñ

2
3 4∣ ∣

rather than just F ñ3∣ or F ñ4∣ [12, 24].

From the general results equations (3.49) and (3.50), the population for theCooper pair state f ñ3∣ and its
coherencewith theCooper pair state f ñ4∣ are given by

òF =

=

+ + + +

+ +

P dg dgB g g g g g g

g g g g

,

, 4.17

f
3 4 1 1 4

4 1 1 4

( ) ( )

( )   

òF F =

=

+ + + +

+ +

C dg dgB g g g g g g

g g g g

; ,

. 4.18

f
4 3 4 1 2 3

4 1 2 3

( ) ( )

( )   

4.1.5. TheQ- andQ+matrices
The Ito equations are given in [12] and [24] - (see equations (93), (94), andCorrigenda) andwill not be repeated
here. Because there is no cross-coupling between the gi and the

+g
j
in the diffusionmatrix, the overall number of

Wiener increments involved is 16, which is less than the expected number =n2 322 . TheWiener increments
have been numbered ¼1, 2, , 16.

From inspection of the Ito equationswe can then identify the elements of theΘmatrix equation (3.47) (refer
also to equations (3.44) and (3.45)) that link the stochastic phase space variables between times t and t+δt. This
matrix is given in two parts as follows, withΘ− linking the ¢g s andΘ+ linking the +¢g s.

wd dw dw dw dw

wd dw dw dw dw

dw dw wd dw dw

dw dw wd dw dw

Q =

- + + +

- + + +

+ - + +

+ - + +

l l

l l

l l

l l

-

4.19

i t

i t

i t

i t

1 2 3 4

1 0 0

0 1 0

0 1 0

0 0 1

1

2

3

4

2 1 11 2 3 14

2 6 16 2 8 9

2 8 9 2 1 11

2 3 14 2 6 16

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

   

   

   

   
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wd dw dw dw dw

wd dw dw dw dw

dw dw wd dw dw

dw dw wd dw dw

Q =

+ + + +

+ + + +

+ + + +

+ + + +

l l

l l

l l

l l

+

+ + + +

+ + + +

+ + + +

+ + + +

4.20

i t

i t

i t

i t

1 2 3 4

1 0 0

0 1 0

0 1 0

0 0 1

1

2

3

4

2 1 11 2 3 14

2 6 16 2 8 9

2 8 9 2 1 11

2 3 14 2 6 16

* *

* *

* *

* *

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

   

   

   

   

Thesematrices only involve c-numbers.Here l = k
i
.

Applying the theory presented in previous sections for the Ito stochastic equations gives the coherence
between the twoCooper pair states at time t=δt as

wd
l

dw dw wd
l

dw dw

l
dw dw

l
dw dw

F F = - + + ´ - + +

´ + ´ +

´

d=

+ + + +

+ +
=

C i t i t

g g g g

; 1
2

1
2

2 2

. 4.21

t t

Stochastic Avg

t

4 3 6 16 1 11

8 9 8 9

4 1 4 1 0

* *

⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪

⎡
⎣
⎢⎢
⎧⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬
⎭

⎧⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬
⎭

⎧⎨
⎩

⎫⎬
⎭

⎧⎨
⎩

⎫⎬
⎭

⎤
⎦
⎥⎥

( ) ) ( ) (

( ) ( )

( ) ( )   

   

   

Adirect evaluation of the stochastic average provides an expression for the short time behaviour of the
coherence. There are terms involving the stochastic averages of products of two, three and fourWiener
increments. Those involving three are always zero. Those involving four are sums of products of stochastic
averages of twoWiener increments. These are zero because those products involving dw dw¼, ,6 11  such as
dw dw dw dw dw dw= = =...6 11 11 6 11 9      are all zero. From equations (3.37)–(3.39), dw dw dw dw= =+ + + + 08 9 9 8    and
the only non-zero contributions are dw dw dw dw d= =+ + + + t8 8 9 9    . Using equation (4.16)we can obtain the
coherence between twoCooper pair states f ñ3∣ and state f ñ4∣ correct to order δt as

dF F =d= C g i V t; . 4.22t t4 3( ) ( ) ( )

This result demonstrates the onset of coherence between twoCooper pair states, onewith a fermion in each
of f +k, , f- -k, and other with a fermion in each of f -,k, f- +k, . Note that the result is independent of the free-
evolution frequencyω.

4.2. Analytical results
4.2.1. Elimination of free time evolution and dimmensionless time variables
From the formof the couplingmatrices we see that the free evolution for all fourmodes has the same frequency
ω, and aswe have just seenω does not appear in the result for the short time coherence. To simplify the
numerical calculation of the coherence, one can eliminate the free evolution frequencyω from the Ito stochastic
equations in [24] (see equations (93), (94), andCorrigenda).

Writing

= =w w+ + -h t g t e h t g t e, , 4.23i i
i t

i i
i t( ) ( ) ( ) ( ) ( )  

wefirst note that

=~ ~~ ~+ + + +
g g g g h h h h etc... , 4.24i k l m i k l m ( )  

for equal numbers of h and +
h .

Wealso introduce the dimensionless time variables δT given by dg V t( ) , and = T g V t( ) . TheWiener

increments dwa are replaced by dW
~

a , nownormalized in dimensionless interval δT.

4.2.2. Ito equations for new stochastic variables
Wecan then show that by substituting equation (4.23) into the Ito equations (see equations (93) and (94) and
Corrigenda in [24])
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d d

d d

d d

d d

+ = Q + Q + = Q + Q

+ = Q + Q + = Q + Q

+ = Q + Q + = Q + Q

+ = Q + Q + = Q + Q

- - + + + + +

- - + + + + +

- - + + + + +

- - + + + + +

h T T h T h T h T T h T h T

h T T h T h T h T T h T h T

h T T h T h T h T T h T h T

h T T h T h T h T T h T h T

, ,

, ,

, ,

, . 4.25

1 1,1 1 1,3 3 1 1,1 1 1,3 3

2 2,2 2 2,4 4 2 2,2 1 2,4 4

3 3,1 1 3,3 3 3 3,1 1 3,3 3

4 4,2 2 4,4 4 4 4,2 2 4,4 4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

     

     

     

     

where, with the newWiener increments defined by dW
~
= dw´g V , the non zeroQa b

-
, are

d d d d

d d d d

d d d d

d d d d

Q = + W + W Q = W + W

Q = + W + W Q = W + W

Q = W + W Q = + W + W

Q = W + W Q = + W + W

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

- -

- -

- -

- -

i i

i i

i i

i i

1
1

2
,

1

2
,

1
1

2
,

1

2
,

1

2
, 1

1

2
,

1

2
, 1

1

2
, 4.26

1,1 1 11 1,3 3 14

2,2 6 16 2,4 8 9

3,1 8 9 3,3 1 11

4,2 3 14 4,4 6 16

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

andQ = Q+ -
i j i j, , *( ) and d dW  W

~ ~+
.i i This eliminatesω from the calculation.

4.2.3. Two bodyQCF –special QCF for Cooper pair states populations and coherences
The F FC ;4 3( ) coherence is then given by

F F =
+ +

C h h h h; . 4.274 3 4 1 2 3( ) ( )   

In terms of the newquantities the coherence for a small time interval with dT 1 is nowbased on the general
expression

d d d d

d d d d

F F = + W + W ´ + W + W

´ W + W ´ W + W

´

~ ~ ~ ~

~ ~ ~ ~

d=

+ + + +

+ +
=

C
i i

i i

h h h h

; 1
1

2
1

1

2

1

2

1

2

, 4.28

T T

Stochastic Avg

T

4 3 6 16 1 11

8 9 8 9

4 1 4 1 0

* *

⎡
⎣⎢
⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭
⎤
⎦⎥

( ) ( ) ( )

( )
( )

( )
( )

( ) ( )   

where =
+ +

=h h h h 1.T4 1 4 1 0( )   
Applying the same stochastic averaging techniques as in section 4.1.5, we confirm that the short time

coherence between twoCooper pair state f ñ3∣ and state f ñ4∣ correct to order δt is

d dF F = =d= C
i

T g i V t;
1

. 4.29t t4 3( ) ( ) ( )

As afirst test of numerical calculations usingGrassmann phase space theory wewill evaluate the coherence
numerically for a small time interval with δT=1 based on the expression in equation (4.28).

4.2.4. Analytic results for the M matrix in terms of dimensionless time increment
For the Fock states f ñ3∣ and state f ñ4∣ the populations are specified byX15,X22 and coherences byX16,X21.

= = F = = F F = = F F

= = F

+ + + + + +

+ +

X h h h h P X h h h h C X h h h h C

X h h h h P

; ; ; ; ;

.

15 4 1 1 4 3 16 4 1 2 3 4 3 21 3 2 1 4 3 4

22 3 2 2 3 4

( ) ( ) ( )

( )

           

   

Coherences and populations invoving the other four Fock states f ñ1∣ , f fñ ñ,2 5∣ ∣ and f ñ6∣ are specified by other
Xk ʼs. A list of all the components of theX vector is given in appendix B.

Our focus is on determining the coherence between f ñ3∣ and f ñ4∣ , given byX16. As only the population of
f ñ3∣ , given byX15 is initially non-zero, then the short-time coupling to the coherenceX16 will be determined by
thematrix elementM(16,15). Hencewefirst determine thismatrix element, using the same approach as in
section 4.1.4.
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d d d d

d d d d

d d d d

d d

d d
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= - + W + W + W + W

´ W + W W + W
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=
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This shows that the populationX15 is coupled to the coherenceX16 to order δT. Using a similar approachwe can
evaluate all the elements in the column 15 for theMmatrix. This shows that the only non-zero elements in this
column areM(15, 15),M(16,15),M(21, 15) -M(22,15) is zero, so the populationX15 is also coupled to the other
coherenceX21 and to itself to order δT.We can then similarly evaluate all the elements in the column 16 tofind
that the only non-zero elements areM(15, 16),M(16, 16),M(22, 16) -M(21,16) is zero, so the coherenceX16 is
also coupled to the populationsX22 andX15 and to itself to order δT . Continuing in this waywefind that for
columns 15, 16, 21 and 22 of theMmatrix the only non-zero elements are M M M15, 15 , 16, 15 , 21, 15( ) ( ) ( )
andM(22,15)(=0) ;M(15, 16),M(16, 16),M(21,16)(=0) andM(22, 16);M(15, 21),M(16,21)(=0),M(21, 21)
andM(22,21); andM(15,22)(=0),M(16, 22),M(21, 22) andM(22,2). Some elements are of order δT2, and these
are zero to order δT. Results for the evaluation of the elements in column 15 -M(15, 15),M(21, 15),M(22,15),M
(36,15) are typical, and can be found in appendix C. Thismeans that coherences and populations other than
those specified byX15,X22 andX16,X21 will not be coupled to the initial populationX15 , so only the 4×4 sub-
matrix ofM specified by these elements will be required to determine the evolution of the populationsX15,X22

and coherencesX16,X21. This savedwasting time determining numerically all 36×36 elements of M.
To show thismore formally to be the case forfinite time d=T n T· wehave (in an obvious notation)

=X T M u v M v w M y z M z X, , ....... , , 15 0 4.31u 15( ) ( ) ( ) ( ) ( ) ( ) ( )

where the column or row indices v, w,K, y, z are summed over. If the elements in the column 15 forM are zero
except for those in rows z=15, 16, 21, 22 then in thefirst stepM(z,15)X15(0)will only be non-zero for z=15,
16, 21, 22. If in addition the elements in columns 16, 21, 22 are also zero except for those in rows y=15, 16, 21,
22 then after the second stepM(y,z)M(z,15)X15(0)will only be non-zero for y=15, 16, 21, 22. Sowith all
elements in the columns 15, 16, 21, 22 zero except for those in rows 15, 16, 21, 22, we see that subsequent steps
leading toXu(T) can only give a non-zero result for u=15, 16, 21, 22. This shows that if all elements of the 15,
16, 21, 22 columns ofM are zero outside of those in the 4×4 submatrix with these columns andwith rows 15,
16, 21, 22, then the evolution from the initial state f ñ3∣ (corresponding toX15(0)=1) could only give non-zero
results for the populations and coherences of f ñ3∣ and state f ñ.4∣ Hence this confirms that only the elements
within the 4×4 submatrix ofMwith rows and columns 15, 16, 21, 22 are relevant to the evolution of these
populations and coherences.

4.2.5. Symmetry ofmatrix M
When evaluated analytically thematrixM can be shown to be symmetric. If thematrix elementMα,β is given by

= Q Q Q Q -b
- - + +M 1 , 4.32a i j k l m n p q

P
, , , , ,· · · · ( ) ( )

thenMβ,α is obtained via

= Q Q Q Q -b a
- - + +M 1 . 4.33j i l k n m q p

P
, , , , ,· · · · ( ) ( )

Also, ifMα,β=0 thenMβ,α=0 . Although theQ
a b, may involve differentWiener increments dW

~ 
r( ) to those in

theQ
b a, they can be seen to be in one-one correspondence, sowhen stochastic averaging occurs the outcome is

the same. This leads to the symmetry result

=b bM M . 4.34a a, , ( )

A comparison of the expressions forM15, 16 andM16,15 illustrates the situation.
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4.2.6. Expression for 4× 4 submatrix of M
Using the analytic results for the 16 elements of the 4×4 submatrix in termsof dimensionless time increments given
in section 3.2.6 and apppendixC,weobtain its analytic form forCooper pair states populations and coherences.With

=

d

X
X
X
X

M M M M

M M M M

M M M M

M M M M

X
X
X
X

, 4.35

T

15

16

21

22

15,15 15,16 15,21 15,22

16,15 16,16 16,21 16,22
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( )

and l = g i V , the analytic formofM is given by

d d
d d
d d

d d

=

-
-

-
-

M

i T i T

i T i T

i T i T

i T i T

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

, 4.36

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
( )

after dimensionless units defined by d d=


T t
g

V
have been introduced.Note that the analytic formofM is indeed

symmetric.

4.2.7. Analytic results for eigenvalues, eigenvectors for the 4×4 M submatrix
For the analytic formofM given in equation (4.36), the eigenvalues and the eigenvectors are

m d m d m d m d= + = + = + = -i T i T i T i T1 2 , 1 .0 , 1 .0 , 1 2 4.371 2 3 4 ( )

corresponding respectively to the normalized eigenvectors

x x x x=

-
+
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= = =
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+
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Hence the quantities defined in equation (3.63) are r1=r2=r3=r4=1
and = = = = -a a a a2, 0, 0, 2.1 2 3 4

4.2.8. Finite time evolution for the F FC ;4 3( ) coherence
Using equation (3.65) above onefinds for M n

16,15( )

å=

=
+ -

+
- -

+
+

+
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d
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sin 2 . 4.40
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Hence

f f =

=

C M X

i
T

;

1

2
sin 2 , 4.41

n
4 3 16,15 15 0( ) ( ) ( )

( )

since =X 1.15 0( ) The result in equation (4.41) is in dimensionless units. Thus the analytic formof thefinite time
coherencehas a sinusoidal timedependence.We see that the coherencedoesnot dependon the free evolution
frequencyω, confirming the correctness of the above eliminationof the free time evolution.The short time coherence
in equation (4.29) is easily confirmedby replacingTby δT. Thefinite time coherence result in equation (4.41) can also
beobtained via a standardmatrixmechanics treatment basedon theHamiltonian in equation (4.9).

4.3. Numerical results
As indicated above,wehave introduced a dimensionless time variable δT givenby dg hV t( ) , and the coherencewill

nowbe calculatednumerically in the case of the short time regime for various δT. ThenewWiener increments dW
~

a

arenormalized as in equation (3.36), but nowwith the interval being the dimensionless quantity δT. The stochastic
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average in equation (3.52)or (4.28) that is involved in calculating the coherence as a functionof dimensionless time
δTwill nowbe carried out numerically basedon the fundamental definition (equation (3.25))of a stochastic average.
The result for short time δT should be proportional to δT (with a factor 1/i). The calculationswere carried out using
MatLab,which allowedus to run six labs in parallel. The stochastic averagingwas carried out overm=1000
trajectories in each lab, and in each trajectory the normalizedWiener increments are obtainedusing theMatLab
commandmvnrnd. forwhich themean values of the randomvariables is set as zero and the covariance is set to
dT . TwootherMatLab commands canbeused for the samepurpose, namely normrnd and randn forwhich the

meanvalues of the randomvalues is set to zero and the standarddeviation is set to dT .Wedisplay a plot of the
numerically calculated coherence between statesf3 andf4 for various choices of δT inunits of 1/i and for cases of
m=1000 trajectories in each case. The analytic result fromequation (4.29) is also shown.The results have shown
that the numerical calculationof the coherence agreeswellwith the analytic formula.

We then calculate the same coherence, but now for afinite time interval withT ranging from0 toπ and based
on using equations (3.65), andwith the same initial condition.Wewill compare the result with the analytic
expression given by equation (4.41). All calculations were carried out using a standard desk-top computer with
parallel processing facilities.

4.3.1. Numerical stochastic calculations of elements in 4×4 M submatrix –d =T 0.01
In this section theMmatrix is now calculated stochastically based on the formula (3.54) set out in section 3.3.2.
The programming issues are discussed below in appendixD.Here wewill only present results. Table 1 shows
typical results for the elementsM(15, 15),M(15, 16),M(15, 21) andM(15, 22) in the row 15 of the important
4×4 submatrix ofmatrixMwhen the time increment is δT=0.01, and for the parallel processing run over six
labswhere the ensemble size wasm=1000 in each lab. The table shows the percentage error (std error, average
error) is given by themagnitude of the difference between the stochastically determined value and the analytic
value, expressed as a percentage of the analytic value. The standard deviation is defined in the usual way based on
the difference in the results for each of the six labs from the analytic result, again expressed as a percentage of the
analytic result. The overall averages for each element are also given aswell as an estimate of their percentage
errors. The tables for rows 16, 21 and 22 of the 4×4 submatrix ofM are set out in appendix C.

4.3.2. The numerical stochastic result for the ´M4 4 submatrix
The numerical calculation for thematrixM 4×4 submatrix for δT=0.01 gave the following result.

=

- - - + +
- - - + +

+ + - - -
+ + - - -

4.42

M

i i i i
i i i i
i i i i

i i i i

15 16 21 22

1.00053 0.000606438 0.0000128197 0.00999841 0.0000186773 0.0103732 0.000102075 0.
0.000011952 0.010018 1.00053 0.000606438 0.000107978 0. 0.0000186773 0.0103732

0.0000281993 0.0096536 0.000096366 0. 1.00053 0.000606438 0.0000128197 0.00999841
0.000103714 0. 0.0000281993 0.0096536 0.000011952 0.010018 1.00053 0.000606438

15
16
21
22

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

( )

Table 1.Table shows thenumerical results for the imag and real parts ofM(15, 15),M(15, 16),M(15, 21),M(15,22) across the 6parallel processing
labs. The resultswere obtainedusing theMatLabparallel processingprogram forM4×4matrix.The averagematrix element, the average error
and theσ error are also shown for eachof thesematrix elements. The remaining elements ofRows 16, 21, 22 are given in appendixC, tablesC1–C3
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Equation (4.42) shows theMmatrix containing the numerical results for the imag and real parts ofM(15,
15),M(15, 16),M(15, 21),M(15, 22) across the 6 parallel processing labs for δT=0.01.

Inspectionof the above 4×4 submatrix ofM in equation (4.42) reveals certain symmetries in thenumerical
results.Namely, thematrix elementM(15, 15) is equal in value to that ofM(16, 16) and so is the case forM(21, 21) and
M(22, 22),M(15, 16) andM(21, 22) and (M21, 15) andM(22, 16). The explanationof this is given in appendixC.3.

4.3.3. Numerical results for eigenvalues, eigenvectors for the ´ M4 4 submatrix
For reasons described in section 4.2.4 only the elements of the 4×4 submatrix ofM for rows 15, 16, 21 and 22
needed to be determined numerically, resulting in thematrix shown in equation (4.42). The eigenvalues,
eigenvectors of thismatrix and its transposewill nowbe determined.

The tables 2–4 present the numerical results for the normalized eigenvectors for the stochastically
determinedM andMT alongwith the eigenvalues and other quantities. In addition the results of calculating the
Mmatrix using equation (3.60) is also shown. The result for theMmatrixmay be comparedwith that in the
analytical formofM given by equation (4.36).

Numerical results for the eigenvalues of the 4×4M (orMT)matrix

Numerical results for the normalized eigenvectors of the 4×4M submatrix

Numerical results for the normalized eigenvectors of the 4×4MT submatrix

Table 2.Table shows the eigenvalues for the numerically calculatedM or (MT) from thematrix as in tables 1 andC1–C3, (see also
equation (4.42)). The results were obtained using theMatLab parallel processingM 4×4matrix program for δT=0.01 andm=1000. A
separateMathematica notebookwas used for the biorthogonality calculation.

MatrixMorMT

U=1 U=2 U=3 U=4

1.000 459 204 7
+0.019 408 740 2i

1.000 639 455 6
−0.000 607 701 2i

1.000 616 958 6
−0.000 605 173 6i

1.000 387 182 9

−0.020 621 617 2i

Table 3.Table shows the normalized eigenvectors for the numerically calculatedM 4×4matrix as in tables 1 andC1–C3 . The results were
obtained using theMatLab parallel processingM 4×4matrix program for δT=0.01 andm=1000. A separateMathematica notebook
was used for the biorthogonality calculation.

MatrixMNormalised Eigenvectors

ξ1 ξ2 ξ3 ξ4

− 0.508 654 768 3
−0.000 020 846 2i

0.519 242 300 4
+0.001 293 334 9i

− 0.497 842 037 4
+0.001 091 514 6i

0.508 651 874 0
+0.000 231 187 0i

0.509 155 519 3
+0.000 195 526 0i

0.498 329 763 6
−0.001 010 689i

0.519 755 336 32
+0.001 260 703 4i

0.509 152 537 3
−0.000 102 135 4i

− 0.490 691 741 0
+0.000 208 146 2i

0.480 264 246 1
−0.001 485 615 6i

0.500 908 580 4
+0.001 124 057 0i

−0.490 694 810 7
+0.000 098 521 8i

0.491 174 797 0
−0.000 016 330 4i

0.501 405 244 5
+0.001 088 122 7i

0.480 733 091 5
+0.001 403 908 5i

−0.491 177 872 0
+0.000 246 859 8i

Table 4.Table shows the normalized eigenvectors for the numerically calculatedMTas in tables 1 andC1–C3 . The results were obtained
using theMatLab parallel processingM 4×4matrix program for δT=0.01 andm=1000. A separateMathematica notebookwas used
for the biorthogonality calculation.

MatrixMTNormalised Eigenvectors

η1 η2 η3 η4

− 0.491 492 446 8
+0.000 008 370 5i

0.501 728 459 0
+0.001 101 114 5i

− 0.481 044 734 4
+0.001 397 193 8i

0.491 495 265 5
−0.000 235 159 7i

0.491 009 081 6
−0.000 200 318 2i

0.480 573 894 8
−0.001 474 801 1i

0.501 233 261 4
+0.001 132 730 4i

0.491 011 888 4
−0.000 086 737 4i

−0.509 484 794 0
−0.000 203 914 7i

0.498 651 046 9
−0.000 999 125 8i

0.520 092 231 9
+0.001 269 764 3i

−0.509 481 537 1
−0.000 114 495 0i

0.508 983 722 1
+0.000 029 113 8i

0.519 577 008 9
+0.001 306 896 3i

− 0.498 164 765 8
+0.001 084 326 0i

− 0.508 980 547 2
−0.000 243 618 0i
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Numerical results for quantities r a,

The results in table 5 are used in the calculations of thefinite time behaviour of the coherenceC(f4;f3).

4.3.4. Numerical re-determination of ´ M4 4 matrix
In this subsectionwe confirm that the eigenvectors and eigenvalues forM andMT are accurate enough to
reconstruct via (3.60) the originalmatrixM fromwhich theywere obtained. This is an important check for the
accuracy of the numerical determination of the finite time behaviour.

After the nomalization of the eigenvectors of thematricesM andMT, the re-determinedmatrixM is given by

The results in table 6 for thematrix elements of the 4×4 submatrix ofMmay be comparedwith
equation (4.42) and confirm that the expression in equation (3.60) in terms of the normalized eigenvectors and
eigenvalues results in anMwithmatrix elements which are consistent with the numerical stocahasticmatrix
elements listed in equation (4.42).

4.3.5. Numerical results for short time coherence f fC ;4 3( ) –effects of dm T,
In this subsectionwe consider the effect on the accuracy of the numerical results for the short time coherence of
varying the ensemble size for the stochastic calculations and of changing the time interval. It was expected that
the accuracywould improve as the ensemble size becomes larger, and that for a given ensemble size the accuracy

Table 5.Table shows the values of au and ru (refer to equations (3.63), (3.65)) for theM
4×4matrix. The results were obtained using theMatLab parallel processingM 4×4
matrix program for δT=0.01 andm=1000. A separateMathematica notebookwas
used for the biorthogonality calculation.

au and ru values

a1 a2 a3 a4

1.939 739 854 8 −0.060 731 285 6 −0.060 480 046 1 −2.061 071 704 0

r1 r2 r3 r4
1.000 647 450 2 1.000 639 640 1 1.000 617 141 6 1.000 599 703 5

Table 6.Table shows the elements of the numerically calculatedM using equation (3.60) and the eigenvectors shown in tables 3 and 4.
The eigenvalues used are as in table 2. The results were obtained using the parallel processingMatLabM 4×4matrix program for
δT=0.01 andm=1000.

NumericalMMatrix

C 15 C 16 C21 C22

R 15 1.000 526−0.000 06i −0.000 013−0.009 998i 0.000 019+0.010 373i 0.000 102+0.i
R16 −0.000 012−0.010 018i 1.000 526−0.000 606i 0.000 108+0.i 0.000 019+0.010 373i
R21 0.000 028+0.009 654i 0.000 096+0.i 1.000 526−0.000 606i −0.000 013−0.009 998i
R22 0.000 104+0.i 0.000 028 2+0.009 654i −0.000 012−0.010 018i 1.000 526−0.000 606i

Table 7.Table shows the std error for the numerically calculated imag(C) across the 6 parallel processing labs, for δT=1. The results were
obtained in run1 for theMatLab parallel processingC(f4;f3) program for d ÎT 0, 0.01[ ] andm=100,300,,1000.
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would improve as the time interval gets shorter. This informationwill become important in determining what
ensemble sizes and time intervals will be suitable for numerical applications onmore complex fermion systems.

Table 7 shows that for this δT range the% error decreases as the ensemble size increases. For ensemble size
m=1000, the avg%error is approximately 2.8%. The analogous results for a second run of the calculations
(Run_2) are given in table C4 in appendix C.

Figures 3 and 4 display the behaviour of the numerically calculated imag(C) and real(C) for various time
intervals and various ensemble sizes, alongwith the analytic results. The time interval is small, δT=1.

The twofigures show that for this δT range the error decreases as the ensemble size increases. For ensemble
sizem=1000, the stochastically calculated coherenceC(f4;f3) is in agreement with the analytic result with an
average std error of approximately 4% for the two program runsmade. Thefigures also show that the error
increases as δT increases, specially for smaller ensemble sizes. The error in bothReal(C) and Imag(C) are of order
10−4 at δT∼0.01withm=1000.

Figure 5 displays the results in a different way, showing the% error inC(f4;f3) for two time intervals
δT=0.01 and δT=0.001 , but based on different ensemble sizes.

Figure 3. Figure shows the behaviour of the numerically calculated imag(C) and the analytic imag(C) versus δT for δT=1. The results
were obtained using theMatLab parallel processingC(f4;f3) program for d ÎT 0, 0.01[ ] andm=100, 300, 1000.

Figure 4. Figure shows the behaviour of the numerically calculated real(C) and the analytic real(C) versus δT for δT=1. The results
were obtained using theMatLab parallel processingC(f4;f3) program for d ÎT 0, 0.01[ ] andm=100, 300, 100.
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Thefigure shows that for both δT values, the percentage error increases as δT increases, and it approximately
scales inversely as m for each δT.

4.3.6. Numerical results for finite time coherence –based on 4×4 M for d =T 0.01
In this subsectionwe consider the accuracy of the numerical results for the finite time coherence for the
stochastic calculations using equations (3.25) and (3.64)with ensemble sizem=1000 andwithM 4×4
submatrix determined for time interval δT=0.01.

Figures 6 and 7 display the behaviour of the numerically calculated imag(C) and real(C) for various time
intervals and various ensemble sizes, alongwith the analytic results. The time interval is no longer small, δT∼1.

The twofigures show that the numerically calculated coherenceC(f4;f3) based on imag M 16, 15 n( ( )) and

real M 16, 15 n( ( )) is in good agreementwith the analytical result. Figure 7 appears to show that the numerically
calculated real M 16, 15 n( ( )) for the coherence though still small, is larger than expected. However the scale for

Figure 5. Figure shows the percentage error forC(f4;f3) for different ensemble sizesm=10, 100, 1000, for δT=0.001 and
δT=0.01.

Figure 6. Figure shows the behaviour of the numerically calculated imag M 16, 15 n( ( )) and the analytic imag M 16, 15 n( ( )) versusT
for thefinite time calculation. The results were obtained using theMatLab parallel processingM 4×4 program for δT=0.01 and
m=1000.
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figure 7 is considerably smaller than that forfigure 6 of imag M 16, 15 n( ( )) versusT. In bothfigures the
difference from the analytic results is of order 0.1.

4.3.7. Conclusion about the numerical test
The fourmodeCooper pair systemhas been treated usingGrassmann phase space theorymethods. The
stochastic calculations for the short time behaviour and the finite time behaviour forC(f4;f3) have been
performed and have validated the approach by agreeingwell with the corresponding analytic results for different
choices of time interval. However, thework on this simple problemhas indicated that the desk top computer
(although parallel processingwas used)would be inadequate formore complex calculations, and that the
supercomputer facility will be needed.

5. Summary and conclusion

In this paper we have outlined the theoreticalmethods used in cold atomphysics and described phase space
theory approaches, including the recently developedGrassmann phase space theory for fermions. A brief
overview of the physics for cold atomphysics, focusing on the BEC/BCS crossover in Fermi gases that is of
particular interest for applyingGrassmann phase space theorywas presented.We have set out the key equations
inGrassmann phase space theory and described hownumerical calculations inGPST can be carried out.We
then appliedGPST to a simple fourmodeCooper pairmodel to test the validity of the stochastic approach by
comparing the numerical results to the analytic results for the short and finite time behaviour of a coherence
between two Fock states. In this first correct numerical application of GPST to a fermion problem,we have
found the numerical stochastic calculations based onGPST and the known analytic results for the fourmode
Cooper pairmodel to be in good agreement, indicating thatGPST is a valid approach. Furthermore, we have
shown that GPST can be applied in stochastic calculations without the need to represent Grassmann variables on
the computer. Numerical calculations are feasible becauseGrassmann stochastic variables at later times are
related linearly to such variables at earlier times via c-number stochastic quantities. GPST should be applicable
to topics involving larger numbers ofmodes and fermion numbers, though such applicationmay require using a
super-computer with parallel processing capabilities. Large fermion number applications could be based on
using theGrassmannfield version ofGPST, which has also been developed (see [12, 25–27]).
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Figure 7. Figure shows the behaviour of the numerically calculated real M 16, 15 n( ( )) and the analytic real M 16, 15 n( ( )) versusT for
the finite time calculation. The results were obtained using theMatLab parallel processingM 4×4 program for δT=0.01 and
m=1000.
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AppendixA.Drift, Diffusion in terms ofHamiltonian quantities

A.1. Newdrift, diffusion parameters L,M

Wenowwrite (see equations (3.22), (3.23) and (3.24))

å å= - =-- -- ++ ++ + +g g g g, , A.1ij
kl

ikjl k l ij
kl

ikjl k l
F M F M ( )

å å= =-+ -+ + +- +- +g g g g, , A.2ij
kl

ikjl k l ij
kl

ikjl k lF M F M ( )

where --M , ++M , -+M and +-M are four n2×n2 c-numbermatrices. Also, we introducematrices L−, L+

via (see equations (3.20) and (3.21))

å å= - = -- - + +A L g A L g . A.3i
j

ij j i
j

ij j ( )

A.2. Formof diffusionmatrix D anddrift vector A
Bywriting the diffusionmatrix elements in the form

å=
=

D Q g g , A.4pq

n

r s
rs
pq

r s

2

, 1

( )

one can see thatQ is a ´n n2 22 2 complex and symmetricmatrix (from = -D Dpq qp), where rows are listed
as p, r and columns listed as q, s. The non-zero elements ofQ can be identified from the following table

--

+ + -+

+ + +-

+ + + + ++

g g g g Q

g g g g

g g g g

g g g g

g g g g

p q r s rs
pq

i j k l ik jl

i j k l ik jl

i j k l ik jl

i j k l ik jl

M

M

M

M

From the explicit expressions in equations (3.22), (3.23), and (3.24)we see that -- ++,M M are symmetric
and -+ +-,M M areHermitian.

Note that in each ´n n2 2 sub-matrix ofQ, the rows p r, are in one-one correspondencewith the various
i k, and the columns q s, are in one-one correspondencewith the various j, l. The i, k, j, l only run from1,K, n.
and p, q, r, s=1,K, 2n. For each rowwith a given form for gp and gq, thematrix elementQrs

pq is given by the
stated ikjl

ABM when gr and gs are given in the same row, and zero otherwise. For example, with p and q both in the

range ¼ n1, , thematrix element rs
pqM vanishes if either r or s is in the range + + ¼n n n1, 2, , 2 , since- --Fij

does not involve any +g
k
or +g .

l
Although thematrixQ could in principle have n2 2( ) rows and n2 2( ) columns,

with row and column indices as the joint quantities p, r or q, s, most of the elementswould be zero. Taking this
into account, thematrixQ is only required to have 2n2 rows and 2n2 columns and can be formatted as

=
-- -+

+- ++Q A.5M M

M M

⎡
⎣⎢

⎤
⎦⎥[ ] ( )

where the rows are listed in each n2×n2 submatrix asik and the columns are listed as jl. For each submatrix

ikjl
ABM , specifying an element by ik (row) and jl (column) uniquely specifies the element forQ via the pr (row) and

qs (column) indices (from the 4× 4 table forQ). An example for n=2 illustrates the procedure:

 p r q s, , , 11 12 21 22 33 34 43 44

11
12
21
22
33
34
43
44

A.6( )

Furthermore, bywriting the drift vector in the form

å= -A g L g , A.7p
r

r
p

r( ) ( )
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L is a 2n×2n c-numbermatrix with rows p and columns r listed as 1,2,K, 2n. The non-zero elements of L can
be identified from the following table

-

+ + +

g g L

g g L

g g L

p r r
p

i j ij

i j ij

where = ¼i j n, 1, , and = ¼p r n, 1, , 2 . For each rowwith a given form for gp, thematrix element Lr
p is given

by the stated Lij
Awhen gr is given in the same row, and zero otherwise. For example, with p in the range 1,K, n the

matrix element Lr
p is zero if r is in the range n+1, n+2,K, 2n, since- -

iC does not involve any +g
j
. The

matrix L has 2n rows and 2n columns, as the row and column indices are the joint quantities p and r. Thus, the
matrix Lmay be formatted as

=
-

+L
L

L
0

0
A.8

⎡
⎣⎢

⎤
⎦⎥[ ] ( )

where the rows are listed in each n × 1 submatrix as i and the columns are listed as j. Again, for each submatrix
an element specified byi (row) and j (column) can also be listed for L via p (row) and r (column), where for each
submatrix ij uniquely specifies p, r. An example for n=2 illustrates the procedure:

=

 

L

p r, 1 2 3 4

1 0 0
2 0 0
3 0 0
4 0 0

A.9[ ] ( )

A.3.Drift Vector and diffusionmatrix terms for theCooper pairmodel
The drift and diffusionmatrix quantities are obtained from equations (3.20) to (3.24), noting that there are no
relaxation terms In terms of quantities defined in section 4.1.2we have (see [12], p211-212)

w w w w= = = =- - - -i g i g i g i g , A.101 1 2 2 3 3 4 4C C C C ( )

w w w w= - = - = - = -+ + + + + + + +i g i g i g i g . A.111 1 2 2 3 3 4 4
C C C C ( )

k k

k k

k k

k k

= = = = +

= = = + =

= = + = =

= + = = =

-- -- -- --

-- -- -- --

-- -- -- --

-- -- -- --

 

 

 

 

i
g g

i
g g g g

i
g g

i
g g g g

i
g g g g

i
g g

i
g g g g

i
g g

0 0 ,

0 0,

0 0 ,

0 0. A.12

11 12 2 1 13 14 4 1 2 3

21 1 2 22 23 3 2 1 4 24

31 32 2 3 4 1 33 34 4 3

41 1 4 3 2 42 43 3 4 44

F F F F

F F F F

F F F F

F F F F

( )

( )

( )

( ) ( )

k k

k k

k k

k k

= = - = = - +

= - = = - + =

= = - + = = -

= - + = = - =

++ ++ + + ++ ++ + + + +

++ + + ++ ++ + + + + ++

++ ++ + + + + ++ ++ + +

++ + + + + ++ ++ + + ++

 

 

 

 

i
g g

i
g g g g

i
g g

i
g g g g

i
g g g g

i
g g

i
g g g g

i
g g

0 0 ,

0 0,

0 0 ,

0 0. A.13

11 12 1 2 13 14 1 4 3 2

21 2 1 22 23 2 3 4 1 24

31 32 3 2 1 4 33 34 3 4

41 4 1 2 3 42 43 4 3 44

F F F F

F F F F

F F F F

F F F F

( )

( )

( )

( ) ( )

and

= = =-+ +- i j0, 0, , 1, 2, 3, 4. A.14ij ijF F ( )

From these results thematrix elements for the sub-matrices --M , ++ -+,M M and +-M can be obtained. The
results for non-zero elements are

l= = = = = = = =-- -- -- -- -- -- -- -- ,1122 2211 1144 4411 3322 2233 3344 4433M M M M M M M M

l= = = =-- -- -- -- , A.151342 4213 3124 2431M M M M ( )
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with

l
k

k w= = =


 
i

g

V M

k

2
. A.16

2 2

( )

For the othermatrices, =++ -- *M M( ) and those of thematrices -+M and +-M are zero.Here *means
taking the complex conjugate of c-numbers. In this case, the diffusionmatrix has the simple form:

= -
+

--

++D
0

0
. A.17

F

F

⎡
⎣⎢

⎤
⎦⎥[ ] ( )

Using thesematrices the expressions for the quantities Kr a
p
, and Lr

p that specify the deterministic and noise terms
in the Ito stochastic equations equation (3.47) can be determined. The details are set out in appendix sections B.1
andD.

Appendix B. List of X M, quantities for Cooper PairModel

B.1. Specific formof the X t( ) 36×1matrix elements
+ +

h h h hx y z w
   

= = =

= = =

= = =

= = =

= = =

= = =

= = =

= = =

= = =

= = =

= = =

= = =

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

X h h h h X h h h h X h h h h

X h h h h X h h h g X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h

X h h h h X h h h h X h h h h . B.1

1 4 3 3 4 2 4 3 2 4 3 4 3 1 4

4 4 3 2 3 5 4 3 1 3 6 4 3 1 2

7 4 2 3 4 8 4 2 2 4 9 4 2 1 4

10 4 2 2 3 11 4 2 1 3 12 4 2 1 2

13 4 1 3 4 14 4 1 2 4 15 4 1 1 4

16 4 1 2 3 17 4 1 1 3 18 4 1 1 2

19 3 2 3 4 20 3 2 2 4 21 3 2 1 4

22 3 2 2 3 23 3 2 1 3 24 3 2 1 2

25 3 1 3 4 26 3 1 2 4 27 3 1 1 4

28 3 1 2 3 29 3 1 1 3 30 3 1 1 2

31 2 1 3 4 32 2 1 2 4 33 2 1 1 4

34 2 1 2 3 35 2 1 1 3 36 2 1 1 2 ( )

           

          

           

           

           

           

           

           

           

           

           

           



B.2. List of elementsQ Q Q Qa b a b a b a b
- - + +

, , , ,1 1 2 2 3 3 4 4
offirst row for ´a bM 36 36, matrix

= Q Q Q Q = = Q Q Q Q

= - Q Q Q Q = = Q Q Q Q
= = =
= = =

= Q Q Q Q = = Q Q Q Q

= - Q Q Q Q = = Q Q Q Q

= - Q Q Q Q = = - Q Q Q Q

= - - Q Q Q Q = = - Q Q Q Q
= = =
= = =

= Q Q Q Q = = Q Q Q Q

= - Q Q Q Q = = Q Q Q Q

- - + + - - + +

- - + + - - + +

- - + + - - + +

- - + + - - + +

- - + + - - + +

- - + + - - + +

- - + + - - + +

- - + + - - + +

M M M

M M M

M M M

M M M

M M M

M M M

M M M

M M M

M M M

M M M

M M M

M M M

0

1 0

0 0 0

0 0 0

0

1 0

1 0 1

1 1 0 1

0 0 0

0 0 0

0

1 0 . B.2

1,1 4,4 3,3 3,3 4,4 1,2 1,3 4,4 3,3 3,1 4,4

1,4 4,4 3,3 3,3 4,2 1,5 1,6 4,4 3,3 3,1 4,2

1,7 1,8 1,9

1,10 1,11 1,12

1,13 4,4 3,1 3,3 4,4 1,14 1,15 4,4 3,1 3,1 4,4

1,16 4,4 3,1 3,3 4,2 1,17 1,18 4,4 3,1 3,1 4,2

1,19 4,2 3,3 3,3 4,4 1,20 1,21 4,2 3,3 3,1 4,4

1,22 4,2 3,3 3,3 4,2 1,23 1,24 4,2 3,3 3,1 4,2

1,25 1,26 1,27

1,28 1,29 1,30

1,31 4,2 3,1 3,3 4,4 1,32 1,33 4,2 3,1 3,1 4,4

1,34 4,2 3,1 3,3 4,2 1,35 1,36 4,2 3,1 3,1 4,2

( )

( )

( ) ( )

( )( ) ( )

( ) ( )

Note that some elements ofM(α,β) are zero because one ormore of theQ involved is actually zero.
For the second rowof a bM , ( -M M2,1 2,36) thefirst sub-indices of theQs product termswill be changed

from4, 3, 3, 4 inQ Q Q Qb b b b
- - + +
4, 3, 3, 4,1 2 3 4

to 4, 3, 2, 4 i.e.Q Q Q Qb b b b
- - + +
4, 3, 2, 4,1 2 3 4

andwill befixed for the entire row, with
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the second sub-indices namely (β1,β2,β3,β4) having the same combinations as those of row 1 (for all row 2
elements). By the same token for the third row ( -M M ,3,1 3,36) thefirst sub_indices of theΘ s product termswill

be changed for the entire row to beQ Q Q Qb b b b
- - + +
4, 3, 1, 4,1 2 3 4

with the second sub-indices (β1,β2,β3,β4) combinations
being the same as those of rows 1 and 2 (for all row 3 elements). It is to be noted that only the first sub-indicesα
ofMα,β are changing across the various rows, while it has onefixed combination for each row,while the second
sub-indicesβ combinations ofMα,β are varying fromone element to the next across the same row, but these
combinations are the same across the various rows.

To construct theMα,β various rows, then for each rowwe take as the first sub-indicesα combination in theΘ
product Q Q Q Qa b a b a b a b

- - + +
, , , ,1 1 2 2 3 3 4 4

( ), one of the of theGrassmann variable’s product combinations (x, y, z,w) of the
X(t)matrix. Therefore for row 1,α1=4,α2=3, a = 3,3 α4=4while for row 2,α1=4,α2=3,α3=2,
α4=4 and so on. For each row theα combination (α1α2α3α4) isfixed across the entire row. For each rowwe
then combine the fixedfirst sub-indices (α1α2α3α4) combinationwith each one of the 36Grassmann variable’s
product combinations (x, y, z,w) of theX(t)matrix. Thesewill form the second sub-indicesβ combinations in
(Q Q Q Qa b a b a b a b

- - + +
, , , ,1 1 2 2 3 3 4 4

), of theΘ s product namely (β1β2β3β4).
To summarize, theα combination is fixed for the same rowbut varies fromone row to the next, while theβ

combinations vary fromone row element to the next, However these combinations are the same for various
Mα,β rows.

Within this arrangement, and uponmapping the d+X t t( ) indices to the first set of sub-indicesα ofMα,β

ar s v u, , ,( ) and the X t( ) indices to the second set of sub-indicesβ of ba bM x y z w, , ,, ( ) for thefirst
step, onefinds that the d+X t t( ) matrix will have the sameGrassmann variable combinations as that of the X t( )
matrix.

An analogous approach is applied to treat the columns ofM.

AppendixC. Evaluation of stochastic averages

C.1. Analytic evaluation of the elements M M M M15, 15 , 21, 15 , 22, 15 , 36, 15( ) ( ) ( ) ( ) of column 15

d d d d

d d d d

= + Q Q Q Q

= - + W + W + W + W
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=

~ ~ ~ ~

~ ~ ~ ~
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+ + + +

M

i i

i i

15, 15 1 .

1 1
1

2
1

1

2

1
1

2
1

1

2

1. C.1
StochAvg

4,4 1,1 1,1 4,4

6 16 1 11

1 11 6 16
* *

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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Here terms include stochastic average of products of zero, one, two, three, four dW
~

s, but no two dW
~

s are the
same, so only the products just involving 1 contribute.

d d d d

d d d d

d d d d

d d

d d

d

= - Q Q Q Q

= - W + W W + W

´ + W + W + W + W

= - W + W W + W

= - W + W

= - +

=-

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~

- - + +

+ + + +

M

i i

i i

i

i

i
T T

i
T

21, 15 1 .

1
1

2

1

2

1
1

2
1

1

2

1
1

2

1
1

2

1
1

2
1

. C.2

StochAvg

3,1 2,4 1,1 4,4

8 9 8 9

1 11 6 16

2

8 9 8 9

8
2

9
2

* *

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )( )

( )
( )

( ( ) ( ) )

( ) ( )

( ) ( )

29

J. Phys. Commun. 4 (2020) 015015 NMKidwani and B JDalton



d d d d

d d d d

d d d d d d d d

d d d d d d d d

d d d d

d

= + Q Q Q Q

= W + W W + W

´ W + W W + W

= W W + W W + W W + W W

= W W + W W + W W + W W

= + + +

=

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~

- - + +

+ + + +

+ + + +

+ + + +

M

i i

i i

i i

i i

T T T T

T

22, 15 1 .

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2
1

4
.

C.3

StochAvg

3,1 2,4 2,4 3,1

8 9 8 9

8 9 8 9

2 2

8
2

8
2

8
2

9
2

9
2

8
2

9
2

9
2

8
2

8
2

8
2

9
2

9
2

8
2

9
2

9
2

2 2 2 2

2

* *

*

*

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ( )

( )
( )

( )
( )

( ) ( )
( · ) ( · ) ( · ) ( · )

( )
( ( ) · ( ) ( ) · ( ) ( ) · ( ) ( ) · ( ) )

(( ) ( ) ( ) ( ) )

( )
( )

d d d d

d d d d

= Q Q Q Q

= W + W + W + W

´ + W + W W + W

=

~ ~ ~ ~

~ ~ ~ ~

- - + +

+ + + +

M

i i

i i

36, 15 .

1

2
1

1

2

1
1

2

1

2

0. C.4
StochAvg

2,4 1,1 1,1 2,4

8 9 1 11

1 11 8 9
* *

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

( ) ( )

( )
( )

( )
( )

( )

Terms include the stochastic average of products of two, three, four dW
~

s, but no two dW
~

s are the same, so all
products give zero.

C.2. Rows 16, 21, 22 formatrix M 4×4 submatrix

TableC1.Table shows the numerical results for the imag and real parts of M M M M16, 15 , 16, 16 , 16, 21 , 16, 22( ) ( ) ( ) ( ) across the 6
parallel processing labs. The results were obtained using theMatLab parallel processing program forM 4×4matrix. The averagematrix
element, the average error and theσ error are also shown for each of thesematrix elements.
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C.3. Symmetry considerations

TableC2.Table shows the numerical results for the imag and real parts ofM(21, 15),M(21,16),M(21, 21),M(21, 22) across the 6 parallel
processing labs. The results were obtained using theMatLab parallel processing program forM 4×4matrix. The averagematrix element,
the average error and theσ error are also shown for each of thesematrix elements.

TableC3.Table shows the numerical results for the imag and real parts ofM(22,15),M(22, 16),M(22,21),M(22, 22) across the 6 parallel
processing labs. The results were obtained using theMatLab parallel processing program forM 4×4matrix. The averagematrix element,
the average error and theσ error are also shown for each of thesematrix elements.

FigureC1. Figure displays clearly the symmetry between the various elements of theM 4×4 submatrix.
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In Figure C1note that for thefirst two plots (for img(15, i)where i= 15, 16, 22)), the curves for the stochastic
average points forM(15, 15) coincide exactly with that forM(16, 16) and that forM(15, 21) coincide exactly with
that forM(16, 22). This is because in the table of resultsfile, the values inColumn 1 of the first table (for row 15)
are identical to those in column 2 of the second table (for row 16). Similarly, the values inColumn 3 of the first
table (for row 15), are exactly the same as those in column 4 of the second table (for row 16). This, in turn, is due
to the fact that theΘ product combinations for the elementsM(15, 15) [44111144] andM(16, 16) [44112233]
(and forM(15, 21) [−42131144] andM(16, 22) [−42132233]) although not exactly the same, yet they yield the
same results when their relevantΘ products aremultiplied (same brackets of deltaWiener combinations but in a
different order. Similar arguments hold for the two plots for img(21, i)where i=15, 21, 22 and img(22, i)with
i=16, 21, 22.

In other words and to bemore precise: for each of Labs 1, 2, ..,6 there are 1000 choicesmade (byMatLab) for

each of the 16 independentWiener increments d dW W
~ ~

,1 11, d dW W
~ ~

,3 14, d dW W
~ ~

,6 16,dW
~

8, dW
~

9 and dW
~+

1 , dW
~+

11,dW
~+

3 ,

d dW W
~ ~+ +

,14 6 , d dW W
~ ~+ +

,16 8 , dW
~+

9 and the result for each specific element of the 4×4matrixM calculated using
equation (3.47). These are then averaged to give the stochastic value for thematrix element. For different Labs,
the 1000 choices of the 16Wiener increments will be different, hence the 6 independent (and different) results
for each specific element ofM shown in tables 1 andC1–C3. The average of these for the 6 Labs is also quoted in
tables 1 andC1–C3 , and amount to determining the stochastic averages for an ensemble size of

= ´ =m 6 1000 6000. It will be noticed that the results for the 6 Labs for certain pairs ofmatrix elements are
the same—for example M 15, 21( ) andM(16, 22). This is because themost important pairs ofWiener

increments are the same –for exampleM(15, 21) andM(16, 22) both involve d dW + W
~ ~

3 14( ) twice, both arising
from the same off-diagonalΘmatrix elementsQ-

4,2( ) andQ-
1,3( ). Other pairs ofWiener increments arising from

diagonalmatrix elementsQ-
1,1( ) andQ-

4,4( ) orQ
-
2,2( ) andQ-

3,3( ) make negligible difference, since the leading terms

in these elements are order 1 (rather than order dT ). The stochastic averaging process determines each 4×4
element to an accuracy of ca 4% for the effective ensemble sizes of 6000 independent calculations. The accuracy
is specified by the standard deviation of the results in the 6 Labs from the theoretical value for thematrix element
as shown in tables 1 andC1–C3

C.4. Results for Run 2 for the short time behaviour parallel processing program

Table C4 shows that for this δT range the std error decreases as the ensemble size increases. For ensemble size
m=1000, the avg std error is approximately 5.6%.

AppendixD. Programming considerations

D.1. Parallel Processing inMatLab - an overview
Parallel Computing entails the use of two ormore processors in combination to solve a single problem. Serial
performance improvements have slowed, while parallel hardware has become ubiquitous. On the other hand,
Parallel programs are typically harder towrite and debug than serial programs. Parallel speedup is a function of

the number of cores where =speedup p time

time cores
old

new
( )

( )
where p is the number of cores.

MATLABParallel Computing Toolbox supports three types of parallelism. The one suited to a single
computer withmultiple cores isMultithreaded parallelism, where one instance ofMATLAB automatically

TableC4.Table shows the std error for the numerically calculated imag(C) across the 6 parallel processing labs, for dT 1. The results were
obtained in run 2 for theMatLab parallel processingC(f4;f3) program for δTä[0,0.01] andm=100, 300, 1000.
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generatesmultiple simultaneous instruction streams.Multiple processors or cores, sharing thememory of a
single computer, execute these streams. Tomake use of that concept we certain commandsmust be employed
within the source code. The process starts by opening aMATLABpool, this is done using the ’parpool’
commandwhich creates workers (or labs) to do parallel computations. On the i7 processor at SUT there are 6
cores. The parpool commnad creates 6 labs A client and 5 normal labs (orworkers) one equivalent to each core
present. The client is the headMATLAB session –creates workers, distributes work, receives results. The
Workers/Labs are independent, headless,MATLAB sessions. They do not sharememory, and are created before
being used and destroyed after the program execution takes its course.

Tomake use ofmultithreaded parallelism, one uses the SPMD (single programmultiple data). This
command explicitly and/or automatically divide work and data betweenworkers/labs and communicate
betweenworkers/labs. The data created before the SPMDblock is copied to all workers, whereas the data created
within the SPMDblock, is unique toworker, composite on client.Memory is not shared by theworkers. Data
can be shared betweenworkers using special data types: composite, distributed, codistributed. The parallel
processing toolbox also contains parallel for loop constructs and commands for tall arraysmanipulationwhere
the processing for such arrays is distributed among the available workers with respect to their rows or columns.

D.1.1. The M 36×36matrix program description
At itsfirst stage the program lists theΘ-andΘ+ four products forming the 1296 elements ofMPrelim(α,β). At its
second stage, the second indices permutations for theΘ-andΘ+ four products of a bM ,Prelim( ) are correctly
performed. At the third stage the programmakes use of an additionalmodule to populate the a bM ,Prelim( )
matrix with the values of theΘ- andΘ+ products of the surviving elements. This takes place after performing the
second indices permutations, to form the a bM ,PreStochastic ( )matrix. The population process involves inspecting
the digits corresponding to theΘ-andΘ+products of each of the surviving elements, where the program
converts those digits to strings. For example, the digits accompaniedwith aminus sign forming the elementM
(16,15), namely: (−)44112431 indicates that it is composed of the Q Q Q Q- - + +

4,4 1,1 2,4 3,1{ } product with aminus sign.
After considering theminus sign, the program converts 44112431 to a string, separates each two characters of
the resulting string, and then using iterative and conditional statements constructs (for loops and if statements),
it inspects the digital content of each two characters of the separated string successively. The program then
creates numeric variables with names relevant to the digital content of each couple of separated characters of the
original string, and gives values to those variables. Hence the variable 44 is assigned the value ofQ-

4,4 , 11 the value
ofQ-

1,1... etc. At thefinal stage the program calculates the stochastic average for each of the a bM ,PreStochastic ( )
elements, to form the a bM ,( )matrix for eachmember i of the ensemblewhere i=1,2,K,m. The program
writes its intermediate steps and final output results to a file.

D.1.2. Parallel Processing program for the M 4×4 submatrix –evaluating rows 15, 16, 21, 22 –programming issues
After knowing the formand all the analytic values for the elements of theM(α,β) 36×36matrix, a programwas
coded toperform thenumerical calculation and confirm stochastically the analytic values of theMmatrix
elements of rows 15, 16, 21 and22, namely:M(i, j)where i, j=15, 16, 21, 22.

To test the finite time behaviour and compare the numerical results with the analytical ones, a parallel
processing programwaswritten to calculate the stochastic average ofC(j4;j3) for δT1. Initially the program
employed theM(α,β) 36×36matrix, whichwas to bemultiplied successively to obtain the stochastic average
of M 16, 15 ,n( ( )) where d=T n T .A considerable processing timewas noted, as the programwas evaluating all
the 1296 elements of the 36×36Mmatrix for eachmember i of the ensemble. It then displayed the stochastic
averages of all theM elements infiles (which included the abovementioned 16 elements of Rows 15, 16, 21 and
22). Performing the calculation in thatmanner had proven to be extremely taxing in terms of complexity and
computer processing time. For example, evenwith the parallel processing capability utilized, only 10members
of the ensemblewere processed per hour. At this rate, it would have taken the program 4days to process1000
ensemblemembers. Since the elements of Rows 15, 16, 21 and 22 are themain elements relevant to the
coherences and populations of the f ñ4∣ and f ñ3∣ states, a simpler parallel processing programwas later developed
with the aimof reducing the processing time relevant to the initial j jC ;4 3( ) for d T 1program: Thismodified
program concentrated only on the 16 elements of theM (4×4), andwas used to confirm the analytic values of
this submatrix for δT=0.01, and then to calculate the finite time behaviour for elementM(16,15). The process
began by calculating the stochastic average values for all thematrix elements of theM 4×4 submatrix, across
the 6 labs available, and then evaluating the averagematrix element for each of the elements. The resulting
numericalMwas found to be not quite complex symmetric as was the case with its analytic counterpart. One
then had to resort to biorthogonality to calculate the required finite time behaviour of the coherenceC(f4;f3)
from the final stochastic results for the 4×4matrixMwith δT=0.01. The calculationwas quite informative,
as its results indicated that the stochastic approach does confirm the analytic result for the finite time behaviour
ofC(f4;f3) given by equation (4.41) (see also equation(3.65)), withT ranging from0 toπ. To calculate thefinite
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time behaviour ofC(f4;f3), aMathematica programwas used to calculate and normalize the eigenvectors for
the numericalM andMT, then using biorthogonality as described in section 2.4.4 and appendix C (C.1- C.4),
thesewere used to obtain the values of rμ and aμ and consequently, using equation (3.61), reproduce and confirm
the numerical formobtained forM obtained earlier.Mnwas then calculated using equation (3.64) forT ranging
from0 toπ. Themain ensemble size was chosen to bem=1000with sub-ensemble divisions for δT=0.01.
TheM(α,β) 4×4 reproduced submatrix was then employed to calculate the finite time behaviour ofC(j4;j3)
using equation (3.65) and a reasonable processing timewas achieved. The programwrites its intermediate steps
and output to 6 different files relevant to one client and 5 labs based on their unique labindices . It was apparent
afterwards that for problems involvingmany fermionmodes (such as for the BEC/BCS crossover topic), it
would be inevitable tomake use of SUT’s supercomputing facility.

D.1.3. Parallel Programming - f fC ;4 3( ) program description
Thefirst part of theC(f4;f3)program for small δT=1 (the generation of the L andKmatrices and thematrix

definitions of the d dW W
~ ~+

a a( ) noise terms)waswritten usingMatLab’ s parallel processing capabilities on the
SUT single processor withmultiple cores. The programwas then adapted tomake use ofmultithreaded

parallelism, and randomly generate the d dW W
~ ~+

a a( ) noise terms sequences, calculate theQ Q- +, products
associatedwith theM 4×4 submatrix for eachmember of the ensemble within each of the 6 labs, and then
finally calculate the various stochastic averages involved. The entire process was promising in terms of cutting
downprocessing time and the unnecessary repetition of program runswhichwere associatedwith the analogous
sequential program.

Overview of theC (f f;4 3) program for small dT 1 using themulti-threaded parallelism capability of
MatLab:

• When starting the parallel processing pool associatedwith the SUTprocessor (Intel(R)Xeon(R)CPUE5-1650
v3, 3.50 GHz, 3501Mhz, 6Core(s), 12 Logical Processor(s))which has 6 cores, 6 labs (a client and 5workers)
could be utilized, one for each core. The client’smain goal is to processes the program common codewhich is
used by all labs. The other five serving labs orworkers process the pieces of code that depend on different data
sets [57].

• Thework between the client and theworkers could be organized and synchronized using their unique
identification numbers (lab indices).

• Using ‘SPMD’ (single programmultiple data) blocks inside the source code, one can spread (or divide) the
processing of the pieces of code ormodules which use different data sets among the different workers or labs.

• The programopens 6files (one for each lab) to display their processing results at the end of the program run.
This in addition to a seventh file to display the results of processing the commondatawithin the client.

• By default, theMatLab client andMatLabworkers use different randomnumber generators, even if the
workers are part of a local cluster on the samemachinewith the client.The random generation algorithm for
the client is by default (unless changed specifically) theMersenne Twister algorithm (’twister’), (which is not
quite suitable for some parallel processing purposes), theworkers randomgeneration algorithm is by default
the ’CombinedMultiple Recursive’ (’CombRecursive’ or ’mrg32k3a’) algorithm [57].

• Since theMatLab command rng(ʼshuffle’) seeds the randomnumber generator based on the current time, it
should not be used to set the randomnumber streamon different workers, to ensure the generation of
independent streams. This is especially truewhen the command is sent tomultiple workers simultaneously,
such as inside a parfor, spmd, or a communicating job.

• Due to noticeable repetition in the randomgenerated sequences of the client, amodulewaswritten to change
its defaultMersenne Twister based algorithm (Twister seed) to the combined recursive algorithmwhich is
similar to that of theworkers. Anothermodule waswritten to ensure the non-repetition of theworkers’
randomgeneration sequences (although theMatLab software design ensures that inmost cases)whichmakes
use of their lab indices.

• In themodified program, themain ensemble of sizem is specified, the L K, matrices are built and the d W
~

a

and d W
~+

a matrices are defined respectively (commondata to be used by all labs including the client). The
processing is then transferred to the six available labswhere different sets of d W

~
a, and d W

~+
a noise terms are

randomly generated, where different values of dT are assigned to each lab. Consequently, each of the 6 labs
processes analogous but different sets of data to produce different results (the stochastic averages) for themain
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ensemble size specified.Within each lab themain ensemble size can be subdivided by taking its subsets, as was
done beforewhen using the sequential programs.

• Form=500 and for one run of the program, the parallel pool processes data and produces results relevant to
6 differentC points (one for each lab) depending on 6 different dT values assigned to each lab. In other words,
for sizem=500 ensemble with its subdivisions, each run of the program involves 6 different calculations
which are performed for the various stochastic averages involvedwithin each lab, depending on different sets
of randomly generated noise terms and different values of dT . Therefore, form=500, 6multiplied by
500=3000 records are processed for one run, 500 records for each lab.

D.1.4. Final remarks
The parallel pool processes 42 records in 30 min (actually 42multiplied by 6=252 records (or ensemble
members’ calculations) across the 6 parallel processing labs available). Consequently, andwith a simple
calculation (assuming the same number of records is processed in similar times), the program run takes
approximately 5.9 hours to reach completion for a sizem=500 ensemble, after which data for different 6C
points for that ensemble size and its subdivisions can be gathered. This versus only oneC point for a single run
for that ensemble size aswas the case with the old sequential program, forwhich the run took 3.5 hrs to reach
completion. Therefore, the data needed for plotting the results for sizem=500 ensemble and its subdivisions
can be gathered in just two program runs, rather than in 10 runs. As it turned out, the processing time is not
exactly the same for the same number of records, and the program took about 3 hours and 40minutes to process
data for ensemble of sizem=1000 (6000 records are processed in that case.)

The parallel processing capability could also be used for calculating ensemble averages of theMmatrix
elements and this is expected to save processing time. For example, if each of 4 parallel processors calculates
ensemble averages ofm=100 randomgenerations of theMmatrix elements and then average the outcomes for
each processor, it should be equivalent to an ensemble average overm=400 randomgenerations, and achieved
with the processing time for one processor.
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