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Abstract
It is shown that the free energy associated to a finite-dimensional Airy structure 
is an analytic function at each finite order of the �-expansion. Its terms are 
interpreted as objects living on the zero locus of the classical hamiltonians. 
The geometry of this variety is studied. The structure of singularities of the 
free energy is described. To this end topological recursion equations  are 
expressed in a form particularly suitable for semiclassical analysis. It involves 
a differential operator which is a deformation of the exterior derivative.  
Its local properties are derived. The developed formalism is applied in several 
examples. Global properties of the obtained partition functions are investigated. 
In the case of a divergent �-series, a simple resummation is performed.

Keywords: topological recursion, Airy structures, semiclassical 
approximation, quantization, partition function, WKB

1.  Introduction

Airy structures were introduced in [1] as a reformulation and generalization of the topologi-
cal recursion [2] for spectral curves. They encode data necessary to formulate certain recur-
sive equations encountered in matrix models [3–5], conformal field theory [6], enumerative 
geometry [7, 8], and other applications (see [9, 10] for pedagogical reviews) as differential 
equations. This approach makes manifest symmetry properties of the solutions and strong 
symplectic flavour of the problem. Further study of Airy structures was undertaken in [11–13].

Recall that an Airy structure is a Lie algebra of differential operators

Li = �∂i −
1
2

Aijkx jxk − �Bk
ijx

j∂k −
�2

2
C jk

i ∂j∂k − �Di,� (1.1a)

[Li, Lj] = �f k
ij Lk,� (1.1b)
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where indices i, j, k ∈ {1, . . . , n}. Repeated indices are summed over in all equations. In gen-
eral infinite index sets are allowed, but this case will not be considered here. Abbreviation 
x = (x1, . . . , xn), y = (y1, . . . , yn) shall often be used. Symbols A, B, C, D and f  are tensors 
obeying a number of relations. Firstly, A is completely symmetric, while C is symmetric in its 
upper indices. Structure constants are given by the skew-symmetric part of B, f k

ij = Bk
ij − Bk

ji. 
Coefficients Di are of the form Di =

1
2 B j

ij + δi, where δi satisfies f k
ijδk = 0. Additionally there 

is a number of complicated quadratic equations, of no use here1. All calculations are per-
formed over the field k = R or C.

To any Airy structure one may associate the set of classical hamiltonians

Lcl
i (x, y) = yi −

1
2

Aijkx jxk − Bk
ijx

jyk −
1
2

C jk
i yjyk.� (1.2)

They satisfy relations {Lcl
i , Lcl

j } = f k
ij L

cl
k  with respect to the bracket determined by2 the sym-

plectic form ω = dxi ∧ dyi . Denote the Hamiltonian vector field corresponding to Lcl
i  by ξi. 

By construction, [ξi, ξj] = f k
ijξk .

Let G be a simply-connected Lie group with Lie algebra g = lin{Li}n
i=1. Since Lcl

i  are at 
most quadratic, ξi may be exponentiated to an affine action of G on k2n, which preserves the 
symplectic form.

It was shown in [1] that to every quantum Airy structure one may associate a free energy—
the unique formal series F in � and x such that

Li · exp
(
�−1F(�, x)

)
= 0,� (1.3a)

F(�, 0) = ∂iF(0, 0) = ∂i∂jF(0, 0) = 0.� (1.3b)

Due to the presence of �−1 in the exponent, it is not immediately obvious if the partition 
function Z = e�

−1F  may be made sense of as a formal series. However, due to conditions 
(1.3b), one may obtain a series involving only positive powers of indeterminates by chang-
ing variables to x′ = �− 1

2 x . Therefore operations defined for formal power series, such as 
exponentiation or inversion, can be applied without encountering meaningless expressions. 
In [1] a slightly different approach was proposed: the map Li �→ Z−1LiZ was regarded as 
an automorphism of the completed Weyl algebra, while equation (1.3a) was reinterpreted as 
(Z−1LiZ) · 1 = 0. One may show that (Z−1LiZ) · 1 = Z−1(LiZ), so the two interpretations are 
equivalent.

By construction, the free energy may be expanded in powers of �,

F(�, x) =
∞∑

g=0

�gFg(x),� (1.4)

with Fg ∈ k[[x]]. The main result of the present work is that there exists a neighbourhood U of 
0 ∈ kn such that the series Fg(x) converges for each x ∈ U  and g ∈ N. The series (1.4) itself 
diverges in general, which will be demonstrated by an explicit example. Employed techniques 
are standard in the approach to WKB-type approximations through symplectic geometry [14, 
chapters 1–3]. From this point of view e�

−1F behaves like a wave function, rather than a parti-
tion function.

In the process of proving the claim, the partition function is rewritten as

1 Their detailed form consistent with this work can be found in [13].
2 See the appendix A for the relevant definitions.
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Z = e�
−1F0(x)ρ0(x)

(
1 +

∞∑
m=1

�mψm(x)

)

︸ ︷︷ ︸
ψ(�,x)

.
� (1.5)

The objects ρ0 and ψ are related to the more familiar Fg by

F1(x) = log ρ0(x),� (1.6a)

Fg(x) = −
g−1∑
k=1

g−1∑
m1,...,mk=1

(−1)k

k
δg−1

m1+...+mk

k∏
j=1

ψmj(x) for g � 2,� (1.6b)

ψm(x) =
m∑

j2,...,jm+1=0

δ j2+2j3+...+mjm+1
m

m+1∏
g=2

Fg(x) jg

jg!
for m � 1.� (1.6c)

Terms of the expansion (1.5) are interpreted as local expressions for geometric objects 
on a Lagrangian submanifold Σ0 ⊆ k2n. In a neighbourhood of zero Σ0 coincides with the 
graph y = dF0(x). Globally, Σ0 admits the Lie group G as a universal cover. It is shown 
that F0 extends to a holomorphic function on G. The canonical bundle of G admits a nat-
ural square root3 K

1
2, and expression ρ0(x)

√
dx1 ∧ . . . ∧ dxn  extends to a holomorphic sec-

tion η of K
1
2. This is in accord with the semiclassical interpretation [14, chapter 4] of quantum 

states as half-forms on Lagrangian submanifolds. Series ψm(x) extend to (possibly multi-
valued) holomorphic functions on the complement of the ramification locus of the projection 
π : Σ0 � (x, y) �→ x ∈ kn. They satisfy equations

dψm = ∆ψm−1,� (1.7)

where ∆ is a second order differential operator of cohomological degree 1, meromorphic on 
Σ0 and satisfying equations

∆2 = 0,� (1.8a)

d∆+∆d = 0.� (1.8b)

As seen from the presented proof, these are the only properties of ∆ needed to demonstrate 
the existence of ψ.

As a consequence of associativity, any differential operator of the form [d,κ] anticommutes 
with d. It is natural to ask if ∆ may be written in such a form. It is proven in section 3 that the 
answer is affirmative, at least locally. Furthermore it is shown that the operator d∆ = d − �∆ 
obeys the Poincaré lemma.

In section 4 developed formalism is applied in several examples. They illustrate that the 
system (1.7) provides an efficient tool for solving for Z, provided that the closed form of F0 
and ρ0 may be found first. This may be achieved either by solving a system of first order, but 
nonlinear partial differential equations or by solving a system of polynomial equations and 
computing integrals. Global properties of F0, η and ψ are investigated in each example. 
Functions ψm are found to be meromorphic on Σ0. It is an interesting question if this is always 
true. In one case, the partition function turns out to be a divergent series in �. Its resummation 
is discussed. In each example globally meromorphic operator κ is found.

3 See the appendix B.
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2.  Analytic structure of the free energy

It is sufficient to consider the case k = C. Analyticity of F in the real case then follows, because 
every differential operator of the form (1.1a) with real coefficients may as well be considered 
for complex x. Since the associated Fg are analytic, so are their restrictions to real x.

2.1.  Characteristic variety

Consider the affine variety Σ = {(x, y) ∈ C2n|Lcl
i (x, y) = 0, i = 1, . . . , n} and its Zariski 

open subset Σs = { p ∈ Σ| dLcl
1 ∧ . . . ∧ dLcl

n

∣∣
p �= 0}. Σs is nonsingular, so its irreducible 

components are disjoint. Since the irreducible components are connected [15, chapter 7], they 
coincide with the connected components. Each component of Σs is a complex manifold of 
dimension n.

Bracket relations satisfied by the hamiltonians Lcl
i  imply that Σs is Lagrangian and invari-

ant under the G-action. Thus for every p ∈ Σs the set {ξi|p}n
i=1 is a basis of the tangent space 

TpΣs. It follows that orbits of the G-action on Σs are open in Σs. In particular they coincide 
with the components of Σs.

Let Σ0 be the G-orbit of 0. Mapping Q : G � g �→ g(0) ∈ Σ0 is a universal cover. Its 
fiber Γ = Q−1(0) is a discrete subgroup of G, which may be identified [16, chapter 1] with 
π1(Σ0, 0), the fundamental group of Σ0 based at 0.

By the implicit function theorem, xi may be used as local coordinates on some neighbour-
hood of zero in Σ0. In other words, for sufficiently small x equations  Lcl

i (x, y) = 0 may be 
solved to express y i as analytic functions4 of x. The same can be done in a neighbourhood of 

any p ∈ Σ0 at which D = det
(

∂Li
∂yj

)n

i,j=1
 is nonzero. Set Ram = { p ∈ Σ0|D( p) = 0} is called 

the ramification locus. It coincides with the set of all p ∈ Σ0 such that the differential dπ|p 
is not onto. Ram is the zero locus of a nonzero polynomial on Σ0, so it is either empty or a 
codimension one subvariety of Σ0. Moreover Σ0 \ Ram is connected.

For future reference, note that the vector fields ξi restricted to Σ0 and expressed in local 
coordinates take the form

ξi = {Li, x j} ∂

∂x j =
∂Li

∂yj

∂

∂x j =
(
δk

i − Bk
ijx

j − C jk
i yj

) ∂

∂xk .� (2.1)

This relation may be inverted using the Cramer’s rule, yielding

∂

∂xi = D−1M j
i ξj,� (2.2)

where M j
i  are the restrictions to Σs of certain polynomials in x, y. Since ξi are globally holo-

morphic, this formula shows that each D ∂
∂xi extends to a holomorphic vector field on Σ0.  

In particular ∂
∂xi is a meromorphic vector field on Σ0.

It is useful to introduce the divergence of ξi:

L(ξi)(dx1 ∧ . . . ∧ dxn) = div(ξi) · dx1 ∧ . . . ∧ dxn,� (2.3)

where L(ξi) is the Lie derivative with respect to ξi. Iterating this equation one gets

4 Typically for a given x there are several y  such that Lcl
i (x, y) = 0. However there is a unique such y  depending 

continuously on x and subject to the initial condition y(0) = 0.
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[L(ξi),L(ξj)](dx1 ∧ . . . ∧ dxn) = (ξi(div(ξj))− ξj(div(ξi))) dx1 ∧ . . . ∧ dxn.
� (2.4)

On the other hand [L(ξi),L(ξj)] = f k
ijL(ξk), so comparison of (2.3) with (2.4) gives

ξi(div(ξj))− ξj(div(ξi)) = f k
ij · div(ξk).� (2.5)

Expression for div(ξi) in local coordinates, derived from (2.1), takes the form:

div(ξi) = −B j
ij − C jk

i
∂yj

∂xk .� (2.6)

A convenient framing of the holomorphic cotangent bundle of Σ0 is provided by the holo-
morphic 1-forms defined by σi(ξj) = δi

j. They satisfy

L(ξi)σ
j = −f j

ik · σ
k, dσi = −1

2
f i
jkσ

j ∧ σk,� (2.7)

as may be evaluated, say, using the Leibniz rule for Lie derivatives and the Cartan’s magical 
formula5. Using this result (2.5) may be rephrased as d

(
div(ξi)dσi

)
= 0.

The wedge product ε = σ1 ∧ . . . ∧ σn is a nowhere-vanishing section of the canonical bun-
dle K of Σ0. By (2.7), it satisfies

L(ξi)ε = −f j
ij · ε.� (2.8)

Since K is a line bundle, sections ε and dx1 ∧ . . . ∧ dxn have to be proportional. Relative factor 
may be computed by contracting with ξ1, . . . , ξn and using (2.1),

ε = D−1 · dx1 ∧ . . . ∧ dxn.� (2.9)

Taking the Lie derivative of this equation with respect to ξi gives

L(ξi)ε =
(
−D−1ξi(D) + div(ξi)

)
ε.� (2.10)

Comparison with (2.8) leads to the result

D−1ξi(D) = div(ξi) + f j
ij .� (2.11)

This formula shows that each D · div(ξi) extends to a holomorphic function on Σ0. Moreover 
it provides an explicit expression for the derivatives of D.

Since the canonical bundle of Σ0 is equipped with a distinguished framing, there exists 
a natural choice of a square root of K, with the symbol 

√
ε playing the role of a global 

trivialization.

2.2.  Hamilton–Jacobi equation

Let θ = yidxi. Since dθ = −ω  and Σ0 is Lagrangian, the restriction of θ to Σ0 is a closed form. 
For any p ∈ Σ0 let

F0( p) =
∫ p

0
θ,� (2.12)

with the integral taken over any smooth path in Σ0 from 0 to p . By the Stokes’ theorem, its 
value is unchanged by continuous deformations of the path. Nevertheless, there is still an 
ambiguity in the definition of F0 due to the presence of non-contractible loops in Σ0. In other 

5 L(ξ) = dι(ξ) + ι(ξ)d , where ι(ξ) is the interior product with ξ.
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words, F0 is multi-valued. It is best regarded as a holomorphic function on G, the universal 
cover of Σ0.

Notice that certain function was denoted by the same symbol as the formal series appearing 
in (1.4). This will be justified by showing that the two objects agree when the global version 
is expressed in local coordinates.

Now restrict attention to a polydisc

U = {(x, y) ∈ Σ0| |xi| < r, i = 1, . . . , n}� (2.13)

with some r  >  0 sufficiently small so that π|U  is an isomorphism onto its image. By construc-
tion, xi furnish a coordinate system on U. F0 is single-valued on U, so it may be expressed as 
a convergent power series.

Definition of F0 implies that F0(0)  =  0. Since the differential form θ|Σ0
 vanishes at zero, 

also the differential dF0 vanishes at zero. Additionally one has

∂F0

∂xi dxi = dF0 = θ|Σ0
= yidxi

∣∣
Σ0

,� (2.14)

which shows that U ∩ Σ0 coincides with the graph

yi =
∂F0(x)
∂xi .� (2.15)

Since Lcl
i

∣∣
Σ0

= 0, this entails that F0 satisfies the Hamilton–Jacobi equation

Lcl
i (x, dF0) = ∂iF0 −

1
2

Aijkx jxk − Bk
ijx

j∂kF0 −
1
2

C jk
i ∂jF0∂kF0 = 0.� (2.16)

Evaluating the derivative of this equation at zero one gets that the second derivatives of F0 
vanish at zero. Hence F0 satisfies the same differential equation and the same initial condition 
as the unique formal series F0(x) in (1.4). Thus the two objects are equal. In particular F0(x) in 
(1.4) is a convergent series on U.

2.3.  Equations for the partition function

Equations for higher order terms in the partition function will now be derived. First observe 
that the Hamilton–Jacobi equation (2.16) implies that

e−�−1F0(x)Lie�
−1F0(x) = �ξi −

�
2

C jk
i (∂j∂kF0)−

�2

2
C jk

i ∂j∂k − �Di,� (2.17)

where (2.1) and (2.15) were used to collect several terms into a single expression. Further sim-
plification may be achieved using (2.6), once again combined with the fundamental formula 
(2.15). The final result takes the form

e−�−1F0(x)Lie�
−1F0(x) = �

(
ξi +

1
2

div(ξi)− δi

)
− �2

2
C jk

i ∂j∂k.� (2.18)

This means that partition function written in the form

Z(�, x) = e�
−1F0(x)

∞∑
m=0

�mρm(x)� (2.19)

B Ruba﻿J. Phys. A: Math. Theor. 53 (2020) 085201
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is annihilated by each Li if and only if the functions {ρm}∞m=0 satisfy
(
ξi +

1
2

div(ξi)− δi

)
ρ0 = 0,� (2.20a)

(
ξi +

1
2

div(ξi)− δi

)
ρm =

1
2

C jk
i ∂j∂kρm−1, for m � 1.� (2.20b)

Equation (2.20a) may be used to eliminate div(ξi) from (2.20b), so that

ξi (ψm) = ∆iψm−1, for m � 1,� (2.21)

where ψm = ρm
ρ0

. Operators ∆i are defined by

∆i =
1
2

C jk
i ρ−1

0 ∂j∂kρ0.� (2.22)

Equation (2.21) has the form of an inhomogeneous transport equation, with the source term 
for ψm depending only on ψm−1.

2.4.  Half-form ρ0

It will now be shown that (2.20a) may be solved for ρ0 ∈ O(U). Define

λ0 =

(
δi −

1
2

div(ξi)

)
σi.� (2.23)

Equations (2.5) and (2.7) imply that λ0 is closed, so one may put

ρ0(x) = exp

(∫ x

0
λ0

)
.� (2.24)

Now note that eF1 is the unique solution of (2.20a) in the space of formal series in x with con-
stant term 1. Therefore ρ0 = eF1. In particular F1(x) converges on U.

From the geometric perspective, ρ0 is a local expression for a certain half-form on Σ0. 
Indeed, define η ∈ H0(K

1
2 , U) by the condition

η ⊗ η = ρ0(x)2 dx1 ∧ . . . ∧ dxn,� (2.25)

with the sign of η fixed by η|0 =
√
ε|0. Then (2.20a) may be reformulated as

L(ξi)η = δi · η.� (2.26)

This has the advantage of being formulated in terms of objects defined globally on Σ0. This 
leads to the question whether a global solution of (2.26) exists. It will now be demonstrated 
that the answer is affirmative after pulling back to the universal cover. However η may turn 
out to be multi-valued on Σ0. Consider the ansatz η = ρ̃0 ·

√
ε. Plugging this into (2.26) one 

obtains

ξi(ρ̃0) = νi · ρ̃0,� (2.27)

where νi = δi − 1
2 f j

ij . Iterating this equation gives f i
jkνi = 0. Therefore ν  coincides with the 

derivative at zero of a unique holomorphic homomorphism ρ̃0 from G to the multiplicative 
group C× of nonzero complex numbers. By construction, ρ̃0 satisfies (2.27). In general ρ̃0 
is multi-valued on Σ0. In this case a global solution of (2.26) does not exist on Σ0. Precise 
condition for ρ̃0 to descend to a function on Σ0 is that the group Γ should be contained in the 

B Ruba﻿J. Phys. A: Math. Theor. 53 (2020) 085201
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kernel of ρ̃0. If the Lie algebra spanned by the Li is such that each element may be represented 

as a linear combination of commutators, then νi = 0 is the only solution of equation  f i
jkνi = 0.  

In this situation η holomorphic on whole Σ0 is guaranteed to exist.
Notice that it follows from (2.9) and the above that ρ0 is, up to multiplication by a function 

holomorphic on G, equal to D− 1
2.

2.5.  Quantum corrections

In this section equation (2.21) shall be discussed. The first step is to derive basic properties of 

the operators ∆i. Put L̃i = ρ−1
0 e−

F0
� Lie

F0
� ρ0 . By (2.18) and (2.20a) one has

L̃i = �ξi − �2∆i.� (2.28)

The operators L̃i are related to Li by a similarity transformation, so they satisfy the same com-

mutation relations: [L̃i, L̃j] = �f k
ij L̃k . Sorting terms in this equation according to the accompa-

nying power of � one gets that it is equivalent to6

[∆i,∆j] = 0,� (2.29a)

[ξi,∆j]− [ξj,∆i] = f k
ij∆k.� (2.29b)

Formula (2.2) combined with holomorphicity of Dρ−1
0 ξi(ρ0) on Σ0 implies that each D3∆i  

extends to a holomorphic differential operator on Σ0. In particular each ∆i preserves the space 
of meromorphic functions with the polar set contained in Ram.

Now let ω  be a meromorphic p -form defined on an open subset of Σ0. Then

ω = ωj1...jpσ
j1 ∧ . . . ∧ σ jp� (2.30)

for some meromorphic functions ωj1...jp. Define

∆ω = (∆iωj1...jp)σ
i ∧ σ j1 ∧ . . . ∧ σ jp .� (2.31)

By construction, ∆ is a meromorphic differential operator which shifts the degree by one. 
Using (2.7) one may rewrite properties (2.29) in the neat form

∆2 = 0,� (2.32a)

d∆+∆d = 0.� (2.32b)

In particular d∆ = d − �∆ satisfies d2
∆ = 0. One may regard d∆ as a deformation of the exte-

rior derivative. In this language equations satisfied by ψ take the form

d∆ψ = 0,� (2.33)

or equivalently

dψm = ∆ψm−1.� (2.34)

To solve (2.34), suppose that ψm−1 ∈ O(U). Define λm = ∆ψm−1. Then

dλm = d∆ψm−1 = −∆dψm−1.� (2.35)

Assuming that ψm−1 satisfies dψm−1 = ∆ψm−2 for some ψm−2, one has

6 The first equation may be derived also directly from the fact that partial derivatives commute. The second relation 
is not as obvious.

B Ruba﻿J. Phys. A: Math. Theor. 53 (2020) 085201
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dλm = −∆2ψm−2 = 0.� (2.36)

It follows that one may put

ψm(x) =
∫ x

0
λm.� (2.37)

By induction, each ψm and hence each Fg is holomorphic on U.
Suppose that for some m � 1 the function ψm−1 extends to a (possibly multi-valued) holo-

morphic function on Σ0 \ Ram. Then the pullback of λm to a universal cover of Σ0 \ Ram is 
a holomorphic 1-form, so ψm extends to a (possibly multi-valued) holomorphic function on 
Σ0 \ Ram. Since the assumption is trivially satisfied for m  =  1, all dψm extend to holomorphic 
1-forms on Σ0 \ Ram, by induction.

It is natural to ask what is the behaviour of ψm near the ramification locus. The best state-
ment one could hope for is that there exists νm ∈ N such that Dνmψm extends to a holomor-
phic function on G. Suppose that this holds up to order m  −  1. Then Dνm−1+4λm ∈ Ω1(G). 
Unfortunately, this does not imply that ψm =

∫
λm is meromorphic. Already in the calculus 

of a single complex variable the integral of a meromorphic 1-form λ defined on a simply-
connected Riemann surface may contain logarithmic terms. This happens if and only if the 
integral of λ over a small loop around one of the poles is nonzero, or equivalently, if λ has 
nonzero residues. Similarly in the present problem, it could happen that λm has nonzero peri-
ods over cycles of G \ Q−1(Ram), leading to multi-valuedness of ψm on G \ Q−1(Ram).

Incidentally, the reasoning presented above suggests that if ψm are meromorphic, then the 
order of the pole of ψm at Ram grows linearly with m. This behaviour is indeed observed in 
the examples studied in section 4.

3.  Local properties of ∆

3.1. Trivialization

It will now be demonstrated that in a neighbourhood of any point of Σ0 \ Ram the operator ∆ 
admits a representation as a commutator with d,

∆ = [d,κ].� (3.1)

Suppose that κ is an operator defined on functions and satisfying

∆i = [ξi,κ].� (3.2)

Then equation (3.1) holds, provided that one puts

κ
(
ωj1...jpσ

j1 ∧ . . . ∧ σ jp
)
=

(
κωj1...jp

)
σ j1 ∧ . . . ∧ σ jp .� (3.3)

Indeed, since both ∆ and κ commute with multiplication by σ j, it is sufficient to prove that 
(3.1) holds when acting on functions. This is easy:

[d,κ] f = [ξi, f ]σi = (∆if )σi = ∆f .� (3.4)

It remains to construct κ acting on functions.
Recall that on a complex Lie group there are two distinguished framings of the holomorphic 

tangent bundle: right-invariant ξi and left-invariant χi , which generate left and right transla-
tions, respectively. Since left translations commute with right translations, one has [ξi,χj] = 0.
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Pick an element p ∈ Σ0 \ Ram. Let U ⊆ Σ0 \ Ram be a polydisc centered at p . Then U is 
isomorphic as a g-manifold to a neighbourhood of the neutral element in G, so there exists7 a 
holomorphic trivialization {χi}n

i=1 of TU such that

[ξi,χj] = 0, [χi,χj] = f k
ijχk.� (3.5)

Operators ∆i may be expanded as

∆i =
1
2
αrs

i χrχs + βr
i χr + γi� (3.6)

with uniquely determined αrs
i ,βr

i , γi ∈ O(U) satisfying αrs
i = αsr

i . Cocycle condition (2.29b) 
is equivalent to the statement that the differential forms

αrs = αrs
i σ

i, βr = βr
i σ

i, γ = γiσ
i� (3.7)

are closed. Thus there exist ars, br, c ∈ O(U), unique up to constants, such that

αrs = dars, βr = dbr, γ = dc.� (3.8)

Now define a differential operator

κ =
1
2

arsχrχs + brχr + c.� (3.9)

Using (3.5) one gets [ξi,κ] = ∆i, which completes the proof of existence.
Consider the special case p   =  0. Then c − c(0) = ψ1. Indeed,

ξi(ψ1) = [ξi,κ](1) = ξi(κ(1)) = ξi(c),� (3.10)

so ψ1 − c is a constant.

3.2.  Poincaré lemma

Let U be a polydisc in Σ0 \ Ram and let τ =
∑∞

m=0 �mτm ∈ Ω p(U)[[�]] with some p � 1 be 
d∆-closed, i.e. such that d∆τ = 0. This means that one has

dτ0 = 0,� (3.11a)

dτm = ∆τm−1 for m � 1.� (3.11b)

It will now be proven that in this situation there exists ζ ∈ Ω p−1(U)[[�]] such that

τ = d∆ζ.� (3.12)

Equation (3.12) is equivalent to the system

τ0 = dζ0,� (3.13a)

τm = dζm −∆ζm−1 for m � 1.� (3.13b)

Existence of ζ0 ∈ Ω p−1(U) such that τ0 = dζ0 follows from the standard Poincaré lemma for 
holomorphic forms. Therefore one has

dτ1 = ∆τ0 = ∆dζ0 = −d∆ζ0,� (3.14)

so there exists ζ1 ∈ Ω p−1(U) such that τ1 +∆ζ0 = dζ1. In this situation

7 If Γ is a normal subgroup of G, then Σ0 is a complex Lie group and χi  are defined on whole Σ0. If Γ is not a nor-
mal subgroup, Σ0 is only locally isomorphic to a Lie group.
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dτ2 = ∆τ1 = ∆dζ1 −∆2ζ0 = −d∆ζ1,� (3.15)

so there exists ζ2 ∈ Ω p−1(U) such that τ2 = dζ2 −∆ζ1. Continuing like this inductively one 
obtains existence of a solution ζ =

∑∞
m=0 �mζm to equation (3.12).

4.  Examples

4.1.  One-dimensional example

Consider the Airy structure given by a single differential operator

L = �∂x −
1
2

x2 − �2

2
∂2

x .� (4.1)

Replacing derivatives by y  and solving a quadratic equation, one finds that Σ0 is locally given 
by y(x) = 1 −

√
1 − x2. Integrating the form θ = ydx  gives

F0(x) = x − 1
2

x
√

1 − x2 − 1
2
arcsin x.� (4.2)

When F0(x) is expressed in terms of the global coordinate z = arcsin(x) ∈ C
2πZ on Σ0, it 

becomes clear that F0 is not single valued on Σ0.
The Hamiltonian vector field on Σ0 takes the form ξ = ∂z . Since δ = 0, one has

η =
√

dz =

√
dx

cos(z)
,� (4.3)

so ρ0(z) = 1√
cos(z)

. Alternatively, this result could have been derived as follows:

ρ0 = D− 1
2 =

(
∂Lcl

∂y

)− 1
2

= (1 − y)−
1
2 =

1√
cos z

,� (4.4)

where the first equality follows from ν = 0. In the last step y  has been expressed in terms of 
the z coordinate. It follows that

∆ =
1
2
ρ−1

0 ∂2
z ρ0 =

1
2

(
1

cos z
∂

∂z
+

sin z
2 cos2 z

)2

.� (4.5)

Recursive relation ψ′
m(z) = ∆ψm−1(z) may be used to compute arbitrarily many ψm(z) with-

out expanding them in power series. For m  =  1 one gets

ψ1(z) =
sin(z)(5 + cos2(z))

24 cos3(z)
.� (4.6)

If ψ1 is expressed in terms of the x variable, a square root appears in the denominator. This is 
merely an artifact of the coordinate system. It has been checked by explicit calculation that 
functions {ψm}40

m=1 are meromorphic on Σ0, with D3mψm—restriction to Σ0 of a polynomial 
in x, y.

As promised earlier, ∆ may be written as [ξ,κ] with

κ =
1
2
tan(z)∂2

z +
1
2
tan2(z)∂z + ψ1(z).� (4.7)
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4.2.  Borel subalgebra of sl2

In this section two inequivalent Airy structures for a Borel subalgebra b of sl2 will be obtained 
and analyzed. Whole sl2 algebra will be lifted to the quantum level, leading to uniqueness of 
the quantization. Only generators of b will have the form required by the definition of an Airy 
structure, while the F operator is going to have wrong linear term and also a possibly nonzero 
constant term. Interestingly, both Airy structures are derived from the same set of classical 
hamiltonians. The point is that the locus Σs is disconnected, and each connected component 
gives rise to a distinct Airy structure.

The starting point is a triple of hamiltonians

H = −z3z−3 + z1z−1,� (4.8a)

E = z3z−1 − z2
1,� (4.8b)

F = −z1z−3 + z2
−1,� (4.8c)

where zj  are linear coordinates on a vector space W equipped with symplectic form

ω = −1
3
· dz3 ∧ dz−3 + dz1 ∧ dz−1.� (4.9)

Hamiltonians H, E, F form an sl2 triple, i.e. one has

{H, E} = 2E, {H, F} = −2F, {E, F} = H.� (4.10)

Subalgebra b spanned by H, E  is the Lie algebra of the closed subgroup B ⊆ SL2 of matrices 

of the form g(t, s) =
(

t ts
0 t−1

)
 with t ∈ C×, s ∈ C. It will be useful to know that action of an 

element g(t, s) ∈ B on W is given by the formula

zj �→ t j

3−j
2∑

k=0

( 3−j
2
k

)
skzj+2k for j ∈ {±1,±3}.� (4.11)

To construct Airy structures for the subalgebra of sl2 spanned by H and E, one has to find 
the zero locus Σs and divide it into its connected components. First observe that the points

p : z3 = 1, z1 = z−1 = z−3 = 0,� (4.12a)

q : z−1 = 1, z3 = z1 = z−3 = 0� (4.12b)

belong to Σs. Denote the corresponding orbits by Σp and Σq. Coordinate z3 vanishes identi-
cally on Σq, so Σp ∩ Σq = ∅. It remains to show that Σs = Σp ∪ Σq. Suppose that r ∈ Σs  
has z3 �= 0. Then the orbit of r contains an element with z3  =  1 and z1  =  0. In this situation 
equations  E(z) = H(z) = 0 imply that z−1 = z−3 = 0, so r ∈ Σp. Now suppose that r ∈ Σs  
is a point with z3  =  0. Equation  E(z) = 0 gives z1  =  0. If also z−1  =  0, then dH ∧ dE|r = 0, 
contradicting r ∈ Σs . Thus z−1 �= 0, so r ∈ Σq.

Maps C2 � (u, s) �→ g(eu, s)r ∈ Σr  are universal covers for r = p, q. In both cases the fiber 
over r is isomorphic to Z and Σr ∼= C× × C as a complex manifold.

4.2.1. The first orbit.  To quantize the orbit Σp, introduce coordinates

y1 = −z−3, y2 = z−1, x1 =
1
3
(z3 − 1), x2 = z1,� (4.13)
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in which symplectic form takes the standard form (A.1). Replacing variables y  by derivatives 
according to the Weyl prescription gives

H = �(1 + 3x1)∂1 + �x2∂2 + 2�,� (4.14a)

E = �(1 + 3x1)∂2 − (x2)2,� (4.14b)

F = �x2∂1 + �2∂2
2 .� (4.14c)

The partition function may be found by solving the relevant differential equations directly. It 
takes the form

Z(x1, x2) =
exp

(
1

3�
(x2)3

1+3x1

)

(1 + 3x1)
2
3

.� (4.15)

This expression has an essential singularity on the zero locus 1  +  3x1  =  0. However, one has 
1 + 3x1 �= 0 on Σp.

Mapping B � g �→ g · p ∈ Σp is a threefold cover8 of Σp. Indeed, the fiber over p  consists 
of elements g(t, s) with s  =  0 and t3  =  1. Pulling back Z to B yields

Z(g(t, s) · p) = t−2 exp

(
s3

3�

)
.� (4.16)

This expression is globally holomorphic. Absence of poles may be traced back to the fact that 
in this example Ram = ∅. This does not mean that Z extends to a holomorphic function on 
Σp. In fact Z is multi-valued on Σp. However it is true that Z(x1, x2)

√
dx1 ∧ dx2  extends to 

a holomorphic half-form on Σp. Its pullback to B takes the form exp
(

s3

3�

)√
dt
t ∧ ds. Notice 

that dt
t ∧ ds is the unique (up to scalars) left-invariant section of the canonical bundle of B.

In this example H and E are first order differential operators, so ∆ = κ = 0.

4.2.2. The second orbit.  For the second orbit, introduce coordinates

y1 = z1, y2 = z3, x1 = 1 − z−1, x2 =
1
3

z−3.� (4.17)

Classical hamiltonians H, E  do not contain any terms not proportional to y 1 or y 2, so 0 is 
a solution of the Hamilton–Jacobi equation. It satisfies the initial conditions obeyed by F0, 
so (by uniqueness of F0) one has F0  =  0. Equivalently, y   =  0 on Σq. This could have been 
inferred also directly from (4.11). There exist other solutions of the Hamilton–Jacobi equa-
tion. They form a one-parameter family

F0(x1, x2) = −1
9
(1 − x1)3

x2 + const.� (4.18)

These solutions are singular for x2  =  0. In particular they do not satisfy initial conditions 
required for F0.

After Weyl quantization, one gets

H = �(1 − x1)∂1 − 3�x2∂2 − 2�,� (4.19a)

8 But not a universal cover, since π1(B) = Z.
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E = �(1 − x1)∂2 − �2∂2
1 ,� (4.19b)

F = (1 − x1)2 − 3�x2∂1.� (4.19c)

Equations HZ  =  0, EZ  =  0 do not admit a solution which is a holomorphic function and 
satisfies correct boundary conditions. Indeed, if there was such a solution, it would coincide 
with the partition function. On the other hand, it will soon be seen that the partition function 
is a divergent formal series.

The Hamiltonian vector fields projected onto the x space take the form

ξ1 = (1 − x1)
∂

∂x1 − 3x2 ∂

∂x2 ,� (4.20a)

ξ2 = (1 − x1)
∂

∂x2 .� (4.20b)

Solving equations (ξi +
1
2 div(ξi))ρ0 = 0 gives

ρ0 =
1

(1 − x1)2 .� (4.21)

Differential operators ∆ are given by

∆1 = 0, ∆2 = (1 − x1)2∂2
1

1
(1 − x1)2 .� (4.22)

Therefore the ψm satisfy a hierarchy of partial differential equations,
(
(1 − x1)∂1 − 3x2∂2

)
ψm = 0,� (4.23a)

(1 − x1)∂2ψm = (1 − x1)2∂2
1

1
(1 − x1)2 ψm−1.� (4.23b)

The first equation states merely that each ψm may be expressed as

ψm(x1, x2) = fm

(
x2

(1 − x1)3

)
.� (4.24)

Plugging this into the second equation one gets

fm(z) =
∫ z

0
dζ

(
6 + 24ζ

d
dζ

+ 9ζ2 d2

dζ2

)
fm−1(ζ).� (4.25)

This formula implies that if f m−1(z) is a monomial of degree d, then f m(z) is a monomial of 
degree d  +  1. Thus, by induction on m, fm(z) = cmzm for some coefficients cm. Plugging this 
result into the equation above one gets a recurrence relation cm = 3(3m − 1)cm−1. Its solution 
may be found using the functional equation satisfied by the gamma function. The final result 
is the formal series

Z(x1, x2) =
1

(1 − x1)2

∞∑
m=0

Γ
(
m + 2

3

)

Γ
( 2

3

)
(

9�x2

(1 − x1)3

)m

.� (4.26)

Proceeding as in section 4.2.1 one may show that each term of this series extends to a holo-
morphic function on Σq. However the series in � is divergent.
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Possibility of interpreting the divergent series ψ(w) =
∑∞

m=0
Γ(m+ 2

3 )
Γ( 2

3 )
wm in (4.26) as an 

asymptotic expansion of some function Zres satisfying equations  LiZres = 0 will now be dis-
cussed. First notice that ψ satisfies a differential equation

w2ψ′(w) +
(

2
3

w − 1
)
ψ(w) = −1.� (4.27)

This condition has a unique solution in O(C×),

ψres(w) =
3e−

1
w

w 1F1

[ 1
3
4
3

;
1
w

]
,� (4.28)

where 1F1 is the confluent hypergeometric function. ψres(w) has an essential singularity at 
w  =  0. By the well-known results [17, p 508] on the asymptotics of hypergeometric func-
tions, ψ(w) is an asymptotic expansion of ψres(w) for w → 0, up to a correction of the form 

ψcut(w) = Γ
( 1

3

)
e

iπ
3 e−

1
w
( 1

w

) 2
3 . This term is negligibly small for w → 0, provided that 

the real part of w is positive. Function ψcut(w) is annihilated by the differential operator 
w2 d

dw +
( 2

3 w − 1
)
, so ψres(w)− ψcut(w) satisfies (4.27). This function is approximated by the 

formal series ψ(w) on a larger set than ψres(w), but it is multi-valued.
Simple calculation shows that the differential equation (4.27) satisfied by ψres(w) is a suf-

ficient condition for the function

Zres(x1, x2) =
1

(1 − x1)2 ψ
res

(
x2

(1 − x1)3

)
� (4.29)

to be annihilated by the operators H and E. Its solutions form a one parameter family. On the 
other hand, for EZres = HZres = 0 to hold it is not necessary to have (4.27). A necessary and 
sufficient condition takes the form

3w2ψ′′(w) + (8w − 3)ψ′(w) + 2ψ(w) = 0.� (4.30)

This equation coincides with the derivative of (4.27). Its general solution is a combination 
c1ψ

res(w) + c2ψ
cut(w) with c1, c2 ∈ C. This function has correct asymptotic expansion only 

for c1  =  1, which is equivalent to the equation (4.27).
One may show that Zres extends to a holomorphic function on the complement in Σ0 of the 

hypersurface x2  =  0. It is not clear if this is related to the form of singularities of solutions 
(4.18) of the Hamilton–Jacobi equation.

As in the previous examples, the cocycle ∆ may be trivialized explicitly:

κ = ρ−1
0

(
f∂2

1 − f 2∂1∂2 +
1
3

f 3∂2
2

)
ρ0,� (4.31)

where f (x1, x2) = x2

1−x1 .

5.  Summary and outlook

Analytic properties of the partition functions associated to finite-dimensional Airy structures 
were investigated. It was shown that Fg(x) are convergent series, which extend to objects 
defined on the algebraic variety Σ0, possibly singular on a subvariety Ram. Question whether 
they are always meromorphic in the sense explained in the main text remains open. This is true 
in all examples considered in this paper, possibly due to their simplicity. It is an interesting 
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problem for the future to obtain description of the behaviour of the free energy near Ram. 
This issue is intimately connected with questions about geometric properties of Ram. In the 
language of classical WKB expansions it is related to focal points.

Recursive equations for the partition function are neatly formulated in terms of a differ
ential operator d∆, which is a deformation of the exterior derivative on Σ0. It is shown that on 
Σ0 \ Ram is locally of the form d − �[d,κ] for some differential operator κ. Furthermore d∆ 
obeys a version of the Poincaré lemma.

At the moment it is not clear if it is always possible to find a globally defined κ and what 
are its singularities. Evidently, this is connected with the questions about the free energy. 
Finally, it would be interesting to obtain a description of the cohomology of d∆. Several 
results of this paper may be summarized by the statement that for a polydisc U contained in 
Σ0 \ Ram the cohomology of d∆ acting on Ω(U) is of the form

H p
d∆(U) ∼=

{
C[[�]] for p = 0,
0 othewise.� (5.1)
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Appendix A.  Review of complex symplectic geometry

In this appendix basic notions of symplectic geometry are recalled, with definitions adjusted 
to holomorphic forms on complex manifolds. The main purpose is to fix notations. More 
detailed exposition may be found in [18, chapters 1–2].

Let M be a complex manifold. For any open subset U ⊆ M  let O(U) be the algebra of 
holomorphic functions on U and X (U) the Lie algebra of holomorphic vector fields on U. 
Closed, holomorphic 2-form ω  on M is said to be a symplectic form if it is non-degenerate, 
in the sense that for any open subset9 U ⊆ M  vanishing of the differential form ω(ξ, ·) with 
ξ ∈ X (U) implies that ξ = 0. If there exists a symplectic form on M, the complex dimension 
of M is even. Put dimC M = 2n.

From now on assume that some symplectic form ω  on M is fixed. Let U ⊆ M  be an open 
subset and let f ∈ O(U). There exists a unique ξf ∈ X (U), called the hamiltonian vector field 
associated to f , such that df = ω(ξf , ·).

Let U ⊆ M  be an open subset and let f , g ∈ O(U). Poisson bracket is defined by 
{ f , g} = ξf (g). With this convention one has ξ{ f ,g} = [ξf , ξg].

Suppose that {xi, yi}n
i=1 are coordinates on an open subset U ⊆ M  such that

ω = dxi ∧ dyi.� (A.1)

Then Poisson bracket of f , g ∈ O(U) takes the form

9 In contrast to real symplectic geometry, it is not sufficient to assume that this condition is satisfied for U  =  M. The 
point is that due to non-existence of holomorphic partitions of unity, there might not exist enough holomorphic vec-
tor fields defined on whole M to probe local properties of ω . Such vector fields may always be constructed in local 
coordinate patches.
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{ f , g} =
∂f
∂yi

∂g
∂xi −

∂f
∂xi

∂g
∂yi

.� (A.2)

Submanifold N ⊆ M  is said to be isotropic if restriction of ω  to N vanishes. If in addition 
dimC N = n, N is said to be Lagrangian.

Let U ⊆ M  be an open subset and let g1, . . . , gn ∈ O(U) be such that dg1 ∧ . . . ∧ dgn has 
no zeros in U. Then by the implicit function theorem, the zero locus

Σ = { p ∈ U|g1( p) = . . . = gn( p) = 0}� (A.3)

is a submanifold of M of dimension n. Suppose that gi are such that there exist { f k
ij}n

i,j,k=1 ⊆ O(U) 
such that {gi, gj} = f k

ij gk. Then Σ is Lagrangian. Indeed, ξgi(gj)|Σ = 0, so each ξgi is tangent 
to Σ. Since dgi are linearly independent at every point of U, the same is true for ξgi. Therefore 
ξgi span each tangent space of Σ. Moreover for any p ∈ Σ one has

ω(ξgi , ξgj)
∣∣
p = − {gi, gj}|p = −f k

ij ( p)gk( p) = 0.� (A.4)

Appendix B. The canonical bundle and half forms

Let M be a complex manifold of dimension n. The nth exterior power of the holomorphic 
cotangent bundle of M is denoted by K and called the canonical bundle. By construction, K is 
a line bundle. Line bundle L equipped with an isomorphism L⊗2 ∼= K  is said to be a square 
root of the canonical bundle. Not every complex manifold admits a square root of the canoni-
cal bundle. If some square root exists, it is typically not unique.

Suppose that some square root of the canonical bundle, denoted by K
1
2, is chosen. There 

exists a unique way to define Lie derivatives of elements of K
1
2 consistent with the Leibniz 

rule and identification K
1
2 ⊗ K

1
2 = K. Indeed, let U ⊆ M  be open and let η be a section of 

K
1
2 over U, η ∈ H0(K

1
2 , U). Suppose first that U is such that there exists a non-vanishing 

section  s ∈ H0(K
1
2 , U). Then there exist unique f , g ∈ O(U) such that η = f · s and 

L(ξ)(s⊗2) = g · s⊗2. It follows that the only consistent definition of the Lie derivative of η 
with respect to ξ ∈ X (U) is

L(ξ)η =

(
1
2

fg + ξ( f )
)
· s.� (B.1)

A short calculation shows that the right hand side of this equation does not depend on the 
choice of s. This means that for more general open sets U, the Lie derivative of η may be 
computed first on a sufficiently fine open cover of U and consistently glued together to yield 
a section L(ξ)η ∈ H0(K

1
2 , U).
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