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Abstract
In this paper, we propose a scheme for the detection of weak magnetic field based on
dissipatively coupled optomechanical system. The system considered here is composed of a
perfect mirror and a compound mirror formed by a Michelson–Sagnac interferometer (MSI) with
a movable membrane. When the transmissivity of MSI is close to zero, it sensitively depends
upon the position of membrane. Under this condition, the two mirrors results in an effective
Fabry–Perot interferometer (FPI) whose linewidth depends upon the position of the membrane.
We show that by applying current to the membrane in the presence of magnetic field, the
position of the membrane changes which in turn changes the linewidth of the effective FPI. This
change can be observed in the spectrum of the output field and consequently enables us to
measure weak magnetic field. Thus an optical detection technique is proposed for the detection
of weak magnetic field.

Keywords: dissipatively coupled optomechanical system, Michelson–Sagnac interferometer,
measure weak magnetic
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1. Introduction

Optomechanical systems are providing potential applications
in precision measurements. They can be used to achieve
sensitivity beyond the standard quantum limit in gravitational
wave detectors [1–5], as a quantum speed meter [6–8], torque
sensor [9], magnetometer [10, 11] and in precision measure-
ment of electric charge [12]. In optomechanical cavities, light
inside the cavity couples with the mechanical modes of the
oscillator in two different ways. When the displacement of
the mechanical oscillator changes the resonance frequency of
the cavity, it leads to the so called dispersive coupling. And
when the displacement of the mechanical oscillator modulates
the linewidth of the cavity, it leads to dissipative coupling. A

lot of work has been done in dispersively coupled opto-
mechanical system, however, it has its own constraints e.g.
requirement of side-band resolved regime for ground state
cooling [13, 14] which is not always feasible particularly in
the case of low mechanical frequencies. However, such
requirements are not necessary for dissipatively coupled
optomechanical cavities [15–19]. Dissipatively coupled
optomechanical systems are also studied for normal mode
splitting [20], electromagnetically induced transparency
[20, 21], squeezing of output light [22, 23], quantum speed
meter [8] and force sensing [24].

The precision measurement of weak magnetic field has
gained a lot of interest due to its practical application in
various fields like geology, material characterization and
medicine [25]. Magnetometers based on superconducting
quantum interference devices operating at cryogenic
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temperatures, magnetostrictive magnetometers and atomic
magnetometers provides remarkable sensitivity [26–30]. In
recent studies, the magnetic field sensors based on opto-
mechanical cavity were also proposed, they have small size,
high sensitivity and operational capability at room temper-
ature [10, 31]. In another study, a technique based on opto-
mechanical induced transparency was proposed for the
detection of weak magnetic fields [11].

In this paper, we present an optical detection technique
for measuring weak magnetic field which can work at room
temperature. We use a dissipatively coupled optomechanical
system that can be realized in a Michelson–Sagnac inter-
ferometer (MSI) with a movable membrane [15–17]. MSI can
be considered as a compound mirror as the position of the
movable membrane sensitively affects the transmissivity of
MSI when it operates close to the dark port condition. Under
this condition, the compound MSI mirror along with a perfect
mirror forms an effective Fabry–Perot interferometer (FPI)
whose linewidth depends upon the position of the membrane.
In addition, when current is applied to the membrane in the
presence of a magnetic field, it leads to the magnetic coupling
of the membrane which directly affects the linewidth of the
effective FPI. As a result, the output spectrum of the field is
affected and therefore, enables measurement of weak magn-
etic field. Interestingly, magnetic field as low as 0.1 nT can be
measured by this scheme. The paper is organized as follows.
In section 2, we present our model and solve the equations of
motion. We find an expression for the output quadrature of
the field and calculate the spectral density. In section 3, we
present results of our numerical calculations. Finally, in
section 4, we conclude our results.

2. Theory and model

We consider an optomechanical system where a mechanical
resonator of effective mass m and resonance frequency ωm is
dissipatively coupled to a cavity field with eigenfrequency ωo.
The cavity is driven with a strong coherent light of frequency
ωl=ωo and amplitude εl. In a frame rotating at input laser
frequency ωl, the Hamiltonian of the system is given by
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where the first term describes the energy of the mechanical
oscillator (MO) with x and p being the position and
momentum operators satisfying the commutation relation [x,
p]=iÿ. The second term is the free energy of the cavity field.
The third term represents the coupling of cavity field with the
input laser and input vacuum noise represented by cin. The
last term represents the magnetic coupling of the MO where ζ
is the current coefficient or magnetic coupling coefficient. It
may also be noted that κ=κo(1+ηx) represents the posi-
tion dependent photon decay rate or linewidth of the cavity
and κo is the photon decay rate when x=0. It is related to the
dissipative coupling strength gκ such that gκ=xzpfdκ/dx

where w= x m2zpf m is the zero point fluctuation of the
membrane. Therefore, gκ=η κoxzpf, represents the dis-
sipative coupling constant between the cavity field and MO
which depends upon η. The parameter η is related to the
power reflectivity of the membrane and beam-splitter asym-
metry [17]. The amplitude of the field is related to the input
power P as e w= Pl l .

The schematics of the system is shown in figure 1. It is
assumed that the current is passing through the movable
membrane M of MSI and the whole system is placed in a
static magnetic field. The mean position of the membrane
changes due to magnetic coupling of the membrane. The
entire setup is equivalent to a FPI with the variable optical
decay rate i.e. k k h= + x1o( ), where x is the displacement
of the membrane. The displacement of the membrane can be
controlled by the application of current in the presence of a
magnetic field. Thus the right mirror of the effective FPI has
optical transmissivity that depends upon the current in the
presence of magnetic field.

The Heisenberg equations of motion for the system when
the cavity mode is resonantly pumped by the input laser (i.e.
ωo=ωl) are given by the following:
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where γm is the mechanical damping rate and ξ is the zero
mean value thermal noise which describes the coupling of
MO to the thermal environment. It follows immediately from
equation (2) that in steady-state, the position, momentum and
cavity field must fulfill the following self consistent
equations:
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Figure 1. The schematics of the system. (a) A Michelson–Sagnac
interferometer, containing the membrane M through which current i
is flowing. The membrane is displaced from its mean position due to
radiation pressure and external magnetic field B. (b) Equivalent
Fabry–Perot interferometer whose right mirror transmission depends
upon the decay rate κ.
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The operators given by equation (2) can be represented as
a sum of large mean value and small fluctuating terms such
that x=xs+δx, p=ps+δp and c=cs+δc. In the first
order approximation, the linearized equations of motion are
given by
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By taking Fourier transform of equation (4), the cavity
field and position fluctuation in frequency domain can be
written as:

d w
k h w

k h
h

d k h

d w
w w wg

x
h k w

k h w

=
+ -

´ -
+

+ +

=
- -

´ -
+ -

-


c
x

c

x
x x c

x
m

c

x
c c

1

1 2 i

2 1 2
2 1 2 ,

1

i

2

2 1 i
.

5

o s

o s

s
o s

m m

o s

o s

in

2 2

in in

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

( )
( )

( )
( )

( )
[ ]

[ ( ) ]
( )

( )

†

/

The output field of the system and its fluctuation can be found
by the input output formalism [32]:
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The output field of the system can be found by sub-
stituting equations (5) in (6), i.e.
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2 2 , being the dimensionless power and

c w w w wg= - - im m m
2 2( ) is the mechanical susceptibility.

The output field can also be expressed as
w w q w q= +Z X Ycos sinout out out( ) ( ) ( ) , where θ represents the

homodyne phase angle. We obtained the following expression
for the generalized quadrature:
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the spectrum of the fluctuation in the quadrature Zout(ω) of the
output field can be written as
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The spectral density of the output field is found to be:

w
k w q

k h w
a q g a

=
+
+ +

´ + + +

S
x

mk T

cos

2 1

1 tan 4 . 13

o

o s

B m

out

2 2 2

2 2 2

1
2

2
2

( ) ( )
[ ( ) ]
[ ∣ ∣ ∣ ∣ ] ( )

In equation (13), the first term is the contribution from the
photons shot noise, the second term is from the back-action and
the last term is from the thermal noise. The homodyne phase
angle θ can also be optimized to supress the back action term.
This can be done by setting the homodyne angle θ such that tan
θopt=−α1.

3. Results and discussion

In this section, we present the results of our numerical
simulation. Here, we consider =m 50 pg, κo=2π×59
KHz, λ=1064 nm, gk=2π×2.6 Hz, Q=ωm/γm=
1.1×107, T=300 K and ωm∼κo (i.e. non-resolved-side-
band regime) as discussed in [16, 33–35]. It may also be
noted that SiN membrane coated with Aluminium or Gra-
phene [36, 37] can be used for realization of current flowing
through the membrane. As we discussed earlier, in the pre-
sence of magnetic field, the transmissivity of the right mirror
of the effective FPI depends upon the current flowing through
it. Therefore, a shift in the output spectral density of the field
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can be observed in the presence of magnetic field. Figure 2
shows the plot of normalized spectral density Sout/Sout,0
where Sout,0 represents the output field spectral density when
B field is zero. Thus, Sout,0 represents the total noise floor. We
also set the optimum homodyne angle at ω=ωm (i.e. sub-
stituting ω=ωm in q a=tan opt 1) or equivalently at
θopt=π/2 which leads to large dissipative coupling strength
[22]. The input power P=10 μW and the current flowing
through the membrane is assumed to be ζ=2×10−5 A m
[11]. The solid straight line at Sout/Sout,0=1 in figure 2
shows the normalized spectral density of the output field
when B field is zero. When B field is turned on, the spectral
density of the output field becomes greater than 1, i.e.
Sout/Sout,0>1 and the shift in the spectral density depends
upon the strength of the magnetic field. The dip in the spectral
density arises due to the membranes fundamental resonance.
It may also be noted that shift in the spectral density is large
when the detection frequency ω<ωm as compared to the
case when ω>ωm. However, the system is relatively less
sensitive to the magnetic field when the detection frequency is
equal or close to the mechanical frequency.

It is interesting to note, if we further shift towards the
non-resolved-sideband regime for example, ωm/κo=0.2 as
in [24], the spectral density of the output field becomes more
sensitive to the magnetic field as shown in figure 3. It may be
mentioned that the micro- and nano-optomechanical devices
due to their small size, inherently work in the bad cavity
regime (i.e. ωm/κo=1) [38], which is advantageous for our
scheme. By comparing figure 2 and figure 3 it is clear that for
ωm/κo=0.2, the shift in the output spectral density is larger
even for the magnetic field strength ten times smaller than the
results obtained for the case when ωm/κo∼1.

The measurement sensitivity can be further improved by
adjusting the current flowing through the membrane. This is
shown in figure 4, where the spectral density of the output
field is plotted for three different choices of the current
parameter ζ for =B 0.1 nT and ωm/κo=0.2. Our results
clearly shows that the sensitivity of the measurement

increases by increasing the current through the membrane.
However, it may be pointed out that our analysis is based on
linearization of the equations of motion around the large mean
values (see equations (4)), so for linear approximation to hold,
current cannot be increased indefinitely. The linear approx-
imation holds as long as ηx=1, because κ=κo(1+ηx)
with d z w d= + = - +x x x B m xs m

2( ) . It is also interesting
to note that, due to the topology of MSI, if the current is
reversed i.e. z z - , the position of MO also shifts as
 -x x, thus equation (1) remains unchanged and the output

spectral density remains the same.
Figure 5 shows a contour plot of the output field spectral

density with respect to the magnetic field and current at
ω=ωm which is the resonance frequency of the membrane.
At ω=ωm, the shift in the spectral density is at its minimum
(as can be seen in figures 2, 3 and 4). It is clear from figure 5
that for weak magnetic interaction (e.g. B=0.1 nT and
ζ=2×10−5 A m), the shift in the output field spectral
density is below 1.01 which can also be verified from figure 4
at ω=ωm. The shift in the spectral density enhances when

Figure 2.Normalized spectral density of the output field when B=0
(straight line at Sout/Sout,0=1), which becomes greater than 1 for
¹B 0. Here the parameters m=50 pg, κo=2π×59 KHz,

λ=1064 nm, gk=2π×2.6 Hz, Q=ωm/γm=1.1×107,
ωm∼κo, P=10 μW, T=300 K, ζ=2×10−5 A m and
ωm/κo=1.

Figure 3. The plot shows that sub-nano-Tesla measurement can be
made with better resolution if w k < 1m o . Here we usedw k = 0.2m o ,
while all the other parameters are the same as in figure 2.

Figure 4. The spectral density of the output field for three different
choices of current parameter ζ. Here B=0.1 nT while all the other
parameters are the same as in figure 3. By increasing the current, the
spectral density shifts towards higher values, thus increasing the
sensitivity of magnetic field (see figure 3 for comparison).
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we increase the current or magnetic field. Thus, for appro-
priate current values, and detection frequency smaller than the
mechanical frequency, and working in the non-resolved-side-
band regime, B field upto sub-nano-Tesla levels can be
measured by this scheme.

4. Conclusion

In conclusion, we have considered a dissipative optomecha-
nical system for the detection of weak magnetic field. In the
presence of magnetic field, the position of the membrane
depends upon the current flowing through it. Thus by varying
the current, the position of the membrane changes which
leads to a change in the optical decay rate κ or transmissivity
of the compound mirror. The effects of change in transmis-
sivity can be seen in the output spectrum of the field.
Therefore, by analyzing the spectrum of the output field, weak
magnetic field can be measured. Our scheme is based on MSI
which to the best of our knowledge is the only proven system
for achieving pure dissipative coupling [16, 17]. From
experimental point of view, dissipative coupling is more
favorable in the micro- and nano-optomechanical devices.
The optical line-width for such small devices typically scales
inversely with the length of the cavity and eventually results
in ωm/κo=1, i.e. the so called non-resolved-sideband
regime or bad cavity regime. Our proposal works better in this
regime and therefore, could be more feasible to detect
magnetic field experimentally. Moreover, the system needs no
magnetic shielding from the background, as measurements
are made relative to the background. This also provides us the
liberty to measure even weaker magnetic fields as long as the
signal can be resolved from the background. Throughout our
numerical simulations, we have used the parameters which
are accessible in experiment. Therefore, we believe that our
scheme enables potentially practical proposal for precision

measurement of weak magnetic field. By adjusting the current
and working in the non-resolved-side-band regime, one can
make measurement of weak magnetic field upto sub-nano-
Tesla levels at room temperature.
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