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Abstract
In this paper, we consider the neutrino and anti-neutrino emerging from the Z0 decay and the
wave packet quantum mechanical approach is used to obtain the probability of detecting a
neutrino of flavor α and the corresponding anti-neutrino of flavor β at the positions L and L̄,
respectively. For this purpose, it is essential to construct a bipartite entangled state of neutrino
and anti-neutrino wave packets. The result of this calculation is the same as the result obtained
before in quantum field theory approach.
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1. Introduction

Neutrino oscillation, as one of the most interesting quantum
mechanical phenomena, provides an opportunity for studying
some aspects of quantum mechanics such as entanglement
and coherency [1–5]. In particular, there exist three kinds of
entanglements:

• In the case of neutrinos emerging from two body decays,
neutrinos and their accompanying charged leptons are
entangled due to the energy-momentum conservation.
Hence, in order to have neutrino oscillation, one needs to
detect neutrinos as well as the corresponding charged
leptons. It is in contrary to the realistic experiments.
However, the quantum uncertainties of energy and
momentum allow a disentangling between neutrinos and
their copartner such that the oscillation condition
according to realistic experiments is provided [1].

• One can stablish the entanglement statement between
various modes of single particle, for instance see [6]. In
the case of neutrinos, the entanglement properties
between different modes of the neutrino flavors were
investigated [2, 3].

• Neutrino and anti-neutrino emerging from neutral current
interactions are entangled with respect to either their
flavor modes or mass modes as well as the energy
momentum conservation [7]. In this paper, we study the
neutrino oscillation theory under this kind of entangle-
ments in quantum mechanics framework.

In fact, the neutrino oscillation phenomena are observed if
neutrinos have specified initial flavor. It is possible for
neutrinos emerging from the charged current processes.
However, since all flavors of neutrinos are created with equal
probability in the Z0 decay, it is impossible to determine the
flavor eigenstate of neutrinos in these processes. Therefore,
we cannot observe the oscillation pattern by detecting either
the neutrino or anti-neutrino emerging from the Z0 decay.
Meanwhile, it was shown, nontrivially, if both neutrino and
antineutrino are detected, one can have usual oscillation
pattern between detectors [7]. It is a manifestation of the
entanglement between neutrino and anti-neutrino.

On the other hand, there exist some debates on the basic
issues of the theory of neutrino oscillations [8]. In particular,
in a number of papers, neutrinos were treated as plane waves.
If it is applied accurately, it does not lead to neutrino oscil-
lation in general [9, 10]. In contrast, neutrino oscillations can
be consistently described either in the quantum-mechanical
(QM) wave packet approach, or within a quantum field the-
oretic (QFT) framework [10, 11]. In the QM approach,
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neutrinos are considered as a wave packet, and the amplitude
and probability of neutrino oscillation are manually normalized.
(This approach was first given in [12] and developed in [13].)
But in the framework of QFT, the particle accompanying neu-
trinos is written in the form of a wave packet, and the neutrinos
themselves play the role of a propagator, and the amplitude and
probability of oscillation are normal in themselves. (This
approach was first formulated by [14].) For neutrinos emerging
from the Z0 decay, the QFT treatment was considered in [15]. It
was shown that the oscillation pattern ceases if the distance
between the detectors is larger than the coherence length, even
though both neutrino and antineutrino states may be coherent. In
this paper, we reconsider this problem in QM wave packet
approach. This study shows the consistency of these approaches.

In the following section, the probability of detecting a
neutrino with flavor α in one detector and the corresponding
anti-neutrino with flavor β in the other detector is calculated.
In the last section we will discuss about our results.

2. Calculation of oscillation probability by QM wave
packets approach

Generally, we can write the one particle state with mass m in
momentum space as follows:

òñ = ñp fA p p pd , , 1A Ai∣ [ ] ( )∣ ( )

where f p p,A i( ) is the wave function in momentum space or
momentum distribution function with the mean momentum pi
taken at time t=0, and ñp A∣ belongs to the one-particle states of
momentum p, also at time t=0. The following notation is used
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Wave packet centered in x0 at time t0 is built with the help of
the space-time translation operator p xexp i . 0( ), where x0=
(t0, x0). If a wave packet in momentum space is given by
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for the corresponding wave packet in coordinate space centered
at the space and time x0 and t0, we will have
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Usually, the wave packets are taken to be of the Gaussian form
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where σp is the momentum uncertainty of neutrino state and it is
assumed to be very smaller than the corresponding mean
momentum. If the energy is expanded up to second order
around the average momentum pi we have
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In the case of Z0 decay, we know that it is blind to the
neutrino flavors. This means that all of three flavors and also three
mass eigenstates are created with the same probability amplitude,
which are manifested respectively by the following relations:
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Neutrino and anti-neutrino are produced during the time interval
D ~

G
t 1 where Γ is the decay width of Z0 and in a region with the

uncertainty Δx∼ vZΔt in which vZ is the Z0 group velocity.
Therefore, one must describe the neutrino and anti-neutrino by a
localized wave function with the coordinates of space-time (x, t)
and x t,( ¯ ¯), respectively. Moreover, the neutrino and anti-neutrino
must be in a bipartite entangled state due to the conservation of
momentum. Hence, the bipartite neutrino and anti-neutrino wave
function is written as follows:
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Here, f S(p, pi) and f p p,S
i

¯ ( ¯ ¯ ) are the momentum distribution
functions of neutrino and anti-neutrino with pi and pi¯ being the

corresponding mean momenta and = -E mp p2 2( ) . The
superscript S at f S(p, pi) and f p p,S

i
¯ ( ¯ ¯ ) indicates that they corre-

spond to the neutrino and antineutrino produced in source. The
factor of Dirac delta is added to make sure that the momentum is
conserved (we chose the Z0 rest frame). We put the Gaussian
momentum wave function similar to (7) in (13). The momentum
widths of f S(p, pi) and f p p,S

i
¯ ( ¯ ¯ ) are assumed to be spS

and spS
¯ ¯ ,

respectively. Using (8) and performing the corresponding inte-
grations with disregarding the normalization coefficient we obtain
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from (13)
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Because this calculation is done in Z0 rest frame, the group
velocities of the neutrino and antineutrino are equal and we
denote it by vi (subscript i indicates the mass eigenstate tag). Due
to the momentum conservation, we assume s s=p pS S

¯ ¯ and
take s s= 1xS pS

.
On the other hand, since the detection processes are

essentially time independent, detected states have no time
dependence. Therefore, the wave function of detected neu-
trino and antineutrino states is described by
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detected neutrino at position L and of the detected anti-neutrino at
position L̄, respectively. Again, we assume a localized Gaussian
wave function in momentum space similar to (7) for both detected
neutrino and detected anti-neutrino. Therefore, one can obtain the
corresponding wave function in position space as follows:
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where σxD and sxD
2¯ ¯ are the uncertainty of the detecting neutrino

and anti-neutrino processes. In general, the mean momenta of the
produced particles, pi and pi¯ , are different from one of the detected
particles, ¢pi and ¢pi¯ [11]. However, we assume that they coincide.

The probability amplitude of detecting νβ at the coordi-
nate L and the time t and nb¯ at the coordinate L̄ and the time t̄
is as follows:
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After the calculation of the integrals over the position coor-
dinates, we have

å

s

µ - +

+ + -
+ - +

ab a b
=

 U U E t t

t t
p L L

L L v

1

3
exp i

i
4

, 19

i
i i i

i
i

x

1

3

2

2

*
⎡
⎣⎢

⎤
⎦⎥

( ¯)

( ¯ ) ( ¯ ( ¯)) ( )

where s s s s= + +x xD xD xS
2 2 2 2¯ ¯ .

The probability of detecting a neutrino with flavor α at
the position L and the corresponding anti-neutrino with flavor
β at the position L̄ and vice versa is given by

=ab abP . 202∣ ∣ ( )

Because the neutrino and the antineutrino emission times and
the corresponding arrival times are not measured, we must
integrate over the time during which a neutrino travels from a
detector to the other detector. Hence, we have
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where T stands for +t t̄ . Therefore, the following expression
for Pαβ is obtained:
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Since we are concerned with the relativistic neutrinos, we will
use the approximation below
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in which E will be the energy of neutrinos if we ignore their
masses. We consider -E E Ei j  which corresponds to the
relativistic and quasi degenerate neutrinos. Without using any
other additional assumptions such as the same-energy and the
same-momentum, one can simplify (22) to the following
relation [8]:
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with the oscillation lengths Lij
osc and the coherence lengths

Lij
coh, for ¹i j, given by
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where D º -m m mij i j
2 2 2. The transition probability (24) is

the same as the result obtained in [15] in which we used the
QFT approach. It is noticeable that here we have manually
imposed the entanglement of neutrino and antineutrino state
via entering a delta function which grantees the momentum
conservation. Meanwhile, in the QFT approach it is per-
formed automatically by integrating over the Z0 position.

Similar to [15], the first term in the exponential is the
usual oscillating phase which gives the neutrino oscillation
pattern between two detectors with distance +L L̄. The
second term causes the oscillation amplitude to be suppressed
for + L L Lij

coh¯ . In fact, this is the coherence condition
which differs from the usual neutrino oscillation since it leads
to suppression of the neutrino oscillation amplitude while the
overlapping of various neutrino mass eigenstate may not
diminish. The last term in the exponential of the transition
probability suppresses the corresponding oscillatory term
unless the localizations of the production and detection pro-
cesses are much smaller than the oscillation length.

3. Conclusion

The standard neutrino oscillation is one of the most interest-
ing physical phenomena which is confirmed experimentally.
Indeed, neutrinos created by charged current have definite
flavor in the source but a different flavor is detected in the
detector, whose probability varies sinuously with distance
between the source and the detector. However, there exist
some debates about the theoretical explanation of these phe-
nomena [8]. We can treat this problem via two approaches;
QM and QFT approach. In QM approach, neutrinos are
described by a wave packet which propagates from the source
to the detector while in QFT approach neutrinos are treated as
a mediator particle between the source and the detec-
tor [10, 11].

In the case of neutrinos emerging from the neutral current
interactions, all three neutrino flavors are created with equal
probability, hence, we cannot see the neutrino oscillation by
detecting either neutrino or anti-neutrino. However, it was
shown if both neutrino and anti-neutrino are detected, it is
possible to have an oscillation pattern similar to the usual one
[7]. In order to include all of the theoretical viewpoints, this
problem was restudied in QFT approach [15]. In this paper,

we have restudied the issue in QM approach. Through this
approach, we attribute to each of the neutrino and anti-neu-
trino a wave packet whose localization is determined with the
uncertainty of the source. These wave packets propagate to
different detectors at positions L and L̄. The conservation of
momentum causes these wave packets to be entangled toge-
ther. Hereby, we have used a Dirac delta function to guarantee
the momentum conversation in the construction of the
bipartite entangled state of neutrino and anti-neutrino wave
packets. While we put manually the momentum conservation
delta function in this approach, it appears automatically by
integrating over Z0 position in the QFT approach. Meanwhile,
the oscillation probability which we have obtained is the same
as the result of [15]. The entanglement property plays an
important role in the final result; the coherency condition for
the oscillation is + <L L Lcoh¯ . This means that the over-
lapping of the wave functions of the neutrino and anti-neu-
trino corresponding to the various mass eigenstates may not
diminish, while the amplitude of the oscillation ceases due to
the decoherency effect.
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