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1.  Introduction

One-dimensional (1D) many-electron systems remain a non-
trivial problem for electronic structure methods. Density 
functional theory in its conventional local or semilocal approx
imations is not able to provide a correct description of corre-
lated insulators [1], configuration interaction methods cannot 
deal with too large systems, and coupled cluster singles and 
doubles with perturbative triples (CCSD(T)) shows instabili-
ties at large interatomic distances in 1D chains of Hydrogen 
(H) atoms [2]. Recently, significant progress has been made in 
lattice density functional theory [3]. Nevertheless, the density-
matrix renormalization group (DMRG) algorithm [4] remains 
the most accurate method for studying 1D systems, including 

gapless chains [5, 6]. Consequently, it will be employed as 
benchmark in this work.

The electronic wavefunction is taken as a linear combi-
nation of geminal functions to have a non-factorial scaling. 
In this context, variational Monte Carlo calculations using a 
Jastrow-antisymmetrized geminal power wavefunction has 
recently been used [7] to successfully investigate periodic 
1D H chains. Another approach based on geminal expan-
sions is the antisymmetric product of 1-reference-orbital 
geminals (AP1roG). The optimized orbital version of AP1roG 
(OO-AP1roG) has proven [8] to be a reliable method for 
strongly correlated 1D systems, such as the 1D Hubbard model 
with periodic boundary conditions, as well as for metallic and 
molecular H rings. Nevertheless, it has recently been shown 
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[9] that contributions from singly occupied states are impor-
tant in the strong correlation limit, so OO-AP1roG needs to 
include open-shell configurations to accurately describe the 
U/t → ∞ limit in the 1D Hubbard model and the dissociation 
limit in H chains.

The natural orbital functional theory (NOFT) [10, 11] 
constitutes an alternative to highly correlated methods. The 
energy is expressed in terms of natural orbitals (NOs) and 
their occupation numbers (ONs), so that from the outset 
NOFT correctly handles the multiconfigurational character 
inherent in strongly correlated systems. A route for the con-
struction of an approximate natural orbital functional (NOF) 
involves the employment of necessary N-representability con-
ditions for the two-particle reduced density matrix (2RDM) 
[12]. Appropriate 2RDM reconstructions have led to different 
implementations known in the literature as PNOFi (i  =  1–7) 
[13, 14].

The electron pairing approach came to the NOFT with the 
proposal of PNOF5 [15]. The latter is closely related to gemi-
nal approaches, since it corresponds to an antisymmetrized 
product of strongly orthogonal geminals [16]. PNOF5 draws 
a system of N electrons as independent electron pairs provid-
ing a good description of the intrapair electron correlation, 
but lacks the correlation between pairs. Consequently, a bad 
description of the strong correlation limit is obtained [17]. 
To introduce interpair electron correlation effects in singlet 
states, PNOF7 was proposed [14, 17], namely,

E =

N/2∑
g=1

Eg +

N/2∑
f �=g

Efg� (1)

where

Eg = 2
∑

p∈Ωg

npHpp +
∑

q,p∈Ωg

ΠqpLpq

Πqp =

{ √nqnp, q = p or q, p > N
2

−√nqnp, q = g or p = g

� (2)

Efg =
∑

p∈Ωf

∑
q∈Ωg

[nqnp (2Jpq −Kpq)− ΦqΦpLpq]

Φp =
√

np(1 − np).
� (3)

np  stands for the ON of the spatial NO |p〉. Hpp denotes the 
diagonal elements of the one-particle part of the Hamiltonian 
involving the kinetic energy and the external potential opera-
tors. Jpq and Kpq refer to the usual Coulomb and exchange 
integrals, 〈 pq|pq〉 and 〈 pq|qp〉 respectively, whereas Lpq 
denotes the exchange-time-inversion integral 〈 pp|qq〉.

The orbital space is divided into N/2 mutually disjoint 
subspaces Ωg, so that 

∑
p∈Ωg

np = 1. Taking into account the 
spin, each Ωg contains solely an electron pair, and the normal-
ization condition for the one-particle reduced density matrix 
(1RDM) is automatically fulfilled: 2

∑
p np = N . Restriction 

of the ONs to the range 0 � np � 1 represents a necessary and 
sufficient condition for ensemble N-representability of the 
1RDM [18].

It should be noted that Eg reduces to the NOF obtained 
from a two-electron singlet wavefunction, so the first term of 

PNOF7 accurately describes the sum of electron-pair ener-
gies. The second term correlates the motion of the electrons in 
different pairs with parallel and opposite spins. For the latter, 
the particle-hole symmetry is explicitly considered through 
Φp in the L-term. This resembles the original formulation of 
Bardeen, Cooper and Schrieffer (BCS) [19], which uses these 
types of interactions for all orbitals. The BCS method is one 
of the best mean-field approaches to the Hubbard model with 
attractive interactions [20], but underestimates the correlation 
effects in systems with repulsive Hamiltonians [21]. For the 
latter, recent studies [17, 22, 23] suggest that PNOF7 could 
correctly recover the strong correlation limit. In this letter, we 
provide an extensive study of H chains composed of 50 atoms 
and the 1D Hubbard model in many filling situations, sizes, 
and correlation regimes.

The solution is established by optimizing the energy(1-3) 
with respect to the ONs and to the NOs, separately. The con-
jugate gradient method is used to perform the optimization 
of the energy with respect to auxiliary variables that enforce 
automatically the N-representability bounds of the 1RDM. 
The self-consistent procedure proposed in [24] yields the NOs 
by an iterative diagonalization procedure, in which orbitals 
are not constrained to remain fixed along the orbital optim
ization process. All calculations have been carried out using 
the DoNOF code developed in our group.

First, we show the ability of PNOF7 to describe the 1D 
Hubbard model. The latter has the advantage of being 
extremely simple and is a useful tool for benchmarking [25]. 
The 1D Hubbard Hamiltonian reads as

H = −t
∑

〈r,r′〉,σ

(a†r,σar′,σ + a†r′,σar,σ) + U
∑

r

nr,αnr,β� (4)

where 〈r, r′〉 indicates only near-neighbors hopping between 
the sites r and r′. t  >  0 is the hopping parameter analogous 
to the kinetic energy, and U is the electron–electron on-site 
interaction parameter. σ = α,β stands for the spin. a†

r,σ (ar,σ) 
is the creation (annihilation) operator, so nr,σ = a†r,σar,σ gives 
the number of electrons on site r with spin σ.

Let us restrict to the repulsive Hubbard model, hence U is 
always positive. U/t is used as a dimensionless measure for 
the relative contribution of both terms, therefore, at U/t → 0 
(metallic state) the mean-field theories work well due to the 
lack of two-electron interactions, whereas at U/t → +∞ 
(insulating state) strong correlations play the dominant role 
keeping electrons away from each other.

In figure  1, we report the PNOF7 energy differences 
with respect to the exact results for the 1D Hubbard model 
at half-filling. The number of sites varies from 14 to 122 in 
small and intermediate correlation regimes. For comparison, 
OO-AP1roG results [9] have been included. The data sets 
used in this figure can be found in the supplemental material3. 
Note that OO-AP1roG deteriorates for large systems (some 
errors fall out of figure  1), as well as for large U/t values. 
Conversely, PNOF7 is able to hold its accuracy with respect 

3 See supplemental material at (stacks.iop.org/JPhysCM/32/17LT01/mmedia) 
for the data sets.
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to exact results when the system size increases. For a given 
system, PNOF7 converges to the exact results in the strong 
correlation limit.

Since the particle-hole symmetry is explicitly introduced 
into the functional (1-3), PNOF7 is expected to be appropri-
ate for the half-filling case. Now we test the performance of 
PNOF7 away from half-filling where the particle-hole symme-
try is broken, so that inhomogeneous phases can appear [25]. 
The energy per site for the 1D Hubbard model is shown in 
Table 1. We focus on the strong correlation limit, i.e. large U/t 
values, which is particularly problematic for geminal-based 
theories like OO-AP1roG [9]. For reference, we use the vari-
ational 2RDM (v2RDM) with P, Q and G N-representability 
constraints values and quasi-exact results of the variational 
Matrix Product State (vMPS) algorithm taken from [26].

Table 1 shows that PNOF7 remains close to vMPS for 
N  =  16 in 20 sites chain, whereas it lacks correlation energy 
for N  =  12. In the case of 50 sites, PNOF7 produces accu-
rate energies and it approaches the exact result. Consequently, 
PNOF7 turns out to be particularly accurate from a certain 
amount of electrons, from which the strong correlation limit 
is described successfully. It is worth noting that PNOF7 is 
more accurate than v2RDM when only two-particle condi-
tions are applied. It has recently been emphasized [27, 28] that 
three-particle conditions are needed in v2RDM to accurately 
describe the strong correlation limit of the Hubbard model.

In a minimal basis set, there is only one band in 1D sys-
tems, therefore, as long as long-range interactions are negli-
gible, a linear chain composed of H atoms resembles the 1D 
Hubbard model. Such a chain composed of 50 H atoms is a 

simple prototype of strong correlation, and a challenging test 
[2] for non-dynamic correlation.

In order to study the effect of long-range interactions, let 
us show the ability of PNOF7 to describe bond-breaking pro-
cesses. Figure 2 shows the energies obtained for symmetric 
stretching of linear H50 by using PNOF7, together with ref-
erence DMRG results and other well-established electronic 
structure methods, namely, restricted Hartree–Fock (RHF), 
second-order Möller–Plesset pertubation theory (MP2), 
CCSD, and CCSD(T). All calculations were carried out using 
the STO-6G minimal basis [29]. There is an outstanding 
agreement between PNOF7 and DMRG along the dissocia-
tion curve, specially at large bond distances (insulating phase) 
as well as at short H-H distances (metallic phase). At the equi-
librium distance, PNOF7 underestimates slightly the correla-
tion, however an inspection of spectroscopic constants (see 
Table 2) shows that PNOF7 agrees with DMRG better than 
standard methods such as RHF, MP2, or the Perdew–Burke–
Ernzerhof (PBE) density functional. These methods fail dra-
matically at the dissociation limit [8] since the occupancies 
become strongly fractional at intermediate and long H-H dis-
tances, a behavior that PNOF7 (see figure 3) and OO-AP1roG 
(see figure  4 in [8]) correctly reproduce. Non-integer occu-
pations also make CCSD and CCSD(T) not convergent [2], 
so the latter can be exclusively employed in the equilibrium 
region. Note that OO-AP1roG underestimates the equilibrium 
distance (Re) and dissociation energy (De), whereas PNOF7 
underestimates De and yields slightly large Re.

Figure 4 shows the energies obtained for the asymmetric 
dissociation of linear H50. It should be noted that the energy 
decreases monotonically from the reference state composed of 

Figure 1.  Energy differences (a.u.) with respect to the exact results 
for the 1D Hubbard model at half-filling with periodic boundary 
conditions. OO-AP1roG and exact data from [8, 9]. For U/t = 20, 
only the result is reported for N  =  14.

Table 1.  Energy per site (a.u.) for 1D Hubbard model away from 
half-filling at U/t → 100. Reference vMPS, v2RDM, and exact 
data from [26]. Nsites and N stands for the number of sites and 
electrons, respectively.

Nsites N PNOF7 vMPS v2RDM Exacta

20 12 −0.6025 −1.0312 −1.2177 −1.0008
16 −0.3820 −0.4951 −0.7860 −0.4639

50 20 −0.9081 — −1.2191 −1.0008
40 −0.4444 — −0.7862 −0.4671

a Exact results correspond to U/t → ∞.
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Figure 2.  Symmetric dissociation of linear H50 using the STO-6G 
basis set. RHF, MP2, CCSD, CCSD(T), and DMRG data from [2].

Table 2.  Equilibrium distances (Re) and dissociation energies (De) 
for the symmetric dissociation of linear H50 using the STO-6G basis 
set. RHF, MP2, PBE, OO-AP1roG, and DMRG data from [8].

RHF MP2 PBE
OO- 
AP1roG PNOF7 DMRG

Re

(
Å
)

0.940 0.955 0.971 0.966 0.976 0.970

De (eV) 199.0 144.1 146.6 82.2 86.9 89.7
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equidistant H atoms to the set of independent H2 molecules. In 
the asymmetric stretching, we alternate the bond-stretching, 
so that half of the bonds remain fixed, while the other half is 
stretched. In the dissociation limit, we have 25 near-independ-
ent H2 molecules. Similar to symmetric dissociation, PNOF7 
agrees with DMRG over large bond distances, whereas there 
are slight differences at shorter bonds.

The results obtained for H50 chains prove that numerical 
accuracy of PNOF7 is comparable to that of the DMRG in 
many different correlation regimes. This study includes the 
PNOF7 in the list of highly correlated methods to study any 
system related to linear H chains [30].

With the present work, a step forward has been taken in the 
development of efficient methods for strong correlation. With 
a mean-field scaling, the PNOF7 approximation compares 

with state-of-the-art methods for describing strongly corre-
lated electrons, e.g. DRMG, quantum Monte Carlo or com-
plete active space configuration interaction methods, and 
overcomes the problems shown by similar approaches in the 
strong correlation limit. The present letter will have a signifi-
cant impact on the development of new materials in which 
large unit cells are required.
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