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Advanced machine learning (ML) approaches such as transfer learning have seldom been applied to approximate
quantum many-body systems. Here we demonstrate that a simple recurrent unit (SRU) based efficient and
transferable sequence learning framework is capable of learning and accurately predicting the time evolution of
the one-dimensional (1D) Ising model with simultaneous transverse and parallel magnetic fields, as quantitatively
corroborated by relative entropy measurements between the predicted and exact state distributions. At a cost
of constant computational complexity, a larger many-body state evolution is predicted in an autoregressive way
from just one initial state, without any guidance or knowledge of any Hamiltonian. Our work paves the way
for future applications of advanced ML methods in quantum many-body dynamics with knowledge only from a
smaller system.
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Machine learning (ML) approaches, particularly
neural networks (NNs), have achieved great success in
solving real-world industrial and social problems.[1−8]

Inspired by its widespread applicability, ML was soon
adopted by condensed matter physicists in the model-
ing of quantum many-body behavior and phase transi-
tion discovery.[9−19] Compared to many advanced ap-
plications, it is natural to ask if recent progress in
these more sophisticated ML architectures can bene-
fit or even revolutionize the modeling of quantum sys-
tems. For instance, can quantum many-body dynam-
ics be “learned” through transferable learning?[20,21]

Thus, the main objective of this work is to demon-
strate the novel application of NNs in the transferable
learning and prediction of the evolution of a many-
body wavefunction, an otherwise computationally in-
tensive task that has not been solved by generative
models. Focusing on static problems, it is proven
that deep NNs like the restricted Boltzmann machine
(RBM) can represent most physical states,[22] and
a recent work based on deep CNNs shows the abil-
ity to circumvent the need for Markov Chain sam-
pling on the two-dimensional interacting spin model of
larger systems.[23] Lately, physical properties of spin
Hamiltonians are reproduced by the deep Boltzmann
machine (DBM), as an alternative to the standard
path integral.[24] Our approach is fundamentally in
contrast with conventional approaches in computing
many-body dynamics: instead of evolving the wave-
function explicitly with the Hamiltonian, we directly
predict the dynamical wavefunction from the initial
state by propagating it with an efficient and trans-
ferable framework based on unified spin encoding,

chain encoding and SRU[25] module. With the same
level of parallelism as feed-forward CNNs and scal-
able context-dependent capacity of recurrent connec-
tions, our proposed framework is naturally suited for
learning many-body systems with unified parameters,
although they have never been harnessed for an ex-
act quantum state evolution; in our scenario, a 1D
Ising model with both parallel and transverse mag-
netic field.

Inspired by end-to-end training[26] and domain
adaptation,[27,28] we specialize in the many-body dy-
namics of a 1D Ising chain with transverse and par-
allel magnetic fields. Comparison with exact conven-
tionally computed results with up to seven spins re-
veals high predictive accuracy, as quantified by the
relative entropy as well as magnetization. Indeed, our
SRU-propagated wavefunction shows a strong grasp
of the periodicity in the time evolution, despite being
unaware of the Hamiltonian that sets the energy (in-
verse periodicity) scale. Encouraged by circumventing
the problem of exponential computational complexity
through unified encoding mechanisms and parallel re-
current connections, we hope that such encouraging
results from our pioneering transferable learning ap-
proach will inspire further applications of transferable
learning methods to build a shared model suited for
quantum systems with vast spin variables.

We consider a 1D Ising spin chain composed of 𝑁
spin variables with local transverse (𝑔) and parallel
(ℎ) magnetic fields, described by the Hamiltonian
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where 𝜎𝑥 and 𝜎𝑧 denote the Pauli matrices, and 𝑖 de-
notes the spin variable. When the magnetic field is
parallel (𝑔 = 0) or transverse (ℎ = 0), the Hamilto-
nian is exactly solvable. However, when 𝑔 ̸= 0 and
ℎ ̸= 0, the dynamics of 𝑁 spins must be numerically
computed in the 2𝑁 -dimensional many-body Hilbert
space spanned by direct product states Ψ of single-
spin wavefunctions 𝜓𝑖:

Ψ =

𝑁∏︁

𝑖

⊗𝜓𝑖 =

𝑁∏︁

𝑖

⊗
(︂
𝜑↑𝑖
𝜑↓𝑖

)︂
, dimΨ = 2𝑁 . (2)

Wavefunction dynamics can be exactly computed
through unitary time evolution of the Hamiltonian

|Ψ(𝑡)⟩ = exp

(︂
−𝑖𝐻

~
𝑡

)︂
|Ψ(0)⟩

= 𝑉 exp

(︂
−𝑖𝐸

~
𝑡

)︂
𝑉 −1 |Ψ(0)⟩ , (3)

where 𝐸 = 𝑉 −1𝐻𝑉 is the diagonal eigenenergy ma-
trix.

The 2𝑁 -dimensional 𝑁 -body wave function |Ψ(𝑡)⟩
quickly becomes expensive to compute as 𝑁 increases.
Inspired by the sequence generation model,[29] our
framework (as shown in Fig. 1(b)) is composed of a
spin encoding layer, chain encoding layer, SRU lay-
ers, and spin decoding layer, which instead attempts
to predict its time evolution based on prior knowl-
edge of the time evolution behavior of known training
states. This training (learning) only has to be per-
formed once for the relatively inexpensive prediction
of any number of initial states. Importantly, the train-
ing and prediction process captures solely the intrinsic
evolution patterns of the wavefunctions, and does not
involve any explicit knowledge about the Hamiltonian.
Moreover, as we shall explain, our SRU-based frame-
work is transferable. We next outline the broad prin-
ciples behind our NN approach of predicting quantum
state evolution, for details see the Supplementary Ma-
terial. The vanilla SRU NN with peephole connections
(Fig. 1(a)) substitutes inherent matrix multiplication
with parallelizable element-wise multiplication opera-
tions (⊙ in Fig. 1(a)) associated with 𝑐𝑡−1, hence the
calculation of 𝑓𝑡 does not have to wait until the whole
𝑐𝑡−1 is updated. With the help of spin encoding and
decoding layers, the amount of trained parameters is
fixed, and thus the complexity has an upper bound
instead of increase exponentially.

Our procedure occurs in two main stages: the
training stage and the inference stage. We first “train”
or optimize the weight parameters of our SRU-based
framework in a teacher forcing mode[30] by feeding it
with a large number of training sequences, which are
the time-evolved wavefunction data of 104 randomly
chosen initial 2-spin to 7-spin state sequences sam-
pled over 500 time steps, obtained via conventional
exact diagonalization (ED). The SRU-based frame-
work is fully optimized by the Adam optimization
algorithm[31] to minimize the mean squared error be-
tween the ED-evolved and SRU-evolved states at all

time steps in a mini-batch (see the Supplementary Ma-
terial).
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Fig. 1. (a) Details of a vanilla SRU cell with forget gate
𝑓𝑡, skip gate 𝑟𝑡, memory cell 𝑐𝑡 and weighted connections
from previous memory cell 𝑐𝑡−1 to both forget gate 𝑓𝑡
and skip gate 𝑟𝑡. 𝑋𝑡 is the input and ℎ𝑡 is the output
hidden state of SRU cell. The forget gate decides what to
forget from previous memory cell 𝑐𝑡−1 and what redun-
dant information to drop when adapting to other systems.
The skip gate, along with current memory cell 𝑐𝑡, decides
what to skip from input and what to output as ℎ𝑡. Here
𝜎(𝑥) = 𝑒𝑥

𝑒𝑥+1
is the activation function. (b) Proposed ar-

chitecture we take in this study as a block composed of
a spin encoding layer, a chain encoding layer, SRU lay-
ers and a spin decoding layer at each time step. Spin
encoding, chain encoding and spin decoding are all feed-
forward layers (labeled as FF). (c) Autoregressive proce-
dure of generating new quantum states, given an initial
state at the beginning. Each time-evolved quantum state
is predicted from our proposed block by SRU’s cell mem-
ory information (shown as arrows in the middle) and pre-
vious predicted state.

Once trained well, the SRU-based framework is
ready to predict the evolution of arbitrarily given ini-
tial states. As sketched in Fig. 1(c), the initial state
|Ψ(𝑡 = 0)⟩ enters the leftmost block at 𝑡 = 0, and is
then processed by a spin encoding layer, a chain en-
coding layer, and two fully connected layers, and its
output is propagated as an input state to the next
block with hidden layers ℎ𝑡. The output of each block
denotes a new quantum state at a certain time step.
The combination of memory cell 𝑐𝑡 and hidden output
ℎ𝑡 acts as effective context-dependent behaviors. As
illustrated in Fig. 1(a) and further elaborated in the
Supplementary Material, context-dependent informa-
tion kept in memory cell 𝑐𝑡 is modified by its pre-
vious value 𝑐𝑡−1, new input 𝑥𝑡 interacted with for-
gotten gate and skipped gate at that time step, as
well as “hidden” information on ℎ𝑡−1 from the previ-
ous SRU cell. Based on the already optimized SRU-
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based framework, the final predicted quantum state as
a function of time would be generated from one fully
connected layer and the spin decoding layer as shown
in Fig. 1(b).

We report very encouraging agreements between
wavefunctions evolved by 𝑒−𝑖𝐻𝑡/~ as computed by ED,
and wavefunction evolutions as predicted by our SRU-
based framework. As for the 1D Ising model, we set
the local transverse magnetic field 𝑔 to be −1.05, par-
allel magnetic field ℎ to be 0.5 and ∆𝑡, the time in-
terval to be 0.002, and keep this setting constant for
all computation. We find that the maximum energy
eigenvalue is about 0.1 ≫ 0.002, proving that the cho-
sen time interval is small enough. The number of spin
variables studied (2 to 7) decides the cost of exactly
computing the 104 different time evolutions over 0.2 s
(100 time steps) prior to training the network, since
the time complexity of the ED method is 𝒪(2𝑛).
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Fig. 2. Output (SRU-based) and target (ED-based) wave-
function magnitude (𝑦-axis) for 2-spin to 7-spin systems,
with the initial states given in the Supplementary Mate-
rial. We plot the curves of the total 100 time steps.
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Fig. 3. Comparisons of all components of coefficients for
SRU-based prediction and ED-based simulation in each
transverse lattice with different colors for both (a) six-spin
and (b) seven-spin systems.

Concretely, we visually illustrate the comparison
for the evolution of a typical state from 2-spin to 7-
spin in Fig. 2. These states are evolved from arbitrar-

ily chosen initial states from the test set. Saliently,
the evolution predicted by the SRU-based model ac-
curately reproduces that from exact computations at
the beginning 100 time steps. To confirm that this
agreement is not just due to a fortuitous choice of
component, we look at the evolution across all com-
ponents of the same states in Fig. 3.

To further quantify the agreement of SRU and ED
wavefunction evolutions, we compute the relative en-
tropy (Kullback–Leibler divergence)[32] of their distri-
butions over 1000 test wavefunctions sequences. For
discrete probability distributions 𝑃 and 𝑄, the rela-
tive entropy is defined as

𝐷𝐾𝐿(𝑃 ||𝑄) =
∑︁

𝑥

𝑃 (𝑥) log
(︁𝑃 (𝑥)

𝑄(𝑥)

)︁
. (4)

Given ED-computed wavefunction coefficient vectors
𝑀ED and SRU-predicted coefficient vectors 𝑀SRU,
at time 𝑡 and basis vector 𝑥, the 𝑃 and 𝑄 variables
are taken as

𝑃𝑛,𝑡,𝑥 =
|𝑀ED

𝑛,𝑡,𝑥|∑︀2𝑁

𝑥=1 |𝑀ED
𝑛,𝑡,𝑥|

, (5)

𝑄𝑛,𝑡,𝑥 =
|𝑀SRU

𝑛,𝑡,𝑥|∑︀2𝑁

𝑥=1 |𝑀SRU
𝑛,𝑡,𝑥|

, (6)

where 𝑛 labels the test sequence. Hence the mean
relative entropy (MRE) at each time step 𝑡 is

𝐷𝐾𝐿(𝑃 ||𝑄)(𝑡) =
1

1000

1000∑︁

𝑛=1

2𝑁∑︁

𝑥=1

𝑃𝑛,𝑡,𝑥 log
𝑃𝑛,𝑡,𝑥

𝑄𝑛,𝑡,𝑥
, (7)

and measures the amount of information lost when the
distribution 𝑄 from SRU predictions is used to repre-
sent the distribution 𝑃 from ED results. The smaller
the value of 𝐷𝐾𝐿(𝑃 ||𝑄)(𝑡), the more accurate their
agreement is.
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Fig. 4. MRE of generating long sequences in different
systems. The MRE increases linearly with time steps.

In Fig. 4, we show the MRE varies significantly
across time steps during prediction of test set. In
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all six systems, the order of relative entropy is always
within 0.03. Evidently, with the increase of time steps,
the relative entropy generally shows an upward trend
and increases linearly (see the Supplementary Mate-
rial), which is caused by the accumulation of errors
during the conditional generation without any exter-
nal guidance, though already suppressed dropout lay-
ers.

Owing to the unified encoding and parallelism, our
SRU-based NN is becoming increasingly more supe-
rior over the ED method in terms of efficiency, as the
number of spins and batch size increase. Table 1 sum-
marizes the results. When the number of spins gets
larger, e.g. 6 and 7, the advantage of our SRU-based
framework on inference speed becomes more and more
obvious. This is attributed to its constant computa-
tional complexity. In addition, when we enlarge the
batch size to 256 for 7 spins, our model demonstrates a
speed of 130 times faster than the ED-based method.
Table 1. Comparison of time consumption (seconds) between
the ED and SRU-based methods. Three independent runs are
performed to generate sequences of different batch sizes, and
the average time consumption is reported. BS denotes the
batch size, and the bold black font indicates that our SRU-
based method is superior to ED with increasing spin number
and batch size.

BS= 1 BS= 64 BS= 128 BS= 256
System ED Ours ED Ours ED Ours ED Ours
2-spin 0.015 0.425 1.1 0.74 2.3 0.83 4.6 0.69
3-spin 0.035 0.425 2.2 0.74 4.4 0.69 8.7 0.71
4-spin 0.059 0.425 3.8 0.77 7.6 0.66 15.1 0.72
5-spin 0.271 0.425 17.5 0.82 34.9 0.76 69.7 0.79
6-spin 0.556 0.425 35.2 0.71 70.5 0.66 141.4 0.98
7-spin 1.15 0.425 73.1 0.80 146.3 0.91 292.5 2.18
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Fig. 5. (a) The validation loss for predicting the dynam-
ics of the 8-spin system by finetuning and training from
scratch, respectively. (b) The MRE of the 8-spin system.

After obtaining the base model trained with data
sets of 2 to 7 spins by 300 epochs, we may continue
to finetune it with the data set of the 8-spin system.
We also train it from scratch for comparison. The
results in Fig. 5(a) shows that the validation loss by
finetuning the base model is much lower than train-
ing from scratch, demonstrating that our NN has al-
ready learned transferable features from smaller sys-
tems. The MRE of the 8-spin system is shown in
Fig. 5(b).

In summary, we have successfully applied a trans-
ferable NN approach based on SRU networks to ap-
proximate the state evolution of dynamic quantum
many-body systems with high accuracy and superior
scalability. Our work encourages future applications
of advanced ML methods in quantum many-body dy-
namics in a Hamiltonian-agnostic manner. One possi-

bility is to predict the behavior of large and inhomo-
geneous systems lacking training data by just learn-
ing from a smaller-sized system.[33,34] Applications of
these advancements in ML to quantum many-body
problems are left to future work.

Xiao Zhang thanks Yingfei Gu, Meng Cheng, Yi
Zhang for discussions.
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