
1

Journal of Physics A: Mathematical and Theoretical

Circular cumulant reductions for 
macroscopic dynamics of Kuramoto 
ensemble with multiplicative intrinsic noise

Denis S Goldobin1,2  and Anastasiya V Dolmatova1,3

1  Institute of Continuous Media Mechanics, Ural Branch of RAS, Acad. Korolev 
street 1, 614013 Perm, Russia
2  Department of Theoretical Physics, Perm State University, Bukirev street 15, 
614099 Perm, Russia
3  Institute for Information Transmission Problems, RAS, B. Karetny per. 19,  
127051 Moscow, Russia

E-mail: Denis.Goldobin@gmail.com

Received 16 September 2019, revised 7 January 2020
Accepted for publication 14 January 2020
Published 28 January 2020

Abstract
We demonstrate the application of the circular cumulant approach for 
thermodynamically large populations of phase elements, where the Ott–
Antonsen properties are violated by a multiplicative intrinsic noise. The infinite 
cumulant equation chain is derived for the case of a sinusoidal sensitivity of 
the phase to noise. For inhomogeneous populations, a Lorentzian distribution 
of natural frequencies is adopted. Two-cumulant model reductions, which 
serve as a generalization of the Ott–Antonsen ansatz, are reported. The 
accuracy of these model reductions and the macroscopic collective dynamics 
of the system are explored for the case of a Kuramoto-type global coupling. 
The Ott–Antonsen ansatz and the Gaussian approximation are found to be not 
uniformly accurate for non-high frequencies.

Keywords: circular cumulants, Ott–Antonsen ansatz, macroscopic model 
reductions, multiplicative noise, Kuramoto model

(Some figures may appear in colour only in the online journal)

1.  Introduction

Significant advance in studies of patterns and waves in active media with local, non-local, and 
global (or mean-field) interactions [1–14] became possible due to the application of the Ott–
Antonsen theory [15, 16], based on the Watanabe–Strogatz partial integrability [17–20] revealed 
for an important broad class of paradigmatic models in the theory of collective phenomena 
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(e.g. Kuramoto-type models [21–24]). Generalization of the Ott–Antonsen approach to the 
cases of realistic systems (e.g. [25–27]) was problematic until recently, when the circular 
cumulant formalism was introduced [28–30] and demonstrated for systems with an additive 
intrinsic noise.

While in [28, 29] the intrinsic noise in phase is additive, the case of multiplicative noise is 
of interest as well. For instance, in populations of quadratic integrate-and-fire neurons [2, 3, 
32, 33], an additive intrinsic noise in the membrane voltage results in a multiplicative noise 
for the oscillation phase variable. In this letter, we show how the case of a multiplicative noise 
can be rigorously handled on the basis of the circular cumulant approach. The general cumu-
lant equation chain is derived and macroscopic model reductions with two leading cumulants 
are suggested and tested for the case of Kuramoto-type coupling. Two-cumulant reductions 
provide the σ2-correction to the Ott–Antonsen ansatz (σ2 is the noise intensity). However, 
technically, they require smallness of higher-order cumulants which can be observed also for 
moderate and strong noise in some systems (e.g. [29]). Constructed two-cumulant reductions 
serve as a generalization of the virgin Ott–Antonsen theory.

2.  Populations of Ott–Antonsen phase elements subject to multiplicative 
intrinsic noise

2.1.  Fokker–Planck equation and dynamics of Kuramoto–Daido order parameters

We consider a population of N phase elements with first-harmonic coupling (or ‘sin- 
coupling’) subject to a multiplicative intrinsic noise:

ϕ̇n = ω(t) + Im(2h(t)e−iϕn) +
√

2σ sinϕn ξn(t), n = 1, 2, ...., N,� (1)

where ϕn is the phase of the nth element, which can be an oscillator, an excitable sys-
tem, or a directional element, ω(t) and h(t) are arbitrary real- and complex-valued func-
tions of time (which should be the same for each element), σ is the intrinsic noise strength, 
ξn(t) are normalized independent δ-correlated Gaussian noise signals: 〈ξn〉ξ = 0 and 
〈ξn(t) ξm(t1)〉ξ = 2δnmδ(t − t1), 〈. . . 〉ξ indicates averaging over noise realizations. Stochastic 
equations (1) are considered in the Stratonovich sense. For σ = 0, in the thermodynamic limit 
N → ∞, this system obeys the Ott–Antonsen theory [15, 16]. The individual intrinsic noise 
violates the applicability conditions of the OA theory.

The sinϕn-modulation of the noise strength we adopt in equation (1) corresponds the case 
of a noise forcing of weakly anharmonic oscillators (e.g. see [34, 35]) and, for instance, can 
be relevant for metronomes [25]. In (1) the multiplier 

√
2 is introduced for normalization, 

as, in the high-frequency limit, the impact of an intrinsic noise on the macroscopic collective 

dynamics is controlled by the average (2π)−1
∫ 2π

0 (
√

2σ sinϕ)2dϕ = σ2 [36].
In the thermodynamic limit N → ∞, the evolution of the probability density w(ϕ, t) of 

phases is governed by the following Fokker–Planck equation:

∂w(ϕ, t)
∂t

+
∂

∂ϕ

[ (
ω(t)− ih(t) e−iϕ + ih∗(t) eiϕ)w(ϕ, t)

]

= 2σ2 ∂

∂ϕ

(
sinϕ

∂

∂ϕ

(
sinϕw(ϕ, t)

))
.

�

(2)

In Fourier space, where w(ϕ, t) ≡ (2π)−1 ∑+∞
m=−∞ am(t)e−imϕ with a0  =  1 by definition and 

a−m = a∗m, equation (2) reads
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ȧm = m (iω(t) am + h(t) am−1 − h∗(t) am+1)

− σ2
(

m2am − m(m − 1)
2

am−2 −
m(m + 1)

2
am+2

)
, for m = 1, 2, 3, ....

� (3)

Notice, here population-average am =
∫ 2π

0 w(ϕ, t)eimϕdϕ are the Kuramoto–Daido order 
parameters [37].

Below we introduce the frequency nonidentity of population elements. For simplicity, we 
introduce it for the case of time-independent natural frequencies ωn, although for many spe-
cific physical systems the procedure can be performed also for time-dependent ωn(t) (e.g. see 
[2, 3, 31–33]). Let us consider a Lorentzian distribution of natural frequencies ωn peaked at 
Ω and with a half width at half maximum γ: g(ω) = γ/(π[γ2 + (ω − Ω)2]). In this case, one 
can consider subpopulations with identical values of frequency ω  and write equation (3) for 
am(ω, t) of each subpopulation. Ensemble-mean order parameters are

Zm(t) =
∫ +∞

−∞
am(ω, t) g(ω) dω.� (4)

Equation system (3) for am with positive indices does not involve am with negative indices, 
which are complex conjugate a−m = a∗m. Importantly, the term 1

2σ
2m(m − 1)am−2, which 

potentially could involve a−1 = a∗1 for m  =  1, vanishes at m  =  1: 12σ
2m(m − 1)am−2 = 0 · a−1. 

Since system (3) for the set {am(ω), m = 1, 2, 3, ...} is analytic for am(ω) as functions of ω  
extended to the complex plane, one can consider analytic am(ω) and calculate integrals (4) via 
residues and find Zm(t) = am(ω + iγ, t) (e.g. see [15, 38] for details). Thus, we obtain from 
equation system (3):

Żm = m [(iΩ− γ)Zm + h Zm−1 − h∗Zm+1]

− σ2
(

m2Zm − m(m − 1)
2

Zm−2 −
m(m + 1)

2
Zm+2

)
, m = 1, 2, 3, ....

� (5)

2.2.  Circular cumulant description of collective dynamics

Equation system (5) for σ �= 0 does not admit the OA ansatz Zm = (Z1)
m (as well as the 

Gaussian approximation Zm ≈ |Z1|m
2−m(Z1)

m [39–42]). The natural framework for consider-
ing the system dynamics in the vicinity of the OA manifold is the circular cumulant approach 
[28], which was also found to be well consistent with experimental data [43]. Considering 
order parameters Zm as moments of eiϕ, one can introduce characteristic function [44, 45]

F(k, t) ≡
∞∑

m=0

Zm(t)
km

m!
.� (6)

With characteristic function (6), one can introduce the generating function of ‘circular cumu-
lants’ κm:

Ψ(k, t) ≡ k
∂

∂k
lnF(k, t) ≡

∞∑
m=1

κm(t) km.� (7)

The definition (7) is adopted in such an ‘exotic’ form as it provides the simplest form of 
cumulant equations  [28] and turned out to be natural for the interrelations between the 
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Watanabe–Strogatz variables [17–20] and the circular cumulants [46]. Specifically, the three 
first cumulants are κ1 = Z1, κ2 = Z2 − Z2

1 , and κ3 = (Z3 − 3Z2Z1 + 2Z3
1)/2.

In terms of circular cumulants the OA solution Zm = (Z1)
m acquires a simple form: 

κ1 = Z1, κm>1 = 0. This one-element form, instead of an infinite series of Zm, is convenient 
for constructing a perturbation theory against the background of the OA solution.

For the generating function F(k, t) =
∑∞

m=0 Zm(t) km

m!
, equation system (5) yields ∂∂t F(k, t).

	 •	�For the term mZm, one can notice k ∂
∂k F =

∑∞
m=0 mZm

km

m!
; 

	 •	�for mZm−1, kF =
∑∞

m=0 mZm−1
km

m!
; 

	 •	�for mZm+1, k ∂2

∂k2 F =
∑∞

m=0 km(m − 1)Zm
km−2

m! =
∑∞

m=0 mZm+1
km

m!
; 

	 •	�for m2Zm, k ∂
∂k

(
k ∂
∂k F

)
=

∑∞
m=0 m2Zm

km

m!
; 

	 •	�for m(m  −  1)Zm−2, k2F =
∑∞

m=0 m(m − 1)Zm−2
km

m!; 

	 •	�for m(m  +  1)Zm+2, k
∂2

∂k2

(
k
∂2

∂k2 F
)

=
∑∞

m=0
m(m − 1)2(m − 2)Zm

km−2

m!
=

∑∞

m=0
m(m + 1)Zm+2

km

m!
.

Hence,

∂tF = (iΩ− γ)k∂kF + hkF − h∗k∂2
k F

− σ2
(

k∂k(k∂kF)− 1
2
[k2F + k∂2

k (k∂
2
k F)]

)
,

� (8)

where ∂t and ∂k stand for the t- and k- partial derivatives, respectively. Employing definition 

(7), one can find ∂tΨ = k∂k
∂tF
F , and equation (8) yields

∂tΨ = k∂k

[
(iΩ− γ)Ψ + hk − h∗

(
k∂k

Ψ

k
+

Ψ2

k

)
− σ2

(
k∂kΨ+Ψ2 − k2

2

− (k∂k − 1)2(k∂k − 2)Ψ + (2(k∂k)
2 − 6k∂k + 5)Ψ2 − (k∂kΨ)2 + (2k∂k − 4)Ψ3 +Ψ4

2k2

)]
.

� (9)
The expression in the latter term of equation (9) was checked with the ‘Maple’ package for 
analytical calculations. With expansion (7), equation (9) yields

κ̇m =m
[
(iΩ− γ)κm + hδ1m − h∗

(
mκm+1 +

∑
m1+m2=m+1

κm1κm2

)

− σ2
(

mκm +
∑

m1+m2=m

κm1κm2 −
1
2
δ2m − m(m + 1)2

2
κm+2

−
∑

m1+m2=m+2

2m2 − 2m + 1 − m1m2

2
κm1κm2 −

∑
m1+m2+m3=m+2

mκm1κm2κm3

−
∑

m1+m2+m3+m4=m+2

1
2
κm1κm2κm3κm4

)]
.

�

(10)
For the dynamics of first three cumulants:

κ̇1 = (iΩ− γ)κ1 + h − h∗(κ2 + κ2
1)− σ2 [κ1 − κ3

1 − 2κ3 + κ1κ2
]

,� (11)
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κ̇2 = 2(iΩ− γ)κ2 − 4h∗(κ3 + κ1κ2)

− σ2 [4(1 − 3κ2
1)κ2 − (1 − κ2

1)
2 − 18κ4 − 4κ1κ3 − κ2

2

]
,

� (12)

κ̇3 = 3(iΩ− γ)κ3 − 3h∗(3κ4 + 2κ1κ3 + κ2
2)

− 3σ2 [3κ3 + 2κ1κ2 − 24κ5 − 9κ1κ4

− 7κ2κ3 − 9κ2
1κ3 − 9κ1κ

2
2 − 2κ3

1κ2
]

.

� (13)

Let us asses the orders of smallness of high-order cumulants for κ1 ∼ 1 and weak noise σ2 � 1, 
with assumption that the reference value of κm+1 is nonlarger than that of κm. Equation (12) 
dictates for small κ2 the order of magnitude κ2 ∼ σ2. Further, κ3 ∼ max{|κ2|2,σ2|κ2|}, i.e. 
κ3 ∼ σ4. Generally, one can substitute the hierarchy κm ∼ σ2(m−1) and find that it is admissible.

Alternatively, if, due to some reason, κ1 ∼ ε � 1, then, according to equation  (12), 
κ2 ∼ σ2; according to equation (13), κ3 ∼ σ4; generally, κm>1 ∼ σ2(m−1). Thus, we have the 
same hierarchy, as for κ1 ∼ 1. The smallness of σ2 leads to the formation of universal hier-
archy of circular cumulants which allows one to use truncated cumulant equation chains for 
approximate description of the macroscopic population dynamics.

3. Two-cumulant reductions for collective dynamics

In this letter we exemplify the application of finite cumulant-based reduced models with the 
Kuramoto ensemble [21, 22], i.e. the case of

h =
K
2

Z1,� (14)

where K is the coupling coefficient.

In [29], the OA ansatz Zm = (Z1)
m, the Gaussian approximation Zm ≈ |Z1|m

2−m(Z1)
m, and 

two-cumulant reductions with three possible closures for κ3 where considered and compared 
to the ‘exact’ solutions for the case of Kuramoto ensemble and coupled active rotators. In the 
case of this letter for nonlarge frequency Ω, we observed that the OA ansatz and Gaussian 
approximation often fail dramatically even for as small noise intensity as σ2 = 0.14. The ad 
hoc closures for κ3 and κ4 are also not uniformly beneficial compared to the approximation 
κ3 = κ4 = 0. Hence, we restrict our presentation to two reduction models:

	 •	� (C20) is a two-cumulant truncation of equation system (10), where we set κ3 = κ4 = 0 
and discard the terms which introduce contributions below the strong accuracy level of 
equations dictated by hierarchy κm ∼ σ2(m−1):

Ż = (iΩ− γ)Z + h − h∗(κ+ Z2)− σ2Z(1 − Z2),� (15)

κ̇ = 2(iΩ− γ)κ− 4h∗Zκ− σ2[4κ− (1 − Z2)2],� (16)

4 In (12), the intrinsic noise creates nonzero κ2 even for (κ1 = 0)-states; two-bunch states expectedly cannot be well 
represented with single-peaked wrapped Cauchy and Gaussian distributions.

J. Phys. A: Math. Theor. 53 (2020) 08LT01
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		  where, for the brevity of notation and the ease of comparison to the literature, we intro-
duce notation κ1 = Z  and κ2 = κ. The term 4σ2κ is kept in spite of its smallness, as it 
introduces the dissipativity into the system dynamics, which is essential in the case of 
γ = 0 and conservative h.

	 •	� (C2e) is an enhanced two-cumulant truncation of equation  system (10), where we set 
κ3 = κ4 = 0 but do not discard any other terms in equations (11)–(12):

Ż = (iΩ− γ)Z + h − h∗(κ+ Z2)− σ2Z(1 − Z2 + κ),� (17)

κ̇ = 2(iΩ− γ)κ− 4h∗Zκ− σ2[4κ(1 − 3Z2)− (1 − Z2)2].� (18)

3.1.  Linear stability of asynchronous state

The population (1) with multiplicative intrinsic noise cannot maintain a uniform distribution 
of phases; equation system (11)–(13) does not admit the solution κ1 = κn>1 = 0. However, 
the system admits solutions with κ1 = 0, where the Kuramoto coupling (14) between popu-
lation elements also vanishes. Hence, we consider the state of κ1 = 0 with no interaction 
between oscillators as an asynchronous one. System (11)–(13) also yields all odd κ2l+1 = 0 
for this asynchronous state.

Linearization of (17) determines the stability properties of the asynchronous state:

Ż = (iΩ− γ)Z +
K
2
(Z − Z∗κ)− σ2Z(1 + κ),� (19)

where a time-independent second cumulant κ is given by (16) and (18) identically:

κ =
σ2

4σ2 + 2γ − i2Ω
.� (20)

Figure 1.  Above the threshold the asynchronous state is unstable and a collective mode 
emerges; at low frequency the instability is monotonous (solid lines), at moderate and 
high frequencies the instability is oscillatory (dashed lines, equation (22)).

J. Phys. A: Math. Theor. 53 (2020) 08LT01
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With (19) and (20), one can find the exponential growth rates of linear perturbations:

λ = −γ − σ2(1 + Reκ) +
K
2
±

√
K2σ4/16

Ω2 + (γ + 2σ2)2 − (Ω− σ2Imκ)
2,� (21)

where κ = σ2

2
γ+2σ2+iΩ

Ω2+(γ+2σ2)2 .
For sufficiently large frequency Ω the growth rate is complex-valued and the instability is 

oscillatory, with the threshold

Kosc = 2(γ + σ2) +
(γ + 2σ2)σ4

Ω2 + (γ + 2σ2)2 .� (22)

For small Ω the instability becomes monotonous. The expression for the monotonous instabil-
ity boundary is too lengthy and we present only the results of calculations with equation (21) 
in figure 1.

Figure 2.  The maximal and minimal values of |Z1| are plotted for ‘exact’ stable 
solutions with the black solid lines; these lines merge for time-independent states in 
panels (h) and (i), in all other panels they may be close but always do not coincide. The 
circular cumulants of orders 2–4 (from top to bottom) for exact solutions are plotted 
with blue short-dashed lines (see the right axes for scale). Red long-dashed lines: 
the error of the C20 reduction (the error is calculated as the time-average deviation 
〈|Zapprox(t)− Z1,exact(t)|〉t ; see the right axes for the error scale), green dash-dotted 
lines: error of the C2e reduction.

J. Phys. A: Math. Theor. 53 (2020) 08LT01
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In contrast to the additive noise case, a multiplicative noise breaks the rotation symmetry 
of the system, and can create non-rotating macroscopic states which emerge via a monoto-
nous instability of the asynchronous state. For fixed γ , multiplicative noise always uplifts the 
threshold for both the oscillatory and monotonous instability.

4.  Results of numerical simulation

One can see, that in the high-frequency limit Ω → ∞, equation (22) expectedly yields the 
same instability threshold 2(γ + σ2), as the case of additive intrinsic noise [15]. It is conve-
nient to choose (γ + σ2)−1 as the time unit and accordingly rescale all parameters, which is 
equivalent to setting γ + σ2 = 1 with 0 � σ2 � 1 in (11)–(13). The high-frequency instability 
threshold of the asynchronous state reads K∗ = 2(γ + σ2) = 2.

In figure 2, the results of numerical simulation with C20 and C2e reductions ((15)–(16) 
and (17)–(18), respectively) are compared against the ‘exact’ numerical solutions of equa-
tion chain (5) with 250 terms Zm. With blue dashed lines one can observe circular cumulants 
κ2, κ3, κ4 for the exact solutions, which indicate the relevance of approximations with finite 
number of cumulants. Except the extreme case of the intrinsic-noise-dominated system with 
weak impact of all other factors (panel (i)), the two-cumulant reductions provide a decent 
accuracy of the representation of macroscopic collective behavior of the population.

5.  Conclusion

We have constructed a circular cumulant description for large populations of Ott–Antonsen-
type phase elements subject to multiplicative intrinsic noise. For the case of a multiplicative 
noise, the derivation of cumulant equations is significantly more sophisticated than that for the 
case of an additive noise [28]; meanwhile in many application the intrinsic noise is essentially 
multiplicative. Two two-cumulant model reductions ((15)–(16) and (17)–(18)) are suggested 
on the basis of the infinite cumulant equation chain (10) and analyzed.

For a phase oscillator population with Kuramoto global coupling, the case of a multiplica-
tive noise converges to the case of an additive one only in the high-frequency limit. Moreover, 
for low frequencies, the instability of the asynchronous state to formation of a macroscopic 
collective mode becomes monotonous. Two-cumulant model reductions provide a reason-
able accuracy for the macroscopic description of the population dynamics. Meanwhile, the 
Ott–Antonsen ansatz and the Gaussian approximation fail to represent the system dynamics 
accurately for non-high frequencies.

Presented results may have important implications for networks of quadratic integrate-and-
fire neurons, where an effective intrinsic noise emerges as additive for the membrane voltage 
[32, 33], but is multiplicative for the phase variable. For a population of identical neurons, in 
some cases, one can expect the vanishing intrinsic noise to force a population away from the 
Ott–Antonsen manifold. As a result, even for a weak intrinsic (endogenous) noise, one can 
expect qualitatively new regimes of macroscopic behavior of population, which are not pos-
sible near the Ott–Antonsen manifold [33, 47].
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