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1 Introduction

The modern cosmological model, known as ΛCDM, in order to reproduce observations, as-
sumes that there exists a dark contribution to the total matter density of the Universe,
dubbed Cold Dark Matter (CDM). This component is typically associated to physics beyond
the known fields of the Standard Model of particle physics (SM), consisting of particles that
are moving very slowly (thence the “Cold” appellative) due to their heavy masses and very
weak interactions with the thermal bath (Weakly Interacting Massive Particles or WIMPs),
and thus characterised by non-relativistic phase-space distributions.

In this paper we focus on an alternative scenario, where Dark Matter (DM) is ultralight
(ULDM) and described by a classical field. The main assumptions are: I) in the early
Universe the dynamics leads to a practically homogeneous background field on large scales;
II) before matter domination era, the Hubble rate H becomes smaller than the mass of the
field (hence m � Heq ' 10−28 eV, with Heq the Hubble rate at epoch of matter-radiation
equality), and after that the field oscillates with a frequency essentially given by its mass,
with negligible self-interactions;1 III) the amplitude and phase of the field is determined by
the DM density and velocity fields.

The traditional fields that follow this pattern are axion-like particles and dilatons [1–7].
However, with these same assumptions, nearly the same late Universe cosmological evolution
and phenomenology can be obtained from a massive vector or spin-2 tensor field, as shown

1More precisely, the frequency can be approximated by m(1 + V 2/2) with V being the effective velocity
field of DM, which in the galactic halo can be estimated to be the virial velocity and is therefore very small:
the mean Milky Way halo velocity is V0 ∼ 10−3. This means that the field remains coherent in frequency over
at least 105 periods of oscillations.
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respectively in [8–14] and [15, 16].2 Such different models also come equipped with a variety
of possible interactions with the SM fields. Two relevant questions are: 1) To what extent it
is possible to discriminate between different masses, spins, and interactions? 2) Where can
we look for the imprints of the nature and properties of these DM candidates?

Several observables have been already identified in the literature, and they allow us to
probe different mass ranges and properties of ULDM [17–28], precision timing measurements
of binary pulsars offer a unique possibility to test the properties of such DM candidate, as
was observed in [29]. The robustness of the conclusions about these models clearly depends
on the observable, the theoretical and experimental uncertainties, the assumptions made in
modelling, etc. This highlights the importance of looking for alternatives either to probe
other regions of the parameter space or to test the same region in an independent way. On
general grounds, one expects characteristic signatures in the phenomenology of the different
candidates to be relevant when spatial gradients and pressure effects become important (i.e.,
when the description as a perfect fluid with no pressure breaks down due to inhomogeneities).
Alternatively, another regime is when the time scale of oscillations of the ULDM field becomes
comparable to that of the evolution of the observable under study, potentially leading to
resonant, secular effects. In this paper we study this second regime.

We consider the possibility that ULDM is given by a spin-2 field, and we focus on
the mass range 10−23 eV. m . 10−17 eV. Following previous studies for the scalar and
vector ULDM models [30, 31], here we look at the very precise measurements of the orbital
parameters of binary pulsars to probe the interactions between the ULDM spin-2 field and
the ordinary matter of which the stars are made.

In section 2 we introduce the spin-2 field and its properties; we will base our discussion
on [15] as a practical blueprint for our discussion, but our results are not limited to that
specific model. In the case of universal coupling the interactions between the ULDM and
ordinary matter are given in terms of a single parameter, α. Currently, the best constrains
on α for the mass range we consider are given by [32, 33].

In section 3, we show that due to the ULDM-SM interaction the coherent oscillations
of the field affect the dynamics of binary systems, leading to secular effects. Section 4 is
dedicated to the phenomenology. There we show that for several masses in the range we are
considering, the constraints we can obtain with this method are comparable or even better
than those previously obtained in the literature. In section 5 we summarise our conclusions.

2 Spin-2 ULDM

2.1 The spin-2 field

A massive spin-2 field Mµν is described by the Fierz-Pauli lagrangian density

L :=
1

2
MµνEµνρσMρσ −

1

4
m2
(
MµνM

µν −M2
)
, (2.1)

where M := gµνMµν , and the Lichnerowicz operator Eµνρσ is defined by

Eµνρσ := δµρ δ
ν
σ�− gµνgρσ�+ gµν∇ρ∇σ+

+ gρσ∇µ∇ν − δµσ∇ν∇ρ − δµρ∇ν∇σ . (2.2)

2In the case of vectors and tensors, in addition to the coherence in frequency mentioned in footnote 1, we
also assume that the field remains coherent in direction over the same length and time scales.
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This lagrangian arises for example in bimetric theory, where two spin-2 fields coexist in four
dimensions, in the limit where m� H, see [15, 16]. In this case the theory can be seen as a
massive spin-2 field in a standard Friedman-Lemâıtre-Robertson-Walker (FLRW) cosmology
described by the metric gµν .

The Bianchi identities ensure that the massive field Mµν propagates only five degrees
of freedom, which, for a homogeneous and isotropic FLRW background can be conveniently
chosen to be the six Mij components, subject to the additional tracelessness constraint M i

i =
0. The equations of motion for the ULDM field in the late Universe then read

M̈ij + 3HṀij −4Mij +m2Mij = 0 . (2.3)

This equation is reminiscent of that for scalar ULDM and it has the same solutions. The
homogeneous background solution is given by

Mij =
M̂ij

R3/2
cos (mt+ Υ)εij =

√
2ρDM

mR3/2
cos (mt+ Υ)εij , (2.4)

where R is the scale factor of the Universe, the overall amplitude has been fixed so that the
ULDM energy density matches the observed ρDM, Υ is a random phase, and εij is an angular
quadrupole matrix with unit norm, zero trace and is symmetric, see appendix A. With this
solution the ULDM energy density ρDM ∼ R−3, and the pressure PDM averages to zero on
the large time-scales relevant for the cosmological background evolution.

One interesting diversion on bimetric theory is partly-massless gravity [34, 35]. Without
going into details, the crucial feature of that model is that, under some specific conditions,
only the four degrees of freedom of the Mij associated with the spin-1 and spin-2 polarisations
do propagate, whereas the spin-0 polarisation does not. Our results also apply to this case
as it will be clear below.

Another possibility one could think of in this context is higher-dimensional spin-2
fields; once the reduction (or compactification) to four dimensions is performed, the higher-
dimensional fields turn into a four-dimensional tower of massive states, with masses set by
the parameters of the compactification scheme / mechanism [36, 37]. In this case the coupling
to ordinary matter may be non-universal; however our results can be generalised to this case.

On scales relevant for binary pulsars, the local ULDM field can be written as in eq. (2.4)
where the density ρDM and phase Υ are now given by their local values, which will depend
on the spatial location of the binary inside the ULDM halo. As for the scalar case, one
expects gradients of the field to be relevant at scales of order of the de Broglie wavelength
λdB ≡ (mV )−1, where V is the effective velocity of the ULDM. In what follows we will work
at leading order in the post-Newtonian expansion. Therefore, assuming gradients of order
λ−1

dB, we will keep only the leading order in the gradients and neglect higher order derivatives
of the ULDM field.

2.2 DM interactions with the stars

The interaction between the spin-2 ULDM and ordinary matter is given by the action

Sint := λ

∫
d4x
√
−gMµνT

µν , (2.5)

where λ := α/2MP is the interaction strength,3 MP ≈ 2.4× 1018 GeV is the reduced Planck
mass, and Tµν is the energy momentum tensor (EMT) of standard matter.

3In bimetric theory the parameter α has three roles: it is the interaction strength of the massive field
with the SM, it is the mixing parameter between the massless and massive eigenstates of the theory, and it
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For our purposes we can approximate each star in a binary system, labelled as 1 and 2,
as a point particle with mass MA (with A = [1, 2]), energy EA, position ~xA, and 4-velocity
uµA; the EMT for the system would then be

Tµν = E1u
µ
1u

ν
1δ(~x− ~x1) + E2u

µ
2u

ν
2δ(~x− ~x2) . (2.6)

Since the stars are non-relativistic EA ' MA and uiA = viA, with viA := dxiA/dt the
(non-relativistic) velocity of the body. Moreover, since ∂µM

µν = 0, one can see that M0i

(M00) is of first (second) order in gradients of Mij . Therefore, the interaction lagrangian at
leading order is given by

Lint = λMT

[
M00 + 2M0iV

i
CM +MijV

i
CMV

j
CM

]
+ λµvivjMij , (2.7)

where MT is the total mass is MT := M1 + M2, µ := M1M2/MT , vi := vi1 − vi2 the relative
velocity of the stars, and V i

CM := (M1v
i
1 +M2v

i
2)/MT the center of mass velocity of the binary

system.

3 Secular effects

In this section we use the method of osculating orbits to compute the secular effects on the
orbital parameters. We start by noticing that the equations for the center of mass of the
binary system decouple from the ones for ri := ri1 − ri2 that describe the relative motion.
Moreover, the perturbation on the center of mass oscillates as the ULDM field and averages
to zero over time scales much longer than the period of oscillation and, therefore, it does not
produce a secular effect. On the other hand, we can express the equation of motion for the
orbital motion as

v̇i + 2λ
(
Mij v̇

j + Ṁijv
j
)

+
GMT

r3
ri = 0 , (3.1)

where G := 8π/M2
P is Newton’s constant. Using the fact that the unperturbed orbit is de-

scribed by v̇i = −GMT ri/r
3, we can derive the expression for the perturbation, parametrised

in terms of a force per unit mass Fi, to the relative acceleration between bodies as v̇i →
v̇i + δv̇i := v̇i + Fi:

Fi = 2λ

[
GMT

r3
Mijr

j − Ṁijv
j

]
. (3.2)

Using now eq. (2.4), and taking into account that rj = rr̂j and vj = ṙr̂j + rθ̇θ̂j , where we
choose the reference frame of the binary system with polar coordinates (r, θ, z) (the unit
vectors are denoted as (r̂, θ̂, ẑ)), Fi can be recast as

Fi =
√

2κ
{
ωb
m

(a
r

)2
r̂j cos(mt+ Υ)

+
1

@

[
r̂je sin θ + θ̂j (1 + e cos θ)

]
sin(mt+ Υ)

}
εij , (3.3)

where κ := 2λaωb
√
ρDM,

Pb :=
2π

ωb
= 2π

√
a3

GMT
, (3.4)

parametrises the strength of the self-interactions of one metric with respect to the other. In the limit of α→ 0
the theory reduces to General Relativity.
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is the orbital period, ωb the orbital frequency, a is the semi-major axis of the system, e its
eccentricity, and we defined @ :=

√
1− e2 for brevity.

The perturbations caused by the ULDM on the binary system oscillates; however, as
noted in [29–31], if the ULDM oscillation frequency m is close to the orbital frequency ωb or
an integer multiple of it Nωb, with N ∈ N, the system will experience secular effects due to
the resonant behaviour of the perturbations.

In order to obtain the secular contribution to the variation of each orbital parameter we
proceed as in [30, 31], starting from the Lagrange Planetary equations (see appendix B). To
make the paper as self-contained as possible, here we summarise the procedure for the semi-
major axis a, while we provide the equations for all other orbital parameters in appendix B.
In the Post-Keplerian formalism of osculating orbits [38] (see also [30, 31]) the time derivative
of a is given by

ȧ

a
=

2

ωb

{
e sin θ

a@
Fr +

@

r
Fθ

}
, (3.5)

where we have decomposed the vector F i in the reference frame of the binary system as
~F = Frr̂ + Fθθ̂ + Fz ẑ (see figure 1).

The polarisation tensor εij (defined in the same cartesian orbital frame) can be de-
composed into five independent spherical tensors with real coefficients (see appendix A for
details):

εij =
1√
2

 εTcχ − εS/
√

3 εTsχ εVcη
εTsχ −εTcχ − εS/

√
3 εVsη

εVcη εVsη 2εS/
√

3

 , (3.6)

where we have defined three real parameters, εS, εV and εT, satisfying εS
2 + εV

2 + εT
2 = 1,

and two angular variables, η and χ. Here and in what follows we employ the shortcut notation
sx := sinx, cx := cosx. The above parametrization defines a scalar, a vector, and a tensor
component of εij , respectively, as the contribution proportional to εS, εV and εT.4

Using eq. (3.6) we can write explicitly:

Fr =κ
{
ωb
m

(a
r

)2
[
εTcχ−2θ−

εS√
3

]
cmt+Υ +

1

@

[
εTsχ−2θ+eεTsχ−θ−e

εS√
3
sθ

]
smt+Υ

}
, (3.7a)

Fθ =κ
{
ωb
m

(a
r

)2
[εTsχ−2θ]cmt+Υ−

1

@

[
εTcχ−2θ+eεTcχ−θ+

εS√
3

(1+ecθ)

]
smt+Υ

}
, (3.7b)

Fz =κ
{
ωb
m

(a
r

)2
[εVcη−θ]cmt+Υ +

1

@
[εVsη−θ+eεVsη]smt+Υ

}
. (3.7c)

As detailed in [30, 31], we obtain secular variations of the orbital parameters when
the binary system is in resonance with the oscillating background perturbations, as these
oscillations enter directly in the expressions for the force eqs. (3.7a)–(3.7c). Expressing
the orbit in terms of Bessel series in sin[nωb(t − t0)] and cos[nωb(t − t0)], with t0 the time
of periastron, and parameterising the (small) gap between the two frequencies as δωb :=
m −Nωb, where N is the resonance harmonic number and δωb � m, then, upon averaging

4The separation in scalar, vector, and tensor components depends on the choice of reference frame. Our
definition is convenient for understanding and visualising the interplay between the five components of the
oscillating quadrupole and the binary system, and to make connection with the previously studied cases of a
scalar perturbation.
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Figure 1. Description of Keplerian orbits in terms of the orbital elements viewed in the fundamental
reference frame (X,Y, Z). The cartesian orbital frame (x, y, z) and the polar one (r, θ, z) are also
shown (centered at M2 for convenience).

over a long time ∆t for which Pb/N � ∆t� 2π/δωb, we have〈
snωb(t−t0)smt+Υ

〉
≈ 1

2
cγ(t)δn,N ,

〈
snωb(t−t0)cmt+Υ

〉
≈ −1

2
sγ(t)δn,N ,〈

cnωb(t−t0)smt+Υ

〉
≈ 1

2
sγ(t)δn,N ,

〈
cnωb(t−t0)cmt+Υ

〉
≈ 1

2
cγ(t)δn,N , (3.8)

with
γ(t) := δωb(t− t0) +mt0 + Υ . (3.9)

Keeping only the dominant secular term n = N and using Ṗb/Pb = 3ȧ/2a, we obtain:〈
Ṗb

〉
= −2λPb

√
3ρDM

{
εSJN (Ne)sγ(t) + εT

[
F+(N, e)sγ(t)+χ + F−(N, e)sγ(t)−χ

]}
, (3.10)

with JN (z) the Bessel functions of the first kind and

F+(N, e) :=

√
3

4

[
2JN (Ne) +

2eJ ′N (Ne)

@
+

(
B̃N (Ne)−BN (Ne)

@2

)]
, (3.11a)

F−(N, e) :=

√
3

4

[
2JN (Ne)−

2eJ ′N (Ne)

@
−

(
B̃N (Ne) +BN (Ne)

@2

)]
. (3.11b)

The coefficients B̃N (Ne) and BN (Ne) are given in appendix B in terms of Bessel functions.
The choice of factorisation in the F+(N, e) and F−(N, e) functions comes from the fact that
they will behave very differently in the limit of circular orbits, as we will see in section 4.

4 Phenomenology

4.1 Orbital period

We start by analysing the secular effect of the DM field on the orbital period. From eq. (3.10)
we see that only the tensor and scalar components of the spin-2 field contribute to the drift
in the orbital period.
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In order to place a constraint we took the observed value for the orbital period change,
and, where available, we subtracted all kinematic effects (Shklovskii effect, differential Galac-
tic rotation, Galactic potential), and the change due to gravitational wave damping; in one
case (B1259-63) we subtracted also the effect due to the mass loss from the companion due
to its stellar wind. If not available, we used the upper bound estimated in the corresponding
references, which we provide in table 1. We call this the central value of the “intrinsic”
secular period drift, which, absent any other effects, should be compatible with zero.

In order to be fully conservative, we then impose that the effect due to the oscillating
ULDM be smaller than (the absolute value of) the central value of the “intrinsic” orbital
period change plus its the error (obtained by adding all errors in quadrature); in this way we
account for the largest possible deviation from zero as acceptable by the measurements, see
also the discussion in [30]. Notice that we have used the same criterium for the time-variation
of the eccentricity. We collect all the binary systems used in this analysis in table 1.

If we keep only εS, the polarisation matrix εij becomes diagonal and, by construction,
the eigenvalues of εij associated to the orbital plane are identical. Therefore, as for the scalar
case studied previously in [29, 30] and as expected from symmetry, the effect will survive only
for eccentric orbits.5 We show the contraints obtained with current data in figure 2. Here and
in what follows we assume a conservative value for the local DM density, ρDM = 0.3 GeV/cm3.

The existing constraints on the coupling α come from the Cassini tracking experi-
ment [32]. The planetary constraints are obtained by measuring the extra-precession of
the planets of the inner solar system, see [33]; these constraints update and supersede those
reported in [39, 40] in part of the mass range.

In general, without tuning the angular parameters of the quadrupole, all the components
of εij will contribute in a similar way and, as we show next, unlike the scalar case, also
systems with circular orbits will be affected. Indeed, the tensor component εT leads to
a much richer phenomenology. The effect on Ṗb depends on the orientation of the tensor
polarisations, as we can see from eq. (3.10). In particular, for circular orbits the N = 2
harmonic contributes to the secular drift of the orbital period since F+(N, e) →

√
3δN,2/4

while F−(N, e)→ eJ ′N (Ne)→ JN (Ne)→ 0 when e→ 0 (see eq. (B.8)), whence〈
Ṗb

〉
→ −3

2
λPb
√
ρDMεTsγ(t)+χ . (4.1)

We show the limits on α obtained from the two tensor polariations separately in figure 3
for the F+(N, e) piece, and in figure 4 for the F−(N, e) one. It is worth emphasising that
in figure 3 all systems contribute, since this term does not vanish for circular orbits. For
example, we can observe the effect of the e → 0 limit in J0737-3039, which has e ≈ 0.1:
the N = 1 and N = [3, 4, 5] harmonics are significantly less constraining than the dominant
N = 2 contribution; as e → 0 this becomes more and more pronounced. This is relevant
because systems with near-circular orbits are much more common in nature than highly
eccentric systems [41, 42]. The F−(N, e) function instead vanishes when e → 0, so the only
systems that contribute to figure 4 are again the same ones that do in the scalar case.

Lastly, as we can see from eq. (3.10) the vector component εV does not contribute
to the secular drift in orbital period. This component generates a perturbation in the ẑ
direction and will have an effect on the binary through the non-vanishing Fz, see below for
the discussion of the other orbital parameters.

5Notice that the effective coupling of ULDM and the stars we are considering here differs from the univer-
sally coupling scalar interaction assumed in [29].
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Figure 2. Limits on the ULDM coupling α versus the ULDM mass m obtained from the scalar
polarisation εS. Dark coloured symbols are the current bounds obtained from the corresponding
systems with parameters given in table 1. The same symbols in lighter colours show the constraints
that would be obtained for the same systems were the precision on Ṗb a factor of 10 higher. The
largest symbols refer to the first resonance N = 1, and the constraints for higher resonances (up to
N = 5) are shown with the same symbols but progressively smaller sizes. Symbols in the legend which
do not appear in this figure are relevant for figures 3 and 4; we collect all the binary systems used in
this analysis in table 1. The shaded region above the dashed purple line is excluded by solar system
tests [32]. The shaded region above the dotted green line is excluded by planetary constraints [33].

4.2 Other orbital parameters: nearly circular orbits

So far we have focussed on the secular drift of the orbital period, Ṗb. Analogously, all
other orbital parameters might be affected secularly. In the previous section we assessed the
constraints on α that can be achieved from the measurements of Ṗb, independently of the
effect on the other orbital parameters. The same analysis can be done independently for
the drift of each orbital parameter. Furthermore, one can expect to improve the constrains
on α by fitting data taking into account that the perturbation of the orbital parameters
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Figure 3. Limits on the ULDM coupling α versus the ULDM mass m obtained from the F+(N, e)
contribution of the tensor polarisation εT, see eq. (3.10). See figure 2 for symbol references.

are not independent. We provide all the relevant equations necessary for a quantitative
and comprehensive analysis in appendix B. However, we leave such analysis for future work.
In this section, we briefly discuss on the effects on the other orbital parameters and, for
simplicity, we consider only systems with near circular orbits. From Panel 1 in appendix B,
and the use of eq. (B.8), it is immediate to obtain the secular changes of all six orbital
parameters for e→ 0. In this limit, only three resonances give a non-vanishing contribution:
those with N = 1, 2, 3 that correspond to masses m ' ωb, m ' 2ωb, and m ' 3ωb.

The N = 1, 3 resonances yield a qualitatively different phenomenology from that with
N = 2. As we have discussed in the previous section, only the N = 2 resonance affects the
orbital period in this limit. Taking into account that also the other parameters are affected,
we obtain the result (N = 2 and e→ 0):〈

Ṗb

〉
= −3λ

2
Pb
√
ρDMεTsγ(t)+χ , (4.2a)

〈ė〉 = 0 , (4.2b)〈
Ω̇
〉

=
λ
√
ρDMεV

4sι
sγ(t)+η−ω , (4.2c)

〈ι̇〉 = −
λ
√
ρDMεV

4
cγ(t)+η−ω , (4.2d)

e 〈$̇〉 = 0 , (4.2e)

〈ε̇1〉 = λ
√
ρDMεTcγ(t)+χ + 2s2

ι/2

〈
Ω̇
〉
. (4.2f)
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Figure 4. Limits on the ULDM coupling α versus the ULDM mass m obtained from the F−(N, e)
contribution of the tensor polarisation εT, see eq. (3.10). See figure 2 for symbol references.

where for the argument of the periastron ω = $ − Ω the leading order contribution goes
as 1/e and vanishes in this case.6 Notice that also the vector component εV contributes,
which (since this yields a perturbation that is ortogonal to the orbital plane) only produces
an effect in the orientation of the orbit with respect to the fundamental reference frame. It
is however too difficult to obtain a bound on this kind of effect from current measurements
(see for instance [44]). The strongest constraints come from the measurements of Ṗb that we
have presented above.

For N = 1 and N = 3 the effect is similar to the Damour-Schäfer effect [45], which has
also been discussed in the context of ULDM models in [30, 31] for other couplings to scalar
and vector ULDM fields, and the equations can be recasted as (e→ 0):

〈ė〉 =
3

2

F SEP,eff
y

aωb
, 〈ω̇〉 = −3

2

F SEP,eff
x

eaωb
, (4.3)〈

Ṗb

〉
=
〈

Ω̇
〉

= 〈ι̇〉 = 〈ε̇1〉 = 0 , (4.4)

where, for N = 1

~F SEP,eff =
2

9
aωbλ

√
ρDM

√
3εS

[
cγ(t)x̂− sγ(t)ŷ

]
, (4.5)

while, for N = 3

~F SEP,eff = −2

9
aωbλ

√
ρDMεT

[
cγ(t)+χx̂+ sγ(t)+χŷ

]
. (4.6)

6The reason for keeping up to this order here is that for low-eccentricity orbits, the motion is more
appropriately parameterised in terms of the parameters η = e sinω and κ = e cosω, which are the Laplace-
Lagrange parameters that are actually used in the data analysis (see for instance [43]).
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This effect can be used to constrain α both for masses near ωb (N = 1) and 3ωb (N = 3) which
do not affect secularly Ṗb in the limit e→ 0. For instance, for the system J1713+0747 [46–48],
the results presented in [48] indicate ė = (−3±4)×10−18s−1. Using this and assuming N = 1
with εSsγ(t) ' 1 and N = 3 with εTsγ(t)+χ ' 1, we obtain α . 1.2×10−2 for m ' 7×10−22 eV
and α . 1.8 × 10−2 for m ' 2 × 10−21 eV, respectively, which is competitive with the
current bounds for these masses obtained from the Cassini experiment [32]. We display these
constraints in figures 2 and 3.

5 Conclusions

In this paper we have assessed the constrains that can be achieved on the direct coupling
α of a spin-2 ULDM field and the stars in binary systems. As for measurable quantities,
we have considered the variation of the orbital parameters of binary pulsars. Those quan-
tities are secularly affected by the ULDM field when the mass of the field m is close to an
integer multiple N of the orbital frequency of the binary system ωb, i.e., when the resonant
condition m ' Nωb applies. As studied in [30] for scalar ULDM fields, when detuning from
resonance, the effects on the quantities we are considering are suppressed. For this reason,
we have focussed here only on the secular contributions. We have centered our analysis on
the measurements of the secular drift of the orbital period as it is the most constraining one.
However, from the results we provide in appendix B it is possible to work out the effects on
all orbital parameters. In particular, as for the scalar field case, there are situations in which
the secular variation of Ṗb is negligible, but the secular drift for other parameters is not.
Indeed, we showed cases where the best constraints come from the measurement of ė. Fur-
thermore, as emphasised in [30], it would be worth to perform such analysis to assess whether
the constrains obtained either only from Ṗb or only from ė can be improved. In view of the
improvement in the precision of future binary pulsar measurements and the increasing num-
ber of systems suitable for timing analysis expected for the future from observations as with
SKA [49], from our study we can conclude that constrains up to α ∼ 10−5 will be potentially
achievable for a considerably large fraction of the range of masses of the ULDM field.

Along the same lines, with the next generation of radio arrays it becomes crucial to
take advantage of the large number of systems by developing new statistical approaches and
techniques for the extraction of the constraints on the ULDM field. The main idea is that,
by using the whole population of binaries at once, we should be able to boost the signal due
to the ULDM field at the expense of the noise. This is because since the ULDM effects are
coherent in time, other secular effects are not expected to be. We plan to develop several
such approaches in a future work.
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A Decomposition of the angular quadrupole matrix

Following [50], we can decompose any symmetric, traceless and constant tensor in terms of
spherical harmonics as εij :=

∑
m amY2m

ij where Y 2m := Y2m
ij n

inj with Y2m(n̂) are the real

spherical harmonics and n̂ := (x, y, z) is the unit coordinate vector (so that x2 +y2 +z2 = 1).
We normalise the spherical harmonics as

Y 2,−2 =
√

2xy , Y 2,2 =
(
x2 − y2

)
/
√

2 ,

Y 2,−1 =
√

2yz , Y 2,1 =
√

2zx ,

Y 2,0 =
(
x2 + y2 − 2z2

)
/
√

6 . (A.1)

The multipole matrices then look like

Y2,−2 =
1√
2

 0 1 0
1 0 0
0 0 0

 , Y2,2 =
1√
2

 1 0 0
0 −1 0
0 0 0

 ,

Y2,−1 =
1√
2

 0 0 0
0 0 1
0 1 0

 , Y2,1 =
1√
2

 0 0 1
0 0 0
1 0 0

 ,

Y2,0 = − 1√
6

 1 0 0
0 1 0
0 0 −2

 , (A.2)

and the polarisation matrix turns out to be

εij =
1√
2

 a2 − a0/
√

3 a−2 a1

a−2 −a2 − a0/
√

3 a−1

a1 a−1 2a0/
√

3

 . (A.3)

Our parametrisation eq. (3.6) in terms of tensor, vector, and scalar components can be
recovered with the choice

a−2 := a× := εT sinχ , a2 := a+ := εT cosχ ,

a−1 := aL := εV sin η , a1 := aR := εV cos η ,

a0 := aS := εS , (A.4)

where εS
2 + εV

2 + εT
2 = 1.

An alternative parametrisation in terms of four angles (ζ, β, ξ, ψ) can be given as

a−2 := sin ζ cosβ sinψ , a2 := sin ζ cosβ cosψ ,

a−1 := sin ζ sinβ sin ξ , a1 := sin ζ sinβ cos ξ ,

a0 := cos ζ . (A.5)

B Elliptic Keplerian orbit and Fourier decomposition

We collect here the useful formulas of Keplerian mechanics and the osculating orbits formal-
ism. More details can be found in [38]. Following the same notation as in [30, 31] we write
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down the Lagrange planetary equations,

ȧ

a
=

2

ωb

{
e sin θ

a@
Fr +

@

r
Fθ

}
, (B.1a)

ė =
@

aωb
{(cos θ + cosE)Fθ + sin θFr} , (B.1b)

Ω̇ =
r sin(θ + ω)

a2ωb@ sin ι
Fz , (B.1c)

ι̇ =
r cos(θ + ω)

a2ωb@
Fz , (B.1d)

$̇ =
@

aeωb

{[
1 +

r

a@2

]
sin θFθ − cos θFr

}
+ 2 sin2 (ι/2) Ω̇ , (B.1e)

ε̇1 = − 2r

a2ωb
Fr + (1− @) $̇ + 2@ sin2 (ι/2) Ω̇ , (B.1f)

in terms of the following six independent orbital elements: the semimajor axis a, the orbital
eccentricity e, the longitude of the ascending node Ω, the longitude of the periastron $ =
ω+ Ω (with ω the argument of the periastron, not to be confused with the orbital frequency
ωb), the time of periastron t0, and the inclination angle ι of the orbital plane with respect to
the reference plane of the sky. Here ε1 = ωb(t− t0) +$−

∫
dt ωb, ωb =

√
GMT /a3 = 2π/Pb,

E is the eccentric anomaly that is defined by ωb(t− t0) = E − e sinE. We have also defined
@ :=
√

1− e2. We use cartesian (x, y, z) and cylindric (r, θ, z) coordinates in the orbital plane,
and the overdot stands for a derivative with respect to time t. Therefore, ~r := r̂ = r cos θx̂+
r sin θŷ, with θ the angular position of M1 with respect to the direction of the pericentre, x̂,
and we have decomposed the perturbation as ~F = Frr̂ + Fθθ̂ + Fz ẑ. The expressions of the
components of ~F or a generic vector in the (X,Y, Z) coordinates can be found in [51].

The orbital motion for e 6= 0 can not be expressed in a closed form as a function of
time, but can be decomposed as a Fourier series in terms of Bessel functions as:

x/a = −3e

2
+ 2

∑ J ′n(ne)

n
cos(nωbt) , (B.2a)

y/a =
2
√

1− e2

e

∑ Jn(ne)

n
sin(nωbt) , (B.2b)

r/a = 1 +
e2

2
− 2e

∑ J ′n(ne)

n
cos(nωbt) , (B.2c)

(x/a)2 =
1

2
+ 2e2 +

∑
qxx(ne) cos(nωbt) , (B.2d)

(y/a)2 =
1− e2

2
+
∑

qyy(ne) cos(nωbt) , (B.2e)

xy/a2 = −8e
√

1− e2

3
+
∑

qxy(ne) sin(nωbt) , (B.2f)

(r/a)2 = 1 +
3e2

2
− 4

∑ Jn(ne)

n2
cos(nωbt) , (B.2g)

cos θ = −e+
2(1− e2)

e

∑
Jn(ne) cos(nωbt) , (B.2h)

sin θ = 2
√

1− e2
∑

J ′n(ne) sin(nωbt) , (B.2i)

(a/r)2 cos θ = 2
∑

nJ ′n(ne) cos(nωbt) , (B.2j)
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(a/r)2 sin θ =
2
√

1− e2

e

∑
nJn(ne) sin(nωbt) , (B.2k)

sin2 θ = B0 +
∑

Bn(ne) cos(nωbt) , (B.2l)

sin θ cos θ = B̃0 +
∑

B̃n(ne) sin(nωbt) , (B.2m)

where the sums run over n ∈ [1,∞). The expansion coefficients are

nqxx(ne) := Jn−2(ne)− Jn+2(ne)− 2e [Jn−1(ne)− Jn+1(ne)] (B.3a)

= 4J ′n(ne)
(1− e2)

e
− 4Jn(ne)

ne2
,

nqyy(ne) := (1− e2) [Jn+2(ne)− Jn−2(ne)] (B.3b)

= −nqxx(ne)− 4Jn(ne)/n ,

nqxy(ne) :=
√

1− e2 [−2Jn(ne) + Jn+2(ne) + Jn−2(ne)] (B.3c)

= 4
√

1− e2

[
Jn(ne)

(1− e2)

e2
− J ′n(ne)

ne

]
,

where the Jn(z) are Bessel functions of the first kind. The coefficients Bn(ne) and B̃n(ne)
are more complex, and can be written in terms of series of Bessel functions as we show next
(see also [52]).

Expansion of sin2 θ.

sin2 θ =
@2 sin2E

(1− e cosE)2
:= B0 +

∑
n

Bn cos (nωbt) , (B.4)

where as usual E is the eccentric anomaly defined by ωbt := E − e sinE.

B0 =
@2

1 + @
,

Bn =
@

2

[
2Jn − Jn+2 − Jn−2

+
∑
q

Eq (2Jn+q − Jn+q+2 − Jn+q−2 + 2Jn−q − Jn−q+2 − Jn−q−2)

]
. (B.5)

where the sums run over q ∈ [1,+∞) and E := e/(1 + @).

Expansion of sin θ cos θ.

sin θ cos θ =
@ sinE(cosE − e)

(1− e cosE)2
:= B̃0 +

∑
n

B̃n sin (nωbt) , (B.6)

where

B̃0 =
@

πe2

[
@2 log

(
1 + e

1− e

)
− 2e

]
,

B̃n = J ′n+1 + J ′n−1 − 2eJ ′n

+
∑
q

Eq
(
J ′n+q+1 + J ′n+q−1 − 2eJ ′n+q + J ′n−q+1 + J ′n−q−1 − 2eJ ′n−q

)
. (B.7)
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For computational reasons we can not run the q sum to infinity, so we have to limit our-
selves to a finite number of terms. We have studied the convergence of the eqs. (B.5) and (B.7)
series numerically and we have found that, at least out to the harmonics of interest for us, that
is, N = 5, truncating the sum at q = 3(n+2) (where n is the harmonic we are computing) the
series converges rapidly and the result approximates the full series to better than percent level.

Using the expansion of the Bessel function, JN (x) ' (x/2)N/N !, and its derivative for
small values of e, up to corrections of order e2,we get

eJ ′N (Ne) ' JN (Ne)→ e

2
δN,1 , (B.8a)

B̃N (Ne) ' −BN (Ne)→ 1

2
δN,2 + e(δN,3 − δN,1) . (B.8b)

In Panel 1 we collect the six orbital parameters written in terms of the polarisation
components of εij ; then, in Panel 2, we show the explicit expressions for the secular changes
of all orbital parameters in terms of Bessel functions.

Panel 1. Expressions for all six orbital parameters in terms of the polarisations. We use the shortcut
notation sx := sinx, cx := cosx.

ȧ

a
=

4λ
√
ρDM

@

{
ωb
m

(a
r

)2
[
εT(sχ−2θ + esχ−θ)− e

εS√
3
sθ

]
cmt+Υ

−1

@

[
εT(cχ−2θ + 2ecχ−θ + e2cχ) +

εS√
3

(1 + e2 + 2ecθ)

]
smt+Υ

}
(B.9a)

ė =
2λ@
√
ρDM

e

{
ωb
m

(a
r

)2
[(

1− r

a

)
εTsχ−2θ + eεTsχ−θ − e

εS√
3
sθ

]
c(mt+Υ)

−1

@

[(
1− r

a

)
εTcχ−2θ +

(
2− r

a

)
eεTcχ−θ + 2

εS√
3
e(e+ cθ) + e2εTcχ

]
smt+Υ

}
(B.9b)

Ω̇ =
2λ
√
ρDMεV

@ sin ι

{
ωb
m

(a
r

)
cη−θsθ+ωcmt+Υ +

1

@

(r
a

)
(sη−θ + esη) sω+θsmt+Υ

}
(B.9c)

ι̇ =
2λ
√
ρDMεV

@

{
ωb
m

(a
r

)
cη−θcθ+ωcmt+Υ +

1

@

(r
a

)
cθ−ω (sη−θ + esη) smt+Υ

}
(B.9d)

$̇ =
2λ@
√
ρDM

e2

{
ωb
m

(a
r

)2
[
εTcχ−2θ − eεTcχ−θ + e

εS√
3
cθ

]
cmt+Υ

− 1

@2

ωb
m

(a
r

)
εT (cχ−2θ + ecχ−θ) cmt+Υ −

1

@

[
εT(s2θ−χ + e2sχ) + 2e

εS√
3
sθ

]
smt+Υ

− 1

@3

(r
a

)
εT

(
sχ−2θ + 2esχ−θ + e2sχ

)
smt+Υ

}
+ 2s2

ι/2Ω̇ (B.9e)

ε̇1 = −4λ
√
ρDM

{
ωb
m

(a
r

)[
εTcχ−2θ −

εS√
3

]
cmt+Υ

+
1

@

(r
a

)[
εTsχ−2θ + eεTsχ−θ − e

εS√
3
sθ

]
smt+Υ

}
+ (1− @) $̇ + 2@s2

ι/2Ω̇ (B.9f)
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Panel 2. Secular changes of all six orbital parameters.

〈
ȧ

a

〉
= −4

3
λ
√

3ρDM

{
εSJN (Ne)sγ(t) + εT

[
F+(N, e)sγ(t)+χ + F−(N, e)sγ(t)−χ

]}
(B.10a)

〈ė〉 = −2

3
λ
√

3ρDM
@2

eN

{
εT

[
F+(N, e)

(
N − 2

@

)
sγ(t)+χ + F−(N, e)

(
N +

2

@

)
sγ(t)−χ

]
+ εSNJN (Ne)sγ(t)

}
(B.10b)〈

Ω̇
〉

= −
λ
√
ρDM

Nsι
εV

{
cγ(t)

[(
BN (Ne)

@3
− 2JN (Ne)

@

)
sη−ω −

2JN (Ne)

@
sη+ω

]
− sγ(t)

[
B̃N (Ne)

@3
+

2eJ ′N (Ne)

@2

]
cη−ω

}
(B.10c)

〈ι̇〉 =
λ
√
ρDM

N
εV

{
cγ(t)

[(
BN (Ne)

@3
− 2JN (Ne)

@

)
cη−ω +

2JN (Ne)

@
cη+ω

]
+ sγ(t)

[
B̃N (Ne)

@3
+

2eJ ′N (Ne)

@2

]
sη−ω

}
(B.10d)

〈$̇〉 =
2

3
λ
√

3ρDM
@2

e2N

{
εT

[
cγ(t)−χ

(
F−(N, e)

(
N +

2− e2

@3

)
+

√
3e2JN (Ne)

2@3

)
− cγ(t)+χ

(
F+(N, e)

(
N − 2− e2

@3

)
−
√

3e2JN (Ne)

2@3

)]
− εS

@
NeJ ′N (Ne)cγ(t)

}
+ 2s2

ι/2

〈
Ω̇
〉

(B.10e)

〈ε̇1〉 =
8

3

λ
√

3ρDM

N

{
εT

[
cγ(t)+χF+(N, e) + cγ(t)−χF−(N, e)

]
+ εSJN (Ne)cγ(t)

}
+ (1− @) 〈$̇〉+ 2@s2

ι/2

〈
Ω̇
〉

(B.10f)

C Data

Table 1 lists all the binary systems that we have used in this study, alongside their relevant
properties.
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Name M1 [M�] M2 [M�] e Pb Ṗ int
b δṖ int

b References

J1903+0327 1.0 1.7 0.44 95 -6.4e-11 3.1e-11 [53]
J1740-3052 20 1.4 ¶ 0.58 231 NA 3.0e-9 † [54]
J0737-3039 1.2 1.3 0.088 0.10 -4.0e-15 1.7e-14 [55, 56]
B1913+16 1.4 1.4 0.62 0.32 5.0e-15 4.0e-15 [57]
B1259-63 24 1.4 ¶ 0.87 1237 1.0e-9 7.0e-9 [58]
J1012+5307 0.16 1.6 1.3e-6 0.60 -1.8e-14 2.1e-14 [59–61]
J1614-2230 0.49 1.9 1.3e-6 8.7 3.4e-13 2.0e-13 [61, 62]
J1909-3744 0.21 1.5 1.2e-7 1.5 -4.0e-15 1.4e-14 [60, 61]
J0751+1807 0.16 1.6 3.3e-6 0.26 -4.6e-14 3.5e-15 [60]
J1910+1256 0.19 § 1.6 2.3e-4 58 -2.0e-11 4.0e-11 [63]
J2016+1948 0.29 § 1.0 1.5e-3 635 -1.0e-9 2.0e-9 [63]
J0348+0432 0.17 2.0 2.4e-6 0.10 -1.1e-14 4.5e-14 [64]
J1713+0747 0.29 1.3 7.5e-5 68 3.0e-14 1.5e-13 [48]
J0613-0200 0.12 § 1.2 ¶ 5.4e-6 1.2 2.7e-14 1.0e-14 [60, 61]
J1738+0333 0.19 1.5 3.4e-7 0.35 2.0e-15 4.0e-15 [65]
J1751-2857 0.18 § 1.2 ¶ 1.3e-4 111 NA 1.8e-11 † [60, 66]
J1857+0943 0.24 1.4 2.2e-4 12 NA 1.2e-13 † [60, 61, 66]

Table 1. List of binary systems used in this study. The columns are: (1) the name of the binary; (2)
the mass of the companion in M� units — if only the minimum value is available we denote this with
a §; (3) the mass of the pulsar in M� units — assumed values are indicated with a ¶; (4) the orbital
eccentricity; (5) the binary period in days; (6) the “intrinsic” period derivative in s s−1 (see the text
for our definition of “intrinsic”) — “NA” means that only an upper limit on the measured Ṗ obs

b value
was given, which we report as the error in the next column; (7) the error on the “intrinsic” period
derivative, also in s s−1 — the † indicates an upper limit; (8) the references.

References

[1] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120
(1983) 127 [INSPIRE].

[2] L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120
(1983) 133 [INSPIRE].

[3] M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

[4] M.S. Turner, Coherent scalar field oscillations in an expanding universe, Phys. Rev. D 28
(1983) 1243 [INSPIRE].

[5] W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000)
1158 [astro-ph/0003365] [INSPIRE].

[6] D.J.E. Marsh, Axion cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

[7] J.-W. Lee, Brief history of ultra-light scalar dark matter models, EPJ Web Conf. 168 (2018)
06005 [arXiv:1704.05057] [INSPIRE].

[8] A.E. Nelson and J. Scholtz, Dark light, dark matter and the misalignment mechanism, Phys.
Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE].

[9] J.A.R. Cembranos, C. Hallabrin, A.L. Maroto and S.J.N. Jareno, Isotropy theorem for
cosmological vector fields, Phys. Rev. D 86 (2012) 021301 [arXiv:1203.6221] [INSPIRE].

[10] J.A.R. Cembranos, A.L. Maroto and S.J. Núñez Jareño, Isotropy theorem for cosmological
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