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1.  Introduction (macroscopic approach)

Two-dimensional electron gas (2DEG) composed only of con-
duction-band electrons embedded in quantized perpendicular 
or tilted magnetic field represents a unique quantum object for 
direct study of magnetic phenomena and collective spin excita-
tions using both macroscopic and microscopic approaches. In 
particular, in the so-called quantum Hall ferromagnet (QHF), 
i.e. in the case of a large nonzero total spin momentum (i.e. 
at fillings ν = 1, 3, ... or even at ν = 1/3, 1/5...), it is possible 
only by means of free conduction-band electrons to exper
imentally model and study properties inherent to common 
exchange magnets [1–10]. Many QHF properties (for example, 
spectra of magnetoplasma and spin excitations as well as 
spectra of spin-magnetoplasma excitations [1, 4–6, 11])  
are determined directly by the ‘ ab initio’ interaction, Coulomb 
coupling of 2D electrons. Besides, external fields such as 
spatial electrostatic fluctuations within the 2D structure and 
spin-affecting microscopic couplings, actually spin–orbit and 
hyper-fine ones, both responsible for the dephasing and relax-
ation processes, are also considered straightforwardly in the 

context of a perturbative approach. The QHF features are sub-
stantially different from description of ordinary magnets, e.g. 
with spatially fixed spin positions, which usually represents a 
phenomenological approach or a microscopic study based on 
a model Hamiltonian.

Description of dynamics of the ferromagnet by means 
of the Landau–Lifshitz (L–L) equation [12] is just a typical 
phenomenological approach. In fact, this well-known equa-
tion consistent with general principles is not even derived but 
just proposed. In the case relevant to the QHF it would be: 
�∂S/∂t = −gµBS × B − λS × (S × B), where S is a macro-
scopically large electron spin. (It is taken into account that 
the effective magnetic field in rarefied electron gas is equal 
to external magnetic field B.) The first term in the RHS of 
the L–L equation is proportional to the magnetic moment of 
the spin and determines the fast precession process around B 
with frequency |g|µBB/� . This term is definitely valid also 
in the QHF case. The second term, according to the authors 
[12] should be a relativistic correction responsible for pre-
cession damping, hence, describing a slow approach from 
S to B. This term is chosen in the form corresponding to 
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the spin motion conserving length of S (∂S2/∂t ≡ 0), i.e. 
a variation of the absolute value of S is disregarded. Such 
a conservation condition is natural for the strong exchange 
ferromagnet where damping is accompanied by weak dis-
sipative processes (in particular, by dissipation of Zeeman 
energy |g|µBB|Sz(∞)− Sz(0)| due to restoration of the Sz(t) 
component; ẑ ‖ B), yet not violating conservation of the total 
exchange energy considered to be strictly determined by S.

It is worth noting that the characteristic exchange energy 
in the 2DEG is at least by two orders smaller than in ordi-
nary ‘insulating’magnets, so the term ferromagnet as applied 
to the magnetized 2DEG is fairly conventional. In the QHF 
the Coulomb/exchange interaction energy (∼EC = αe2/κlB, 
where α < 1 is a form-factor arising owing to finiteness of 
the 2D layer thickness; κ and lB are the dielectric constant 
and magnetic length) undoubtedly represents the main force 
holding the electron spins aligned along the magnetic field. 
This fact is manifested, for instance, in a gigantic increase 
in the effective g-factor obtained in measurements of acti-
vated conductivity [13]; however, the absence of spontaneous 
magnetization in the 2DEG when the external magnetic field 
is switched off, certainly indicates that the QHF is not an 
ordinary ferromagnet. Experimental research [8, 9] and the 
microscopic study presented in the following sections  show 
that under quantum Hall conditions 2DEG spin-precession 
damping occurs via dephasing/stochastization processes not 
affecting the exchange energy, while S is still diminishing in 
accordance with the condition of constancy of the Sz comp
onent that corresponds to the Zeeman energy conservation. 
The subsequent process of Zeeman energy dissipation is 
related to the spin-wave relaxation/annihilation and proceeds 
much slower. It is indeed determined not only by thermal 
and spatial fluctuations responsible for energy dissipation 
but also by weak couplings, for instance by spin–orbit and 
hyper-fine couplings, responsible for the change of the Sz 
component. (See the theoretical estimates given in [14] and 
references therein, and [10] presenting experimental measure-
ment of Sz recovery (within time  ∼100–150 ns).) Therefore, 
the total magnetic relaxation in the QHF case is characterized 
by two stages: the first one, being comparatively fast, is actu-
ally damping of the spin precession where the direction of S 
approaches the B direction at the Sz held constant; the second 
stage related to the Zeeman energy dissipation represents slow 
recovery of the spin angular momentum S (directed parallel 
to ẑ; S  =  Sz) to its equilibrium value [10]. In terms of nuclear 
magnetic resonance [15], the characteristic times of these two 
stages could be called transverse time T2 for the fast stage and 
longitudinal time T1 for the slow stage.

Similar to the Landau–Lifshitz equation and on the basis 
of similar phenomenological ideas we can write out an equa-
tion  describing QHF spin motion in the framework of the 
macroscopic approach. Again the term responsible for the 
precession damping is assumed to be a small correction pro-
portional to a vector directed from S to B. However, now, 
in accordance with the above requiring constancy of the Sz 
component, the motion equation should be written in the fol-
lowing simplest form

∂S/∂t = −(gµB/�)S × B − λQHB × (S × B),� (1.1)

where, contrary to the L–L equation, any variation of the Sz 
component is disregarded. Constant λQH in equation (1.1) can 
only be found within a specific microscopic model studied in 
the following sections. For the Sz and S⊥ = (Sx, Sy) comp
onents we obtain: ∂Sz/∂t = 0 (instead of ∂S2/∂t ≡ 0 in the 
L–L equation) and

∂S⊥/∂t = −(gµB/�)S⊥ × B − λQHB2S⊥.� (1.2)

The transverse relaxation time T2 = 1/λQHB2 must be much 
larger than the precession period �/gµBB, i.e. we have neces-
sary condition λQH�B/gµB � 1. In figure 1(b) the trajectories 
of the S vector approaching the ẑ direction are drawn in both 
situations: the motion is ruled by the Landau–Lifshitz equa-
tion and by equation (1.1).

So, at the initial moment the spin-rotation mode is a mac-
roscopic vector S(0) rotating by angle θ about an axis lying 
in plane (x̂, ŷ). Here θ measures deviation from the ground-
state magnetization direction ẑ (see figure 1(b)). If 0 < θ < π , 
then rotation of S by any angle 0 < ϕ < 2π about the ẑ axis 
leads certainly to a different state but with the same energy. 
Rotational symmetry, about ẑ, of the QHF state at any 
0 < θ < π  corresponds to group C1v in the case and thus rep-
resents spontaneous breaking of the ground-state continuous 
symmetry C∞v. This ‘θ-inclined state’ possesses energy 
εZ(1 − cos θ)S(0) macroscopically corresponding to a gap-
less Goldstone mode in terms of parameter θ (εZ = |g|µBB). 
We will use the term ‘Goldstone mode’ for θ-spin-rotational 
deviation in order to distinguish it from another one corre
sponding to a ‘longitudinal’ deviation where both spin num-
bers S and Sz change equally: δSz = δS . It is obvious that in 
the latter case the symmetry of the system remains C∞v as in 
the ground state.

The main purpose of the present work is to study transverse 
relaxation, i.e. stochastization of the Goldstone mode, and 
thus calculate inverse time 1/T2 = λQHB2. In comparison with 

Figure 1.  (a)—Illustration of magnetic moment motion; the red 
arrow indicates the first (precession) term in the macroscopic 
equation, the blue arrow to the second (damping) term. (b)—
Illustration of damping considered in the coordinate system 
precessing with spin momentum; the blue dashed lines are the S(t) 
damping trajectories from S(0) to S(∞) drawn for the Landau–
Lifshitz equation (arc) and for equation (1.1) (horizontal line).
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the estimate made in [9] we consider not only small but arbi-
trary deviation angles of spin S from its equilibrium direction.

The calculation is performed within a microscopic 
approach. As the initial non-equilibrium quantum state pre-
senting spin rotation we study the combination

|C〉 =
∑

n

Cn(S−)n|0〉,� (1.3)

where |0〉 is the QHF ground state and S− = Ŝx − iŜy the 
‘spin lowering’ operator of the whole system. The specific 
set of coefficients {Cn} is determined by the prehistory of 
appearance of state (1.3) in the system. However, at any set 
{Cn} this state has obviously the following properties: (i) 
the |C〉 vector is diagonal for the S2 operator corresponding 
to its maximum value in the ground state |0〉; (ii) any |C〉 are 
orbitally equivalent to the ground state: the matrix elements 
of any spin-independent fields, including Coulomb coupling, 
calculated within the brackets 〈C|...|C〉 are equal to those cal-
culated within 〈0|...|0〉. In other words, the |C〉 state represents 
a kind of ‘�k = 0’ excitation not disturbing the orbital state of 
the electron system. In sections 2 and 3 we explain in more 
detail our choice of the initial quantum state and present coef-
ficients {Cn} correponding to the laser-induced spin-rotation 
mode (1.3).

The stochastization mechanism considered here is deter-
mined by smooth spatial fluctuations of the g-factor in the 
2DEG, and has a simple physical meaning: within a single-
electron approach, the electrons do not precess coherently but 
with slightly different Larmor frequencies in different places 
of the 2D space [16]. It is interesting that, as in the case of 
the L–L equation, the damping term in equations  (1.1) and 
(1.2) formally represents a relativistic correction, since the 
small ratio �/gµBT2 turns out to be proportional to c−1 (see 
equations (5.9), (5.10) and (5.12) below). Besides, the studied 
below microscopic process destroying the spin-rotation mode 
enables to find the damping rate proportional to the density 
of spin-wave states (purely electronic ones!). The density 
of states for its part is inversely proportional to Coulomb 
coupling strength EC, i.e. stronger coupling means longer 
damping time. In our case the coefficient λQH may be written 
as λQH = λ′/rs where the parameter rs represents the ratio of 
the Coulomb/exchange interaction energy to the characteristic 
single-electron energy. For the QHF the former is EC and the 
latter is cyclotron energy �ωc, so that λ′ proves to be inde-
pendent of magnetic field for the stochastization mechanism 
in question. Under typical quantum Hall conditions we have 
rs ∼ 0.2. (For comparison: in the ordinary exchange ferro-
magnet the parameter rs is huge, ∼100–1000, and the second 
term in equations (1.1) and (1.2) becomes negligible, so that 
the L–L equation is used in the case1.)

It should be mentioned that other mechanisms of relaxation 
of the spin-rotation mode (1.3) were theoretically considered 

long before direct measurements of the relaxation rate in 
[8] and [9]. Works [17] and [18] were devoted to study of 
relaxation of the (S−)n|0〉 component, i.e. the case where 
set {Cn} consists of a single number Cn was considered. The 
relaxation,—stochastization of the Goldstone mode,—was 
assumed to be related to spin–orbit Dresselhaus and Rashba 
couplings responsible for the change of the spin state in the 
presence of energy dissipation due to electron-phonon cou-
pling [17] or the electrostatic interaction of an electron with 
an external random potential [18]. The calculated relaxation 
times were found to be much longer (in fact  >100 ns) than 
those measured later. In [19] the authors considered another 
type of state (1.3) (see below a ‘conventional’ spin rotation 
mode) and an electron-spin—phonon relaxation mechanism 
which is even weaker than that studied in [17] and [18] and 
thus resulting in slower relaxation (see comment [20]). So, all 
the three relaxation mechanisms [17–20] are irrelevant to the 
actual experimental results [8, 9].

It is significant that in the case of ‘classical’ QHFs 
when fillings are odd-integer (ν = 1, 3...), the microscopic 
approach presented in the following sections  enables us to 
solve the problem in an asymptotically exact way in the case 
the parameter rs is considered to be small. The experimental 
data and theoretical discussion show that exactly such ‘odd-
integer’ QHFs are the strongest, i.e. the precession damping 
is much longer compared to nearby states with fractional fill-
ings [9]. Besides, the microscopic research allows finding not 
only coefficient λQH but reveals the S⊥(t) behavior, which 
is absolutely beyond the macroscopic approach: in addition 
to the exponential damping governed by equation  (1.2), the 
microscopic study shows that at short times t � τ0 � T2 there 
occurs an initial transient stage which is not described by 
equation (1.2) . The τ0 value will be calculated in section 5.

2.  Microscopic description of the system:  
the Hamiltonian and relevant eigenstates

In the absence of any interaction mixing spatial and spin vari-
ables, the Hamiltonian of a translationally invariant quantum-
Hall system has the following form:

Ĥ0 = −εZŜz + Ĥ(1) + ĤCoul.� (2.1)

Here Ŝz =
1
2

∑
i σiz (σiz is the Pauli matrix). The ‘kinetic 

energy’ electron operator and the Coulomb-interaction 
operator,

Ĥ(1) =
∑

i

(p̂i + eAi)
2

2m∗

and ĤCoul =
1
2

∑
i �=j

U(Ri − Rj),
� (2.2)

are those acting only on electron spatial variables. (Here and 
everywhere below we set � = 1; i and j  are subscripts num-
bering electrons; p̂i is the 2D electron momentum operator 
(m* stands for the electron effective mass); Ri  is the 2D 
radius-vector in the quantum-well plane given by the {X̂, Ŷ} 
coordinate system not related to the 3D system {x̂, ŷ, ẑ} for the 

1 In the ‘intermediate’ case the damping term is also proportional to a vector 
in the (B, S) plane directed from S to B. The latter can be presented as a 
general combination of both—the Landau–Lifshitz and quantum Hall terms: 
Ωdamp = −γ1S × (S × B)− γ2B × (S × B), where in any specific case the 
balance between γ1 and γ2 is determined by an interplay of dimensionless 
parameters rs and g.
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spin space; Ai ≡ A(Ri) = (0; B⊥Xi) is the 2D vector-poten-
tial operator, where B⊥ is the component perpendicular to the 
2DEG plane—the latter may be tilted with respect to the B 
direction (B ‖ ẑ).)

2.1.  ‘Spin-deviation’ eigenstates with Sz  <  S

Any purely spin operator commutes with H(1) and HCoul. Thus, 
the spin lowering operator S− can play the role of a generator 
of ‘spin-deviation’ eigenstates. Indeed, let |0〉 be an eigen-
state of the quantum Hall system corresponding to exact spin 
quantum numbers equal to Sz = S0z and S  =  S0, and to energy 
E0. Then the S−|0〉 state is also an eigenstate. By acting with 

Ŝz and S2 ≡ Ŝ2
x + Ŝ2

y + Ŝ2
z  on this state one gets (S0z − 1)S−|0〉 

and S0(S0 + 1)S−|0〉, respectively. Operating with Ĥ0 on the 
S−|0〉 state we obtain (εZ + E0)S−|0〉. So, the action of the 
S− operator does not change the total spin number but only 
results in the Sz → Sz − 1 change. Besides, this action does 
not affect the orbital state of the electron system.

A set of states defined as

|n〉 = (S−)
n |0〉� (2.3)

represents exact eigenstates orbitally equivalent to state |0〉 but 
with spin numbers Sz = Sz0 − n and S  =  S0, and energies

En = E0 + εZn.� (2.4)

It is worth to note that even if n is macroscopically large a 
single |n〉 state does not describe any dynamics of the Goldstone 
mode because this stationary state has no definite azimuthal 
orientation. Indeed, the quantum-mechanical average of 
the S⊥ vector is vanishing: 〈n|Ŝx|n〉 = 〈n|Ŝy|n〉 ≡ 0 due to 
the obvious equality 〈n|S−|n〉 ≡ 〈n|n + 1〉 ≡ 0. Meanwhile 
at large n if the spin component Sz in the |0〉 state takes the 
largest possible value, i.e. if Sz0 = S0 ≡ S) the squared trans-
verse component in the |n〉 state may still be macroscopically 
significant: S2

⊥ ≈ S2 − (S − n)2; hence, a macroscopic devia-
tion angle appears: θ ≈ arcsin (S⊥/S) =

√
n(2 − n/S)/S . 

(Here n is considered to be � 1 and, besides, 2S − n � 1.) 
Relaxation of a single state |n〉 may be studied, actually rep-
resenting a key problem for study of relaxation of any state 
given by equation (1.3). In the case of maximum Sz0 (= S0), 
we have equality S+|0〉 ≡ 0 (here S+ = S†

−) which allows cal-
culating squared norm 〈n|n〉:

R2S,n = 〈n|n〉 = (2S)!n!
(2S − n)!

R0,� (2.5)

where R0 ≡ R2S,0 = 〈0|0〉. If |0〉 is the ground state, then in the 
specific case of the odd-integer quantum Hall ferromagnet the 
spin number S0 is the maximum total spin of electrons com-
pletely occupying the spin-up sublevel of the Landau level, 
therefore 2S0 is equal to Landau-level degeneracy Nφ. If the 
R0 ≡ 1 condition is chosen (see equation (2.8) below), then 
we find 〈n|n〉 = RNφ,n, where

RNφ,n =
Nφ!n!

(Nφ − n)!
.� (2.6)

Concluding this subsection, it should be noted that, if the 
number of terms in the combination |C〉 (see equation (1.3)) is 
larger than one, then |C〉 is not an eigenstate of the Hamiltonian 
(2.1). Generally, for arbitrary combination |C〉 of eigenstates 
there is no direction ẑ′  in spin space where the spin projec-
tion Sz′ would be an eigen quantum number. (Such states are 
called states with partial spin polarization of particles [21]; the 
only exception to this general situation is a special case when 
all electron spins are equally aligned along axis ẑ′  inclined 
by a definite angle β to the B direction2.) Now, however, the 
quantum average of transverse spin S⊥ is not equal to zero and 
is completely determined by the {Cn} set. Taking into account 
that

〈n|S+|m〉 = δm,n+1RNφ,m� (2.7)

(δ... is the Kronecker delta) and calculating 〈C|S+|C〉 =  ∑
n C∗

n Cn+1〈n + 1|n + 1〉, we find the values of components 
〈Sx〉 = Re〈C|S+|C〉 and 〈Sy〉 = Im〈C|S+|C〉.

So, the |C〉 state may be considered as a microscopic repre-
sentation of the Goldstone mode whose subsequent evolution 
is governed by the non-stationary Schrödinger equation. In the 
following, in order to emphasize the role of elementary S−|0〉 
spin excitation in formation of the Goldstone mode, we call it 
‘Goldstone spin exciton’ or simply Goldstone exciton. Spin-
deviation state (2.3) formally represents Goldstone exciton 
condensate provided n is macroscopically large.

2.2.  ‘Spin-wave’ eigenstates—excitations corresponding to 
change of spin numbers: δS = δSz = −1

Since the eighties it is known that in a translationally invariant 
QHF there are low-energy excitations— spin-wave excitons 
characterized by 2D momentum q �= 0 (just like in an ordi-
nary ferromagnet whose dynamics is governed, e.g. by the 
Heisenberg Hamiltonian). At odd-integer filling such states 
and their energies may be calculated within the leading 
approximation in rs, which actually permits to use the single-
Landau-level approach [11]. So, considering, that the number 
of electrons in the lth highest (nonempty) Landau level is 
equal to Landau level degeneracy Ne = Nφ and assuming that 
all lower levels are completely occupied, as a ground state we 
have

|0〉 = |

Nφ︷ ︸︸ ︷
↑↑ ... ↑ 〉 ≡ a†p1

a†p2
...a†pNφ

|vac〉,� (2.8)

where a†
p is the operator creating a spin-up (along the B) 

electron in the p th state of the degenerate Landau level. To 
define |0〉 uniquely, we consider the pκ = 2πκ/L num-
bers in equation  (2.8) to be ordered by taking consecutive 
values 2π/L, 4π/L, ... 2πNφ/L ≡ L/l2B , where L2 is the 

area of the 2D system. The Landau-level eigenfunctions are 

ψp(R) ∝ Hl(
X−xp

lB
) exp [− (X−xp)

2+2ixpY
2l2B

], where xp = p l2B, and 

2 As applied to the ν = 1 quantum Hall ferromagnet this situ-
ation was considered [19]; in this case the coefficients are 
Cn = [cos (β/2)]Nφ−n[− sin (β/2)]n/n! (see equation (3.12) at N = Nφ).
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Hl is the Hermite polynomial. The terms of the Coulomb inter-
action Hamiltonian (2.2) are presented in the secondary quanti

zation form 
∑

i,j U(Ri − Rj) →
∫ ∫

d2Rid2Rjψ̂
†(Rj)ψ̂

†(Ri)  

U(Ri − Rj)ψ̂(Ri)ψ̂(Rj). Here within the single Landau-level 

approximation we have ψ̂(R) =
∑

p

(
ap
bp

)
ψp(R), where bp  

is the spin-down electron annihilation operator in the p th 

state of the same lth level. (Averaging over the quantum-
well width for the U(R) Coulomb vertex is assumed to be 
performed.) This two-sublevel approach has been repeatedly 
used [14, 18, 22–26] (see also the relevant expressions for 
Ĥ(1) and Ĥ′

Coul in appendix A). It allows to describe the spin-
wave excitation |q; 1〉 ≡ Q†

q|0〉 by means of a spin-exciton 
creation operator,

Q†
q =

∑
p

e−iqxp b†
p+

qy
2

ap− qy
2

.� (2.9)

(See also [9] and [10]—the previous definitions of the Q†-oper-

ators differ from equation (2.9) by factor N−1/2
φ ; q and p  in 

equation (2.9) are measured in 1/lB units). Energy of the |q; 1〉 
spin-wave exciton to the first order in the Coulomb interaction 
is found by the action of the reduced Coulomb-coupling oper-
ator: Ĥ′

Coul|q; 1〉 = [Ĥ′
Coul,Q

†
q]|0〉+ E′

0|q; 1〉, where E′
0 is the 

Coulomb part of ground state energy E0 = E′
0 +Nφ(ωc − εZ)/2 

(ωc = eB⊥/m∗c). Then (see appendix A) we get the Coulomb 
part Eq of the spin-wave energy obtained to the first order 
in parameter rs [11]. At small momenta q (when q � 1, 
meaning qlB � 1 in common units) the spectrum is quadratic: 
Eq = q2[1/2Mx + O(r2

sωc)]. The spin-wave exciton mass Mx 
was not only calculated but experimentally measured [5]; 
actually M−1

x ∼ 2 meV in the typical wide-thickness GaAs/
AlGaAs quantum Hall systems.

The Ŝz spin operator in this representation takes the form 

Ŝz =
1
2

∑
p(a

†
pap − b†

pbp). As [Ŝz,Q†
q] = −Q†

q, we get

Ŝz|q; 1〉 =
(
Nφ

2
− 1

)
|q; 1〉,� (2.10)

that is the spin wave reduces the Sz number by δSz = −1. The 
operator Ĥ(1) commutes with Q†

q (see appendix A), hence, 
the energy of the spin-wave state found from the Schrödinger 
equation Ĥ0|q; 1〉 = E1,q|q; 1〉 is

E1,q = εZ + Eq + E0.� (2.11)

The quantum average of the spin transverse component S⊥ in 
the spin-wave state vanishes because 〈1, q|S+|q; 1〉 ≡ 0.

Now we pay attention to operator equivalence

Q†
{q≡0} ≡ S−.� (2.12)

In spite of this, the spin-wave exciton |q; 1〉 = Q†
q|0〉 and the 

Goldstone exciton |1〉 = S−|0〉 represent at any nonzero q, 
including the q → 0 case, different spin excitations. Indeed, 

when calculating the action of the ̂S
2
≡ 1

2 (S+S− + S−S+) + Ŝ2
z  

operator on the |q; 1〉 state, then, by employing commutation 
equivalences [S+,Q†

q] ≡ A†
q − B†

q and [S−,Q†
q] ≡ 0, where 

the intra-sublevel operator is

A†
q =

∑
p

e−iqxpa†
p+

qy
2

ap− qy
2� (2.13)

(B†
q means a → b substitution), and, besides, by taking into 

account relations [S−,A†
q] ≡ Q†

q and [S−,B†
q] ≡ −Q†

q, we 
obtain:

Ŝ2|q; 1〉 =

[(
Nφ

2

)2

−
(
Nφ

2

)
+Nφδq,0

]
|q; 1〉.�

(2.14)
It was also assumed that Aq|0〉 = Nφδq,0 and Bq|0〉 = 0 
(δq,0 ≡ δqx,0δqy,0). In all manipulations starting from equa-
tion  (2.9) we, certainly, took into account the ‘semi-classi-
cality’ of the Landau level, namely, the inequalities Nφ � 1 
and L � lB, by ignoring boundary effects. In particular, 
semi-classicality means that the q → 0 mathematical pro-
cedure, in common units, implies q � 1/lB, whereas still 

q  >  1/L. So, one has to distinguish states Q†
q→0|0〉 ≡ |0; 1〉 

and Q†
q≡0|0〉 ≡ S−|0〉 ≡ |1〉, since the former, according to 

equations (2.10) and (2.14), changes the spin numbers equally 
as compared to the ground state (δSz = δS = −1), while the 
latter changes only the Sz component (δSz = −1) and does 
not affect the S number. The physical meaning of the differ-
ence between the q → 0 spin wave and the q ≡ 0 Goldstone 
exciton is discussed in appendix B. (See there also the com-
ment on a similar property of an ordinary magnet described by 
the Heisenberg model.)

Now let us consider the state

|q; n〉 = (S−)
n−1Q†

q|0〉,� (2.15)

where q �= 0. As S− commutes with the Ĥ(1) and ĤCoul opera-
tors, this state is eigen, Ĥ0|q; n〉 = En,q|q; n〉 with energy

En,q = εZn + Eq + E0.� (2.16)

It is easy to calculate the corresponding spin quantum num-
bers and find Sz = Nφ/2 − n, S = Nφ/2 − 1.

Note that in the studied system the state with energy 
En,0 = εZn + E0 is degenerate as two different and even orthog-
onal states |0; n〉 and |n〉 have the same energy. The norm of 
state (2.15) is calculated with the help of equation (2.5), since 
that formula is derived using the only property of |0〉: the Sz 
component in this state should be maximum, i.e. S+|0〉 ≡ 0. 
The |q; 1〉 spin-wave state has the same property; therefore, 
writing |q; n〉 = (S−)

n−1|q; 1〉 and taking into account that

〈1; q|q; 1〉 ≡ Nφ,� (2.17)

we find (with the substitutions S → Nφ/2 − 1, n → n − 1 and 
R0 → Nφ in equation (2.5)) the squared norm:

R̃Nφ,n = 〈n; q|q; n〉 = Nφ!(n − 1)!
(Nφ − 1)(Nφ − n − 1)!� (2.18)

which, note, is independent of q.
The basis consisting of states |n〉 without spin-waves, and of 

|q; n〉 with a single spin wave is formally incomplete in the con-
text of a perturbation operator to be presented below.Owing to 

this, we should expand our study by considering, for insyamce, 

double-spin-wave states Q†
q′Q†

q|n − 2〉 ≡ |q′, q; n〉 as well as 
states |q′′, q′, q; n〉, |q′′′, q′′, q′, q; n〉 etc... Strictly speaking, 
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these are not eigenstates of the system due to the spin-wave 
exciton–exciton interaction. Such an interaction can be of two 
types: (i) a ‘kinematic coupling’ which takes place because 
exciton operators (2.9) obey an unusual commutation algebra 
(not belonging to Bose or Fermi types, see appendix A), and (ii) 
a dynamic electro-dipole–dipole interaction since the spin-wave 
exciton possesses dipole momentum elBq × ẑ (it takes place 
for any magnetoexciton, see [11] and [27], and also discussion 
about the dynamic exciton–exciton scattering in [14]). In other 
words, the action of the Coulomb-interaction Hamiltonian on the 
|q2, q1; n〉 state results not only in (Eq1 + Eq2 + E0) |q2, q1; n〉 
but also in an ‘additional’ vector [[Ĥint,Q†

q1
]Q†

q2 ]|n − 2〉. The 

latter has a small norm—by infinitesimal factor, � ECNφ
−1/2, 

different from the |q2, q1; n〉-state norm.
It is physically evident that the leading approximation in 

the framework of states with a minor number of spin-wave 
excitons is, in fact, equivalent to the approximation of non-
interacting spin excitons. This concerns both the dynamic 
and kinematic interactions3. It is in in this ‘dilute regime’ 
of non-interacting spin-wave excitons that we will con-

sider many-exciton states Q†
q1
Q†

q2 ...Q†
qk |n − k〉 ≡ |{qk}; n〉 

({qk} stands for a set of k spin-wave excitons with momenta 
qk, qk−1, ...qi, ...q1). These are definitely orthogonal: 
〈m; {q′

k′}|{qk}; n〉 ∝ δ{q′
k′},{qk}δm,n. The quantum average of 

the S⊥ transverse component vanishes if calculated in a ‘pure 

spin-wave’ many-exciton state Q†
q1
Q†

q2 ...Q†
qk |0〉 ≡ |{qk}; k〉 

(i.e. in the absence of Goldstone excitons). Moreover, for any 
arbitrary sets {qk} and {q′

k′} we always have

〈k′; {q′
k′}|S+|{qk}; k〉 ≡ 0,� (2.19)

including the {q′
k′} ≡ {qk} case. By employing the equa-

tions  of appendix A we can find the following matrix ele-
ment in the dilute regime for states |{qk}; n〉 representing a 
‘solution’ of spin waves in ‘Goldstone-exciton condensate’ 
(n > k � Nφ):

〈n; {q′
k′}|S+|{qk}; m〉
≈ 〈k′; {q′

k′}|{qk}; k〉〈m|S+|n〉
≈ 〈k; {qk}|{qk}; k〉δ{q′

k′},{qk}δm,n+1RNφ,n+1.
� (2.20)

Equations (2.19) and (2.20) mean that the presence of spin waves 
is irrelevant to the appearance of a 〈S⊥〉 quantum average and 
effects related to azimuthal motion of the total spin.

2.3.  Perturbation term responsible for Goldstone mode  
stochastization

The key elementary process ensuring Goldstone mode sto-
chastization is transformation of a Goldstone exciton into a 

spin-wave and, thus, a change of the total spin number by 
δS = −1 at constant component Sz. The perturbation field 
responsible for coupling between the |n〉 and |q, n〉 states 
should act on spin variables (changing S) and violate trans-
lational invariance of the system resulting in appearance of 
excitations with nonzero momenta q. In this connection, 
spatial fluctuations of the effective Landé factor is just a rel-
evant perturbation, especially for GaAs/AlGaAs heterostruc-
tures. Indeed, in GaAs the intrinsic spin–orbit interaction 
of the crystal field with spins of conduction-band electrons 
changes significantly the effective g-factor as compared to 
bare value g0  =  2 resulting in a small total effective factor: 
g ≈ −0.43 in bulk GaAs. An external disorder field is added 
to the crystal one, therefore, small effective g should in turn be 
relatively well exposed to spatial disorder. Thus, considering 
g = 〈g〉R + g1(R), where the brackets 〈...〉R ≡

∫
...dR/L2 

mean spatial averaging, we get an additional perturbative term 
to Zeeman energy:

V̂g =
1
2
µBB

∑
i

g1(Ri)σzi.� (2.21)

Therefore, the total Hamiltonian is

Ĥ = Ĥ0 + V̂g.

It is useful to employ Fourier expansion 

g1(R) =
∑

q eiqR/lB g1(q). Let the g-disorder be spa-
tially isotropic and, hence, characterized by corre-
lator G(R) =

∫
g1(R0)g1(R0 + R)dR0/L2; then the 

Fourier component G(q) =
∫

G(R)e−iqR/lB dR/(2πlB)2 
is also a function of the q modulus and 
G(q) = Nφ|g1(q)|2/2π . Following the common secondary 
quantization procedure, V̂g =

∫
ψ̂†(R)Vg(R)ψ̂(R)dR, we 

obtain perturbation in the form

V̂g = µBB
√

π

2Nφ

∑
q�=0

Φ(q)(A†
q − B†

q).� (2.22)

Here Φ(q) =
√

G(q) Ll(q2/2)e−q2/4, where Ll is the Laguerre 

polynomial. The coupling is determined by matrix elements 
calculated with bra- and ket-vectors |n〉 and |q; n〉 where q �= 0. 
We find 〈n′; q |V̂g|n〉 ≡ 〈n; q |V̂g|n〉(1 − δn,0)δn′,n, where

〈n; q |V̂g|n〉 = −

√
2π
Nφ

µBB nR̃Nφ,nΦ(q)� (2.23)

(see the squared norm (2.18)). Besides, we always have equiv-
alence 〈n′|V̂g|n〉 ≡ 0.

3.  Spin-rotation (Goldstone) mode as an initial 
quantum state

Macroscopically, the Goldstone mode is uniquely defined by 
total spin S and angle θ. However, quantum-mechanically the 
initial θ-deviation of the many-electron system may be orga-
nized in numerous ways. Although the theoretical problem 
of studying the Goldstone-mode damping does not depend 
on the specific form of the initial state, our first task is to 

3 The q → 0 and q ≡ 0 cases are again fundamentally different: the coupling 
of Goldstone excitons to each other and to spin-wave ones is completely 
absent. The single spin-wave-exciton approach is justified if the electro-di-

pole–dipole interaction of k spin waves, ∼EC
∑k

i,j qiqj/Nφ [14], is negligible 
compared to their single-exciton energy, ∼

∑k
i q2

i /Mx. Taking into account 
1/Mx ∼ EC we come to required condition k � Nφ regardless of specific 
qi-values, i.e. even at qi → 0. In the situation where k ∼ Nφ the spin-wave 
exciton–exciton coupling is of the same order as single-exciton energy, then 
the model of non-interacting excitons becomes meaningless.
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microscopically model non-equilibrium θ-deviation choosing 
it with due account for the existing experimental results [8, 9].

Considering combination |C〉 =
∑

n Cn|n〉 and accounting 
for property Ŝz|n〉 = (S − n)|n〉, one finds that, besides the 
normalization condition 〈C|C〉 = 1, the set of coefficients Cn 
must satisfy only one additional equation,

∑
n

n|Cn|2〈n|n〉 = S(1 − cos θ),� (3.1)

in order to correspond to a Goldstone mode with parameters 
S and θ. It should also be remembered that any |C〉 vector is 
orbitally equivalent to the ground state. Indeed, if a 2D elec-
tron system is optically excited then a certain �k = 0 state can 
appear under condition

L kphoton‖ � 1,� (3.2)

where length L  is a characteristic of electron 2D-density spa-
tial fluctuations and kphoton‖ is the photon wave-vector comp
onent parallel to the electron system plane. (See discussion 
concerning the value of L  in appendix B also referred to in 
section 5.) The q ≡ 0 state represented by the |C〉 vector is an 
idealized model. In the known experimental research [8, 9]  
the emerging spin-rotation state has a prehistory that con-
sists of not only a very short stage of the immediate laser-
pulse impact changing the spin state, but also a longer stage 
of orbital relaxation preserving the total spin numbers. The 
orbital relaxation, occurring during the time interval signifi-
cantly shorter than spin stochastization and resulting in the 
state which we consider as the initial one, includes ‘ver-
tical’ recombination transitions4 and thermalization due to 
electron–electron and electron–phonon interactions. Ideally, 
orbital relaxation should lead to the same orbital electron state 
that existed before the pumping laser pulse, i.e. to the orbital 
state corresponding to the minimum of the total electrostatic 
energy. The latter (determined by the smooth random poten-
tial existing in the quantum well and by the e–e Coulomb cor-
relations) is the same as in the |0〉 state. We emphasize that 
our state, described as the initial one in order to study spin 
stochastization in the absence of any external influence, rep-
resents the final state of the preceding orbital relaxation. We 
do not know orbital relaxation details and, in principle, one 
cannot say whether after such a relaxation prehistory the elec-
tron system comes exactly to a pure q ≡ 0 state. Our initial 
state seems to be a combination of Goldstone |n〉 and spin-
wave states |{qk}; n〉. However, spin-waves are irrelevant to 
appearance of a transverse spin component and, therefore, to 

the observed Kerr precession (see equations (2.19) and (2.20) 
and the related discussion in section 2). So, for a theoretical 
study of QHF spin-rotation dynamics it is quite relevant to 
consider only a |C〉 vector as an initial state.

In a general case where the |C〉 state is not an eigen one for 
any ̂Sz′ operator, it should be called an ‘unconventional’ rotation-
mode. Contrary to this, if, again, |C〉 represents microscopically 
the same spin state but simply rotated as a ‘single-whole’ state 
from the ẑ direction to another direction ẑ′, then it is natural to 
call this ‘rigid transformation’ in the spin space (corresponding 
to global rotation of a ‘rigid’ ferromagnet) a ‘conventional’ 
rotation-mode5. (The term ‘rotation-mode’ accentuates the fact 
that every |C〉 state still remains diagonal for the S2 operator 
corresponding to its maximum value Nφ(Nφ/2 + 1)/2). The 
conventional and unconventional modes can be macroscopi-
cally characterized by the the same values of S and θ if only the 
Cn coefficients satisfy equation (3.1).

To avoid misunderstanding, we note that in the conven-
tional spin-rotation mode regardless of the laser-pulse inten-
sity the spin-deviation angle θ is strictly equal to an angle β 
given by the experimental setup. This fact strongly contra-
dicts the considered experiments [8, 9], where β is the angle 
between B and the direction of the pumping laser beam. The 
measurements definitely show proportionality of the deviation 
θ, and thereby of the precession amplitude, to the pulse inten-
sity. That is, in these observations the angle θ, being certainly 
much smaller than the given angle β, is strongly governed by 
intensity of the laser beam.

3.1.  One-photon absorption

Specific set {Cn} must be additionally specified by micro-
scopic initial conditions formulated appropriately to the 
method of Goldston mode excitation. The laser pulse is 
formed with condensate of coherent photons equally polar-
ized and propagating at angle β < 90◦ to the magnetic field, 
i.e. to the S direction in the ground state. In real experimental 
geometry the laser beam is directed almost along the basic 
crystal axis which, for its part, is perpendicular to the 2DEG 
plane. The total magnetic field B ‖ ẑ is tilted by the angle β 
from the normal to the 2DEG-plane. (The Landau-level func-
tions and the filling factor are determined by component 
B⊥ = B cosβ.) The laser pumping is in resonance with the 
optical transition from the valence band to the electron Fermi 
edge corresponding at the ν = 2l + 1 filling to the spin-up 
(along the B!) sublevel of the lth Landau level. The absorbed 
photon with definite angular momentum  −1, i.e. antiparallel 
to the light-propagation direction, results in appearance of a 
valence heavy-hole with total momentum J  =  3/2 and an elec-
tron with spin S  =  1/2, both in nonstationary states, oriented 
along the crystal axis ( ẑ′), inclined by β to the ̂z direction [8, 9]:  
Jz′ = −3/2 and Sz′ = 1/2. Thus, due to photon absorption 
ensuring fast (∼ 10 ps) electron–hole recombination pro-

cesses6, the spin state ↑=
(

1
0

)
 of the spin-up electron in the 

4 Most of these recombination processes [8, 9] is a ‘gemini’ recombination 
where an electron-heavy-hole pair born due to photon absorption annihi-
lates before both quasi-particles have had sufficient time to move apart at 
a distance greater than the spatial scale of their wave functions. However, 
there is also a recombination channel where the born heavy hole recombines 
not with its ‘twin’ electron but due to ‘vertical’ (radiative) transition with 
a conduction-band electron located at the same point in space. Then the 
twin electron, ‘inclined’ by angle β in the spin space owing to total angular 
momentum conservation, occupies the vacant site occuring in the Landau 
level in the conduction band and thus resulting in ↑→ ↗ replacement [see 
below Eq. (3.3) for definition of the spin-inclined state]. The recombination 
transitions are accopanied by appropriate irradiation processes and by fast 
spin relaxation ocurring within the valence band.

5 See footnote 2.
6 See footnote 4.
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conduction band is changed to the spin-rotated state of the 
born electron [21]

↗ =

(
cos (β/2)
−sin (β/2)

)
� (3.3)

(β is the Eulerian rotation angle; two others (α and γ) may be 
chosen equal to zero). The ↑→ ↗ replacement with the con-
servation of the orbital state of the total system is a consequence 
of ‘verticality’ occurring owing to light absorption under the 
condition (3.2). The spin-up and spin-down probabilities for 
the ‘spin-inclined’ state ↗ are cos2 (β/2) and sin2 (β/2), 
respectively. If the electron system consists of Ne  >  1 spin-up 
electrons (Sz = S = Ne/2), then it is physically clear that, due 
to absorption of one photon and subsequent ‘vertical’ elec-
tronic processes, we get a Sz-non-diagonal (‘inclined’) state 
with probability cos2 (β/2) to have spin number Sz = Ne/2, 
with probability sin2 (β/2) to have Sz = Ne/2 − 1, and any 
Sz < Ne/2 − 1 values. At the same time, since the orbital state 
is not changed, such a ‘1-inclined’ state should be a combina-
tion of a strictly spin-up state and a state arising due to a single 
action of the spin-lowering S− operator; therefore, it should 
remain diagonal for the S2 operator.

Let us consider ν = 2l + 1 filling. The state with one ‘spin-
inclined’ electron if simply written as

| ↑↑ ... ↑ ↗j ↑ ... ↑〉 ≡
(
cos

β

2
− sin

β

2
b†pj

apj

)
|0〉� (3.4)

(|0〉 is ground state (2.8)) is incorrect because it violates the 
principle of electron indistinguishability and does not corre-
spond to any definite value of conserved total spin S = Nφ/2. 
However, every state (3.4) represents a correct combination in 
terms of the Sz component: the probabilities of the Sz = Nφ/2 
and Sz = Nφ/2 − 1 magnitudes are cos2 (β/2) and sin2 (β/2), 
respectively. To describe correctly the ‘spin-inclined’ state, 
adequate averaging of vectors (3.4) must be carried out where 

all individual spin-flip operators P†
j ≡ b†p j

ap j participate 
equally. This collective state is obviously constructed with the 

help of the S− =
∑Nφ

j=1 P†
j  operator, and, as a result, we obtain 

a correct one-electron ‘spin-inclined’ state

|1, 0〉 =
(
cos

β

2
− sin

β

2
N−1/2

φ S−

)
|0〉.� (3.5)

Here it is taken into account that the squared norm of state 
S−|0〉 is equal to Nφ. Physically, equation  (3.5) means that 

each of the Nφ individual components P†
j |0〉 contributes as the 

1/Nφ part to collective one-electron spin-flip. In fact, the state 
described by equation (3.5) and considered as an initial state of 
rotation-mode motion can be used in the case where the number 
of ‘inclined’ electron spins is much smaller than the number of 
electrons in the Landau level: N � Nφ. Experimentally this 
situation is realized with a low-power laser pulse [9].

3.2.  Absorption of N  coherent photons

To describe the initial state in the N ∼ Nφ case, we gener-
alize the above approach. First, consider the opposite special 
case—the situation with a maximum ‘quantum efficiency’ of 

the laser pulse where N = Nφ which means that all electron 
spins are aligned along ẑ′  tilted by angle θ = β to the B direc-
tion. A microscopic description of such a ‘conventional’ rota-
tion mode is7

|↗↗...↗〉 ≡
Nφ∏
j=1

(
cos

β

2
− sin

β

2
P†

j

)
|0〉.� (3.6)

Going to the ‘unconventional’ N < Nφ case, first consider 
‘conventional’ rotation for subset {JN} of N electrons chosen 
among Nφ ones: {JN} ≡ { pj1 , pj2 , ..., pjN} where the ordering 
pj1 < pj2 < ... < pjN is assumed. Then such a ‘JN-inclined’ 
state (which is definitely not a correct state describing the total 
system) is

N∏
m=1

(
cos

β

2
− sin

β

2
P†

jm

)
|0〉

≡
N∑

n=0

(
cos

β

2

) N−n (
− sin

β

2

)n
(SJN−)

n

n!
|0〉.

� (3.7)

Here SJN− =
∑N

m=1 P†
jm is the spin lowering operator for the 

{JN} subset. The norm of the state (3.7) is equal to one. It is note-
worthy that each term of the right-hand-side of equation (3.7) 
represents an eigenstate for the operator Sz of the total system, 
namely: Sz(SJN−)

n|0〉 = ( 1
2Nφ − n)(SJN−)

n|0〉. (However, 
(SJN−)

n|0〉 is certainly not an eigenstate for total operator S2.) 
We note also that expansion (3.7) over the Sz eigenstates does 
not depend on specific subset {JN}. Indeed, since the squared 
norm of every (SJN−)

n|0〉 vector is independent of {JN},

RNn = 〈0|(SJN+)
n(SJN−)

n|0〉 ≡ N!n!/(N − n)!� (3.8)

(see equation  (2.18)), the norm of every item in the sum of 
equation  (3.7) is completely determined by numbers N and 
n only. In other words, the quantum probability distribution 
over the Sz values given by equation (3.7) is determined only 
by number N and does not depend on the choice of a specific 
subset {JN}. This probability,

sin2n (β/2)[cos2 (β/2)]N−nRNn/(n!)2,� (3.9)

namely, the probability of the total Sz component to take value 
Nφ/2 − n, hence, it must also be the same for the desired 
‘N-inclined’ state.

It is obvious that the generators for the Sz eigenstates of the 
total system defined under the condition of the total S-number 
conservation are the (S−)n operators commuting with oper-
ator S2 (in contrast to operators (SJN−)

n non-commuting with 
S2). Now, in order to find the correct ‘N-inclined’ state, we 
have to take into account the indistinguishability principle for 
various {JN} subsets when N coherent photons are effectively 
absorbed allowing N replacements ↑ → ↗. All possible sam-
ples {JN} must equally contribute to the ‘N-inclined’ state. 
We perform averaging over all the subsets by analogy with 
the above transition from an individual spin-flip state Pj|0〉 to 
sum 

∑
j Pj|0〉 ≡ S−|0〉 in combination (3.5). Now we consider 

transition from specific subset {JN} to sum over all possible 
{JN}. Note that there occurs equivalence

7 See footnote 2.
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∑
{JN}

(SJN−)
n |0〉 ≡

∑
{JN}

(
N∑

m=1

P†
jm

) n

|0〉

= A(N, n)




Nφ∑
j=1

P†
j




n

|0〉 = A(N, n)(S−)n|0〉.
�

(3.10)

Therefore, averaging requires replacement of the states 
(SJN−)

n|0〉 in combination (3.7) with the states |n〉 = (S−)n|0〉. 
(Factor A(N, n) can be calculated but is of no importance for 
the following.) However, a simple SJN− → S− substitution in 
equation (3.7) would certainly be incorrect. The ∼ |n〉 items 
in this combination should be appropriately normalized to sat-
isfy the condition above – the probability for the Sz component 
to be Nφ/2 − n must be determined by value (3.9). This con-
dition provides an evident way to yield a proper collective 
‘N-inclined’ state: the (SJN−)

n-operators in the sum (3.7) 

must be replaced with the (RNn/RNφn)
1/2(S−)n ones, where 

RNφn = 〈n|n〉 = RNn|N=Nφ
 That is, the correct ‘N-inclined’ 

state representing the unconventional spin-rotation mode is

|N, 0〉 =
N∑

n=0

Cn|n〉,� (3.11)

where

Cn =
1
n!

(
cos

β

2

) N−n (
− sin

β

2

) n
√

N!(Nφ − n)!
Nφ!(N − n)!

.�

(3.12)
The N = Nφ particular case corresponds to conventional 
mode (3.6).

Concluding this section, it should be noted that equa-
tions  (3.11) and (3.12) represent an expansion over the 
complete set of orthogonal basis states—the eigen states of 
the operator Sz of the total electron system corresponding 
to the q ≡ 0 case and, besides, to fixed maximum value 
S2 = (Nφ/2 + 1)Nφ/2. The coefficients in this expansion 
are uniquely determined by the requirement to have a defi-
nite probability distribution of the Sz = Nφ/2 − n eigenvalues 
stemming from the study of coherent spin-rotation by the 
Eulerian angle β of any N-electron subset (0 � N � Nφ): the 
probability is given by equation (3.9) if 0 � n � N , or equal 
to zero if n  >  N. The derivation of the state presented by equa-
tions (3.11) and (3.12) is based on the assumption of ↑ → ↗ 
transition (see equation (3.3)) and on the quantum-mechanical 
indistinguishability principle.

We will consider the equation  (3.11) state with factors 
(3.12) as the initial one for the following temporal state evo
lution. However, it will be shown that, in agreement with the 
macroscopic approach (Seq. I), the relaxation law for trans-
verse component S⊥ is independent of specific set {Cn}.

4.  Microscopic approach: precession without 
damping

Now we find non-stationary state |N, t〉 obeying the 
Schrödinger equation  i∂|N, t〉/∂t = Ĥ0|N, t〉, where, as the 
first step, we consider only the Hamiltonian (2.1) commuting 
with the Sz and S2 operators. For the stationary |n〉 states we 

have: Ĥ0|n〉 = (E0 + nεZ)|n〉 ≡ i∂
[
e−i(E0+nεZ)t|n〉

]
/∂t. As a 

result, if the initial state is determined by equation (3.11), the 
Schrödinger equation solution is

|N, t〉 = e−iE0t
N∑

n=0

Cne−inεZt|n〉.� (4.1)

With the help of state (4.1), we find quantum-
mechanical averages of the relevant values at given 
instant t. The total spin squared is a quantum number: 
S2|N, t〉 = [(Nφ/2 + 1)Nφ/2] |N, t〉 (i.e. S = Nφ/2). The 
average spin component 〈Sz〉 and the average squares are 
also time-independent. For Cn coefficients given by equa-
tion (3.12) we have:

〈t, N|Sz|N, t〉 = Nφ/2 − Nw, 〈S2
z 〉 = 〈Sz〉2 + w(1 − w)N,

and

〈S2
x + S2

y〉 ≡ S(S + 1)− 〈S2
z 〉

= NφNw − (wN)2 − w(1 − w)N +Nφ/2

(where w = sin2 (β/2) < 1/2). In the framework of the 
employed approximation neglecting any spin damping the 
only physical time-dependent value is the quantum average of 
transverse spin 〈S⊥〉. To obtain this, we calculate the 〈Sx + iSy〉 
average:

〈t, N|S+|N, t〉 = e−iεZt
N−1∑
n=0

C∗
n Cn+1〈n + 1|n + 1〉

= − tan (β/2)e−iεZt
N−1∑
n=0

√
(Nφ − n)(N − n)Bn,

� (4.2)

where

Bn =
N!

n! (N − n)!
wn(1 − w)N−n.

So, with neglected damping equation  (4.2) describes the 
Larmor precession in complete agreement with the equa-
tions of section 1 . For the conventional Goldstone mode (i.e. 
for N = Nφ) the result is |S⊥| = (Nφ sinβ)/2 having an 
apparent geometric interpretation, see figure 1(b). Considering 
the macroscopic limit where N � 1 while the N/Nφ ratio is 
held constant, we notice that the Bn numbers have a sharp 
maximum at n  =  Nw with width ∆n ∼

√
N . Then summation 

over n results in

〈S+〉 ≈ − sin (β/2)e−iεZt
√

N(Nφ − Nw),� (4.3)

and we make certain that macroscopically |S⊥|2 = S2 − S2
z ; 

and the deviation angle is

θ = arccos

(
1 − 2N

Nφ
sin 2 β

2

)
.� (4.4)

For the conventional Goldstone mode we naturally get θ = β.
It is interesting to consider the behavior of angle θ as a 

function of laser-pulse intensity, i.e. of the total number of 
coherent photons (I) in the pulse. In case of weak intensity 
the number N is simply proportional to I. (This agrees with 
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the experiments where the studied Kerr signal [8, 9] was 
found to be proportional to the intensity of the laser beam.) 
Hence, if N � Nφ, we can write dN/dI  =  W, where W is a 
‘quantum efficiency’ factor independent of N. When speaking 
of ‘quantum efficiency’ we consider not the total number of 
absorbed photons but only a minute amount of them resulting 
in ↑→↗ replacement in the conduction band8; so, of course, 
W � 1. What happens with growing intensity? It is clear that 
N cannot exceed Nφ. In the case of N comparable to Nφ we 
have to take into account that the ↑→↗ replacement is real-
ized only if the site in the Landau level corresponding to rel-
evant ‘vertical transition9’ is occupied by a spin-up electron 
↑. Indeed, the ↗→↗ process does not contribute to effec-
tive magnitude W and, therefore, the latter has to be propor-
tional to the number of spin-up electrons, Nφ − N, in the 
Landau level. Considering equation dN/dI = W0(1 − N/Nφ) 
we find to within unknown constant W0 (which actually 
could be found experimentally by measuring I and θ) that 
N = Nφ[1 − exp (−W0I/Nφ)]. This equation, together with 
equation (4.4), yields the θ(I) dependence.

5.  Damping via stochastization due to smooth  
spatial disorder of g-factor

In this section we consider the problem in the ‘dilute regime’, 
that is in the framework of the basis set where the character-
istic number of spin-wave excitons emerging due to stochas-
tization is much smaller than the mean number of Goldstone 
excitons: k � 〈|S⊥|〉 ∼ N . Comparison of our approach at 
k � Nφ with macroscopic equation (1.2) enables to conclude 
that microscopically only the initial stochastization stage when 
t � T2 is studied, and therefore T2 is determined by linear 
dependence |S⊥(t)| = |S⊥(0)|(1 − t/T2). To find this depend
ence (and thereby T2), it is sufficient to study |n〉 → |q; n〉 
elementary transitions.

Thus, we now calculate the quantum mechanical average

〈S+〉 = V〈N, t|S+|N, t〉V ,� (5.1)

where state |N, t〉V obeys the equation

i∂|N, t〉V/∂t = (Ĥ0 + V̂g)|N, t〉V� (5.2)

(see (2.1) and (2.22)) that should be solved by projecting 
onto the Hilbert space determined by orthogonal basis vec-
tors |n〉 and |q, n〉. The initial condition is given by equa-
tion |N, 0〉V = |N, 0〉 (see equations (3.11) and (3.12)). Then 
searching for the solution in the form

|N, t〉V = e−iE0t
N∑

n=0

Cne−inεZt

[
an(t)|n〉

+
∑

q

e−iEqtbnq(t)|q, n〉

]
,

�

(5.3)

where an(0)  =  1, and bnq(0) = 0, and substituting this into 
equation (5.2), we come, with the help of equations (2.22) and 
(2.23), to

i∂an/∂t = 〈n|n〉−1
∑

q

e−iEqt〈n|V̂g|q, n〉bnq(t)� (5.4)

and

i∂bnq/∂t = 〈n; q |q; n〉−1eiEqt〈n; q|V̂g|n〉an(t).� (5.5)

The studied initial stage, t � T2, actually means condition 
|bn| � |an| in this case, i.e. we have to find the solution of 
equation  (5.4) in the leading approximation in perturbation 
V̂g. To be more precise, bnq must be calculated to the first 
order and an to the second-order (both corrections are essen-
tial since the contribution to stochastization is determined by 
the terms in a∗

n+1an and b∗
n+1qbnq proportional to V2

g ). So,

bnq = nfb(q, t) and an = 1 + n
(

1 − n
Nφ

)
fa(t),� (5.6)

where

fb(q, t) =

√
2π
Nφ

µBB
Eq

(
eiEqt − 1

)
Φ(q) and

fa(t) =
2π(µBB)2

Nφ

∑
q

|Φ(q)|2
∫ t

0
i
1 − e−iEqt′

Eq
dt′.

Substitution of equation (5.6) into equation (5.3) and then into 
equation (5.1) yields

〈S+〉 = e−iεZt
N−1∑
n=0

C∗
n Cn+1〈n + 1|n + 1〉

(
1 + fa − i

2n
Nφ

Imfa

)
.

The imaginary part of f a results only in an inessential cor-
rection to the frequency of Larmor oscillations εZ and does 
not contribute to damping. By ignoring Imfa the expression in 
the parentheses ceases to depend on n. Then we find 〈S+(t)〉 
proportional to S⊥(0) = 〈S+(0)〉 that means that the trans-
verse relaxation process occurs in the same way regardless of 
the specific value of initial deviation. This result is certainly 
in agreement with the macroscopic approach results. So, we 
obtain

〈S+(t)〉 = S⊥(0)e−iεZt [1 + Refa(t)] ,� (5.7)

where

Refa(t)

= −2π(µBB)2
∫ E∞

0
Φ2(q) [1 − cos (Eqt)] ν(Eq)dEq/Eq

2�

(5.8)
(ν(ε) denotes the density of states: ν(Eq) = qdq/dEq, in par
ticular ν(0) = Mx). Generally, any further transformation of 
expression (5.8) requires a more detailed description of the 
Φ(q) and ν(ε) functions which in turn are determined by the 
g-factor spatial disorder and by the real size-quantized (along 
the perpendicular ẑ direction) electron wave-function in the 
quantum well. However, at sufficiently large times t, when 
condition Eqt � 1 means that q � 1 and Φ(q) ≈ Φ(0), then 

8 See footnote 4.
9 See footnote 4.
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Refa(t) = −[πµBBΦ(0)]2Mxt . If one recalls the definition of 
Φ(q) via G-correlator, then simple analysis shows that this 
asymptotic expression is valid if t � Mx(Λ/lB)2, where Λ 
is the characteristic correlation length of smooth spatial dis
order. Thus, performing comparison with equation (5.7), we 
find the formula |S⊥(t)| = |S⊥(0)|(1 − t/T2) with inverse sto-
chastization time

1/T2 = [πµBBΦ(0)]2Mx.� (5.9)

This result is valid within the time interval 
Mx(Λ/lB)2 � t � T2.

As examples, we study two specific kinds of random spa-
tial function g1(r) distribution. For simplicity, we consider the 
most ‘strong ferromagnet’ state of unit filling where the spin-
up sublevel of the zero Landau level is completely occupied 
and other electron quantum states are empty, i.e. l  =  0.

5.1.  Gaussian disorder

First, let the correlator be Gaussian, G(r) = ∆2
ge−r2/Λ2

 
being parameterized by fluctuation amplitude ∆g and cor-

relation length Λ. Then Φ2(q) = ∆2
gΛ

2e−λq2
/4πl2B, where 

λ = 1/2 + Λ2/4l2B. In accordance with the actual situation, 
one may consider λ � 1; in this case the characteristic values 
are q � 1 and we may again put ν(Eq) ≈ Mx and integrate in 
equation (5.8) from 0 to ∞. Then we obtain

Refa = −
(

t/T(G)
2

){
(2/π) arctan

(
2t/τ (G)

0

)

−
(
τ
(G)
0 /2πt

)
ln

[
1 +

(
2t/τ (G)

0

)2
]}

,

where

1/T(G)
2 = πMx(µBBΛ∆g/2lB)2� (5.10)

(due to the misprint in [9], this expression is by a factor of 1/2 
different from the result given there); and at the initial stage 

the dependence is quadratic Refa ≈ −2t2
[
πT(G)

2 τ
(G)
0

]−1
 

where the characteristic transient-stage time is

τ
(G)
0 = Mx(Λ/lB)2.� (5.11)

5.2.  Lorentzian disorder

If the correlator is determined by the Lorentz distribution, 
G(r) = ∆2

g(r
2/Λ2 + 1)−1, then Φ2(q) = (∆gΛ/lB)2K0(qΛ/lB)

e−q2/2/2π (K0 is the Bessel function), and Φ(q)|q→0 in equa-
tion  (5.9) logarithmically goes to infinity. In this case it is 
necessary to take into account a real minimum of q’s which 
is determined by uncertainty δq ∼ MxlB|∇ϕ| related to viola-
tion of the translational invariance owing to smooth random 
electrostatic potential ϕ(r) inevitably existing within the 
2D channel (see, e.g. [10] and references therein; indeed, 
|∇ϕ|Λ ∼ 0.4–0.6 meV). So, substituting qmin ∼ δq instead of 
zero in equation (5.9), for T2 in the case of the Lorentz dis
order we find

1/T(L)
2 =

π

2
(µBB∆gΛ/lB)2Mx ln

2
Mxϕ

,� (5.12)

where ϕ is the smooth random potential amplitude, 
ϕ = 〈|∇ϕ|Λ〉. As again Λ � lB, for the initial stage of sto-
chastization one can calculate the integral in equation  (5.8) 

by putting ν(Eq) = Mx and E∞ = ∞, and at t � τ
(L)
0  find that 

Refa ≈ −t2/T(L)
2 τ

(L)
0 , where

τ
(L)
0 =

√
2Mx(Λ/lB)2 ln

2
Mxϕ

.� (5.13)

6.  Kinetic approach to the stochastization problem

In the previous sections  the purely quantum-mechanical 
problem of excitation evolution has been solved. When so 
doing only the initial stage is relevant and has been consid-
ered. Except for a short interval of the transition process, this 
stage of transverse relaxation is described by a linear func-
tion of time. Generally we have no reasons to think that the 
dependence |S⊥(t)| becomes damping exponent for longer 
times t � T2—as it would follow, for instance, from phenom-
enological equation  (1.2). As mentioned above, a complete 
solution of the quantum-mechanical problem requires consid-
eration of states

|{q}k; n〉 = (S−)
n−k Q†

q1
Q†

q2
...Q†

qk
|0〉� (6.1)

(see the II-B subsection). In the presence of perturbation 
responsible for |{q}k; n〉 → |{q}k+1; n〉 transitions occurring 
within the ‘n-shell’ (i.e. at a constant total number of excitons 
n) an effective number of spin-wave excitons k grows in time, 
and in the case k ∼ n ∼ N ∼ Nφ our model of non-interacting 
spin excitons fails10. Then, certainly, the stochastization pro-
cess a priori becomes non-exponential.

If k � Nφ (which is definitely valid for small devia-
tions at the initial time, i.e. if N � Nφ), then the state 
(6.1) is quite meaningful and represents spin-wave exciton 
gas in the ‘dilute limit’. In this section  we demonstrate a 
kinetic approach to the stochastization problem and con-
sider state |n〉 as the initial one with number n � 1 in the 
vicinity of the maximum: n ≈ nm = N sin 2(β/2), and still 
consider n � Nφ. Following the decay mechanism related 
to transitions |n〉 → |q1; n〉 → |{q}2; n〉..., we study the 
|{q}k; n〉 → |{q}k+1; n〉 process and the corresponding 
change of value S2

⊥ = (S+S− + S−S+)/2. The operator S2
⊥, 

if considered within the ‘dilute limit’, is diagonal in the basis 
consisting of states (6.1). Taking into account formula

〈n; {q}k|{q}k; n〉

≈ (n − k)!(Nφ − 2k)!
(Nφ − n − k)!

〈k; {q}k|{q}k; k〉
�

(6.2)

(see equation (A.6) in appendix A and see equation (2.18)), 
we obtain the semi-classical value

10 See footnote 3.
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S2
⊥ =

〈n; {q}k|S+S− − Sz|{q}k; n〉
〈n; {q}k|{q}k; n〉

≈ Nφ (n − k) .�

(6.3)
This formula reveals that the transverse spin-component 
squared is proportional to n  −  k which is the number of 
Goldstone spin excitons. Its decrease (the increase in k) deter-
mines the transverse relaxation process.

Now let us find the rate of the S2
⊥ change by calculating 

total probability for transformation of the |i〉 = |{q}k; n〉 state 
into various states |fq〉 = |{q}k+1; n〉 per unit time (consid-
ering qk+1 = q). This probability is equal to the growth rate 
of number k,

dk/dt =
∑

q

Wi→fq ,� (6.4)

where partial probabilities are determined by the well known 
formula

Wi→fq =
2π|〈 fq|V̂g|i〉|2

〈i|i〉〈 fq|fq〉
δ(Efq − Ei),� (6.5)

where we again use operator (2.22) as a perturbation. In the 
framework of our approximation, k < n � Nφ, the matrix 
element is

〈 fq|V̂g|i〉 ≈ −2(n − k)µBB
√

π

2Nφ
Φ(q)〈 fq|fq〉.� (6.6)

The sum in equation  (6.4) represents summation over 
nonzero q’s. It looks, however, rather uncertain since for-
mally the δ-function argument in equation  (6.5) is equal to 
q2/2Mx. A more detailed study enables us to eliminate this 
uncertainty (see appendix C) and finally obtain, with the help 
of equations (6.3)–(6.6) and equation (A.4), the kinetic equa-
tion describing the damping process:

dS2
⊥/dt = −2S2

⊥/T2.� (6.7)

The derived equation is independent of n and k, and the trans-
verse relaxation time T2 is just the same as that given by equa-
tion  (5.9) in section 5, including particular cases (5.10) and 
(5.12). So, if the initial deviation from the equilibrium direc-
tion is small, |S⊥(0)| � Nφ, then the kinetic equation  (6.4) 
results in exponential damping of the Kerr rotation:

|S⊥(t)| = |S⊥(0)|e−t/T2 .� (6.8)

(The transient stage occurring in time t � τ0 is certainly not 
described in the framework of the kinetic approach.)

7.  Conclusion

The study addresses a spin-rotation mode emerging at optical 
excitation in quantum Hall spin-polarized systems. This mode 
is macroscopically indistinguishable from a simple turn of the 
entire electron spin system from the ẑ-direction. However, the 
general phenomenological approach shows that the damping of 
the spin-rotation precession in the quantum Hall ferromagnet 
hardly obeys the Landau–Lifshitz equation. The microscopic 
approach reveals that the quantum state of the unconventional 

spin-rotation mode is not equivalent to rotation as a single-
whole of all spins by the same angle. This specific property 
manifests itself in the dependence of the effective (macro-
scopic) rotation angle θ on laser pumping intensity rather than 
on the laser-beam direction alone. (See equation (4.4) where 
the number N is determined by laser pumping; if N reaches 
Nφ, then the unconventional mode becomes a conventional 
Goldstone mode and the equality θ = β holds even at higher 
intensities of laser pumping.)

One can note a similarity between the optically-induced 
spin-dynamics in a QHF and in dielectric magnets where spin 
precession occurs also owing to ‘coherent magnon genera-
tion’ [28]. Indeed, such generation resulting in coherent spin 
precession appears due to an ‘optomagnetic interaction’ with 
media if the pumping laser beam is inclined at an angle with 
respect to the magnetization axis (see our angle β); i.e. the 
experimental technique is similar to the precession excita-
tion in [8] and [9]. Besides, it is possible to assume that the 
unconventional spin-rotation mode would be an adequate 
microscopic description (see equations (1.3), (2.3) and (4.1)) 
for the coherent precession state studied in dielectric magnets 
in works [28]. The initial rotation angle in those experiments 
is proportional to laser intensity as in the works [8, 9] with a 
QHF. Without going into a discussion on the optomagnetic 
interaction [28], we notice that our situation with appearance 
of the QHF spin-rotation mode looks still more transparent 
since it is based on a purely electronic pattern. In our case it 
is the reaction of a strongly correlated electron gas described 
in terms of collective eigenstates to an elementary single-
electron process representing simple replacement of a spin-
polarized conduction-band electron with orbitally the same 
but ‘spin-inclined’ one generated by an absorbed photon 
(see [9] and footnote4). Finally, note the following: two types 
of magnons,—the Godstone one (with q ≡ 0, |δSz| = 1 and 
δS = 0) and the spin wave (with q �= 0 and |δSz| = δS = 1),—
do exist also in common dielectric magnetics described by the 
Heisenberg Hamiltonian (see appendix B).

Our microscopic approach consists in solving a non-
stationary Schrödinger equation  where the unconventional 
spin-rotation mode is considered as the initial state. As a 
perturbation resulting in damping, the stochastization mech
anism is studied which is related to spatial fluctuations of 
the effective Landé factor. Those are most likely related 
to spatial fluctuations of 2DEG thickness, since the effec-
tive g-factor of 2D electrons depends on the quantum well 
width [29]. Meanwhile the spatial fluctuations of the width 
also affect 2D electrons as an additional effective electric 
field contributing thereby to the effective smooth random 
potential. Thus, the correlation length of the g-factor fluc-
tuations Λ is supposed to be approximately equal to the 
correlation length of the smooth random potential in the 
quantum well, ∼50 nm. Assuming g-fluctuation amplitude 
∆g ∼ 0.005, which seems fairly realistic [29], we find char-
acteristic damping time T2 ∼ 1–10 ns according to equa-
tions  (5.10) and (5.12). (We also used 1/Mx ∼ 2 meV and 
B = 3–10  T in accordance with the available experimental 
data [5, 9].) This transverse spin relaxation time is much 
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shorter than total relaxation time in a similar system [10]. 
The microscopic approach also enables us to describe the 
transient process preceding establishment of the linear time 
dependence of diminishing transverse component |S⊥|. The 
characteristic time of this short transient stage is given by 
equations (5.11) and (5.13), being τ0 ∼ 10–50 ps.

The kinetic approach also shows that, as expected, at small 
initial excitations the damping process for times t � τ0 occurs 
exponentially (see equation (6.8)) just with the T2 time calcu-
lated in the framework of the solution of the non-stationary 
Schrödinger equation.

Formally, the results reported are applicable only in a 
narrow region near integer fillings 1 and 3 (although, in prin-
ciple, they seem to be phenomenologically projected onto the 
case of fractional ferromagnets where ν = 1/3, 1/5, ...; see 
research in [14, 30]). Meanwhile it is known that a skyrmion 
texture with well reduced spin-polarisation emerges even at 
a small deviation of the filling factor from 1. Theoretically 
this ‘skyrmionic’ ferromagnet becomes ‘softer’ than the unit-
filling one, and the Goldstone mode damping should occur 
much faster due to appearance of additional stochastization 
channels related to some soft modes forbidden in the integer-
filling state. This theoretical view is confirmed experimentally 
by both the observation of Goldstone mode dynamics [9] and 
by the study of total spin relaxation (recovery of the S vector 
to the ground state magnitude) in a quantum Hall ferromagnet 
[10].

In conclusion, we note that the work presented is done 
by taking into account the experimental background dealing 
with ‘classical’ quantum Hall systems, i.e. created in GaAs/
AlGaAs structures. Nevertheless, our approach and the results 
obtained could be actual or/and at least useful as a basis for 
future studies of more up-to-date quantum-Hall-ferromagnet 
states (in graphene, in ZnO/MgZnO structures, etc), which 
have been lately studied intensively, yet, in the absence of rel-
evant data on relaxation of collective spin states.
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Appendix A

In the equations presented in this section we do not make any 
formal difference between Goldstone and spin-wave excitons, 
that is q may be exactly equal to zero: S− ≡ Q†

0. In the QHF 
ground state both have equal norms: 〈S+S−〉 = 〈QqQ†

q〉 ≡ Nφ 
(here and everywhere below 〈...〉 means averaging over the 
ground state: 〈...〉 ≡ 〈0|...|0〉).

First, we write out the QHF Hamiltonian (see (2.1) and 
(2.2)) in terms of the so-called ‘excitonic representation’ 
within the two-sublevel approximation relevant to calculate 
the spin-wave exciton energy to first order in Coulomb cou-
pling. Omitting all the terms commuting with the Q†

q operator 

(in particular, we also omit the Ĥ(1) = ωc(A0 + B0)/2 term), 
we get a reduced secondary-quantization form of the 
Hamiltonian:

Ĥ′
0 = −εZŜz + Ĥ′

Coul = −εZ(A0 − B0)/2

+
1
2

∑
q

Ũ(q)(A†
qAq + 2A†

qBq + B†
qBq),

where Ũ(q) = e−q2/2[Ll(q2/2)]2
∫

U(r)eiqrdr/2π (Ll is the 

Laguerre polinomial). Then using the commutation rules

eiφ [A†
q1

,Q†
q2

]
= −e−iφ [B†

q1
,Q†

q2

]
= −Q†

q2+q1� (A.1)

and
[
Qq1 ,Q+

q2

]
= eiφAq1−q2 − e−iφBq1−q2� (A.2)

[φ = (q1 × q2)z/2], we obtain 
[
Ĥ′

0,Q†
q

]
|0〉 = (εZ + Eq)Q†

q|0〉,  
where the spin-wave Coulomb energy is 

Eq =

∫ ∞

0
pdpŨ( p)[1 − J0( pq)] (see [11]).

Now with the help of equations  (A.1) and (A.2) one can 
calculate projection of one two-exciton state to another: 

〈2; {q}′2|{q}2; 2〉 ≡
〈
Qq2′Qq1′Q

†
q1Q

†
q2

〉

= N 2
φ

(
δq2′,q2δq1′,q1 + δq1′,q2δq2′,q1

−2 cosΦ
Nφ

δq1+q2,q1′+q2′

)
,

�
(A.3)

where Φ = (q1
′ × q1 + q2

′ × q2) z/2. Were the Q-operators 
simply Bose ones, then only the first two terms in the paren-
theses of equation (A.3) would constitute the result of the four-
operator expectation. However, the presence of the third term 
is a manifestation of a ‘kinematic spin exciton interaction’. 
This ‘interaction’ is a consequence of the non-Bose commu-
tation rules (A.2). Such a specific spin-excitonic ‘coupling’ 
plays a role, for instance, in research of phenomena related 
to mutual spin exciton scattering, and also when calculating 
norms of many-exciton states in case the total number of exci-
tons is comparable to Nφ. However, if we find the squared 
norm of two-exciton state |2; {q}2〉 with different momenta, 
q1 �= q2, then the kinematic interaction may be neglected and 

we just have 〈{q}2; 2|2; {q}2〉 ≈ N 2
φ. For the |k; {q}k〉 state at 

low exciton concentration, k/Nφ � 1, considering all q’s to 
be different, any interference of single spin-exciton states may 
be ignored. It is quite sufficient for our calculations to use only 
the following recurrent property of the squared norm:

〈k; {q}k|{q}k; k〉
= [Nφ + O(k)] 〈k − 1; {q}k−1|{q}k−1; k − 1〉.

� (A.4)

State (6.1) represents a dilute gas of spin-wave excitons 
against the background of the Goldstone-exciton condensate. 
Let us act on it by the operator S+ ≡ Q0. Using properties

[S+,Q†
q] = A†

q − B†
q, [A0 − B0,Q†

q] = −2Q†
q,
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and
(A†

q − B†
q)|0〉 = Nφδq,0|0〉,

we come to the following equation:

S+|{q}k; n〉 = (n − k)(Nφ − n − k + 1)|{q}k; n − 1〉

+(S−)n−k
k−1∑
i=1

Q†
q1
Q†

q2
...Q†

qi−1
(A†

qi
− B†

qi
)...Q†

qk
|0〉.�

(A.5)

With the help of commutation rule (A.1) one finds that the 
second item in the r.h.s. here is determined by the kinematic 
interaction of spin-wave excitons. We study the situation 
where k � Nφ and, besides, k � Nφ − n. Then the squared 
norm of the second item, being smaller than

k2〈{q}k−1; n − 1|n − 1; {q}k−1〉,

turns out to be negligible compared to that of the first one, 
and, hence, in the r.h.s. of equation (A.4) we retain only the 
first term. By acting n  −  k times with operator S+ on state 
|{q}k; n〉, we get

(S+)
n−k|{q}k; n〉 ≈ (n − k)!(Nφ − 2k)!

(Nφ − n − k)!
|{q}k; k〉.� (A.6)

Then we come to the result given by equation  (6.2) for the 
squared norm of state |{q}k; n〉. In the special cases of k  =  0 
and k  =  1, when the kinematic interaction is missing, formulae 
(A.6) and (6.2) are quite exact and result in equations  (2.6) 
and (2.18).

Finally, we note that in summation over q in equation (6.4), 
one may certainly ignore any cases of exact coincidence of the 
q = qk+1 number in the final state |{q}k+1; n〉 with some of 
the values q1, q2,...qk in the initial one. This is evident from 
the fact that the zero-dimensional phase volume of these coin-
cidences is negligible compared to the 1D volume of possible 
q values in the final state (the 1D volume, rather than the 2D 
one, is due to the presence of the δ-function in equation (6.4)). 
This statement is true for any number k, and, therefore, only 
states with q1 �= q2 �= ... �= qk  values are relevant in the 
framework of the kinetic approach developed in section 6.

Appendix B

The q ≡ 0 equivalence corresponding to the Goldstone 

spin exciton S−|0〉 ≡ Q†
{q≡0}|0〉 actually means q � 1/L  

(see inequality (3.2)) in contrast to the ‘spin-orbital’ excita-

tion Q†
{q→0}|0〉 where q � 1/lB but q � 1/L  (here normal 

dimensionality of q is used). In the ideally homogeneous 
system L = L where L is the 2D channel linear dimen-
sion. Indeed, in the presence of an external smooth random 
potential (SRP) characterized by amplitude (∆) and correla-
tion length (Λ), one definitely assumes L  to be at least not 
smaller than Λ, because 1/Λ measures violation of the trans-
lation invariance in the 2D system. This condition is not the 
only one. The SRP lifts the Landau level degeneracy, and the 
|0〉 orbital state is changed compared to the homogeneous 
case. In fact, the ‘standard’ single-electron wave function is 
localized in the 2D space near a ‘standard’ equipotential line 
(EL), within a ‘belt’ of width lB (see, e.g. publication [31]). 

The length of the closed standard EL corresponding to elec-
tron energy 0 < |ε| � ∆ (ε is measured from the Landau level 
center) is of the order of Λ. If T  is a classical period of drift 

motion in crossed fields �B  and �E  (| �E | ∼ ∆/Λ) along the 
closed standard EL, then the level spacing between two adja-
cent states is ∼ 1/T ∼ ∆(lB/Λ)2. So, taking into account the 
e–e interaction, we conclude that the q ≡ 0 condition for a 
collective state means that the Coulomb energy Eq becomes 
physically meaningless if it turns out to be smaller than 
single-electron energy uncertainty 1/T . That is, the formal 
condition q ≡ 0 determining the undisturbed orbital state 
of the quantum Hall ferromagnet means Eq � ∆(lB/Λ)2 
resulting in q � 1/L ∼ (∆Mx)

1/2/Λ. The length L  should 
be substituted into equation (3.2). (In modern heterostructures 
∆ = 0.5–0.7 meV and Λ � 50 nm.)

We note also that the essential difference between q → 0 
and q ≡ 0 spin excitations studied in this paper is not a fea-
ture peculiar only to a quantum Hall ferromagnet. Just the 
same situation takes place in the case of a dielectric ferro-
magnet representing,for instance, a system of atomic spins 
spatially localized at crystal-lattice sites and described by the 
Heisenberg model. The Bloch operator creating a magnon 
with wave vector k is Ŝk ∝

∑
n eikrn Sn−, where rn is the 

lattice site position and Sn− is the spin-lowering operator 
acting on the spin in the nth site [32]. This operator is very 
similar to spin-wave operator (2.9) if the qy   =  0 condition 
holds (which may be always ensured by simply choosing the 
x̂ axis directed along momentum q). Besides, it also reduces 
to total spin-lowering operator S− =

∑
n Sn− if k ≡ 0. The 

state Ŝk|0〉 (where in the ground state |0〉 all spins are strictly 
polarized) is an eigenstate of the Heisenberg Hamiltonian 
and simultaneously an eigenstate for total operators Ŝ2 and 
Ŝz [32]. Routinely calculating quantum numbers S and Sz, one 
can see that the magnon state has spin numbers changed by 
δSz = −1 and by δS = δk,0 − 1 as compared to the ground 
state.

Appendix C

The summation in equation (6.4), 
∑

q ...δ(q2/2Mx) where q 
values, even when infinitely small, are not identically zero, 
formally results in zero. However, if one adds an infinitesimal 
term (q × ε)z to the δ-function argument (ε → 0), then the 
situation becomes well defined. The physical meaning of this 
term will become clear if one takes into account the existence 
of electric dipole moment elBq × ẑ of the spin-wave exciton. 
That is, the 2D vector ε is just proportional to a weak external 

electric field �E (x, y) appearing, for instance, due to a smooth 
random potential present in the quantum well. Thu,s the sum-
mation is performed trivially

∑
q

F(q)δ(...)

= (Nφ/2π) lim
ε→0

∫
dq F(q)δ(q2/2Mx + q × ε)

= F(0)NφMx/2.
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