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Abstract
In this paper, we discuss the q-deformed algebra and study the Schrédinger equation in Carnot
cyclic and we obtain the energy eigenvalues and the wave function in Carnot cyclic by an
analytical method and the thermodynamic properties such as force parameters and the quantum
heat engine including the adiabatic and isothermal quantum processes of the system by using of
the energy are calculated. Also, we obtain efficiency in the Carnot engine. Finally, all results
have satisfied what we had expected before.
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1. Introduction

Quantum algebra has been receiving much attention in physic
and mathematics fields. In 1976, Arik and Coon analyzed
Hilbert space via deformed algebra [1]. The deformed algebra
has been investigated by some authors [2—4]. Hassanabadi
et al investigated energy eigenvalue of the system for com-
mutative and noncommutative spaces by using of deformed
algebra [5]. The nonrelativistic Schrodinger equation is of
great importance in nuclear and particle physics [6, 7]. Ped-
ram investigated maximally localized states in presence of
perturbative representation of the deformed algebra then the
author obtained invariant density of states by using of extend
the generalized uncertainty principle [8]. Chung et al in [9]
obtained the thermodynamics aspects of the g-deformed
Tamm-Doncoff oscillator algebra by using of particular Fock
spaces under the finite and infinite dimensions. The energy
spectrum of the Coulomb potential under minimal length
commutation relations are reported in [10]. Stetsko and
Takachuk obtained the energy spectrum for the hydrogen
atom via deformed Heisenberg algebra [11]. In [12], the
authors have obtained the harmonic oscillator spectrum and
eigenvectors by using an extension of the techniques of
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conventional supersymmetric quantum mechanics. On the
other hand, the Carnot engine and their efficiency appeared
more than forty years ago and introduced for the first time by
Carnot [13] and lately investigated by other authors [14-18].
in [19], the authors considered three levels masers as ther-
modynamic process and they showed the limiting efficiency
of a three level maser is that of a Carnot heat engine. Carnot
engine is like a piston with movable walls, and a particle is
that this system has different energies during isothermal and
adiabatic processes. Bender et al Used of a single quantum
mechanical particle confined to a potential well to describe
the quantum heat engine then, they obtained the efficiency of
this engine [20]. In another paper, WU et al studied the
reversible Otto cycle of Schrédinger equation in a potential
well also they obtained the relationship between the dimen-
sionless work out put and the efficiency in two states heat
engine [21]. Acikkalp and Caner in 2015 used an irreversible
quantum engine to describe thermodynamic parameters
including work input, cooling load, exergy destruction and
exergy efficiency [22]. Finally, they showed which the sus-
tainability index has a dependency on the constant-temper-
ature heat sink. Abe investigated work out put in a quantum
Carnot cycle in two states and calculated the efficiency in
power maximum output then, he obtained the efficiency in the
problem and showed the efficiency independently of any the
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parameters in the model [23]. Ahmadi et al studied an irre-
versible Stirling refrigerator cycle then they calculated the
coefficient of performance and the ecological coefficient of
performance via thermodynamic processes [24]. Our purpose
is to solve the deformed Schrodinger equation under a single
particle confined in a one-dimensional box. Then, we inves-
tigate the thermodynamic engine such as the efficiency by
using the energy. Also, a heat engine takes in heat at a high
temperature and exhausts heat at a low temperature. In the
process of heat flow, some of the input heat is converted to
work. The efficiency is the fraction of the heat input at high
temperature converted to work. Thermodynamics is the study
of the relationships between heat and work. The first law
constrains the operation of a heat engine. The first law is the
application of conservation of energy to the system.

The conservation of energy is given by [21, 22]

W =10ul — |Qcl — 1Qc| = |Qul — W. 1))
The efficiency of the cycle can be written as [25, 26].
w T
n=—=1-— _C. )
Ou T

The efficiency only depends on the ratio of the absolute
temperatures. Finally, by letting the deformed parameter, go to
zero we recovered the results for the ordinary thermodynamic
engine. This paper has been organized as follows: in section 2
we obtained the energy eigenvalues and the wave function of
the g-deformed Schrodinger equation in presence of a single
particle confined in one-dimensional box.in section 3 we stu-
died the Adiabatic, free and isothermal quantum processes by
using of total energy. In section 4. We discuss the quantum
Carnot cycle in two states of isothermal and adiabatic processes.
Then, we obtained energy, force and work done in the Carnot
cycle and in finally we obtained efficiency in this cycle. Finally,
our conclusion appears in section 5.

2. The Schroédinger equation in deformed formalism

As one method for curing some problems in quantum gravity,
the generalization of the uncertainty relation has come, which
is called a generalized uncertainty principle (GUP) [6, 7].
There has been much development for the GUP formulation
and GUP-corrected quantum systems. The generalized
uncertainty principle (GUP) is given by the modified com-
mutation between coordinate and its momentum as

2
X, P] =i(1 - %) —i(1—q PP 3)

where (q = %) — 0 and in agree with ordinary commutation

relation in quantum mechanics [27, 28].
We consider the coordinate and momentum operators for
the algebra (3) as [7]

Lo,
Xx=x, P=—2L ! )
1 + q |pl l+gq lax
i

where g > 0. The expectation value of an operator O for the
wave function U(x) is

(0) = (W) |O] T(x)) = f @O Twdy. ()

The Schrodinger equation in the coordinate representa-
tion of algebra (3) appears as

P2
[— + V(x)]\ll(x) = E ¥(x),
2m

2

1
1 O
— ! 1 Tx) + V) TU(x)
l
= E U(x). ©)

We want to consider a single particle with mass m con-
fined in one-dimensional box as bellow

L
V(x):{o 0<x<L 7
oo elsewhere

By substitution of equation (7) in equation (6) then, the
solution of the equation (6) as

0, (x) = \/% sin ”T” x. (8)

Then, the. (6) can be written as

LSy a,] _
2mn§)( 1) (n+1)‘i8 0,(0) = E (). (9)

Using the relations

n

iia el = (q g)"ei®,
25 " e (g gye-ion, ((10a))
We have
?8 " Sina x = (ag)" Sin a x. ((10D))

Finally, from the equation (9) the energy is given by

1 n ’
PR B L 2
2m \L+gnm

The expectation value of the Hamiltonian as bellow

an

E(L) = (V|H| D). (12)
The total energy is
E L) = ) la,PE,, (13)
n=1

where the coefficients o, satisfy the normalization condition

00
Yo lan =1
n=1

(14)
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Figure 1. A Carnot cycle consisting of four processes, two adiabatic
processes and two isothermal processes.

From equation (12), the force F exerted on the wall of the
well is given by

= _@. (15)
dL
We can easily find other thermodynamic processes such
as Adiabatic, free expansion and Isothermal processes.

3. Thermodynamic processes of the system

3.1. Adiabatic process

An adiabatic process is one in which no heat is gained or lost
by the system. The first law of thermodynamics with Q = 0
shows that all the change in internal energy is in the form of
work done. Now we introduce an adiabatic expansion as
bellow

du+dw=0. (16)

The adiabatic condition is PV? = Const, during an
adiabatic process the exponent 7 is the ration of the specific
heats as bellow

v = c
The efficiency of the ideal gas can be written as
vy
nzlfizlfﬁinzlfi—il, (18)
Ty T 2

where v = 3. Therefore, the adiabatic condition becomes

PV?3 = Const. (19)

Finally, the equation (15) in an adiabatic process is given
by

n2m?

_ 2
m(L + g nm)? 0)

00
E] = Z |Oln|2
n=1

3.2. Free expansion and Isothermal processes

3.2.1. First process. A free expansion is an irreversible
process in thermodynamics in which a volume of gas is kept
in one side of a thermally isolated container, with the other
side of the container being evacuated. The partition between
the two parts of the container is then opened, and the gas fills
the whole container. The free expansion process and the final
pressure has decreased relative to the initial pressure is written
by

T = Const

PV =PV} Q21

3.2.2. Two process. An isothermal process is a change of a
system, in which the temperature remains constant.

In a constant temperature process involving an ideal gas,
pressure can be expressed in terms of the volume

PV=NKT. (22)

The isothermal process is P V = Const.

4. Carnot cycle in quantum mechanics

In this section, we want to study a cyclic heat engine in
quantum mechanics by using the adiabatic and the isothermal
processes which discussed in section 3. we want to consider
two of the Eigenstates of the potential well then, This point
can be derived that this ground-state wave function in a well
of width L; produces the force on the wall as

2

F=— . 23
L (23)

The expectation value of the Hamiltonian

2
1 s
SURRTEE |
m\L +qm

The equation (24) is the generalized energy relation of
the Carnot cycle, whose energy value is for the adiabatic and
the isothermal processes. Now, we consider cycle set the
limits to the efficiency of a heat engine operating between two
temperatures which the cycle consists of fourth reversible
steps such as Isothermal expansion at 7;,, Adiabatic expansion
from T}, to T, Isothermal compression at 7., Adiabatic com-
pression from T to 7;,. We shows the four-step cyclic process
in figure 1. At first we discuss first step where in this process
the piston to expand isothermally. Then, the state of the

(24)
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system is a linear combination of the lowest two energy
eigenstates

2 s 2 2w
U,_1,2(x) =, —aoq(L)sin —x + ,[—an(L) sin — x. (25
1,2(x) JL 1(L) I ’/L 2(L) I (25)

From equation (14), we can achieve the constraint

lul? + | = 1. (26)

The Hamiltonian is written by
2 2
1 s 27
EI(L)q = —|oy |2 -
2m L+grm L+2¢qgm
2
+L _ 2 ) 27)
2m\L+2qgm

With equality of equations (24) and (27), when (¢ — 0)
we have

2 72

2mL12 S 2mI?

@ =3 laP) = L2=L4 =3 |aP).
(28)

Thus, we consider L = L, for the system in the second
energy eigenstate, so the maximum value of L in this isothermal
expansion, when || = 0 is achieved L, = 2L,.

During this isothermal expansion process the force by
using of equation (27) is written by

dE\(L) 2
FiogL) = ——— = |y P ——"—
dL m(L+ g )
2 2
B 47 47 . (29
m(L+2qgm7)? m(L + 2 g )3

When (¢ — 0) and|q;| = 1, the equation (29) changed as

dEi(L)g—o w2
F_g-o@L) = — qu = ST
i

(30)

where L Fi_, is a constant.

For the second step we the piston to expand adiabatically
from L, goes L3, Expectation value of the Hamiltonian and
the force in the process are as bellow

2
E(,,q(L):L 2 i (31)
2m|L+2¢qm
472 q—0
B ,(L)=——  ~ 5 [3FK(L
2-¢(L) Lt 2q ) 2(L)
2
_ 4n” (32)
m

For the Third step we the piston to compress isothermally
from L3 goes L4, we can obtained the The expectation value
of the Hamiltonian and the force in the process as following

(33)

2m

2
1 2
Fol = —[m] |

4-7'('2 q—0 2
kB ,(L)y=— — — L5FK(L
3= 4(L) (Lt 2 g 3F3(L)
472
= . 34
mL 4

Finally, for the fourth step we compress adiabatically L,
until we return to the starting point L;

Then, as similarly we can write the expectation value of
the Hamiltonian and the force in the process as

2
1
Eio(L) = %[—L fq W] , (35)
71—2 q—0 3
Etfq(L) = m — L°Fy(L)
2
- (36)
m

Now, by using of the four step, we calculate the work
done by the engine as

2L 2 L 2
ano=f ‘Widuf AT
L mL+ 7q) 2, m(L+ 27 qg)

Lj

+f2
L

2L, Ly
=" Fo@WdL+ [T B oo dL
L, 2L,

2 L 2
4—7TdL+fL Widl‘
m(Lsz + 27 q)} = m(L+ g )

L L
+[? BgowdL+ [) FogowdL
: 2

2
(LA,
m\ L Ly

(37
This quantity of energy is given by
2L, ’]T2
L A
2L, 2
= Flf(q*)()) (L) dL = 2LI12 (38)
Ly le

This quantity of energy Qc_ , is given back by

L
5 4 72

15 m(Ly+27q)}
2
= il an(l).
m L3 2

Then, the efficiency of our two-state quantum heat engine
is given by

Ly
Oc (g0 = szj;z F3_ (40 (L)AL
3

(39

=1 - S0, (40)

OH-(g—0)
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We can rewrite the equation (40) as

A Y
1 E3,q 2m L;+ 2 qTm q—0
n, = — =l 5 — 1
q Equ L - 2 (g—0)
2m\Li+ g

2
—1- 4(3) . (41)
L;
With remove deformed parameter is recover ordinary the
efficiency of the cycle [10].

5. Conclusion

In this paper, after introducing deformed formalism and the
Carnot cycle, Schrodinger equation in this formalism was
derived. The first we obtained the energy eigenvalues and the
wave function in the deformed Schrodinger equation. Then, we
consider the Carnot cycle problem in the formalism and we
investigated the adiabatic and isothermal quantum processes of
the system. Also, we obtained the thermodynamic properties
such as force parameters, the efficiency, and work done in the
quantum Carnot cycle. Finally, It was shown that by removing
the deformation, the ordinary results in the quantum Carnot cycle
were recovered.
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