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Abstract

®

CrossMark

The phase separation behaviors from a single B2 ordered phase into two separate B2 and

L2, ordered phases in X—Al-Ti (X: Fe, Co, and Ni) alloys are analyzed utilizing the cluster
variation method (CVM), based on interaction energies derived from electronic band structure
calculations. A cubic approximation of the CVM is adopted for X,Al, ,Ti, (0 < x < 2)
alloys limiting the interchange between Al and Ti atoms on the - and S-sublattices of an L.2;
ordered structure with X atoms fixed on the y-sublattice. The phase stabilities of the B2 and
L2, structures are examined, and phase diagrams at the pseudo-binary section, XAl-XTi, are
determined. The two-phase regions of the B2 and L2, phases (i.e. phase separation behavior)
are successfully produced in Co— and Ni—Al-Ti alloy systems, and no phase separation is
observed in the Fe—Al-Ti alloy. The origins of phase separation in the Co— and Ni—Al-Ti
alloys are mechanical instability and a combination of mechanical instability and chemical

repulsions of unlike pairs, respectively.

Keywords: cluster variation method, first-principles calculation, order-disorder phase

transformation, mechanical instability, phase separation

(Some figures may appear in colour only in the online journal)

1. Introduction

The decomposition of a solid solution into two separate phases
in metallic alloy systems is one of the most well-known and
widely studied phenomena in materials science. In gen-
eral, such decomposition is mechanically and/or chemically
induced. When an initial solid solution becomes unstable or
metastable in a given environment, such as an environment
with high pressures and/or low temperatures, it decomposes
into two different phases. This phenomenon is well-described
by empirical rules known as the Hume—Rothery rules, where
the following three factors are utilized to evaluate the phase
stability of a single solid solution in an alloy system [1]:
differences in atomic radii, electronegativity, and valence

1361-648X/20/174002+9$33.00

electron concentrations. Each of these factors is estimated
from the constituent elements of the given alloy system. The
first factor is related to mechanically driven phase separations,
and the other two factors are related to chemically driven
phase separations.

Mechanically induced phase separation originates
from mechanical instability. Mechanical instability can be
easily detected based on pressure—volume (P-V) curves.
A P-V curve represents the second-order derivative of the
energy (or free energy), E, in terms of volume, V, because
O*E/OV* = —0P/OV. To be mechanically stable, a system
must satisfy the condition 9P/JV < 0 at an equilibrium
volume, where the curve intersects with the horizontal axis
(i.e. P = Pey ~0). The concept of mechanical instability
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leading to the phase separation has been applied to liquid—
gas transformations [2], but is also applicable to solid—solid
transformations [3].

In contrast, chemically driven phase separation can be
concisely described by a first-nearest-neighbor pair interac-
tion model. For example, when the two components of an
A-B alloy have stronger bonding for A—A and B—B pairs than
for A-B (or B-A) pairs, the ground-state structure will be
composed of two chemically distinct phases, namely A-rich
and B-rich solid solutions. At relatively high temperatures,
entropic contribution becomes dominant and a single solid
solution (or disordered phase) will become more stable than
two separate phases. Conversely, a high-temperature single
solid solution can decompose into two different phases at low
temperatures.

In some alloy systems, phase separation with accompa-
nying ordering has been observed (e.g. [4-6]). This phenom-
enon is known as the concurrent behavior of ordering and
phase separation. Concurrent behavior in Fe-Be alloys trans-
itioning from a single solid solution into a solid solution and
B2 ordered phase has been successfully explained by con-
sidering distant pair interactions [4]. It has been suggested
that when first-nearest-neighbor interactions prefer ordering,
but second-neighbors promote phase separation, there is the
potential for concurrent behavior of ordering and phase sepa-
ration [4, 7].

In Co- and Ni—Al-Ti ternary alloys, a phenomenon sim-
ilar to the concurrent behavior mentioned above has been
observed [8-10]. In these cases, a B2 ordered phase decom-
poses into B2 and L2 ordered phases. It is noteworthy that
both B2 and L2; ordered phases have been observed in
Fe—Al-Ti systems as well, but phase separation behavior has
not been observed [8]. There have been several works sug-
gesting that the phase separation in Ni—Al-Ti alloys is caused
by a lattice misfit between B2 and L2, phases [11, 12] (i.e.
caused by mechanical instability).

However, because the transformation between B2 and L2,
phases in X—Al-Ti alloys can be viewed as an order—disorder
phase transformation (because the L2; phase is crystallo-
graphically equivalent to the B2 phase when the Al and Ti
atoms on the - and S-sublattices are randomly distributed,
as shown in figure 1(b)), the same reasoning applied to Fe-Be
alloys [4] is also applicable to X—Al-Ti alloys. A systematic
study was conducted on X—Al-Ti alloys to investigate effects
of X (X: Fe, Co, Ni, and Cu) atoms on the stability of the two-
phase region, and a specific relationship between phase sepa-
ration and the numbers of 3d + 4s valence electrons in the
component elements was proposed [10]. This indicates that
phase separation into B2 and L2, ordered phases in X—AI-Ti
alloys is strongly related to chemical affinities.

The origin of phase separation in X—Al-Ti alloys is still
controversial and has not been fully elucidated. Therefore, in
this study, the origins of phase separation in Co— and Ni—Al-Ti
alloys, as well as the reason for its absence in Fe—Al-Ti alloys,
were explored utilizing the cluster variation method (CVM)
[13]. The CVM is one of the most reliable mean field approx-
imations for formulating free energy. By combining it with
electronic structure total energy calculations (first-principles

CVM [14]), it is expected that the phase stability of B2 and
L2, ordered structures can be reliably evaluated in terms of
both mechanical instability and chemical repulsions of unlike
pairs.

The remainder of this paper is organized as follows. The
methodology for analysis of the phase stability of B2 and L2,
ordered structures utilizing first-principles CVM is described
in section 2. In Section 3, the calculated phase diagrams for
X-Al-Ti (X: Fe, Co, and Ni) alloys in XAI-XTi pseudo-binary
sections are presented and the contributions of mechanical
instability and chemical repulsions are discussed. Finally, the
origin of phase separation in X—Al-Ti alloys is summarized
in section 4.

2. Theory

The phase stability of B2 and L2, ordered phases in Ni—
Al-Ti alloys was analyzed based on CVM by Enomoto et al
[12]. In their study, the phenomenological interaction ener-
gies between first- and second-nearest-neighbor pairs on
an original body-centered cubic (bcc) lattice were utilized
within tetrahedron approximation. The two-phase region of
the B2 and L2; ordered phases was successfully predicted
in a Ti-rich environment and phase separation behavior was
explained in terms of large lattice misfits between B2 and L2,
ordered phases without referring to the chemical affinities
of atomic bonds in the system. In fact, to elucidate chemical
contributions, it is necessary to consider longer interaction
energies compared to second-nearest-neighbor pairs on the
bee lattice (which correspond to first-nearest-neighbor pairs
on a simple cubic lattice, as shown in figure 1). Longer pair
interaction energy cannot be considered in the tetrahedron
approximation. Therefore, a higher-order approximation must
be adopted to incorporate longer pair interaction energy. The
next higher-order approximation for the bce structure is the
cube-octahedron approximation [15], but the cube-octahedron
approximation is non-trivial because of its huge computa-
tional burden.

The phase stability of B2 and L2, ordered structures has
also been explored in X;A;_B, (0 < x < 2) alloys utilizing
a cubic approximation of the CVM by Kiyokane [16], who
only considered interchange between A and B atoms on the
a- and [-sublattices of L2y ordered structures with fixed X
atoms on the y-sublattice (see figure 1, where A and B atoms
correspond to Al and Ti atoms, respectively). The author con-
ducted model calculations by setting an arbitrary constant
value for the first-nearest-neighbor pair interaction energies
on a simple cubic lattice (not the bcc lattice) and identified a
phase boundary between B2 and L2, phases in the XA-XB
pseudo-binary section. Because any volume dependence
on pair interaction energies and any additional distant pair
interaction energies beyond the first-nearest neighbors were
not considered, a two-phase region (B2 + L2;) was not pro-
duced. However, this scheme has an advantageous feature
compared to the tetrahedron CVM employed by Enomoto
et al [12] in that it is possible to include longer interaction
energies than second-nearest-neighbor pairs on the bce lattice
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Figure 1. (a) L2, ordered structure, where X, Al, and Ti atoms are represented by dotted, gray, and black balls, respectively. Lattice
points that are predominately occupied by Al, Ti, and X atoms are called the a-, 8-, and ~y-sublattices, respectively. (b) The L2, structure
transforms into a B2 structure when the Al and Ti atoms are randomly distributed on the a- and S-sublattices, which can be viewed as an
ordered—disordered phase transformation. The cubic cluster on the simple cubic lattice composed of - and S-sublattices is highlighted in
red. This cluster is utilized as the basic cluster for the cubic approximation of the CVM.

Table 1. Twenty-two types of cubic configurations, each of which
is numbered with its interaction energies shown as e,.
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(or first-nearest-neighbor pairs on a simple cubic lattice) with
arelatively small computational burden compared to the cube-
octahedron approximation.

Therefore, in the calculations for this study, a cubic approx-
imation of the CVM is implemented by considering multi-
body interaction energies inside a cubic cluster (including up
to the third-nearest-neighbor pair of interaction energies for
the simple cubic lattice), which are determined through elec-
tronic band structure calculations. In the cubic approximation
employed in this study, the only configurations of Al and Ti
atoms on «- and [-sublattices are considered as was done
in [16]. In the remainder of this section, the phase equilibria
between the B2 and L2, ordered phases in the X,Al, ,Ti,
(0 < x < 2) alloys are explored and phase diagrams for the
pseudo-binary section, XAl-XTi, are determined.

Note that a concept similar to that adopted here (i.e. lim-
iting one’s attention to atomic configurations to the a- and
(-sublattices) has been employed for the calculation of the

tetragonal—-cubic phase transformation in ZrO, [14, 17],
where only the displacements of oxygen atoms were consid-
ered with fixed zirconium positions. Because there is clear
(reliable) experimental evidence that the Fe, Co, and Ni atoms
in X-Al-Ti alloys are located primarily on the ~y-sublattice
[8-10], the assumption adopted here is reasonable as long as
the temperature is not excessively high.

For the analysis of phase stability, the free energy of a
system must be formulated. The configurational entropy, S,
within the cubic approximation of the CVM is given as [18]

B l; (ZL(X?) +Zl‘(xl'ﬁ)> - SZL i)

aﬁaB aBaBafaf
IOV IE s I
ij.k,l ij.k,lmn,0.p
where kg is the Boltzmann constant; x; /b s y,, , z;‘kﬁ,aﬁ , and
315;3;5;35 P are the cluster probabilities of the point, pair,

square, and cubic, respectively; and L(x) = x Inx — x. The
subscripts and superscripts of the cluster probabilities indi-
cate atomic species and sublattices, respectively (e.g. zzlﬁﬁfm
represents the probability of finding the square configuration,
namely AI-Al-Al-Ti, on the a-3-a-f3 sublattices).

The total energy, E, in a system is described in terms of
cubic interaction energy as

>

ij.k,Lmn,0p

apafaBaf

E= €ijkimnop Wz]klmrwp >

@)

where  €jumnop are the cubic interaction energies and

sgsﬁgﬁ % are the cubic cluster probabilities, as defined
above. Although there are 28 = 256 possible cubic configura-
tions for Al and Ti atoms, this number is significantly reduced
to 22 based on the symmetry of the cubic structure. The cubic
configurations are numbered and listed in table 1. Note that the
perfect B2 and L2, ordered phases (or XAl, XTi, and X,AlTi)
correspond to the first, second, and 22nd cubic configurations
in table 1, respectively.
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Figure 2. Calculated formation energies of the atomic
configurations in table 1 for the (a) Fe—Al-Ti, (b) Co-Al-Ti, and
(c) Ni-Al-Ti alloys. Here, the segregation limit connecting the
minimum energies of the perfect B2 ordered phases, XAl and XTi,
is considered as the reference energy.

The cubic interaction energies, €;jximnop (OT €,, Where n rep-
resents one of the cubic configurations listed in table 1), are
obtained from electronic band structure calculations utilizing
the projector augmented-wave method [19], as implemented
in the Vienna Ab Initio Simulation Package. A non-spin-polar-
ization calculation is conducted utilizing the generalized gra-
dient approximation of the Perdew—Burke—Ernzerhof [20] for
the exchange-correlation functional. The supercells in these
DEFT calculations contain 16 atoms (the numbers of X, Al, and
Ti atoms are 8, 8 — N, and N, respectively, where N takes an
integer value from zero to eight) in the bcc structure, where X

atoms are fixed on the ~-sublattice, and Al and Ti atoms are
placed on the a- and S-sublattices, as shown in table 1. The
plane wave cutoff energy is set to 400eV and integration over
the Brillouin zone is performed with 4 x 4 X 4 k-points.
The cubic interaction energies calculated at various volumes
are fitted to the following Murnaghan equation of state [21]:

€ijkimnop ( V) = €jjkimnop ( VO)

B/
ByV / Vo Vo™ 3
— 207 _ipy(1-2 22)
BB - 1) °< V>+<V> ’

where Vj is an equilibrium volume at the ground state, By is
the bulk modulus at the equilibrium volume, and 36 is the first
derivative of the bulk modulus, B, with respect to pressure, P,
which is evaluated at V; (i.e. By = (OB/OP)y,).

The equilibrium state of a system at a finite temperature,
T, is determined utilizing the grand potential, 2. The grand
potential is derived by performing a Legendre transformation
on the Helmholtz free energy, F, in terms of point cluster prob-
abilities, x; (= (x* + xiﬁ)/Z), as Q = F — . pix;, where p; is
the chemical potential of atomic species i. The equilibrium
state is determined by imposing the following two conditions:

o )
3W§53ﬁzﬁaﬁ vV.T @
and
(&) o
ov T af yo? 20808 yaboabapap

The minimization of the grand potential in terms of cluster
probability (equation (4)) is performed utilizing the natural
iteration method [22]. The phase boundary between L2; (or
ordered) and B2 (or disordered) phases at each temperature is
identified as the point at which their equilibrium grand poten-
tials, €4(T), become identical (i.e. Q7' (T) = Q22 (T)).

3. Results and discussion

The calculated formation energies, Ae, (0r Ae€jmnop), for
each atomic configuration in X-Al-Ti (X: Fe, Co, and Ni)
alloys in terms of lattice parameters, a (= V%), are presented
in figure 2, where the segregation limit connecting the min-
imum energies of the perfect B2 ordered phases, XAl and
XTi, is considered as the reference energy. From figure 2,
one can see that the L2, ordered structure has the minimum
formation energy among all Fe—, Co—, and Ni—Al-Ti alloys.
This indicates that the L2, ordered structure is the most stable
phase at the ground state. The equilibrium lattice constant,
ap, and bulk modulus, By, of the perfect B2 and L2, ordered
phases calculated utilizing the Murnaghan equation of state
(equation (3)) are summarized in table 2. One can see that
the calculated lattice constants are close to the experimental
data, but there are nontrivial differences in the bulk moduli.
The nontrivial differences in the bulk moduli of some ordered
phases, such as FeAl (B2), CoTi (B2), and NiTi (B2), are con-
sistent with the previous DFT calculations using full-potential
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Table 2. Equilibrium lattice constant, ag, and bulk modulus, By, of the perfect B2 and L2, ordered phases at the ground state evaluated
utilizing the Murnaghan equation of state (equation (3)). Available experimental data are also provided (note that the experimental data

were measured at ambient temperatures).

ap (A) Cal. Exp. Diff. (%)
FeAl (B2) 2.869 2.862 [26] +0.24
FeTi (B2) 2.947 2.972 [27] —0.85
Fe,AlTi (L2)) 5.812 5.882 [28] ~1.20
CoAl (B2) 2.851 2.861 [29] —0.25
CoTi (B2) 2.965 2.995 [26] ~1.01
Co,AlTi (L2)) 5.812 5.85[30] —0.65
NiAl (B2) 2.894 2.886 [31] 4+0.28
NiTi (B2) 3.006 3.012 [32] ~0.20
NLAITI (L2) 5.896 5.90 [33] —0.40

By (GPa) Cal. Exp. Diff. (%)
FeAl (B2) 176.8 152 [34] +16.3
FeTi (B2) 194.0 160.8 [35], 189 [36] +17.1, +2.64
Fe,AlTi (L2)) 187.0 — —

CoAl (B2) 175.7 162 [29] +7.80
CoTi (B2) 181.0 154 [37] +16.6
Co,AlTi (L2)) 183.3 — —

NiAl (B2) 155.1 156 [31] —0.58
NiTi (B2) 163.7 140.3 [38] +14.3

NiAITi (L2;) 162.7

linearized augmented plane waves method [23, 24] or full-
potential linear muffin-tin orbitals method within the local
density approximation [25].

The calculated phase diagrams in X—Al-Ti alloys at the
pseudo-binary section, XAl-XTi, are presented in figure 3
with experimental results from previous studies [8—10]. One
can see that there are only single-phase regions of B2 and
L2, ordered phases in the Fe—Al-Ti alloy, whereas there are
two-phase regions at low temperatures in both the Co—-Al-Ti
and Ni—Al-Ti alloys. These findings are consistent with the
experimental results [8—10].

To clarify the reason for the absence of phase separation
in the Fe—Al-Ti alloy, lattice misfits between the B2 and L2,
ordered phases, dpy/15,, at the ground state and the first- to

third-nearest-neighbor effective pair interaction energies on

(1,2,0r3)

the simple cubic lattice, W, i were calculated for the

X-Al-Ti alloys and are shown in table 3 and figure 4, respec-
tively. A lattice misfit is defined as
L2, B2
a,”! —a
632/L21 = M(JTOl s (6)
0

where aB* and aéz‘ are the lattice constants of the B2

and L2, ordered phases at the ground state, respectively.

The effective pair interaction energies are defined as

() _ (n (n) (n) () () (n)
WAI/Ti = eala T erimi — 2earm»> Where ey jy, ey and ey are

the nth-nearest-neighbor pair interaction energies of Al-Al,
Al-Ti, and Ti-Ti pairs on the simple cubic lattice. The effec-
tive pair interaction energies can be utilized to evaluate the
tendencies of ordering or phase separation in a system. When
Wig >0 (Wy})y < 0), the Al-Al and Ti-Ti pairs (AI-Ti
and Ti—Al pairs) are preferred by the nth-nearest-neighbors.

Their values can be extracted utilizing the cluster expansion
method (CEM) [39] (details regarding the CEM can be found
in appendix). From table 3 and figure 4, one can see that the
lattice misfits for the Fe—Al-Ti alloy are much smaller than
those for the Co— and Ni—Al-Ti alloys, and the first-nearest-
neighbor interaction energy in the Fe—Al-Ti alloy is dominant
compared to the second- and third-nearest-neighbor interac-
tion energies. These results indicate that it is difficult to induce
either mechanically or chemically driven phase separation in
the Fe—Al-Ti alloy, meaning no phase separation behavior or
two-phase regions could be produced.

In contrast, in the Ni—Al-Ti alloy, the lattice misfits are
relatively large and the second-nearest-neighbor effective
pair interaction shows a large negative value in table 3 and
figure 4. These factors make the system mechanically unstable
and chemically frustrating, resulting in phase separation. To
confirm the mechanical instability of the Ni-Al-Ti alloy, P-V
curves were calculated. One of the representative PV curves
for the Ni—Al-Ti alloy is presented in figure 5. This curve
corresponds to 7= 1500 K in the Al-rich side. One can see
that the curve intersects the horizontal axis (P = 0) for three
different lattice parameters. Among these intersections, the
left and right intersection points satisfy the stability criteria,
namely OP/0V < 0, and are considered to be stable phases
(lattice constants are given at intersection points). In contrast,
the middle intersection point is unstable based on the stability
criteria, so it decomposes into the two stable phases. It was
confirmed that the lattice parameters at the two intersections
are the same as those of the B2 and L2, ordered phases, which
were independently calculated in figure 3.

For the Co—AI-Ti alloy, the lattice misfit is as large as that
for the Ni—Al-Ti alloy, but the second- and third-nearest-
neighbor effective interaction energies are insignificant
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Figure 3. Phase boundaries between B2 and L2, ordered phases
in the (a) Fe-Al-Ti, (b) Co—Al-Ti, and (c) Ni—Al-Ti alloys in

the pseudo-binary section, XAl-XTi (X: Fe, Co, and Ni). The
calculated results and experimental data [8—10] are shown as filled
and open circles, respectively.

Table 3. Lattice misfits between B2 and L2 ordered structures at
the ground state, which are calculated from table 2 and equation (6).

Om /L2, Fe-Al-Ti Co-Al-Ti Ni-Al-Ti
dxaixoam  1.288% 1.922% 1.875%
OXTi/X2AITi 1.398% 1.991% 1.942%

compared to the first-nearest-neighbor interaction energy.
Therefore, it is considered that the phase separation behavior
in the Co—AI-Ti alloy is solely caused by mechanical insta-
bility. This explains the smaller two-phase regions of B2 and
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Figure 4. Effective pair interaction energies of the nth-nearest-
neighbor pairs, Wxiﬂ, calculated utilizing the CEM. The black,

red, and blue lines represent the Fe—, Co—, and Ni—Al-Ti alloys,
respectively. The first, second, and third effective interaction
energies are shown in solid, broken, and broken-dotted lines,
respectively.
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Figure 5. P-V curve on the Al-rich side of the Ni—Al-Ti alloy at
T = 1500 K.

L2, ordered phases in the Co—Al-Ti alloy compared to those
in the Ni—Al-Ti alloy (see figures 3(b) and (c)).

The large negative effective pair interaction energy of the
second-nearest-neighbor pairs in the Ni—Al-Ti alloy is asso-
ciated with the positive formation energies of certain atomic
configurations (see figure 2(c)). In contrast, in the Fe— and
Co—Al-Ti alloys, there are few configurations with positive
formation energies (as shown in figures 2(a) and (b)), resulting
in very small positive effective pair interaction energies in the
Fe— and Co-Al-Ti alloys (see figure 4).

Note that there are some deviations in the calculated phase
diagrams compared to the experimental results, such as a
smaller B2 phase region in the Fe—Al-Ti alloy and overes-
timation of the two-phase regions on the Ti-rich side of the
Co- and Ni—AI-Ti alloys. There are several possible reasons
for these deviations, such as disregarding local atomic dis-
placements, assuming that X atoms are located only at the
~-sublattice, and poor accuracy of the electronic band struc-
ture calculations. For a more reliable description of phase
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Table A1. Twenty sub-clusters in the cubic cluster [16, 18]. Here,
the cubic cluster is also shown. Each sub-cluster is numbered and its
corresponding correlation function is provided. &1, &,—4, €57, E3—13,
E1a—16, £17-19, £20, and &) are the point, pair, triangle, four-body,
five-body, six-body, seven-body, eight-body (or cubic) correlation
functions, respectively.

3 o

$2

$3

$a

$s

$6

diagrams, it is necessary to consider these issues. Regarding
the overestimation of two-phase regions in the Ti-rich side of
the Co— and Ni—Al-Ti alloys, we believe that the accuracy
of the interaction energies derived from the band structure
calculations is the main problem. As shown in table 2, the
deviations in the bulk modulus are much larger on the Ti-rich
side than those in the Al-rich side.

Aside from the possible reasons mentioned above for the
deviations from the experimental results in the calculated
phase diagrams, there is a possibility that the approximation
in the CVM itself causes some error. In the CVM, atomic cor-
relations between different atomic species are truncated at a
certain cluster size (which is a cubic cluster in this work), and
higher order correlations are ignored. This problem may be
circumvented by using a Monte Carlo method, in which all
atomic correlations are automatically included. However, the
semi-analytical feature of CVM facilitates easier numerical
calculations and has some advantageous features to extract
physical insight into the phase equilibria.

4. Conclusions

Phase diagrams of the X—Al-Ti (X: Fe, Co, and Ni) alloys
(in the XAI-XTi pseudo-binary sections) were calculated uti-
lizing the CVM based on interaction energies derived from
electronic band structure calculations. The cubic approx-
imation was adopted by assuming that interchange only
occurs between the Al and Ti atoms on the «- and [-sub-
lattices while X atoms are fixed on the ~y-sublattice. Special
attention was paid to the stability of B2 and L2, ordered
phases, as well as the origin of phase separation behaviors in
these alloy systems.

The calculated phase diagrams revealed that there are only
single-phase regions in the Fe—Al-Ti alloy while there are
two-phase regions of B2 and L2 ordered structures in both
the Al- and Ti-rich sides in the Co— and Ni—Al-Ti alloys.
Based on the lattice misfits between B2 and L2; phases and
effective pair interaction energies, it was found that because
neither mechanical instability nor chemical repulsions of
unlike pairs are expected in the Fe—Al-Ti alloy, no phase
separation behavior is observed. In contrast, mechanical insta-
bility and both mechanical instability and chemical repulsions
are expected in the Co— and Ni—Al-Ti alloys, respectively.
Therefore, the phase separation behaviors in the Co- and
Ni—Al-Ti alloy systems are attributed to mechanical insta-
bility and a combination of mechanical instability and chem-
ical repulsions, respectively.

It is believed that the presented formalism can be applied
to other metallic alloy systems in which phase separations
are observed. Clarifying the origins of phase separations in
various alloy systems will facilitate the microstructure control
of industrial materials in an effective manner.
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Appendix. Cluster expansion method

The CEM [39] was employed to extract the effective pair inter-
action energies of the first-, second-, and third-nearest-neigh-
bors between Al and Ti atoms on a simple cubic lattice. Based
on the CEM, the formation energies, AE™ (corresponding to
Ag, in this work, where n denotes one of the cubic configura-
tions listed in table 1), are written as
AE® =3 vn&y (A1)
m
where vy, is the effective cluster interaction energy for a cluster
m and E;Sf) is a correlation function. The cubic cluster is com-
posed of 20 sub-clusters [16, 18] as shown in table Al. The
correlation functions, 6;%"), are uniquely determined for each
cubic configuration, n, utilizing the spin operator o ( p), which
takes on values of +1 or —1 depending on the existence of an
Al or Ti atom at a lattice site p. Utilizing §r(nn) with the AE™
calculated from the band calculations (shown in figure 2), the
effective cluster interaction energies, v,,, are determined as

=3 () A,

n

(A.2)

where v,, v3, and v4 correspond to the first-, second-, and third-
nearest neighbor effective pair interaction energies. These

as W(l) = 2v,, W(Z)

Al/Ti AT = 23

values are related to W(")

Al/Ti
and W(3)

AT = 2vs.
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Note that based on the use of effective cluster interaction
energies, v,,, and correlation functions, &, the total energy of
a system can be expressed as

E:va§m.

Here, the superscripts of the sublattices (« and ) are omitted.
Equation (A.3) corresponds to equation (2) if all multi-body
effective interaction energies up to the cubic level are con-
sidered. The correlation functions and cluster probabilities
are directly correlated, as demonstrated in [40]. One of the
biggest advantages of utilizing correlation functions instead
of cluster probabilities is that it can significantly reduce the
number of variables necessary for calculations. Although we
did not encounter any computational issues related to large
numbers of variables in this work, for more demanding calcul-
ations (such as the continuous-displacement CVM [41] in a
three-dimensional lattice), the replacement of cluster prob-
abilities with correlation functions would be required.

(A3)
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