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1.  Introduction

The decomposition of a solid solution into two separate phases 
in metallic alloy systems is one of the most well-known and 
widely studied phenomena in materials science. In gen-
eral, such decomposition is mechanically and/or chemically 
induced. When an initial solid solution becomes unstable or 
metastable in a given environment, such as an environment 
with high pressures and/or low temperatures, it decomposes 
into two different phases. This phenomenon is well-described 
by empirical rules known as the Hume–Rothery rules, where 
the following three factors are utilized to evaluate the phase 
stability of a single solid solution in an alloy system [1]: 
differences in atomic radii, electronegativity, and valence 

electron concentrations. Each of these factors is estimated 
from the constituent elements of the given alloy system. The 
first factor is related to mechanically driven phase separations, 
and the other two factors are related to chemically driven 
phase separations.

Mechanically induced phase separation originates 
from mechanical instability. Mechanical instability can be 
easily detected based on pressure–volume (P–V) curves. 
A P–V  curve represents the second-order derivative of the 
energy (or free energy), E, in terms of volume, V , because 
∂2E/∂V2 = −∂P/∂V . To be mechanically stable, a system 
must satisfy the condition ∂P/∂V < 0 at an equilibrium 
volume, where the curve intersects with the horizontal axis 
(i.e. P = Pext ≈ 0). The concept of mechanical instability 
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leading to the phase separation has been applied to liquid–
gas transformations [2], but is also applicable to solid–solid 
transformations [3].

In contrast, chemically driven phase separation can be 
concisely described by a first-nearest-neighbor pair interac-
tion model. For example, when the two components of an 
A–B alloy have stronger bonding for A–A and B–B pairs than 
for A–B (or B–A) pairs, the ground-state structure will be 
composed of two chemically distinct phases, namely A-rich 
and B-rich solid solutions. At relatively high temperatures, 
entropic contribution becomes dominant and a single solid 
solution (or disordered phase) will become more stable than 
two separate phases. Conversely, a high-temperature single 
solid solution can decompose into two different phases at low 
temperatures.

In some alloy systems, phase separation with accompa-
nying ordering has been observed (e.g. [4–6]). This phenom
enon is known as the concurrent behavior of ordering and 
phase separation. Concurrent behavior in Fe–Be alloys trans
itioning from a single solid solution into a solid solution and 
B2 ordered phase has been successfully explained by con-
sidering distant pair interactions [4]. It has been suggested 
that when first-nearest-neighbor interactions prefer ordering, 
but second-neighbors promote phase separation, there is the 
potential for concurrent behavior of ordering and phase sepa-
ration [4, 7].

In Co– and Ni–Al–Ti ternary alloys, a phenomenon sim-
ilar to the concurrent behavior mentioned above has been 
observed [8–10]. In these cases, a B2 ordered phase decom-
poses into B2 and L21 ordered phases. It is noteworthy that 
both B2 and L21 ordered phases have been observed in  
Fe–Al–Ti systems as well, but phase separation behavior has 
not been observed [8]. There have been several works sug-
gesting that the phase separation in Ni–Al–Ti alloys is caused 
by a lattice misfit between B2 and L21 phases [11, 12] (i.e. 
caused by mechanical instability).

However, because the transformation between B2 and L21 
phases in X–Al–Ti alloys can be viewed as an order–disorder 
phase transformation (because the L21 phase is crystallo-
graphically equivalent to the B2 phase when the Al and Ti 
atoms on the α- and β-sublattices are randomly distributed, 
as shown in figure 1(b)), the same reasoning applied to Fe–Be 
alloys [4] is also applicable to X–Al–Ti alloys. A systematic 
study was conducted on X–Al–Ti alloys to investigate effects 
of X (X: Fe, Co, Ni, and Cu) atoms on the stability of the two-
phase region, and a specific relationship between phase sepa-
ration and the numbers of 3d  +  4s valence electrons in the 
component elements was proposed [10]. This indicates that 
phase separation into B2 and L21 ordered phases in X–Al–Ti 
alloys is strongly related to chemical affinities.

The origin of phase separation in X–Al–Ti alloys is still 
controversial and has not been fully elucidated. Therefore, in 
this study, the origins of phase separation in Co– and Ni–Al–Ti 
alloys, as well as the reason for its absence in Fe–Al–Ti alloys, 
were explored utilizing the cluster variation method (CVM) 
[13]. The CVM is one of the most reliable mean field approx
imations for formulating free energy. By combining it with 
electronic structure total energy calculations (first-principles 

CVM [14]), it is expected that the phase stability of B2 and 
L21 ordered structures can be reliably evaluated in terms of 
both mechanical instability and chemical repulsions of unlike 
pairs.

The remainder of this paper is organized as follows. The 
methodology for analysis of the phase stability of B2 and L21 
ordered structures utilizing first-principles CVM is described 
in section 2. In Section 3, the calculated phase diagrams for 
X–Al–Ti (X: Fe, Co, and Ni) alloys in XAl–XTi pseudo-binary 
sections  are presented and the contributions of mechanical 
instability and chemical repulsions are discussed. Finally, the 
origin of phase separation in X–Al–Ti alloys is summarized 
in section 4.

2. Theory

The phase stability of B2 and L21 ordered phases in Ni–
Al–Ti alloys was analyzed based on CVM by Enomoto et al 
[12]. In their study, the phenomenological interaction ener-
gies between first- and second-nearest-neighbor pairs on 
an original body-centered cubic (bcc) lattice were utilized 
within tetrahedron approximation. The two-phase region of 
the B2 and L21 ordered phases was successfully predicted 
in a Ti-rich environment and phase separation behavior was 
explained in terms of large lattice misfits between B2 and L21 
ordered phases without referring to the chemical affinities 
of atomic bonds in the system. In fact, to elucidate chemical 
contributions, it is necessary to consider longer interaction 
energies compared to second-nearest-neighbor pairs on the 
bcc lattice (which correspond to first-nearest-neighbor pairs 
on a simple cubic lattice, as shown in figure 1). Longer pair 
interaction energy cannot be considered in the tetrahedron 
approximation. Therefore, a higher-order approximation must 
be adopted to incorporate longer pair interaction energy. The 
next higher-order approximation for the bcc structure is the 
cube-octahedron approximation [15], but the cube-octahedron 
approximation is non-trivial because of its huge computa-
tional burden.

The phase stability of B2 and L21 ordered structures has 
also been explored in X2A2−xBx (0 � x � 2) alloys utilizing 
a cubic approximation of the CVM by Kiyokane [16], who 
only considered interchange between A and B atoms on the 
α- and β-sublattices of L21 ordered structures with fixed X 
atoms on the γ-sublattice (see figure 1, where A and B atoms 
correspond to Al and Ti atoms, respectively). The author con-
ducted model calculations by setting an arbitrary constant 
value for the first-nearest-neighbor pair interaction energies 
on a simple cubic lattice (not the bcc lattice) and identified a 
phase boundary between B2 and L21 phases in the XA–XB 
pseudo-binary section. Because any volume dependence 
on pair interaction energies and any additional distant pair 
interaction energies beyond the first-nearest neighbors were 
not considered, a two-phase region (B2  +  L21) was not pro-
duced. However, this scheme has an advantageous feature 
compared to the tetrahedron CVM employed by Enomoto 
et  al [12] in that it is possible to include longer interaction 
energies than second-nearest-neighbor pairs on the bcc lattice  
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(or first-nearest-neighbor pairs on a simple cubic lattice) with 
a relatively small computational burden compared to the cube-
octahedron approximation.

Therefore, in the calculations for this study, a cubic approx
imation of the CVM is implemented by considering multi-
body interaction energies inside a cubic cluster (including up 
to the third-nearest-neighbor pair of interaction energies for 
the simple cubic lattice), which are determined through elec-
tronic band structure calculations. In the cubic approximation 
employed in this study, the only configurations of Al and Ti 
atoms on α- and β-sublattices are considered as was done 
in [16]. In the remainder of this section, the phase equilibria 
between the B2 and L21 ordered phases in the X2Al2−xTix 
(0 � x � 2) alloys are explored and phase diagrams for the 
pseudo-binary section, XAl–XTi, are determined.

Note that a concept similar to that adopted here (i.e. lim-
iting one’s attention to atomic configurations to the α- and 
β-sublattices) has been employed for the calculation of the 

tetragonal–cubic phase transformation in ZrO2 [14, 17], 
where only the displacements of oxygen atoms were consid-
ered with fixed zirconium positions. Because there is clear 
(reliable) experimental evidence that the Fe, Co, and Ni atoms 
in X–Al–Ti alloys are located primarily on the γ-sublattice 
[8–10], the assumption adopted here is reasonable as long as 
the temperature is not excessively high.

For the analysis of phase stability, the free energy of a 
system must be formulated. The configurational entropy, S, 
within the cubic approximation of the CVM is given as [18]

S = kB

[
1
2

(∑
i

L(xαi ) +
∑

i

L(xβi )

)
− 3

∑
i,j

L(yαβij )

+3
∑
i,j,k,l

L(zαβαβijkl )−
∑

i,j,k,l,m,n,o,p

L(wαβαβαβαβ
ijklmnop )

]
,

�

(1)

where kB is the Boltzmann constant; xα/βi , yαβij , zαβαβijkl , and 
wαβαβαβαβ

ijklmnop  are the cluster probabilities of the point, pair, 
square, and cubic, respectively; and L(x) ≡ x lnx − x . The 
subscripts and superscripts of the cluster probabilities indi-
cate atomic species and sublattices, respectively (e.g. zαβαβAlAlAlTi 
represents the probability of finding the square configuration, 
namely Al–Al–Al–Ti, on the α-β-α-β sublattices).

The total energy, E, in a system is described in terms of 
cubic interaction energy as

E =
∑

i,j,k,l,m,n,o,p

εijklmnopwαβαβαβαβ
ijklmnop ,

� (2)

where εijklmnop are the cubic interaction energies and 

wαβαβαβαβ
ijklmnop  are the cubic cluster probabilities, as defined 

above. Although there are 28  =  256 possible cubic configura-
tions for Al and Ti atoms, this number is significantly reduced 
to 22 based on the symmetry of the cubic structure. The cubic 
configurations are numbered and listed in table 1. Note that the 
perfect B2 and L21 ordered phases (or XAl, XTi, and X2AlTi) 
correspond to the first, second, and 22nd cubic configurations 
in table 1, respectively.

Ordered phase Disordered phase
(B2 structure)(L21 structure)

Cubic cluster
: X : Al : Ti

(a)
(b)

: Al

Figure 1.  (a) L21 ordered structure, where X, Al, and Ti atoms are represented by dotted, gray, and black balls, respectively. Lattice 
points that are predominately occupied by Al, Ti, and X atoms are called the α-, β-, and γ-sublattices, respectively. (b) The L21 structure 
transforms into a B2 structure when the Al and Ti atoms are randomly distributed on the α- and β-sublattices, which can be viewed as an 
ordered–disordered phase transformation. The cubic cluster on the simple cubic lattice composed of α- and β-sublattices is highlighted in 
red. This cluster is utilized as the basic cluster for the cubic approximation of the CVM.

Table 1.  Twenty-two types of cubic configurations, each of which 
is numbered with its interaction energies shown as εn.

J. Phys.: Condens. Matter 32 (2020) 174002
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The cubic interaction energies, εijklmnop (or εn, where n rep-
resents one of the cubic configurations listed in table 1), are 
obtained from electronic band structure calculations utilizing 
the projector augmented-wave method [19], as implemented 
in the Vienna Ab Initio Simulation Package. A non-spin-polar-
ization calculation is conducted utilizing the generalized gra-
dient approximation of the Perdew–Burke–Ernzerhof [20] for 
the exchange-correlation functional. The supercells in these 
DFT calculations contain 16 atoms (the numbers of X, Al, and 
Ti atoms are 8, 8  −  N, and N, respectively, where N takes an 
integer value from zero to eight) in the bcc structure, where X 

atoms are fixed on the γ-sublattice, and Al and Ti atoms are 
placed on the α- and β-sublattices, as shown in table 1. The 
plane wave cutoff energy is set to 400 eV and integration over 
the Brillouin zone is performed with 4 × 4 × 4 k-points. 
The cubic interaction energies calculated at various volumes 
are fitted to the following Murnaghan equation of state [21]:

εijklmnop(V) = εijklmnop(V0)

+
B0V

B′
0(B

′
0 − 1)

[
B′

0

(
1 − V0

V

)
+

(
V0

V

)B′
0

− 1

]
,

� (3)

where V0 is an equilibrium volume at the ground state, B0 is 
the bulk modulus at the equilibrium volume, and B′

0 is the first 
derivative of the bulk modulus, B, with respect to pressure, P, 
which is evaluated at V0 (i.e. B′

0 = (∂B/∂P)V0).
The equilibrium state of a system at a finite temperature, 

T, is determined utilizing the grand potential, Ω. The grand 
potential is derived by performing a Legendre transformation 
on the Helmholtz free energy, F, in terms of point cluster prob-
abilities, xi (= (xαi + xβi )/2), as Ω = F −

∑
i µixi, where µi is 

the chemical potential of atomic species i. The equilibrium 
state is determined by imposing the following two conditions:

(
∂Ω

∂wαβαβαβαβ
ijklmnop

)

V ,T

= 0� (4)

and
(
∂Ω

∂V

)

T ,xαi ,xβi ,yαβ
ij ,zαβαβ

ijkl ,wαβαβαβαβ
ijklmnop

= 0 .� (5)

The minimization of the grand potential in terms of cluster 
probability (equation (4)) is performed utilizing the natural 
iteration method [22]. The phase boundary between L21 (or 
ordered) and B2 (or disordered) phases at each temperature is 
identified as the point at which their equilibrium grand poten-
tials, Ωeq(T), become identical (i.e. ΩL21

eq (T) = ΩB2
eq (T)).

3.  Results and discussion

The calculated formation energies, ∆εn (or ∆εijklmnop), for 
each atomic configuration in X–Al–Ti (X: Fe, Co, and Ni) 
alloys in terms of lattice parameters, a (= V

1
3), are presented 

in figure 2, where the segregation limit connecting the min-
imum energies of the perfect B2 ordered phases, XAl and 
XTi, is considered as the reference energy. From figure  2, 
one can see that the L21 ordered structure has the minimum 
formation energy among all Fe–, Co–, and Ni–Al–Ti alloys. 
This indicates that the L21 ordered structure is the most stable 
phase at the ground state. The equilibrium lattice constant, 
a0, and bulk modulus, B0, of the perfect B2 and L21 ordered 
phases calculated utilizing the Murnaghan equation of state 
(equation (3)) are summarized in table  2. One can see that 
the calculated lattice constants are close to the experimental 
data, but there are nontrivial differences in the bulk moduli. 
The nontrivial differences in the bulk moduli of some ordered 
phases, such as FeAl (B2), CoTi (B2), and NiTi (B2), are con-
sistent with the previous DFT calculations using full-potential 

Figure 2.  Calculated formation energies of the atomic 
configurations in table 1 for the (a) Fe–Al–Ti, (b) Co–Al–Ti, and 
(c) Ni–Al–Ti alloys. Here, the segregation limit connecting the 
minimum energies of the perfect B2 ordered phases, XAl and XTi, 
is considered as the reference energy.

J. Phys.: Condens. Matter 32 (2020) 174002
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linearized augmented plane waves method [23, 24] or full-
potential linear muffin-tin orbitals method within the local 
density approximation [25].

The calculated phase diagrams in X–Al–Ti alloys at the 
pseudo-binary section, XAl–XTi, are presented in figure  3 
with experimental results from previous studies [8–10]. One 
can see that there are only single-phase regions of B2 and 
L21 ordered phases in the Fe–Al–Ti alloy, whereas there are 
two-phase regions at low temperatures in both the Co–Al–Ti 
and Ni–Al–Ti alloys. These findings are consistent with the 
experimental results [8–10].

To clarify the reason for the absence of phase separation 
in the Fe–Al–Ti alloy, lattice misfits between the B2 and L21 
ordered phases, δB2/L21, at the ground state and the first- to 
third-nearest-neighbor effective pair interaction energies on 

the simple cubic lattice, W(1,2,or3)
Al/Ti , were calculated for the 

X–Al–Ti alloys and are shown in table 3 and figure 4, respec-
tively. A lattice misfit is defined as

δB2/L21 =
|aL21

0 − aB2
0 |

aB2
0

,� (6)

where aB2
0  and aL21

0  are the lattice constants of the B2 
and L21 ordered phases at the ground state, respectively. 
The effective pair interaction energies are defined as 

W(n)
Al/Ti ≡ e(n)

AlAl + e(n)
TiTi − 2e(n)

AlTi, where e(n)
AlAl, e

(n)
AlTi, and e(n)

TiTi are 

the nth-nearest-neighbor pair interaction energies of Al–Al, 
Al–Ti, and Ti–Ti pairs on the simple cubic lattice. The effec-
tive pair interaction energies can be utilized to evaluate the 
tendencies of ordering or phase separation in a system. When 

W(n)
Al/Ti > 0 (W(n)

Al/Ti < 0), the Al–Al and Ti–Ti pairs (Al–Ti 

and Ti–Al pairs) are preferred by the nth-nearest-neighbors. 

Their values can be extracted utilizing the cluster expansion 
method (CEM) [39] (details regarding the CEM can be found 
in appendix). From table 3 and figure 4, one can see that the 
lattice misfits for the Fe–Al–Ti alloy are much smaller than 
those for the Co– and Ni–Al–Ti alloys, and the first-nearest-
neighbor interaction energy in the Fe–Al–Ti alloy is dominant 
compared to the second- and third-nearest-neighbor interac-
tion energies. These results indicate that it is difficult to induce 
either mechanically or chemically driven phase separation in 
the Fe–Al–Ti alloy, meaning no phase separation behavior or 
two-phase regions could be produced.

In contrast, in the Ni–Al–Ti alloy, the lattice misfits are 
relatively large and the second-nearest-neighbor effective 
pair interaction shows a large negative value in table  3 and 
figure 4. These factors make the system mechanically unstable 
and chemically frustrating, resulting in phase separation. To 
confirm the mechanical instability of the Ni–Al–Ti alloy, P–V  
curves were calculated. One of the representative P–V  curves 
for the Ni–Al–Ti alloy is presented in figure  5. This curve 
corresponds to T  =  1500 K in the Al–rich side. One can see 
that the curve intersects the horizontal axis (P  =  0) for three 
different lattice parameters. Among these intersections, the 
left and right intersection points satisfy the stability criteria, 
namely ∂P/∂V < 0, and are considered to be stable phases 
(lattice constants are given at intersection points). In contrast, 
the middle intersection point is unstable based on the stability 
criteria, so it decomposes into the two stable phases. It was 
confirmed that the lattice parameters at the two intersections 
are the same as those of the B2 and L21 ordered phases, which 
were independently calculated in figure 3.

For the Co–Al–Ti alloy, the lattice misfit is as large as that 
for the Ni–Al–Ti alloy, but the second- and third-nearest-
neighbor effective interaction energies are insignificant 

Table 2.  Equilibrium lattice constant, a0, and bulk modulus, B0, of the perfect B2 and L21 ordered phases at the ground state evaluated 
utilizing the Murnaghan equation of state (equation (3)). Available experimental data are also provided (note that the experimental data 
were measured at ambient temperatures).

a0 (Å) Cal.   Exp.        Diff. (%)  

FeAl (B2) 2.869 2.862 [26] +0.24
FeTi (B2) 2.947 2.972 [27] −0.85
Fe2AlTi (L21) 5.812 5.882 [28] −1.20
CoAl (B2) 2.851 2.861 [29] −0.25
CoTi (B2) 2.965 2.995 [26] −1.01
Co2AlTi (L21) 5.812 5.85 [30] −0.65
NiAl (B2) 2.894 2.886 [31] +0.28
NiTi (B2) 3.006 3.012 [32] −0.20
Ni2AlTi (L21) 5.896 5.90 [33] −0.40
B0 (GPa) Cal.        Exp.        Diff. (%)  
FeAl (B2) 176.8 152 [34] +16.3
FeTi (B2) 194.0 160.8 [35], 189 [36] +17.1, +2.64
Fe2AlTi (L21) 187.0 — —
CoAl (B2) 175.7 162 [29]   +7.80
CoTi (B2) 181.0 154 [37] +16.6
Co2AlTi (L21) 183.3 — —
NiAl (B2) 155.1 156 [31]   −0.58
NiTi (B2) 163.7 140.3 [38] +14.3
Ni2AlTi (L21) 162.7 — —
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compared to the first-nearest-neighbor interaction energy. 
Therefore, it is considered that the phase separation behavior 
in the Co–Al–Ti alloy is solely caused by mechanical insta-
bility. This explains the smaller two-phase regions of B2 and 

L21 ordered phases in the Co–Al–Ti alloy compared to those 
in the Ni–Al–Ti alloy (see figures 3(b) and (c)).

The large negative effective pair interaction energy of the 
second-nearest-neighbor pairs in the Ni–Al–Ti alloy is asso-
ciated with the positive formation energies of certain atomic 
configurations (see figure  2(c)). In contrast, in the Fe– and 
Co–Al–Ti alloys, there are few configurations with positive 
formation energies (as shown in figures 2(a) and (b)), resulting 
in very small positive effective pair interaction energies in the 
Fe– and Co–Al–Ti alloys (see figure 4).

Note that there are some deviations in the calculated phase 
diagrams compared to the experimental results, such as a 
smaller B2 phase region in the Fe–Al–Ti alloy and overes-
timation of the two-phase regions on the Ti-rich side of the 
Co– and Ni–Al–Ti alloys. There are several possible reasons 
for these deviations, such as disregarding local atomic dis-
placements, assuming that X atoms are located only at the 
γ-sublattice, and poor accuracy of the electronic band struc-
ture calculations. For a more reliable description of phase 

Figure 3.  Phase boundaries between B2 and L21 ordered phases 
in the (a) Fe–Al–Ti, (b) Co–Al–Ti, and (c) Ni–Al–Ti alloys in 
the pseudo-binary section, XAl–XTi (X: Fe, Co, and Ni). The 
calculated results and experimental data [8–10] are shown as filled 
and open circles, respectively.

Table 3.  Lattice misfits between B2 and L21 ordered structures at 
the ground state, which are calculated from table 2 and equation (6).

δB2/L21 Fe–Al–Ti   Co–Al–Ti   Ni–Al–Ti  

δXAl/X2AlTi 1.288% 1.922% 1.875%

δXTi/X2AlTi 1.398% 1.991% 1.942%

Figure 4.  Effective pair interaction energies of the nth-nearest-

neighbor pairs, W(n)
Al/Ti, calculated utilizing the CEM. The black, 

red, and blue lines represent the Fe–, Co–, and Ni–Al–Ti alloys, 
respectively. The first, second, and third effective interaction 
energies are shown in solid, broken, and broken-dotted lines, 
respectively.

Figure 5.  P–V  curve on the Al–rich side of the Ni–Al–Ti alloy at 
T  =  1500 K.

J. Phys.: Condens. Matter 32 (2020) 174002
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diagrams, it is necessary to consider these issues. Regarding 
the overestimation of two-phase regions in the Ti-rich side of 
the Co– and Ni–Al–Ti alloys, we believe that the accuracy 
of the interaction energies derived from the band structure 
calculations is the main problem. As shown in table  2, the 
deviations in the bulk modulus are much larger on the Ti-rich 
side than those in the Al-rich side.

Aside from the possible reasons mentioned above for the 
deviations from the experimental results in the calculated 
phase diagrams, there is a possibility that the approximation 
in the CVM itself causes some error. In the CVM, atomic cor-
relations between different atomic species are truncated at a 
certain cluster size (which is a cubic cluster in this work), and 
higher order correlations are ignored. This problem may be 
circumvented by using a Monte Carlo method, in which all 
atomic correlations are automatically included. However, the 
semi-analytical feature of CVM facilitates easier numerical 
calculations and has some advantageous features to extract 
physical insight into the phase equilibria.

4.  Conclusions

Phase diagrams of the X–Al–Ti (X: Fe, Co, and Ni) alloys 
(in the XAl–XTi pseudo-binary sections) were calculated uti-
lizing the CVM based on interaction energies derived from 
electronic band structure calculations. The cubic approx
imation was adopted by assuming that interchange only 
occurs between the Al and Ti atoms on the α- and β-sub-
lattices while X atoms are fixed on the γ-sublattice. Special 
attention was paid to the stability of B2 and L21 ordered 
phases, as well as the origin of phase separation behaviors in 
these alloy systems.

The calculated phase diagrams revealed that there are only 
single-phase regions in the Fe–Al–Ti alloy while there are 
two-phase regions of B2 and L21 ordered structures in both 
the Al- and Ti-rich sides in the Co– and Ni–Al–Ti alloys. 
Based on the lattice misfits between B2 and L21 phases and 
effective pair interaction energies, it was found that because 
neither mechanical instability nor chemical repulsions of 
unlike pairs are expected in the Fe–Al–Ti alloy, no phase 
separation behavior is observed. In contrast, mechanical insta-
bility and both mechanical instability and chemical repulsions 
are expected in the Co– and Ni–Al–Ti alloys, respectively. 
Therefore, the phase separation behaviors in the Co– and  
Ni–Al–Ti alloy systems are attributed to mechanical insta-
bility and a combination of mechanical instability and chem-
ical repulsions, respectively.

It is believed that the presented formalism can be applied 
to other metallic alloy systems in which phase separations 
are observed. Clarifying the origins of phase separations in 
various alloy systems will facilitate the microstructure control 
of industrial materials in an effective manner.
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Appendix.  Cluster expansion method

The CEM [39] was employed to extract the effective pair inter-
action energies of the first-, second-, and third-nearest-neigh-
bors between Al and Ti atoms on a simple cubic lattice. Based 
on the CEM, the formation energies, ∆E(n) (corresponding to 
∆εn in this work, where n denotes one of the cubic configura-
tions listed in table 1), are written as

∆E(n) =
∑

m

vmξ
(n)
m ,� (A.1)

where vm is the effective cluster interaction energy for a cluster 

m and ξ
(n)
m  is a correlation function. The cubic cluster is com-

posed of 20 sub-clusters [16, 18] as shown in table A1. The 

correlation functions, ξ
(n)
m , are uniquely determined for each 

cubic configuration, n, utilizing the spin operator σ( p), which 
takes on values of  +1 or  −1 depending on the existence of an 

Al or Ti atom at a lattice site p . Utilizing ξ
(n)
m  with the ∆E(n) 

calculated from the band calculations (shown in figure 2), the 
effective cluster interaction energies, vm, are determined as

vm =
∑

n

(
ξ(n)

m

)−1
∆E(n) ,� (A.2)

where v2, v3, and v4 correspond to the first-, second-, and third-
nearest neighbor effective pair interaction energies. These 

values are related to W(n)
Al/Ti as W(1)

Al/Ti = 2v2, W(2)
Al/Ti = 2v3, 

and W(3)
Al/Ti = 2v4.

Table A1.  Twenty sub-clusters in the cubic cluster [16, 18]. Here, 
the cubic cluster is also shown. Each sub-cluster is numbered and its 
corresponding correlation function is provided. ξ1, ξ2−4, ξ5−7, ξ8−13, 
ξ14−16, ξ17−19, ξ20, and ξ21 are the point, pair, triangle, four-body, 
five-body, six-body, seven-body, eight-body (or cubic) correlation 
functions, respectively.
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Note that based on the use of effective cluster interaction 
energies, vm, and correlation functions, ξm, the total energy of 
a system can be expressed as

E =
∑

m

vmξm .� (A.3)

Here, the superscripts of the sublattices (α and β) are omitted. 
Equation (A.3) corresponds to equation (2) if all multi-body 
effective interaction energies up to the cubic level are con-
sidered. The correlation functions and cluster probabilities 
are directly correlated, as demonstrated in [40]. One of the 
biggest advantages of utilizing correlation functions instead 
of cluster probabilities is that it can significantly reduce the 
number of variables necessary for calculations. Although we 
did not encounter any computational issues related to large 
numbers of variables in this work, for more demanding calcul
ations (such as the continuous-displacement CVM [41] in a 
three-dimensional lattice), the replacement of cluster prob-
abilities with correlation functions would be required.
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