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Abstract
We present an approximate Lie algebraic method to deal with a forced optomechanical
Hamiltonian. We show that the approximations made in order to linearize the interaction
Hamiltonian are fully justified by means of a comparison between a purely numerical calculation
of the number of photons, phonons and linear entropy using the full Hamiltonian and the results
obtained by means of our approximate time evolution operator.
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1. Introduction

The control of quantum states of macroscopic objects and
force detection within and very close to the quantum regime,
has been achieved in optomechanical systems [1, 2]. The
coupling between optical and mechanical microscopic
degrees of freedom is the fundamental principle to enable the
description of radiation pressure on a mirror, where field and
mechanical modes are coupled in a Fabry–Pérot cavity [3]. In
this sense, quantum optomechanics essentially leads to two
perspectives: quantum control over mechanical motion or,
conversely, mechanical control over quantum states [4–6].

The radiation pressure that light exerts on a material
object was observed experimentally more than a century ago
[7, 8]. Subsequently, in recent decades, an interest in the
motion of mechanical oscillators (mass center), coupled to
oscillation modes in a cavity has resurfaced [9–11]. Some
recent applications of this type of resonators include: the
LIGO project that uses gravitational wave interferometers
whose optical path is modified due to radiation pressure [12],
the cooling of mechanical resonators in the study of the
transition between quantum and classical behavior [13] and
the amplification and measurement of nanometric scale forces
[14, 15], are representative of the very varied applications of

this type of systems. One of the most important applications
within this framework, was given by Ashkin [16] when he
showed that small dielectric balls can be accelerated and
trapped using radiation pressure forces via focused laser
beams. This idea led to the realization of optical tweezers.
Another important development was the laser cooling of ions
and neutral atoms, which culminated in the experimental
generation of Schrödinger cat states and Bose–Einstein con-
densates [17–20]. On the other hand, to round off the non-
classicality of states at a macroscopic scale, some schemes
based on homodyne tomography have been proposed for the
reconstruction of quasi-probability distributions within the
associated phase space [21–24].

Taking advantage of the fact that the coherent states are
the quantum states whose statistical behavior most resemble
the classical one, the quantum theory of optomechanical
cavities has enabled the generation of these states or even
superpositions of them, known as Schrödinger cat states [4,
25–29]. So, in order to obtain the time-evolution operator for
the driven optomechanical system, from a theoretical point of
view, is a difficult task. Moreover, when the system is
interacting with its environment, it is not possible to solve the
master equation of the pumped optomechanical system.
However, from an operational approach it is possible to
obtain analytical approximations for the evolution operator
[30]. In this regard, in this work we propose an approach
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based on Lie algebraic techniques, since the constituent
operators of the unperturbed model Hamiltonian turns out to
generate a closed Lie algebra. This fact enables us to express
the corresponding evolution operator of the whole system as a
product of exponentials according to the well-known Wei–
Norman theorem [31, 32].

The paper is organized as follows: in section 2 we make
use of algebraic techniques to obtain a Hamiltonian in the
interaction representation that is amenable to approximations
such that its time evolution operator can be written as a
product of exponentials; we apply it to an initial pure state
written as a product of coherent states for the field and for the
mechanical oscillator. In section 3 we evaluate the average
number of photons, phonons and linear entropy as a function
of time and as a function of ωp/ωc. In section 4 we give
analytic expressions for the evaluation of the Husimi Q
function for the field and for the mechanical oscillator and
present numerical results for the Husimi function of the field
at some selected instants of time. Finally, in section 5 we give
our conclusions.

2. Lie algebraic approach for a driven
optomechanical system

Let us consider a system described by a Hamiltonian con-
sisting of a mechanical harmonic oscillator of frequency ωm, a
field oscillator with frequency ωc, an optomechanical cou-
pling between the field and the mechanical oscillator given by
the third term in equation (1) and a driving of the field mode
with frequency ωp (see figure 1). The simplest form for the
pumped optomechanical system is given by the Hamiltonian
[30, 33–35]:
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When there is no pumping term, Hamiltonian (1) reduces
to the time-independent optomechanical Hamiltonian
[4, 25, 33],

ˆ ˆ ˆ ˆ ( ˆ ˆ ) ( )†w w= + - +  H n N Gn b b . 3c mopt

The set of operators appearing in Ĥopt has the following
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In this table, we had to incorporate the operator n̂2 that arises
from the commutator between ˆ ˆnb and ˆ ˆ†

nb . The set of
operators appearing in this table is closed under commutation.
Thus, the time evolution operator corresponding to Ĥopt can
be written exactly as a product of exponentials [4, 31],
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Here, ˆ ( )ˆ
ˆ ˆ†

a = a a-D eA
A A* is the Glauber displacement opera-

tor. The time-dependent functions αi are obtained after
substitution of equation (4) into Schrödinger’s equation, and
are given by:
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However, with the pumping term present, this is not enough.
In order to deal with the pumping term, we will use the
interaction picture for the complete Hamiltonian:

ˆ ˆ ( )( ˆ ˆ) ( )†w= + W +H H t a acos , 6p popt

with Ĥopt given by equation (3). The full time evolution
operator is then factorized as ˆ ˆ ˆ=U U Uopt 1, where Ûopt is given
in equation (4) and the time evolution operator in the
interaction picture Û1 satisfies the equation
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Figure 1. Schematic representation of an optomechanical system of a
mirror with variable position x̂b coupled to a cavity of fixed length L
and single-mode frequency ωc, and mirror frequency ωm. (a) No
driving system, and (b) and driving system of frequency ωp.
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Notice the presence of the operators in the exponentials;
this fact prevents the use of Lie algebraic methods. However,
the factor G/ωm is much smaller than one [30] so we will
approximate the interaction Hamiltonian by:
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The corresponding time evolution operator Û1 can be
written as:
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where the time dependent functions β, γ, and δ satisfy the
following set of coupled ordinary differential equations:
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with the initial conditions β(0)=γ(0)=δ(0)=0. Integrat-
ing we obtain the analytical expressions:
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and in what remains we omit writing the time dependence of
the previous functions. Additionally we can notice that
g b= - *, so that
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In the case when ωp=ωc the integration yields:
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Consequently, using (4) and (14), the full time evolution
operator is:
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Consider now an initial state given by the product of coherent
states
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where ∣añc is a field coherent state and ∣Gñm is a mechanical
coherent state. Therefore, using the relationship [36]
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and applying the time evolution operator to the initial state we
get:
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with the explicit form for the functions αi, given by
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Consequently the wave function or the state vector of the
complete system at time t is:
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We see from equation (21) that the entanglement between the
field and the mechanical oscillator is maximal for ωmt=π
and the system returns to its non entangled state at ωmt=2π.
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3. Average number of photons, phonons, and linear
entropy

The Hamiltonian for a pumped optomechanical system given
by equation (1) contains creation and annihilation operators
for the field and a coupling term between the number of
photons present in the field and the creation–annihilation
operators for the mechanical oscillator. Due to the pumping
term, the number of photons will be evolving in time and,
since the coupling between the field and the mechanical
oscillator depends upon the number of photons present, it is
of interest to evaluate the time evolution of the average
number of photons and phonons. The average number of
photons at time t is

ˆ ( ) ( )∣ ˆ∣ ( )
∣ ∣ ∣ ∣ ( )( ) ∣ ∣R a b a b

á ñ = áY Y ñ

= + = +d b+

n t t n t

e , 232 2 22

where we have used the unitarity condi-
tion ( ) ∣ ∣R d b+ =2 02 .

The average number of phonons at time t depends on the
number of photons at time t and is given by:
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p
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For the numerical calculations, we have used a set of
Hamiltonian parameters obtained from [37] that is:
ωc=109 s−1, ωm=(π/6) ωc 10

−6, L=10−4 m, m=10−13

kg so that G/ωm=2.36×10−2. For the forcing term we set
Ω=(π/2)ωc 10

−1.
We see in figure 2 left column the results of our

approximate method (full line) and those obtained from a
converged numerical calculation (dots) for the photon gen-
eration in the case when the initial state of the field is the
vacuum state. It can be seen an excellent agreement between
both of them. In the top figure (a) we show the case when
ωp=0.9531ωc; at the initial time there are no photons pre-
sent, as time evolves the average number of photons increases
periodically with a period of the order of 10−7 s. and an
amplitude around 10. In the bottom figure, left side (b), we

show a case nearer resonance conditions, ωp= 0.9831ωc. As
in the previous case there is an oscillatory behavior, however,
the amplitude of the oscillations is much larger attaining
values around 60 and notice also the different period for the
oscillations, here it is around 3 times that in the previous case.
For larger differences between the forcing frequency and the
field’s frequency (for instance, when ωp=0.8ωc) the photon
generation is much smaller attaining values around 1.25 only.
The ratio between frequencies was chosen near resonance
(but far enough) in order to guarantee the convergence of
time-dependent calculations, since when we are very close to
resonance (equation (15)) the average number of photons
increases rapidly and this translates into the need of a very
large Hilbert space that becomes computationally
unsustainable.

In the right column of figure 2 we show the time-evol-
ution of the average number of phonons with initial state the
vacuum state. In the top figure (c) we present the results
obtained when ωp=0.9531ωc. In that case, the average
number of photons is a periodic function with amplitude
around 10 and the entanglement between the field and the
mechanical oscillator produces the generation of phonons. In
this case we see an oscillatory behavior with a period
Tm=2π/ωm; 0.012 s and very fast oscillations with fre-
quency of the order of 107 s−1. These oscillations are so fast
that they cannot be distinguished in the figure. We can see
from the figure that the average number of phonons attains a
maximum value around 0.25. At the bottom (d) we show the
case with ωp=0.9831ωc, there, the photon generation is
much larger and the phonon generation increases corre-
spondingly attaining a maximum around 12. Notice that the
period for the average number of phonons is the same in both
cases since it depends only upon the frequency of the
mechanical oscillator.

Let us now compute the linear entropy for a forced
system whose state at time t is given by equation (22). In
general, we can calculate the linear entropy of any one of the
two subsystems by S(x)=1−Trx[ρx

2], where x is the label of
the mirror or cavity. In this sense, the density matrix of the

Figure 2. Average value of the photon number as a function of time (left column) with initial coherent state ∣a = ñ0 and average value of the
phonon number (right column) with initial mechanical coherent state ∣G = ñ0 . Hamiltonian parameters: top ωp=0.9531ωc, bottom
ωp=0.983 1ωc. Time is given in seconds.
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mirror is given by the partial trace:
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where Trc[ρ] is the trace over the field’s degrees of freedom of
the full density matrix ρ and Γp(t) is defined in equation (21).
From this expression we get

( ) ∣ ∣
!

∣ ∣
!

∣ ( ) ( )∣ ( )

∣ ∣

( ) ( )∣ ( ) ∣ ∣ ( ) ∣

år
a b a b

=
+ +

¢

´ G ñáG

a b- +

¢

¢

- - G G
¢

G G ¢
¢

t
p p

t t

e

e e e , 26

m
p p

p p

t t
p p

2 2

,

2 2

p t p t
p p

2

2

2

2

2
*

and taking the trace we obtain:
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so that, the linear entropy for the mirror is given by:

( ) [ ( )] ( )( ) r= -S t t1 Tr . 28m
m m

2

In figure 3 we plot the linear entropy for the mirror for
initial states ∣ ∣ ∣ ∣añ Ä Gñ = ñ Ä ñ0 0c m c m near resonance
ωp=0.9831ωc for two cases where the difference relies in
the magnitude of the forcing amplitude Ω. In (a) we show the
case when wW = p

c20
and in (b) the case when wW = p

c200
.

In (a) the linear entropy is a periodic function where each
oscillation has the same amplitude along the evolution. The
periodicity of the oscillations depends on that of the average
photon number, of the order of 2×10−7 section Since the
forcing amplitude is large, the average number of photons
increases rapidly and there is an important mixing present
between the field and the mechanical oscillator so that the
linear entropy gets close to one.

In (b) we see a different behavior, an overall oscillatory
behavior with a period Tm=2π/ωm due to the fact that at
those times the mechanical system is disentangled from the
field and the density matrix corresponds to that of a pure state.
If we look closer, we notice the fast oscillations present in (a)
but with variable amplitude due to the fact that since Ω is
smaller the average number of photons is also small so that
there is less entanglement and the linear entropy is small.

When ωp−ωc is large (far from resonance condition),
there is almost no photon generation, the field and the

mechanical oscillator are disentangled and the density matrix
is almost that corresponding to a pure state. It should be noted
that the numerical simulation was done using the python tool
called QuTiP, where the coefficients are functions of time and
a cubic spline interpolation is done [38].

4. Husimi-Q function

The formulation of quantum mechanics in phase space has
played a fundamental role in the clarification of the non-
classical behavior of a quantum system [39]. In this sense, the
representation of quantum fields in phase space in terms of
quasiprobabilities is widely used in quantum optics with
particular emphasis given to the Wigner function and the
Husimi Q function. The computation of quasiprobabilities is
often a tedious task which involves integration over phase-
space variables, however, when the density matrix of the
system is known, the computation of quasiprobabilities can be
done from a series representation [40]. The simplest to eval-
uate is the Q function which is simply expressed as [41]:
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where ∣añ is a coherent state and ( ) ∣ ( ) ( )∣r y y= ñát t t is the
density matrix for a pure state at time t. Notice that the
Husimi function is always positive, bounded and normalized.

For the system under consideration the Husimi function
for the mechanical oscillator will be evaluated as
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m

where ∣mñ is a mechanical coherent state and ρm(t) is the
partial trace given by equation (25). As a result we obtain:

( )

∣ ∣
!
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[ ] ∣ ∣ ∣ ∣

∣ ( ) ∣ ( ( ))Rå

m
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a b

=

´
+

r m a b
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¥
- G G
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p

;
1

e

e e . 31
p

p
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2
2

m

p p

2 2
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The Husimi function for the field is given by

( ) ∣ ( )∣ ( )[ ] f
p

f r f= á ñrQ t t;
1

, 32c
c

Figure 3. Time evolution of the Linear entropy for the mirror. Initial state ∣ ( ) ∣ ∣ ∣ ∣aY ñ = ñ Ä Gñ = ñ Ä ñ0 0 0c m c m. Amplitude of the forcing
term (a) wW = ´p -10c2

1, (b) wW = ´p -10c2
2 Notice the time scale (in seconds).
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where ∣fñ is a field coherent state and ( ) [ ( )]r r=t tTrc m . As a
result we obtain:

( )

( ) ( )
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p q
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where
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a b
a b

G =
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a G

 
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p
, , , ;

e e e e 34
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p pp p t

2 4 4 1 3
4 2

2
2 2

2* *

with α1, α3 and α4 as determined by equation (5).
In figure 4 we show the Husimi function for the field
( )[ ] frQ t;c at times stated in the figure for an initial state of the

field ∣a = ñ3 with the same set of Hamiltonian parameters as
in figure 3(a). At t=0 the state is a coherent state, as time
evolves we can see a delocalization of the probability dis-
tribution. This is in agreement with the behavior of the linear
entropy where we see that it attains values close to one,
corresponding to situation with large entanglement, this
means that we have a highly non-classical state. At a larger
time we see a relocalization of the state and as we can see
from figure 3(a), the entanglement and disentanglement
behavior is periodic. A similar conduct but with a different
intermediate dynamics in phase space will occur with the
Husimi function of the mirror. It is important to mention that
the reconstruction of quantum mechanical motional states is
still an open problem and requires the use of varied techni-
ques [24].

5. Conclusions

In this work we have presented an algebraic method to deal
with the Hamiltonian of a driven optomechanical system.
Since the time evolution operator for the optomechanical
Hamiltonian Ĥopt can be written exactly as a product of
exponentials, we split the full Hamiltonian as ˆ ˆ ˆ= +H H Vp opt

with V̂ the pumping term, and transform to an interaction

picture with the operator Ûopt. As a result, the field creation–
annihilation operators acquire a complicated structure with
exponentials whose exponents are operators. At this point we
linearize the transformed creation–annihilation operators and
obtain an approximate interaction Hamiltonian whose time
evolution operator may be written exactly as a product of
exponentials. Then, we can write the full time evolution
operator in a product form by means of the Wei–Norman
theorem. Notice that the approximation is done on the inter-
action Hamiltonian, once it has been linearized the corresp-
onding time evolution operator is exact. The terms we have
neglected to get the approximate interaction Hamiltonian are
proportional to G/ωm and (G/ωm)

2 which take numerical
values smaller than one for the set of parameters considered in
this work. We evaluated the average number of photons and
phonons as a function of time and of the ratio ωp/ωc between
the forcing frequency ωp and the field’s frequency ωc. Far
from resonance there is almost no photon generation but near
resonance ωp/ωc;1 there is a rapid increase in the number
of photons. The number of phonons depends on the number
of photons present in the cavity and when the number of
photons is different from zero, the generation of phonons is
large even under non resonance conditions. The average
number of phonons is a periodic function with a frequency
given by that of the mechanical oscillator. To test the validity
of our approximations we made a purely numerical calcul-
ation of the average number of photons and phonons using
the full Hamiltonian Ĥp and we found an excellent agreement
between both calculations. We also got analytic expressions
for the Husimi Q function of the mechanical oscillator and for
the field and we evaluated the one corresponding to the field
taking as initial state a coherent state.
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Figure 4. Pictographic representation of the Husimi function ( )[ ] frQ t;c for a coherent state. The times that we consider representative were
selected with respect to figure 3(a). Where ∣a = ñ3 and ∣G = ñ0 as the initial state of the field and mirror, respectively.
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