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We investigate the evolution of entanglement spectra under a global quantum quench from a short-range cor-
related state to the quantum critical point. Motivated by the conformal mapping, we find that the dynamical
entanglement spectra demonstrate distinct finite-size scaling behaviors from the static case. As a prototypical
example, we compute real-time dynamics of the entanglement spectra of a one-dimensional transverse-field Ising
chain. Numerical simulation confirms that the entanglement spectra scale with the subsystem size | as ~I[~*
for the dynamical equilibrium state, much faster than ocIn™'1 for the critical ground state. In particular, as a
byproduct, the entanglement spectra at the long time limit faithfully gives universal tower structure of underlying
Ising criticality, which shows the emergence of operator-state correspondence in the quantum dynamics.

PACS: 03.65.Ud, 11.25.Hf

Conformal field theory (CFT)!' has become a
profitable tool as a diagnosis of critical phenomena
in two-dimensional statistical models. In the equi-
librium case, the conformal invariance at the critical
point sets rigid constrains on physical properties by
a set of conformal data including the central charge,
conformal dimensions and operator product expansion
coefficients. In the past decades, great success has
been achieved in condensed matter physics, especially
for minimal models with a finite number of primary
scaling operators (irreducible representations of the
Virasoro algebra).[” ]

In general, due to gaplessness nature, massive en-
tanglement should play a vital role at or around the
critical point. One remarkable achievement isl” %
that CFT provides a novel way to connect the quan-
tum entanglement and critical phenomena. It is found
that the conformal invariance in critical ground states
results in a universal scaling of the entanglement en-
tropy depending on the central charge ¢.[510:13:10]
Interestingly, by extending this idea, the entropy
can be applied to identify quantum critical points
in higher dimensions.!'?'%%°~%7] Besides the entropy,
other entanglement-based measures also attract a
great deal of attention. The eigenvalues of reduced
density matrix, called entanglement spectrum (ES),
is such an example, which contains much richer in-
formation than the entropy.’**) In addition to the
evidences in topological gapped systems,['0~ %] the
ES is also proposed to describe the quantum crit-
ical point.l'">**~1 However, compared to the well-
established boundary law for gapped states, much less
is known about the critical behavior of the ES,[?:
which casts doubt on direct application of the ES in
the critical systems.
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Beyond equilibrium, quantum dynamics attracts
considerable attention recently, particular in ap-
proaching to steadiness and thermalization. Uni-
versal entanglement structures are expected to leave
some marks in the dynamic process, e.g., central
charge ¢ controls the growth of entropy.['"'”) How-
ever, novel examplel® is still rare, and to extract the
conformal data in microscopic models is a challenging
task [14:25,27,32]

In this Letter, we present a systematical study of
dynamics of the ES in the process of quantum quench.
Inspired by the CFT, we compute the real-time dy-
namics of the 1D transverse-field Ising (TFI) model,
through a protocol by quenching from a gapped state
to the critical point. We successfully establish that
quantum quench dynamics indeed encodes universal
signatures of quantum critical point. Firstly, the ES
at long time dynamics converges to the CFT oper-
ators as oc{~!, which is much faster than that for
critical ground state as ocIn™'[. Secondly, fast con-
vergence allows us to extract conformal information
including conformal dimensions and related degener-
acy, which unambiguously pin down the underlying
nature of quantum critical point (¢ = 1/2 Ising the-
ory in our case). These key findings open a door to
extract quantum criticality in many-body dynamics.

Entanglement spectrum in two dimensional con-
formal field theory. We consider the global quan-
tum quench to a critical point that is governed by
a CFT (H(t > 0) = Hcpr), and the initial state
[tho) is chosen to be the ground state of a gapped
Hamiltonian H(t = 0) = Hp. In this work, we study
the geometry of a semi-infinite chain. In boundary
CFT,?"25:30] the corresponding time-dependent den-
sity matrix p(t) = e~ Htahg) (poleTH! can be repre-
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sented geometrically by a semi-infinite strip in com-
plex plane with width 7 = (z2) € [—g, g] and length
x = R(z) € [0,+00). The entanglement dynamics of
a finite subsystem A = [0, 1] is our focus. The reduced
density matrix p(t) can be calculated by sewing to-
gether the points which are not in A (the geometric
distribution of partial trace). This can be achieved
by conformally mapping the semi-infinite strip in z-
plane onto the annulus in w-plane, with w = f(2), as
shown in Fig.1. On the annulus, the entanglement
Hamiltonian Hg = —Inp4 can be considered as the
generator of translation along the v = Sw direction,
i.e. Hg has the same structure with the CFT Hamil-
tonian Hcpr. Then Hg in original z-plane can be
calculated by mapping the CFT Hamiltonian back to
the z-plane.[?5?"] In this context, one can obtain the
entanglement Hamiltonian for a finite interval A of
[0,1] in a semi-infinite critical ground state as (in the
static case)

HE(t:O):/AMHCFT(x)dx. (1)

While in the dynamic case, we figure out the en-
tanglement Hamiltonian in the long time limit in the
process of quantum quench asl***! (for details see the

Supplemental Material)
/ Hcpr(z (2)

Here we stress that, although Hg depends on the CFT
Hamiltonian density Hepr(z) in both static and dy-
namic cases, the entanglement Hamiltonian has an ad-
ditional spatial-dependent envelope function {2 —2? in
the static case (Eq. (1)), which is in sharp contrast to
that in the dynamic case (Eq.(2)). This difference
will lead to the influence on the static ES, as we will

discuss in the following.

Hg(t — o0)

Fig.1l. Conformal mapping from the semi-infinite strip
in z-plane to the annulus in w-plane. Left: The global
quench of a semi-infinite short-range correlated chain
(with correlation length B) is considered as a bound-

ary CFT with 7 € [_Z’ o

the branch cut C = {z—erzT z€[0,L],T € [77, 4]}
Right: The annulus after conformal mapping w = f(z),
where the branch cut C' is mapped to a f(C) which con-
nects the two edges of the annulus (see the Supplementary
Material for details). The circumference along v = Sw
direction is 27, and the width of the annulus along the
u = Rw direction is denoted by W.

The green lines represent

Another notable difference is that the ES has dis-
tinct dependence on the subsystem size [. In CFT, the
width of the annulus W along the u = Rw direction

plays an important role in the scaling behavior of ES,
through ,
21 (Al - AJ)

W ; (3)
where F; is the ES that is the eigenvalues of Hg, and
A; is conformal dimension of the CFT. The width
W can be obtained by a straightforward calculation
W =RW = $(W+W) with W = f(ir+L—e)— f(iT).
For critical ground states on a semi-infinite chain, one
obtains the following dependence in the static case

W(tzO):2lné, (4)

E,—E; =

where € is a scale relevant cut-off. This makes the
entropy at the critical point S «cInl, and the ES pro-
portional to F; —E; In~' [. In particular, in the case
of global quenching a semi-infinite chain considered in
the present work, the width W shows the following be-
haviors (also see the Supplementary Material):[**"]

‘%Tt, t<l,
W(t>0)~< , ()
Fﬂl , t — oo.
Hence, the ES of dynamical equilibrium state approx-
imates to the CFT scaling spectrum with speed o<~ !.
Moreover, one can obtain that W approaches steadi-
ness exponentially after the saturated time ¢t = [ as
(also see the Supplementary Material)

L @

and it is also reflected in the dynamics of EE and ES.

Numerical Results. We test the CFT prediction

of entanglement dynamics in the TFI chain under the
open boundary condition,

—g Z o; (7)

ZO’O’

where 07,07 are the Pauli matrices at ith site, and ¢
is the strength of the magnetic field. There exists a
quantum phase transition between the ferromagnetic
(9 < 1) and paramagnetic (¢ > 1) phases, and the
ground state is gapless only at the critical point g = 1.
The critical ground state of the TFI chain is described
by the minimal model with central charge ¢ = 2, and
the corresponding scaling operators are listed in Table
1. The TFI chain can be solved exactly by introduc-
ing Jordan-Wigner transformation,!”*! and its ES can
be calculated from the correlation matriz.!>”) We con-
sider the ES dynamics during global quench from a
ground state of gapped phase of the TFI chain (g # 1)
to the Ising CFT (¢ = 1). The time-dependent ES
can be calculated by the time-dependent correlation
matrix.l”?) In this calculation, the total system size is
up to L = 1024, and we choose subsystem size | < L.
In the condition of | < L, when we consider the time
domain t < L we can safely neglect the boundary ef-
fect from = ~ L on the subsystem A = [0,1].

W(t> 1)~ W(t = oc) — %exp[_

Hrpr =
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In addition, we also solve the TFI model using the
matrix product state approach, i.e. the time-evolving
block decimation (TEBD) technology.[””) The bond di-
mension is adopted by 1024, and the truncation error
is set to be 1078, For dynamics, the time evolution op-
erator is approximated by using second order Trotter—
Suzuki decomposition, and the time step is chosen to
be dt = 0.01. Under the current convergence crite-
rion, the total system sizes in TEBD calculations are
limited to L < 72.

] } 04
5 (@) L f®
4 — 54 =
@ i =
> — @
Al 31 — ~ L
° — & 107 g
= 5] — " H
M 1 — & _154 2
1 0 10 20— £ = 0 4 8 12
L —E t—1/2
= —204
0 10 20 30 o 2 6 10 14
t t—1/2
Fig.2. Entanglement entropy evolution during global

quench from gapped phase (g = 4) to critical point (g = 1)
with total system size L = 512. Left: Entropy S(t) grows
linearly with the “entanglement velocity” vg ~ 0.52. In-
set: The finite-size saturation leads to a volume law en-
tropy in dynamic equilibrium state. A linear fit (red
line) of S(I) = al + b for the numerical data (blue tri-
angle) gives ¢ = 0.29 and b = 0.24. Right: Entropy
S(t) — Sthermal for I = 15 <« L = 512 exhibits expo-
nential dependence on t — /2 after reaching the typi-
cal time t ~ [/2. Inset: A linear fit (red dashed lines)
of In[Sthermal — S(t)] = a’(t — 1/2) + b for the numer-
ical data (blue lines) gives a’ = —0.4844 + 0.0078 and
b’ = 1.833 4 0.060.

In Fig. 2, we present the numerical result of the EE
evolution during global quench in the TFI chain with
total system size L = 512. As shown in the left panel,
the EE grows linearly with the “entanglement veloc-
ity” at early times, then saturated by finite subsystem
size | at time ¢t = [/2. The inset provides numerical
evidence of the resulting volume law by a linear fit-
ting of EE with [. The right panel of Fig.2 shows an
exponential approaching to equilibrium at late times,
consistent with Eq. (6).

Now we turn to consider the ES, and we will ad-
dress how the ES represents the scaling operators in
CFT. In CFT, the scaling operators (representations
of the corresponding Virasoro algebra) can be ob-
tained by g-expansion of the partition function. For
the Ising model under the open (free) boundary condi-
tion, one can find that there are only two primary scal-
ing operators: the identity I with conformal dimen-
sion A = 0 and the energy density € with A = %.[‘3‘“]
Their characters can be expanded as follows:

X =¢ 1+ ¢+ ¢ +2¢" +2¢°
+3¢°+3¢" +5¢°+--)
e =21 L g 4?4 P+ 2" + 247
+3¢° +3¢" +5¢°+--),

which gives the spectrum of the primary operators and
corresponding descendants, each expansion term mgq”
represents m-fold degenerate scaling operators with
conformal dimension A; = n. The operator-state cor-
respondence suggests that the eigenspectrum of (en-
tanglement) Hamiltonian shares the structure of scal-
ing operators, and this relation has been well studied
in the energy spectrum of spin chains.[>®~ 6]

(Bi—E1)/(E—Eq)

(Bi—E1)/(E2—E1)

Fig. 3. Entanglement spectra of the TFI model as a func-
tion of the subsystem size I. Here we set the total system
size L = 4l. The solid dots and open circles label the exact
solutions and TEBD results, respectively. Upper: Entan-
glement spectra for the critical ground state (g = 1), and
the related fitting lines in the form of aln~' 1+ b. Lower:
Entanglement spectra for global quench from the gapped
phase (g = 4) to the critical point (g = 1). The best fitting
lines are in form of al=! + b.

The numerical results of the ES of TFI chain for
the critical ground state and dynamical equilibrium
state are respectively plotted in Fig. 3, which includes
the main result of the current work. Here we con-
sider the entanglement cut always located at I = L/4
with changing the total system size L. In order to
make a direct comparison to the Ising scaling spec-
trum, we renormalize ES by setting the lowest level to
0 and the second level to 1/2, and show the quantities
(E; — E1)/(E2 — E1) in Fig. 3. Several salient features
are found in the ES. Firstly, we identify distinct scal-
ing behaviors of the ES depending on subsystem size [,
by comparison of the static ground state and dynamic
equilibrium state. As shown in Fig. 3, it is evident
that the static ES for critical ground state converges
as ~In"* 1, while for the quantum quench case the ES
at late times demonstrates a typical ~I~! dependence.
Physically, this difference can be understood from the
CFT results shown in Egs. (3), (4) and (5). It is worth
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noting, this indicates that the ES in quantum quench
process converges much faster than that of the critical
ground state (for example, in dynamics [ = 10 (the
smallest size we consider) gives 1/l = 0.1, while in
static case [ = 256 (the largest size we consider) gives
1/Inl = 0.18). Such a slow convergence of the ES for
the critical ground state is difficult to give reliable con-
formal information (see below). By comparison, the
ES in the quantum quench dynamics easily reaches
convergence for extracting the conformal tower struc-
tures.

14 ] \ Ferromagnetic g <1 (a) 16] \ Paramagnetic g > 1 (b)
1 1 e
\
=12 '\ Level " Level
3 %\ —— 7+h 'y __ 7-th
2,10 4 \ —— 8th 124 \\\ —— 8th
o RN —— 9th A —— 9:th
\
g o8 —— 10-th RN —— 10-th
g \\\\e\\ 1th | 84 W8 11-th
@ 61 AN\ —— 12-th LN - 12+h
3 NG N -~ 13-th
3 \ s —— 13-th AN
> 4 N N
=} R o> ~ 4
~ ~ ~
S o SR T
] — .
0 TTae, 0

Fig. 4. Dependence of convergence speed to CFT scaling
operators on the initial g: for ferromagnetic (left panel)
and paramagnetic (right panel) cases. Dots represent
the result of convergence speed extracted from the finite-
size scaling, and the dashed lines are the result of fitting
Uconverge = alg — ge|® + b. Here 7th to 13th levels are
plotted.

Table 1. A comparison of the operator content in the Ising
CFT (¢ =1/2) and the scaling of the ES for the static (critical
ground state) and dynamic (quantum quench) cases. Here A
and D are conformal dimension and degeneracy, respectively.

ith Sector CFT  Dynamic ES Static ES
level A D A D A D
3 € 3/2 1 1.500 1 1430 1
4 I 2 1 2.000 1 1930 1
5 € 5/2 1 2.501 1 2300 1
6 1 3 1 3.001 1 2800 1
7 € 7/2 1 3.503 1 3135 1
8 I 4 2 4.001(3) 2 3635 1
9 € 9/2 2 4.501(5) 2 3.729 1

Secondly, the ES in dynamic process perfectly con-
verges to the CFT expectation, however, the ES of the
critical ground state does not. In Table 1, we list the
operator content in Ising CFT and the numerical re-
sults. In particular, within the numerical uncertainty,
the ES of dynamic equilibrium state matches the tower
structure of the CFT, for both the conformal dimen-
sion A; and its degeneracy. As a comparison, under
the proper scaling, the ES of the critical ground state
is fail to give conformal information. This can be at-
tributed to the following reasons: (1) The scaling of
the ES converges very slowly as In"' [, which hinders
a clear scaled results in the limit of I — co. (2) The
ES of static critical ground state is strongly influenced
by the envelop function in entanglement Hamiltonian
(see Eq. (1)).

Thirdly, we stress that the scaling form of the ES

is robust, independent of the details of quench dy-
namics (see the Supplementary Material). Interest-
ingly, it is found that the convergence speed (slope of
the finite-size scaling function of ES) indeed relies on
the initial conditions. Here we define the convergence
speed Veonverge = Z%Z/F(l), where F'(1) is the scal-
ing function. In the case of global quench, we have

F(l) — l—l and Ei _ E] — 27"2(?};/_Aj) — B‘“’(A;_Aj)7
which gives Vconverge = Bm. To check the above ar-
gument, Veonverge 15 extracted and plotted in Fig.4
with the fitting in form of ~|g — g.|*. The results of
quenching from ferromagnetic (¢ < 1) and paramag-
netic (g > 1) phases show very similar behaviors, and
partially support that veonverge i determined by effec-
tive temperature. Especially, the differences between
different levels become negligible when approaching
infinite temperature limit.

Summary and discussion. We have investigated
the evolution of entanglement spectra during a global
quench. As suggested by boundary conformal field
theory, we conclusively show that the entanglement
spectra approaches the thermodynamic limit follow-
ing ocl™!, where [ is typical subsystem size. As a
comparison, the convergence of entanglement spectra
of critical ground state follows ocIn™!{, much slower
than that of the dynamic case. In particular, the en-
tanglement spectra of dynamic equilibrium state en-
codes the conformal dimensions, which ambiguously
pins down the nature of quantum criticality.

These results indicate that, at least in princi-
ple, one could obtain critical entanglement content in
quantum dynamics, based on finite-size calculations.
As an example, we apply the TEBD method on the
TFI model, and compare the results with exact so-
lutions in Fig.3. This additional test implies that, if
the correct scaling form is properly applied, numerical
solvers on the limited system sizes are potentially able
to resolve CFT information. In addition, as we dis-
cussed in Fig. 4 and in the Supplementary Material, a
fast convergence is possible under optimized quench-
ing parameters. In this context, the out-of-equilibrium
scaling form paves a promising road for future study
using various numerical methods (e.g. time-dependent
density-matrix renormalization group).

This work opens a number of open questions that
are deserved to study in future. For example, it would
be important to promote our findings to more systems,
such as other CFT minimal models and non-integrable
models, and related work is still in progress. How the
scaling behaviors change under the influence of the
emergent gauge field and fractionalization will be an-
other interesting topic.

Note Added: In the final stage of this work, we
became aware of a related work arXiv:1909.07381
(Ref. [62]) discussing the dynamics of entanglement
spectra.

W.Z. thank Xueda Wen for fruitful discussion and
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Y. C. He for collaboration on a related project.
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