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Abstract
The social networks as a complex set of networks fully reflect internal relations of individual
interactions between them. Individual as an integral part of networks can showdifferent functions
under different levels. In the vastmajority of current research realmof spatial evolutionary game,
individuals who are often treated as identical peers interact with the local neighbours on a single,
isolated same network, even the independent networks extended the content of spatial reciprocity.
However, the individual diversity, including gender, wealth and social status and so on, usually is
presentedwithin the population. Individual heterogeneity impacts on the evolution of cooperation
amongst selfish individuals.With thismotivation, herewe consider that two forms including
Prisoner’s Dilemma (PD) and Snowdrift Game (SG) take place on interdependent weighted networks
via themixed-coupling inwhich individuals participate in different networks of interactions,
cooperative behaviour can bemaintained. Remarkably, the numerical analysis shows that, as the
network interdependence considering individual diversity increases, cooperation thrives on one
network joining in PD, the other engaging in SGmay be plagued by defectors.Meanwhile, there exists
an optimal region ofmixed-coupling between networks to persist in cooperation of one network.
Furthermore, individual diversitymay be a link between non-trivial systems across the network
connection, thus probing in how to schedule heterogeneous competitive tasks and services in complex
manufacturing systems.

1. Introduction

Cooperation is a key force in the process of biological evolution, from single-celled organisms tomore complex
multicellular life [1, 2]. But knowing that the elucidation of the emergence and sustentation of cooperative
behaviour between selfish or unrelated individuals runs against Darwin’s theory of evolution becomes amajor
problem in system science [3]. Evolutionary game theory [4, 5] provides a unifyingmathematical framework to
reachwin–win in practical problems [6, 7], for example, the social welfare, water resource allocation, service
composition and so on. Such Prisoner’sDilemma (PD) and Snowdrift Game (SG) asmetaphors or paradigm for
studying the emergence of cooperation between selfish individuals remain influential to this day. The PD states
the fact that cooperating individuals are prone to exploitation and natural selection can favour cheaters. Thus,
defection is the evolutionarily stable strategy, even though every individual would be better off if each chooses to
collaborate. So the social dilemma is created. Then, the SG, as a kind of beneficial supplement to discuss
cooperative behaviour, has a reverse order of payoffs of the PD, inwhich the best strategy to adopt depends on
what the co-player is doing.Whether or not individuals adopt cooperation is await-and-see attitude lack of
subjective initiative. Similarly, it represents a social dilemma. To investigate this issue, several novel approaches,
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besides studies addressing known rules [8], have been proposed to explain the appearance and survival of
cooperation above so-called social dilemma, such as diversity [9–12], social influence [13–15], reputation
[16–19], conformity [20],co-evolution [21–24], punishment [25, 26], reward [27, 28], rubust [29], spatial
structure [30], to name but a few. Accordingly, spatial structure, referred to as network reciprocity, is known to
have an impact on the evolution of cooperation [31–34].

With the advent of the era of big data, the complex network has been studied intensively in network science
[35, 36]. The robustness of interacting networks reveals that seemingly irrelevant changes in one network can
have catastrophic and verymuch unexpected consequence in another network [37–40]. Themultilayer
networks [41–44] helps us understand these phenomena to explore the impact of interdependency on the
cooperation. Although evolutionary game on interdependent networks has recently received substantial
scholarly attention [45, 46], researchmainly focuses on the study of evolutionary dynamics on networks
[47–52], interdependent structured populations [53, 54] and game on graph. There are two types of connection
mode on networks. Themain differences between themdepend onwhether or not the connection is a physical
one. Regarding no physical connection, there are two types, one is utility functions to connect and disconnect
between networks [14, 24, 28, 55–63], and the other relies on the coupling of interaction and learning graphs
[64]. However, research still focuses on the limited case of a single-mode connection interacting network.
Modern systems are coupled together, and therefore should bemodelled asmixed-mode connection
interdependent networks. To the best of our knowledge, previousworks have implemented the same game
(typically PD) played on both networks. Different network played different games however can represent
distinct environments, characterised by their game rules, which can interact or be coupled. Consider the
example of two enterprises and the joint network of business contacts between their employees. The
productivity growth in each enterprisemay be different, depending on its internalmanagement. Nevertheless,
employees fromone enterprisemay interact with employees from the other enterprise, because they know each
other personally or for instancewhen establishing a business transaction. By connecting with an acquaintance
from the other enterprise, each employee can acquire new efficient strategies, which can afterwards be imitated
by their contact inside each enterprise. Another natural example is the interaction between transportation of
different customer requirements.Moreover, it is commonpractice to use the identical player to interact with
every other on interdependent networks. Individual heterogeneity has great influence on individual interaction
aswell as individual decision-making process. Furthermore, how to represent this kind of difference among
individuals is also an interesting question [11, 14].

In this paper, here we consider that evolutionary dynamics of Prisoner’s Dilemma (PD) and Snowdrift Game
(SG) takes place on two-layered lattices via themixed coupling (i.e. utility and probability) inwhich each
individual endowed as a specificweight take part in different lattices of interactions simultaneously.Meanwhile,
strategy imitation is possible between players residing on different networks. The players can adopt two types of
distinct strategy imitation characterising the individual behaviour heterogeneity and diversity. Remarkably, the
numerical analysis shows that, as the network interdependence considering individual diversity increases,
cooperation thrives on one network playing PD, the other engaging in SGmay be plagued by defectors. The
results indicate that there exists an optimal region ofmixed coupling between networks for the growth rates of
cooperation to be promoted on one network.

This paper is organised as follows. Section 2 describes different evolutionary gamemodels considering
interdependency betweenweighted networks. Section 3 presents simulation results. Finally, section 4 concludes
the paper and discuss the application ofNetwork Physiology.

2.Model

In the classic two-person game, each player can choose either cooperation (C) or defection (D) strategy,
respectively. Allowus to describe below two different evolutionary games, that is the PD and the SG. For PD,
each player facing a cooperator yields the rewardR=1 or the temptationT=1+rwhen playing as a
cooperator or a defector, respectively. On the contrary, if a playermeets a defector, it will not receive any payoff
(P=S=0) regardless of its strategy.Whereby 1<1+r<2 ensures a proper payoff ranking [65]. Here is the
weak version of the PDwhich can capture all relevant aspects of the social dilemma [31].While in SG, the game
follows the same parametrisation except for the situation inwhich a cooperator when interacting a defector
(S=1−r). The payoffmatrix of the PD is expressed as follows
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Meanwhile the payoffmatrix for the SG is obtained as follows

-
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The PDonnetworkA and the SG on another network B are staged on two square lattices with periodic
boundary conditions and von-Neummanneighbourhoods, each of size L×L, where each player is thus
connectedwith its k=4 nearest neighbours, as seen infigure 1 for schematic representation. Likewise, a
fraction p of players on networkA is randomly selected and permitted to generate an external linkwith a
corresponding player on network B.When studying a two-layer weighted network for two different games, we
assume that players obtain their accumulated payoff by interactingwith their four nearest neighbours on the
same network, in addition to that no player has a right to havemore than one external link between both
networks.

Initially, an equal percentage of strategies (cooperators or defectors) is randomly distributed across
networks.Px and ¢P x denote the accumulated payoff of player x playing the PD and accumulated payoff of its
partner x′ playing the SG, respectively. Here, player interacting with its neighbours can only occupy sites on the
same network.

To quantitatively consider the utility of each player on interdependent networks, wewill take the following
way
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whereα (0<α<1) is a utility coupling coefficient determining the strength of the external link, i.e. small its
value the higher the potential increase of utility coupling of two players thatmay be connected by the external
link. In particular,α=0 leads to the fact thatUx is dominated by Px′λ2 whileUx is determined byPxλ1 for
α=1.Without loss of generality [55], we here use afixed valueα=0.5.λ1 (0<λ1�1)denotes the individual
weight of focal player x, i.e.λ1 is set to be 1.0 for any player on the same network andλ1 is randomnumber for
the players on another network.λ2 has the same implication asλ1.

Then, player x selects one of its nearest neighbours y (including the corresponding neighbour on the other
network from the possible external link) at random, and imitates its strategy Sywith a probability based on the
Fermi function.Here the strategy transfer between different networks can be permitted.

 =
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whereK quantifies the amplitude of noise [65], which is usually related to the errors in decisionmaking or
imperfect information transfer over players. Based on the previous research [66], we fixK=0.1 throughout this

Figure 1. Schematic presentation of a two-layer weighted network characterised by the varying or non-uniform size of nodes in our
model. Depending on the scheme, the yellow player in the upper weighted networkA (red) connects with the corresponding player in
the bottomweighted network B (blue) via the utility function and the possible probabilistic external link (purple). Here, we only look
at the case of one-to-one correspondence between both networks. Thefinal results were averaged over 50 different independent
realisations.
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work. The scaling factorwy represents the individual behaviour diversity and depicts the impact of strategic
diffusion of player y in heterogeneous layers
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where y belonging to networkA (i.e. yÎA ) is regarded as an influential playerwho can convince its neighbours
to adopt its strategywith a higher payoff when compared to network B (i.e. yÎB ).Nx is the number of players in
that groupG=k+1 centred on the corresponding one x′ on network B, which adopts the same strategy as
player x on network A. k is four nearest neighbours of a player on network.β is themultiplicative factor
0<β<1.Different from the previous research [14, 24, 67], we define themultiplicative factorβ related to
strategy transfer process of individual heterogeneity as follow

b c= F , 6( )

whereχ denotes a uniformly distributed number in [0, 1], and satisfies simultaneously ò c c =F d 0
0

1
which

ensures that the average value of themultiplicative factor across both network is zero. F is the tunable factor,
reflecting a kind of heterogeneity attribute. Obviously, F=0will turn it back into a traditional form [67]. Based
on the existing research [59], wemerely consider F=1.0 in this work. Therefore, all players on two networks
will be divided into two types of players regarding the strategic diffusion, to reflect the difference in individual
behaviourwithin the real-world populations as far as possible.

The linear system size was varied from L=100–300 in order to avoid finite size effects.We check that the
presented results do not qualitatively change for reasonable variations. Also, simulations of themodel were
performed using the synchronous update, namely each player on different networks had a chance to interact in
their respective neighbourhood and then all sites are updated simultaneously through competitionwith a
randomly chosen neighbour once on average during aMonte Carlo step (MCS). If not stated before, the
equilibration is required up toMCS=2×104 steps and then sampled by another 2×103 steps. Thesefinal
results were averaged over 50 different independent realisations to further improve accuracy.

3. Results

Herewefirst explore how the network interdependence influences the evolution of cooperation on two
weighted networks. Figure 2 presents the frequency of cooperators on interdependent networks as a function of r
for different p. Defection is the best choice for the rational individual in the PDwhile the best action depends on
the opponent in SG: to defect if the other cooperates, but to cooperate if the other defects. As a result, evolution
under different payoffmatrix leads to an equilibrium frequency for cooperators on both networks. For small r,
interdependence promotes cooperation on networkA andB.However, for intermediate and high r, the fraction
of cooperators on network B ρbc shown infigure 2(b) is higher than that on networkA ρac presented in
figure 2(a), which presents a step-like behaviour. One reason is the sharing information lessens their propensity
to change for identical strategies (high payoff). Another reason is that the fraction of cooperators decreases with
increasing r due to spatial structure. Hence the effect and influence of interdependence aremutual and
dialectical on twoweighted networks. Figure 3 shows the frequency of cooperators on interdependent networks
as a function of p for different r. The fraction of cooperators in the PDpresents a trend of rapid increase for small
p, and then increases slowly for intermediate and high r, as shown infigure 3(a).While that in the SG shows an
opposite trend, which slightly decreases in the entire range of p, as shown infigure 3(b). Themain reason is also
believed that the difference in the interaction of each game leads to this. Thus, imbalance occurs in twoweighted
networks, one party enhances cooperationwhile the other party inhibits.

To study the specific changes of cooperation on eachweighted networkwith probability p, we define a set of
the growth rate of cooperationGc:

r=G pd d , 7c c ( )

where dρc and dp are the gradient of ρc and p, respectively. Hence,Gac andGbc denote the growth rate of
cooperation on networkA andB correspondingly. A valuable insight is thatGac increases above baseline over the
entire range of pwhileGbc decreases generally under baseline below, as shown infigure 4. This illustrates that
network interdependence can promote persistence of cooperation on networkA.However, network B is not so
lucky that it apparently tends to reduce the proportion of cooperators for the full range of p. But interestingly,
different r for the samemodel also have different impacts on the growth rate of cooperationwith increasing p.
One reason is that the sharing information inspires their aspiration to keep identical strategies for high payoff.
Another reason is that the spatial structure is not in favour of cooperative behaviour in SG (network B) for high r.
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An intriguing phenomenon is found that there exists an optimal region of pmaximising the growth rate of
cooperation on networkA, which has a nonlinear characteristic rather thanmonotony. There is with nothing to
break themonotony for the growth rate of cooperation on network B, compared to networkA.

Figure 2.The frequency of cooperators (ρc) on interdependent weighted networks for different values of p. Panel (a) shows the
frequency of cooperators (ρac) for the PDplayed in networkA as functions of r. Panel (b) shows the corresponding results (ρbc) for the
SG played in network B. Cooperation is dramatically enhanced on for both games, dominating over the entire ranges of r. The final
results were averaged over 50 different independent realisations.

Figure 3.The frequency of cooperators on interdependent weighted networks for different values of r. Results are shown as functions
of p for the PD (upper panel) and the SG (lower panel). The final results were averaged over 50 different independent realisations.
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Information sharing (strategy choice) promotes prosocial behaviour.Moreover, given that spatial structure
maintains cooperation in PDwhile it eliminates cooperation in SG, the optimal value of p that is a key point
enhances growth-rate of cooperation in networkA but suppresses it in network B. So the network
interdependencemanifested the unnecessarily strengthened benefit for cooperative behaviour. Figure 5
illustrates the frequency for different links at equilibrium for different values of r regardless of whether there is a
connection between themor not.C–C andD–D stand formutual cooperation strategy andmutual defection
strategy of two corresponding players between networks respectively, whileC–D represents the conflict strategy.
It is impressive that the frequency forC–C links at r=0.1 dramatically promotes ormaintains the evolution of
cooperationwhile that at r=0.6 eliminates or inhibits the cooperative behaviour. By contrast, the frequency for
D–D links is a bit similar to the state the frequency forC–C links exchanges position both r=0.1 and r=0.6.
The frequency forC–D links at r=0.3 dominates the entire range of p. However, it is useful to noting that the
frequency forC–D links andD–D links at r=0.3 can promote persistence of cooperation. The reason is that it is
best to defect regardless of the opponent’s decision in the PDwhile depending on the opponent is the optimal
action in the SG. Analysis of this phenomenon shows that the individual diversity between interdependent
weighted networks refers to coupling effect, which can significantly influence cooperative behaviour on network
A directly. Further study to find out the role of individual diversity betweenweighted networks quantitatively,
we apply the simplified correlation coefficient to elaborate the relationship betweenC–C strategies and
networks A

r r r r= - -RR , 8ac cc ac c ac
2 2( ) ( ) ( )

where ρcc denotes the fraction ofCC strategies of two corresponding individuals betweenweighted networks.
Hencewhen ρac satisfies the range of 0 to 1,Rac becomes greater than 0 for different r. So cooperative behaviour
across interdependent weighed networks is spread through the individual diversity, which can be of certain signs
to the evolution of cooperation.

Figure 6 shows the result of our simulations, namely, the frequency of cooperators on bothweighted
networks as a function of p, for several r. The condition that a cooperator on networkA (B) has an external link
with the corresponding individual on network B (A) for r is represented by re. Otherwise, the condition that a
cooperator on network A (B)has not an external linkwith the corresponding player on network B (A) for r is
denoted as ri. Note some similarity between figures 3(b) and 6(b), hardly any variationwith changing p. The
spatial structure promotes the evolution of cooperation for the PDwhile it eliminates cooperation if the cost-to-
benefit ratio of cooperation r is high for the SG.However, since sharing information about strategy choice

Figure 4.The growth rate of cooperators on eachweighted network for various values of r. This results obtained by averaging over
2000 independent runs. Parameters: dp=0.02. The final results were averaged over 50 different independent realisations.
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between individuals residing on both different networks reinforces the interactive relationship between the two
networks for cooperative behaviour, it brings the positive effect that whole levels of cooperation on network B
persist atfixed r. So, that is why the network Awhere PD is being played is affected by the probability p of
interconnection between both networks but network Bwhere SG is played is unaffected by varying p. Itmeans
that individual diversity is beneficial for cooperative behaviour between two networks to a certain extent.

Figure 7 shows characteristic snapshots in such a stationary state of given values, which provide an intuitive
understanding of the positive effects of individual diversity between interdependent weighted networks on the
evolution of cooperation.With the effect of individual diversity, the pattern tends of cooperators and defectors
are partly similar in the twoweighted networks for differentMCS. Cooperators in themiddle domain offigure 7

Figure 5.The frequency for different links at r=0.1, 0.3 and 0.6 from top to bottom. Panels (a)–(d)–(g) correspond to results
obtained between interdependent weighted networks.While panels (c)–(f)–(i) and panels (b)–(e)–(h) correspond to results obtained
on networkA andB, respectively. The final results were averaged over 50 different independent realisations.

Figure 6.The frequency of cooperators on bothweighted networks as a function of p, for various values r of re and riwith
corresponding individuals on another network. Results correspond to those presented infigure 3. The frequency of cooperators for
the networkAwhere PD is being played is shown in the upper panel, while the corresponding curves for the network Bwhere SG is
being played is presented in the bottompanel. For simplicity, we include only some of the r values studies infigure 3. Thefinal results
were averaged over 50 different independent realisations.
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(panels (b) and (c)) on network A can survive by forming large, compact clusters, thus contributing to reduce
exploitation by defectors. Only a small number of cooperators occur in the active region of defectors.
Meanwhile, the proportion of cooperators on networks B booms under favourable conditions that are built by
network interdependence adding individual diversity. Because of generating smallfilament-like clusters,
cooperators on network Ahave been struggling for survival in the siege of defectors over time. By contrast,
cooperation on networks B goes through thewhole networks with the network interdependence’s help. As a
consequence, the network interdependence adding individual diversity brings out significantly constraint, in
turn, promotes the persistence of cooperation.

4. Summary

Wehave explored the evolutionary dynamics of cooperation in the two different evolutionary games (the PD
Game and the SG) playedwithin an interdependent weighted network via themixed coupling (i.e. utility and
probability) inwhich individuals take part in different networks of interactions simultaneously, cooperative
behaviour ismaintained.We demonstrated that as the network interdependence considering individual
diversity increases, cooperation thrives on one network playing PD, the other engaging in SGmay be plagued by
defectors.Meanwhile, there exists an optimal region ofmixed coupling between networks for the growth rates of
cooperation to be promoted on one network. Information sharing (strategy choice) between two networks
promotes prosocial behaviour.Moreover, given that spatial structuremaintains cooperation in PDwhile it
eliminates cooperation in SG, the optimal value of p that is a key point can enhance growth-rate of cooperation
in networkA but suppress it in network B. Besides the application of task-to-service interactions in complex
manufacturing systems, our workmay also contribute to the development ofNetwork Physiology [68–71],
wheremultiple interconnected networks comprise human organisms, and these robust interacting networks
operate and generate different physiological states (e.g. light or deep sleep) characterised by the distinct network
topology and function, the sameway like the social network generating cooperation behaviours. To understand
howdiverse organ systems dynamically interact and collectively behave as a network is benefit for promoting
health and combating disease (e.g. headaches) as a result of organ interactions. Furthermore, this diversity is
intrinsically related to a non-trivial organisation of cooperation across the network layers, thus providing a new
way out for cooperation in advancedmanufacturing industry.
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