
1

Journal of Physics A: Mathematical and Theoretical

Organisational hierarchy constructions 
with easy Kuramoto synchronisation

Richard Taylor1 , Alexander C Kalloniatis1  
and Keeley Hoek2

1  Defence Science and Technology Group, Canberra, ACT 2600, Australia
2  Australian National University, Canberra, ACT 2600, Australia

E-mail: richard.taylor@dst.defence.gov.au, alexander.kalloniatis@dst.defence.gov.au 
and keeley.hoek@anu.edu.au

Received 16 May 2019, revised 20 December 2019
Accepted for publication 9 January 2020
Published 28 January 2020

Abstract
We provide a graph theoretic construction enabling tree-based hierarchies to 
be modified into structures with enhanced connectivity and synchronisability. 
Specifically, the construct transforms trees into members of a family of graphs 
known as expanders, which we call ‘expander-augmented-hierarchies’ or trees. 
We show that this produces graphs with significantly enhanced synchronisation 
properties in the context of the Kuramoto model of phase oscillators coupled 
on networks. When considered as organisational structures these networks 
enjoy both the managability of simple hierarchies with near regular degree 
distribution, and low critical coupling by the addition of relatively few extra 
edges. For the expander augmented tree, we examine the synchronisation 
properties, computed through the time-averaged Kuramoto order parameter 
over an ensemble of natural frequencies. We compare this with a range of 
other networks including hierarchies augmented by random matching of the 
leaf nodes. For these we compute the ratio Q of smallest to largest Laplacian 
eigenvalues, the smallness of which has been argued to be an indicator of good 
synchronisability. While not the best of these in Q, the expander-augmented-
hierarchy exhibits synchronisability barely distinguishable from others 
with lower Q within the variance over an ensemble of natural frequencies. 
However, the expander augmented tree has the advantage that its properties 
are automatically designed for as opposed to the outcome of a random search 
for low Q-value graphs that in itself scales very poorly.
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1.  Introduction

The Kuramoto model [30] was originally motivated by the phenomenon of collective synchro-
nisation whereby a system of coupled oscillating nodes will sometimes lock on to a common 
frequency despite differences in the natural frequencies of the individual nodes. This model 
has since been applied to a wide variety of application fields including, biological, chemical, 
engineering, and social systems (see the survey articles [1, 2, 47], and recently [15] and [45]). 
While Kuramoto studied the infinite complete network it is natural to consider finite networks 
of any given topology, and we do this here. In particular, we are motivated by the potential for 
using the Kuramoto model as a representation for the decision processes in organisations [27] 
where hierarchies often figure as a formal structure, as will be explained further below. We 
propose minimalistic additional edges to a hierarchy that improve its capacity for Kuramoto 
synchronisation.

In this setting of the model we take a cue from numerous models of human decision-making 
that present the process as fundamentally cyclic: the perception-action cycle of Neisser [35], 
the situation awareness model of Endsley [16] and the observe-orient-decide-act model of 
Boyd [39]. Thus, in our formulation the node of a network represents an agent in an organisa-
tion; the network is the organisational structure; phase of a Kuramoto oscillator represents the 
agent’s state in a perception-action cycle; intrinsic frequencies are proportional to the natural 
decision-making speed of the agent; and the coupling strength is the intensity of interaction 
between connected members of the organisation. By organisations we refer to the structure 
of a range of systems for distributed human work, from military, business, and administrative 
entities.

The hierarchy is one of the most ancient and ubiquitous forms of organisational structure 
[19]. Apart from the psychological dimension of concentrating power in a single individual 
at the top of the hierarchy, its success also resides in its scalability to large sizes while main-
taining an even load on all members through the division of labour [32], and providing a 
clear mechanism for accountability of every individual in the organisation [42, 43]. However, 
organisational theorists have long known the limits of the hierarchy in the face of unstable or 
dynamical environments: for large hierarchies, decision chains become long, and the time for 
information from the bottom to travel up and decisions to travel down is too large to allow 
for responsiveness [32]. In this respect, the effort of members in interacting with one another 
to come to consensus in responding to changes in the environment may be mapped to the 
property of Kuramoto oscillators achieving as close as possible to phase synchronisation. 
This specific mapping of the mathematical model to organisational properties was originally 
proposed in [24], with further elements such as the stochasticity of individual human decision 
processes introduced in [27]. An alternative mapping of the Kuramoto model to organisations, 
not used in the present work, has been proposed by [10] but where properties such as phases 
and frequencies are not identified. Either way, it is well-known that Kuramoto oscillators on 
tree graphs require relatively high coupling to achieve synchronisation [11]. The alternatives 
to hierarchies for organisations in dynamical environments generally involve high connectiv-
ity between members (for example, all-to-all connected teams) which therefore do not scale 
well for human decision-making. In this paper we propose modifications to trees that enhance 
their synchronisation properties.

At this point we note the literature addressing the synchronisation of dynamical systems 
on tree networks. In [11] a particular closed-form expression is given for the critical coupling 
of trees, and in turn for several classes of trees tight bounds are given for the expected critical 
coupling assuming node frequency distributions. In [18] the solvability of the critical coupling 
for trees is exploited to provide tight approximations to several engineering design problems 
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including power re-dispatch in power grids, sparse network design, robust network design for 
distributed wireless analog clocks, and the detection of edges leading to the the Braess’ para-
dox in power grids. Tree networks have also been studied as models for sensory brain activity 
[29], including the specific use of the Kuramoto model [23]. Since we shall be making small 
additions to tree networks with significant improvements to the synchronization capacity of 
the network we expect our results may be of wider interest to a variety of application settings.

The key to our paper is exploiting the properties of so-called expander families [22]. These 
are graphs that have good connectivity properties in that every partition of the nodes into two 
subsets has a number of boundary edges between them that scales with the size of the smallest 
subset. We use this to propose modified tree graphs that both scale and exhibit high synchro-
nisability. To test the synchronisation properties we compute the time-averaged Kuramoto 
order parameter for this network, as well as a range of alternate structures. In particular, it 
has long been argued in the literature that an appropriate graph theoretic measure that cor-
relates well with high synchronisability for a range of coupled dynamical systems is the ratio 
of largest and smallest non-zero Laplacian eigenvalues [4], building on the celebrated master 
stability function of Pecora and Carroll [40]. Arguably, this ratio should be as small as pos-
sible. Indeed, optimising graphs for the related Laplacian spectral gap [13] generates well 
synchronised arrangements [12] but with denser graphs compared to the hierarchy. However 
we note that the relevant dynamical systems considered here are different from the Kuramoto 
model which only features the Laplacian explicitly after linearisation. Nevertheless, to test 
our expander augmented hierarchy we compute the Laplacian eigenvalue ratio for a range of 
modified hierarchies, augmented by a random matching of leaf nodes but subject to the same 
degree distribution as our expander augmented tree. Indeed, we find that some graphs with 
smaller values of this ratio compete slightly better on average than our expander augmented 
hierarchy, while others fare marginally worse. But when variance over an ensemble of natural 
frequencies is taken into account these are barely distinguishable. However, the search space 
for low eigenvalue ratio graphs out of a uniform random sample turns out to be vast, and 
therefore scales poorly as the number of levels of the hierarchy increases. In the same context 
as [12], the work of Estrada et al [17] developed a method of generating regular graphs that 
have excellent expansion properties but which increase in degree as they are scaled up. Our 
expander augmented hierarchy, contrastingly, has fixed degree as the structure is scaled. From 
an organisational-application perspective this is superior in maintaining the load on individual 
decision-makers as the organisation increases in size.

Finally, by way of introduction, we comment on the relationship of this work to other 
approaches seeking to enhance synchronisation in the Kuramoto model. Numerous authors 
seek to explicitly optimise networks for synchronisation. Brede [6] considers placement of 
network links according to closeness or otherwise of native frequencies; in our case, the 
designer of an organisational network may not have the luxury of where to place slower, 
respectively faster oscillators. Hence we seek insensitivity to the detail of the frequency place-
ment, as seen when we average over an ensemble of natural frequencies. In [49], optimization 
of the network is undertaken in the presence of noise however this approach requires signifi-
cant computational effort beyond N  =  15; for our work, the ability to scale a method is criti-
cal. Significant work has shown that tree structures are ideal for synchronisation in oriented 
graphs [37], with the depth of the tree influencing the time to synchronisation [51]. However, 
in our application of the model for decision-making where bidirectional information flows 
are required in the decision-cycle, undirected graphs are the most appropriate. Finally, recent 
work has developed approaches to test for whether a complex empirical network is hierarchi-
cal or not [33, 48, 52]. In our case, we begin with an idealised hierarchy, a tree, and transform 
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it to enhance its synchronisation properties; whether it may be finally deemed ‘hierarchical’ 
is immaterial.

This logic of formalising notions of synchronisation, proving expansion properties of mod-
ified trees, and then exploring the impact in a concrete dynamical model underlies the struc-
ture of this paper. The Kuramoto model is defined and the related notions of synchronisation 
and critical coupling that we use here are described. Lower bounds for the critical coupling are 
derived for both general and regular networks. The inspiration for this work is in the relation-
ship with these bounds and the graph expansion number that we identify here. We then prove 
a series of theorems that are the key to the construction of the modified trees that we propose 
may be the basis for organisational structures. In this context we describe a graph construction 
that provides efficient manageability when considered as an organizational structure. We then 
compute the time-averaged order parameter for synchronisation and compare to other graphs, 
including adding the randomly chosen matchings of leaf nodes of trees. The paper concludes 
with an outlook for the future.

2.  Defining the Kuramoto model

Each node has an associated phase angle θi, as well as its own natural frequency ωi . The basic 
governing equation is the differential equation:

θ̇i = ωi + k
n∑

j=1

Aij sin(θj − θi), i = 1, .., n.� (1)

Here A is the 0, 1 adjacency matrix of the network, with a 1 in position {i, j} indicating an edge 
in the network between nodes i and j . The interaction between the nodes is also governed by 
a coupling constant k. Note that each θi is implicitly understood to denote a function of time t.

2.1.  Synchronisation

It has been observed that for arbitrary initial phases, networks synchronise in that some of the 
node phases converge to the same, or nearly the same phase angle, while the phase frequencies 
θ̇i converge to a common value. Meanwhile, the remaining nodes behave non-uniformly or 
‘drift’. Moreover, at a sufficiently large critical coupling constant k, it becomes possible for all 
nodes to synchronise in that they share the same phase frequencies. By summing over equa-
tion (1), the sine terms cancel and the average frequency of the nodes is a constant ω̄  so that

1
n

n∑
j=1

θ̇j =
1
n

n∑
j=1

ωj = ω̄.� (2)

Define a frequency fixed point in which we say the network is frequency synchronised as a 
situation in which all the node frequencies are equal and are fixed over time. By equation (2), 
this is characterized by

θ̇i = ω̄, i = 1, .., n.� (3)

It follows that at a frequency fixed point all phase angle differences θi − θj remain constant. 
We note that a frequency fixed point may be accompanied by the nodes having the same or 
nearly the same phase angles. This is however not necessarily the case, and the phase angles 
of a frequency fixed point may be significantly different. Examples of this kind are the ring 
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networks [38] and tree networks [11]. Combining equations (1) and (3), the phase differences 
at a frequency fixed point satisfy

ω̄ = ωi + k
n∑

j=1

Aij sin(θj − θi), i = 1, .., n.� (4)

We define the critical coupling kc to be the least value of k for which a frequency fixed point 
occurs. This may be termed the dynamical systems notion of criticality; we shall later contrast 
this with other possible definitions of criticality. Note that while this is one of the main ele-
ments indicative of synchronisation that can be considered in the Kuramoto model, it may 
also be considered in combination with other indicators. In particular linear stability (see 
section 3.1) where all points in phase space sufficiently close to the fixed point converge to it 
over time, and phase cohesiveness where phase angle differences across edges are bounded to 
some constant less than π/2 [14] and [15].

2.2.  Order parameter and critical points

In studies of the Kuramoto model it is common to measure the degree of phase synchronisa-
tion achieved in the dynamics using the order parameter

r(t) =
1
N

∣∣∣∣∣∣
N∑

j=1

eiθj(t)

∣∣∣∣∣∣
.� (5)

This will fluctuate around 1/
√

N  at low coupling values, where individual phases are ran-
domly distributed around the unit circle, and converge to unity at high coupling. One may then 
compute the time-average of r(t) after dispensing with some initial transient for t � Tth  up to a 
final time T to gain a static measure for the system synchronisation properties:

〈r〉T =
1

T − Tth

∫ T

Tth

r(t)dt.� (6)

Further averaging of this over an ensemble of randomly drawn natural frequencies ωi  is pos-
sible, which we apply here.

This then leads to a statistical notion of a critical coupling, namely that value of k such 
that the scaling limit as N → ∞ of 〈r〉T  is non-zero [21]. Another marker of criticality, also 
drawing upon statistical physics and inference ideas, is the Fisher information, studied for 
the Kuramoto model in [26]. In this paper we will predominately work with the dynamical 
systems notion of criticality, however in the latter part of the paper we will draw upon the 
quantity 〈r〉T .

We note that for a sufficiently large coupling constant frequency synchronisation at a fre-
quency fixed point must occur for any connected network. However the various notions of 
phase synchronisation are in general matters of degree, and true phase synchronisation where 
all phase angles are equal is only possible for homogeneous systems where all the natural 
frequencies ωi  are equal.

3.  Critical coupling for frequency fixed points

We now develop lower bounds for both the critical coupling for a frequency fixed point and 
its expected value where the natural frequencies ωi  are assumed to follow a distribution. This 
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will inform the explicit construction of networks that are practical as organisational structures 
while also having low critical coupling.

3.1.  Lower bound on the critical coupling

In the following for any subset of nodes X let ∂(X) be the number of edges with one end node 
in X and the other in Xc the complement of X.

Theorem 1. 

kc � max
|X|� n

2

1
∂(X)

|
∑
i∈X

(ω̄ − ωi)|.� (7)

Proof.  We can rearrange equation (4) as

ω̄ − ωi = k
n∑

j=1

Aij sin(θj − θi), i = 1, .., n.� (8)

If we sum both sides of equation (8) over the elements of any node subset X we obtain

∑
i∈X

(ω̄ − ωi) = k
∑
i∈X

n∑
j=1

Aij sin(θj − θi),� (9)

= k
∑

(i,j)∈(X,Xc)

Aij sin(θj − θi),� (10)

where each pair of terms on the right hand side of equation (9) Aij sin(θj − θi) and Aji sin(θi − θj) 
with i, j ∈ X  cancel each-other out. Since the sine terms have magnitude at most 1 we have

|
∑
i∈X

(ω̄ − ωi)| � k∂(X).� (11)

As this is true for any node subset X we must have

k � max
X

1
∂(X)

|
∑
i∈X

(ω̄ − ωi)|.� (12)

Since this must be true for any coupling constant k at a frequency fixed point, it is also true 
for kc. Lastly we note that

|
∑
i∈X

(ω̄ − ωi)| = |
∑
i∈Xc

(ω̄ − ωi)| and ∂(X) = ∂(Xc),� (13)

and so it is sufficient to consider only those X with at most n/2 nodes in inequality (12). This 
completes the proof of the theorem.� □ 

We note that when the underlying network is a tree the expression on the right hand side of 
equation (7) is maximised when the subnetworks induced on X and Xc are both subtrees and 
∂(X) = 1. Inequality equation (7) then becomes an equality and the correct expression for the 
critical coupling of any tree by a result of [11].
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3.2.  Expected critical coupling

By using theorem 1 we can obtain lower bounds for the expected critical coupling where the 
natural frequencies ωi  are assumed to follow a distribution. In the following we assume that 
the natural frequencies follow a normal distribution with mean 0 and variance σ2. The general 
case with mean µ can be translated into the former case through a rotating frame of reference 
corresponding to a change of variable ω′

i = ωi − ω̄, which shows the critical coupling is inde-
pendent of the mean.

Theorem 2.  For normally distributed natural frequencies the expected critical coupling 
E(kc) has the lower bound

E(kc) � max
|X|� n

2

√
|X|(n − |X|)
∂(X)

√
2√
πn

σ.� (14)

Proof.  By expanding the mean frequency ω̄  in inequality (7) we obtain

kc � max
|X|� n

2

1
∂(X)

∣∣∣∣∣
(
|X|
n

− 1
)∑

i∈X

ωi +
|X|
n

∑
i∈Xc

ωi

∣∣∣∣∣ .� (15)

For any node subset X let R(X) be the random variable defined by

R(X) =
1

∂(X)

[(
|X|
n

− 1
)∑

i∈X

ωi +
|X|
n

∑
i∈Xc

ωi

]
.� (16)

As a linear function of normally distributed independent random variables R(X) is itself nor-
mally distributed with a mean of 0 and a variance of

Var(R(X)) =
1

∂(X)2

[(
|X|
n

− 1
)2

|X|σ2 +
|X|2

n2 |Xc|σ2

]
,� (17)

=
σ2

n2∂(X)2

[
(|X| − n)2 |X|+ |X|2(n − |X|)

]
,� (18)

=
|X|(n − |X|)σ2

n2∂(X)2 [n − |X|+ |X|],� (19)

=
|X|(n − |X|)

∂(X)2

σ2

n
.� (20)

Thus the expected absolute value of R(X) is given by [41]

E(|R(X)|) =

[√
|X|(n − |X|)
∂(X)

] √
2√
πn

σ.� (21)

The result follows from combining inequality (15) and equality (21) which completes the 
proof.� □ 

Remarks. The bound of theorem 2 is sharpest when some cut-set X dominates the maximum 
expression of inequality (14).
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3.3.  Regular networks

When the network is regular we can obtain lower bounds on the critical coupling that may 
improve theorem 2. We note that the case where the network is complete, and so regular, has 
been studied previously [7], and their results align with the following (d  =  n  −  1).

Theorem 3.  Let the network Aij be regular of degree d. Then for normally distributed natu-
ral frequencies the expected critical coupling E(kc) has the lower bound

E(kc) �
n − 1

dn

[√
2 log n −

1
2 log(4π log n)

√
2 log n

− O(
1

log n
)

]
σ

� (22)

→
√

2 log n
d

σ as n → ∞.
�

(23)

Proof.  Let Xi denote the ith node of the network so that by equation (16)

R(Xi) =
1
d



(

1
n
− 1

)
ωi +

1
n

∑
j�=i

ωj




�

(24)

let Ek be the event that |ωk| is the largest absolute value among {|ωi|, i = 1, .., n}. Then Ek 
occurs with probability Pr(Ek)  =  1/n and in this case the expected value of |ωk| is at least 
[
√

2 log n − (1/2) log(4π log n)/
√

2 log n)− O(1/ log n)]σ [9] (in fact this lower bound is the 
expression for the maximum value among {ωi, i = 1, .., n}). In this case the ωi, i �= j are sym-
metrically distributed about zero between −ωk  and ωk and so the expected value of the sum ∑n

i�=k ωi  is zero in equation (24). Thus the conditional expectation E[maxi[|R(Xi)|]|Ek] has the 
lower bound

E[max
i

[|R(Xi)|]|Ek] � E[|R(Xk)|]|Ek]� (25)

�
n − 1

dn

[√
2 log n −

1
2 log(4π log n)

√
2 log n

− O(
1

log n
)

]
σ.� (26)

Since by inequality equation (13) kc � maxi |R(Xi)|, and by using equation (26) we have

E(kc) � E[max
i

|R(Xi)|],� (27)

=

n∑
k=1

Pr(Ek)E[max
i

[|R(Xi)|]|Ek],� (28)

�
n∑

k=1

1
n

n − 1
dn

[√
2 log n −

1
2 log(4π log n)

√
2 log n

− O(
1

log n
)

]
σ,� (29)

=
n − 1

dn

[√
2 log n −

1
2 log(4π log n)

√
2 log n

− O(
1

log n
)

]
σ,� (30)

which completes the proof.� □ 
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4.  Expansion number and critical coupling for frequency synchronisation

The edge expansion number h(G) (also called the Cheeger number and isoparametric number) 
of a network G (see [3, 8, 22]) is defined as

h(G) = min
|X|� n

2

∂(X)
|X|

,� (31)

and measures the size of the interface between any partitioning of the nodes into two subsets.
This has well studied relationships with the eigenvalues of the graph Laplacian [31], which 
we define below. These parameters relate in turn to other topological features such as homoge-
neous degree, betweenness, large girth, large average shortest loops, and small diameter [12].

We illustrate how the expansion number relates directly to the frequency fixed point criti-
cal coupling through the inequalities of theorems 1 and 2. Firstly note that 1/h(G) can be 
expressed as

1
h(G)

= max
|X|� n

2

|X|
∂(X)

.� (32)

Let G* be a Kuramoto network with topology A and natural frequencies ωi , and G be the corre
sponding graph defined only by A. Define u(G*) to be the bound from theorem 1

u(G∗) = max
|X|� n

2

1
∂(X)

|
∑
i∈X

(ω̄ − ωi)|.� (33)

Then u(G*) is a lower bound for the critical coupling kc and can be thought of as a node 
weighted variation of the reciprocal of the edge expansion number 1/h(G) where a small cut 
∂(X) is sought combined with a sum of natural frequencies over X as far as possible from ω̄|X|. 
Similarly let v(G) be the expression from theorem 2 defined by

v(G) = max
|X|� n

2

√
|X|(n − |X|)
∂(X)

.� (34)

Then v(G) is the network topological coefficient of the lower bound for the expected criti-
cal coupling E(kc). It can be thought of as a variation of the reciprocal of the edge expansion 
number where a small cut ∂(X) is sought combined with |X| as close to n/2 as possible, thereby 
maximizing |X|(n − |X|).

At an intuitive level large h(G) means that G is well connected across any node partitioning 
X,Xc. This in turn tends to produce ease of synchronisation through the many edges of each cut 
acting to ‘balance’ the natural frequencies in each part. This action is clear when we assume 
that the nodes are all in the same half circle of phase angles [0,π] (note that critical coupling is 
defined as the presence of a frequency fixed point for any phase angles).

5.  A construction: the expander augmented hierarchy

We now describe a network construction that combines efficient manageability when consid-
ered as an organizational structure, with low critical coupling when considered as a network 
of coupled oscillating nodes. In the following for a network with an even number of nodes, a 
matching is a set of edges that include all the nodes of the network and where no two edges 
have a common node. Thus matchings correspond to a non-overlapping pairing of the node 
set. As we shall show, by adding such a matching to the bottom layer of a binary tree the 
resulting network has a high expansion number and a low critical coupling. Define an infinite 
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family F  of networks as an expander family if there is some constant c so that h(G) � c for 
all G ∈ F .
Construction 1. Let p  be a prime number. Then G[ p] = (V , E) has node set V = Zp and 
edges that connect each node x with nodes: x + 1, x − 1, and the multiplicative inverse of x 
x−1 (where all arithmetic is mod p  and we define 0−1  =  0).

We note that this construction will produce three loop edges on the nodes p − 1, 0, 1, and 
may also produce up to two double edges. However for our purposes these loop and double 
edges are unimportant for the construction and so loop edges can be omitted and only one 
copy of a double edge retained. Importantly the collection of networks G[ p], p prime is an 
expander family [50]. We can use construction 1 as the basis of constructing a cubic graph 
R[m] for any even positive number m.
Construction 2. Let m be any positive even integer. Let p  be the smallest prime greater than or 
equal to m  +  3. Consider the list of nodes 2, 3, .., p − 2 (dispensing with the nodes p − 1, 0, 1 
which produce loop edges). For p   −  3  >  m beginning with node p   −  3 delete node p   −  3 and 
its inverse ( p − 3)−1(mod p). Repeat this for the next largest node on the list, etc until we 
have a list l of m numbers between 2 and p   −  2, say v1, v2, .., vm. Then R[m] is formed by a 
cycle connecting v1 to v2, v2 to v3,..,vm−1 to vm, and vm to v1, and also connecting each vi to 
v−1

i (mod p).
We illustrate these constructions in figure 1 with the Graphs G[13] and R[14].
As R[m] is formed from relatively few modifications to G[p ], where p -prime is of expected 

size at most m + 3 + log(m + 3) (following from the prime number theorem [20]), it is 
expected that R[m] will inherit the good expansion properties of G[p ]. We use construction 2 
as part of a further construction. Let Hr for r a positive integer be a cubic network on 2r nodes 
formed by adding a matching to a cycle. Let the expander augmented hierarchy network Fr be 
constructed by adding the chord edges from Hr to the bottom row of a binary tree with depth 
r  −  1 as shown in figure 2, where the dotted lines indicate the cycle of Hr which is however 
omitted in Fr.

Theorem 4.  If {Hr} is an expander family then {Fr} is an expander family.

This is our key result, and it is a little surprising in that only the chord edges (not on the 
cycle) from each Hr are needed to give Fr its expander properties. This can be explained in 
simple terms by the hierarchical structure of the binary tree serving a similar function to the 
cycle of Hr in its expansion properties.

Proof.  We fix a particular integer r. For a subset of nodes X we shall use the terms ∂(X, Fr) 
and ∂(X, Hr) to distinguish between X and Xc where the complement graph is in relation 
to Fr and Hr respectively. Let {Hr} be an expander family with expansion constant α so 
that |∂(S, Hr)|/|S| > α for any subset S of the nodes V(Hr) of Hr, |S| � |Hr|/2 = 2r−1. Let 
X = X1 ∪ X2 ∪ ..Xr  where ai = |Xi| be any subset of V(Fr) with at most |Fr|/2 nodes, and 
where Xi is the subset of nodes in X that are at a distance i  −  1 from the apex of the tree (see 
figure 2). We shall assume that |X| � 6 for otherwise it is easy to verify that |∂(X)|/|X| > 6/5 
for |X| � 5. In the following we shall consider a number of cases and show that in each case 
|∂(X)|/|X| >min(1/3, α/24).

Observe that for each i there must be at least 2ai − ai+1 edges from Xi that are not between 
edges of X and so must be in ∂(X, Fr). Thus

∂(X, Fr) � (2a1 − a2) + (2a2 − a3) + .. + (2ar−1 − ar) = |X| − 2ar.� (35)

R Taylor et alJ. Phys. A: Math. Theor. 53 (2020) 085701
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Thus if ar  <  |X|/4 then |∂(X, Fr)|/|X| > 1/2. We shall assume therefore that ar � |X|/4. Simi-
larly

∂(X, Fr) � (a2 − 2a1) + (a3 − 2a2) + .. + (ar − 2ar−1) = 2ar − |X| − a1.
� (36)

Now a1 � 1 and |X| � 6 so that ∂(X, Fr) � |X|/3 and |∂(X, Fr)|/|X| > 1/3. We may there-
fore assume for the remainder of the proof that 3|X|/4 � ar � |X|/4. Let Xr consist of k runs 
R1, R2, .., Rk of consecutive nodes around the cycle of Hr. Note that by our expansion assump-
tion about Hr we have |∂(Xr, Hr)| � arα. We consider two cases:

	Case 1:	 |∂(Xr, Hr)| � 3k . Then ∂(Xr, Fr) contains a number of chord edges not on the cycle 
of at least

|∂(Xr, Hr)| − 2k �
|∂(Xr, Hr)|

3
�

αar

3
�

α|X|
12

.� (37)

Thus |∂(X, Fr)|/|X| � |∂(X, Fr)|/|X| � α/12.

Figure 1.  Illustration of the cubic graphs G[13] and R[14]. Here nodes have a chord 
edge across the cycle to their multiplicative inverses mod 13 and mod 17, respectively.

.  .  .  .  .  .                                     .  .  .  .  .  .

a1=| X1 |
|Fr|=2r+1-1

|Hr|=2r

a3=| X3 |

a2=| X2 |

ar=| Xr |

Figure 2.  Illustration of the graphs Fr and Hr. Fr is formed by adding the chord edges 
from Hr to the bottom row of a binary tree.

R Taylor et alJ. Phys. A: Math. Theor. 53 (2020) 085701
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	Case 2:	� |∂(Xr, Hr)| < 3k . Then

k �
|∂(Xr, Hr)|

3
�

αar

3
�

α|X|
12

.� (38)

For each run Ri,i  =  1,..,k  −  1 consider the unique path in the binary tree between the last node 
of Ri and the next node on the cycle. This path leads from a node of Xr to a node outside Xr 
and so must contain at least one edge between a node of X and Xc and so in ∂(X, Fr). The same 
applies to the node directly before Ri+1 and the first node of Ri+1. Now any edge of the binary 
tree can appear in at most two paths between consecutive nodes on the cycle. This is illustrated 
in figure 3 with the two paths in bold between nodes a and b, and c and d, respectively. These 
two paths share the common edge shown in double bold. It follows that there must be at least 
k  −  1 edges of the binary tree within ∂(X, Fr) and so |∂(X, Fr)| � α|X|/12 − 1. Finally we 
consider two further cases. If |X| � 24/α, |∂(X, Fr)|/|X| � α/24. If |X| < 24/α then since 
Fr is 2-connected it follows that |∂(X, Fr)| � 2 and so |∂(X, Fr)|/|X| > 2

24/α = α/12. This 
completes the proof.� □ 

6.  Random leaf node matchings and Laplacian eigenvalues

In [4], it was proposed that for networks of coupled dynamical systems the ratio of largest to 
least (non-zero) eigenvalues of the graph Laplacian,

Lij = Dij − Aij� (39)

is a useful graph algebraic measure that correlates well with synchronisability; here Dij is the 
diagonal matrix of degrees. This applies also to the Kuramoto system insofar as its linearised 
form reduces to the generic model studied there [25]. The eigenvalue ratio in question is

Q ≡ λn

λ2
� (40)

for eigenvalues λr to Lij, where we index r = 1, . . . , n noting that the lowest eigenvalue is 
always zero, and for a connected graph λ2 > λ1 = 0. Note that, more generally, the degen-
eracy of the zero eigenvalue gives the number of components to which a disconnected graph 
decomposes. That there should be some correlation between Q and the expansion properties 
of a graph arises through inequality bounds of the edge expansion number and the lowest 
non-zero Laplacian eigenvalue [36]. The proposition of [4] is that graphs with smaller Q 
synchronise better.

To compare our expander augmented hierarchy we consider random matchings of leaf 
nodes in a binary tree classified according to their value of Q, where we apply the same num-
ber of edges between leaf nodes of the tree as there are in the expander form of the previous 
section. For the remainder of this paper we consider a seven level hierarchy built on a binary 
tree. This means for the pure tree structure we have V = 127 nodes and E  =  126 edges. The 
modified trees with random matchings at the leaf nodes all have E  =  158 edges which is the 
same number of edges for the expander-modified trees derived earlier, here denoted F6 for a 
seven level hierarchy.

We perform a massive search to find examples of random matched trees with the lowest 
possible ratio Q; in the end we searched over 7 × 107 modified trees. The reason for the exten-
sive number is because of the distribution of values of Q for such graphs given in figure 4. 
Evidently it is easy to find cases with Q ≈ 70. In fact, labelling the graph cases by the random 
seed number the best case we find out of the 70 million has Q  =  40.511 and occurs at position 
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40,526,834 in the search. We have provided .csv  files for all the graphs considered in the fol-
lowing at the site https://github.com/khoek/graph-paper.

7.  Order parameter results for modified seven level hierarchies

For these graphs we now present calculations of the time-averaged order parameter further 
averaged over an ensemble of 30 sets of natural frequencies drawn from a normal distribution 
with mean 2 and standard deviation 1/2, namely N (2, 1

2 ). We numerically solve the Kuramoto 
system up to time T  =  2000 for discrete values of coupling k for F6 and the other matchings 
referred to above. We use the NSolve package in Mathematica using its StiffnessSwitching 
method which dynamically determines the number of points in discrete time at which to solve 
the evolution. As indicated earlier, we exclude the transient, here the first 200 time-units. We 
thus compute 〈r〉T  as a function of coupling for a range of graphs, with results shown in fig-
ure 5. Here we consider not just the expander-modified tree F6 and lowest Q random matched 
trees, but other random matchings with a range of values of Q across the distribution in fig-
ure 4. Moreover, we also compare with the intuitively easiest sparse graph to synchronise, 
the star, whose only disadvantage for 126 nodes is the burden it places on the centre node. In 
figure 5 we show the full dependence of the order parameter across k values from k  =  0 to high 
levels of synchronisation. We separately plot curves for the mean over the ensemble of fre-
quency choices (upper plot), and bands around the means indicating the variance across the 30 
instances (lower plot). (For 30 instances this is indistinguishable from the standard error.) We 
indicate also the value of the graph diameter D for each graph, defined as the greatest distance 
in numbers of hops between any pair of vertices. We note that for all the random matching 
cases the diameter is the same, D  =  11 while the expander hierarchy has D  =  12. In the same 
plots of figure 5 we indicate through vertical lines the value of coupling at which a frequency 
fixed point occurs, namely at which |θ̇i − θ̇j| = 0 ∀ i, j . We determine this here by computing 

for each coupling value 
∑

j�=1 |θ̇1(T)− θ̇j(T)|, with T the final time-step at which we solve the 
system, and extract the coupling at which this is of order 10−6. In the upper plot of figure 5 
we show the mean over a frequency ensemble and in the lower plot provide a band based on 

Figure 3.  Any edge of the binary tree can appear in at most two paths between 
consecutive nodes on the cycle. This figure  shows paths (in bold) between pairs of 
consecutive nodes, ab and cd, respectively, with a common edge shown in double bold.
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the variance. Arrows superimposed on the plot indicate the trend for increasing Q, vertically 
for the order parameter and horizontally for the critical coupling for a frequency fixed point.

We observe a range of phenomena in these plots. Firstly, our intuition is confirmed, and 
the star graph does exceptionally well with a rapid, if nearly linear rise in 〈r〉T  flattening 
out to a maximum value at k ≈ 1.7. Below this, the best performing graphs are those with 
Q ∈ [40, 50], below them those with Q ≈ 70, and finally those with high Q below them, and 
increasingly spread out. This confirms that indeed Q is a good predictor of synchronisation 
performance for all the graph types formed by adding a matching to the leaf nodes, while the 
star is exceptional in that it has very high value of Q and yet has the fewest possible number 
of edges for any connected graph.

Most importantly, the expander augmented hierarchy F6, with ‘sub-optimal’ Q  =  49.65 
and higher diameter D, performs almost as well as the random matchings with lower Q and D. 
Specifically, in the upper plot of figure 5 the mean result for 〈r〉T  for F6 is barely distinguish-
able from those with Q  =  40.55 and Q  =  41.60; only at intermediate coupling does the curve 
for the random matching with Q  =  41.60 lie higher than the other two. When the variance over 
the natural frequency ensemble is taken into account (lower plot) the three results are almost 
indistinguishable. In other words, eigenvalue ratio Q and graph diameter D are somewhat 
‘blunt’ measures of performance for synchronisation for graphs with the same degree distri-
bution after averaging over an ensemble of frequencies. We emphasise here that the proposi-
tion that Q is a good measure arises from a different form of coupled dynamical system [4] 
where explicit Lyapunov instabilities may appear and natural frequencies are not part of the 
formulation. For the Kuramoto model, Q is only an heuristic, and figure 5 shows that degree 
distributions being equal, it is a good comparator of synchronisability for well-separated Q 
values. This is emphasised by the vertical arrow superimposed on the plot. In [25], one of 
us has noted that linear stability analysis of the Kuramoto model does not deliver a sharp 
instability criterion for phase synchronisation, and that a more appropriate measure of phase 
synchronisability is the ratio ω(r)/σλr for non-zero modes r �= 0. Here, ω(r) is the projection 
on the rth Laplacian eigenvector of the natural frequencies. Averaging over an ensemble of 
frequencies further dulls this criterion.

This leads us to the critical coupling for a frequency fixed point for which we derived 
bounds whose form suggested the expander approach. In figure 5, we see that the three graphs 

Figure 4.  Probability density function f  of eigenvalue ratio Q for random leaf matchings 
of seven level binary trees based on a search over 7 × 107 instances where the degree 
distribution is fixed to match the expander augmented tree F6.
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with lowest critical coupling are again the expander tree F6 and the two lowest Q graphs. 
Looking at the means over natural frequencies, F6 and the Q  =  41.60 graph almost coincide. 
Again, the graph with the lowest Q has slightly higher critical coupling. Taking the variances 
into account these three cases are again almost indistinguishable. Beyond that, critical cou-
plings increase as Q increases. The star, despite its high order parameter, has quite high critical 
coupling for a frequency fixed point; we discuss this case further below.

One point of nuance is at which point in the curves of figure 5 is of greatest importance 
for the quality of synchronisation? One choice is the point of maximum 〈r〉T  , namely the 
coupling k for which the value unity is achieved. Another choice is the value of k at which an 
inflection point in the curve is reached. A third is the frequency fixed point itself, which lies 
between the first two possible choices. Clearly, at the maximum point in 〈r〉T  all of the curves 
for Q ∈ [40, 50] have converged in the upper plot of figure 5 and show little variance, as seen 
in the lower plot of figure 5. At the inflection point, the average values of these same curves 
show some deviation, at k ≈ 0.9. However, all begin to exhibit variance in this regime, so that 
within ‘errors’ around the natural frequency values they are also consistent. The frequency 
fixed point lies at the point of maximum variance. This is intuitively clear, as different layouts 

Figure 5.  Average order parameter 〈r〉T  as a function of coupling k for a range of 
graphs: top the mean values and bottom bands indicating ± the variance across 30 
frequency instances. The Laplacian eigenvalue ratio Q and graph diameter D for each 
graph are also indicated. Vertical lines indicate the mean coupling at which a frequency 
fixed point occurs (upper plot) with bands indicating ± the variance over the frequency 
ensemble (lower plot). The vertical arrow indicates the trend of decreasing 〈r〉T  with 
increasing Q (excepting the star), and the horizontal arrow indicates the analogous trend 
for the frequency fixed point.
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of frequencies on the same graph may require different couplings to achieve frequency syn-
chronisation. Nevertheless, within the variance the expander augmented hierarchy coincides 
with the lowest Q value random-matchings of trees, Namely, the expander augmented hierar-
chy exhibits favourable synchronisation at lowest possible coupling.

For the star graph we can make a number of exact statements. The graph synchronizes 
due to its excellent expansion properties, having an expansion number of exactly 1. On the 
other hand it is known that large 3-regular graphs must have an expansion number bounded 
above by a number arbitrarily close to 1

6 [34], and these graphs have even more edges than 
the graphs shown in figure 5, including F6. We recall that a close relationship between the 
Laplacian eigenvalue ratio Q and the expansion number holds for regular graphs [22]. In 
particular, low Q corresponds broadly with high expansion number. However this seems less 
so for non-regular graphs with the star graph having a poor Q value (127), much higher than 
that for the best modified hierarchy graphs shown in figure 4, but a good expansion number, at 
least 6 times as large. All of this emphasises that if degree homogeneity is relaxed any number 
of graphs with superior synchronisation properties are possible. A star network represents an 
extreme case of impractical organisational structure with one individual required to maintain 
relationships with all others.

We conclude that the expander augmented hierarchy, as a designed structure is superior to 
even an optimal (in Q) random matching of leaf nodes of the hierarchy with equivalent degree 
distribution. Fundamentally this is because of the poor scaling properties of the search space 
for matchings of lowest possible Q with increasing numbers of levels of the hierarchy.

8.  Conclusions

We have developed a construction for augmented binary trees that provably constitutes an 
expander family. Computing the average Kuramoto order parameter as a measure of phase 
synchronisation for the dynamical evolution of Kuramoto phase oscillators we have shown 
that this structure has significantly enhanced synchronisation properties. In particular, it per-
forms as well as a random matching of leaf nodes with the same number of edges even when 
the latter has lower Laplacian eigenvalue ratio Q. For the latter structure, such low values of 
Q occur in the leading tail of the distribution of random graphs and thus require large search 
times to find, with those times growing as the number of levels of the binary tree increase. In 
this respect, the expander-hierarchy is a superior structure from the point of view of scalabil-
ity, synchronisation and load balance across all nodes. In fact, our sense is that the expansion 
constant is in practice much better than the proof would suggest. In other words the proof 
shows that the construction is scalable—but it also seems to have a good expansion constant 
as the excellent synchronisation properties would suggest. However this requires more sophis-
ticated proof methods than we have achieved thus far.

Though we have chosen the simplest case for a hierarchy in the binary tree, the result 
can be generalised for complete K-ary trees. These results are useful for any context where 
trees are naturally occuring structures though we have focused on human organisations as 
an example. Clearly the application we intend for such a construction is to create targeted 
edges at the ‘bottom’ of a human organisation, such as an administrative, business or military 
structure, that enhances its cohesiveness as a decision-making unit. For example, such edges 
can be established at induction of new members into the organisation. The challenge is to 
extend the expander construction to the messy nature of real organisations. Even when such 
organisations are pure hierarchies, they typically are not complete in the sense of every layer 
being occupied, or with non-uniform degrees across the levels and branches of the structure. 
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We anticipate ways forward on this challenge. Clearly, the question of validation of such an 
idealised model as the Kuramoto for human organisations is important. On this point, firstly 
there are more elements in this context than have been included in the present model, such 
as stochasticity [27]; future work will test whether the modified expander hierarchy is also 
robust against noise. However, there is evidence of a strong anti-correlation between the syn-
chronisation on networks under increasing coupling with increasing noise ‘strength’ for both 
uniform [28], Gaussian and Lévy noise [44], which we anticipate would apply here. Secondly, 
there is the added layer of a mathematical representation of the business of the organisation—
what it is it makes decisions about—in which we are conducting ongoing work. Above all, 
the important test of whether a design principle, such as we have developed here, is valid for 
implementation in a real organisational setting is whether it is robust against these variations 
in the model, and cross-validation [5, 46] against other approaches to modelling similar phe-
nomena. This paper is then a first step in developing new paradigms for organisational design 
with a deep graph theoretic principle construct at its heart.
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