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Abstract
Two prominent classification schemes for Bosonic field states are (i) classical versus
nonclassical, and (ii) Gaussian versus non-Gaussian. These two paradigms are closely related yet
fundamentally different. In particular, classical states may be Gaussian or non-Gaussian, and
Gaussian states may be classical or nonclassical. Both non-Gaussianity and nonclassicality are
important resources for quantum information processing. It is desirable to study the interplay
between non-Gaussianity and nonclassicality, and seek effective methods of detecting them. In
this work, we introduce a quantifier for non-Gaussianity by exploiting and optimizing an
information-theoretic quantifier for nonclassicality, and exhibit its basic properties. A criterion
for simultaneously detecting non-Gaussianity and nonclassicality follows, and its applications
are illustrated through several examples. This unveils some intrinsic relations between non-
Gaussianity and nonclassicality.
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1. Introduction

Bosonic field states are basic ingredients for quantum infor-
mation processing with continuous variables, for which there
are two prominent classification schemes of the quantum
states  . The first is Gaussian versus non-Gaussian, which
reads as

( )È=   , 1c

where  is the set of Gaussian states (characterized by
Gaussian characteristic functions, or equivalently Gaussian
Wigner functions), while the complement c is the set of non-
Gaussian states [1–6]. The second is classical versus non-
classical, which reads

( )È=   , 2c

where  is the set of classical states (characterized as

probabilistic mixtures of optical coherent states, or equiva-
lently, states whose Glauber–Sudarhsan P functions are
genuine probability distributions), while the complement c is
the set of nonclassical states [7–9].

Combining the above two classification schemes, (1) and
(2), for quantum states, we have the following further clas-
sification

È È È=       ,c c c c

where Ç=  , etc. In particular,  c c constitutes the set
of quantum states which are simultaneously non-Gaussian
and nonclassical. All the above sets are nonempty. For
example, thermal states and coherent states belong to ,
squeezed coherent states belong to  ,c generic mixtures of
coherent states belong to  ,c and Fock states (excluding
vacuum) belong to   .c c Here we are interested in   ,c c i.e.
states which are both non-Gaussian and nonclassical.

Due to the increasing importance of non-Gaussian and
nonclassical states, it is desirable to have effective methods of
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detecting and quantifying non-Gaussianity and non-
classicality simultaneously. However, in the literature, these
two features are often addressed separately.

In the Gaussian versus non-Gaussian paradigm, Gaussian
states and associated Gaussian operations are recognized as
playing increasingly important roles in both theoretical and
experimental investigations of quantum information in the
past decade [2–6], and non-Gaussian states are identified as
necessary resources for a variety of quantum protocols which
display advantage over the classical counterparts [10–15].
Concerning the issue of detecting and quantifying non-
Gaussianity, various measures for non-Gaussianity have been
introduced in the literature. For example, distance-like mea-
sures based on Hilbert–Schmidt distance, relative entropy,
and Bures distance are introduced in [16–20]. A measure for
non-Gaussianity based on Husimi distributions is proposed in
[21]. Resource-theoretic frameworks are proposed in [22–24].
Kurtosis is employed to quantifying non-Gaussianity in [25].

In the classical versus nonclassical paradigm, non-
classical states are studied extensively and intensively in the
past half century. A variety of quantifiers for nonclassicality
have been developed ever since Mandel characterized non-
classicality as deviation from Poissonion distributions for
photon numbers [26]. Now there are distance-based measures
[27–30], nonclassical depth [31, 32], quadrature distributions
[33, 34], negativity [35, 36], entanglement potential [37],
information-theoretic quantifiers [38, 39], etc. All these var-
ious approaches capture different aspects of nonclassicality,
and may be useful in particular tasks.

Given the importance of non-Gaussianity and non-
classicality in achieving quantum advantage, the following
question arises naturally: How to detect non-Gaussianity and
nonclassicality? In this work, by exploiting an information-
theoretic quantifier for nonclassicality, we introduce a quan-
tifier for non-Gaussianity which can be used to detect non-
Gaussianity and nonclassicality simultaneously for some
important states, and further investigate its applications. The
remainder of the paper is structured as follows. In section 2,
we present a brief review of nonclassicality of Bosonic field
states and a quantifier for nonclassicality recently introduced
in [39]. In section 3, we introduce a quantifier for non-
Gaussianity and investigate its fundamental properties and
implications. We evaluate the quantity for some popular
states, and discuss its usage in detecting both non-Gaussianity
and nonclassicality. We compare our quantifier for non-
Gaussianity with others in the literature and indicate its fea-
tures and convenience in section 4. Finally, a summary and
discussion is presented in section 5.

2. Nonclassicality

In quantum optics whose underlying structure is Bosonic
fields, classicality is usually phrased in terms of the Glauber–
Sudarshan P functions [7, 8]: A state whose P function is a
genuine probability distribution is termed classical, otherwise
it is nonclassical. More precisely, consider a single-mode
Bosonic field described by the canonical commutation

relation

[ ]† =a a 1,

for the annihilation operator a and creation operator a†.
Coherent states ∣añ, defined as the eigenstates of the annihi-
lation operator, ∣ ∣a a a añ = ñ Î a , , are usually regarded as
the most classical pure states. Any probabilistic mixture of
coherent states is a classical state, while all other states are
nonclassical. Basic examples of classical states are coherent
states ∣añ and thermal states

( ) ∣ ∣ ( )åt l l l= - ñá <l
=

¥

n n1 , 0 1 3
n

n

0

with average photon number ¯ ( )†t l l= = -ln a atr 1 ,
while eminent examples of nonclassical states include Fock
states ∣ ñn (excluding the vacuum state ∣ ñ0 ) and squeezed
coherent states ∣ ∣ ∣a zñ >zS , 0, among others. Here

†=z
z z-S e a a2 22 2* are the squeezing operators with squeezing

parameters z = Îf re .i A pure state is classical if and only
if it is a coherent state. All other pure states are nonclassical.

Based on the above classical-nonclassical dichotomy,
various quantifiers for nonclassicality are introduced [26–39].
In particular, an information-theoretic quantifier for non-
classicality of single-mode Bosonic field is defined as [39]

( ) [ ][ ] ( )†r r r=N a a
1

2
tr , , , 4

where tr denotes operator trace and [ ] = -X Y XY YX,
denotes operator commutator. More explicitly,

( ) † †r r r r= + -N a a a a
1

2
tr tr .

The motivation of the above quantifier for nonclassicality
comes from the celebrated Wigner–Yanase skew information

( ) [ ]r r= -I H H,
1

2
tr , ,2

introduced as earlier as 1963 by Wigner and Yanase in a
seminal study of information content of quantum states [40].
Here H is an observable (Hermitian operator). Although the
skew information I(ρ, H) is only defined for quantum states
with respect to Hermitian operator H, if we rewrite it as

( ) [ ] [ ][ ]†r r r r= - =I H H H H,
1

2
tr ,

1

2
tr , , ,2

and replace H by any operator (not necessarily Hermitian) X,
then we have

( ) [ ][ ]†r r r=I X X X,
1

2
tr , , ,

which is still a well defined nonnegative quantity. In part-
icular, if we take X to be the annihilation operator a, then we
are led to equation (4). Consequently, the nonclassicality
quantity N(ρ) is actually a natural extension of the Wigner–
Yanase skew information. Due to the remarkable properties of
the Wigner–Yanase skew information and its wide applica-
tions in quantum information [41–50], it is reasonable to
expect that N(ρ) will be useful in capturing nonclassicality of
quantum states [39]. Remarkably, N(ρ) has the following
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three equivalent expressions [39]

( ) [ ][ ]

( ( ) ( ))

( )

†

ò

r r r

r r

p
r q

=

= +

=
p

q

N a a

I Q I P

I H

1

2
tr , ,

1

2
, ,

1

2
, d ,

0

2

where ( )†= +Q a a 2 and ( ) ( )†= -P a a 2 i are the
canonical conjugate quadratures, while

( )†= +q
q q-H a ae e 2i i are the homodyne rotated quad-

ratures. The above coincidence indicates some unique and
versatile feature of N(·). We will employ this quantity to study
non-Gaussianity.

3. Non-Gaussianity

Recall that any Gaussian state of single-mode Bosonic fields
can be expressed as a displaced squeezed thermal state [1]

( )† †t= a z l z ag D S S D , 5

where
†=a

a a-D e a a* are the Weyl displacement operators and
†=z

z z-S e a a2 22 2* are the squeezing operators, a z Î , , and
τλ are thermal states as defined by equation (3). Here we
address the issue of quantifying non-Gaussianity by exploit-
ing nonclassicality, and thus establish some links between
these two different notions.

To motivate our investigation, first note that any coherent
state ∣añ is Gaussian with minimal nonclassicality [39]

(∣ )añ =N 1 2

among pure states. Moreover, coherent states are the only
pure states that are classical. In the meantime, although any
squeezed coherent state

∣ ∣a añ = ñ Î S z,z z

is Gaussian, yet its nonclassicality is [39]

(∣ ) ( ∣ ∣)a ñ = > ¹N z z
1

2
cosh 2

1

2
for 0,z

which shows that all squeezed coherent states are nonclassical
[39]. Thus we cannot use nonclassicality directly to quantify
non-Gaussianity since squeezed coherent states are also
Gaussian. However, if we take into account the squeezing
(which does not alter Gaussianity and non-Gaussianity), and
consider minimization over squeezing, then we obtain

( ∣ )a ñ =
z

zN Smin
1

2
,z

which indeed indicates the minimal value of non-classicality
among pure states [39]. Accordingly, in terms of N(·), we
define a quantifier for non-Gaussianity of quantum state ρ as

( ) ( ) ( )†r r= -
z

z zN N S Smin
1

2
. 6g

Recall that
†=z

z z-S e a a2 22 2* are the squeezing operators

with squeezing parameters z = fre .i Equivalently,

( ) ( )† †r r r r= -
z

z z z zN a a a amin tr tr ,g

where † †= = -z z z
fa S aS a r a rcosh e sinh ,i z = fre .i

We make a further comment on the motivation of the
definition of Ng(ρ). Recall that all Gaussian states can be
expressed as displaced squeezed thermal states. While dis-
placements should not have any effect on nonclassicality, the
squeezing is crucial, and thus in order to detect non-Gaus-
sianity via nonclassicality, we strip off this kind of squeezing
nonclassicality (which is simultaneously of Gaussian nature)
from the states by taking minimum over all squeezing, which
leads to equation (6).

Although it is clear from equation (6) that

( ) ( )r r -N N
1

2
,g

there is no simple monotonic comparison between the
ordering given by Ng(·) and that by N(·) in the sense that
N(ρ1)<N(ρ2) implies neither Ng(ρ1)<Ng(ρ2) nor
Ng(ρ1)>Ng(ρ2) in general. For example, consider

∣ ∣ ∣ ∣ †r r= ñá = ñáz zS S0 0 , 0 0 ,1 2 then

( ) ( ) ( ∣ ∣)r r z= < =N N1 2 cosh 2 ,1 2
1

2
but

Ng(ρ1)=0=Ng(ρ2). On the other hand, for the Fock state
∣ ∣ñá1 1 , although (∣ ∣) ( ) ( ∣ ∣)r zñá = < =N N1 1 3 2 cosh 22

1

2
for sufficiently large ∣ ∣z , we
have (∣ ∣) ( )rñá = > =N N1 1 1 0 .g g 2

( )rNg has the following desirable properties which render
it useful in detecting non-Gaussianity.

(1) For any Gaussian state, as defined by equation (5), we
have

( ) ( )l
l

= -
+

N g
1

0. 7g

The equality is saturated if and only if ¯ †t= =ln a atr 0, that
is, ∣ ∣t = ñál 0 0 with λ= 0, for which ρ is a Gaussian pure
state (equivalently, squeezed coherent state). Thus, Gaussian
mixed states possess negative non-Gaussianity in terms of
Ng(·).

(2) Ng(ρ)�0 for any Gaussian state or any classical
state. Consequently, if Ng(ρ)>0, then the state ρ must be
simultaneously non-Gaussian and nonclassical. This supplies
a sufficient (although not necessary) criterion for detecting
both non-Gaussianity and nonclassicality.

(3) ( )rNg is invariant under unitary transformations
implementing symplectic transformations in phase space of
Bosonic fields. In particular, ( ) ( )†r r=N U U Ng g for U=Dα,
Sζ or

† a z qÎ Îq  e , , , .a ai

(4) Ng(ρ) is neither convex nor concave with respect to ρ.
Now we outline proofs of the above statements.
Item (1) follows from direct evaluation.
Item (2) follows from item (1) and the nonclassicality

criterion in [39], since Ng(ρ )>0 implies that N(ρ )>1/2.
For item (3), if = -U e Hi is a unitary transformation

corresponding to a symplectic transformation in phase space
with Hermitian H at most bilinear in the field operators, then
U can be expressed as composition of squeezing operators

3
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and displacement operators. The invariance of N(·) under
displacements and further optimization in equation (6) leads
to item (3).

Item (4) will be demonstrated in the following examples.
We now evaluate Ng(ρ) for some important quantum

states in order to illustrate its basic features and intuitive
meaning.

(1) Fock states
For the Fock states ∣ ∣ñán n , noting the relation

† †

† † †

= -

= -
z z

f

z z
f-

S aS a r a r

S a S a r a r

cosh e sinh ,

cosh e sinh ,

i

i

for z = fre ,i we have

⎜ ⎟⎛
⎝

⎞
⎠( ∣ ∣ ) ( )†ñá = +z zN S n n S n r

1

2
cosh 2 .

It follows that

(∣ ∣) ( ∣ ∣ )†ñá = ñá =
z

z zN n n N S n n S nmin ,g

which is a neat expression indicating non-Gaussianity, as well
as nonclassicality, of the Fock states for ¹n 0.

(2) Mixtures of vacuum and Fock states
For the mixtures

( )∣ ∣ ∣ ∣ ( )r = - ñá + ñá < t t n n t1 0 0 , 0 1 8t

we have

⎧⎨⎩( ) ( ) ( )r = - - =


N t t t n

nt n

1 , 1

2
. 9tg

Consequently, for ( )r= >n N1, 0tg when t>1/2, and for
n�2, we always have Ng(ρt)>0, which implies non-
Gaussianity and nonclassicality in these cases.

By the way, we show that (·)Ng is not concave in general.
From the above results we have

(( )∣ ∣ ∣ ∣) ( )- ñá + ñá = - -N t t t t t1 0 0 1 1 1 ,g

and

( ) (∣ ∣) (∣ ∣)- ñá + ñá =t N tN t1 0 0 1 1 ,g g

it follows that

(( )∣ ∣ ∣ ∣)
( ) (∣ ∣) (∣ ∣)
- ñá + ñá

< - ñá + ñá

N t t

t N tN

1 0 0 1 1

1 0 0 1 1 ,
g

g g

and consequently, Ng(·) cannot be concave. Another simple
counterexample to concavity arises from considering the
thermal state defined by equation (3). By equation (7) and

(∣ ∣)ñá =N n n n,g we have

( ) ( ) (∣ ∣)åt
l
l

l l= -
+

< < - ñál
=

¥

N N n n
1

0 1 ,
n

n
g

0
g

which shows that Ng(·) cannot be concave. We will show that
Ng(·) cannot be convex in the next example.

The mixture ρt given by equation (8) provides a nice and
simple example to illustrate the effect of mixing with vacuum
on non-Gaussianity. In this context, we have

( ) (∣ ∣)r = = ñá N nt tN n n n, 2,tg g which indicates decreasing
of non-Gaussianity since 0<t�1.

(3) ON states
The ON states

∣ ∣ ∣ ñ = - ñ + ñ < < =+n t t n t n0 1 0 , 0 1, 1, 2,

and

∣ ∣ ∣ ñ = - ñ - ñ < < =-n t t n t n0 1 0 , 0 1, 1, 2,

are superpositions of the vacuum and the Fock states, and can
serve as resource units for universal quantum computation
[51]. By direct evaluation, we have

⎧
⎨
⎪⎪

⎩
⎪⎪

(∣ )
( )

( ) ( )



ñ =

+ - =

+ - =

=

N n

t n

t n

nt n

0

1 8 1 , 1

1 24 1 , 2

, 3, 4,

10g

1

2
3

1

2
2

Consequently, (∣ )ñ >N n0 0,g which implies non-Gaussianity
and nonclassicality of the ON states. Moreover, we see that as
n increases, non-Gaussianity increases.

In this context, we show that Ng(·) cannot be convex.
Take ∣ ∣r = ñá+ +02 02 ,1 ∣ ∣r = ñá- -02 022 with

∣ ∣ ∣
∣ ∣ ∣

ñ = - ñ + ñ

ñ= - ñ - ñ
+

-

t t

t t

02 1 0 2 ,

02 1 0 2 ,

then

( )∣ ∣ ∣ ∣r r+ = - ñá + ñát t
1

2

1

2
1 0 0 2 2 ,1 2

and by equation (9),

⎜ ⎟⎛
⎝

⎞
⎠ (( )∣ ∣ ∣ ∣)r r+ = - ñá + ñá =N N t t t

1

2

1

2
1 0 0 2 2 2 .g 1 2 g

On the other hand, by equation (10),

( ) ( ) ( )r r= = + -N N t
1

2
1 24 1 .g 1 g 2

2

Since

( )> + - < <t t t2
1

2
1 24 1 , 0 1,2

we conclude that

⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )r r r r+ > +N N N

1

2

1

2

1

2

1

2
,g 1 2 g 1 g 2

which shows that Ng(·) cannot be convex.
(4) Cat states
For the even cat states

∣
( )

(∣ ∣ )
∣ ∣

a a a a añ =
+

ñ + - ñ Î ¹
a+ -

1

2 2e
, , 0

2 1 22

we have

⎜ ⎟⎛
⎝

⎞
⎠(∣ ∣) ∣ ∣ ∣ ∣ ∣ ∣a a a a añá = + - - >+ +N

1

2
tanh

1

2
0,g

2 2
2

4
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and for the odd cat states

∣
( )

(∣ ∣ )
∣ ∣

a a a a añ =
-

ñ - - ñ Î ¹
a- -

1

2 2e
, , 0

2 1 22

we have

⎜ ⎟⎛
⎝

⎞
⎠(∣ ∣) ∣ ∣ ∣ ∣ ∣ ∣a a a a añá = + - - >- -N

1

2
coth

1

2
0.g

2 2
2

4

Consequently, both even and odd cat states are always non-
Gaussian and nonclassical, and moreover,

(∣ ∣) (∣ ∣)a a a añá > ñá- - + +N N ,g g

which indicates that the odd cat states are more non-Gaussian
than the corresponding even cat states. This is in accordance
with the fact that ∣a ñ- tends to the single-photon number state
∣ ñ1 , while ∣a ñ+ tends to the vacuum state ∣ ñ0 , when ∣ ∣a tends
to zero.

(5) Photon-added coherent states
For the photon-added coherent state

∣
∣ ∣

∣†y
a

añ =
+

ña
1

1
,pac

2

we have

(∣ )
( ∣ ∣ )

y
a

ñ = +
+

- >N
1

2
1

8

1

1

2
0,g pac 2 3

which implies that such states are always non-Gaussian and
nonclassical, and moreover, the degree of non-Gaussianity is
a decreasing function of ∣ ∣a .

(6) Photon-added thermal states
For the photon-added thermal state

( ) ∣ ∣
†

† år
t
t

l
l

l l= =
-

ñá <l

l =

¥

a a

a a
n n n

tr

1
, 0 1,

n

n
pth

2

1

we have

( ) ( ) ( )år
l
l

l
l

l=
+
-

-
-

-
=

¥

N n n
1

1

1
1 .

n

n
g pth

2

3 2
1

3 2 1 2

Numerical analysis shows that Ng(ρpth)>0 for
l l< » 0.223,c which implies non-Gaussianity as well as
nonclassicality in this situation.

(7) Fock-diagonal states
For the Fock-diagonal states

∣ ∣ ( )år = ñá
=

¥

p n n , 11
n

nF
0

we have

( ) ( ) ( ) ( )år = - + -
=

¥

+N p p n
1

2
1

1

2
. 12

n
n ng F

0
1

2

In particular, for the truncated thermal states

∣ ∣ ( ) åt
l

l
l=

-
ñá

=

¥

n n
1

, 13
n

n
0

1

which are obtained from the thermal states by removing the
vacuum component ∣ ∣ñá0 0 , by putting

( )l l= = - ¹-p p n0, 1 , 0n
n

0
1

into equation (12), we have

( )t
l

l=
+

-N
1

1
.g 0

This indicates non-Gaussianity and nonclassicality of t0

when ( )l < -3 5 2.

4. Comparison

In this section, we make a comparative study of our quantifier
for non-Gaussianity with several existing ones, and illustrate
their respective characteristics. First, we recall four important
measures for non-Gaussianity in the literature.

(i) Hilbert–Schmidt distance
In terms of the Hilbert–Schmidt distance between a state

ρ and its reference Gaussian state ρg, which is defined as the
unique Gaussian state with the same mean and covariance
matrix as ρ, the following measure for non-Gaussianity

( )
( )

r
r r

r
=

-
N

1

2

tr

tr
H

g
2

2

was introduced by Genoni et al [16–18]. For the Fock-diag-
onal states defined by equation (11), it is known that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )
r = +

å -

å
=

¥

=
¥N

b b p

p

1

2
1

2n n n n

n n

H F
0

2

0
2

with

⎛
⎝⎜

⎞
⎠⎟¯

¯
¯

¯ † år=
+ +

= =
=

¥

b
n

n

n
n a a np

1

1 1
, tr .n

n

n
nF

0

(ii) Relative entropy
In terms of the relative entropy ( ∣ )r rS g between a state ρ

and its associated reference Gaussian state ρg, the following
measure of non-Gaussianity

( ) ( ∣ ) ( ) ( )r r r r r= = -N S S S ,R g g

was studied in [16–18]. Here ( )r r r= -S tr ln is the von
Neumann entropy. It turns out that ( ) ( ∣ )r r t= tN SinfR

where the inf is over all Gaussian states τ [19]. In particular,

( ) ( ¯ ) ( ¯ ) ¯ ¯ år = + + - +
=

¥

N n n n n p p1 ln 1 ln ln
n

n nR F
0

for the Fock-diagonal states defined by equation (11).
Here ¯ †r= = å =

¥n a a nptr .n nF 0
(iii) Wehrl entropy
By virtue of the Wehrl entropy

( ) ∣ ∣ ∣ ∣òr
p

a r a a r a a= - á ñ á ñS
1

ln dW
2

of the Husimi function ∣ ∣a r aá ñ with ∣añ being the coherent
states, Ivan et al proposed the following measure for non-
Gaussianity [21]

( ) ( ) ( )r r r= -N S S ,W W g W

where ρg is the associated reference Gaussian state of ρ. It can
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be evaluated that

( ) ( ¯ ) ¯ ( ) ¯ ( )òr
p

a a a= + + -N n p p1 ln 1
1

ln dW F
2

with ( )y g= å -=
-n k ,k

n
1

1 γ≈0.577 216 is the Euler
constant, and

( ) ∣ ∣
!

¯ ∣ ∣åa
a

= a

=

¥
-p

n
pe .

n

n

n
0

2
2

(iv) Fidelity
In terms of the fidelity ( ) (( ) )r r rr r=F , trg g

1 2

between ρ and its associated reference Gaussian state ρg, the
following measure for non-Gaussianity

( ) ( )r r r= -N F1 ,F g

is proposed by Ghiu et al [20]. For the Fock-diagonal states, it
is known that

⎛
⎝⎜

⎞
⎠⎟( )

¯
¯

¯år = -
+ +=

¥

N
n

n

n
p1

1

1 1
.

n

n

nF F
0

Now by considering Fock states and truncated thermal
states defined by equation (13), we summarize a comparison
of the above measures with our Ng(·) in table 1, in which

( ) ¯ ( ) ( )∣ ∣ ∣ ∣åy g a
l

l
= - =

-
-a l a

=

- -n k p,
1

e e 1 .
k

n

1

1 2 2

For the Fock states ∣ ∣ñán n , all other measures yield rather
complicated expressions for non-Gaussianity, and the mea-
sure NW(·) based on the Wehrl entropy even involves har-
monic series and the unexpected Euler constant. In sharp
contrast, our quantifier yields a neat expression which cap-
tures the nature of Fock states succinctly and cannot be
simpler. For the truncated thermal states, our quantifier also
yield a relatively simple expression. We see certain simplicity
and intuitive meaning of Ng(·). Although Ng(·) is not a gen-
uine measure for non-Gaussianity, it captures non-Gaussian-
ity effectively for many nonclassical states, exhibits
considerably nice features, and complements other measures
for non-Gaussianity, as displayed in table 1.

5. Discussion

Due to the increasing importance of non-Gaussian states in
continuous variable quantum information, there is an urgent
need of detecting and quantifying non-Gaussianity. There are

several approaches to this issue pursued by many authors, and
we have added to this endeavor an information-theoretic
means of detecting non-Gaussianity. A remarkable feature of
our criterion is that it can detect non-Gaussianity and non-
classicality simultaneously for a wide class of states. The
method invokes optimization over squeezing of a quantifier
for nonclassicality, and thus establishes some intrinsic rela-
tions between nonclassicality and non-Gaussianity, both of
which are valuable resources in quantum information
processing.

It seems difficult to measure the quantifier directly due to
the square root involved in the Wigner–Yanase skew infor-
mation. However, by quantum tomography of the state, the
quantifier can be evaluated.

We emphasize that our quantifier only yields a sufficient
criterion for detecting non-Gaussianity and nonclassicality,
and it is desirable to seek genuine measure for non-Gaus-
sianity and nonclassicality, and investigate further the inter-
play between them.

Since mixtures of Gaussian states are in general not
Gaussian states, the set of Gaussian states is not convex. We
may further classify non-Gaussian states according to whether
it can be expressed as a probabilistic mixture of Gaussian
states or not, that is, non-Gaussian states can be further
divided into classical non-Gaussian and quantum non-Gaus-
sian (or genuine non-Gaussian): A state is called classical
non-Gaussian if it is non-Gaussian and in the meantime can
be expressed as probabilistic mixtures of Gaussian states. If a
state cannot be expressed as any probabilistic mixture of
Gaussian states, then it is called quantum non-Gaussian. Thus
the set of all classical non-Gaussian states together with the
Gaussian states constitute a convex set, whose complement is
the set of quantum non-Gaussian states. There are relative few
studies on detecting and quantifying quantum non-Gaus-
sianity, with some significant advances [22–24, 52–60]. In
particular, a criterion for quantum non-Gaussianity based on
photon number probabilities is proposed in [52], and Wigner
functions are used to quantifying quantum non-Gaussianity in
[53]. Witnesses of quantum non-Gaussianity based on s-
parameterized quasi-probability functions in phase space are
addressed in [56], and demarginalization method is used to
detect quantum non-Gaussianity in [58]. It will be desirable to
further study relations between nonclassicality and quantum
non-Gaussianity from an information-theoretic perspective.

Table 1. Comparing quantifiers for non-Gaussisanity.

∣ ∣ñán n ∣ ∣lå ñál
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=
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