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Abstract
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CrossMark

The one-particle reduced density matrix functional theory in its natural orbital functional
(NOF) version is used to study strongly correlated electrons. We show the ability of the
Piris NOF 7 (PNOF7) to describe non-dynamic correlation effects in one-dimensional (1D)
systems. An extensive study of 1D systems that includes Hydrogen (H) chains and the 1D

Hubbard model with periodic boundary conditions is provided.

Different filling situations and

large sizes with up to 122 electrons are considered. Compared to quasi-exact results, PNOF7
is accurate in different correlation regimes for the 1D Hubbard model even away from the
half-filling, and maintains its accuracy when the system size increases. The symmetric and
asymmetric dissociations of the linear H chain composed of 50 atoms are described to remark
the importance of long-range interactions in presence of strong correlation effects. Our results
compare remarkably well with those obtained at the density-matrix renormalization group

level of theory.

Keywords: strong electron correlation, Hubbard model, hydrogen chain, dissociation,

reduced density matrix theory, natural orbital functional
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1. Introduction

One-dimensional (1D) many-electron systems remain a non-
trivial problem for electronic structure methods. Density
functional theory in its conventional local or semilocal approx-
imations is not able to provide a correct description of corre-
lated insulators [1], configuration interaction methods cannot
deal with too large systems, and coupled cluster singles and
doubles with perturbative triples (CCSD(T)) shows instabili-
ties at large interatomic distances in 1D chains of Hydrogen
(H) atoms [2]. Recently, significant progress has been made in
lattice density functional theory [3]. Nevertheless, the density-
matrix renormalization group (DMRG) algorithm [4] remains
the most accurate method for studying 1D systems, including
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gapless chains [5, 6]. Consequently, it will be employed as
benchmark in this work.

The electronic wavefunction is taken as a linear combi-
nation of geminal functions to have a non-factorial scaling.
In this context, variational Monte Carlo calculations using a
Jastrow-antisymmetrized geminal power wavefunction has
recently been used [7] to successfully investigate periodic
1D H chains. Another approach based on geminal expan-
sions is the antisymmetric product of 1-reference-orbital
geminals (AP1roG). The optimized orbital version of AP1roG
(OO-AP1roG) has proven [8] to be a reliable method for
strongly correlated 1D systems, such as the 1D Hubbard model
with periodic boundary conditions, as well as for metallic and
molecular H rings. Nevertheless, it has recently been shown

© 2020 IOP Publishing Ltd  Printed in the UK
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[9] that contributions from singly occupied states are impor-
tant in the strong correlation limit, so OO-AP1roG needs to
include open-shell configurations to accurately describe the
U/t — oo limit in the 1D Hubbard model and the dissociation
limit in H chains.

The natural orbital functional theory (NOFT) [10, 11]
constitutes an alternative to highly correlated methods. The
energy is expressed in terms of natural orbitals (NOs) and
their occupation numbers (ONs), so that from the outset
NOFT correctly handles the multiconfigurational character
inherent in strongly correlated systems. A route for the con-
struction of an approximate natural orbital functional (NOF)
involves the employment of necessary N-representability con-
ditions for the two-particle reduced density matrix (2RDM)
[12]. Appropriate 2RDM reconstructions have led to different
implementations known in the literature as PNOFi (i = 1-7)
[13, 14].

The electron pairing approach came to the NOFT with the
proposal of PNOFS5 [15]. The latter is closely related to gemi-
nal approaches, since it corresponds to an antisymmetrized
product of strongly orthogonal geminals [16]. PNOFS5 draws
a system of N electrons as independent electron pairs provid-
ing a good description of the intrapair electron correlation,
but lacks the correlation between pairs. Consequently, a bad
description of the strong correlation limit is obtained [17].
To introduce interpair electron correlation effects in singlet
states, PNOF7 was proposed [14, 17], namely,

N/2 N/2
E=D B+ E, M
g=1 I#8

where

E, =2 > npHpp + > HgpLyg

PEL, q.PEQ,
m — gy, g =porq,p> % 2
w —/Nghp, q=gorp=g

Ep = > 2 ["q”p (ZJM - ’Cpq) - (I’qq)pﬁpq]
PEQ/ qGQg (3)

B = /mp(1 —np).

n,, stands for the ON of the spatial NO |p). H,, denotes the
diagonal elements of the one-particle part of the Hamiltonian
involving the kinetic energy and the external potential opera-
tors. Jp, and Ky, refer to the usual Coulomb and exchange
integrals, (pg|pq) and (pq|gp) respectively, whereas L,,
denotes the exchange-time-inversion integral { pp|qq).

The orbital space is divided into N/2 mutually disjoint
subspaces 2, so that > peq, p = 1. Taking into account the
spin, each {2, contains solely an electron pair, and the normal-
ization condition for the one-particle reduced density matrix
(IRDM) is automatically fulfilled: 2 Zp n, = N. Restriction
of the ONSs to the range 0 < n, < 1represents a necessary and
sufficient condition for ensemble N-representability of the
IRDM [18].

It should be noted that E, reduces to the NOF obtained
from a two-electron singlet wavefunction, so the first term of

PNOF7 accurately describes the sum of electron-pair ener-
gies. The second term correlates the motion of the electrons in
different pairs with parallel and opposite spins. For the latter,
the particle-hole symmetry is explicitly considered through
®, in the L-term. This resembles the original formulation of
Bardeen, Cooper and Schrieffer (BCS) [19], which uses these
types of interactions for all orbitals. The BCS method is one
of the best mean-field approaches to the Hubbard model with
attractive interactions [20], but underestimates the correlation
effects in systems with repulsive Hamiltonians [21]. For the
latter, recent studies [17, 22, 23] suggest that PNOF7 could
correctly recover the strong correlation limit. In this letter, we
provide an extensive study of H chains composed of 50 atoms
and the 1D Hubbard model in many filling situations, sizes,
and correlation regimes.

The solution is established by optimizing the energy(1-3)
with respect to the ONs and to the NOs, separately. The con-
jugate gradient method is used to perform the optimization
of the energy with respect to auxiliary variables that enforce
automatically the N-representability bounds of the 1RDM.
The self-consistent procedure proposed in [24] yields the NOs
by an iterative diagonalization procedure, in which orbitals
are not constrained to remain fixed along the orbital optim-
ization process. All calculations have been carried out using
the DoNOF code developed in our group.

First, we show the ability of PNOF7 to describe the 1D
Hubbard model. The latter has the advantage of being
extremely simple and is a useful tool for benchmarking [25].
The 1D Hubbard Hamiltonian reads as

H=—t Z (ai’ga,/’o + ai,’ga,)o) + UZn,,anrﬁ @)

(ro"),o r

where (r, ') indicates only near-neighbors hopping between
the sites r and . ¢ > 0 is the hopping parameter analogous
to the kinetic energy, and U is the electron—electron on-site
interaction parameter. o = a, 3 stands for the spin. af , ()
is the creation (annihilation) operator, so n, , = ai‘aaw gives
the number of electrons on site » with spin o.

Let us restrict to the repulsive Hubbard model, hence U is
always positive. U/t is used as a dimensionless measure for
the relative contribution of both terms, therefore, at U/t — 0
(metallic state) the mean-field theories work well due to the
lack of two-electron interactions, whereas at U/t — 400
(insulating state) strong correlations play the dominant role
keeping electrons away from each other.

In figure 1, we report the PNOF7 energy differences
with respect to the exact results for the 1D Hubbard model
at half-filling. The number of sites varies from 14 to 122 in
small and intermediate correlation regimes. For comparison,
OO-API1roG results [9] have been included. The data sets
used in this figure can be found in the supplemental material’.
Note that OO-API1roG deteriorates for large systems (some
errors fall out of figure 1), as well as for large U/t values.
Conversely, PNOF7 is able to hold its accuracy with respect

3 See supplemental material at (stacks.iop.org/TPhysCM/32/17LT01/mmedia)
for the data sets.
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Figure 1. Energy differences (a.u.) with respect to the exact results
for the 1D Hubbard model at half-filling with periodic boundary
conditions. OO-AP1roG and exact data from [8, 9]. For U/t = 20,
only the result is reported for N = 14.

Table 1. Energy per site (a.u.) for 1D Hubbard model away from
half-filling at U/t — 100. Reference vMPS, v2RDM, and exact
data from [26]. Ngjs and N stands for the number of sites and
electrons, respectively.

Ngites N PNOF7 vMPS v2RDM Exact®

20 12 —0.6025 —1.0312 —1.2177 —1.0008
16 —0.3820 —0.4951 —0.7860 —0.4639

50 20 —0.9081 — —1.2191 —1.0008
40 —0.4444 — —0.7862 —0.4671

2 Exact results correspond to U/t — co.

to exact results when the system size increases. For a given
system, PNOF7 converges to the exact results in the strong
correlation limit.

Since the particle-hole symmetry is explicitly introduced
into the functional (1-3), PNOF7 is expected to be appropri-
ate for the half-filling case. Now we test the performance of
PNOF7 away from half-filling where the particle-hole symme-
try is broken, so that inhomogeneous phases can appear [25].
The energy per site for the 1D Hubbard model is shown in
Table 1. We focus on the strong correlation limit, i.e. large U/t
values, which is particularly problematic for geminal-based
theories like OO-AP1roG [9]. For reference, we use the vari-
ational 2RDM (v2RDM) with P, Q and G N-representability
constraints values and quasi-exact results of the variational
Matrix Product State (vMPS) algorithm taken from [26].

Table 1 shows that PNOF7 remains close to vMPS for
N = 16 in 20 sites chain, whereas it lacks correlation energy
for N = 12. In the case of 50 sites, PNOF7 produces accu-
rate energies and it approaches the exact result. Consequently,
PNOF7 turns out to be particularly accurate from a certain
amount of electrons, from which the strong correlation limit
is described successfully. It is worth noting that PNOF7 is
more accurate than v2RDM when only two-particle condi-
tions are applied. It has recently been emphasized [27, 28] that
three-particle conditions are needed in v2RDM to accurately
describe the strong correlation limit of the Hubbard model.

In a minimal basis set, there is only one band in 1D sys-
tems, therefore, as long as long-range interactions are negli-
gible, a linear chain composed of H atoms resembles the 1D
Hubbard model. Such a chain composed of 50 H atoms is a
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Figure 2. Symmetric dissociation of linear Hsg using the STO-6G
basis set. RHF, MP2, CCSD, CCSD(T), and DMRG data from [2].

Table 2. Equilibrium distances (R,) and dissociation energies (D,)
for the symmetric dissociation of linear Hsy using the STO-6G basis
set. RHF, MP2, PBE, OO-AP1roG, and DMRG data from [8].

00-
RHF MP2 PBE APlroG PNOF7 DMRG
R (A 0.940 0.955 0971 0.966 0.976 0.970
D, (evV) 1990 1441 146.6 822 86.9 89.7

simple prototype of strong correlation, and a challenging test
[2] for non-dynamic correlation.

In order to study the effect of long-range interactions, let
us show the ability of PNOF7 to describe bond-breaking pro-
cesses. Figure 2 shows the energies obtained for symmetric
stretching of linear Hsy by using PNOF7, together with ref-
erence DMRG results and other well-established electronic
structure methods, namely, restricted Hartree—Fock (RHF),
second-order Mboller—Plesset pertubation theory (MP2),
CCSD, and CCSD(T). All calculations were carried out using
the STO-6G minimal basis [29]. There is an outstanding
agreement between PNOF7 and DMRG along the dissocia-
tion curve, specially at large bond distances (insulating phase)
as well as at short H-H distances (metallic phase). At the equi-
librium distance, PNOF7 underestimates slightly the correla-
tion, however an inspection of spectroscopic constants (see
Table 2) shows that PNOF7 agrees with DMRG better than
standard methods such as RHF, MP2, or the Perdew—Burke—
Ernzerhof (PBE) density functional. These methods fail dra-
matically at the dissociation limit [8] since the occupancies
become strongly fractional at intermediate and long H-H dis-
tances, a behavior that PNOF7 (see figure 3) and OO-AP1roG
(see figure 4 in [8]) correctly reproduce. Non-integer occu-
pations also make CCSD and CCSD(T) not convergent [2],
so the latter can be exclusively employed in the equilibrium
region. Note that OO-AP1roG underestimates the equilibrium
distance (R,) and dissociation energy (D,), whereas PNOF7
underestimates D, and yields slightly large R,.

Figure 4 shows the energies obtained for the asymmetric
dissociation of linear Hsp. It should be noted that the energy
decreases monotonically from the reference state composed of
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Figure 3. ONss of the highest strongly occupied NO (HSOO) and the lowest weakly occupied NO (LWOO) for the symmetric dissociation

of linear Hsg at the PNOF7/STO-6G level of theory.
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Figure 4. Asymmetric dissociation of linear Hs using the STO-6G
basis set. RHF, MP2, CCSD, CCSD(T), and DMRG data from [2].

equidistant H atoms to the set of independent H, molecules. In
the asymmetric stretching, we alternate the bond-stretching,
so that half of the bonds remain fixed, while the other half is
stretched. In the dissociation limit, we have 25 near-independ-
ent H, molecules. Similar to symmetric dissociation, PNOF7
agrees with DMRG over large bond distances, whereas there
are slight differences at shorter bonds.

The results obtained for Hsy chains prove that numerical
accuracy of PNOF7 is comparable to that of the DMRG in
many different correlation regimes. This study includes the
PNOF7 in the list of highly correlated methods to study any
system related to linear H chains [30].

With the present work, a step forward has been taken in the
development of efficient methods for strong correlation. With
a mean-field scaling, the PNOF7 approximation compares

with state-of-the-art methods for describing strongly corre-
lated electrons, e.g. DRMG, quantum Monte Carlo or com-
plete active space configuration interaction methods, and
overcomes the problems shown by similar approaches in the
strong correlation limit. The present letter will have a signifi-
cant impact on the development of new materials in which
large unit cells are required.
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