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Abstract

We present results from a data challenge posed to the radial velocity (RV) community: namely, to quantify the
Bayesian “evidence” for n = {0, 1, 2, 3} planets in a set of synthetically generated RV data sets containing a range
of planet signals. Participating teams were provided the same likelihood function and set of priors to use in their
analysis. They applied a variety of methods to estimate Z, the marginal likelihood for each n-planet model,
including cross-validation, the Laplace approximation, importance sampling, and nested sampling. We found the
dispersion in Z across different methods grew with increasing n-planet models: ~3 for zero planets, ~10 for one
planet, ~10*-10° for two planets, and >10* for three planets. Most internal estimates of uncertainty in Z for
individual methods significantly underestimated the observed dispersion across all methods. Methods that adopted
a Monte Carlo approach by comparing estimates from multiple runs yielded plausible uncertainties. Finally, two
classes of numerical algorithms (those based on importance and nested samplers) arrived at similar conclusions
regarding the ratio of Zs for n- and (n + 1)-planet models. One analytic method (the Laplace approximation)
demonstrated comparable performance. We express both optimism and caution: we demonstrate that it is practical
to perform rigorous Bayesian model comparison for models of <3 planets, yet robust planet discoveries require
researchers to better understand the uncertainty in Z and its connections to model selection.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Radial velocity (1332); Astrostatistics
techniques (1886); Model selection (1912); Time series analysis (1916); Algorithms (1883); Bayes factor (1919);
Nested sampling (1894); Importance sampling (1892)
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1. Introduction

Early Doppler surveys of nearby solar-like stars provided the
first census of exoplanet systems. Relatively massive and short
orbital period planets with strong radial velocity (RV) signals
made up most of this sample, but instrumental upgrades and
extended monitoring facilitated the detection of lower-mass and
longer-period planets. State-of-the-art RV instruments can
reach precisions better than 1 ms~', and continued improve-
ments in spectrograph technologies and stellar modeling (see
review by Fischer et al. 2016) hope to achieve a precision
sufficient to detect an exo-Earth, an Earth-mass planet orbiting
at habitable zone distances from their host stars. This is roughly
10cms™' for a solar-mass star.

21 NCCR PlanetS CHEOPS Fellow, Switzerland.

The journey to this milestone has been fraught with
methodological and astrophysical hurdles. One of the most notable
are new stellar processes that emerged at the ~1 ms™' level,
including but not limited to starspots rotating in and out of view,
plages, granulation, stellar oscillations, and long-term stellar
activity cycles (Bastien et al. 2014; Cegla et al. 2014; Haywood
et al. 2014). Some of these nuisance signals have been previously
mistaken as low-mass and/or long-period planets, until follow-up
photometric or spectroscopic activity measurements could explain
the observed periodicities otherwise (e.g., Robertson & Mahadevan
2014; Kane et al. 2016). In some cases, false-positive detections
can arise from aliases in the RV time series itself (e.g., Dawson &
Fabrycky 2010; Rajpaul et al. 2016).

In light of these challenges, the RV community needs to
improve their analysis of RV data. Dumusque (2016) and
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Dumusque et al. (2017) posed a data challenge to the RV
community, in which teams had to disentangle planetary
signals from other nuisance signals using a set of synthetically
generated RV data and activity indicators (bisector span,
FWHM of the cross-correlation function, the calcium activity
index log R’ {hk}) and whatever methods they deemed appro-
priate. Methods that performed best took into account activity
indicators, incorporated correlated noise models, and imposed
some kind of Bayesian framework. In the longer term, many
groups have strayed from a traditional frequentist framework,
which attempts to reject the null hypothesis of a no-planet
model being compatible with the RV data, and experimented
with various algorithms to compute a quantitative evidence for
n versus n + 1 planets. The Bayesian “evidence” refers to the
fully marginalized likelihood, i.e.,

Z=p@M) = [p@. Myp©IM)do. M

where d is a set of real velocity data, M is the underlying
physical and noise model, and 0 is the set of model parameters
that describe M. For two models M, and M,, one can update
p (M) /p(Mb,) (the ratio of model prior beliefs) with p (d|M;)/
p(d| M) (the Bayes factor) to calculate p (M;|d) /p(M,|d) (the
posterior odds ratio, POR).

The art of exoplanet detection ultimately comes down to a
decision on whether or not the data support the existence of a
planet. The Bayes factor can be interpreted against empirical
scales (Kass & Raftery 1995; Jeffreys 1998), see for example
Gregory (2007). However, to make decisions with known
false-positive and false-negative rates, thresholds on B (or
correspondingly POR) need to be calibrated with extensive
simulations.

In this work, we focus on the preliminary step toward such
Bayesian exoplanet inference: the numerically reliable compu-
tation of Z. In particular, we would like to know if different
methods converge to similar conclusions about the evidence for
n planets, given the exact same data sets and assuming the
exact same noise model and prior beliefs. Some examples in
RV of methods for computing the Bayesian evidence include
thermodynamic integration (Gregory 2007), nested sampling
(NS; Feroz & Hobson 2014), geometric path Monte Carlo (Hou
et al. 2014), transdimensional Markov Chain Monte Carlo
(MCMC; Brewer & Donovan 2015), and importance sampling
(Nelson et al. 2016; Jenkins et al. 2017). The above studies
were applied to real RV data for systems with suspect planets.
The methods were not developed in the same context: each
study considered a different RV data set, noise model, and set
of n-planet hypotheses, so the relative strengths of these model
comparison algorithms are largely unknown. Ford & Gregory
(2007) compared several methods for zero- and one-planet
models, and Guo (2012) applied some promising methods to
multiplanet systems.

Inspired by these previous studies, we designed a data
challenge for the RV community to compare different
algorithms and implementations for performing model compar-
ison. Participants were given six synthetic RV data sets and a
set of n-planet models, where n = {0, 1, 2, 3L They were
asked to compute quantitative estimates for Z (Z henceforth)
for each model and their respective uncertainties using
whatever computational methods and simplifying assumptions
that they choose. This challenge took place in association with
a breakout session at The Third Workshop on Extremely
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Table 1
Common Variable Names Used Throughout the Manuscript
Variable Description
M, The RV model with n planets
d The RV data
t Times
v RVs
o RV uncertainties
(7] The model parameters
pi Orbital period for ith planet
K; RV semiamplitude for ith planet
e; Eccentricity for ith planet
wi Argument of pericenter for ith planet
M; Mean anomaly for ith planet at a fixed epoch
C RV zero-point offset
oy RV jitter
o Amplitude of k
Ae Scale length of the exponential component of &
A Scale length of the periodic component of
T Period of periodic component of s
n Number of planets
Statistical Parameters
Z The fully marginalized likelihood
L(0), p(d|0) The likelihood function
p(0) The joint prior probability distribution
by Covariance matrix in likelihood function
K Quasi-periodic kernel defined by a, A., A,, T
Meta-analysis Parameters
Z Estimate of the fully marginalized likelihood
0%, OlogZ Uncertainty in each Z and log Z, respectively
Dz, Doy 2 Dispersion in Z and log Z, respectively

Precise Radial Velocities at The Pennsylvania State University
in 2017 August 14-17 (EPRV3 henceforth). Some teams
participated remotely, while others exchanged ideas during the
breakout sessions.

There are four questions we hoped to answer in the EPRV3
Evidence Challenge:

1. What is the dispersion in reported Zs (i.e., Dz), and how
does it change with increasing model complexity (i.e.,
number of planets)? N

2. Does each method’s reported uncertainty in Z (i.e., 0%)
accurately reflect the observed dispersion?

3. How does Dz and oz affect our ability to favor n- versus
(n 4+ 1)-planet models for different data sets?

4. Within the context of this study, which methods should
be recommended, avoided, and/or further developed?

This paper summarizes the results of the data challenge. In
Section 2, we present the assumed observational and statistical
models. In Section 3, we present brief summaries of the
different methods that teams employed. In Section 4, we
compare everyone’s results across many parameters of interest.
Finally, in Section 5, we discuss the relative strengths of these
methods in the context of the challenge. We reserve a set of
variable names to be used throughout the paper, described in
Table 1.
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Table 2
Simulated Planet Properties

Data Set Number Detectability P (days) K (ms") e (unitless) w (rad) M (rad) C(ms™h oy (ms ")

1 easy 12.1 1.86 0.08 0.0 0.87 1.46 0.6
easy 42.4 2.44 0.04 2.0 2.99

2 easy 15.96 2.12 0.05 0.1 0.18 6.33 0.6
difficult 1205 1.36 0.31 1.3 0.82

3 difficult 40.4 1.25 0.1 3.0 4.16 —~8.28 0.6
difficult 91.9 1.19 0.1 0.3 0.33

4 easy 169.1 1.58 0.22 2.1 0.06 —6.23 0.6
impractical 23.45 0.74 0.04 6.5 4.37

5 difficult 31.1 0.75 0.04 0.2 3.31 —4.55 0.6
impractical 10.9 0.67 0.02 6.2 4.14

6 difficult 40.4 1.25 0.1 3.0 4.16 -10.7 0.6
difficult 91.9 1.19 0.1 0.3 0.33

Note. Each data set contains two planets with a variety of orbits and masses, which we also summarize with their supposed level of detectability (to be referenced
again in Figures 2 and 5). Note that data sets 3 and 6 have the same injected planets.

2. Observational and Statistical Models

Each participating team used a standardized set of assump-
tions for the physical and statistical models. Here, we describe
the process used to generate the data sets in detail.

We provided six simulated data sets. The data sets were
generated with a set of consistent properties: (1) each data set
was an RV time series, including the times of observations (¢),
the “measured” RVs (v), and the measurement uncertainties
(0); (2) the number of observations was fixed at 200; (3) the
data were drawn over an observing baseline of 600 days; and
(4) each data set included a single velocity offset and correlated
Gaussian noise to model stellar activity. We also injected two
planets into each data set with a wide range of orbital and mass
properties to be described in Section 2.1.

2.1. Physical Model

In each data set, the RV of the star was computed via n-body
integrations using Newtonian gravity, one star and two planets.
While the full model formally included mutual planetary
interactions, we fully expect that it would be well described by
the linear superposition of two Keplerian orbits plus a constant
velocity offset and a noise term. We estimate the difference
between these two assumptions to be less than a couple of
cms ' across all data sets.

The simulation returned a set of line-of-sight velocities of the
star Vpeq(¢|@) for a set of input times ¢ and mass/orbital
parameters 6. For the sake of computational efficiency, we
restricted the range of injected planet orbital periods to between
10 and 2400 days. Table 2 describes the orbital and mass
properties of each pair of planets, along with each data set’s
input zero-point offset and jitter. Note that data sets 3 and 6
have the exact same injected planets, but the zero-point offset,
time series, and noise realizations are different. The generated
data sets are shown in Figure 1.

We designed these six data sets with a range of planet
detectability in mind. Some planetary signals were relatively
easy to identify (K/o > 1), which may facilitate efficient
computation of Z. Some were relatively difficult (K/o ~ 1) or
nearly impractical (K /o < 1) to find, which could lead to
challenging Z calculations. To reiterate, the main purpose of

this challenge is to determine how accurately different
algorithms can compute the evidence of n planets in RV data,
not their ability to disentangle real planets from astrophysical
noise. However, we are interested in how the variation in
teams’ calculations of Z depends on the strength of a supposed
planetary signal.

2.2. Statistical Model

A likelihood function (£L(0) = p(d|0, M)) and prior
probability distribution on the model parameters (p(6)) are
needed to compute the integral in Equation (1). Below, we
specify both of these distributions.

2.2.1. Likelihood
Each simulated data point was generated according to
Vi = Vpred(tilo) + €, ()

where v; is a component of v, ¢; is a component of ¢, and ¢; is the
perturbation to the measurement due to noise. The noise vector
was drawn from a multivariate normal distribution with
covariance matrix X, i.e., € ~ N(0, X). Therefore, the appro-
priate likelihood is a multivariate normal distribution, centered
on the predictions of the model (parameterized by 6),

1
10g £(0) = _E(V - vpred(a))Tzil(v - vpred(e))

- %logldetEl - ”2" log(27). 3)

The Gaussian noise is correlated from one observation to the
next. X is given by

Sij = kij + 6ij(07 + o), (4)

where ;; is a quasi-periodic kernel, ¢;; is the Kronecker delta,
2 . . . .
and o7 is the amplitude of an additional unknown noise term
(often casually referred to as RV “jitter”).
As argued by Haywood et al. (2014) and Rajpaul et al.
(2015), we expect some degree of periodicity in stellar activity,
modulated by the rotation of the star, which motivates our
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choice of a quasi-periodic kernel. It is defined by

Kij = a? exp[—%{smz[ﬂti — /7] + u _;j)z}], (5)

2
2 A2

where the hyperparameters are fixed at the following values:
a=+3 ms~ ., Ae = 50.0 days, A\, = 0.5 (unitless), and
7 = 20.0 (days). These values were given for the Evidence
Challenge, so teams did not need to marginalize over these
hyperparameters.

2.2.2. Priors

In the Bayesian framework, the prior probability density
function specifies the state of information prior to taking the
observation. It could thus vary from system to system, or as
additional information becomes available (for example, from
transits). To enable direct comparisons of results across teams,
we asked that they adopt a common set of priors, described
below. We use a prior that is plausible and convenient
to implement, albeit not necessarily informed by orbital
mechanics or the latest exoplanet statistics.

We assumed a prior that factorizes in terms of each planet’s
orbital period (p;), RV semiamplitude (K;), eccentricity (e;),
argument of pericenter (w;), and mean anomaly at epoch (M),
as well as the RV offset (C) and the white-noise term (o). Note
that for the purpose of computing evidences, teams adopted an
orbital period prior ranging from 1.25 to 10* days.

1. For each planet’s orbital period, we assumed a truncated
Jeffreys prior, p(P)dP = d?P X e /B for P, <
P < By For the primary analysis, we assumed
Poin = 1.25days and P = 10* days for each of the
planets. For an alternative analysis, we provided specific
values of By, ; and By, ; for each planet and data set to be
described in Section 2.2.3.

2. For each planet’s RV semiamplitude, we assumed a trun-

cated modified Jeffreys prior, p(K) dK = ﬁ
0 0.
1

_ —1
m fOI;O <K < Kmaxv where K() =1ms  and
Knax =999 ms™ .

3. For each planet’s eccentricity, we assumed a trun-

cated Rayleigh distribution, p(e) de = eg—i‘)'exp (—;722) /

2
[1 — exp(—e;ﬁ)] from 0 < e < e, = 1 and zero for

e > ema.x = 1, where o, = 0.2.

4. For each planet’s argument of pericenter, we assumed a
uniform distribution, p(w) dw = dw/27 from 0 < w <
27 radians.

5. For each planet’s mean anomaly, we assumed a uniform
distribution, p(M)dM = dM /27 from 0 < M < 2w
radians.

6. For the additional white-noise term, we assumed a trun-
cated modified Jeffreys prior, p(oy) doy = doy

ag0(l + 0y / ay0)
1
——— for O0<ogg<a where o0 =
102(1 + 0 max / 91.0) 1,10 X YJ,max» J0

Ims " and 07 max = 99 ms™ .

7. For the RV velocity offset, we assumed a uniform
distribution, p(C) dC = dC/2Cpmax from —Cpax < C <
Crnax, Where Cpoe = 1000ms ™!

Nelson et al.

Here, the log refers to the natural logarithm. The combined
prior for a given n-planet model is

P({Pi’ I(i’ €, Wi, M}i:l..n’ ay, C)

=papp O[] pPIp(K)p(edp(w)pM)). (6)

i=1

2.2.3. Two Sets of Priors for Orbital Periods

We previously described a prior where P,;, = 1.25 days and
Prax = 10* days for each of the planets (the broad prior,
henceforth). Note that even for a very well-behaved data
set (i.e., one dominant posterior mode if we assume P; <
P, < Pj3), the posterior would have n! modes corresponding to
the number of permutations for ordering n planets. If a team
only explores one mode, they would have to renormalize their
orbital period prior by a factor of n!. However, for the
challenge, we imposed an order restriction so teams will ignore
this degeneracy when computing Z.

Based on preliminary results reported at the EPRV3 breakout
sessions, we noticed that different groups sometimes focused
their exploration of parameter space on different regions,
particularly in terms of the orbital periods. This made it difficult
to directly compare methods. We decided to impose a second
choice of priors for orbital period that force all groups to
explore the same regions of parameter space in orbital period
(the narrow prior, henceforth). That is, we specified different
values of Py, ; and Py, ; for each planet and each data set. The
values (in days) are as follows for each data set:

1. Data set 1: Puying = 39.8107, Prax1 = 44.6684, Pryino =
114815, Praxz = 12.8825, Puins = 10.0, Puaxz =
10.7152.

2. Data set 2: Pyin,1 = 15.4882, Ppax1 = 16.2181, Pyyins =
14.7911, Puax2 = 17.0608, Ppinz = 158.489, Phux3 =
251.189.

3. Data set 3: Ppin,1 = 81.2831, Ppax1 = 107.152, Poyins =
38.0189, Ppaxo = 42.658, Ppinz = 16.5959, Po.x3 =
17.5792.

4. Dataset4: Py = 138.038, Ppax1 = 204.174, Pinp =
15.1356, Puax2 = 16.5959, Ppins = 398.107, Phaxs =
1000.0.

5. Data set 5: Pin,1 = 29.5121, Ppax 1
10.7152, Pupaxo = 11.4815, Ppins
19.9526.

6. Data set 6: Pryin1 = 79.4328, Prax1 = 141.254, Pryin, =
31.6228, Prpaxo = 50.1187, Ppins = 316.228, Puuxs =
398.107.

32.3594, Pryins =
18.197, Py =

These Ppn; and P,y ; values do not necessarily bound true
orbital parameters used to generate the data sets. These merely
represent a set of reasonable period ranges for each data set to
facilitate more direct comparison of different methods. They
were chosen without knowledge of the true planet parameters.

2.2.4. Prior over Models

Participants submitted their Z estimates for the evidence for
each M, assuming that is the correct n-planet model. In case
some participants performed a non-Bayesian analysis, it would
be useful to have something that can be compared between
Bayesian and non-Bayesian estimates. For those analyses that
could not report the marginalized likelihood, we compared the
POR to whatever they provide that they think is analogous to a
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Table 3
Evidence Challenge Teams and Methods

Method Class Team Name  Method Name

Computationally cheap  Feng Bayesian Information Criterion

Feng Chib’s approximation
Ford Laplace approximation
Hara ¢, periodogram + Laplace
approximation
Importance samplers Diaz Perrakis Estimator

Nelson Ratio Estimator (MCMC+Impor-
tance Sampling)

Team PUC Variational Bayes with Importance
Sampling
Nested samplers Rajpaul MCMC Nested Sampling
Team PUC MULTINEST (Nested Sampling)
Team PUC MULTINEST( Importance Nested
Sampling)
Team PUC Multirun-MULTINEST (Nested
Sampling)
Team PUC Multirun-MULTINEST (Importance
Nested Sampling)
Faria Diffusive Nested Sampling
Prediction based Cloutier Leave-One-Out Cross-validation
Cloutier Time-series Cross-validation

POR. To estimate PORs, we must define a prior over M,,
A" forn=1,2,3

3
1-> 3" forn=0 ’

i=1

p(My) = (N

and set § = 1/3. Any participants submitting non-Bayesian
estimates were instructed to take this into consideration, so that
they could calibrate their estimates appropriately.

3. Methods for Calculating the Marginal Likelihoods

In this section, we will briefly list and describe each method
used in the EPRV3 Evidence Challenge. They are described in
greater detail in the Appendix. Table 3 provides a list of the
teams and methods they employed. Most of the submissions
used a unique sampling technique, but some were simply
different tunings for the same sampling algorithm. For
example, Team PUC submitted MULTINEST results using NS
and importance nested sampling (INS) approaches. For each of
those algorithms, they also submitted a variety of different
MULTINEST tunings (i.e., adjusting the number of live points or
the efficiency parameter). When describing each method, we
specifically refer to the particular choice of algorithm as
opposed to every algorithm and tuning combination.

3.1. Bayesian Computationally Cheap Methods

1. Bayesian Information Criterion (Appendix A.1): The BIC
is defined as —2log L.x + klog N, where L. is the
value of the maximum likelihood, & is the number of free
parameters, and N is the number of data points. Smaller
BIC values suggest higher model probability. Two
competing models M; and M, can be compared with
exp[—(BIC 4, — BIC ) /2], similar to a Bayes factor.
The BIC is derived under very strong simplifying

Nelson et al.

assumptions. Under infinite data, N — oo, the evidence
integral is assumed to become a single, infinitely narrow
peak, independent of any prior. In realistic data sets, the
posterior has finite width, so the BIC is at best a poor
approximation of a Bayesian evidence into question.

2. Chib’s Approximation: Chib’s approximation is based on
the fact that the evidence is the normalization constant of
the posterior density at a given point in the parameter
space. To estimate the evidence, we choose a point with
high posterior probability and calculate the evidence
using the one-block sampling of parameter space
(Equations (9) and (10) in Chib & Jeliazkov 2001). We
divide the MCMC chain into 100 subsamples and
calculate the distribution of the evidence.

3. Laplace Approximation (Appendix A.3): The Laplace
approximation computes the required integral analytically
by approximating the target distribution as a Gaussian.
For this challenge, we numerically integrate over the
orbital period (grid search) and jitter parameter (Gauss—
Legendre quadrature) and apply the Laplace approx-
imation to approximate the remaining model parameters.
For this challenge, we used either a circular or epicyclic
approximation for the planetary motion to facilitate rapid
computation.

4. ¢, periodogram (Appendix A.4): This method relies on
the basis pursuit de-noising algorithm (Chen et al. 1998)
and is detailed in Hara et al. (2017). It is an alternative to
the Lomb-Scargle periodogram or its generalizations,
and can be read similarly, but mitigates the problem of
aliasing. We here use two ways to assess the significance
of its peaks: the false-alarm probabilities (FAPs) as
provided by Baluev (2008) and a Laplace approximation
of the evidence of the model given by its n tallest peaks.

3.2. Bayesian Importance Samplers

Importance sampling is a integration technique that draws
from a simple, normalized distribution that approximates the
target distribution, the posterior. If the two distributions are
close matches, the integral estimator is accurate and efficient.

1. Perrakis estimator (Appendix A.6): In the Perrakis
estimator (Perrakis et al. 2014), the importance sampling
function is constructed from the product of marginal
posterior densities. Samples are drawn by shuffling the
vector elements of joint posterior samples (e.g., from a
previous MCMC run) across samples. Additionally, the
estimator requires an estimation of the marginal posterior
densities of each parameter, which are approximated from
a normalized histogram of the marginal samples.

2. Ratio estimator (MCMC + importance sampling;
Appendix A.5): This importance sampling technique
adopts for the sampling distribution a truncated
Gaussian with mean and covariance estimated from a
previous MCMC run. For each model and data set, we
perform 20 separate MCMC runs, apply this algorithm
for each case, and calculate Z using the median and
standard deviation based on the 20 different estimates.

3. Variational Bayes with importance sampling
(Appendix A.7): A mixture of Gaussians is used for
the importance sampling proposal distribution. For the
initial guess of the mixture, multiple global maxima
searches are performed. Variational Bayes is an iterative
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procedure that optimally updates the Gaussians to match
the target distribution better. It samples from the mixture
proposal distribution, evaluates the target distribution,
and adjusts the parameters of the Gaussians. As with the
above techniques, importance sampling estimates the
integral.

3.3. Bayesian Nested Samplers

NS is an efficient technique for estimating Bayesian
evidence integrals (and numerical quadrature more generally).
It computes the geometric size at various likelihood £
thresholds. That threshold is continuously increased, such that
the volume decreases exponentially. The gradual increase
overcomes the difficulty to handle multimodal posterior
distributions (compared to, e.g., MCMC). NS allows both
parameter estimation and model comparison. Z is the integral
over likelihood and volume at each likelihood threshold.

Internally, however, NS requires a method for drawing a
new random point from the prior with the condition that its
likelihood is higher than the current likelihood threshold.

1. MCMC nested sampling (Appendix A.8): Rajpaul’s
implementation used a semiadaptive MCMC scheme for
this purpose; this was chosen as a foil to MULTINEST
(below), which instead makes use of a more sophisticated
ellipsoidal rejection scheme and clustering algorithm for
drawing new points.

2. MULTINEST (Appendix A.9): A robust NS technique,
which draws a new uniformly random point with higher
likelihood through an ellipsoidal rejection sampling
scheme (Shaw et al. 2007; Feroz et al. 2009). Existing
live points are clustered into multiple -ellipsoids,
from which points are drawn. Studying the algorithm
parameters, we vary the number of live points
(nlive = 400-2000) and the target efficiency (inverse
of the ellipsoid expansion factor) from 0.3 to 0.01.

3. MULTINEST using INS: An alternative summation of
MULTINEST draws that interprets the ellipsoid draws as
an importance sampling process (Cameron & Pettitt 2014;
Feroz et al. 2019). While the standard NS technique may
reject many drawn points failing the likelihood constraint
(L > L;), INS uses all the points drawn to improve the
estimation. The uncertainty on logz can become very
small, with up to an order of magnitude higher accuracy
than a typical NS (Feroz et al. 2019). However, applying
INS in this exoplanet problem, we found that the INS
estimator leads to overly small uncertainties. This is
shown in the Appendix, Figures 7 and 8.

4, Multirun-MULTIlj\EST (with NS and INS): Examining
MULTINEST log Z estimates, we find scatter far exceed-
ing the reported uncertainties (in both NS and INS, to be
discussed in detail in Section 4.2 and Appendix A.9.2).
To obtain robust estimates with realistic uncertainties, we
define quantities over multiple runs. We define the
multirun evidence estimate as the median log Z across

runs. For an estimate of the uncertainty on log Z, we add
in quadrature the median absolute deviations (scatter) and
the median reported uncertainty. The multirun results are
also shown in Figures 7 and 8.

5. Diffusive NS (Appendix A.10): The Diffusive Nested
Sampling algorithm (DNS; Brewer et al. 2011) is a Monte
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Carlo method based on NS. Unlike classic NS, which
samples from the prior subject to a hard likelihood
constraint, DNS explores a mixture of successively
nested distributions, each occupying about e times
the enclosed prior mass of the previous one. Using a
mixture of distributions allows DNS to “go back” to a
lower likelihood threshold. After an initial phase where
these distributions are created, DNS starts sampling from
the complete mixture with uniform weights, which
means that the prior is also included in the target
distribution, improving the sampling efficiency in multi-
modal posteriors.

3.4. Prediction-based Methods

1. Leave-One-Out Cross-validation (Appendix A.2.1): In
general, cross-validation techniques are commonly used
in the field of machine learning to evaluate model
performance and inform model selection as an alternative
to calculating the fully marginalized likelihood. Cross-
validation techniques are used to evaluate the predictive
power of a model by splitting the input data set into N
training and testing sets. Competing models are then fit to
each training set with an objective function (.e.,
Equation (3)) being evaluated on the testing set with
the optimized model; the score. This formalism helps
avoid overfitting of data as models that appear to provide
excellent fits to training data will exhibit poor scores on
previously unseen testing data if they are actually
overfitting. The relative scores between competing
models are used for model selection. Leave-one-out
cross-validation refers to a particular strategy for train/
test splitting wherein N unique splits of the RV time
series 7 are made. Each training set contains N — 1 of the
RV measurements, with the remaining measurement
being used for testing.

2. Time-series Cross-validation (Appendix A.2.2): The
principle behind time series cross-validation is equivalent
to that of leave-one-out cross-validation but differs in the
method of train/test splitting. As is the case with RV time
series featuring temporally correlated signals—from
planets or possibly from stellar activity—removing a
single random measurement fails to remove all of signal
associated with that measurement. Time series cross-
validation works to alleviate this bias by constructing
training sets from subsets of the sequential measurements
containing at least Np;, = 20 measurements. Each
unique training set will then contain N, + i measure-
ments for i =0,....N — Nyin — 1. In the single-step
forecasting method used here, the corresponding
testing sets are the next sequential measurement, i.e.,
Nain + 0 + 1.

4. Results

The four main goals associated with the Evidence Challenge
are (1) to better understand the dispersion of estimates of the
marginal likelihood (Dz) and how much this varies with the
number of planets in the model, (2) to see if the reported
uncertainty of log Z (0z) accurately reflects the empirical Dz,
(3) to understand how Dz and o3 affect our ability to compare
the evidence for n- versus (n + 1)-planet models, and (4) to
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identify promising methods for use and refinement in future
studies. In this section, we will address the first three questions
and leave the fourth for Section 5.

The methods used to estimate Z are labeled in the figures
based on their directory names in the Evidence Challenge’s
Github repository.” N

First, we compare log Z (always in base 10) from Bayesian
methods that compute it, i.e., without the prediction-based
methods in Table 3. We are most interested in the differences
and dispersion in the log Z, not necessarily their absolute
values, so we plot each method’s log Z—(log Z), where
(logZ) is the median logZ among the methods being
considered.

Note that Team PUC submitted roughly half of the total
analyses considered. Most of these were different variations on
MULTINEST, in which they varied algorithm settings (number
of live points [nlive] and efficiency [eff]) and sampling
techniques (NS versus INS, a single run versus multiple runs).
This study focuses on comparing methods for estimating log Z,
rather than the choice of algorithm settings for any one method.
Therefore, in this section, we include results provided by one
set of MULTINEST runs (those with nlive = 2000 and
eff = 0.3) which appears to perform well. By including
MULTINEST results based on a single set of settings when
calculating the median log Z, we prevent the results from
appearing heavily biased toward the MULTINEST results in the
figures that follow. An analysis of all MULTINEST results is
presented in Appendix A.9.2. All results submitted to the
Evidence Challenge are available for further analysis at the
Github repository.

4.1. Dispersion in 1og Z (Do z)

Figure 2 summarizes the Bayesian results submitted to the
Evidence Challenge. Each pixel corresponds to one estimate of
log Z based on a particular method, orbital period prior, data
set, and number of planets included in the model. The color is
log ;’_,7\—<log 2\), and the color scale spans 10 orders of

magnitude in Z. Black pixels are unreported values. We
grouped methods into three different classes based on the
sample of methods submitted: ‘“computationally cheap,”
“importance samplers,” and “nested samplers.” In essence,
paler colors correspond to log Z values closer to (log 2), and
more saturated colors stray farther from the median. Purple
colors are biased toward larger log Z with respect to (log 2),
and orange colors are biased toward smaller values. We do not
consider reported uncertainties (0z) here but present that
information in Figures 3 and 4. N

In most cases, we do not know the true value of log Z. Thus,
it is difficult to quickly evaluate the accuracy of each estimate.
For the zero-planet model (M,, two parameters), multiple
teams performed brute force calculations via a very fine grid or
large number of Monte Carlo samples to provide a comparison
point. However, brute force was not practical for models with
21 planet (7+ parameters). Therefore, we focus our attention
on log Z estimates relative to ( log 2) and Dy, z, emphasizing
that (log Z) should not be regarded as the “true” log Z. The

dispersion in results across methods can be seen by comparing
the color of pixels across rows in Figure 2. All Bayesian

%2 https:/ / github.com/EPRV3EvidenceChallenge
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methods provided very similar estimates for logZ for My, with
less than a factor of D,z ~ 0.5 in variation or Dz ~ 3.
However, Dy,,z grows to ~1 for M;, ~2-3 for M,, and >3
for M.

We also observe differences among the classes of algo-
rithms. Computationally cheap methods have the greatest
variability and appear to estimate systematically higher log§
values than the results provided by the importance and nested
samplers. In practice, this would imply that the computationally
cheap methods are typically more confident in the evidence for
additional planets. Overall, the importance samplers seem
slightly biased to smaller log Z relative to the nested samplers,
which tend to report larger values of log Z. In consideration of
this, we reanalyzed the logg results excluding the computa-
tionally cheap methods, recalculated the (log Z), and found

that the patterns in log 2—( log §> did not significantly change.

Different teams could be computing the evidence for planets at
different orbital periods, which may contribute to a substantial
fraction of the dispersion seen here. However, we see similar
dispersion when teams were instructed to use the narrow period
prior. Interestingly, some methods seem to have greater dispersion
for the narrow priors, denoted by the more saturated pixels in the
left column of Figure 2. We found that some teams renormalized
their orbital period prior when they imposed this narrower range
while others did not. We corrected for this as noted in the
_renormalized.txt files in the Evidence Challenge reposi-
tory, but significant dispersion remained. In particular, Chib’s
approximation and the Laplace approximation for circular orbits
calculate a Z for models with >1 planet that can be over five
orders of magnitude different from the other methods.

4.2. Uncertainty in logg (G108 2)

Figure 3 displays the log Z results assuming the broad priors
and includes the uncertainties in logg (0104 2)- Every panel
corresponds to a different n-planet model, and each panel is
divided into six subpanels for the six different data sets. Each
subpanel plots every method’s log Z—(log Z), and we display
(log 2) for that data set and model near the top. Figure 4 is in
the same format as Figure 3 but displays the results for the
narrow period prior. These figures are designed to emphasize
Doz across all data sets and how it compares to each
reported 0jog 3.

For both priors, we find that most methods claim a high
degree of precision in log Z that does not reflect the observed
scatter in estimates of log Q(Dlogg). In other words, the
estimates are mutually exclusive to an extreme degree. Analytic
methods like the Laplace approximation did not report
estimates for the uncertainty oy,,z. However, a handful of
methods appear to report reasonable oj,,z: the MCMC +
importance sampling ratio estimator and variations of multirun-
MULTINEST. One common feature among these methods is that
Ologz Was based on comparing the estimates of log Z from
multiple runs of the same method, rather than an internal
estimate of uncertainty based upon a single run. Despite being
more computationally expensive, this Monte Carlo approach
seems to provide more plausible uncertainty estimates. The
MCMC + importance sampling ratio estimator shows particu-
larly large error bars for some data sets in Figure 4. This is
likely due to many MCMC runs not converging for those
models, thus providing a poor importance sampling density for


https://github.com/EPRV3EvidenceChallenge

THE ASTRONOMICAL JOURNAL, 159:73 (26pp), 2020 February

RV [m/s]
|

!
IS

RV [m/s]
| |

|
)

RV [m/s]

0 100 200 300 400 500 600

Time [days]

T4

i {
*”L

} t

+ p
+++ ‘wf

0 100 200 300 400 500 600

Time [days]
+
W‘ ‘M‘
ﬁ% +#N
i
i N
f
++{$%w{ gt A
i *
0 100 zé_z;_i mez[b;ays]aéo 500 600
+ m* |
# *+ "4, g
M’ i)
| T
+

Time [days]

Nelson et al.

Lomb-Scargle Power

10?

Period [days]

r
e o o o
O
&G 8 & 8

Lomb-Scargle Powe

102

Period [days]

102
Period [days]

10°

Lomb-Scargle Power

102

Period [days]

102
Period [days]

0.200
U 0175
o
&£ o150
Qo125
o
2
@ 0.100
O
D 0075
e}
E 0.050
<]

— 0025

0.000
10!

102

Period [days]

Figure 1. For the Evidence Challenge, we generate six radial velocity data sets (left). The Lomb—Scargle periodograms (right) show the relative strengths of periodic

signals in the data sets, with the orbital periods of injected planets indicated (vertical red dashed lines).
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Figure 2. Summary of log Z results across all data sets and models. A row of
pixels corresponds to an n-planet model, where n = {0, 1, 2, 3}. Columns
correspond to one of the six data sets, each simulated with two planets
of varying levels of detectability (“easy” = “E,” “difficult” = “D,”
impractical = “I”’). Rows of pixels are grouped with black outlines by method.
The left (right) grouped columns correspond to the model with narrow (broad)
period priors. The color of each pixel shows log Z with respect to the median
log Z (log 2}) for that particular data set and model, in order to emphasize the
level of scatter seen in all computed log Z. Any |log Z—(log Z)| greater than 5
is set to a color at the end of the color scale. Black pixels are unreported values.
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the estimator. Team PUC directly compared o,,z across
multiple MULTINEST runs in Appendix A.9.2.

4.3. How D,z Affects Odds Ratios

We see significant dispersion in log? across methods even
when assuming the same statistical model. How does this affect
our interpretation of n- versus (n + l)-planet models? In
practice, the evidence is rarely used by itself. Instead, we
compare log Z for different models by taking ratios of their

respective Zto compute a Bayes factor or POR for assessing
the evidence of the nth planet. Methods that initially appear to
generate biased estimates of log Z could provide an accurate
odds ratio if the apparent bias cancels out.

Figure 5 shows the POR results for each method and data set
in a format very similar to that of Figure 2. However, instead
of results for each individual n-planet model, each pixel
corresponds to the POR for a particular pair of models to be
compared (for a given method, prior, and data set). For
instance, a pixel corresponding to the one-planet versus zero-
planet model comparison is denoted as simply “1v0.” The color
of each pixel is log 10 of the POR, and the color scale spans 10
orders of magnitude in POR. In essence, the bluer pixels favor
the (n + 1)-planet model, redder pixels favor the n-planet
model, and pale pixels find roughly similar evidence for the n-
and (n + 1)-planet models. Black pixels are unreported values.

In addition to the Bayesian methods shown in the previous
figures, Figure 5 also includes two results based on prediction-
based methods: Leave-One-Out Cross-validation, and Time-
series Cross-validation. In each case, the team was asked to
report a quantity that would be as analogous to a POR as
practical given their method.

We discuss several trends in the computed odds ratios across
data sets, priors, and method class. After results were
submitted, we revealed that each data set contained two planets
with different levels of detectability (see Section 2.1). Note that
there was an error in the evidence calculations of the ¢,
periodogram, and these were revised after the true answers
were revealed.

4.3.1. Initial Observations for POR Estimates

Nearly all methods found odds ratios favoring M; over M.
There was more variability across methods when comparing
the evidence for M, and M,. Aside from a few exceptions,
methods generally did not find odds ratios favoring Mj, across
all data sets.

4.3.2. Results for POR by Method Class

We previously identified four classes of algorithms based on
everyone’s submissions: Bayesian computationally cheap
methods, Bayesian importance samplers, and Bayesian nested
samplers, and prediction-based methods. The latter two classes
of methods require large numbers of model evaluations (>107)
to compute Z. The former two are comprised of (semi)analytic
methods or methods that require relatively fewer model
evaluations.

We find the numerical Bayesian methods qualitatively agree
on the strength of the evidence for n versus (n 4 1) planets for
nearly all data sets and model comparison permutations
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Figure 3. log Z estimates for Mg (upper left), M; (upper right), M, (lower left), and M3 (lower right) models assuming broad orbital period priors. All figures show
logg with respect to the median value for each data set and model; ( log 2) is displayed at the top of each figure. The symbols correspond to different methods, and
colors correspond to different implementations (e.g., input parameters or assumptions) of the same method. Error bars show 1o equivalent uncertainties in log Z, some
of which are too small to resolve. Methods reporting | log 2—( log §>| > 5 are denoted with arrows pointing outside of the figure bounds.

considered. Even when they do favor detecting an additional
planet, these numerical methods tend to report less extreme
PORs than the computationally cheap methods, as denoted by
the paler pixels for the 2v1 and 3v2 comparisons. However, the
computationally cheap methods and prediction-based ones
often do not agree on the sign or strength of the evidence for
finding an additional planet. Furthermore, they tend to have a
much stronger interpretation for either n- or (n + 1)-planet
models, as denoted by the more saturated pixels.

Of the computationally cheaper methods, the Laplace
approximation using a linear approximation for eccentric orbits
also displayed qualitative agreement with the more computa-
tionally expensive methods. We address this importance in
Section 5.5.

4.3.3. Results for POR by Data Set and Priors

Here, we assess the reported odds ratios in light of the
expected difficulty in detecting the planets in each data set.
Data set 1 contained two easily detectable planets. Data set 2
contained an easily detectable planet and two planets that we
expected would be difficult to detect. Data sets 3 and 6
contained two planets that we expected would be difficult to
detect. These two data sets used the same planet masses and
orbits, but different zero-point offsets, observation times, and

10

realization of measurement noise. Data sets 4 and 5 had “easy-
impractical” and “difficult-impractical” planets, respectively.

For the broad prior, most methods found decisive evidence
for at least one planet in data sets 1, 2, 3, and 6. The notable
expectations were the prediction-based methods, which dis-
agreed on the evidence for one planet in data sets 2, 5, and 6. In
particular, Leave-One-Out Cross-validation found marginal
evidence for a planet in data set 2 and favored no planets in
data set 5. All of the remaining methods reported qualitatively
similar results for the 1v0 case. For the narrow prior, we see the
cross-validation methods had similar disagreements for the 1v0
case in the same data sets. Moreover, Chib’s approximation
had a much stronger 1vO interpretation for data sets 4 and 5
than other methods.

For both priors, there is more interesting variability in the
POR for the 2v1 and 3v2 cases. There are only two planets in
each data set, so the “correct” result is unlikely to have a POR
strongly favoring M, but could have a POR either near unity
or strongly favoring M, or M,.

For data set 1, all methods found strong evidence for at least
two planets. Overall, this matches well with the planets’
expected level of detectability. The only exception was Chib’s
approximation, which found strong evidence for three planets
when the narrow prior was imposed. For data set 2 and the
broad prior, all methods found strong evidence for one planet,
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Figure 4. Following the same format as Figure 3, log§ estimates of each n-planet model but assuming narrow orbital period priors.

and most found weak to marginal evidence for two planets. For
the narrow prior, most methods did not find evidence for a
second planet, but the narrow prior interval did not bracket the
true orbital period for the second planet (120.5 days). For data
set 3, all of the Bayesian methods found evidence for both
planets using either set of priors. The narrow prior bracketed
the true orbital period values (40.4 and 91.9 days). For data set
4, methods typically found weak evidence for one planet and
no evidence for more planets. The supposedly easy-to-detect
planet had P = 169.1 days, K = 1.58ms_1, and e = 0.22.
Perhaps having a P near half Earth’s orbital period and this
particular noise realization made it more difficult to detect than
expected. For data set 5, methods typically found weak
evidence for one planet and comparable to no evidence for a
second planet, similar to data set 4. In this case, the narrow
prior did bracket the true orbital period values (31.1 and 10.9
days). For data set 6, methods found strong evidence for at least
one planet and mostly weak evidence for two planets. These
conclusions are moderately different from those for data set 3,
which contained the exact same planets.

Comparing results for the narrow and broad priors, most
methods reported less decisive evidence against three planets
when they were allowed to choose a planet at any orbital period
(i.e., paler red pixels in the right grouped column than the left).
When the narrow prior was imposed, methods typically found
evidence for fewer planets.

11

Note that these odds ratios calculations are based on a
physical model that assumes Keplerian orbits. In some cases,
the separation between two of the three planets was small (e.g.,
as imposed by the narrow priors for data sets 1 and 2). We
suspect that these scenarios would likely break the Keplerian
assumption, and if teams had been instructed to apply an
n-body model, then evidence calculations might be affected.

5. Discussion

The Evidence Challenge was envisioned as an opportunity to
empirically characterize the accuracy, precision, and robustness
of various methods for computing the marginal likelihood of
realistic RV data sets.

5.1. Scatter in Estimates

Upon characterizing the dispersion in log Z, we find reasons
for both caution and optimism.

On one hand, estimates for log Z often differed by one to
two orders of magnitude for the test cases considered. This
dispersion is seen across different classes of methods and even
within some individual methodi Furthermore, the internal
estimates of uncertainty in log Z often significantly under-
estimated the observed dispersion of estimates. For the methods
that estimated the uncertainty in log Z based on multiple runs,
the Monte Carlo uncertainties sometimes spanned >1 order of
magnitude, particularly for multiplanet models. Therefore, we
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pixels corresponds to an odds ratio of an n- vs. (n + 1)-planet model
comparison (i.e., 1v0, 2v1, 3v2). Pixel columns correspond to one of the six
data sets, and we also denote the detectability of the two injected planets
(easy="E,” difficult="D,” impractical="T"). Rows of pixels are grouped by
method with black outlines. The left (right) grouped column corresponds to the
model with narrow (broad) period priors. Pixel colors indicate the logPOR
value for that particular data set and model pair to be compared: blue pixels
favor the (n + 1)-planet model, red pixels favor the n-planet model. Any |log
POR| value greater than 5 is set to a color at the end of the color scale. Black
pixels are unreported values.

recommend caution when claiming strong evidence for multi-
ple planets based on an estimated POR within a few orders of
magnitude of unity.

On the other hand, it is reassuring to find that the
computationally intensive Bayesian methods provided PORs
that would lead to similar qualitative conclusions (i.e., favoring
an n-planet or (n 4+ 1)-planet model by at least >10%, or too

12

Nelson et al.

close to call). For data sets with many high-precision
observations (such as those considered here), the POR is likely
to deviate from unity by many orders of magnitude, allowing
for robust conclusions despite the limitations of existing
methods for estimating marginal likelihoods. However, we
caution that the POR is more likely to be within a few orders of
magnitude of unity for smaller data sets and/or data sets with
reduced measurement precision. Additionally, the observed
dispersion in marginalized likelihoods increases with the
number of planets in the model. Therefore, we caution that
even greater estimated PORs are likely necessary to support
strong claims for the evidence of more than three planets in a
given system, if they are derived with different methods.

Conventional wisdom would suggest that computationally
cheap methods are not as robust at estimating log Z or logPOR
as the more computationally intensive methods. Indeed, most
of the computationally cheap methods often disagreed with the
computationally intensive methods, especially for cases where
the latter found an odds ratio within two orders of magnitude of
unity. Furthermore, the likelihood shows complex, multimodal
shapes in some data sets, which are missed when only
characterizing the best-fit location.

5.2. Non-Bayesian Methods

Here we discuss some alternatives to the Bayesian evidence
for deciding the detection of a planet.

Among the submitted results, the prediction-based methods
often resulted in a different qualitative conclusion about the
evidence for a second or third planet. This is not surprising,
since these methods are not estimating the PORs. Future
improvements to these methods might reduce the number of
false positives and false negatives, including via calibration of
the algorithm.

Information criteria, rooted in information theory, quantify if
the additional complexity of models is worth storing. One
example is the Akaike Information Criterion (AIC; Akaike
1974, see also Watanabe 2013). For our sample size (N = 200),
the AIC punishes complex models more severely than the BIC
(the 2 x k term is replaced by 7.39 x k). Considering the
results of the BIC, this would introduce several false negatives
(the white pixels in the BIC results of Figure 5).

A frequentist approach to distinguish models would be to
identify the maximum likelihood L;,x and investigate whether
this statistic is substantially higher in the more complex model
than in a simpler one (LR = L, max/Limax)- Because the
simpler model is embedded in the parameter edge of the more
complex model (K(i + 1) = 0), analytic formulas do not hold
to judge the LR. Instead, the significance (p-value) of the LR
improvement has to be found by generating random data sets
assuming the best-fit parameters of the simpler model, fitting
both the simpler and more complex model (parametric
bootstrap). This is however computationally expensive, and
even more so when Z would be considered as the statistic.

5.3. Caveats and Limitations

This Evidence Challenge considered only six data sets,
which is not enough to represent the full diversity seen in real
RV data sets (e.g., number of observations, observing
baselines, planet signal-to-noise ratios (S/Ns), time series,
etc.). Therefore, it is unclear how robust our conclusions are to
a wider range of RV data quality. These data sets were
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designed considering the expected future of the RV field:
prioritizing low-mass planets (low RV S/N) with hundreds of
observations over multiple observing seasons. On the one hand,
these specific concerns about the accuracy and precision of
marginal likelihood estimates demonstrated here are not
necessarily problematic for the vast majority of previously
RV-discovered planets, because most of these planets are
relatively more massive (i.e., higher RV S/N) and often had
complementary follow-up observations. Furthermore, this
analysis was based on RV observations alone with no other
forms of supporting ancillary, activity-sensitive data (e.g.,
transits, activity indicators).

The Evidence Challenge provided an idealized scenario where
each team was provided a standardized model, set of priors, and
the precise noise model that was used to generate the RV data.
When analyzing real data, different teams might reasonably choose
to impose different sets of priors. In such cases, if teams explicitly
state their statistical model and provide posterior samples, other
researchers could reweigh the results using another set of priors
(assuming there is sufficient overlap between the posteriors under
the two priors). Unfortunately, the exact noise model that generates
real data will not be available. Therefore, conclusions about the
strength of the evidence for an nth planet must be tempered by
uncertainty in the noise model. In the spirit of starting simple, each
team was provided the exact values of the other hyperparameters in
Equation (5) (e.g., stellar rotation period, correlation lengths) and
instructed to hold these parameters fixed. These would need to be
estimated or marginalized over for real data (e.g., Faria et al. 2016;
Millholland et al. 2018), ideally at the same time as the planetary
parameters. Marginalizing over additional hyperparameters would
have made it more challenging to estimate evidence accurately,
due to increased dimensionality and the potential for multimodal
posteriors (Dumusque et al. 2017). In addition to these numerical
difficulties, there is an additional challenge of model misspecifica-
tion, as realistic astrophysical noise is likely more complex than a
simple mathematical model.

With recent improvements in the precision, accuracy, and
stability of spectrographs, the limitations of current and next-
generation RV surveys will often come from stellar astrophysics,
rather than random measurement noise. Astronomers are actively
seeking new methods of characterizing intrinsic spectroscopic
variability of the target stars due to a wide variety of effects (e.g.,
starspots, granulation, convection, pulsations). In principle, one
could estimate the evidence for a model which includes a
likelihood on d including both apparent RV measurements and
various stellar activity indicators (e.g., log R’ { hk}). Multivariate
Gaussian process noise models seem a particularly promising
approach (e.g., Rajpaul et al. 2016; Jones et al. 2017). However,
performing the computations necessary for rigorous statistical
inference with such models will be even more challenging than
for the simple noise model considered in this Evidence
Challenge. As astronomers develop more powerful statistical
models for analyzing spectroscopic time series, it will likely be
useful to perform additional data challenges with such models.

In principle, it is possible that the observed Dy,,z over-
estimates the dispersion if each method were ideally imple-
mented and tuned. Teams analyzed these data sets
independently using a wide variety of codes and tools on
platforms with different compilers, libraries, operating systems,
and hardware. We cannot eliminate the possibility that some
teams may have reported results based on a buggy implemen-
tation of an algorithm or chose algorithm settings that resulted
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Table 4

Number of Likelihood Evaluations () Reported to Calculate log Z for Data
Set 2 and M,, Assuming Broad Period Priors

Method (Directory Name) ne log §_< log E)

chib 1000000 —0.342

laplace_linearized_circ 264 1.012

laplace_linearized_ecc 319 —0.128

vb-importance-sampling 261979 —0.449

vb-importance-sampling-long 2883983 —-0.012

MCMC_NestedSampler 8814939 0.062

MULTINEST-nlive400-eff0.3 173460 —-0.516

MULTINEST-nlive400-eff0.01 768668 0.551

MULTINEST-nlive2000-eff0.3 1017587 —0.578

MULTINEST-ins-nlive400-eff0.3 173460 0.018

MULTINEST-ins-nlive400-eff0.01 768668 0.984

MULTINEST-ins-nlive2000-eff0.3 1017587 —0.34

multirun-MULTINEST-nlive400- 1164856 0.012
eff0.3

multirun-MULTINEST-nlive400- 5093831 0.588
eff0.01

multirun-MULTINEST-nlive2000- 5132502 —0.234
eff0.3

multirun-MULTINEST-ins-nlive400- 1164856 0.107
eff0.3

multirun-MULTINEST-ins-nlive400- 5093831 1.106
eff0.01

multirun-MULTINEST-ins-nlive2000- 5132502 —0.204
eff0.3

Note. Similar methods with different tuning parameters or simplifying

assumptions are grouped together. The median 10g§ for this set of methods
is —166.005.

in less than ideal performance of the algorithm. In any case,
the observed D),z reflects a combination of random and
systematic errors intrinsic to each method, finite-precision
numerical calculations, and perhaps human errors, similar to
those that would arise if these teams had been analyzing real
astronomical data sets.

Finally, the evidence estimates submitted do not fully
represent the array of statistical methods available to perform
quantitative model comparison (e.g., Ford & Gregory 2007). In
particular, no results were submitted based on methods using
thermodynamic integration. It would also be useful to
investigate other computationally cheap methods such as
AIC, DIC, or WAIC (Gelman et al. 2014). Other researchers
are encouraged to develop and apply alternative methods to the
same data sets available in the Evidence Challenge Github
repository, as they evaluate methods and implementations.

5.4. Computational Costs

On top of the reported evidence values, roughly half of the
teams also provided benchmarking results for their methods,
detailing the number of likelihood evaluations, wall-clock time,
and/or number of cores required for the evidence calculation.
This gives a useful, yet incomplete, picture of the efficiency of
these methods. We will take a qualitative look at these results,
focusing on the total number of likelihood evaluations (n.,
henceforth) of one particular problem: data set 2 and M,,
assuming broad priors. Table 4 shows n, and the evidence
estimate log Z relative to the median.
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Focusing first on computationally cheap methods (first three
rows in Table 4), the Laplace approximation required the
fewest ny. These were mainly used in the grid search for the
(n + 1)th planet, as the integral calculation itself was analytic.
For the other data sets, Ford reported a wide range of n., from
ne = 1for My up to ng ~ 103 for M. In general, Z computed
via the circular approximation deviates from other methods by
one to several orders of magnitude. For Chib’s approximation,
Feng used a constant n; = 10° across all data sets and models.

The remaining methods listed in Table 4 are computationally
expensive and include variational Bayes with importance
sampling, MCMC-based NS, and variations of MULTINEST.
For the MCMC nested sampler, Rajpaul used the largest n, for
this particular case. A future study could investigate whether it
is possible for this algorithm to achieve similarly accurate
results with fewer n,. For other data sets and models,
the number of model evaluations spanned a large range
(ngz ~ 10°-107) with no clear pattern across different models or
data sets. For MULTINEST, n, increases for larger nlive and
smaller eff. However, interpreting the number of likelihood
evaluations also requires understanding the robustness of the
results. The log Z differences of MULTINEST variations are
analyzed in detail in Appendix A.9.2. Briefly, low-efficiency
runs (i.e., the —ef£0.01 suffix) show consistent estimates,
while —ef£0.3 is unstable. This could suggest that the true
log Z is above the median (4+0.5 or +1.0). In all variants,

multiple runs increased the log Z estimate, indicating that
substantial parts of the integral are often missed. This is also
seen in the importance sampling technique increasing the
estimate when run longer. With this in mind, n; > 10° with
low efficiency and/or multiple runs seems to be required.

The same trends also hold for the importance NS estimator,
which use the same run. However additionally, enabling
importance NS requires substantially more memory. Unex-
plained systematic differences between the INS and classic INS
remain (also seen in Table 4). These indicate that the
MULTINEST integrations is encountering some difficulties.

Some methods like Chib’s approximation and the MCMC +
importance sampling ratio estimator rely on a set of posterior
samples to estimate Z. If reliable posterior samples were
already available (via a database or published along with an RV
data analysis), then this would substantially reduce the number
of additional likelihood evaluations needed.

5.5. Promising Methods for Future Studies

With the aforementioned results and caveats in mind, we
now address the fourth question of the Evidence Challenge:
which methods should be recommended, avoided, and/or
further developed? In practice, it is difficult to reliably estimate
the true value for the odds ratio of high-dimensional (124
parameter) models. However, we consider the numerical
Bayesian methods (i.e., MCMC+importance sampling, varia-
tional Bayes+Importance sampling, the Perrakis estimator,
MCMC+Nested Sampler, DNEST4, and multirun-MULTINEST)
to be more reliable because they provided a consistent set of
conclusions. Among this set of evidence estimators, DNEST4
demonstrated the widest deviations from the consensus of the
other methods. To reiterate, we found that it is important to
estimate uncertainties in the evidence based on multiple
independent runs of Monte Carlo algorithms, rather than
trusting internal uncertainty estimates based on a single run or
posterior sample.
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We also identify one computationally cheap method that was
consistent with the numerical methods: the Laplace approx-
imation with a linearized eccentric model. This is important
because this suggests a (semi)analytic method has comparable
performance to methods that often require orders of magnitude
more model evaluations. Other than the grid search to find
plausible planets, the most computationally expensive part of
the Laplace approximation is a single log determinant
calculation of the Hessian matrix described in Appendix A.3.
For this study, the Laplace approximation demonstrates a nice
balance between efficiency and robustness, which would be
particularly appealing for analyzing a large number of data sets
or data sets with expensive model evaluations. Because this
model adopted a linear expansion of the Keplerian motion, it
would not be appropriate for application to systems with “high”
eccentricity planets. For planets near the threshold of detection,
the linear approximation can be much more precise than
measurement precision even for sizable eccentricities (e.g.,
0.3), because the error term is of order ~Ke?. We also note that
the BIC results generally shared the same sign, but sometimes
claimed much more extreme odds ratios in cases where other
methods found more marginal ratios.

5.6. Areas for Future Research

Recently, Butler et al. (2017) released RVs for 1642 stars
and identified/classified significant signals for each case.
Having demonstrated the viability of multiple methods for
computing evidence for one, two, and three planet models, one
could apply these methods to perform a systematic analysis of
these systems. Due to the varied number and precision of RV
observations, one should estimate the uncertainty for evidence
of each combination of model and data set. When interpreting
the results of such an analysis, one should also consider the
robustness of conclusions to the choice of likelihood function
and potential for model misspecification.

Previous studies that have compared methods for computing
marginal likelihoods for RV data were limited to relatively few
data sets. Our study was also limited to six RV data sets and
four n-planet models, partially because some methods would
not scale well to thousands of synthetic data sets. Regardless,
this first step at identifying efficient methods will help drive
next-generation RV analyses.

Our results illustrate a few of the challenges in the
responsible analysis of RV data sets. In order to support
current and upcoming RV planet surveys, we recommend much
broader evidence challenges that would involve analyzing large
number of simulated data sets, so as to understand the rate at
which different methods favor nonexistent planets. Such
studies could (1) test the robustness and false-discovery rates
of the algorithms that performed well over a wider range of RV
baselines, cadences, and planet S/Ns by analyzing thousands
of simulated RV data sets; (2) compare estimates of the
evidence for more sophisticated noise models or more
sophisticated physical models (i.e., some that impose stability
criterion for multiplanet systems); and (3) compare estimates of
the evidence for heterogeneous data sets (i.e., RVs + activity
indicators). Interpreting results from the current and next
generation of RV surveys will be increasingly complex (e.g.,
combining a large number of observations, correlated noise
models, stellar activity indicators). Therefore, studies such as
those recommended above will be critical to establishing the
robustness of RV detections and mass measurements.
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Appendix

In this section, we will describe the methods presented in
Section 3 in greater detail. As mentioned previously, some
variables in the following subsections may share common
notation with other variables seen in the main manuscript. For
such conflicts, we recommend the reader treat these variables as
“locally defined” within that method’s subsection.

A.l. Feng, BIC

The BIC measures the plausibility of a model through the
Laplace approximation of a Gaussian likelihood distribution. It
further assumes that under N — oo, the posterior becomes
dominated by an infinitely narrow peak, which is insensitive to
the prior and linear data terms (Konishi & Kitagawa 2008).
Despite these strong simplifications, the BIC is frequently used
because the posterior density for many inference problems is
dominated by a single Gaussian-like distribution and is not
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sensitive to prior distribution. To compare with other evidence
estimators, we follow Kass & Raftery (1995) to approximate
the evidence by using E = e BC/2, where BIC =
—2InLax + kInN, L. is the maximum likelihood, & is
the number of free parameters, and N is the number of data
points. Considering such approximation, we use the evidence
ratio to assess the performance of the BIC.

The maximum likelihood is calculated through MCMC poster-
ior sampling using DRAM, an adaptive Metropolis algorithm
(Haario et al. 2006). The Gelman—Rubin criteria is used to judge
whether a chain approximately converges to a stationary
distribution (Gelman & Rubin 1992). We draw one million
posterior samples using DRAM, drop the first half of the chain as
the burn-in part, divide the rest sample into 100 subsamples, and
calculate the distribution of £;,,x and BIC from these subsamples.

A.2. Cloutier, Cross-validation

In general, cross-validation (CV) is a technique used to
evaluate the predictive power of a particular model on an input
data set. CV is commonly used to assess model overfitting as
overly complex models can often be fine-tuned to produce a
high data likelihood while not necessarily generalizing to
unseen data (e.g., future observations) and thus demonstrating
poor predictive power.

In CV, the first step is splitting the input data set in a training
and a test data set. The model parameters are optimized with
the training data set. The predictive power of this model with
the best-fit parameters is then evaluated on the (previously
unseen) test data. The “score” is a user-defined objective
function that measures the quality of the prediction. This
procedure is often repeated for multiple possible splits of the
data. To summarize the model’s predictive power, the scores
are averaged over the split to give a single score. To select a
model, competing models can be compared by their scores.
Generally, overly complex models overfit the training data and
poorly predict the test data, giving low scores. Overly simple
models produce low scores in general, because they poorly fit
both training and test data. Good models generalize well from
the training data to the test data and have the highest scores.

We note that numerous flavors of CV exist, and the exact
nature of the train/test splitting can vary depending on the
flavor of CV used. A general summary of the various CV
techniques can be found in Arlot & Celisse (2010).

A.2.1. Leave-one-out CV

Leave-one-out CV (LOOCV) represents a common form of
train/test splitting in CV. When considering the set of N RV
observations v, LOOCV first splits the data into N training/
testing sets. In each split, one observation is left out as the test
data and the training set contains the other N — 1 observations.
For each split, the best-fit parameters 6 for each model M,,
under consideration are optimized using a user-defined
technique such as least-squares minimization or gradient
descent methods. As such, the resulting best-fit parameters
may be the maximum a posteriori point estimate, the maximum
likelihood parameters, or similar depending on the employed
objective function. We have adopted to identify the maximum
a posteriori model parameters via MCMC ensemble sampling
(Foreman-Mackey et al. 2013) to search for global maxima in
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the posterior parameter space. For each model, we employed
100 chains that are run until the chain lengths are 210 times the
average autocorrelation time among the chains. Each P; is
initialized to the period value of a significant peak in the
Lomb-Scargle periodogram of the RVs (in descending order of
power) while all other orbital parameters are assigned random
initial values drawn from their respective priors. In subsequent
MCMC simulations on the same data set but under a unique
planet model, all parameters for planets featured in both models
were initialized to their MAP values from the previous MCMC.

The predictive power of the model is then calculated as the
value of the objective function of the testing set under the
optimized model. Here, this is the likelihood £ evaluated only
on the left-out data point. The final score for each model’s
predictive power is obtained from the median score among the
N splits. We quantify the score dispersion with the median
absolute deviation.

We now discuss how to quantify the preference for one
model over another within the framework of this challenge.
The median score describing a model’s predictive power
clearly is calculated from the median In £(f) of a single data
point. This differs from the Bayesian evidence, which
integrates the value £(#) computed on the full input data set.
Therefore, these values cannot be compared directly. However,
a useful analogy may be made between the score ratio obtained
from LOOCV and the evidence odds ratio obtained from
Bayesian techniques. Recall that the training set in each
LOOCYV split is a single measurement. Therefore, in order to
compare scores to Bayesian evidences, one must account for
the difference in scale between individual observations and the
full N data set. An applicable correction is applied by
multiplying the score per observation—obtained in each split
from LOOCV—by N. The ratio of median scaled scores can
then be used to compute the odds ratio from LOOCV. It is
worth re-emphasizing that odds ratios derived in this way are
not the same as Bayesian odds ratios.

A.2.2. Time-series CV

In general, LOOCV (see Appendix A.2.1) is only applicable
when the measurements within the input data set are
independent. In the case when the input data set features
correlated observations, standard CV techniques such as
LOOCYV need to be modified as removing a single random
observation fails to remove all associated information due to
temporal correlations with the remaining observations. RV time
series are often highly correlated in time due to the presence of
periodic planetary signals and correlated noise arising from
stellar activity (e.g., Astudillo-Defru et al. 2017; Cloutier et al.
2017; Bonfils et al. 2018). The latter signal is present in all of
the simulated time series used throughout this study and
consequently warrants an alternative form of CV.

One such form of CV used when treating temporally
correlated data sets is known as time-series CV (TSCV). TSCV
is a variant of LOOCYV that measures the predictive power of
competing models on a set of observations that are known to be
correlated in time. The procedure follows almost identically to
LOOCYV but differs in the method of train/test splitting. In
TSCV, training sets are constructed from a chronologically
ordered input data set v = vy,...,uy. The training set ¢
(t € [Nmin, N — 1]) contains the data v, ..., v, and the
corresponding testing set is v, , |, the chronologically next
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observation. For each train/test split, the value of the index ¢ is
increased from a minimum training set size N,;,, which we fix
to 20, to the full size of the input data set minus one (i.e.,
N — 1). Therefore, just like in LOOCYV, the testing set in each
split is always a single observation, and the scale of each split’s
calculated score is consistent with the values obtained from
LOOCV. TSCV features only N — Nyin — 1 splits, compared
to the NV splits computed in LOOCYV. Quantifying each model’s
predictive power proceeds identically to LOOCV via the
median score and its median absolute deviation over the
N — Npin — 1 splits. The odds ratio comparing competing
models is again computed after scaling each model’s score per
observation by N, before computing the score ratios for each
pair of competing models.

A.3. Ford, Laplace Approximation

The Laplace approximation can provide a fast and accurate
method for approximating the integral of a function with a
single dominant mode that is well separated from the boundary
of the integration domain. In particular, consider the integral
f dx exp f (x) and insert the second-order Taylor series for f(x),
expanding about x,, the location of the global mode. Then,

0%
Ox,0xp,

(x — x,)%,

1
J &) = fx) + EZ ®)
a,b
and the first term can be brought outside the integral. The
remaining integral can be approximated analytically if one
extends the limits of integration to infinity. Then,

Q2n) 172
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where H(x,) is the Hessian matrix, aazg , evaluated at x,,. The
Xa OXpp

Laplace approximation can be understood as proportional to the
maximum value of exp f (x) times the width of the global mode.
The maximum a posteriori value, the AIC, and the “Bayesian”
Information Criterion which are sometimes used as heuristics for
model comparison include the maximum posterior value, but do
not properly account for the width of the posterior mode. In
comparison to the BIC, the Laplace approximation here exploits
information about both the priors and the posterior width. Thus,
it is expected to be more reliable when the number of
observations is finite, and particularly for RV data sets where
the number of observations is not very large.

The accuracy of the Laplace approximation depends on the
posterior density. For the application to RV survey data,
formally the posterior for models with n > 1 planets is highly
multimodal, particularly in terms of the orbital period.
Fortunately, the posterior for RV data sets is often dominated
by a single posterior mode. Indeed, one could adopt a criterion
for “detecting” a planet based on the posterior probability
distribution being dominated by a single mode. Therefore, we
anticipate that the Laplace approximation is likely to be
accurate for a data set with n planets if all n planets have been
strongly detected, but is likely to be inaccurate for calculating
the marginal likelihood to a model with n 4 1 planets.

In practice, the most difficult part of approximating the
marginal likelihood via the Laplace approximation is identify-
ing the dominant posterior mode. This is nontrivial for a full
Keplerian model. Further, it is possible for the formal posterior
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mode to occur at a very high eccentricity and to correspond to a
such a narrow spike that the marginal likelihood is actually
dominated by the integral around another mode. While it is
possible for the marginalized likelihood to strongly favor an n-
planet model even if the posterior has multiple significant
modes, this implies that there is significant uncertainty in the
orbit of the object. This has occurred in the literature for actual
exoplanet data sets when aliasing issues cause there to be
significant uncertainty in the orbital period of planet (e.g., 55
Cnc e, Dawson & Fabrycky 2010). In principle, one could
apply the Laplace approximation around multiple posterior
modes to estimate the marginal likelihood. For this study, we
instead apply the Laplace approximation to a simplified model,
so as to avoid this difficulty. In particular, we construct one of
two linearized models for the RV perturbation due to each
planet. In the first model, we assume that each planet
follows a circular orbit and induces a stellar RV of
Vored (11A, B, P) = A cos(2nt /P) + B sin(27t /P). In the second
model, we adopt an epicycle approximation to each planet’s
orbit, in which case the RV perturbation can be written as
Vored (t|A, B, P) = A cos(2mt/P) + By * sin(2wt /P) + A, cos(4nt/P) +
B, sin(47t/P). If the orbital period and the covariance matrix
are fixed, then there is a single global mode and one can find
the values of A and B that maximize the likelihood via linear
algebra. Once the posterior mode (conditioned on orbital period
and parameters to the covariance matrix) is identified, one can
rapidly evaluate the model and the Hessian at the poster-
ior mode.

To find the orbital periods corresponding to the posterior
mode, we adopt an iterative approach adding one planet at a
time. When evaluating the marginal likelihood for the n-planet
model, we perform a brute force grid search over the period of
the nth planet, while holding the orbital period of planets 1
through n — 1 fixed at the values which maximized the posterior
probability under the (n — 1)-planet model. The grid is
uniformly spaced in orbital frequency with a density propor-
tional to the frequency range being searched, the time span of
observations, and the root mean square of the velocity residuals
under the best-fit (n — 1)-planet model. To avoid local maxima
due to aliases with previous planets, we exclude orbital periods
periods within 20% of the orbital period of one of the first n — 1
planets identified. We apply the Laplace approximation with
either the circular or epicycle model to compute the posterior
probability marginalized over all model parameters other than
the orbital periods and the parameters in the covariance matrix.

For each set of orbital periods, we compute the posterior
probability given the orbital period and marginalized over the
covariance matrix (i.e., 0;) using 40-point Gauss—Legendre
quadrature, as provided by the Julia FastGaussQuadrature.jl
package.”® Initially, we attempted to perform integration over
oy via the Laplace approximation, but found that this often
introduced a nontrivial error due to the cubic term in the
expansion about the modal o;. This approach is conceptually
similar to the Integrated Nested Laplace Approximations
technique for latent Gaussian models (Rue et al. 2017).

Finally, we integrate the posterior probability over the orbital
period of the nth planet via the Laplace approximation to arrive
at the marginalized posterior probability given an nth planet
model, where orbits are approximated as circular or epicycles.
The orbital period of the nth planet that maximizes the

B https://github.com/ajt60gaibb /FastGaussQuadrature.jl
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marginalized posterior probability is adopted for future
calculations involving n + 1 planets.

The Laplace approximation combined with the circular
model can be interpreted as a Bayesian periodogram, i.e., a
brute force search/integration over orbital period combined
with a fast approximate model conditional on the orbital
periods. This method has the advantage of performing a global
search of parameter space for each planet. We anticipate that
the Laplace approximation will underestimate the marginal
likelihood for models that include more planets that are
justified by the data. In these cases, multiple small posterior
modes would contribute significantly to the marginalize
probability, but our particular implementation only includes
one mode. In principle, this could be addressed by summing
over multiple posterior modes, but such generalizations are
beyond the scope of this study. In practice, this is not a serious
limitation, because there is relatively little scientific value in
precisely calculating the marginal probability for a model
which is not dominated by a single mode (i.e., there are
qualitative uncertainties in the orbit of at least one planet).

We anticipate that our Laplace approximation method will be
accurate for planetary systems with weak to modest detections, as
the posterior would be dominated by a single model and the RV
amplitude is small enough that the deviations from circular orbit
are small compared to the measurement precision. In order to
address this limitation, we performed a similar calculation using
the epicycle approximation, so the physical model error is reduced
from O(Ke) to O(Ke*). We anticipate that this will improve the
Laplace approximation for planets with strong detections and
modest eccentricities. Unfortunately, this also comes with the risk
of the model finding spurious posterior modes at high or even
unphysical eccentricities. We address the issue of unphysical
eccentricities (i.e., e > 1) when using the epicycle model by
drawing 100 samples for the inferred A and B coefficients given
the modal values of orbital periods and ¢, and computing what
fraction of those samples correspond to an eccentricity less than
unity. We multiplied the marginal posterior probability for that set
of orbital periods by the fraction of accepted samples. While this
eliminated totally unphysical models, it does not make the physical
model accurate in the high-eccentricity regime. For systems with
high-eccentricity planets, our linearized models will introduce a
nonrandom error term. Curiously, it is also possible that the high
computational efficiency of this method may result in it finding a
narrow posterior mode that other methods may have overlooked
due to the difficulty of performing a global search with a nonlinear
model. Therefore, when there are significant differences between
the marginal likelihood computed via the Laplace approximation
and other methods using a Keplerian model, it may not be obvious
whether the differences are primarily due to the limitations of the
Laplace approximation, the use of an approximate physical model,
or the more comprehensive search of parameter space possible
with the Laplace approximation.

A.4. Hara, {; Periodogram
A.4.1. Overview

In the present work, most of the presented techniques aim at
approximating closely the evidence of a model with a given
number of planets, in order to perform model comparison. The
method presented in this section is similar in that it aims at
finding how many planets are orbiting a given star, but differs
in that its initial goal is not to compute evidences. Its aim is to
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Figure 6. ¢, periodograms of the evidence challenge systems (in blue). The period and semiamplitude of the injected signals are represented by the stems, whose color
gives their detection difficulty as defined in Section 2. The legend “Peaks at...” indicates the location of the two or three tallest peaks of the ¢, periodogram in order of
decreasing amplitude. The legend “loglO(FAP)...” gives the logarithm in base 10 of the false-alarm probability of the signals at the periodicity given above. These
figures were obtained before the true location of the periods was known. A version of them without the stems indicating the true signals is available on the GitHub

page EPRV3EvidenceChallenge/Inputs/Hara/11_periodogram.

provide a quick and reliable search for periodicities in RV data
while avoiding some caveats of the Lomb-Scargle period-
ogram (Lomb 1976; Scargle 1982) or its generalizations.

Indeed, it is well known that if several sources of periodicity
are present in the signal, due to alias combinations, the
maximum of the periodogram might be attained at a period that
does not correspond to any signal actually in the data (Dawson
& Fabrycky 2010). One solution to that problem is to search for
several periods at once, which might be computationally costly.

The alternative we suggest is not to search for best-fitting
models with one or a few periodicities, but directly for a
Fourier spectrum of the true RV signal. This seemingly
more complicated problem will be greatly simplified by an
assumption: there are not many planets in the signal. In other
words, the signal is sparse in the frequency domain.
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The result of our method is an estimate of the Fourier
spectrum that we call the ¢; periodogram. Its plot can be read
similarly to a classical periodogram, with a significance
attached to each peak, but has much fewer peaks due to
aliasing. Figure 6 shows the £; periodograms we obtain for the
six systems of the evidence challenge (in blue). The periods
and semiamplitudes of the true planets are given by the stems,
with the level of difficulty of their detection in color code as
defined in Section 2. For instance, on system 1, the three main
peaks are at 42.1, 12.1, and 10.01 days and have respective
FAPs 10_20‘4, 10_22‘4, and 10_0'22; the true signals were two
“easy” planets at 42.4 and 12.1 days. The method is fast, that is,
it takes typically 5-10s to run on each data set of this
challenge, 20-30 s including the statistical significance assess-
ment on an i7, 2.5 GHz laptop processor. After the challenge,
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some further work enabled us to bring these computation times
on the evidence challenge data sets down to an average of 1.5 s
for the ¢, periodogram calculation and 4.6 s including statistical
significance assessment. Note that more conservative values of
the FAPs were obtained later, but we chose to plot figures that
were publicly available before the results were unveiled.

How the plot is obtained and how the significance is
computed are discussed respectively in Appendices A.4.2 and
A.4.3. We discuss how our method fits in the present challenge
in Appendix A.4.4.

A.4.2. Basis Pursuit De-noising

Let us denote by d; the data we would have obtained without
noise, so that d = d, + n, n being the noise. The variable we
wish to estimate is the Fourier spectrum x of d;. To obtain a
finite-sized variable, we approximate x by its discretization on a
fine grid of equally spaced frequency: x = (x(wi)k=1.. 5, Where
(Wek=1.. v span between 0 and an ) to be determined. The data
then admit the following representation: d; = Ax, where A is an
Nops X 2N matrix whose entries are Ay = coswyf; for [ =
1..N and Ay = sinwyty for I =N+ 1..N, [ = 1..Ngp.

Obviously, d; is unknown; we want to find an x such that Ax
is close to d. For instance, in the sense of the usual Euclidean
norm, we can impose ||Ax — d||;, < ¢ for some € > 0, where

lzlle, = 3N 22 for any z € RY», As said above, we know
that the true signal contains only a few nonzero frequencies (a
few planets). It seems reasonable to search for an x that
satisfies the inequality and has as few nonzero components as
possible. Unfortunately, trying to minimize the number of
nonzero components subject to a quadratic constraint is NP-
hard (Ge et al. 2011).

We use a proxy of the number of nonzero components of x,
which is the sum of the absolute values of the coefficients,
Ziﬁllx(wk)l =: ||x||s, also termed the ¢; norm of x. So, we
solve

argmin ||x||, subject to. ||[W(Ax — d)|,, < e, (10)

with W = E*;, 3 being the covariance matrix of the noise.
The quantity e sets the trade-off between sparsity and
agreement with observations. The minimization problem (10)
is known as Basis Pursuit De-Noising in the signal processing
literature (Chen et al. 1998). Other formulations of ¢; penalties
are possible; for instance, Bourguignon et al. (2007) used the
Lagrange multiplier version of Equation (10) for spectral
estimation. Unlike the number of nonzero components, the ¢;
norm is a convex penalty function. Because the constraint
|W(Ax — d)||;, < € defines a convex set, the problem (10) has
only one local minimum and is fast to solve.

There have been several algorithms written to solve
Equation (10). We selected SPGL1 (Van Den Berg &
Friedlander 2008). Several parameters of the algorithms have
to be tuned, such as the frequency grid width and spacing, and
the tolerance e. In Hara et al. (2017), we provide a method to
tune the algorithm parameters; we introduce the W matrix to
take into account correlated noise and additional processing
steps. We then obtain a quantity (x!(w))—;_ n that can be
plotted versus the frequency grid and gives an estimate of the
Fourier spectrum, just like in Figure 6 (in blue). Note that the ¢,
periodogram is used to find periodic candidates. This is not a
good estimator of semiamplitudes, which are underestimated
due to the ¢; penalization in Equation (10).
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Because several periodicities are searched at the same time,
one can expect that the problem of aliases adding up together to
give a spurious tallest peak is mitigated. Indeed, the number of
misleading peaks is drastically reduced (Hara et al. 2017).
However, as in the case of the classical periodogram,
significances of the peaks are to be determined.

A.4.3. Significance

We used two methods to evaluate the significance of the
peaks; their common feature is to test the improvement made
by fitting a periodic signal at the (n + 1)th tallest peak of the ¢,
periodogram compared to fitting only the » first. For instance,
on the system 1 of the Evidence Challenge (see Figure 6, top)
we compare the models with a sinusoidal signal at 42.16 days
(maximum peak) to nothing, then a model with two sines at
42.16 and 12.11 days to one signal at 42.16 day and so on.

The first way to proceed, as described in Hara et al. (2017),
is to compute the significance as if the period of the peaks had
been found by a residual periodogram (Baluev 2008). These
periodograms generalize the Lomb—Scargle one, and consist in
comparing the likelihood of a model that constitutes the null
hypothesis Hy to a model with the H, model plus a sine
function at a frequency w. Here, we use the null hypothesis “the
signal contains k planets at periods P; ...P;,” and the
significance for an additional planet is tested. The value of
the periodogram at frequency w is

2 2
XHOsw XH()
2 b
X H,

Pw) =« (11)

where X%‘lo and Xfiw are, respectively, the x> of the null
hypothesis model and of the model with the null hypothesis
plus a sinusoidal model at frequency w, and « is a positive
constant. To assess whether an additional periodic signal must
be included in the model, one can compute the probability that
the random variable “maximum of the periodogram,” P,
exceeds the maximum value of the periodogram of the data
under the null hypothesis, that is, the p-value

p = Pr{Bn > max P(w)|Ho}. (12)
The assessment of the statistical significance of an ¢ period-
ogram peak can be done sequentially by using as the null
hypothesis a model with sines at the n tallest peaks. Denoting
by w, the location of the (n+1)th tallest peak, we then use
P(w, 4 1) in place of max, P(w) in Equation (12). The values
reported in Figure 6 are the p-values computed with formula (5)
of Baluev (2008).

The second significance testing method we used for this
challenge is a Laplace approximation of the evidence at the
period found, as in Appendix A.3. We approximate the
evidence of the n-planet model as in formula (5) of Kass &
Raftery (1995),

log Z, ~ log L(d|6,) + logp, (8,)

+ (- loglfy1-+d, log2m). (13)

where d,, is the number of parameters of the model, p, is the
prior on the parameters of an n sines model, and I, is the
information matrix evaluated at 8, . The parameters 8, are fitted
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with a nonlinear sinusoidal fit initialized at the periods of the n
tallest peaks of the periodogram. Note that the fit includes an
error term in quadrature of the nominal errors in the maximum
likelihood estimation. The Laplace approximation is here
computed with an analytical formula we derived. The log of
the odds ratio is then approximated by logB = log Z, | —
log Z,. The approximated evidences and odds ratio are
reported, respectively, in Figures 2 and 5.

A.4.4. Discussion

Residual periodograms are robust tools with a well-founded
theory, but they do not necessarily indicate correctly the period
of the variation in the data. The ¢; periodogram is thought to be
an alternative to residual periodograms and has approximately
the same computational workload but mitigates the aliasing
problem (for details see Hara et al. 2017).

Significance tests on basis pursuit solutions are a notoriously
difficult problem. The present challenge constitutes a good test
of applying FAPs or odds ratio, developed in other contexts, to
test significance in our case. It seems reasonable because if
there are planets, they will appear in general on the ¢,
periodogram tallest peaks, and the remaining peaks will be
noise. Significance tests such as FAPs or odds ratio should
validate the signals until a peak due to noise is selected. The
results of the challenge we obtain are consistent with this
scenario.

A.5. Nelson, Ratio Estimator (MCMC Importance Sampling)

Importance sampling is essentially a more general form of
Monte Carlo integration to estimate Z. We multiply the
numerator and denominator of the integrand in Equation (1) by
£(0), a distribution with a known normalization:

2= [EOLO g4

14
g(0) 19

This does not change the value of Z, but Equation (14) is in a
convenient form such that Z can be estimated numerically by
drawing N samples from g (@),

L(0)p(6)) .
g(6)

=5 1

Z =~ 5)

N 6, ~50)

The efficiency of importance sampling depends strongly on
the chosen g (). Assuming our parameter space contains one
dominant posterior mode, we choose a multivariate normal
with mean vector M, and covariance matrix X, for g(@). For
each model considered, we estimate H, and X, from a set of
posterior samples obtained via MCMC.

One good strategy with importance sampling is to pick a
£(0) that is heavier in the tails than £(0)p(0). This makes it
easier to sample from low-probability parts of the posterior
distribution and prevents any samples from resulting in
extremely large weights. However, the chance of sampling
from the posterior mode will decrease with increasing
dimensionality, which could lead to an inefficient and
inaccurate estimate of Z (see a discussion of the “typical set”
in Betancourt 2017). One way around this is to sample from
g(0) within some truncated subspace, 7 . This new distribution
g7 (0) is proportional to g(0) inside 7 and renormalized to be
a proper probability density. Thus, Equation (15) can be
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rewritten as
FxZ 1 3 5(9)17(91‘)’

(16)
N o e 87(0)

where fis a factor that specifies what fraction of £(8;)p(6;) lies
within 7. We can estimate f with the previously mentioned
MCMC sample. By counting what fraction of our posterior
samples fell within 7, fyicmc, We can rearrange Equation (16)
to give us 2

1 L(0)p(6) .
gr(0)

There are two competing effects when choosing the size of our
subspace 7. If 7 is large (i.e., occupies nearly all of the
posterior distribution), then fyicmc approaches 1, and we return
to a basic importance sampling algorithm that may not be
efficient in high dimensions. If 7 occupies a much smaller
region, then we are more likely to sample from near the
posterior mode, but fyrcmc approaches 0, making it difficult to
accurately estimate Z. This necessitates carefully choosing an
appropriate 7 that will provide a robust estimate for Z. Guo
(2012) and Nelson et al. (2016) provide more detailed
prescriptions and investigations of this method.

Here, we compute Z for all models using small (1.5) and
large (30) truncated subspaces. Our parameterization for g(0)
is P, K, /e sinw, /e cosw, and w + M for each planet, and C
and oy for the zero-point offset and jitter, respectively. We run
20 independent MCMCs per model per data set and compute a
Z value based on every MCMC. We report the median and
standard deviation for each set of 20 Z values.

Z~ (17)

N X fueme 6,5,

A.6. Diaz, Perrakis

The Perrakis estimator is an importance sampling estimator
described in detail in Perrakis et al. (2014). The importance
sampling density used is the product of the marginal posterior
distributions of parameter blocks. In our case, we chose one-
dimensional blocks, so that the importance sampling function is

D
g =[] pid) ,

i=0

so that the samples are drawn from the marginal posterior
distributions,

0" ~ p(@ild) for i =1,2,..,D,
for a D-dimensional model. This produces the estimator
2 = oy RO 08 0RO OF, 07 05
= [T, p®ld)

The estimate can be computed based on joint posterior
samples drawn using, for example, an MCMC algorithm, but
requires two additional elements: draws from the marginal
posterior distributions of the parameter blocks and an estimate
of the marginal densities that appear in the denominator of
Equation (18). The former is promptly obtained by shuffling
the elements of the parameter vector across MCMC samples.
This breaks the correlation between parameters and leads to
samples that are drawn from the product of (independent)

(18)
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marginal posteriors. More details and a discussion on this are
given in Perrakis et al. (2014).

As we used one-dimensional parameter blocks, the marginal
posterior densities are approximated by the corresponding
normalized histogram. Of course, to obtain a precise estimate, a
large posterior sample and small bin sizes are required.
However, we checked that the result does not change
significantly with bin size. This estimation could be improved
by modeling the marginal distributions or using a kernel
density estimation.

The resulting estimate, which we named the Perrakis
estimator, was previously employed in the analysis of exoplanet
data in a number of articles (e.g., Diaz et al. 2016a, 2016b;
Bonfils et al. 2018). Here, we obtained a sample of size
5000 from the importance sampling function to perform the
computation of the evidence estimate, Z. The uncertainty was
computed by repeating the computation 600 times. At each time,
a new sample is considered: a new subsample of the joint
posterior distribution is taken, and a new shuffling is performed.

The joint posterior sample was obtained using the affine-
invariant ensemble sampler by Goodman & Weare (2010)
implemented by Foreman-Mackey et al. (2013). For each data
set and model, we ran 300 walkers for 30,000 iterations.

A.7. Team PUC, Variational Bayes with Importance Sampling

Johannes Buchner used an integration algorithm based on
variational Bayes (VB) and Importance Sampling. The method
is very similar to the one described in Beaujean & Caldwell
(2013) and uses their PYPMC package (Jahn et al. 2018).

The method proceeds as follows:

1. Identify likelihood maxima to guess an initial mixture.
The original technique used points from several
MCMC chains. Here, a single MULTINEST run (see
Appendix A.9) is used to obtain initial posterior points.
This just serves to identify an initial mixture density and
does not rely on MULTINEST sampling correctly. The
posterior points are divided into groups based on their
likelihood value and clustered further into subgroups.
This is analogous to multiple MCMC chains split into
segments in Beaujean & Caldwell (2013).

2. Generate an initial Gaussian mixture density from the
above groups. The intent is to develop a mixture that
closely describes the posterior well so that importance
sampling is efficient.

3. Run Variational Bayes to optimize the proposal mixture
density against the posterior points.

4. Define an Importance Sampler based on the optimized
mixture. Set N to 1000 times the number of model
parameters.

5. Loop:

(a) Draw N importance samples from the mixture and
evaluate their likelihood.

(b) If the importance sampling integral uncertainty is
below the threshold oz < 0.3 and the effective
sampling size is above 100, terminate.

(c) Otherwise: increase N by a factor of 1.4. This implies
that the total number of samples drawn increases
exponentially.

(d) Update the proposal mixture density with Variational
Bayes.
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(e) In every third loop, the previous step is not done.
Instead, the proposal mixture density is recreated from
scratch (as above), but with one more point group.
That group is created by starting a simple MCMC
chain from the point with the highest weight, after a
simple likelihood optimization.

Iteratively optimizing with Variational Bayes is effective in
making the importance sampler efficient and improves the
integration uncertainty. However, a limitation is that the
number of mixture components cannot increase. If importance
sampling discovers a new small peak, VB typically does not
place a component there. To solve this, step 5e recreates the
mixture from scratch (with up to 10 components). The local
MCMC run helps in identifying the size of the potential new
component. In the subsequent iteration, all previous samples
are used to optimize the mixture, and the number of
components can shrink again (often drastically).

We also include a long run from this algorithm, where we
initialize from the combination of 10 MULTINEST preruns (to
mitigate the problems named in the MULTINEST section),
higher number of importance samples, and integrate to a higher
effective sampling size (20,000) before terminating. At the cost
of many likelihood evaluations, this should be safer. For some
data sets, this stringent termination criterion was never reached,
and the runs were terminated manually.

A.8. Rajpaul, MCMC Nested Sampler

NS is a technique developed by Skilling (2004) and Skilling
(2006) for Bayesian model comparison via estimation of
Bayesian evidence integrals. As NS produces samples from the
posterior PDFs of model parameters as a trivial byproduct of
the evidence integral estimation, it may be thought of as a
reversal of the usual approach to Bayesian inference. Although
Skilling’s original formulation was designed with Bayesian
inference in mind, NS is in fact a general method for numerical
integration that may be applied to any continuous integrals.

NS proceeds by exploring the volume above a given
likelihood threshold. That threshold is continuously
increased, such that the volume decreases by a constant factor
(exponential shrinkage). This allows NS to keep track of the
volume and likelihood value for making a Lebesgue integral.
At a late point, the volume is small and the likelihood flat, so
that the remainder does not contribute to the integral, and the
algorithm terminates.

The shrinkage of NS is achieved by having e.g., 100 live
points sampling the prior space uniformly and then removing
one. This reduces the represented volume by ~1/100. Next,
the algorithm samples a new point with a likelihood higher than
the removed point. The number of live points therefore
determines the speed of the shrinkage and how coarsely the
space is sampled.

The error of the integral estimate is given in Skilling (2004).
The usual implementation assumes that the bulk of the integral
can be found around some (rather than multiple) shrinkage; in
practice, this is a sufficient approximation.

Internally, NS requires an algorithm for drawing a new,
random point from the prior with the condition that its
likelihood is higher than the current likelihood threshold.
Several general solutions for these constrained drawing
algorithm exist, including those relying on local steps (e.g.,
MCMC, Galilean Monte Carlo, HMC, POLYCHORD—and
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those reconstructing the volume enclosed by the likelihood
contour, e.g., MULTINEST, RADFRIENDS). See Buchner (2016)
for a more detailed discussion.

Here, Rajpaul implemented the MCMC sampler from Veitch
& Vecchio (2010) to generate samples within a standard NS
routine. This implementation is different from MULTINEST (see
below) in that it replaces the clustering algorithm or ellipsoidal
rejection schemes with a semiadaptive MCMC exploration of
the prior range. In particular, the present implementation used a
mixture of the following proposal schemes to draw new
samples: a Student-f distribution (with v =2 degrees of
freedom) based on the Cholesky-decomposed covariance
matrix of the live points, differential evolution using two
randomly selected points from the current live points, and
affine-invariant walk and stretch moves (see Goodman &
Weare 2010).

The algorithm as presented by Veitch & Vecchio has two
main parameters that can be adjusted: N, the number of live
points; and M, the number of MCMC iterations. By tuning N
and M, any desired level of evidence accuracy can (in
principle) be achieved, albeit at the expense of increasing
computational burden, with the total number of likelihood
evaluations scaling linearly with both N and M. Based on
recommendations given by Veitch & Vecchio, and to strike a
balance between a reasonable computation time and (osten-
sible) accuracy, Rajpaul fixed N = 1000 and M = 1000, such
that estimation of a given model’s evidence would require of
order 10° likelihood evaluations.

Rajpaul noted a priori that his own experience was that
MULTINEST was typically faster and better-suited to higher-
dimensional (>10-dimensional) problems than the above
algorithm from Veitch & Vecchio. Nevertheless, the MCMC
sampler from Veitch & Vecchio was implemented for this
evidence challenge to provide a foil to the more popular
MULTINEST NS algorithm, discussed below.

A.9. Team PUC, MULTINEST

Team PUC (Johannes Buchner and Surangkhana Rukdee
from Pontificia Universidad Cat6lica de Chile) employed NS
with the constrained drawing algorithm MULTINEST. MULTIN-
EST’s multimodal ellipsoidal sampling (Shaw et al. 2007; Feroz
et al. 2009) encloses the existing random points into best-fitting
ellipsoids. These are enlarged by a certain factor (inverse of the
efficiency parameter). New points are drawn from the enlarged
ellipsoids and rejected if below the likelihood threshold.
Therefore, the ellipsoids reduce the space to be sampled,
making MULTINEST fast (in terms of number of likelihood
evaluations needed). However, if the ellipsoids accidentally cut
away parameter space regions, e.g., because the enlargement is
too small or the contours do not look similar to ellipsoids, the
estimate can be biased.

A.9.1. Algorithm Variations

MULTINEST has two parameters, the number of live points
nlive and the target efficiency eff (inverse of the ellipsoid
enlargement). We chose a standard configuration (MULTINEST-
nlive400-ef£f0.3) and two variations, increasing either the
number of live points (MULTINEST-nlive2000-ef£f0.3) or
the enlargement (MULTINEST-nlive400-e£f£0.01).

Importance NS is a modification of NS where the rejected
points can improve the estimate (Cameron & Pettitt 2014;
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Feroz et al. 2019). To some degree, this also mitigates the
above-mentioned issues of imperfect ellipsoid sampling.
MULTINEST computes both the standard NS estimator and
the importance NS estimator. The results are named corre-
spondingly (MULTINEST-ins-nlive400-eff0.3, MULTINEST-ins-
nlive400-eff0.01, MULTINEST-ins-nlive2000-eff0.3).

A.9.2. Scatter between MULTINEST Runs

We observe that there are substantial scatter and outliers in
the evidences between MULTINEST runs. Figures 7 and 8 shows
the scatter and assigned errors for repeated runs of data set 1
and data set 4, respectively. Panel columns represent the three
MULTINEST configurations and panel rows show different
numbers of modeled planets. Each panel shows the comparison
between the NS estimator and INS estimator for six runs. In
most cases, the INS estimator gives a smaller error bar to
compare to the NS estimator. However, it sometimes shows
outliers; for example, in data set 4 (Figure 8) Run 3 with one
planet, increasing nlive from 400 (left column) to 2000
(middle column) yields smaller errors. Decreasing the effi-
ciency from 0.3 to 0.01 (right column) gives systematic offsets
between NS and INS estimators.

Throughout, the quoted uncertainties of MULTINEST are
smaller than the scatter between runs. Low outliers can come
from undiscovered solutions, but increasing the number of live
points did not eradicate this completely. Imperfect ellipsoids
can also lead to scatter in the estimate. Indeed, decreasing the
efficiency also decreases the scatter, but at great computational
cost. Using the INS estimator instead of the standard NS
generally leads to overly small uncertainties. One conclusion is
that running MULTINEST just once gives unreliable uncertainty
estimates, which cannot be completely eradicated by decreas-
ing the efficiency or increasing the number of live points.

To represent this additional uncertainty in MULTINEST, we
define a multirun estimator. We ran MULTINEST six times and
combine the evidence estimate as the median of individual
estimates:

log Z= median(log Z).

The multirun error is defined as the median of the absolute
deviations and the median individual error estimates added in
quadrature:

o2 = median(c;)> + median(|log Z; — log Z|)?.

This gives appropriate errors when MULTINEST is having
trouble and shows substantial scatter, yet is robust against
individual outliers. The bottom of each panel of Figures 7 and 8
shows our MULTINEST multirun estimators.

A.10. Faria, Diffusive Nested Sampling

One of the main challenges with the NS algorithm is to
generate new particles from the likelihood-constrained prior.
As described above, a number of methods have been proposed
for this (and used in the current work). However, some of those
methods, and NS in general, tend to suffer from the curse of
dimensionality, with sampling efficiency decreasing rapidly
with the dimension of the parameter space. This is particularly
problematic if the posterior distribution is multimodal or highly
correlated. Brewer et al. (2011) introduced a new algorithm,
which they called Diffusive Nested Sampling (DNS), designed
to be as flexible and general as a more standard MCMC, but
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Figure 8. Same as Figure 7, but for data set 4.
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also capable of efficiently exploring difficult constrained
distributions. The algorithm introduces a slight but important
improvement to the classic NS approach, in that it attempts to
sample from a mixture of successively constrained distribu-
tions, instead of using one single hard constraint at each step.

DNS starts by generating a particle from the prior (call this
distribution p . ) and evolving it with an MCMC, storing all the
intermediate likelihood values. After a given number of
iterations, it finds the 1 — e~ ' ~ 63% quantile of all the
likelihood values and records it as £;; this creates a new level
occupying about e ' times the mass of p .- All of the
likelihood values lower than £; are then discarded. At this
point, (classic) NS would continue sampling from the prior
constrained to £y (call it p,). In contrast, DNS attempts to
sample from a weighted sum of the two distributions p, and
Pr,- An MCMC is used to evolve the particle with this mixture
of distributions as the target, and once enough samples have
been obtained from p., we again find the 1 — e~ quantile of
all the likelihood values and record it as £,. Likelihood values
smaller than £, are removed. The particle then explores a
mixture of p., p, and p. , and this process continues until a
maximum number of levels is created.

Once all the levels have been obtained, the particle simply
continues to explore the mixture of all the levels until the
algorithm is terminated. In order to create the mixture of
distributions, we need to provide a weighting scheme for each
component. Simple uniform weights for all distributions would
work, albeit inefficiently. Brewer et al. (2011) proposed
exponentially decaying weights with a scale length A, which
describes how far (down in likelihood) the particle is able to go
in order to explore more freely. When the desired number of
levels has been created, the weights can be changed to uniform,
and further samples are drawn from all the component
distributions. The algorithm can then continue to sample for
as long as required, with the evidence and posterior samples
converging to their true values. Each time a new level is
created, its constrained distribution covers about ¢! times as
much prior mass as the last distribution. Therefore, the X-value
of the kth level can be estimated as exp(—k). However, as the
levels are being created, their actual X values can be modified
from this theoretical expectation. This means that the weight of
each distribution is actually different, and the exploration is
thus not completely correct. The X values can nevertheless be
corrected. At a given level k, the values of the likelihood will
be higher than the upper level’s likelihood cutoff a fraction
Xi+1/Xy of the time. Thus, we can use the actual fraction of
samples in which this happens as an estimate of the true ratio of
the X values for consecutive levels.

In summary, the DNS algorithm is essentially an application
of the Metropolis—Hastings algorithm to a distribution other
than the posterior. Changing the target distribution improves
upon other MCMC algorithms by providing the value of the
evidence in one single run and being less sensitive to the
presence of complicated features in the posterior. Classic NS
also shares these advantages, but DNS improves upon the
classic algorithm by alleviating the problem of sampling from
the likelihood-constrained prior. Because the target distribution
used by DNS always includes the prior distribution as one of
the components of the mixture, sampling from posteriors with
substantial multimodality is still possible and even efficient.
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A.10.1. Details

In this work, Faria used the DNS algorithm implemented in
the DNEST4 package (Brewer & Foreman-Mackey 2018). The
specific application of DNEST4 to the exoplanet problem is
implemented in a new open-source package called kima (J. P.
Faria et al. 2019, in preparation). The code allows the posterior
distribution for the orbital parameters and the value of the
evidence for a model M,, with n planets to be calculated.

The DNS algorithm has a few options, which need to be set
for each run. We set the scale length A to 25 and require 500
samples from the consecutively constrained distributions before
creating a new level. The maximum number of levels is
determined automatically by DNEST4 (see Brewer et al. 2011).
For all the simulated data sets, we obtained 100,000 samples
from the DNS target distribution. This corresponds to different
numbers of posterior samples for each data set and for each
model.

In the DNS algorithm, there is no explicit global search step
as the algorithm is always free to explore the full prior volume.
This means that once the settings mentioned above are fixed,
the results were computed automatically for all data sets,
without any data-set-dependent input.

For the analysis with constrained priors for the orbital
period, the prior probability density function was set to O
outside of the provided period bounds. Inside the bounds, the
prior is still a Jeffreys between 1.25 and 10* days.

The error we report for the evidence value is calculated from
one single run, by the probabilistic reassignment of X values to
the samples, as in standard NS (see Brewer et al. 2011). These
errors are likely to be overly optimistic.
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