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Abstract
Nonclassicality is quantified using a quasidistribution of phases for the Raman process under
both weak and strong pump conditions. In the former case, the solution is applicable to both
resonant and off-resonant Raman processes, while strong classical pump is assumed at
resonance. Under weak pump conditions (i.e. in a complete quantum treatment), the phase
difference of phases described by single nonclassical modes is required to be filtered to describe
a regular distribution function, which is not the case with strong pump. Compound Stokes-
phonon mode shows nonclassical features of phases in both weak and strong pumping, which
effect is similar to that for compound pump-phonon (Stokes–anti-Stokes) mode with weak
(strong) pump. While anti-Stokes-phonon mode is observed to be classical and coherence
conserving in strong pump case, pump-Stokes mode shows similar behavior in a special case in
quantum treatment.
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1. Introduction

Nonclassical states, having negative values of (multimode)
Glauber–Sudarshan aP j({ }) a a a a= ¼, ,j n1 2({ } { }) quasi-
distribution function [1, 2], are significant resource in multi-
faceted quantum information processing and technology, namely
quantum communication [3], computational supremacy [4],
metrology [5], machine learning [6], sensing [7], simulation [8],
game theory [9], etc. Independently, studies related to quantum
phase have also garnered attention over the past few decades
(see [10] for review). Recently, nonclassicality in the phase is
also studied by isolating the role of quantum phase from the
classical phase in optomechanical system [11]. Interestingly,
when having quasidistribution aP j({ }) of complex amplitudes
a a f= exp ij j j∣ ∣ ( ), integrating over the moduli of real

amplitudes, we can obtain a quasidistribution fQ j({ }) of phases
fj. In the classical region, it is regular, while in the quantum
region it may be singular. However, in [12], a procedure has
been suggested to show that one can obtain a regular distribution
also in the quantum region provided that some phase differences
of the phases are filtered.

In what follows, we study here the effect of nonclassicality
on values of phase differences allowed to describe the quasi-
distribution of phase difference in case of both resonant and off-
resonant Raman processes (see [13–15] for review). Specifically,
we illustrate this using the nonlinear optical process of Raman
scattering in finite-time approximation with weak pumping and
in parametric approximation with strong coherent classical
pumping. We mainly analyze conditions for the distribution of
phase differences, whereas forms of phase difference distribu-
tions are given in [12]. The main results there are that regular
distributions are defined on phase differences intervals lengths of
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which are shortened with increasing nonclassicality, which
means that their length is a quantifier of nonclassicality. The
quantifier based on quasidistribution of phase differences used
here is one of the many quantifiers and measures proposed and
used in the past ([12, 16–19] and references therein).

2. Quasidistribution of phases in Raman process

We will be considering two scenarios: weak and strong pumps.
In the first case, an approximate perturbation solution using a
complete quantum treatment is obtained which is applicable for
both resonant and off-resonant Raman processes [20, 21]. In
contrast, in the latter case of strong coherent classical pumping,
an exact analytic solution is possible [22]. In section 2.1, we
give general basic and necessary formulas from [12], whereas
all new conditions are derived in sections 2.2 and 2.3.

2.1. Basic formulas and relations

As the quasidistribution aP j({ }) can be described in terms of
normal ordered characteristic function bC j({ }), it allows us to
describe quasidistribution of phases fQ j({ }) directly in terms
of characteristic function as [12]
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where  means the principal value of the integral, and
b b b b= ¼, ,j n1 2{ } { } are parameters of the characteristic
function. Time evolution of the normal ordered characteristic
function in both weak and strong pump cases can be descri-
bed in the Gaussian form as [13]

åb

h b

b b

= -

-

+ + ñ

< =

 


C t B t

C t

D t D t

, exp

cos

2 cos cos 2

j
j k

j

j j j

j k jk jk jk jk

2

⎪

⎪

⎧
⎨
⎩

({ } ) [ ( ( )

∣ ( )∣ ) ∣ ∣
∣ ∣(∣ ( )∣ ∣ ¯ ( )∣ ¯ )]} ( )

in terms of quantum noise functions [13] defined as =Bj
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† with b b= j{ } { }, considered real here for sim-
plicity. Here, h = Cargj j( ), = Dargjk jk( ), and = jk¯

Darg jk( ¯ ). The set  is assumed ordered being
= L S V A, , ,{ } and = S V A, ,{ } for weak and strong

pump cases, respectively. Here, indices L, S, V, and A cor-
respond to four modes in the Raman scattering, namely laser
(pump), Stokes, vibration (phonon), and anti-Stokes modes,
respectively.

The single-mode nonclassicality is characterized by
= <s B C 1i i i∣ ∣ . This parameter h>s cosi i in turn also

determines the bound of the phase corresponding to non-
classical region [12]. Similarly, we lack a classical description
in two-mode nonclassical region if
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This parameter also determines the corresponding threshold
value of phase in the nonclassical region [12] as - <q1 jk

Ysin jk
2 , where Ψjk=òjk−fj−fk. The phases Ψjk and

f fY = + -jk jk j k
¯ ¯ fulfill

Y + Y +

´ - Y Y - - + >

D D D D

q D D

sin sin 2

1 cos cos 1 0.

3

jk jk jk jk jk jk

jk jk jk jk jk

2 2 2 2

2

∣ ∣ ∣ ¯ ∣ ¯ ∣ ∣∣ ¯ ∣

( ¯ ) ( )(∣ ∣ ∣ ¯ ∣)
( )

The corresponding phase distributions are given in [12] in a
canonical form in dependence on qjk.

The main result we demonstrate for Raman process here
is that the regular forms of the distributions are defined on
difference phase intervals, the length of which decreases with
increasing nonclassicality, i.e. with decreasing qjk<1, so that
these lengths are quantifiers of nonclassicality, out of these
phase intervals the distributions are singular. This quantifier
belongs to a class of nonclassicality quantifiers based on
negativity of a determinant related to obtaining a quasidis-
tribution by means of Fourier transformation.

2.2. Raman process with weak pump

Firstly, we begin with Raman process with weak pump con-
ditions. The perturbative analytic form of quantum noise terms
in the characteristic function (2) in this case is reported in
appendix A. We are interested in the off-resonant Raman pro-
cess [20] where the dynamics is dependent upon two frequency
detuning parameters, particularly Δω1=(ωS+ ωV−ωL) and
Δω2=(ωL+ωV−ωA) as detuning parameters in Stokes and
anti-Stokes generation processes, respectively. Here, ωL, ωS, ωA,
and ωV correspond to pump, Stokes, anti-Stokes, and phonon
mode frequencies, respectively.

We have considered two limiting cases, Δω1=Δω2=δ1
(related to radiation modes) and Δω1=−Δω2=δ2 (related to
vibrational mode), which we will refer to Case 1 and Case 2,
respectively. In Case 1, the value of si parameter for pump and
phonon modes are
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Here, u( )R corresponds to the real part of u. Assuming cou-
pling constant real and in the limits of zero detuning (corresp-
onding to resonant Raman process), ηL1=−fS−fA+2ωLt
is solely determined by the phase of Stokes and anti-Stokes
modes and pump frequency. Similarly

h c f f
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which reduces to ηV1=fS−fA+2ωVt for real coupling
constants for resonant Raman process. Similarly, in Case 2, the
same witness turns out to be
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which are same but out of phase with ηL1 and ηV1 for real
coupling constants in resonant Raman process, respectively.

One can clearly verify that =d  s slim L L0 1 21
and

=d  s slim V V0 2 12
, which represents results for Raman process

at resonance (using d
d

lim 2 sin t
0

2
2i
i /L = 1i ). As at resonance,

the Cases 1 and 2, and small detuning fully determine the
approximation with the ratios of coupling constants and inten-
sities h < scos L L2 and h < scos V V1. Note that the obtained
parameters are independent of the initial phonon numbers. It is
also easy to check in case of spontaneous process that the
parameters cannot be defined for phonon mode. Further, it is
safe to assume in case of stimulated process that IA/IS=1 and
p≈1, and thus the sum of the phases of the Stokes and anti-
Stokes modes is described by a generalized quasiprobability
distribution. However, feasibility of describing the regular
phase distribution for the difference of the phases for resonant
Raman process depends on = +s I p I I sV L S A L( ) , which is
dominated by the first term due to strong pump intensity, and
thus it shows classical behavior. Variation of obtained bound of
phase difference for pump mode in Case 1 for h = - scosL L1

1
1 is

shown in figure 1. Both time evolution and detuning parameter
enforce filtering of phase difference to allow a regular dis-
tribution function in this case (figures 1(a)–(b)). In contrast,
ratio of anti-Stokes and Stokes coupling constants as well as the
intensity, however, diminish this filtering (figures 1(b)–(c)).

The bound of phase difference in case of pump mode in
Case 2 is also applicable to resonant Raman scattering. Varia-
tion of bound for ηL2 with the ratio of anti-Stokes and Stokes
coupling constants (for different Raman active materials [23])
as well as intensity is shown in figure 2(a). We have marked a
point on figure 2(a) and shown its time evolution for off-reso-
nant Raman process for ηL1 in figure 2(b). The similar variation

of the line containing the point with the ratio of anti-Stokes and
Stokes intensity and frequency detuning is shown in figure 2(c).
Both increasing time evolution and frequency detuning require
more filtering, while IA/IS has the opposite effect.

In the present case, qij parameter based on two-mode
nonclassicality is used further to study filtering of phase dif-
ference in such cases. A much simpler form is »qSV

dg t I tsincL i
2 2 2∣ ∣ which can be obtained in the spontaneous case.

The simplified form is less than 1 imposing condition for short-
time limit [20] <g t I 1L∣ ∣ and assuming δit=1. Thus, qSV
can be observed in good agreement with the complete expres-
sion in the short-time and small detuning limits as shown in
figure 3, where we have exhibited the allowed region for phase
ΨSV in different cases by different colors. Due to the complex
structure of bound for the phase difference parameter in off-
resonant case, we report here corresponding parameter for zero
detuning as
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The simplified approximate solution is marked with ‘a’ in the
subscript in figure 3. Clearly, the approximate solution always
gives the narrower region than that is shown by the complete
analytic solution. Similarly, in the partial stimulated case (i.e.
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which qualitatively concludes the same as for ΨSV in figure 3.
The corresponding behavior for

c

c

Y = - +

´ -

w w

f f f

- +

+

g

t I I t I

arg e

e 2i e

LV
t

L V A

i 2 2

2 i i

V L

L V A

[ ({∣ ∣ ∣ ∣ }
)]

( )

( )

was obtained for resonant Raman stimulated process.
While for pump-Stokes case, we have obtained in the

partial stimulated cases that qLS=1 if ¹ =I I0A S, it is
qLS=0 for ¹ =I I0S A. This means that the compound
pump-Stokes mode is classical in the former case, coherence
from the laser mode is directly transferred to the Stokes mode
and the wave distribution is proportional to the Dirac δ-
function, as - =B B D 0L S LS

2∣ ¯ ∣ and CL=CS=DLS=0. In
the latter case, there is no filtering of phase differences as
BL=CL=0 and ¹ ¹D B0LS S.Here
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in both Case 1 and Case 2. Similarly, one can calculate

d c cY = f f w w d- - - -g gsin eLS
t

2
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and dY =sin 0LS 2¯ ( ) in Cases 2 and 1, respectively, to verify
phase relations (3).

2.3. Raman process with strong pump

An exact closed form analytic solution and characteristic
function [22] can be obtained for strong pump resonant
Raman process. The solution and its brief detail are given in
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appendix B. In this section, we study the phase properties of
the Raman process with strong coherent classical pump.
Specifically, the filtering in phase distributions cannot be
studied from the signatures of single-mode nonclassicality
criterion as all noise parameters Ci=0. Thus, using two-
mode criterion we obtained
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with ΦL as the phase of the strong classical pump beam,
which becomes ΨSV=−ΦL+ωVt for real coupling con-
stants. Here, u( )I is the imaginary part of u. Similarly,

c w cY = - F -g t gsin exp 2i iSA L A( { }) (∣ ∣∣ ∣)I

which becomes ΨSA=−2ΦL+ωAt for real coupling
constants.

Similarly, it is possible to calculate - < Yq1 sinjk jk
2 ¯ as

c w w cY = - - F + - tsin exp i i ,VA L A V*¯ ( { ( ) }) ∣ ∣I

which becomes w wY = F - - tVA L A V¯ ( ) for real coupling
constants. As qVA=1 in this case, all the values of YVA¯ are

allowed. Note that although we are using the same coupling
constant parameters in both weak and strong pump cases, pump
amplitude is originally included in the coupling amplitudes (i.e.
in the latter, these constants will be IL times the corresponding
constants in the former case). For classical strong pumping,
the compound anti-Stokes-phonon mode corresponds with
the process of frequency-conversion conserving coherence

- =B B D 0A V VA
2( ∣ ¯ ∣ ) and the wave distribution is proportional

Figure 1. Dependence of bound for hL1 (which is given by the value of - scos L
1

1) on different parameters, i.e. detuning parameter and (a)
rescaled time and (b) the ratio of anti-Stokes and Stokes coupling constants; (c) dependence of sL2 on rescaled time and the ratio of anti-
Stokes and Stokes coupling constants. The plots are obtained by choosing IS=6 and IA=1 (wherever needed). All the quantities in this
figure and rest of the figures are dimensionless.

Figure 2. (a) Dependence of ηL2 bound (applicable for resonant Raman scattering, too) on rescaled time and p. Dependence of sL1 on (b)
rescaled time and (c) the ratio of anti-Stokes and Stokes intensities for different values of detuning parameter. The allowed values of phase
difference are shown as the shaded region. We have chosen IS=6 and p=1. For the point marked in (a) the effect of frequency detuning
parameter is illustrated in (b), while similar variation for the corresponding line is shown in (c).

Figure 3. Variation of complete analytic solution and simplified
approximate solution (with ‘a’ in the subscript in the plot legends)
for ΨSV parameter with frequency detuning. The allowed values of
phase are shown as the shaded region. The results are obtained for
spontaneous case with IL=10 and p=1. Similar behavior was
observed for ΨLV in the stimulated case.
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to the Dirac δ-function. In short interaction times, there is no
quantum noise in the anti-Stokes mode, which has a tendency to
conserve coherence, being attenuated. However, for strong
pumping and large interaction times also in the anti-Stokes mode
the quantum noise is developed.

In figure 4, time evolution of ΨSV (and thus ΨSA, too)
causes filtering of the phase of the pump mode with respect to
the frequency of the phonon mode and shows that for dif-
ferent values of p the phase distribution becomes singular at
different rescaled times. Further, from the figure it can be seen
that with increase in the anti-Stokes coupling with respect to
Stokes coupling allowed range of values of ΨSV (and similarly
ΨSA) decreases. For instance, in case of zero anti-Stokes
coupling (which can be assumed in the weak pump conditions
in the present case) there is no filtering observed after certain
value of rescaled time. In contrast, with higher values of anti-
Stokes coupling with respect to Stokes coupling the pump
phases are filtered to a smaller range of values around π/2.

3. Conclusions

Quasidistribution of phases for the Raman process is obtained
from corresponding Glauber–Sudarshan aP j({ }) quasidis-
tribution function by integrating over moduli of complex
amplitudes. Thus obtained unnormalized quasidistribution of
phases contains signatures of nonclassicality. Here, we have
quantified the effect of these nonclassical behavior in the
Raman process under both weak and strong pump conditions
on corresponding phase properties. The weak pump case is
studied by performing complete quantum treatment to obtain
perturbative solution which is applicable to both resonant and
off-resonant Raman processes. In contrast, with parametric
approximation, i.e. strong classical pump, an exact solution is
possible, which is obtained only for resonant Raman process.

The single-mode nonclassicality is observed only with a
complete quantum treatment, and the phase differences of
phases described by single nonclassical modes are required to
be filtered to describe a regular distribution function. The

compound anti-Stokes-phonon mode is observed to be clas-
sical and coherence is conserved in strong pump case and
corresponding wave distribution can be described by Dirac δ-
functions. Similar behavior is observed in special case in
pump-Stokes mode with weak pump. Compound Stokes-
phonon mode shows nonclassical features of phases with both
weak and strong pumping, which behavior is similar to pump-
phonon (Stokes–anti-Stokes) mode with weak (strong) pump.

The present study shows the effect of nonclassicality
present in the output modes of the Raman process on
corresponding phase properties and will be helpful in
understanding the behavior observed in the experiments. In
particular, in [11], the authors illustrated possibility to dis-
tinguish classical and quantum phases in optomechanical
interference experiment with weak coupling and for small
photon numbers and low temperature. Our suggestion of the
interference experiment [12] for obtaining the presented
nonclassical phase effects has to follow such conditions.
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Appendix A. Finite time coefficient of characteristic
function

In the present case, the obtained quantum noise function
terms are as follows [20]
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Figure 4. Time evolution of ΨSV parameter for different values of the
ratio of anti-Stokes and Stokes coupling constants. This parameter
filters the value of wY = - F - tSV L V( ) (shown as the shaded
region). Note that the quantity shown in the plot coincides
with wY = - F - t2SA L A( ).
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The rest of the terms in finite time solution (2) are zero. Here,
d ¹ 01 and δ2=0 (δ1=0 and d ¹ 02 ) correspond to Case 1

(Case 2). Also, d= d-S 2 sinj j
t2 2

2
j( ), d d d= --C t ti sinj j j j

2 ( ),

d d d d= - --T t t ti sin exp ij j j j j
2 ( { }), and w w w= + " j,jk j k

Îk L S V A, , ,{ }. Corresponding short time solution [13] can
be obtained from this solution in the limits of d  0j .

Appendix B. Strong-pump solution (some features)

Quantum noise fluctuation terms in the characteristic function
can be written as [22]

c

c c
w

c
w

c
w

=
= -
= +
=- - -
´ F -

= -
´ F -

= -
´ - F -

-

-

-

-

-

 
 

 


  

  

B g t

B g t
B B B

D g t g
t t

D g t g t
t

D g t t
t

sin ,

1 cos ,
,

1 cos
cos exp 2i i ,

i sin cos
exp i i ,

i sin 1 cos
exp i i , B.1

V

A

S V A

SA

L SA

VS

L VS

VA

L VA

2 2 2

2 2 4 2

4 2 2

3 2 2

2 3*

∣ ∣ ( )
∣ ∣ ∣ ∣ ( ( ))

( ( )){∣ ∣ ∣ ∣
( )} ( )

( ){∣ ∣ ∣ ∣ ( )}
( )

¯ ∣ ∣ ( )( ( ))
( ) ( )

while the rest of the terms are zero. Here, c= - g2 2∣ ∣ ∣ ∣ .
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