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Abstract

®
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A spin-rotation mode emerging in a quantum Hall ferromagnet due to laser pulse excitation is
studied. This state, macroscopically representing a rotation of the entire electron spin-system
to a certain angle, is not microscopically equivalent to a coherent turn of all spins as a single-

whole and is presented in the form of a combination of eigen quantum states corresponding
to all possible S, spin numbers. The motion of the macroscopic quantum state is studied
microscopically by solving a non-stationary Schrodinger equation and by means of a kinetic
approach where damping of the spin-rotation mode is related to an elementary process,
namely, transformation of a ‘Goldstone spin exciton’ to a ‘spin-wave exciton’. The system
exhibits a spin stochastization mechanism (determined by spatial fluctuations of the Landé
factor) ensuring damping, transverse spin relaxation, but irrelevant to decay of spin-wave
excitons and thus not involving longitudinal relaxation, i.e. recovery of the S; number to its

equilibrium value.

Keywords: two-dimensional electron gas, strong magnetic field, Kerr precession of spin

moment, spatial fluctuations of the Landé g-factor
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1. Introduction (macroscopic approach)

Two-dimensional electron gas (2DEG) composed only of con-
duction-band electrons embedded in quantized perpendicular
or tilted magnetic field represents a unique quantum object for
direct study of magnetic phenomena and collective spin excita-
tions using both macroscopic and microscopic approaches. In
particular, in the so-called quantum Hall ferromagnet (QHF),
i.e. in the case of a large nonzero total spin momentum (i.e.
at fillings v = 1,3, ...oreven at v = 1/3,1/5...), it is possible
only by means of free conduction-band electrons to exper-
imentally model and study properties inherent to common
exchange magnets [1-10]. Many QHF properties (for example,
spectra of magnetoplasma and spin excitations as well as
spectra of spin-magnetoplasma excitations [1, 4-6, 11])
are determined directly by the ‘ ab initio’ interaction, Coulomb
coupling of 2D electrons. Besides, external fields such as
spatial electrostatic fluctuations within the 2D structure and
spin-affecting microscopic couplings, actually spin—orbit and
hyper-fine ones, both responsible for the dephasing and relax-
ation processes, are also considered straightforwardly in the
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context of a perturbative approach. The QHF features are sub-
stantially different from description of ordinary magnets, e.g.
with spatially fixed spin positions, which usually represents a
phenomenological approach or a microscopic study based on
a model Hamiltonian.

Description of dynamics of the ferromagnet by means
of the Landau—Lifshitz (L-L) equation [12] is just a typical
phenomenological approach. In fact, this well-known equa-
tion consistent with general principles is not even derived but
just proposed. In the case relevant to the QHF it would be:
hoS/0t = —gupS x B — AS x (S x B), where S is a macro-
scopically large electron spin. (It is taken into account that
the effective magnetic field in rarefied electron gas is equal
to external magnetic field B.) The first term in the RHS of
the L-L equation is proportional to the magnetic moment of
the spin and determines the fast precession process around B
with frequency |g|ugB/k. This term is definitely valid also
in the QHF case. The second term, according to the authors
[12] should be a relativistic correction responsible for pre-
cession damping, hence, describing a slow approach from
S to B. This term is chosen in the form corresponding to

© 2019 IOP Publishing Ltd  Printed in the UK
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the spin motion conserving length of S (9S> /0t =0), ie.
a variation of the absolute value of S is disregarded. Such
a conservation condition is natural for the strong exchange
ferromagnet where damping is accompanied by weak dis-
sipative processes (in particular, by dissipation of Zeeman
energy |g|usB|S;(c0) — S;(0)] due to restoration of the S()
component; Z || B), yet not violating conservation of the total
exchange energy considered to be strictly determined by S.

It is worth noting that the characteristic exchange energy
in the 2DEG is at least by two orders smaller than in ordi-
nary ‘insulating’magnets, so the term ferromagnet as applied
to the magnetized 2DEG is fairly conventional. In the QHF
the Coulomb/exchange interaction energy (~Ec = ae?/klp,
where o < 1 is a form-factor arising owing to finiteness of
the 2D layer thickness; « and [ are the dielectric constant
and magnetic length) undoubtedly represents the main force
holding the electron spins aligned along the magnetic field.
This fact is manifested, for instance, in a gigantic increase
in the effective g-factor obtained in measurements of acti-
vated conductivity [13]; however, the absence of spontaneous
magnetization in the 2DEG when the external magnetic field
is switched off, certainly indicates that the QHF is not an
ordinary ferromagnet. Experimental research [8, 9] and the
microscopic study presented in the following sections show
that under quantum Hall conditions 2DEG spin-precession
damping occurs via dephasing/stochastization processes not
affecting the exchange energy, while S is still diminishing in
accordance with the condition of constancy of the S, comp-
onent that corresponds to the Zeeman energy conservation.
The subsequent process of Zeeman energy dissipation is
related to the spin-wave relaxation/annihilation and proceeds
much slower. It is indeed determined not only by thermal
and spatial fluctuations responsible for energy dissipation
but also by weak couplings, for instance by spin—orbit and
hyper-fine couplings, responsible for the change of the S,
component. (See the theoretical estimates given in [14] and
references therein, and [10] presenting experimental measure-
ment of S, recovery (within time ~100-150 ns).) Therefore,
the total magnetic relaxation in the QHF case is characterized
by two stages: the first one, being comparatively fast, is actu-
ally damping of the spin precession where the direction of S
approaches the B direction at the S, held constant; the second
stage related to the Zeeman energy dissipation represents slow
recovery of the spin angular momentum S (directed parallel
to z; S = S,) to its equilibrium value [10]. In terms of nuclear
magnetic resonance [15], the characteristic times of these two
stages could be called transverse time 7 for the fast stage and
longitudinal time 7 for the slow stage.

Similar to the Landau-Lifshitz equation and on the basis
of similar phenomenological ideas we can write out an equa-
tion describing QHF spin motion in the framework of the
macroscopic approach. Again the term responsible for the
precession damping is assumed to be a small correction pro-
portional to a vector directed from S to B. However, now,
in accordance with the above requiring constancy of the S,
component, the motion equation should be written in the fol-
lowing simplest form

B a
eff ~ f 3
Y
v "'-l-)
Precession
trajectory
6) The L-L
equation

Figure 1. (a)—lIllustration of magnetic moment motion; the red
arrow indicates the first (precession) term in the macroscopic
equation, the blue arrow to the second (damping) term. (b)—
[lustration of damping considered in the coordinate system
precessing with spin momentum; the blue dashed lines are the S()
damping trajectories from S(0) to S(co) drawn for the Landau—
Lifshitz equation (arc) and for equation (1.1) (horizontal line).

98/0t = —(gun/h)S x B — AquB x (S x B). (L.1)

where, contrary to the L-L equation, any variation of the S,
component is disregarded. Constant Agy in equation (1.1) can
only be found within a specific microscopic model studied in
the following sections. For the S, and S| = (S, S,) comp-
onents we obtain: dS./dt = 0 (instead of S*/dt = 0 in the
L-L equation) and

08, /0t = —(gus/M)SL x B — \ouB>S .

The transverse relaxation time T, = 1/ )\QHB2 must be much
larger than the precession period 7/gugB, i.e. we have neces-
sary condition \ou/iB/gup < 1. In figure 1(b) the trajectories
of the S vector approaching the Z direction are drawn in both
situations: the motion is ruled by the Landau-Lifshitz equa-
tion and by equation (1.1).

So, at the initial moment the spin-rotation mode is a mac-
roscopic vector S(0) rotating by angle € about an axis lying
in plane (,3). Here 6 measures deviation from the ground-
state magnetization direction Z (see figure 1(b)). If 0 < 6 < ,
then rotation of S by any angle 0 < ¢ < 27 about the 7 axis
leads certainly to a different state but with the same energy.
Rotational symmetry, about z, of the QHF state at any
0 < 6 < 7 corresponds to group C, in the case and thus rep-
resents spontaneous breaking of the ground-state continuous
symmetry C__ . This ‘f-inclined state’ possesses energy
ez(1 — cos 6)S(0) macroscopically corresponding to a gap-
less Goldstone mode in terms of parameter 6 (ez = |g|usB).
We will use the term ‘Goldstone mode’ for #-spin-rotational
deviation in order to distinguish it from another one corre-
sponding to a ‘longitudinal’ deviation where both spin num-
bers S and S, change equally: §S, = 6S. It is obvious that in
the latter case the symmetry of the system remains C__ as in
the ground state.

The main purpose of the present work is to study transverse
relaxation, i.e. stochastization of the Goldstone mode, and
thus calculate inverse time 1 /T, = AquB2. In comparison with

(1.2)
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the estimate made in [9] we consider not only small but arbi-
trary deviation angles of spin S from its equilibrium direction.

The calculation is performed within a microscopic
approach. As the initial non-equilibrium quantum state pre-
senting spin rotation we study the combination

C) =) Cu(5-)"]0), (1.3)
where |0) is the QHF ground state and S_ = S, — iS, the
‘spin lowering’ operator of the whole system. The specific
set of coefficients {C,} is determined by the prehistory of
appearance of state (1.3) in the system. However, at any set
{C,} this state has obviously the following properties: (i)
the |C) vector is diagonal for the S’ operator corresponding
to its maximum value in the ground state |0); (ii) any |C) are
orbitally equivalent to the ground state: the matrix elements
of any spin-independent fields, including Coulomb coupling,
calculated within the brackets (C]|...|C) are equal to those cal-
culated within (0]...|0). In other words, the |C) state represents
a kind of ‘k = 0’ excitation not disturbing the orbital state of
the electron system. In sections 2 and 3 we explain in more
detail our choice of the initial quantum state and present coef-
ficients {C,} correponding to the laser-induced spin-rotation
mode (1.3).

The stochastization mechanism considered here is deter-
mined by smooth spatial fluctuations of the g-factor in the
2DEG, and has a simple physical meaning: within a single-
electron approach, the electrons do not precess coherently but
with slightly different Larmor frequencies in different places
of the 2D space [16]. It is interesting that, as in the case of
the L-L equation, the damping term in equations (1.1) and
(1.2) formally represents a relativistic correction, since the
small ratio h/gupT» turns out to be proportional to ¢! (see
equations (5.9), (5.10) and (5.12) below). Besides, the studied
below microscopic process destroying the spin-rotation mode
enables to find the damping rate proportional to the density
of spin-wave states (purely electronic ones!). The density
of states for its part is inversely proportional to Coulomb
coupling strength Eg, i.e. stronger coupling means longer
damping time. In our case the coefficient Agy may be written
as Adgu = X' /ry where the parameter r, represents the ratio of
the Coulomb/exchange interaction energy to the characteristic
single-electron energy. For the QHF the former is E¢ and the
latter is cyclotron energy hw,, so that X’ proves to be inde-
pendent of magnetic field for the stochastization mechanism
in question. Under typical quantum Hall conditions we have
rs ~ 0.2. (For comparison: in the ordinary exchange ferro-
magnet the parameter r, is huge, ~100-1000, and the second
term in equations (1.1) and (1.2) becomes negligible, so that
the L-L equation is used in the case'.)

It should be mentioned that other mechanisms of relaxation
of the spin-rotation mode (1.3) were theoretically considered

!In the ‘intermediate’ case the damping term is also proportional to a vector
in the (B, S) plane directed from S to B. The latter can be presented as a
general combination of both—the Landau-Lifshitz and quantum Hall terms:
Qgamp = =718 X (S X B) —72B x (S x B), where in any specific case the
balance between 7, and 7, is determined by an interplay of dimensionless
parameters r; and g.

long before direct measurements of the relaxation rate in
[8] and [9]. Works [17] and [18] were devoted to study of
relaxation of the (S_)"|0) component, i.e. the case where
set {C,} consists of a single number C,, was considered. The
relaxation,—stochastization of the Goldstone mode,—was
assumed to be related to spin—orbit Dresselhaus and Rashba
couplings responsible for the change of the spin state in the
presence of energy dissipation due to electron-phonon cou-
pling [17] or the electrostatic interaction of an electron with
an external random potential [18]. The calculated relaxation
times were found to be much longer (in fact >100 ns) than
those measured later. In [19] the authors considered another
type of state (1.3) (see below a ‘conventional’ spin rotation
mode) and an electron-spin—phonon relaxation mechanism
which is even weaker than that studied in [17] and [18] and
thus resulting in slower relaxation (see comment [20]). So, all
the three relaxation mechanisms [17-20] are irrelevant to the
actual experimental results [8, 9].

It is significant that in the case of ‘classical’ QHFs
when fillings are odd-integer (v = 1, 3...), the microscopic
approach presented in the following sections enables us to
solve the problem in an asymptotically exact way in the case
the parameter ry is considered to be small. The experimental
data and theoretical discussion show that exactly such ‘odd-
integer’ QHFs are the strongest, i.e. the precession damping
is much longer compared to nearby states with fractional fill-
ings [9]. Besides, the microscopic research allows finding not
only coefficient Agn but reveals the S, (r) behavior, which
is absolutely beyond the macroscopic approach: in addition
to the exponential damping governed by equation (1.2), the
microscopic study shows that at short times ¢ < 79 < T, there
occurs an initial transient stage which is not described by
equation (1.2) . The 7y value will be calculated in section 5.

2. Microscopic description of the system:
the Hamiltonian and relevant eigenstates

In the absence of any interaction mixing spatial and spin vari-
ables, the Hamiltonian of a translationally invariant quantum-
Hall system has the following form:

Hy = —ez8: + HY + Heou. 2.1)

Here S‘z = %Zl oi; (04, is the Pauli matrix). The ‘kinetic
energy’ electron operator and the Coulomb-interaction
operator,

(1 (bi + eA)?
! X 1 2.2)
and  Heou = Z U(R; - R;),
i#j

are those acting only on electron spatial variables. (Here and
everywhere below we set i = 1; i and j are subscripts num-
bering electrons; P, is the 2D electron momentum operator
(m* stands for the electron effective mass); R; is the 2D
radius-vector in the quantum-well plane given by the {X, ¥’}
coordinate system not related to the 3D system {%, y, Z} for the
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spin space; A; = A(R;) = (0; B_X;) is the 2D vector-poten-
tial operator, where B is the component perpendicular to the
2DEG plane—the latter may be tilted with respect to the B
direction (B || 2).)

2.1. ‘Spin-deviation’ eigenstates with S; < S

Any purely spin operator commutes with H" and Hcoy. Thus,
the spin lowering operator S_ can play the role of a generator
of ‘spin-deviation’ eigenstates. Indeed, let |0) be an eigen-
state of the quantum Hall system corresponding to exact spin
quantum numbers equal to §; = Sy, and § = Sy, and to energy
E,. Then the S_|0) state is also an eigenstate. By acting with
S, and 8% = 52 + 52 + 5 on this state one gets (S, — 1)S_|0)
and Sy(So + 1)S_|0), respectively. Operating with Hy on the
S_|0) state we obtain (ez + E)S_|0). So, the action of the
S_ operator does not change the total spin number but only
results in the S, — S, — 1 change. Besides, this action does
not affect the orbital state of the electron system.
A set of states defined as

n) = (S-)"[0) (2.3)

represents exact eigenstates orbitally equivalent to state |0) but
with spin numbers S; = S;o — n and S = Sy, and energies

2.4)

It is worth to note that even if 7 is macroscopically large a
single|n) state does not describe any dynamics of the Goldstone
mode because this stationary state has no definite azimuthal
orientation. Indeed, the quantum-mechanical average of
the S, vector is vanishing: (n|S,|n) = (n|S,|n) =0 due to
the obvious equality (n|S_|n) = (n|n + 1) = 0. Meanwhile
at large n if the spin component S, in the |0) state takes the
largest possible value, i.e. if S,o = So = S) the squared trans-
verse component in the |n) state may still be macroscopically
significant: $2 ~ $? — (S — n)?; hence, a macroscopic devia-
tion angle appears: @ = arcsin (S, /S) = /n(2 —n/S)/S.
(Here n is considered to be > 1 and, besides, 2S5 —n > 1))
Relaxation of a single state |n) may be studied, actually rep-
resenting a key problem for study of relaxation of any state

E, = Ey+ ezn.

given by equation (1.3). In the case of maximum Sy, (= Sp),
we have equality S1|0) = 0 (here S, = ST) which allows cal-
culating squared norm (n|n):

(25)!n!

Raosp = (nln) = —————Ro,

25 —n)! 2:5)

where Ry = Rys0 = (0|0). If |0) is the ground state, then in the
specific case of the odd-integer quantum Hall ferromagnet the
spin number S is the maximum total spin of electrons com-
pletely occupying the spin-up sublevel of the Landau level,
therefore 25 is equal to Landau-level degeneracy Nj. If the
Ro = 1 condition is chosen (see equation (2.8) below), then
we find (n|n) = Rn7,.», where

N¢!n!

RNWL - (N¢ — n)!'

(2.6)

Concluding this subsection, it should be noted that, if the
number of terms in the combination |C) (see equation (1.3)) is
larger than one, then|C) is not an eigenstate of the Hamiltonian
(2.1). Generally, for arbitrary combination |C) of eigenstates
there is no direction z' in spin space where the spin projec-
tion S would be an eigen quantum number. (Such states are
called states with partial spin polarization of particles [21]; the
only exception to this general situation is a special case when
all electron spins are equally aligned along axis z’ inclined
by a definite angle /3 to the B direction®.) Now, however, the
quantum average of transverse spin S is not equal to zero and
is completely determined by the {C,} set. Taking into account
that

(n|Sy|m) = dmns 1 RN (2.7)

(6. is the Kronecker delta) and calculating (C|S|C) =
>0 CriCppi(n+ 1jn+ 1), we find the values of components
(Sx) = Re(C[S+|C) and (S,) = Im(C[S+|C).

So, the |C) state may be considered as a microscopic repre-
sentation of the Goldstone mode whose subsequent evolution
is governed by the non-stationary Schrodinger equation. In the
following, in order to emphasize the role of elementary S_|0)
spin excitation in formation of the Goldstone mode, we call it
‘Goldstone spin exciton’ or simply Goldstone exciton. Spin-
deviation state (2.3) formally represents Goldstone exciton
condensate provided 7 is macroscopically large.

2.2. ‘Spin-wave’ eigenstates—excitations corresponding to
change of spin numbers: S = 6S,; = —1

Since the eighties it is known that in a translationally invariant
QHF there are low-energy excitations— spin-wave excitons
characterized by 2D momentum q # 0 (just like in an ordi-
nary ferromagnet whose dynamics is governed, e.g. by the
Heisenberg Hamiltonian). At odd-integer filling such states
and their energies may be calculated within the leading
approximation in ry, which actually permits to use the single-
Landau-level approach [11]. So, considering, that the number
of electrons in the /th highest (nonempty) Landau level is
equal to Landau level degeneracy N, = N and assuming that
all lower levels are completely occupied, as a ground state we
have
No

0)=1F1 1 @8

)= altla;f,z...a;N¢ |vac),
where a}, is the operator creating a spin-up (along the B)
electron in the pth state of the degenerate Landau level. To
define |0) uniquely, we consider the p, =2wx/L num-
bers in equation (2.8) to be ordered by taking consecutive
values 27 /L, 4n/L,..2rNy/L=L/l5 , where L? is the

area of the 2D system. The Landau-level eigenfunctions are

Pp(R) o HI(X;x”)exp [—W], where x, = p %, and

2 As applied to the v = 1 quantum Hall ferromagnet this situ-
ation was considered [19]; in this case the coefficients are
C, = [cos (8/2)]Ne—"[—sin (8/2)]"/n! (see equation (3.12) at N = Ny).
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H;is the Hermite polynomial. The terms of the Coulomb inter-
action Hamiltonian (2.2) are presented in the secondary quanti-

zation form 3., UR; —R) — [ [ Rid>Ript (R;)¢T (R)
U(R; — Rj)ilAJ(R,')'t[)(Rj) Here within the single Landau-level

approximation we have ¢(R) =3_ (Z’) ¥p(R), where b,
P
is the spin-down electron annihilation operator in the pth

state of the same /th level. (Averaging over the quantum-
well width for the U(R) Coulomb vertex is assumed to be
performed.) This two-sublevel approach has been repeatedly

used [14, 18, 22-26] (see also the relevant expressions for
H® and H’Coul in appendix A). It allows to describe the spin-
wave excitation |q; 1) = QI‘|0> by means of a spin-exciton
creation operator,

T —igp pT ,
Q=2 b ua, g 2.9)
p

(See also [9] and [ 10]—the previous definitions of the QT-oper-
ators differ from equation (2.9) by factor N, (; Y % q and p in

equation (2.9) are measured in 1//p units). Energy of the |q; 1)
spin-wave exciton to the first order in the Coulomb interaction

is found by the action of the reduced Coulomb-coupling oper-
ator: Heoyla; 1) = [Hgy» Q4[0) + Epla; 1), where Ej is the
Coulomb part of ground state energy Ey = Ej + Ny(w. — €z)/2
(we = eB, /m*c). Then (see appendix A) we get the Coulomb
part &, of the spin-wave energy obtained to the first order
in parameter r; [11]. At small momenta q (when g < 1,
meaning glg < 1in common units) the spectrum is quadratic:
&, = ¢*[1/2M + O(r?w.)]. The spin-wave exciton mass M,
was not only calculated but experimentally measured [5];
actually M_! ~ 2meV in the typical wide-thickness GaAs/
AlGaAs quantum Hall systems.

The §, spin operator in this representation takes the form

8. =13, (afa, — bb,). As[S.. Of) = — Q. we get

. N,
Sla; 1) = (; - 1) lq: 1),

that is the spin wave reduces the S; number by §S, = —1. The
operator H(1) commutes with Q.Tl (see appendix A), hence,
the energy of the spin-wave state found from the Schrodinger

(2.10)

equation Holq; 1) = Ey4|q; 1) is
El’q = Ez+€q+E0. (211)

The quantum average of the spin transverse component S in
the spin-wave state vanishes because (1, q|S1|q; 1) = 0.
Now we pay attention to operator equivalence

P
Qgzoy =5

(2.12)

In spite of this, the spin-wave exciton |q; 1) = Q}[0) and the
Goldstone exciton |1) = S_|0) represent at any nonzero q,
including the q — 0 case, different spin excitations. Indeed,
when calculating the action of the S2 = %(SJFS_ +S5_84)+ S‘f
operator on the |q; 1) state, then, by employing commutation
equivalences [S., QJ;] = A:S — B:; and [S_, Q:;] =0, where
the intra-sublevel operator is

T —igep -
A=) e @ ondy_ g (2.13)
P
(BJ; means a — b substitution), and, besides, by taking into
account relations [S_, Al] = Qf and [S_, Bl = —Ql, we
obtain:

X AN
Slq; 1) = K;) - (;) +N¢5q.0] lq; 1).
(2.14)

It was also assumed that Ag|0) = Nydqo and B4|0) =0
(0q.0 = 04,,004,0)- In all manipulations starting from equa-
tion (2.9) we, certainly, took into account the ‘semi-classi-
cality’ of the Landau level, namely, the inequalities /\/¢ >1
and L > lp, by ignoring boundary effects. In particular,
semi-classicality means that the q — 0 mathematical pro-
cedure, in common units, implies ¢ < 1/lg, whereas still
q > 1/L. So, one has to distinguish states QJ;_)O|O> =10;1)
and Q:;EO|O> = S_|0) =|1), since the former, according to
equations (2.10) and (2.14), changes the spin numbers equally
as compared to the ground state (6S, = S = —1), while the
latter changes only the S, component (S, = —1) and does
not affect the S number. The physical meaning of the differ-
ence between the q — 0 spin wave and the q = 0 Goldstone
exciton is discussed in appendix B. (See there also the com-
ment on a similar property of an ordinary magnet described by
the Heisenberg model.)
Now let us consider the state

lq:n) = (5-)"'Qf0),

where q # 0. As S_ commutes with the H®M and fIcOul opera-
tors, this state is eigen, Ho|q; n) = E, 4|q; 1) with energy

(2.16)

It is easy to calculate the corresponding spin quantum num-
bers and find S; = Ny/2 —n, S =Ny/2 — 1.

Note that in the studied system the state with energy
E,o = ezn + Epis degenerate as two different and even orthog-
onal states |0; n) and |n) have the same energy. The norm of
state (2.15) is calculated with the help of equation (2.5), since
that formula is derived using the only property of |0): the S,
component in this state should be maximum, i.e. S |0) = 0.
The |q; 1) spin-wave state has the same property; therefore,
writing |q; n) = (S_)""'|q; 1) and taking into account that

(Ldlg; 1) =N, (2.17)

we find (with the substitutions § — N,/2 — 1,n — n — land
Ry — N in equation (2.5)) the squared norm:

~ i Npl(n—1)!
RN¢’"_<n’q|q’n>_(Nqb—l(i))(,/\/qﬁfn*l)

which, note, is independent of (.

The basis consisting of states |n) without spin-waves, and of
|q; n) with a single spin wave is formally incomplete in the con-
text of a perturbation operator to be presented below.Owing to

(2.15)

E,,,q = €zn + gq + Ey.

- (2.18)

this, we should expand our study by considering, for insyamce,
double-spin-wave states Q;, Q:Hn -2y =|q,q;n) as well as

states |q”,q’,q;n), |q”,q",q’,q;n) etc... Strictly speaking,
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these are not eigenstates of the system due to the spin-wave
exciton—exciton interaction. Such an interaction can be of two
types: (i) a ‘kinematic coupling” which takes place because
exciton operators (2.9) obey an unusual commutation algebra
(not belonging to Bose or Fermi types, see appendix A), and (ii)
a dynamic electro-dipole—dipole interaction since the spin-wave
exciton possesses dipole momentum elpq X Z (it takes place
for any magnetoexciton, see [11] and [27], and also discussion
about the dynamic exciton—exciton scattering in [14]). In other
words, the action of the Coulomb-interaction Hamiltonian on the
|d,, qi; 1) state results not only in (&, + &, + Eo) |4y, qi1; 1)
but also in an ‘additional’ vector [[Hin, Q(Th]QcTu”” —2). The
latter has a small norm—by infinitesimal factor, < ECN¢_1/ 2,
different from the |q,, q;; n)-state norm.

It is physically evident that the leading approximation in
the framework of states with a minor number of spin-wave
excitons is, in fact, equivalent to the approximation of non-
interacting spin excitons. This concerns both the dynamic
and kinematic interactions®. It is in in this ‘dilute regime’
of non-interacting spin-wave excitons that we will con-
sider many-exciton states Q:;l QEZ...Q(TMM —k) = {qi};n)
({q,} stands for a set of k spin-wave excitons with momenta
Q> Qk—1,---qi>--.q1). These are definitely orthogonal:
(m; {d'i H{ax }; 1) o< d¢q,, }.{qe} Oman- The quantum average of
the S, transverse component vanishes if calculated in a ‘pure
spin-wave’ many-exciton state Q(Tll Qéz...QIM |0) = [{qk}; k)
(i.e. in the absence of Goldstone excitons). Moreover, for any
arbitrary sets {q,} and {qy } we always have

(K:{d'v }S+ {ae}: k) =0,

including the {q'x} = {qi} case. By employing the equa-
tions of appendix A we can find the following matrix ele-
ment in the dilute regime for states |{q, };n) representing a
‘solution’ of spin waves in ‘Goldstone-exciton condensate’
(n>k < Ny):

(m {d'w } S+ Haw}sm)
~ (ks {q'w Y {a}s k) (m|S 4 |n)
~ (ko {qe e} KO qr 3 fary Omnt 1 RN et 1+

Equations (2.19) and (2.20) mean that the presence of spin waves
is irrelevant to the appearance of a (S ) quantum average and
effects related to azimuthal motion of the total spin.

(2.19)

(2.20)

2.3. Perturbation term responsible for Goldstone mode
stochastization

The key elementary process ensuring Goldstone mode sto-
chastization is transformation of a Goldstone exciton into a

3The q — 0 and q = O cases are again fundamentally different: the coupling
of Goldstone excitons to each other and to spin-wave ones is completely
absent. The single spin-wave-exciton approach is justified if the electro-di-
pole—dipole interaction of k spin waves, ~ Ec Zf - 4i4; /N [14], is negligible
compared to their single-exciton energy, NZf‘ 7 /M. Taking into account
1/My ~ Ec we come to required condition k < N regardless of specific
gi-values, i.e. even at ¢; — 0. In the situation where k ~ N the spin-wave
exciton—exciton coupling is of the same order as single-exciton energy, then
the model of non-interacting excitons becomes meaningless.

spin-wave and, thus, a change of the total spin number by
0S = —1 at constant component S,. The perturbation field
responsible for coupling between the |n) and |q,n) states
should act on spin variables (changing S) and violate trans-
lational invariance of the system resulting in appearance of
excitations with nonzero momenta . In this connection,
spatial fluctuations of the effective Landé factor is just a rel-
evant perturbation, especially for GaAs/AlGaAs heterostruc-
tures. Indeed, in GaAs the intrinsic spin—orbit interaction
of the crystal field with spins of conduction-band electrons
changes significantly the effective g-factor as compared to
bare value go = 2 resulting in a small total effective factor:
g ~ —0.43 in bulk GaAs. An external disorder field is added
to the crystal one, therefore, small effective g should in turn be
relatively well exposed to spatial disorder. Thus, considering
g=(g)r + & (R), where the brackets (..)g = [..dR/L?
mean spatial averaging, we get an additional perturbative term
to Zeeman energy:

. 1
Ve=5mBY 81 (Ri)os. .21)
Therefore, the total Hamiltonian is
H=Hy+7,
It is useful to employ Fourier expansion

g1(R) =37 e ®/irg,(q). Let the g-disorder be spa-

tially isotropic and, hence, characterized by corre-
lator  G(R) = [ gi1(Ro)gi(Ro + R)dRy/L*  then  the
Fourier ~ component  G(q) = [ G(R)e '®/sdR/(27lp)?

is also a function of the ¢q modulus and
G(q) = Ns|g,(q)]>/2n. Following the common secondary
quantization procedure, V, = [9T(R)V,(R)%(R)dR, we
obtain perturbation in the form

> 2(q)(A] - B)).

~ Vs
Ve = 1B (2.22)

Here ®(q) = \/G(q) Li(¢*/2)e=7/4, where L, is the Laguerre

polynomial. The coupling is determined by matrix elements
calculated with bra- and ket-vectors |n) and |q; n) where q # 0.
We find (n'; q |V,|n) = (n;q|V,e|n)(1 — 8,0)0u », Where

~ 2w ~

(n;q|Veln) = — ./\TILLBB nRy, P (q) (2.23)
@

(see the squared norm (2.18)). Besides, we always have equiv-

alence (n’|V,|n) = 0.

3. Spin-rotation (Goldstone) mode as an initial
quantum state

Macroscopically, the Goldstone mode is uniquely defined by
total spin S and angle 6. However, quantum-mechanically the
initial 6-deviation of the many-electron system may be orga-
nized in numerous ways. Although the theoretical problem
of studying the Goldstone-mode damping does not depend
on the specific form of the initial state, our first task is to
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microscopically model non-equilibrium 6-deviation choosing
it with due account for the existing experimental results [8, 9].

Considering combination |C) = > C,|n) and accounting
for property S.|n) = (S — n)|n), one finds that, besides the
normalization condition (C|C) = 1, the set of coefficients C,
must satisfy only one additional equation,

Zn|Cn\2(n\n> = S(1 — cosb),

n

(3.1)

in order to correspond to a Goldstone mode with parameters
S and 6. Tt should also be remembered that any |C) vector is
orbitally equivalent to the ground state. Indeed, if a 2D elec-
tron system is optically excited then a certain k = 0 state can
appear under condition

gkphoton” <1, 3.2)

where length .7 is a characteristic of electron 2D-density spa-
tial fluctuations and kppoon| i the photon wave-vector comp-
onent parallel to the electron system plane. (See discussion
concerning the value of . in appendix B also referred to in
section 5.) The q = 0 state represented by the |C) vector is an
idealized model. In the known experimental research [8, 9]
the emerging spin-rotation state has a prehistory that con-
sists of not only a very short stage of the immediate laser-
pulse impact changing the spin state, but also a longer stage
of orbital relaxation preserving the total spin numbers. The
orbital relaxation, occurring during the time interval signifi-
cantly shorter than spin stochastization and resulting in the
state which we consider as the initial one, includes ‘ver-
tical’ recombination transitions* and thermalization due to
electron—electron and electron—phonon interactions. Ideally,
orbital relaxation should lead to the same orbital electron state
that existed before the pumping laser pulse, i.e. to the orbital
state corresponding to the minimum of the total electrostatic
energy. The latter (determined by the smooth random poten-
tial existing in the quantum well and by the e—e Coulomb cor-
relations) is the same as in the |0) state. We emphasize that
our state, described as the initial one in order to study spin
stochastization in the absence of any external influence, rep-
resents the final state of the preceding orbital relaxation. We
do not know orbital relaxation details and, in principle, one
cannot say whether after such a relaxation prehistory the elec-
tron system comes exactly to a pure q = 0 state. Our initial
state seems to be a combination of Goldstone |n) and spin-
wave states |{qy };n). However, spin-waves are irrelevant to
appearance of a transverse spin component and, therefore, to

4Most of these recombination processes [8, 9] is a ‘gemini’ recombination
where an electron-heavy-hole pair born due to photon absorption annihi-
lates before both quasi-particles have had sufficient time to move apart at

a distance greater than the spatial scale of their wave functions. However,
there is also a recombination channel where the born heavy hole recombines
not with its ‘twin’ electron but due to ‘vertical’ (radiative) transition with

a conduction-band electron located at the same point in space. Then the
twin electron, ‘inclined’” by angle 3 in the spin space owing to total angular
momentum conservation, occupies the vacant site occuring in the Landau
level in the conduction band and thus resulting in T —  replacement [see
below Eq. (3.3) for definition of the spin-inclined state]. The recombination
transitions are accopanied by appropriate irradiation processes and by fast
spin relaxation ocurring within the valence band.

the observed Kerr precession (see equations (2.19) and (2.20)
and the related discussion in section 2). So, for a theoretical
study of QHF spin-rotation dynamics it is quite relevant to
consider only a|C) vector as an initial state.

In a general case where the |C) state is not an eigen one for
any S . operator, it should be called an ‘unconventional’ rotation-
mode. Contrary to this, if, again, |C) represents microscopically
the same spin state but simply rotated as a ‘single-whole’ state
from the % direction to another direction Z’, then it is natural to
call this ‘rigid transformation’ in the spin space (corresponding
to global rotation of a ‘rigid’ ferromagnet) a ‘conventional’
rotation-mode”’. (The term ‘rotation-mode’ accentuates the fact
that every |C) state still remains diagonal for the s? operator
corresponding to its maximum value Ny (N /2 + 1)/2). The
conventional and unconventional modes can be macroscopi-
cally characterized by the the same values of S and ¢ if only the
C, coefficients satisfy equation (3.1).

To avoid misunderstanding, we note that in the conven-
tional spin-rotation mode regardless of the laser-pulse inten-
sity the spin-deviation angle 6 is strictly equal to an angle (3
given by the experimental setup. This fact strongly contra-
dicts the considered experiments [8, 9], where S is the angle
between B and the direction of the pumping laser beam. The
measurements definitely show proportionality of the deviation
0, and thereby of the precession amplitude, to the pulse inten-
sity. That is, in these observations the angle 6, being certainly
much smaller than the given angle S, is strongly governed by
intensity of the laser beam.

3.1. One-photon absorption

Specific set {C,} must be additionally specified by micro-
scopic initial conditions formulated appropriately to the
method of Goldston mode excitation. The laser pulse is
formed with condensate of coherent photons equally polar-
ized and propagating at angle 5 < 90° to the magnetic field,
i.e. to the S direction in the ground state. In real experimental
geometry the laser beam is directed almost along the basic
crystal axis which, for its part, is perpendicular to the 2DEG
plane. The total magnetic field B || Z is tilted by the angle 5
from the normal to the 2DEG-plane. (The Landau-level func-
tions and the filling factor are determined by component
B, = Bcos3.) The laser pumping is in resonance with the
optical transition from the valence band to the electron Fermi
edge corresponding at the v = 2/ + 1 filling to the spin-up
(along the B!) sublevel of the /th Landau level. The absorbed
photon with definite angular momentum —1, i.e. antiparallel
to the light-propagation direction, results in appearance of a
valence heavy-hole with total momentum J = 3/2 and an elec-
tron with spin § = 1/2, both in nonstationary states, oriented
along the crystal axis (Z'), inclined by (3 to the Z direction [8, 9]:
Jy = —=3/2 and Sy = 1/2. Thus, due to photon absorption
ensuring fast (~ 10ps) electron-hole recombination pro-

cesses®, the spin state 1= (é) of the spin-up electron in the

3 See footnote 2.
¢ See footnote 4.
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conduction band is changed to the spin-rotated state of the

born electron [21]
[ cos(B/2)
iy
(3 is the Eulerian rotation angle; two others (o and +) may be
chosen equal to zero). The T — * replacement with the con-
servation of the orbital state of the total system is a consequence
of ‘verticality’ occurring owing to light absorption under the
condition (3.2). The spin-up and spin-down probabilities for
the ‘spin-inclined’ state ,* are cos®(3/2) and sin® (3/2),
respectively. If the electron system consists of N, > 1 spin-up
electrons (S, = S = N, /2), then it is physically clear that, due
to absorption of one photon and subsequent ‘vertical’ elec-
tronic processes, we get a S,-non-diagonal (‘inclined’) state
with probability cos? (3/2) to have spin number S, = N, /2,
with probability sin® (3/2) to have S. = N,/2 — 1, and any
S; < N,/2 — lvalues. At the same time, since the orbital state
is not changed, such a ‘1-inclined’ state should be a combina-
tion of a strictly spin-up state and a state arising due to a single
action of the spin-lowering S_ operator; therefore, it should
remain diagonal for the S? operator.
Let us consider v = 2/ + 1filling. The state with one ‘spin-
inclined’ electron if simply written as

[t ) = <cos§ — singb;japj> |0) (3.4)

(3.3)

(|0) is ground state (2.8)) is incorrect because it violates the
principle of electron indistinguishability and does not corre-
spond to any definite value of conserved total spin S = N /2.
However, every state (3.4) represents a correct combination in
terms of the S, component: the probabilities of the S, = N, /2
and S, = N/2 — 1 magnitudes are cos® (3/2)and sin” (5/2),
respectively. To describe correctly the ‘spin-inclined’ state,
adequate averaging of vectors (3.4) must be carried out where

all individual spin-flip operators P}L = b;],apl, participate
equally. This collective state is obviously constructed with the
help of the S_ = Zj\:/di P;r operator, and, as a result, we obtain
a correct one-electron ‘spin-inclined’ state

11,0) = (cosg - sin§N¢l/zS> |0). (3.5)

Here it is taken into account that the squared norm of state
S_|0) is equal to N. Physically, equation (3.5) means that
each of the NV, individual components P;r |0) contributes as the
1 /N part to collective one-electron spin-flip. In fact, the state
described by equation (3.5) and considered as an initial state of
rotation-mode motion can be used in the case where the number
of ‘inclined’ electron spins is much smaller than the number of
electrons in the Landau level: N < Ny. Experimentally this
situation is realized with a low-power laser pulse [9].

3.2. Absorption of N coherent photons

To describe the initial state in the N ~ N¢ case, we gener-
alize the above approach. First, consider the opposite special
case—the situation with a maximum ‘quantum efficiency’ of

the laser pulse where N = /\/¢ which means that all electron
spins are aligned along 7’ tilted by angle § = (3 to the B direc-
tion. A microscopic description of such a ‘conventional’ rota-
tion mode is’

(B B

_ . t
| = 1_[1 (0052 —smsz> |0).  (3.6)

j:
Going to the ‘unconventional’ N < J\/¢ case, first consider
‘conventional’ rotation for subset {J/y} of N electrons chosen
among N ones: {Jy} = {pj,. ), ---» Pjy } Where the ordering
Pjy <pj, <..<pj, is assumed. Then such a ‘Jy-inclined’
state (which is definitely not a correct state describing the total
system) is

N
,};[1 (cos g — sin g P}Lm> |0)
N N—n n n
= Z <cos g) (— sin g) % |0).
n=0 ’

Here S;,— = erzzl PJJr is the spin lowering operator for the
{Jn} subset. The norm of the state (3.7) is equal to one. It is note-
worthy that each term of the right-hand-side of equation (3.7)
represents an eigenstate for the operator S, of the fotal system,
namely:  S.(S;,—)"[0) = (3N — n)(Ss,—)"[0). (However,
(S7,—)"|0) is certainly not an eigenstate for total operator S2)
We note also that expansion (3.7) over the S, eigenstates does
not depend on specific subset {Jy}. Indeed, since the squared
norm of every (S,,—)"|0) vector is independent of {Jy},

Rwn = (0[(S14)"(S55-)"|0) = N'n!/(N — n)!

(3.7)

(3.8)

(see equation (2.18)), the norm of every item in the sum of
equation (3.7) is completely determined by numbers N and
n only. In other words, the quantum probability distribution
over the S; values given by equation (3.7) is determined only
by number N and does not depend on the choice of a specific
subset {Jy}. This probability,

sin® (8/2)[cos” (8/2)]% " Ryn/(n)%

namely, the probability of the total S, component to take value
N¢ /2 — n, hence, it must also be the same for the desired
‘N-inclined’ state.

It is obvious that the generators for the S, eigenstates of the
total system defined under the condition of the total S-number
conservation are the (S_)" operators commuting with oper-
ator 8 (in contrast to operators (S;,_ )" non-commuting with
SZ). Now, in order to find the correct ‘N-inclined’ state, we
have to take into account the indistinguishability principle for
various {Jy} subsets when N coherent photons are effectively
absorbed allowing N replacements T — . All possible sam-
ples {J/y} must equally contribute to the ‘N-inclined’ state.
We perform averaging over all the subsets by analogy with
the above transition from an individual spin-flip state P;|0) to
sum }; P;|0) = S_|0) in combination (3.5). Now we consider
transition from specific subset {Jy} to sum over all possible
{Jn}. Note that there occurs equivalence

(3.9)

7 See footnote 2.
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S (50) o>zz(zp,a) 0
{In} {In} \m=l

Ng n
>#) o
j=1

Therefore, averaging requires replacement of the states
(S7y—=)"10) in combination (3.7) with the states [n) = (S—)"|0).
(Factor A(N,n) can be calculated but is of no importance for
the following.) However, a simple S;,_ — S_ substitution in
equation (3.7) would certainly be incorrect. The ~ |n) items
in this combination should be appropriately normalized to sat-
isfy the condition above — the probability for the S, component
to be N /2 — n must be determined by value (3.9). This con-
dition provides an evident way to yield a proper collective
‘N-inclined’ state: the (S;,—)"operators in the sum (3.7)
must be replaced with the (Ryy/Rw,n)"/*(S—)" ones, where
Ry,n = (n|n) = Ryn|y_ ~;, That is, the correct “N-inclined’
state representing the unconventional spin-rotation mode is

= A(N,n)(S_ (3.10)

)"10).

N
IN.0) = > Culn), (3.11)
n=0
where
1 BYYT B\ NN =)
G=nl2) ()
(3.12)

The N =N, particular case corresponds to conventional
mode (3.6).

Concluding this section, it should be noted that equa-
tions (3.11) and (3.12) represent an expansion over the
complete set of orthogonal basis states—the eigen states of
the operator S, of the total electron system corresponding
to the q =0 case and, besides, to fixed maximum value

= (WNs/2 + 1)N,/2. The coefficients in this expansion
are uniquely determined by the requirement to have a defi-
nite probability distribution of the S, = N, /2 — n eigenvalues
stemming from the study of coherent spin-rotation by the
Eulerian angle /3 of any N-electron subset (0 < N < N): the
probability is given by equation (3.9) if 0 < n < N, or equal
to zero if n > N. The derivation of the state presented by equa-
tions (3.11) and (3.12) is based on the assumption of T —
transition (see equation (3.3)) and on the quantum-mechanical
indistinguishability principle.

We will consider the equation (3.11) state with factors
(3.12) as the initial one for the following temporal state evo-
lution. However, it will be shown that, in agreement with the
macroscopic approach (Seq. I), the relaxation law for trans-
verse component S | is independent of specific set {C,}.

4. Microscopic approach: precession without
damping

Now we find non-stationary state |N,7) obeying the
Schrodinger equation id|N,t)/dt = Hy|N,t), where, as the
first step, we consider only the Hamiltonian (2.1) commuting
with the S. and S* operators. For the stationary |n) states we

have: Holn) = (Eq + nez)|n) = i0 [e71Fotn2)|n)] /or. As a
result, if the initial state is determined by equation (3.11), the
Schrodinger equation solution is

71Eot § C eflnezt|n

With the help of state (4.1), we find quantum-
mechanical averages of the relevant values at given
instant 7. The total spin squared is a quantum number:
SN, 1) = [(Ng/2 + 1)Ny/2] IN,7) (e. S=Nyz/2). The
average spin component (S;) and the average squares are
also time-independent. For C, coefficients given by equa-
tion (3.12) we have:

:N¢/2*NW,

IN, 1) @.1)

(&, N|S|N, 1) (82) = (82)° + w(l — w)N,

and
(S24+87) =5(S+1)—(S?)
= NgNw — (wN)> —w(l — w)N + Ny/2
(where w = sin? (8/2) < 1/2). In the framework of the
employed approximation neglecting any spin damping the
only physical time-dependent value is the quantum average of

transverse spin (S | ). To obtain this, we calculate the (S, + iS))
average:

N—
(t,N|SL|N, 1) = e7i! Z Copr1(n+1n+1)
o 4.2)
= —tan (8/2)e " (Ng — n)(N — n) B,,
n=0
where
N!
B, = ———wW'(l — N—n,
n! (N — n)!w (1=w)

So, with neglected damping equation (4.2) describes the
Larmor precession in complete agreement with the equa-
tions of section 1 . For the conventional Goldstone mode (i.e.
for N =N;) the result is |[S|| = (Npsinf)/2 having an
apparent geometric interpretation, see figure 1(b). Considering
the macroscopic limit where N > 1 while the N/N ratio is
held constant, we notice that the B, numbers have a sharp
maximum at n = Nw with width An ~ +/N. Then summation
over n results in

(S4) =~

and we make certain that macroscopically |S,|> = 8* — s2;
and the deviation angle is

0 = arccos (1 - sm25>
No

For the conventional Goldstone mode we naturally get 6 = .

It is interesting to consider the behavior of angle 6 as a
function of laser-pulse intensity, i.e. of the total number of
coherent photons (/) in the pulse. In case of weak intensity
the number N is simply proportional to I. (This agrees with

—sin (8/2)e "'\ /N(Ny — Nw), (4.3)

4.4)
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the experiments where the studied Kerr signal [8, 9] was
found to be proportional to the intensity of the laser beam.)
Hence, if N < N¢, we can write dN/dl = W, where W is a
‘quantum efficiency’ factor independent of N. When speaking
of ‘quantum efficiency’ we consider not the total number of
absorbed photons but only a minute amount of them resulting
in T — 7 replacement in the conduction band®; so, of course,
W < 1. What happens with growing intensity? It is clear that
N cannot exceed Ny. In the case of N comparable to Ny we
have to take into account that the 1 — 7 replacement is real-
ized only if the site in the Landau level corresponding to rel-
evant ‘vertical transition” is occupied by a spin-up electron
1. Indeed, the ' — 7 process does not contribute to effec-
tive magnitude W and, therefore, the latter has to be propor-
tional to the number of spin-up electrons, Ny — N, in the
Landau level. Considering equation dN /dl = Wy(1 — N/N)
we find to within unknown constant W, (which actually
could be found experimentally by measuring / and ) that
N = Ny[1 — exp (—WyI/Ny)]. This equation, together with
equation (4.4), yields the §(I) dependence.

5. Damping via stochastization due to smooth
spatial disorder of g-factor

In this section we consider the problem in the ‘dilute regime’,
that is in the framework of the basis set where the character-
istic number of spin-wave excitons emerging due to stochas-
tization is much smaller than the mean number of Goldstone
excitons: k < (]S |) ~ N. Comparison of our approach at
k < Ny with macroscopic equation (1.2) enables to conclude
that microscopically only the initial stochastization stage when
t < T, is studied, and therefore T is determined by linear
dependence |Sy (¢)| = |S1(0)|(1 — ¢/T>). To find this depend-
ence (and thereby T5), it is sufficient to study |n) — |q;n)
elementary transitions.
Thus, we now calculate the quantum mechanical average

(S4) = v(N.1[S4IN. 1)y, (5.1)
where state | N, )y obeys the equation
i0|N, 1)y /0t = (Ho + V)N, 1)y (5.2)

(see (2.1) and (2.22)) that should be solved by projecting
onto the Hilbert space determined by orthogonal basis vec-
tors |n) and |q,n). The initial condition is given by equa-
tion |[N,0)y = |N,0) (see equations (3.11) and (3.12)). Then
searching for the solution in the form

|N )y —1E0t Z C e—mezt [ )‘I’l>

+Ze Eip,q(0)a, >], (5.3)

8 See footnote 4.
Y See footnote 4.

10

where a,(0) = 1, and b,q(0) = 0, and substituting this into
equation (5.2), we come, with the help of equations (2.22) and

(2.23), to

ida, /0t = (n|n)~ Ze_'g’ 1| V| @, 1)bg (1) (5.4)
and

10b,q/0t = (n; q |q; n) ="' (n; q| V|n)a, (). (5.5)

The studied initial stage, t < T, actually means condition
|by| < |ay| in this case, i.e. we have to find the solution of
equation (5.4) in the leading approximation in perturbation
V,. To be more precise, b,q must be calculated to the first
order and a,, to the second-order (both corrections are essen-
tial since the contribution to stochastization is determined by
the terms in a, | a, and b;, . ;,baq proportional to ng). So,

bug = nfy(q,t) and a, =1+n <1 — > fa(t), (5.6)

where

2 B, .
fr(q,1) = MA—;;M% (¢ — 1) ®(¢q) and
q

ZW(MBB —i&,;t
[

1 —e7le
i————dr.
N¢ q 0

all
fult) = &
Substitution of equation (5.6) into equation (5.3) and then into
equation (5.1) yields

N—1

i 2n
<S+> — efleztz C:Cn+1<n+ 1|l’l + > (1 +fa — 1_/\/ Imfa)

n=0

The imaginary part of f, results only in an inessential cor-
rection to the frequency of Larmor oscillations ez and does
not contribute to damping. By ignoring Imf, the expression in
the parentheses ceases to depend on n. Then we find (S (7))
proportional to S, (0) = (S4(0)) that means that the trans-
verse relaxation process occurs in the same way regardless of
the specific value of initial deviation. This result is certainly
in agreement with the macroscopic approach results. So, we
obtain

(S4 (1) = SL(0)e™*# [1 + Refu(r)], (5.7)
where
Ref, (1)
Eoo
— ~2n(umB)? [ 2%(q) [1 ~ cos (€] (E,)E /5
0 (5.8)

(v(e) denotes the density of states: v(&,) = gdg/d&,, in par-
ticular v(0) = My). Generally, any further transformation of
expression (5.8) requires a more detailed description of the
®(g) and v(e) functions which in turn are determined by the
g-factor spatial disorder and by the real size-quantized (along
the perpendicular Z direction) electron wave-function in the
quantum well. However, at sufficiently large times 7, when
condition &, 2 1 means that ¢ < 1 and ®(q) ~ ®(0), then
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Ref, (1) = —[rugB®(0)]>M,t. If one recalls the definition of
®(g) via G-correlator, then simple analysis shows that this
asymptotic expression is valid if ¢ > MX(A/ZB)Z, where A
is the characteristic correlation length of smooth spatial dis-
order. Thus, performing comparison with equation (5.7), we
find the formula |S, (7)| = |SL(0)|(1 — #/T) with inverse sto-
chastization time

1/T, = [ruB®(0)]* M.

This result is valid
My(A/1p)* <t < To.

As examples, we study two specific kinds of random spa-
tial function g (r) distribution. For simplicity, we consider the
most ‘strong ferromagnet’ state of unit filling where the spin-
up sublevel of the zero Landau level is completely occupied
and other electron quantum states are empty, i.e. [ = 0.

(5.9)

within the time interval

5.1. Gaussian disorder

First, let the correlator be Gaussian, G(r) = Aée”z/ A2
being parameterized by fluctuation amplitude A, and cor-
relation length A. Then ®2(q) = Af},Aze_’\"2 /4rl%, where
A= 1/2+ A%/43. In accordance with the actual situation,
one may consider A > 1; in this case the characteristic values
are ¢ < 1 and we may again put v(&,) ~ M and integrate in
equation (5.8) from 0 to co. Then we obtain

Ref, = — (t/TZ(G)> {(2/7‘() arctan (2I/T(§G))

~ (%9 /2mt) n {1 + (2:/7(@)1 } :

where

1789 = 7M, (usBAA /215)? (5.10)

(due to the misprint in [9], this expression is by a factor of 1/2
different from the result given there); and at the initial stage

—1
the dependence is quadratic Ref, ~ —2¢ |:7TT2(G)T(§G):|

where the characteristic transient-stage time is

7D = M (A/1p). (5.11)

5.2. Lorentzian disorder

If the correlator is determined by the Lorentz distribution,
G(rz) = Ag(rz/A2 + 1)~ then ®%(q) = (A A/Ip)*Ko(gA/1p)
e~9/2 /27 (K, is the Bessel function), and ®(g)|,o in equa-
tion (5.9) logarithmically goes to infinity. In this case it is
necessary to take into account a real minimum of ¢’s which
is determined by uncertainty dg ~ Mlg|V | related to viola-
tion of the translational invariance owing to smooth random
electrostatic potential (r) inevitably existing within the
2D channel (see, e.g. [10] and references therein; indeed,
[Vp|A ~ 0.4-0.6 meV). So, substituting gmin ~ d¢ instead of
zero in equation (5.9), for T, in the case of the Lorentz dis-
order we find

1

L m 2
11 = 5 (HBBAGA/15)*My In o 12
where @ is the smooth random potential amplitude,
@ = (|Vp|A). As again A >> [p, for the initial stage of sto-
chastization one can calculate the integral in equation (5.8)

by putting v(&,) = My and £, = oo, and at# S TéL) find that

Ref, ~ —1*/ TZ(L) T(EL) , where

7" = V2ML(A/15)* In (5.13)

Mo’

6. Kinetic approach to the stochastization problem

In the previous sections the purely quantum-mechanical
problem of excitation evolution has been solved. When so
doing only the initial stage is relevant and has been consid-
ered. Except for a short interval of the transition process, this
stage of transverse relaxation is described by a linear func-
tion of time. Generally we have no reasons to think that the
dependence |S (7)| becomes damping exponent for longer
times ¢ 2 T,—as it would follow, for instance, from phenom-
enological equation (1.2). As mentioned above, a complete
solution of the quantum-mechanical problem requires consid-
eration of states

{ahsn) = (S-)"~" Qi Q.01 |0)

(see the II-B subsection). In the presence of perturbation
responsible for [{q}r;n) — |[{q}r4+1;7) transitions occurring
within the ‘n-shell’ (i.e. at a constant total number of excitons
n) an effective number of spin-wave excitons k grows in time,
and in the case k ~ n ~ N ~ N, our model of non-interacting
spin excitons fails!®. Then, certainly, the stochastization pro-
cess a priori becomes non-exponential.

If k< Ny (which is definitely valid for small devia-
tions at the initial time, ie. if N <</\/'¢), then the state
(6.1) is quite meaningful and represents spin-wave exciton
gas in the ‘dilute limit’. In this section we demonstrate a
kinetic approach to the stochastization problem and con-
sider state |n) as the initial one with number 7 > 1 in the
vicinity of the maximum: n = n,, = Nsin?(3/2), and still
consider n < Ny. Following the decay mechanism related
to transitions |n) — |q;;n) — |{q}2;n)..., we study the
H{a}e;n) — |{q}es1;n) process and the corresponding
change of value $3 = (S;.S_ + S_S)/2. The operator S?,
if considered within the ‘dilute limit’, is diagonal in the basis
consisting of states (6.1). Taking into account formula

(n; {q}{d}:n)
_(n—= k)N — 2k)!
T Ny —n—k)!

(see equation (A.6) in appendix A and see equation (2.18)),
we obtain the semi-classical value

6.1)

(k {a}el{a}es k) (6.2)

10 See footnote 3.



J. Phys.: Condens. Matter 32 (2020) 015603

S Dickmann

& = (n; {a}elS+S— — S:{a}xim) ~ Ny (n—k).

(s {a}xl{q}e;n) (6.3)

This formula reveals that the transverse spin-component
squared is proportional to n — k which is the number of
Goldstone spin excitons. Its decrease (the increase in k) deter-
mines the transverse relaxation process.

Now let us find the rate of the $3 change by calculating
total probability for transformation of the |i) = |{q}; n) state
into various states |fq) = |[{q}«+1;n) per unit time (consid-
ering q; ., = q). This probability is equal to the growth rate
of number £,

dk/dt =" Wi,
q

(6.4)

where partial probabilities are determined by the well known
formula

W, = 2l
— - o .

! (i) {falfa)
where we again use operator (2.22) as a perturbation. In the

framework of our approximation, k < n < N¢, the matrix
element is

6(Efq - Ei)’ (65)

<fq|‘7g|i> ~ —2(n — k)upB

2N, P

The sum in equation (6.4) represents summation over
nonzero (’s. It looks, however, rather uncertain since for-
mally the J-function argument in equation (6.5) is equal to
q*/2M,. A more detailed study enables us to eliminate this
uncertainty (see appendix C) and finally obtain, with the help
of equations (6.3)—(6.6) and equation (A.4), the kinetic equa-
tion describing the damping process:

®(q)(falfa)-  (6.6)

ds? /dt = —28% /T,. (6.7)

The derived equation is independent of n and k, and the trans-
verse relaxation time 75 is just the same as that given by equa-
tion (5.9) in section 5, including particular cases (5.10) and
(5.12). So, if the initial deviation from the equilibrium direc-
tion is small, S (0)| < N, then the kinetic equation (6.4)
results in exponential damping of the Kerr rotation:

ISL(0)] = [SL(0)]e™"""=.

(The transient stage occurring in time ¢ < 7 is certainly not
described in the framework of the kinetic approach.)

(6.8)

7. Conclusion

The study addresses a spin-rotation mode emerging at optical
excitation in quantum Hall spin-polarized systems. This mode
is macroscopically indistinguishable from a simple turn of the
entire electron spin system from the z-direction. However, the
general phenomenological approach shows that the damping of
the spin-rotation precession in the quantum Hall ferromagnet
hardly obeys the Landau-Lifshitz equation. The microscopic
approach reveals that the quantum state of the unconventional
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spin-rotation mode is not equivalent to rotation as a single-
whole of all spins by the same angle. This specific property
manifests itself in the dependence of the effective (macro-
scopic) rotation angle 6 on laser pumping intensity rather than
on the laser-beam direction alone. (See equation (4.4) where
the number N is determined by laser pumping; if N reaches
Ny, then the unconventional mode becomes a conventional
Goldstone mode and the equality # = (3 holds even at higher
intensities of laser pumping.)

One can note a similarity between the optically-induced
spin-dynamics in a QHF and in dielectric magnets where spin
precession occurs also owing to ‘coherent magnon genera-
tion’ [28]. Indeed, such generation resulting in coherent spin
precession appears due to an ‘optomagnetic interaction’ with
media if the pumping laser beam is inclined at an angle with
respect to the magnetization axis (see our angle f); i.e. the
experimental technique is similar to the precession excita-
tion in [8] and [9]. Besides, it is possible to assume that the
unconventional spin-rotation mode would be an adequate
microscopic description (see equations (1.3), (2.3) and (4.1))
for the coherent precession state studied in dielectric magnets
in works [28]. The initial rotation angle in those experiments
is proportional to laser intensity as in the works [8, 9] with a
QHEF. Without going into a discussion on the optomagnetic
interaction [28], we notice that our situation with appearance
of the QHF spin-rotation mode looks still more transparent
since it is based on a purely electronic pattern. In our case it
is the reaction of a strongly correlated electron gas described
in terms of collective eigenstates to an elementary single-
electron process representing simple replacement of a spin-
polarized conduction-band electron with orbitally the same
but ‘spin-inclined’ one generated by an absorbed photon
(see [9] and footnote®). Finally, note the following: two types
of magnons,—the Godstone one (with q =0, |4S,| = 1 and
0S8 = 0) and the spin wave (with q # 0 and |6S,| = 6§ = 1),—
do exist also in common dielectric magnetics described by the
Heisenberg Hamiltonian (see appendix B).

Our microscopic approach consists in solving a non-
stationary Schrodinger equation where the unconventional
spin-rotation mode is considered as the initial state. As a
perturbation resulting in damping, the stochastization mech-
anism is studied which is related to spatial fluctuations of
the effective Landé factor. Those are most likely related
to spatial fluctuations of 2DEG thickness, since the effec-
tive g-factor of 2D electrons depends on the quantum well
width [29]. Meanwhile the spatial fluctuations of the width
also affect 2D electrons as an additional effective electric
field contributing thereby to the effective smooth random
potential. Thus, the correlation length of the g-factor fluc-
tuations A is supposed to be approximately equal to the
correlation length of the smooth random potential in the
quantum well, ~50nm. Assuming g-fluctuation amplitude
Ag ~ 0.005, which seems fairly realistic [29], we find char-
acteristic damping time 7, ~ 1-10 ns according to equa-
tions (5.10) and (5.12). (We also used 1/My ~ 2 meV and
B =3-10 T in accordance with the available experimental
data [5, 9].) This transverse spin relaxation time is much
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shorter than total relaxation time in a similar system [10].
The microscopic approach also enables us to describe the
transient process preceding establishment of the linear time
dependence of diminishing transverse component |S |. The
characteristic time of this short transient stage is given by
equations (5.11) and (5.13), being 79 ~ 10-50 ps.

The kinetic approach also shows that, as expected, at small
initial excitations the damping process for times ¢ > 79 occurs
exponentially (see equation (6.8)) just with the 7, time calcu-
lated in the framework of the solution of the non-stationary
Schrddinger equation.

Formally, the results reported are applicable only in a
narrow region near integer fillings 1 and 3 (although, in prin-
ciple, they seem to be phenomenologically projected onto the
case of fractional ferromagnets where v = 1/3,1/5,...; see
research in [14, 30]). Meanwhile it is known that a skyrmion
texture with well reduced spin-polarisation emerges even at
a small deviation of the filling factor from 1. Theoretically
this ‘skyrmionic’ ferromagnet becomes ‘softer’ than the unit-
filling one, and the Goldstone mode damping should occur
much faster due to appearance of additional stochastization
channels related to some soft modes forbidden in the integer-
filling state. This theoretical view is confirmed experimentally
by both the observation of Goldstone mode dynamics [9] and
by the study of total spin relaxation (recovery of the S vector
to the ground state magnitude) in a quantum Hall ferromagnet
[10].

In conclusion, we note that the work presented is done
by taking into account the experimental background dealing
with ‘classical’ quantum Hall systems, i.e. created in GaAs/
AlGaAs structures. Nevertheless, our approach and the results
obtained could be actual or/and at least useful as a basis for
future studies of more up-to-date quantum-Hall-ferromagnet
states (in graphene, in ZnO/MgZnO structures, etc), which
have been lately studied intensively, yet, in the absence of rel-
evant data on relaxation of collective spin states.
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Appendix A

In the equations presented in this section we do not make any
formal difference between Goldstone and spin-wave excitons,
that is q may be exactly equal to zero: S_ = Qg. In the QHF
ground state both have equal norms: (S S_) = (Qq Q};) =N,
(here and everywhere below (...) means averaging over the
ground state: (...} = (0]...|0)).

First, we write out the QHF Hamiltonian (see (2.1) and
(2.2)) in terms of the so-called ‘excitonic representation’
within the two-sublevel approximation relevant to calculate
the spin-wave exciton energy to first order in Coulomb cou-

pling. Omitting all the terms commuting with the Q}; operator
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(in particular, we also omit the H(") = w,(Ag + Bo)/2 term),
we get a reduced secondary-quantization form of the
Hamiltonian:

Hy = —€z8: + Higy = —ez(Ao — Bo) /2

1 ~
+5 > Ulg)(AlAq + 2ALBy + BiBy).
q

where U(q) = e_qz/z[Ll(qz/Z)]z/U(r)eiqrdr/27r (L; is the
Laguerre polinomial). Then using the commutation rules

o [AL, O] = —7 [Bl,, QL] = ~Qhra

o i (A.1)

and

[qu QCJlrz] = ei¢Aq1—q2 - e7i¢Bql—qz (A.2)

[0 = () * q2)2/2]. we obtain [#h, Q}] 10) = (ez + &,)Q}/0).

where the Coulomb is
o0

&

spin-wave

pdpU(p)[1 — Jo( pg)] (see [11]).
NOV\(/) with the help of equations (A.1) and (A.2) one can
calculate projection of one two-exciton state to another:

2 {ablate:2) = (Qur Qur 4 k)

= /V;% (5‘12’,(125‘11’,(11 + 5‘11’,(126112’,411
2 cos O
No
where ® = (q," X q1 + q2’ X q2) ;/2. Were the Q-operators
simply Bose ones, then only the first two terms in the paren-
theses of equation (A.3) would constitute the result of the four-
operator expectation. However, the presence of the third term
is a manifestation of a ‘kinematic spin exciton interaction’.
This ‘interaction’ is a consequence of the non-Bose commu-
tation rules (A.2). Such a specific spin-excitonic ‘coupling’
plays a role, for instance, in research of phenomena related
to mutual spin exciton scattering, and also when calculating
norms of many-exciton states in case the total number of exci-
tons is comparable to N¢. However, if we find the squared
norm of two-exciton state |2; {q},) with different momenta,
q; # Q. then the kinematic interaction may be neglected and
we just have ({q}2;2]2;{q}2) = Né For the |k; {q},) state at
low exciton concentration, k/./\/¢ < 1, considering all q’s to
be different, any interference of single spin-exciton states may
be ignored. It is quite sufficient for our calculations to use only
the following recurrent property of the squared norm:

(k; {q}el{q}rs k)
= [N+ 0(k)] (k = L {qb -1 {a}e—1:k = 1).

State (6.1) represents a dilute gas of spin-wave excitons
against the background of the Goldstone-exciton condensate.
Let us act on it by the operator S+ = Q. Using properties

[S+. Q= Al =Bl [Ao—Bo, Q}] = —20.

energy

6f11+¢12111’+¢12’> , (A3)

(A4)
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and

(Af = BDIO) = Nidqol0),
we come to the following equation:

Sil{atn) = (n=k) Ny —n—k+ D){a}sn — 1)
k—1
+(S_)nik Z QI{] Q“SZ"'Q;—I ('Ajix - BZI)QZ/( |0>
i=1 (A5)
With the help of commutation rule (A.1) one finds that the
second item in the r.h.s. here is determined by the kinematic
interaction of spin-wave excitons. We study the situation
where k < N, and, besides, k < N, — n. Then the squared
norm of the second item, being smaller than

R {qber:n—1n = 1;{q}li—1),

turns out to be negligible compared to that of the first one,
and, hence, in the r.h.s. of equation (A.4) we retain only the
first term. By acting n — k times with operator S; on state

Ha}k:n), we get

(84" {ahen) ~ DN

Ny —n —k)!

Then we come to the result given by equation (6.2) for the
squared norm of state |{q};n). In the special cases of k=0
and k = 1, when the kinematic interaction is missing, formulae
(A.6) and (6.2) are quite exact and result in equations (2.6)
and (2.18).

Finally, we note that in summation over q in equation (6.4),
one may certainly ignore any cases of exact coincidence of the
q = qx+1 number in the final state |{q},+1;7) with some of
the values q, q,,...q; in the initial one. This is evident from
the fact that the zero-dimensional phase volume of these coin-
cidences is negligible compared to the 1D volume of possible
q values in the final state (the 1D volume, rather than the 2D
one, is due to the presence of the §-function in equation (6.4)).
This statement is true for any number k, and, therefore, only
states with q; # ¢ # ... # q values are relevant in the
framework of the kinetic approach developed in section 6.

“ 20 k). (a)

Appendix B

The q =0 equivalence corresponding to the Goldstone
spin exciton S_|0) = Q}q50}|0> actually means g < 1/.%Z
(see inequality (3.2)) in contrast to the ‘spin-orbital’ excita-
tion QLHO}'O) where g < 1/Ig but g > 1/.Z (here normal
dimensionality of ¢ is used). In the ideally homogeneous
system . = L where L is the 2D channel linear dimen-
sion. Indeed, in the presence of an external smooth random
potential (SRP) characterized by amplitude (A) and correla-
tion length (A), one definitely assumes .Z to be at least not
smaller than A, because 1/A measures violation of the trans-
lation invariance in the 2D system. This condition is not the
only one. The SRP lifts the Landau level degeneracy, and the
|0) orbital state is changed compared to the homogeneous
case. In fact, the ‘standard’ single-electron wave function is
localized in the 2D space near a ‘standard’ equipotential line
(EL), within a ‘belt’ of width /5 (see, e.g. publication [31]).
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The length of the closed standard EL corresponding to elec-
tron energy 0 < |e| < A (e is measured from the Landau level
center) is of the order of A. If .7 is a classical period of drift
motion in crossed fields B and & (&] ~ A/A) along the
closed standard EL, then the level spacing between two adja-
cent states is ~ 1/.7 ~ A(lg/\)>2. So, taking into account the
e—e interaction, we conclude that the q = 0 condition for a
collective state means that the Coulomb energy &£, becomes
physically meaningless if it turns out to be smaller than
single-electron energy uncertainty 1/.7. That is, the formal
condition q =0 determining the undisturbed orbital state
of the quantum Hall ferromagnet means &, < A(lg/A)?
resulting in ¢ < 1/.Z ~ (AM,)'/?/A. The length £ should
be substituted into equation (3.2). (In modern heterostructures
A =0.5-0.7meV and A ~ 50 nm.)

We note also that the essential difference between q — 0
and q = 0 spin excitations studied in this paper is not a fea-
ture peculiar only to a quantum Hall ferromagnet. Just the
same situation takes place in the case of a dielectric ferro-
magnet representing,for instance, a system of atomic spins
spatially localized at crystal-lattice sites and described by the
Heisenberg model. The Bloch operator creating a magnon
with wave vector Kk is .% o >, e*mS,_, where ry is the
lattice site position and Sp— is the spin-lowering operator
acting on the spin in the nth site [32]. This operator is very
similar to spin-wave operator (2.9) if the g, = 0 condition
holds (which may be always ensured by simply choosing the
X axis directed along momentum q). Besides, it also reduces
to total spin-lowering operator S_ = )" S,_ if k = 0. The
state .%0) (where in the ground state |0) all spins are strictly
polarized) is an eigenstate of the Heisenberg Hamiltonian
and simultaneously an eigenstate for total operators 52 and
S‘Z [32]. Routinely calculating quantum numbers S and S, one
can see that the magnon state has spin numbers changed by
0S; = —1 and by 0§ = 0k — 1 as compared to the ground
state.

Appendix C

The summation in equation (6.4), >, ..0(q%/2My) where q
values, even when infinitely small, are not identically zero,
formally results in zero. However, if one adds an infinitesimal
term (q x €), to the d-function argument (¢ — 0), then the
situation becomes well defined. The physical meaning of this
term will become clear if one takes into account the existence
of electric dipole moment e/pq X z of the spin-wave exciton.
That is, the 2D vector € is just proportional to a weak external
electric field & (x,y) appearing, for instance, due to a smooth
random potential present in the quantum well. Thu,s the sum-
mation is performed trivially

> F(q)s(...)

— (No/2m) limy [ da Fa)ola? /200, +

= F(O)N¢Mx/2.
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