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Abstract
We introduce an entropic quantity for two-dimensional quantum spin 
systems to characterize gapped quantum phases modeled by local commuting 
projector code Hamiltonians. The definition is based on a recently introduced 
specific operator algebra defined on an annular region, which encodes the 
superselection sectors of the model. The quantity is calculable from local 
properties, and it is invariant under any constant-depth local quantum circuit, 
and thus an indicator of gapped quantum spin-liquids. We explicitly calculate 
the quantity for Kitaev’s quantum double models, and show that the value is 
exactly same as the topological entanglement entropy (TEE) of the models. 
Our method circumvents some of the problems around extracting the TEE, 
allowing us to prove invariance under constant-depth quantum circuits.

Keywords: quantum information, topologically ordered phase, operator 
algebra, topological entanglement entropy, quantum double

1.  Introduction

A gapped quantum phase is an equivalence class of the ground states of gapped local 
Hamiltonians which are connected by an adiabatic path [1]. Topologically ordered phases [2] 
are gapped quantum phases which exhibit topology-dependent ground state degeneracy and 
anyonic excitations obeying fractional or non-abelian statistics. Ground states in topologically 
ordered phases do not break any symmetry of the system, and therefore these phases cannot be 
characterized by the conventional methods of symmetry-breaking and local order parameters. 
Moreover, the characteristic topological properties are robust against any local perturbations. 
It is proposed to utilize these properties to build a fault-tolerant quantum memory/computer 
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[3, 4]. For these reasons, characterizing and classifying topologically ordered phases has 
attracted a great interest in quantum many-body physics and quantum information science.

A characteristic feature of states in topologically ordered phases is the existence of large-
scale multipartite correlations. This is in contrast to two-point correlations which decay expo-
nentially with distance for all gapped systems with sufficiently local interactions [5, 6]. The 
large-scale correlations are characterized by (dressed) closed-string operators which have 
constant expectation values for arbitrary loops [7, 8]. However, it is a demanding task in gen-
eral to find these non-local operators for given gapped models. Levin and Wen proposed a way 
to avoid this problem: quantifying a contribution of these non-local operators by looking the 
conditional mutual information, a linear combination of the information-theoretical entropy 
of the reduced states of certain regions [7]. The conditional mutual information is purely 
determined by local reduced states of the ground state wave function, and it is indeed pos-
sible to calculate analytically or numerically for various systems [7, 9–11]. At the same time 
the entropic contribution is shown to be equivalent to the so-called topological entanglement 
entropy proposed by Kitaev and Preskill [12] and Levin and Wen [7] (see also [13]), which is 
defined as a non-trivial sub-leading term of the area law of the entanglement entropy. The top-
ological entanglement entropy is also shown to be equal to the logarithm of the total quantum 
dimension in specific models [7, 12], which is solely determined by the corresponding anyon 
model of the phase. According to these results, the conditional mutual information (or more 
generally, the tripartite information [12]) thus provides an extraction method for the topo-
logical entanglement entropy, and a non-zero value has been regarded as a good signature of 
topological order.

However, the equivalence between the topological entanglement entropy (in the sense 
of the constant term or the conditional mutual information) and (the logarithm of) the total 
quantum dimension breaks down in some gapped systems. It has been shown that there exist a 
ground state in the topologically trivial phase that has non-zero constant term in the area law 
(sometimes called ‘spurious’ topological entanglement entropy) [14, 15]. These counterexam-
ples have some exotic boundary state at the boundaries of particular subregions, which have 
a non-trivial symmetry-protected topological order (SPT) characterized by e.g. string order 
parameters [16]. Therefore, the conditional mutual information is not always a good indicator 
of topological orders, and we need additional conditions to guarantee the relation to the total 
quantum dimension. One possible approach to attack this problem is understanding when this 
phenomenon happens. It may be true that the spurious topological entanglement entropy only 
arises when the boundary has non-trivial SPT, and the value is not stable under deformations 
of the regions or some local perturbations. However, it has been not yet completely understood 
under what conditions topologically trivial states can have non-trivial entropic contribution to 
the conditional mutual information.

In this paper, we take a different approach, by finding another quantity to quantify the 
entropic contribution of the characteristic non-local correlations only arising in non-trivial 
topologically ordered phases. We require that the quantity is an invariant of gapped phases, 
and that it vanishes if the system is in the topologically trivial phase. We also require that 
the quantity is locally calculable, in the sense that it only depends on local properties of 
the ground state (although it may be intractable or computationally expensive to calculate). 
Moreover, it would be desirable that the quantity represents the genuinely topological part of 
the conditional mutual information, in the sense that it coincides with the logarithm of the total 
quantum dimension for known models. To find such a quantity, we take an algebraic approach 
which is motivated by the work of Haah [17]. Haah introduced an algebra of observables sup-
ported on an annulus and showed that it has a non-trivial structure (superselection rule) only 
in topologically ordered phases. He constructed an invariant of gapped quantum phases based 
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on the non-trivial algebraic structure which is an analog of the so-called (modular) S-matrix 
(see e.g. [18, 19] for the definition) characterizing the anyon models behind the topological 
order. The invariant is defined as an expectation value of a certain product of operators. Here, 
we consider an entropic function of the reduced state of the ground state to build a connection 
to the topological entanglement entropy and the conditional mutual information.

To define the entropic quantity, we first identify the algebra of observables E that do not 
create any additional excitations in an annular region. This algebra includes the algebra intro-
duced in [17] as a subalgebra, and the subalgebra decomposes into different components, 
related to the superselection sectors (or anyon types) of the theory. To obtain a canonical 
representation of this algebra on a Hilbert space containing only relevant states, we apply the 
GNS construction from the theory of C*-algebras to a ground state restricted to this algebra. 
The corresponding GNS Hilbert space can naturally be decomposed into subspaces corre
sponding to the superselection sectors of the algebra.

Second, we choose the quantum relative entropy S(·‖·) as a particular distance measure and 
choose a reference state respecting the superselection rule. More precisely, for a ground state 
|Ω〉 we can use E to define a Hilbert space isomorphic to E|Ω〉 , and take the completely mixed 
state τ  on this space as a reference state. For a given annular region A (used to define E), we 
can then trace out the complement to get τA, which is simply obtained from the ground state 
projector of interactions around A. Our invariant is then given by

I(A)Ω := S (ρA ‖τA ) ,

where ρA is the reduced state of the ground state |Ω〉〈Ω| on A. As we will see later, under suit-
able conditions, this quantity measures the relative dimension of the trivial sector compared to 
the dimension of the Hilbert space of all sectors.

We then proceed to show that this is indeed an invariant of gapped phases. More precisely, 
we consider constant-depth geometrically local circuits. These circuits are obtained by apply-
ing a constant (in the system size) number of layers, where each layer is given by a tensor 
product of local unitary operators. The unitary evolution corresponding to any gapped path of 
Hamiltonians can be (approximately) represented by such a circuit [8]. It follows that we can 
use them to relate the different ground states in the same gapped phase. Finally, we calculate 
the invariant for the quantum double models and show the equivalence to the logarithm of the 
total quantum dimension.

Our framework is an extension of that of Haah, and for this reason we have to make the 
same (or slightly stronger) assumptions as he does. That is, we assume that the Hamiltonian is 
of locally commuting projector code (LCPC) type, that the ground states obey the local topo-
logical quantum order (LTQO) condition, and that certain ‘logical algebras’ are stable under 
changes of the shape of region that preserve the topology. While the assumptions look strong 
for general gapped systems, our method is applicable for all models which are in the same 
phase as at least one fixed-point model satisfying all assumptions.

The structure of this paper is as follows. In section 2, we introduce all assumptions and 
the operator algebras which we need to define the entropic invariant. In section 3, we define 
the entropic quantity based on these operator algebras and show the invariance under any 
constant-depth local circuit. We also calculate the quantity for the toric code [3], the simplest 
quantum double model. We finally discuss a relation between our quantity and the original 
topological entanglement entropy in section 4. In the appendix, we explicitly calculate the 
quantity for general quantum double models and also discuss the Fibbonacci model, which 
cannot be described by the quantum double models. We also recall some background material 
on the GNS construction and make a comparison to the sector analysis in the thermodynamic 
limit.
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2.  Formal setting and assumptions

Throughout this paper, we will consider quantum spin systems arranged on a two-dimensional 
(2D) lattice. We first introduce some notation. For simplicity, we will in particular consider 
a square lattice ΛL of linear size L (hence the total number of sites N = O(L2)) composed 
of d-dimensional quantum systems occupying every site, with d < ∞. We denote the corre
sponding Hilbert space on ΛL by H. The Hilbert space associated to all spins in a subregion 
A ⊂ ΛL  is denoted by HA. We call a subregion including all spins within a circle with radius r 
a disc (or a ball) of size r, and denote it by b(r). An important type of subregions is an annulus, 
which is defined as b(R)\b(r) for r  <  R, where b(R) and b(r) share the same center. We will 
denote b(R)c, the complement of b(R), by Dout  and the inner disc b(r) by Din (see figure 1).

We say a bounded operator O ∈ B(H) has support A ⊂ ΛL , or O is supported on A, if 
O = OA ⊗ IAc, where OA ∈ B(HA) and IAc is the identity operator on B(HΛ\A). We also 
denote the support of O by supp(O). We consider a geometrically local Hamiltonian H on H,

H = −
∑

j

hj,� (1)

such that each hj  is supported on b(w) with w  >  0 containing the spin j  at the center, with w 
independent of L. For a region X ⊂ ΛL, we denote X+ :=

⋃
supp(hj)∩X �=∅ supp(hj) (figure 1).

2.1.  Assumptions on the Hamiltonian

We assume that the Hamiltonian is a local commuting projector code (LCPC), that is, every 

hj  is a projector h2
j = hj = h†j  satisfying [hj, hj′ ] = 0 for any j′. We further assume that it is 

frustration-free in the sense that every hj  satisfies

hj|ψ〉 = |ψ〉� (2)

Figure 1.  An annulus A defined by the solid line boundaries on a square lattice (gray 
region). Dout  is the outer side of A and Din is the inner side of A. The dotted line 
represents the boundary of larger annulus A+ , which includes all supports of hj s 
overlapping with A.
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for any ground state |ψ〉  of H. Hence the ground states minimize the energy of each term in 
the Hamiltonian individually. Kitaev’s quantum double models [3] (including the famous toric 
code model), and Levin–Wen models [20] (which describe a wide variety of non-chiral 2D 
topologically ordered phases) are examples satisfying these conditions.

We also require an additional condition on the Hamiltonian, called the local topological 
order condition (LTQO) [21]: we assume there exists an integer L∗ � L  which scales with L 
such that the following condition holds.

	 •	� (LTQO): for any disc X of size r � L∗, let OX be any operator acting on X and let ΠX+
 be 

the projector onto the ground subspace of

HX =
∑

supp(hj)⊂X+

hj� (3)

		  which is defined on H (i.e. it is an operator on the whole lattice). Then

ΠX+
OXΠX+

= c(OX)ΠX+
,� (4)

		  where

c(OX) =
Tr(ΠX+

OX)

TrΠX+

.� (5)

Note that because we consider LCPC Hamiltonians we can set ∆0(�) = 0 in the notation of 
[21]. LTQO is known to be a sufficient condition for the stability of the spectral gap of general 
frustration-free local Hamiltonians under local perturbations [21]. LTQO implies the follow-
ing two additional properties [21, corollary 2]:

	 •	�(TQO-1): For any disc X of size r � L∗, let OX be any operator acting on X. Then

ΠOXΠ = c(OX)Π� (6)

		 for c(OX) defined in the above, where Π is the projector onto the ground subspace of H.
	 •	�(TQO-2): for any disc X of size r � L∗, let OX be any operator acting on X such that 

OXΠ = 0. Then

OXΠX+
= 0.� (7)

These conditions (which are also called local topological order conditions) are used to show 
the stability of the spectral gap for LCPC Hamiltonians [22, 23]. TQO-1 says that local observ-
ables cannot map distinct ground states to each other. TQO-2 guarantees that the ground sub-
space of local region is consistent with that of the whole system. Note that TQO-1 and TQO-2 
implies [23, corollary 1]

Π(X+)+OXΠ(X+)+ = c(OX)Π(X+)+ ,� (8)

which is slightly weaker than LTQO condition (4).
To understand the meaning of LTQO, the following equivalent condition will be useful [21, 

corollary 3]:

	 •	� (LTQO’): suppose |Ω〉  is a ground state of H and X is a disc of size r � L∗. For any |φ〉  
such that hj|φ〉 = |φ〉  for all hj  such that supp(hj) ⊂ X+,
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TrXc |φ〉〈φ| = TrXc |Ω〉〈Ω|.� (9)

Perhaps the best known example of a model that satisfies these assumptions is Kitaev’s toric 
(surface) code [3]. We will use the example of the toric code throughout this paper to illustrate 
the new definitions.

Example 2.1.  The toric code is defined on a square lattice on a torus, where a site with local 
dimension d  =  2 is located on each edge. The Hamiltonian is given by

H = −
∑

v

1
2
(I + Av)−

∑
p

1
2
(I + Bp)� (10)

≡ −
∑

j

hj,� (11)

where Av = Xv1 Xv2 Xv3 Xv4 around vertex v (times identities on all other sites) and 
Bp = Zp1 Zp2 Zp3 Zp4 around plaquette p  (see figure 2). Here X and Z are the usual Pauli matri-
ces. It is easy to check that all terms in the Hamiltonian are projectors and mutually commute.

One characteristic feature of ground states of the toric code model is invariance under the 
actions of closed-string (loop) operators. For any path C on the lattice, we define a Z-string 
operator WZ(C) as a tensor product of Pauli Z operators acting on all spins along C. In the 
same way, we can define an X-string operator WX(C̃) along a string C̃ on the dual lattice (dual 
string). One can freely deform WZ(C) (WX(C̃)) by applying Av  (Bp ) operators neighboring the 
string, since a product of two identical Pauli operators is the identity. When C is a contractible 
closed string on the manifold on which the lattice is defined, WZ(C) can be written as a product 
of all Bp  operators supported within the region enclosed by the loop. Therefore, any ground 
state of the toric code model is invariant under the actions of these Z-string operators (a similar 
relation holds for X-string operators on dual loops).

Excitations are created by operators WZ(C) (or WX(C̃)) for open paths C (C̃). Indeed, it is 
easy to see that {Av, WZ(C)} = 0 if the vertex v is based at one of the endpoints of C, and 
the operators commute otherwise. Hence if hi|ψ〉 = |ψ〉 , where hi is the term containing Av  

Figure 2.  The interaction terms of the toric code Hamiltonian defined on a square 
lattice. Each Av  acts on four sites around vertex v and Bp  acts on four sites around 
plaquette p .
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for the endpoint of C, then hiWZ(C)|ψ〉 = 0, and hence it is an excited state. This state can 
be understood to have a pair of anyons located at the endpoints of C. If there are no other ex-
citations, the state does not depend on the path C, only on its endpoints. The argument is the 
same as for the closed loop case. The case of dual paths is completely analogous, only there 
the endpoints are located on the plaquettes. These localized anyons on vertexes/plaquettes 
are labeled by elements of a finite set L (charges, or superselection sectors), which always 
includes the vacuum (no excitation) denoted by 1. An excitation on a vertex is labeled by e, 
and an excitation on a plaquette is labeled by m. A pair of e and m on neighboring vertex and 
plaquette can be treated as another charge labeled by ε. L = {1, e, m, ε} contains all possible 
types of excitations in the toric code model.

2.2.  Logical algebras and sectors

The central objects in this paper are operator algebras defined for an annular region A ⊂ ΛL . 
We restrict the size of the annulus R to R � L∗, where L* is defined as in the LTQO condition. 
In quantum error correction theory, an operator is called a logical operator if it acts non-triv-
ially on the ground subspace (the code subspace) while commuting with all interaction terms 
of the Hamiltonian. In a similar way, we consider a set of logical operators on ΛL relative to 
A which we will denote by E:

E := {O ∈ B(HL) |[O, hj] = 0 if supp(hj) ⊂ A+ } .� (12)

Note that E is the set of operators that do not create any excitations in the annulus or at the 
boundary (but may do so outside of A). Some distinct operators in E act identically on the 
ground states of HA+. To get rid of these degeneracies, we factor out E by

N :=
{

O ∈ E
∣∣OΠA+

= 0
}

,� (13)

where ΠA+
 is the projector as in LTQO. Note that N  is an additive subgroup of E and closed 

under the product in E. Furthermore, for any a ∈ E and b ∈ N , abΠA+ = a · 0 = 0 and 
baΠA+ = bΠA+a = 0 · a = 0, since [a,ΠA+ ] = 0 by definition. Hence N  is a two-sided ideal 
of E and E/N  is a C*-algebra. We note that since we are in finite dimensions, a C*-algebra is 
just a direct sum of matrix algebras, or alternatively, an algebra of block-diagonal matrices.

The effect of dividing out N  is that we are left with an algebra acting faithfully on the set 
of states that look like the ground state on A+ . More precisely, suppose that A|ψ〉 = B|ψ〉  for 
some A, B ∈ E  and all states |ψ〉  that reduce to a ground state of HA+ on A+ . Then it follows 
that (A − B)ΠA+ = 0, and hence [A]  =  [B] in E/N .

In [17], Haah introduced charges (types of particles) within the hole (Din) by considering 
logical operators supported on the annulus A, which generate a subalgebra of E/N  in our 
notation. Let us denote a set of logical operators on A by

A := {O ∈ E | supp(O) ⊂ A}� (14)

and factor it out by NA := N ∩A. The quotient A/NA is then a C*-algebra in the same way 
as E/N . Intuitively, A/NA is the algebra of ribbon-like loop operators (Wilson loop opera-
tors). These quotient algebras faithfully represent the actions onto the ground subspace of HA. 
Actually, we have A/NA ∼= ΠA+AΠA+ via an isomorphism [O] �→ ΠA+OΠA+.

We will now show that the algebra of logical operators E/N  is isomorphic to a full 
matrix algebra on a finite-dimensional Hilbert space. Remember that any finite-dimensional 
C*-algebra can be decomposed into direct sum of matrix algebras [24, theorem I.11.2]. 
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First note that Z(E), the center of E, is generated by {hj|supp(hj) ∩ A �= ∅}, together with 
the identity. Because the operators in E that are supported outside of A+ generate a full 
matrix algebra (which has trivial center), it is enough to consider only algebras supported 
on A+ . Let Mk(C) be the algebra of all such operators, and choose a projector h1 from the 
Hamiltonian which is supported in A+ . Then the commutant of h1 in Mk(C) is isomorphic 
to h1Mk(C)h1 ⊕ (1 − h1)Mk(C)(1 − h1). Continuing inductively with the other projections 
h2, h3, . . ., using that they mutually commute, we can find E ∩ Mk(C) and find that its center 
is indeed generated by the hi and the identity. Now note that

(1 − hj)ΠA+
= 0� (15)

for any hj  such that supp(hj) ⊂ A+. It follows that all elements in Z(E) are in the equivalence 
class [1] ∈ E/N . This implies E/N  has trivial center, and therefore E/N  is isomorphic to a 
full matrix algebra.

However, A/NA may have non-trivial center and we can decompose it into a direct sum of 
‘superselection sectors’ 

A/NA =
⊕
a∈L

Pa(A/NA)Pa,� (16)

where L is a finite label set and {Pa} are the orthogonal projections satisfying 
⊕

a Pa = 1A/NA. 
Note that A/NA is naturally embedded in E/N  as a subalgebra, since NA ⊂ N . Haah identi-
fied the possible charges in Din as labels {a} of these sectors. The projectors Pa are then (the 
equivalence class of) projective measurement operators which measure the total charge that 
Din has. The label set is finite, and there always is a distinctive label denoted by ‘1’ such that 
P1|Ω〉 = |Ω〉  for any ground state |Ω〉  of H. See [17] for more details.

Example 2.2 (Toric code).  The algebra A/NA has been explicitly calculated for the toric 
code in [17]. In our notation,

A/NA = span
{
[I], [WZ(C)],

[
WX(C̃)

]
,
[
WZ(C)WX(C̃)

]}
� (17)

=
⊕
a∈L

caPa, ca ∈ C,� (18)

where C (C̃) is a (dual) loop operator wrapping the annulus once, and a = 1, e, m, ε. Since the 
path operators square to the identity, it is easy to see that the span indeed defines a C*-algebra. 

The orthogonal projectors Pa are 14 ([I]± [WZ (C)]) ([I]± [WX(C̃)]) where the signs are deter-
mined by the charges.

To specify the set E, first recall that any O ∈ B(H) can be expressed in a product Pauli 
basis as

O =
∑

i1,...,iN

ci1...iN (X
i11 ⊗ . . .⊗ Xi1N )(Zi21 ⊗ . . .⊗ Zi2N )� (19)

with ik = (i1k , i2k) ∈ {0, 1} × {0, 1} and σi = Xi1 Zi2. It is clear that [O, Av] = 0 if and only if 
[Zi21 ⊗ . . .⊗ Zi2N , Av] = 0 for all (i1, ..., iN) such that ci1...iN �= 0, since otherwise all nonzero 
terms are linearly independent and do not vanish. We call an operator like Zi21 ⊗ . . .⊗ Zi2N  a 
pattern of Z. The same argument holds for Bp  and patterns of X. Therefore it holds that
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[O, hj] = 0 ⇔ O ∈ span
{
(Xi11 ⊗ . . .⊗ Xi1N )(Zi21 ⊗ . . .⊗ Zi2N )

∣∣∣
[
Xi11 ⊗ . . .⊗ Xi1N , hj

]
=

[
Zi21 ⊗ . . .⊗ Zi2N , hj

]
= 0

}
,

� (20)

i.e. O ∈ E  if and only if O is in the span of patterns (and their products) of X and Z which 
commute with all hj  with support overlapping with A. We can always represent these patterns 
by X- and Z-strings (or loops) with no endpoints in and around A. These string operators or 
loop operators generating E can be classified as (i) loops (no endpoints), (ii) strings with both 
endpoints in Din, or Dout  and (iii) strings connecting Din and Dout .

By dividing E by N , any two elements which can be transformed from one to the other by 
applying Av  or Bp  with support overlapping A are the same. Loop operators supported on A 
are swiped out from the annulus by applying these vertex or plaquette operators, and general 
loop operators are products of these. The representatives of the generators of E/N  are then 
classified as (i′) strings and loops supported either in Din or Dout  and (ii′) strings connecting 
Din and Dout .

The decomposition in equation (16) (and also equation (12)) depends on the choice of A 
in general. However, we expect that our definition of charges captures a universal property of 
the model, in the sense that the set of labels (or, equivalently, the number of summands in the 
decomposition) is preserved by deformations of the region, at least if A is large enough and 
keeps the topology. Moreover, it is natural to assume that the ribbon operators in topologically 
ordered phases generate an algebra which only depends on the topology of the support region, 
not the shape or the size of it. For a similar reason, a condition called stable logical algebra 
condition has been introduced in [17]. We will require a slightly more general condition:

	 •	� (Uniform stable logical algebra condition): let At,r/NAt,r  denote the logical algebra asso-
ciated to annulus At,r, which is given by b(r + t/2)\b(r − t/2) for some t and r. Then, for 
any 10w � t � r/10 and 10w � t′ � r′/10 with r, r′ � L∗,

At,r/NAt,r
∼= At′,r′/NAt′ ,r′ .� (21)

Compared to Haah’s definition, in addition to being able to change the width of the annulus, 
we also allow changing the radius. Because of the topological nature of the models we are 
interested in, we do not expect our a priori slightly stronger assumption to limit the class of 
models our result applies to.

Note that in the following we will assume all annuli satisfy the restrictions in this condi-
tion. We can show that our uniform stable logical algebra condition implies Haah’s stable 
logical algebra condition, which in particular requires that the natural inclusion map induces 
an isomorphism (which is not assumed in our definition).

Proposition 2.3.  Let A1 ⊂ A2 be two annuli and assume the uniform stable logical alge-
bra condition (21). Then the identity map provides a natural embedding ι : A1 → A2, which 
induces an isomorphism A1/NA1 → A2/NA2  of the quotient algebras, where we used the 
notation of section 2.2.

The proof can be found in appendix A. There is a useful consequence of this result. It 
says that the inclusion map always induces an automorphism. Hence to verify that a certain 
model satisfies the uniform stable logical algebra condition, it is enough to check that for suit-
able inclusions of annuli, the natural inclusion map induces an isomorphism of the quotient 
algebras. That is, if this happens to be false, one does not have to search for other potential 
isomorphisms.
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Using proposition 2.3 the following corollary follows easily:

Corollary 2.4.  Under the assumption of the uniform stable logical algebra condition, 
A/NA is Abelian.

Proof.  Let us consider three annuli A1, A2 and A3 such that A1 � A2 ⊂ A3 (figure 3). With-
out loss of generality, we assume A/NA is defined on A3. From the discussion above, for any 
[O],∈ A/NA, there exist O1 and O2 with [O1] = [O2] = [O] which are supported on A1 and A2, 
respectively. Then, for any [O], [Q] ∈ A/NA, we can choose a pair of representatives O1 and 
Q2 with disjoint supports. Therefore,

[O][Q] = (O1 +NA)(Q2 +NA) = (Q2 +NA)(O1 +NA) = [Q][O]� (22)

and A/NA is Abelian.� □ 

The total charge in Din is not a conserved quantity under the action of E/N . In other words, 
there exist operators in E/N  that do not commute with the charge projectors Pa, since E/N  
has trivial center. For example, E/N  contains operators that create a pair of conjugate excita-
tions, one located in Din and one in Dout . These operators change the corresponding charge 
in Din without making any additional excitation in the annulus. The set of logical operators 
preserving the total charge in Din is given as a subalgebra of E/N :

C := (Z(A/NA))
′ ∩ E/N =

⊕
a

Pa(E/N )Pa ≡
⊕

a

Ca.� (23)

The equality in the middle follows because Pa are mutually orthogonal projections which 
generate Z(A/NA). Note that we again get a decomposition in terms of the superselection 
sectors.

Example 2.5 (Toric code).  Recall that E/N  is spanned by (the equivalence classes of) 
(i′) string/loop operators supported on either Din or Dout  whose endpoints are not in and 
around A and (ii′) string operators connecting Din and Dout  (see example 2.2). All non-trivial 
operators in (ii′) do not commute with Z(A/NA), since they create non-trivial excitations 
which are detected by some projector Pa ∈ Z(A/NA). The algebra C is thus spanned by 
operators in (i′), and Ca = L ∨ Pa for some finite algebra L supported on Ac such that all Pa 
commute with L. Therefore, different Ca are isomorphic each other.

Figure 3.  Annuli A1, A2 and A3 in the proof of corollary 2.4. Any logical operator on A3 
have two disjoint supports A1 and A2 simultaneously, which implies. The isomorphisms 
from the algebras on smaller regions to the algebra on A3 are established by the natural 
embedding.
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From the algebra E and the state |Ω〉 , we can construct a cyclic representation of E on a 
certain Hilbert state HΩ in terms of what is called the GNS representation (see appendix A for 
more details). A representation is called cyclic if there is a vector such that by acting on this 
vector via the representation we can span the whole Hilbert space. More intuitively, the GNS 
Hilbert space HΩ is simply equivalent to the ground subspace of HA+:

HΩ
∼= E|Ω〉 = {|ψ〉 ∈ H | hj|ψ〉 = |ψ〉 if supp(hj) ⊂ A+ } .� (24)

We refer to appendix A, where the equality in equation (24) is proven. For clarity we will 
write this GNS representation as πΩ, which is, in particular, an irreducible representation (see 
appendix A). From the GNS construction it is also clear that the space does not depend on the 
specific choice of ground state |Ω〉. In the rest of this paper, we will equate HΩ with E|Ω〉 , a 
subspace of H defined on ΛL.

We can obtain representations of related algebras from πΩ in natural ways. For example, 
N  is in the kernel of πΩ (lemma A.2), hence πΩ induces a representation of E/N . One can 
also obtain a representation of subalgebras of E/N  by restricting the GNS representation πΩ. 
In particular, we can restrict πΩ to C ⊂ E/N , the algebra of all logical operators preserv-
ing the total charge of Din. This representation is reducible, while the representation of E 
is irreducible as we have seen above. The GNS Hilbert space HΩ can be decomposed using ⊕

a Pa = [I] ∈ E/N , where Pa are as in equation (23):

HΩ =
⊕

a

πΩ(Pa)HΩ ≡
⊕

a

Ha
Ω.� (25)

Each sector Ha
Ω is invariant under the action of πΩ(C), and therefore πΩ of C has non-trivial 

subrepresentations for each Ha
Ω. For instance, equation (23) implies that

πΩ(C)|Ω〉 ∼=
⊕

a

Pa(E/N )Pa|Ω〉� (26)

= P1(E/N )|Ω〉 ∼= H1
Ω,� (27)

since Pa|Ω〉 = δa1|Ω〉 . Note that here we identify the action of [A] ∈ E/N  by [A]|Ω〉 = A|Ω〉 , 
which is well-defined. We will call the subrepresentation of C on H1

Ω the vacuum representation.

Example 2.6 (Toric code).  Recall that E for the toric code is spanned by X and Z-string or 
loop operators with no endpoints around A. Loop operators act trivially on a ground state |Ω〉 , 
and commute with any string operators up to a phase ({X, Z} = 0 on the same site). Therefore 
a basis of E|Ω〉  can be constructed by applying only open string operators to |Ω〉 . Each ele-
ment of this basis is specified by the pattern of excitations outside of A, since two products of 
string operators sharing the same endpoints differ only by a phase. When the numbers of e and 
m anyons in a basis element are both even in Din (equivalently in Dout), then the basis element 
is in the vacuum sector H1

Ω. A basis of Ha
Ω for a �= 1 is then constructed by applying one string 

operator creating a pair of anyons with the charge a in Din and Dout  to the vacuum sector. 
The string operators are unitary and induce an isomorphism such that Ha

Ω
∼= H1

Ω. Therefore, 
HΩ =

⊕
a Ha

Ω is a direct sum of four isomorphic orthogonal sectors.

3.  An entropic invariant of 2D gapped phases

When two ground states of gapped Hamiltonians are connected via an adiabatic evolution 
without closing the gap for all system sizes, they are said to be in the same gapped quantum 
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phase (see e.g. [1] for more precise definition). By using the technique of quasi-adiabatic 
continuation [8], one can show that this definition of phase is equivalent to considering a par
ticular unitary evolution mapping one to the other. Importantly, this unitary evolution is gen-
erated by quasi-local Hamiltonians and can be simulated by a constant-depth local quantum 
circuit with a constant error. A constant-depth local (quantum) circuit is defined as a unitary 
which can be represented as a product of unitaries

W = W(1)W(2) . . .W(M),� (28)

where M is a constant independent of the system size and each W(i) =
⊗

l W(i)
l  is a tensor 

product of unitaries acting on constant-size disjoint sets of neighboring sites. Any constant-
depth local quantum circuit maps a (geometrically) local operator to a local operator with 
slightly larger support. We say a circuit has range r if the support of a local operator spreads 
at most distance r from the initial support after the transformation. In this paper, we will only 
consider invariance under constant-depth local circuits as in [17]. Although these transforma-
tions only approximate quasi-adiabatic evolutions, we believe that our results can be extended 
with some additional errors vanishing in appropriate thermodynamic limit (see [25]).

Using the assumptions that we have made so far, A/NA has been shown to be invariant 
under any constant-depth local circuits [17]. Therefore, a quantity which only depends on the 
algebraic structure of the logical algebras must be an invariant in the same way. More pre-
cisely, Haah proves that the algebras are isomorphic, so one has to show that the invariant is 
stable under isomorphisms.

In this section we introduce a new entropic quantity that is invariant under constant-depth 
local circuits. We first define the entropic quantity that essentially measures the relative sizes 
of the superselection sectors compared to the trivial (ground state) sector. We then provide a 
formula to calculate the quantity in terms of the dimensions of the sectors by considering the 
information convex introduced in [26] in our context. We prove that this quantity is stable 
under constant-depth local circuits, under the assumptions stated earlier.

3.1.  Definition of the entropic invariant

Now we are ready to define the entropic quantity. Our strategy is to choose a good reference 
point in the information convex and quantify the difference to probe the nontrivial structure of 
Σ(A). We choose the reduced state of the completely mixed state on HΩ as the reference state. 
As a measure of difference of two quantum states, we use the relative entropy:

S(ρ‖σ) := Trρ log(ρ− σ)� (29)

where the logarithm is in base 2. The relative entropy is zero if and only if the two states are 
the same, and positive otherwise. It is however not a proper ‘distance’ since it does not satisfy 
the triangle inequality. This ‘quasi-distance’ is frequently used in information theory because 
of its various useful properties.

We propose the following quantity as a new entropic invariant of gapped phases.

Definition 3.1.  Consider a ground state |Ω〉  of H. For ρA = TrAc |Ω〉〈Ω| on a given annulus 
A, we define

I(A)Ω := S (ρA ‖τA ) ,� (30)

where τA = TrAcτ  is the reduced state on A of the completely mixed state τ  on the Hilbert 
space HΩ (recall that we equate HΩ with E|Ω〉 ⊂ H).
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Since HΩ is (isomorphic to) the ground subspace of HA+, the completely mixed state is just 

given by τ ∝ ΠA+ = Π̃A+ ⊗ 1(A+)c, where Π̃A+
 is a projector of the ground subspace of HA+ 

restricted to HA+. Therefore, it is determined from HA+ and locally calculable. However, it 
might be true that I(At)Ω does depend on the choice of the annulus. We distinguish the desir-
able case in which it is independent from the choice of the annulus.

Definition 3.2.  We say I(At)Ω is uniform if it is independent of t for 10w  <  t  <  rann  −  10w.

The uniform property of I(A)Ω is related to the stability of E/N  in the sense of the sta-
bility of A/NA in equation (21). It might be true that I(A)Ω is always uniform by the stable 
logical algebra condition, but unfortunately we do not have a rigorous proof yet. A sufficient 
condition for the uniform property is that the following two properties holds: (i) for two annuli 
A ⊂ B with different thicknesses, τA = TrAc τ̃B, where τ  and τ̃  are the completely mixed states 
on the corresponding GNS Hilbert spaces. (ii) there is a ‘recovery’ CPTP-map R such that 
R(ρA) = ρB and R(τA) = τB . Then, from the joint monotonicity of the relative entropy, we 
have

I(B)Ω = S(ρB‖τB) � S(ρA‖τA) = I(A)Ω � S(ρB‖τB) = I(B)Ω,� (31)

which implies the uniform property of I(A)Ω. As we will see in later, the quantum double 
model satisfies the uniform property.

For models without commuting Hamiltonian terms, it would be reasonable to relax the 
statement to be only approximately true, up to a controllable error, for sufficiently large annuli. 
As evidence for this conjecture, we remark that I(A)Ω is uniform for Kitaev’s quantum dou-
ble model (see appendix B). However, I(A)Ω could depend on the annulus for more general 
models, e.g. in the Levin–Wen models. In the next section it will be shown that if I(A)Ω is 
uniform, then I(A)WΩW† is also uniform for any constant-depth local circuit W (theorem 
3.12). Therefore, it is enough to show the uniform property for certain ‘fixed-point’ wave 
functions of gapped phases.

By definition I(A)Ω is nontrivial if and only if ρA �= τA. Note that by lemma 3.5, ρA is the 
reduced state of the completely mixed state restricted to the vacuum sector H1

Ω. Hence I(A)Ω 
is nontrivial if and only if HΩ has a nontrivial superselection structure. Moreover, its value is 
determined by the dimensions of the sectors of the GNS Hilbert spaces as we will see in the 
next section.

3.2.  A formula for the invariant via structure of the information convex

The non-trivial structure of A/NA implies that states in HΩ can have different reduced states 
on A, which is not possible if A is a disc (all ground states of HA+ have the same reduced state 
on the disc by LTQO’ (9)). In more detail, the set of all possible reduced states on A of states 
in HΩ constitute a non-trivial convex set:

Σ(A) := {σA ∈ S(HA) |σA = TrAcσ, σ ∈ S(HΩ)} .� (32)

It is equivalent to the one independently introduced in [26] called the information convex. 
States in the information convex cannot be distinguished locally. In other words, they have the 
same marginals on every disc-like subregion, say X, of A. This is because any |φ〉 ∈ HΩ is in 
the ground subspace of HX+, and therefore LTQO’ guarantees that the reduced states on X is 
the same as that of |Ω〉 . States in the information convex obey the superselection structure so 
that there is no coherence between different sectors.
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Theorem 3.3.  Any state σA in Σ(A) can be decomposed as a convex combination:

σA =
⊕

a

paσ
a
A,� (33)

where pa = Tr(Paσ) and σa
A = PaσAPa/pa, and the Pa are as in equation (23).

Proof.  Consider the equivalence class Pa = P̂a +NA ∈ Z(A/NA) with a representative 
projector P̂a ∈ A . P̂a belongs to P̂a +N  in E/N . Now, we are going to show that there exists 
orthogonal projectors Q̂a such that supp(Q̂a) ⊂ Ac ∩ A+, Q̂a|ψ〉 = P̂a|ψ〉  for any |ψ〉 ∈ HΩ 
and 

⊕
a Qa = 1HΩ

. If this is true, we can show that

σA = TrAc

(
σ
⊕

a

Q̂a

)
� (34)

=
⊕

a

TrAc(Q̂aσQ̂a)� (35)

=
⊕

a

TrAc(P̂aσP̂a)� (36)

=
⊕

a

Tr(P̂aσ)
P̂aσAP̂a

Tr(P̂aσ)
,� (37)

which completes the proof. Indeed, the existence of such Q̂a can be shown as a consequence 
of a result in quantum error correction theory, which can be stated as follows:

Proposition 3.4 ([27]).  Consider a subspace HC ⊂ HR ⊗HRc and an operator O ∈ B(HC). 
Then, there exists ORc supported on Rc such that

ORc |ψ〉 = O|ψ〉� (38)

for any |ψ〉 ∈ HC if and only if PC[O, XR]PC = 0 ∀XR ∈ B(HR), where PC is the projection 
onto HC .

In our case, R = A ∪ (A+)
c, HC = HΩ and PC = ΠA+ and O ∈ ΠA+AΠA+ (see lemma 

A.1). One can easily check that

ΠA+
[P̂a, XA ⊗ Y(A+)c ]ΠA+

=
[
P̂aΠA+

,ΠA+
XAΠA+

]
⊗ Y(A+)c� (39)

for any operators XA on HA and Y(A+)c on H(A+)c. ΠA+XAΠA+ is supported on A+ and an ele-

ment of Ã/NA+, the logical algebra associated to the slightly larger annulus A+ . From the 

stability assumption (21), P̂a +NA+ ∈ Z(Ã/NA+) and therefore 
[
P̂aΠA+

,ΠA+
XAΠA+

]
= 0. 

By linearity, this implies ΠA+ [P̂a, ZA∪(A+)c ]ΠA+ = 0 for any ZA∪(A+)c ∈ B(HA∪(A+)c). There-
fore there exists Q̂a supported on (A ∪ (A+)

c)c = Ac ∩ A+ such that Q̂a|ψ〉 = P̂a|ψ〉  for any 
|ψ〉 ∈ HΩ.� □ 

Theorem 3.3 says any reduced state of HΩ is decomposed into a probabilistic mixture of 
state supported on disjoint sectors. Moreover, the reduced state on a particular sector is essen-
tially unique (the same result has been proven for quantum double models [26]):

K Kato and P Naaijkens﻿J. Phys. A: Math. Theor. 53 (2020) 085302



15

Lemma 3.5.  Under the uniform stable algebra condition, any state |ψa〉 ∈ Ha
Ω has the 

same reduced state

ψa
A = ρa

A,� (40)

where ρa
A = TrAc(P̂aΠA+)/Tr(P̂aΠA+) for P̂a ∈ Pa.

Proof.  Choose an element P̂a ∈ Pa ∈ A/NA. For any operator OA supported on A, it holds 
that

Tr(OA|ψa〉〈ψa|) = Tr(ΠA+ P̂aOAP̂aΠA+
|ψa〉〈ψa|).� (41)

The operator ΠA+ P̂aOAP̂aΠA+ is supported on A+ and commutes with all hi, and therefore it is 
an element of Pa(Ã/NA+)Pa, the logical algebra associated to the slightly larger annulus A+ . 
By corollary 2.4, Pa(Ã/NA+)Pa is one-dimensional and therefore

ΠA+
P̂aOAP̂aΠA+

+NA+
= c(OA)P̂aΠA+

+NA+
.� (42)

From the stable logical algebra condition and NA+ ⊂ NA, equation (42) implies

ΠA+
P̂aOAP̂aΠA+

+NA = c(OA)P̂aΠA+
+NA.� (43)

Therefore we have

Tr(OA|ψa〉〈ψa|) = c(OA)Tr(|ψa〉〈ψa|) = c(OA),� (44)

which completes the proof by the definition of the reduced state.� □ 

By using theorem 3.3 and lemma 3.5 restricting the structure of the states on HΩ, we obtain 
the following formula for I(A)Ω.

Theorem 3.6.  For any ground state |Ω〉  and annulus A, under the uniform stable logical 
algebra condition it holds that

I(A)Ω = − log
d1
Ω

dΩ
� (45)

where dΩ = dimHΩ and d1
Ω = dimH1

Ω.

Proof.  Let us denote the projector onto Ha
Ω by Πa and dimHa

Ω by da
Ω. By definition

τA =
⊕

a

(
da
Ω

dΩ

)
TrAc

(
1

da
Ω

Πa

)
≡

⊕
a

paρ
a
A,� (46)

where pa = da
Ω/dΩ and ρa

A = 1
da
Ω

TrAcΠa. Since ρ1
A = ρA by lemma 3.5, we have

I(A)Ω = S(ρA‖τA)� (47)

= TrρA log ρA − TrρA log( p1ρA)� (48)

= − log p1.� (49)

The second line follows since ρA log(
⊕

a paρ
a
A) = ρA log( p1ρ

1
A).� □ 
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Remark 3.7.  The decomposition (46) implies that the relative entropy in equation (30) is 
equal to the max-relative entropy [28]

Smax(ρA‖τA) := inf
λ

{
log λ | ρA � 2λτA

}
.� (50)

Remark 3.8.  This theorem suggests a more algebraic definition. Consider the projections 
Pi projecting on the different sectors, and choose a faithful tracial state τ . Then one can look 
at the ratios τ(Pi)/τ(P1) comparing the sector i to the vacuum sector. This is somewhat remi-
niscent of the definition of the Jones index for Type II1 factors in operator algebra [29]. See 
also appendix C.

Theorem 3.6 helps to obtain I(A)Ω without having to explicitly calculate the reduced 
states of a ground state and the reference state. Actually, the calculation is very simple for the 
toric code model.

Example 3.9.  For the toric code, HΩ is the direct sum of four isomorphic Hilbert spaces 
Ha

Ω (a = 1, e, m, ε). Therefore, dΩ = 4d1
Ω and we have

I(A)Ω = − log
1
4
= 2� (51)

for any (sufficiently large) A, Ω and L.

By definition I(A)Ω reflects the structure of the ground subspace of HA+. To claim that 
I(A)Ω quantifies some sort of correlations in the annulus, it is desirable that the function only 
depends on the states, not the Hamiltonian. Indeed, I(A)Ω is independent of the Hamiltonian 
in the same way as in the case of S-matrix defined in [17]. In more detail, it is shown that 
one can construct A/NA solely from the ground state by using its connection to the so-called 
locally invisible operators, which are operators whose action onto the ground state cannot 
be detected by looking at local regions [17]. In the same way, E/N  can also be constructed 
from the ground state, and thus I(A)Ω takes the same value for two Hamiltonians if both 
Hamiltonians have |Ω〉   as a ground state and satisfy all assumptions. In this sense, we can 
argue that I(A)Ω is a quantity associated to states. We emphasize that strictly speaking I(A)Ω 
is a function of ρA+, not ρA.

3.3.  Invariance under constant-depth local circuits

In this section, we show that I(A)Ω is invariant under any constant-depth local circuit. We 
begin with restating Haah’s results on the stability of A/NA, which will be shown to be useful 
in the proof.

Proposition 3.10 ([17, theorem 4.1]).  Suppose a state |Ω〉  on a plane of size  > L admits 
a LCPC Hamiltonian of interaction length w satisfying all our assumptions and let |Ω〉   be 
a ground state of H. Let A/NA be the logical algebra constructed from H, such that A has 
radius rann and thickness t. Denote Ã/ÑA the logical algebra on the same annulus but con-
structed from W†HW  for any constant-depth local circuit W of range r  <  t. Then, whenever 
1200w  <  60 t  <  rann  <  L, there exists an isomorphism such that

A/NA ∼= Ã/ÑA.� (52)
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Note that we choose the constants in the theorem in the same way as in [17], and the precise 
values themselves are not essential. As a simple consequence, the logical algebra of the model 
in the topologically trivial phase (including Bravyi’s counterexample exhibiting nontrivial 
spurious topological entanglement entropy) is always trivial [17]. This fact implies the fol-
lowing corollary.

Corollary 3.11.  Under the same assumptions as in proposition 3.10, I(A)Ω = 0 if the sys-
tem is in the topologically trivial phase.

Therefore, I(A)Ω can be used as an indicator of topologically ordered phases (if the 
Hamiltonian satisfies all assumptions). Our main theorem in this paper is that I(A)Ω is not 
only a witness of the existence of a nontrivial topological order, but also an invariant of gapped 
phases.

Theorem 3.12.  Under the same assumption as in proposition 3.10, it holds that

I(At)Ω = I(At−r)WΩW† .� (53)

Moreover, if I(A)Ω is uniform,

I(At)Ω = I(At)WΩW†� (54)

for any 1200w  +  r  <  60t  <  rann. Hence I(At)WΩW† is also uniform.

Proof.  The second part of the proof is easily derived from definition 3.2. We show equa-
tion (53) by using the formula in theorem 3.6. Let us denote h̃j = WhjW†, which is an interac-
tion term of the new Hamiltonian after the transformation. We define the annuli A as At and A′ 
as At−r. Then, E is mapped to

Ẽ :=
{

O ∈ B(HL)
∣∣∣[O, h̃j] = 0 if supp(hj) ⊂ A+

}
� (55)

=
{

O ∈ B(HL)
∣∣∣[O, h̃j] = 0 if supp(h̃j) ⊂ A′

+

}
,� (56)

where A′
+ :=

⋃
supp(h̃j)∩A′ �=∅ supp(h̃j) =

⋃
supp(hj)∩A�=∅ supp(h̃j). It is easy to check that 

Ẽ = WEW† and HWΩW† ∼= HΩ. It also holds that N ∼= Ñ  for Ñ := {O ∈ Ẽ|OΠA′
+
= 0}. 

Consider a logical algebra Ã/ÑA′ ⊂ Ẽ/ÑA′ associated to A′. By the stable logical algebra 
condition (21), A/NA is isomorphic to the logical algebra of |Ω〉   on A′, which is isomor-
phic to Ã/ÑA′ from proposition 3.10. Hence we have A/NA ∼= Ã/ÑA′. This isomorphism im-
plies Ã/ÑA′ has the same superselection structure and corresponding projectors P′

a as A/NA. 
Hence, we have P′

aHWΩW† ∼= PaHΩ for every a, especially a  =  1. Therefore the dimensions of 
these isomorphic Hilbert spaces are the same. This completes the proof by theorem 3.6.� □ 

A key point of the proof is that I(A)Ω only depends on the ratio of dimensions of the GNS 
representations (theorem 3.6). This is one of the reasons why we choose τA as the reference 
state. One can use other reference states/measures, while the invariance under constant-depth 
circuit is not guaranteed in general. For instance, [26, 30] propose to use the entropy differ-
ence as the measure and the maximum entropy state in Σ(A) as the reference state. However, 
the invariance of such a quantity is not clear. Moreover, our choice of the reference state 
implies that I(A)Ω is equivalent to the topological entanglement entropy, at least for quantum 
double models.
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A simple but non-trivial corollary of theorem 3.12 is that I(A)Ω is a universal quantity of 
the topologically ordered phase of the toric code model (Z2-topological order).

Corollary 3.13.  For any ground state in Z2-topological order,

I(A)Ω = 2.� (57)

This is because the toric code model is known to satisfy all the assumptions [21] and the 
uniform property.

4.  Relation to topological entanglement entropy

Ground states of gapped local Hamiltonians are believed to obey an area law: the von Neumann 
entropy S(ρ) := −Trρ log ρ of the reduced state of a ground state for a region A scales as

S(ρA) = α|∂A| − nAγ + o(1),� (58)

where α is a constant depends on the Hamiltonian, γ  (or -γ) is called the topological entangle-
ment entropy and nA is the number of disconnected boundaries of A5. The o(1) term comprises 
correction terms vanishing in the limit |A| → ∞. The area law (58) can be verified analytically 
in certain exactly solvable models such as the quantum double model or the Levin–Wen mod-
els [7, 13, 31]. It is also verified numerically in other gapped models [9–11].

Assuming an area law as above holds, one way to obtain the topological entanglement 
entropy is by taking a suitable linear combination of entropies of subregions. For an annulus, 
consider a tripartition as in figure 4 and define the conditional mutual information for the 
partition:

I(X : Z|Y)ρ := S(XY)ρ + S(YZ)ρ − S(Y)ρ − S(XYZ)ρ,� (59)

where S(A)ρ := S(ρA). By inserting the area law (58), the boundary terms cancel out and

I(X : Z|Y)ρ = 2γ + o(1).� (60)

Moreover, when the area law (58) is exactly saturated and the o(1) term vanishes, it is equiva-
lent to (i) the relative entropy distance from the set of all local Gibbs state, and (ii) the asymp-
totically optimal rate of certain secret sharing protocol [32]. An annulus is not the only type of 
region we can choose: one could for example use a tripartite disc or a more complicated region 
to extract γ , as long as taking suitable combinations of the entanglement entropies cancel out 
the area terms in the area law.

The topological entanglement entropy is argued to be a universal constant, namely, in that 
it only depends on the type of the quantum phase. In fact, for certain models it has been shown 
that

γ = logD,� (61)

where D2 =
∑

a∈L d2
a is called the total quantum dimension, which is determined by the 

quantum dimensions da � 1 of the anyons emerging in the phase [7, 12] (note that the quantity 
logD  itself is also connected to a secret sharing protocol in another setting [33]). Hence there 
are three different ways of obtaining γ—as a universal term in an area law, as a conditional 
mutual information, and as the logarithm of the total quantum dimension—that coincide, for 
example, under the assumption of the area law (58) [34]. Due to these equivalence relations, 

5 More generally, there are additional constant terms which depends on the shape of the corners of the region.
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not only the subleading term of the area law, but also the conditional mutual information and 
logD  are sometimes called the topological entanglement entropy, depending on the literature. 
Hence one could conjecture that an area law with the subleading term γ  is indicative of topo-
logical order.

The issue turns out to be more subtle, however. For example, Bravyi showed that there 
exists a gapped 2D ground state constructed by a constant-depth local circuit such that the area 
law has a non-zero constant term for a particular choice of a disc or annulus, while logD = 0 
[14, 35]. The constant term (sometimes called ‘spurious topological entanglement entropy’ 
[14, 15]) also makes the conditional mutual information a nontrivial constant. Thus, the sub-
leading term of the area law or the conditional mutual information do not always yield logD  
for general gapped 2D ground states, and one has to impose additional requirements. To the 
best of our knowledge, these have not been spelled out exactly in the literature. One issue is 
that it is often difficult to prove that an area law holds with a universal subleading term. Hence 
if one wants to study numerically, it is important to probe the area law for enough distinct 
regions, to verify that γ  indeed is universal. In addition, since the quantity should be topo-
logical in nature, it should be invariant under smooth deformations of the boundary. Bravyi’s 
counterexample does not fulfill this property.

In contrast, we have defined another entropic quantity which has been shown to be an 
invariant of gapped phases. As discussed in example 3.9, it takes the same value as the topo-
logical entanglement entropy for the toric code. Furthermore, we can show that the equiva-
lence also holds for the quantum double model D(G), which is a generalization of the toric 
code including models with non-abelian anyons:

Theorem 4.1.  For a ground state |Ω〉  of the quantum double model D(G),

I(A)Ω = logD2� (62)

for any sufficiently large annulus A.

Figure 4.  A tripartition of an annulus for the calculation of the topological entanglement 
entropy. In this case, the topological entanglement entropy is equivalent to the 
conditional mutual information I(X : Z|Y)ρ, under certain assumptions.
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The proof is in appendix B. Unfortunately, as far as we are aware there is no proof yet that 
the non-abelian quantum double models satisfy the assumption on the stable logical algebra 
condition, but we believe this to hold. Once this has been proven, I(A)Ω is guaranteed to be 
logD  in any quantum double phase, since it is uniform. We emphasize that the uniform prop-
erty suggests the stable logical algebra condition, since I(A)Ω provably changes its value if 
A/NA differs depending on the size of the region.

Following these observations, it is natural to expect I(A)Ω = logD2 holds for more gen-
eral models. Unfortunately, this is not the case; I(A)Ω is always the logarithm of a rational 
number for finite A, while D2 is in general not a rational number, as for example in the case of 
the double Fibonacci model [20]. Therefore, we need to generalize the definition to obtain the 
equivalence for general LCPC models. One crucial difference between the quantum double 
model and the Levin–Wen model is the local degrees of excitations. Excitations are described 
by ribbon operators in both models, but only those in the (non-abelian) quantum double model 
have a description of internal degrees of freedom. More precisely, in non-abelian quantum 
double models one has to consider ‘multiplets’ of independent ribbon operators transforming 
according to the same charge.

For models like the double Fibonacci model we might need to consider certain a asymp-
totic setting, such as in [32, 33, 36]. It could be true that I(A)Ω is not uniform in these mod-
els, and that we recover the relation I(A)Ω = logD2 only asymptotically as A grows larger. 
Another possible extension is considering multiple copies of ground states as often considered 
in quantum Shannon theory. Since quantum dimensions represent an asymptotic ratio of the 
growth of the dimension of the fusion space, it is reasonable to expect we can obtain an irra-
tional number in a certain asymptotic limit of multiple copies. See also example in [33] for 
Fibonacci chain, or appendix C for a related approach.

It is also natural to expect that there is a quantitative relation between I(A)Ω and the  
conditional mutual information. Indeed, it has been shown that a similar quantity called the 
irreducible correlation [37] equals the conditional mutual information for exactly solvable 
models (including quantum double models and Levin–Wen models) [32]. The irreducible cor-
relation (of order 3) C(3)(ρXYZ) of a tripartite state ρXYZ  is defined as

C(3)(ρXYZ) := S(ρXYZ‖ρ̃XYZ),� (63)

where ρ̃XYZ  is the maximum entropy state defined by

ρ̃XYZ := argmax
σXYZ∈R2

S(σXYZ)� (64)

with R2 := {σXYZ |σR = ρR, R = XY , YZ, ZX}. Hence R2 is the sets of all tripartite states that 
agree with ρXYZ  when tracing out one of the parts. This set is convex and the maximum entropy 
state is unique.

Proposition 4.2 ([32]).  For a ground state satisfying an exact area law: 
S(ρA) = α|∂A| − nAγ , it holds that

C(3)(ρXYZ) = I(X : Z|Y)Ω� (65)

for any tripartition of an annular region such that Y separates X from Z.

Bravyi’s counter example satisfies the condition of this theorem. Therefore, C(3)(ρXYZ) is 
not an invariant of gapped phases and neither is I(X : Z|Y)Ω. More precisely, Bravyi gives 
an example of a state where these quantities are non-zero, but which nevertheless is not 
topologically ordered. The information convex Σ(A) is a subset of R2 under an appropriate 
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partition of A. Indeed, it is a strict subset in the case of Bravyi’s counter example, in which 
C(3)(ρXYZ) = I(X : Y|Z)Ω takes a non-trivial value while I(A)Ω = 0. Therefore these two 
equivalent quantities quantify not only ‘topological’ contributions but can also contain ‘non-
topological’ contributions. We expect that I(A)Ω (or a suitable generalization of it) captures 
the topological part and it provides a lower bound of these quantities:

Conjecture 4.3.  Suppose |Ω〉  is a ground state of a Hamiltonian satisfying all assumptions. 
For any tripartition XYZ of A such that Y separates X from Z as depicted in figure 4, it holds 
that

I(X : Z|Y)Ω � I(A)Ω.� (66)

A similar bound is easy to check for the entropy difference instead of the relative entropy:

Proposition 4.4.  We have the following lower bound

I(X : Z|Y)Ω � S(τA)− S(ρA),� (67)

for for any tripartition XYZ of A such that Y separates X from Z as depicted in figure 4.

Proof.  By LTQO’, any |φ〉 ∈ HΩ is indistinguishable from |Ω〉  for any subregion of XYZ, 
e.g. XY which has trivial topology. Hence, τA has the same local marginals as of ρA. From the 
strong subadditivity for system A  =  XYZ, we have

S(τA)− S(ρA) � S(τXY) + S(τYZ)− S(τY)− S(ρA)� (68)

= S(ρXY) + S(ρYZ)− S(ρY)− S(ρXYZ)� (69)

= I(X : Z|Y)Ω.� (70)

Note that we can use LTQO’ for e.g. Y in figure 4 which has multiple connected components, 
since the reduced state is a product of that of connected regions.� □ 

Therefore, the conjecture holds if the relative entropy difference is equal to the entropy 
difference, i.e.

S(τA)− S(ρA) = S(ρA‖τA)� (71)

holds. This condition is known to be satisfied when τA is the maximum entropy state of a 
convex set containing ρA which is defined by linear constraints [38]. In our case, the convex 
set is the information convex Σ(A). Note that the entropy difference between the maximum 
entropy state in Σ(A) and ρA has been studied in [26]. While τA coincides with the maximum 
entropy state in quantum double models, it is still unclear that the equivalence is stable under 
constant-depth local circuits.

5.  Discussion

In this paper, we have introduced an entropic quantity I(A)Ω of 2D gapped phase described 
by LCPC Hamiltonians. I(A)Ω is defined based on the operator algebras of logical operators 
defined for annulus, and it is invariant under constant-depth local circuits. We have also shown 
that I(A)Ω is equivalent to the logarithm of the ratio of the corresponding superselection sec-
tors defined via the GNS Hilbert space constructed by the algebras. We have demonstrated that 
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I(A)Ω matches logD2 for the toric code model, or more generally the quantum double models 
D(G), including models with non-abelian anyons.

Several questions still remain. Especially, it is desirable to extend the framework so that 
the equality with logD2 holds for models with irrational quantum dimension, like the double 
Fibonacci model. To obtain an irrational number, we might need to consider the superselec-
tion sectors in some asymptotic setting, since it represents the asymptotic growth ratio of 
the dimension of certain Hilbert space in the modular tensor category description. Another 
important direction is proving conjecture 4.3. Again, it might be true only in a certain asymp-
totic scenario. Once the conjecture will be shown, we have a decomposition of the condi-
tional mutual information into ‘topological’ contribution and ‘non-topological’ contribution. 
While the known fixed-point models of non-chiral topologically ordered phases are described 
by LCPC Hamiltonian, it would be desirable to extend our framework to general frustra-
tion-free Hamiltonians. Indeed, an extension of the information convex for frustration-free 
Hamiltonians is discussed in [26]. However, it is unclear if the corresponding logical operators 
form a proper C*-algebra.

Superselection sectors for anyon models are also considered in the thermodynamic limit 
(for infinitely large spin systems or in algebraic quantum field theory). In these theories, fac-
tors of von Neumann algebras, which are subalgebras containing the identity as the center, 
play an important role. In contrast, we are considering finite-dimensional algebras and we do 
not have factors. As discussed in appendix D, the relative entropy, the total quantum dimen-
sion and the so-called Jones index are mutually connected (see also equation  (7) of [33]). 
Connecting our theory of finite-dimensional framework to these infinite-dimensional frame-
work is desirable to obtain the most general understanding of the origin of the topological 
entanglement entropy.
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Appendix A.  Logical algebra and the GNS construction

In this appendix we discuss some of the more technical properties of the logical algebras. In 
particular, we show that for the stable logical algebra condition it is enough to check if the 
inclusion map induces an isomorphism of the logical algebras related to an inclusion of cones. 
We also outline the basics of the GNS construction, which gives a canonical way to obtain a 
Hilbert space and an representation given a state on an abstract C*-algebra. In the applications 
that we have in mind this gives rise to the appearance of different superselection sectors.

A.1.  Stable logical algebra condition

In section 2.2 we introduced stable logical algebra condition. This says that the logical alge-
bras for different (large enough) annuli are isomorphic. This is true in particular if we have 
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an inclusion A1 ⊂ A2 of annuli. This induces in inclusion of the corresponding algebras of 
observables. What is not so clear, however, is that this embedding in fact induces an isomor-
phism of the corresponding logical algebras. The following proposition shows that this is 
nevertheless the case, hence it is enough to check the stable logical algebra condition for this 
particular map.

Proposition 2.3 Let A1 ⊂ A2 be two annuli and assume the uniform stable logical algebra 
condition (21). Then the identity map provides a natural embedding ι : A1 → A2, which 
induces an isomorphism A1/NA1 → A2/NA2  of the quotient algebras, where we used the 
notation of section 2.2.

Proof.  Note that A, E and N  all depend on the choice of annulus. We will write Ai, Ei and 
Ni  for the corresponding algebras and ideals, and define NAi ≡ Ni ∩ Ai. The corresponding 
equivalence classes Ai/NAi  are written [A]i.

First note that if A ∈ A1 it follows that [A, hj ]  =  0 for all hj  with supp(hj) ⊂ A2,+, either by 
locality or because A ∈ A1. Hence there is a linear map ιA1A2 : A1 → A2 given by the natural 
inclusion. We claim that this induces an inclusion of the quotient algebras A1/NA1 → A2/NA2 . 
Note that it is enough to show that NA1 ⊂ NA2 . If N ∈ NA1, then by definition supp(N) ⊂ A1 
and NΠA1,+ = 0. But by locality [N, hj ]  =  0 if supp(hj) ⊂ Ac

1. Because by assumption all hj  
commute and the model is frustration free, we have

NΠA2,+ = N


 ∏

supp(hj)⊂(A2\A1,+)+

hj


ΠA1,+ =


 ∏

supp(hj)⊂(A2\A1,+)+

hj


NΠA1,+ = 0,

� (A.1)

and hence N ∈ NA2.

We now claim that this map on the quotient algebras is injective. To this end, let A, B ∈ A1 
and suppose that [A]2 = [B]2. Then A  −  B  =  N for some N ∈ N2. Note that the left-hand side 
is supported on the annulus A1, and hence by locality, commutes with any operator supported 
on the complement of A1. But this implies that supp(N) ⊂ A1, and it remains to be shown that 
NΠA1,+ = 0.

To reach a contradiction, suppose that NΠA1,+ �= 0. As in equation  (A.1), we can write 
NΠA2,+ as a product of NΠA1,+ and a projection which we will write as Π(A2\A1,+)+. Be-
cause supp(N) ⊂ A1 and the terms hj  in the Hamiltonian mutually commute, it follows that 
NΠA1,+ and Π(A2\A1,+)+. Note however that because there may be terms hj  outside of A1 with 
supp(hj) ∩ A1,+ �= ∅, hence the two operators do not have disjoint support. Nevertheless, one 
can actually factor the Hilbert space such that these operators act on different tensor factors, 
by the commuting property and because our algebras are finite dimensional. Indeed, this fol-
lows from theorem 1 of [39]. From this tensor product decomposition we see that NΠA2,+ �= 0 
if NΠA1,+ �= 0, and hence we conclude by contradiction that NΠA1,+ = 0 and N ∈ NA1.

This leads to the conclusion that the inclusion map ι induces an inclusion on the quotient 
algebras. Because the algebras Ai/NAi,+ are finite dimensional and isomorphic by assumption, 
this map must be surjective as well. This completes the proof.� □ 

A.2.  Relation to GNS construction

In section 2 we defined the Hilbert space HΩ, capturing the different superselection sectors. 
This construction can be understood naturally in terms of representations of operator algebras. 
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The essential idea behind the construction is that the algebra of observables which do not 
change the total charge inside the annulus, which we called C before, is represented on dif-
ferent ways on the Hilbert space HΩ, corresponding to the different sectors. Here give a brief 
introduction to the main aspects needed to understand this connection.

In an operator algebraic approach it is often convenient to consider abstract algebras with-
out any reference to a Hilbert space. A state in that setting is then a positive linear functional ω  
on the algebra, normalized such that ω(I) = 1. For finite dimensional algebras this is equiva-
lent to ω(A) = Tr(ρA) for some density matrix ρ  with unit trace, but for infinite systems 
not all states are of this form. On the other hand, the Hilbert space picture is very useful in 
quantum mechanics. Hence it is useful to go from the abstract picture back to the Hilbert space 
picture in a canonical way. The Gel’fand–Naimark–Segal (GNS) construction provides such 
a method. It yields a representation of a C*-algebra M as bounded operators on some Hilbert 
space, in such a way that ω  is represented by a vector in this Hilbert space. In a sense it can be 
understood as a form of purification, although if the representation is not irreducible, the state 
is not pure (seen as a state of M). It is a standard tool in operator algebra, and can be found in 
most textbooks on the subject, see for example [24, 40].

For simplicity we only consider the case that M is a finite dimensional, unital algebra. It 
follows that M is of the form 

⊕
k Mnk(C) for a (unique, up to permutation) finite sequence of 

integers nk. Let ω  be a state on M, that is ω(A) = Tr(ρA) for some positive operator ρ ∈ M 
of unit trace, and all A ∈ M. The goal is to define a new Hilbert space Hω and a representa-
tion πω : M → B(Hω) such that there is a vector |Ω〉 ∈ Hω with ω(A) = 〈Ω|πω(A)|Ω〉  for 
all A ∈ M. In other words, in the new representation the state is represented by a vector. 
Moreover, this vector is cyclic, in the sense that πω(A)|Ω〉 = Hω.

To define the Hilbert space, first we define

J := {A ∈ M : ω(A†A) = 0}.� (A.2)

It follows from the Cauchy–Schwarz inequality of positive linear functionals that J  is a linear 
space. In fact, it can be shown that J  is a left ideal of M, in the sense that AJ ∈ J  for all 
A ∈ M and J ∈ J . The Hilbert space Hω is then defined to be the quotient (as a vector space) 
Hω := M/J . We will write |[A]〉  for the equivalence class of a representative A ∈ M. The 
definition of Hω is complete by defining an inner product, by setting 〈[A]|[B]〉 := ω(A†B). 
By the remark above this is well-defined. The inner product is also non-degenerate precisely 
because we divide out the ideal J , which correspond to vectors of length zero.

The representation of M can be defined by its action on the vectors of H: 
πω(A)|[B]〉 := |[AB]〉 . Again, this is well-defined because J  is a left ideal. It is also straight-
forward to check that πω is linear, πω(AB) = πω(A)πω(B) and πω(A†) = πω(A)†. Hence πω 
is a representation. Finally, |Ω〉 := |[I]〉  has the properties claimed.

Before we discuss an example, we first mention two more properties of the GNS construc-
tion. Firstly, it is unique up to unitary equivalence: if (π′

ω ,H′
ω ,Ω′) is another triple, then there 

is a unitary U : H′
ω → Hω such that πω(A) = Uπ′

ω(A)U
† and U|Ω′〉 = |Ω〉 . Secondly, πω is 

an irreducible representation if and only if ω  is a pure state, in the sense that it cannot be writ-
ten as a convex combination of two distinct states. In the present setting, this is equivalent to 
πω(A) ∼= Mk(C) for some integer k.

We now apply this construction to the algebras defined in section 2. In particular, let |Ω〉 be 
a ground state of the Hamiltonian. This induces a state on E by ω(O) := 〈Ω|O|Ω〉 . We denote 
the corresponding GNS triplet (πΩ,HΩ, |[I]〉). The GNS Hilbert space has a physical interpre-
tation established by the following isomorphism.
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Lemma A.1.  There is an isomorphism of Hilbert spaces such that

HΩ
∼= E|Ω〉 = {|ψ〉 ∈ H | hj|ψ〉 = |ψ〉 if supp(hj) ⊂ A+ } .� (A.3)

Moreover, πΩ is an irreducible representation of E.

Note: this essentially follows from the uniqueness of the GNS representation (up to unitary 
equivalence), but we give an explicit proof for the benefit of the reader.

Proof.  By construction, HΩ := E/J = πΩ(E)|[I]〉  , where J  is the left ideal as defined 
above. We first show that the linear map ι : HΩ → E|Ω〉  defined by ι : |[O]〉 �→ O|Ω〉  is an 
isomorphism. The map is well-defined: if [O1] = [O2], then O1 = O2 + J, with J ∈ J . But 
ω(J†J) = 〈JΩ|JΩ〉 = 0, and hence J|Ω〉 = 0. Since ι is defined for all O ∈ E , it is surjective. 
To see the map is also injective, it is enough to check that the equivalence

O1|Ω〉 = O2|Ω〉 ⇔ (O1 − O2)|Ω〉 = 0� (A.4)

implies that [O1] = [O2]. From (O1 − O2)|Ω〉 = 0 it follows that ω((O1 − O2)
†(O1 − O2)) = 0, 

and hence O1 − O2 ∈ J . Finally, 〈[O1]|[O2]〉 = ω(O†
1O2) = 〈Ω|O†

1O2|Ω〉  , hence the inner 
product is preserved by ι.

The second equality holds because we have |ψ〉〈Ω| ∈ E  for any |ψ〉  such that HA+ |ψ〉 = |ψ〉 , 
and thus (|ψ〉〈Ω|)|Ω〉 = |ψ〉 . This implies

{|ψ〉 ∈ H | hj|ψ〉 = |ψ〉 if supp(hj) ⊂ A+ } ⊂ E|Ω〉� (A.5)

(the other inclusion is easy to check). Operators like |ψ〉〈Ω| and their conjugates span the full-matrix 
algebra on E|Ω〉 . We also note that ι(πΩ(O1)|[O2]〉) = ι(|[O1O2]〉) = O1O2|Ω〉 = O1ι(|[O2]〉). 
Hence ι is compatible with the representation πΩ. This together with the equivalence relation 
(A.3) show that any vector in E|Ω〉  is cyclic for πΩ, and it follows that is an irreducible repre-
sentation of E on HΩ.� □ 

We conclude with an observation on πΩ which turns out to be useful.

Lemma A.2.  The representation πΩ can be restricted to E/N .

Proof.  We show that N  is in the kernel of πΩ. Indeed, by definition of the GNS triplet, we 
have

A ∈ KerπΩ ⇔ πΩ(A)|[O]〉 = |[AO]〉 = 0, ∀O ∈ E .� (A.6)

From the equivalence (A.3), the second condition is equivalent to

AO|Ω〉 = AOΠA+
|Ω〉 = AΠA+

O|Ω〉 = 0, ∀O ∈ E .� (A.7)

Therefore, if A ∈ N , then A ∈ KerπΩ. This inclusion implies πΩ([A]N ) := πΩ(A) for 
[A]N ∈ E/N  is a well-defined representation of E/N .� □ 

This is in fact the GNS representation of E/N  obtained by regarding ω([A]) := ω(A) as a 
state on E/N .

Appendix B.  Calculation of the invariant for quantum double models

In this appendix, we will show that

IΩ(A) = 2 logD� (B.1)
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for D(G), in which we have D = |G|. We will start from the definition of D(G), and then 
reveal all extremal points of the information convex in the next subsection. We calculate 
I(A)Ω in the last subsection.

B.1.  Quantum double model D(G)

The quantum double model D(G), defined for any finite group G, is a generalization of the 
toric code model (which corresponds to G = Z2) [3]. We recall the main definitions here. The 
model is defined on a directed graph, where a Hilbert space C[G] = span{|g〉|g ∈ G} is asso-
ciated to each edge as in figure B1. For simplicity we assume a square graph with the same ori-
entation as in the figure, but the model can be defined for more general directed graphs. The left 
(right) multiplication operator is denoted by L+

g :=
∑

h∈G |gh〉〈h| (L−
g :=

∑
h∈G |hg−1〉〈h|). 

Also, we denote projectors on to a group element by T+
g := |g〉〈g| (T−

g := |g−1〉〈g−1|). In 
a similar way to as in the toric code, the Hamiltonian is defined by vertex operators Av  and 
plaquette operators Bp , which are defined as

Av :=
1
|G|

∑
g∈G

Ag
v , Bp :=

∑
h1h2h3h4=e

T+
h1

T+
h2

T−
h3

T−
h4

,� (B.2)

where Ag
v = L−

g L+
g L+

g L−
g , where the first operator L−

g  acts on the site at the left side of v and 
the rest in clockwise order (figure B1). The ± signs of the multiplication operators are deter-
mined by whether the site is on an incoming edge (+) or on an outgoing edge (−). The direc-
tion of the edges can be changed by the corresponding local unitary, which maps |g〉 �→ |g−1〉 .

Excitations of D(G) are labeled by the irreducible representations of a Hopf algebra 
called the quantum double, first introduced by Drinfel’d [41]. They are specified by pairs 
(R, C), where C is a conjugacy class of G and R is an irreducible representation of the cen-
tralizer group of C [42]. We denote the set of all conjugacy class of G by (G)cj. For each 
conjugacy class C ∈ (G)cj , we fix a representative rC and denote its centralizer group by 
E(C) := {g | grCg−1 = rC}. The elements of the conjugacy class are in one-to-one corre-
spondence with the cosets G/E(C). The quantum dimension of the charge (R, C) is given 
by d(R,C) = nR|C|, where nR is the dimension of R. From the representation theory of finite 

groups, we always have 
∑

(R,C) n2
R|C|2 = |G|2.

2

1 3

4

1

2

3

4

Figure B1.  The quantum double model defined on a directed square lattice. Each Av  
acts on 4 sites around vertex v and Bp  acts on 4 sites around plaquette p .
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While excitations in the toric code model D(Z2) are created by string operators or dual 

string operators, excitations in general D(G) models are created by ribbon operators {F (h,g)
ρ }, 

where h, g ∈ G and ρ  is a ‘ribbon’, a combination of a neighboring string and dual string. See 
e.g. [3, 43] for more details.

B.2.  Calculation of Σ(A)

As already mentioned, the structure of information convex Σ(A) for D(G) has been derived 
in [26]. In this section we explicitly calculate Σ(A) for concreteness. Some of the techniques 
in the calculation will be used in the calculation of I(A)Ω. For simplicity we only consider 
the thinnest rectangular annulus A as in figure B2, but a similar argument can be applied to a 
general annulus [26, 44]. See the end of appendix B for more details.

Let us consider the quantum double model D(G) defined on a square lattice embedded on 
a sphere. As shown in lemma A.1, the GNS Hilbert space HΩ for a ground state |Ω〉  is equiva-
lent to the ground subspace of HA+:

HΩ
∼=

{
|φ〉 ∈ H

∣∣ΠA+
|φ〉 = |φ〉

}
.� (B.3)

We label the basis elements of sites at the inner boundary by h1, h2, ..., hn+4 and sites at 
the outer boundary by H1, ..., HN , where hi, Hj ∈ G, in such a way that the direction at the 
boundaries are aligned as depicted in figure B2. We especially choose one site in the bulk of 
A and label it by t. Other sites in A are labeled by g1, ..., gm. In this notation, a basis of HA is 
written as

|{hi}, {Hj}, {gk}, t〉A,� (B.4)

ℎ1

ℎ2

ℎ +4

1

2

1

2

Figure B2.  An example of the thinnest rectangular region A (surrounded by thick 
lines). We choose the directions of both boundaries the same. We label the sites at the 
inner boundary by hi and those at the outer boundary by Hj . We choose one site inside 
the region and label it by t.
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where {hi} = {h1, . . . , hn+4} and so on. The annulus A contains n  +  2N  +  4 spins, the sup-
port of N  −  4 plaquette operators and 4 vertex operators at the inner corners.

When we restrict to the ground subspace of all Bp  such that supp(Bp) ⊂ A, every gk is 
uniquely determined by {hi}, {Hj} and t. For instance, g1 = h1tH−1

1  and g2 = h2h1tH−1
1 H−1

2 . 
For this reason, we will omit {gi} from the notation equation (B.4) in the following. The prod-
ucts h := h1h2 · · · hn+4 and H := H1H2 · · ·HN  are also restricted by the product of Bp  so that 
h  =  tHt−1, which implies that h and H are in the same conjugacy class. For C ∈ (G)cj , there 

exists a set of group elements {qi}|C|
i=1 such that h = qirCq−1

i , H = qjrCq−1
j  and t = qītq−1

j  for 
every h, H ∈ C and t̄ ∈ E(C).

We then consider four vertex operators at the inner corners of A. Let us denote the ver-
tices along the inner boundary by v1, v2, . . . , vn+4 with counter clockwise order from above 
h1. Suppose hi and hi+1 denotes the inner boundary sites at the upper right corner. When 
we apply Ag

vi
, they are mapped to hig−1 and ghi+1, and therefore the product hihi+1 is pre-

served under the action. Indeed, by properly choosing g ∈ G, Ag
vi
 can maps {hi, hi+1} to any 

other pair {h′
i , h′i+1} satisfying hihi+1 = h′ih

′
i+1. Therefore, a linear combination of vectors 

|{hi}, {Hj}, t〉A is stabilized by Avi if and only if all two configurations {hi}, {h′i} satisfying 
hihi+1 = h′ih

′
i+1 appear in an equal weight. We introduce such a state by

|{hi}, {Hj}, t〉A ≡ 1√
|G|

∑

h̃i h̃i+1=hi

|{h̃i}, {Hj}, t〉A,� (B.5)

where h̃k = hk  for k  <  i, h̃k = hk−1 for k  >  i  +  1 and |{hi}|  =  n  +  3. By definition, 
Avi |{hi}, {Hj}, t〉 = |{hi}, {Hj}, t〉  for every {hi}. We repeat the same procedure for all other 
corners and define a new label set {hi} = {h1, h2, . . . , hn} which has n independent elements. 
Hence {|{hi}, {Hj}, t〉A} spans (n + N)-dimensional space.

Next, we explicitly calculate possible states in the information convex Σ(A) (32). Without 
loss of generality, we only care about A+ and denote B := A+\A. This is because we have 
HΩ

∼= KAB ⊗H(A+)c, where

KAB :=
{
|φ〉A+

∈ HAB
∣∣ HA+

|φ〉A+
= |φ〉A+

}
.� (B.6)

We decompose vertex operators supported on both A and B as Ag
v = Ãg

v ⊗ Āg
v, so that Ãg

v  (Āg
v) only 

acts on A (B). If |ψ〉 ∈ HA ⊗HB satisfies Av|ψ〉 = |ψ〉 , it holds Ag
v |ψ〉 = Ag

vAv|ψ〉 = Av|ψ〉 = |ψ〉 . 
From the unitarity of Ag

v , we have

Av|ψ〉 = |ψ〉 ⇒ Ãg
vψAÃg−1

v = ψA, ∀g ∈ G.� (B.7)

Here we used (Lg
±)

† = Lg−1

± . Therefore, states in Σ(A) should be invariant under all 
operators in the form: Ãl1

v1
⊗ Ãl2

v2
⊗ · · · Ãln−1

vn−1. {hi} is mapped by these unitaries to 
(h1l−1

1 ), (l1h2l−1
2 ), ..., (ln−1hn) and thus h = h1...hn  is unchanged. There are |G|n−1 patterns of 

the choice of {hi} for fixed h, and every two patterns are mapped each other by these products 
of Ãg

v . The same argument holds for the outer boundary with vertices V1, V2, ..., VN . Hence, if 
h  =  tHt−1, the equal weight mixture

∑
h1···hn=h

∑
H1···HN=H

|{hi}, {Hj}, t〉〈{hi}, {Hj}, t|A� (B.8)

is invariant under all vertex operators except on vn and VN .
To see the action of the remaining vertex operators clearer, we introduce the group Fourier 

basis:

K Kato and P Naaijkens﻿J. Phys. A: Math. Theor. 53 (2020) 085302



29

|R; a, b〉 :=
√

nR

|G|
∑
g∈G

Rab(g)|g >,� (B.9)

where Rab(g) is the (a, b) matrix element of the irreducible representation R of G with dimen-
sion nR. We define a new basis by

∣∣(R, C); u, v; {hk}qi , {Hl}qj

〉
A :=

∑
t∈E(C)

√
nR

|E(C)|
Rab(t)|{hk}qi , {Hl}qj , qitq−1

j 〉A

� (B.10)
for C ∈ (G)cj , R ∈ (E(C))ir, u = (qi, qj) and v = (a, b). Here, {hk}qi denotes a set {h1, ..., hn} 
satisfying h1...hn = qirCq−1

i  and {Hl}qj = {H1, ..., HN} with H1...HN = qjrCq−1
j . Ãg

vn
⊗ Ãg′

VN
 

maps h, H and t to ghg−1, g′Hg′−1 and gtg′−1, respectively. In other words, there are 
t1, t2 ∈ E(C) such that gqi = qi′ t1 and g′qj = qj′ t2, and

Ãg
vn
⊗ Ãg′

VN

∣∣(R, C); u, v; {hk}qi , {Hl}qj

〉
A =

∑
t∈E(C)

√
nR

|E(C)|
Rab(t)|{hk}qi′ , {Hl}qj′ , qi′ t1tt−1

2 q−1
j′ 〉A

� (B.11)

=
∑

t∈E(C)

√
nR

|E(C)|
Rab(t−1

1 tt2)|{hk}qi′ , {Hl}qj′ , qi′ tq−1
j′ 〉A� (B.12)

=
∑
c,d

Rac(t−1
1 )Rdb(t2)

∑
t∈E(C)

√
nR

|E(C)|
Rcd(t)|{hk}qi′ , {Hl}qj′ , qi′ tq−1

j′ 〉A� (B.13)

=
∑

v′
Uvv′

∣∣∣(R, C); u′, v′; {hk}qi′ , {Hl}qj′ 〉,� (B.14)

where u′ = (qi′ , qj′), v′ = (c, d) and Uvv′ = Rac(t−1
1 )Rdb(t2). Therefore, each Ãg

vn
⊗ Ãg′

VN
 is a 

unitary operation on the space spanned by indices u, v.
By combining the above argument with equation (B.8), we conclude that

σ
(R,C)
A :=

1
|G|n+N−2d2

(R,C)

ΠA(R, C),� (B.15)

where

ΠA(R, C) :=
∑

u, v
∑
{hk}qi

∑
{Hl}qj

∣∣(R, C); u, v; {hk}qi , {Hl}qj

〉 〈
(R, C); u, v; {hk}qi , {Hl}qj

∣∣
A ,

� (B.16)

is invariant under every Ãg
vi
 and Ãg

Vi
. General σA ∈ Σ(A) is written as a convex combination:

σA =
⊕

a=(R,C)

paσ
a
A,

� (B.17)

which is consistent to theorem 3.3.

B.3.  Calculation of I(A)Ω

We are now ready to calculate an orthonormal basis of KAB. We consider A+ , the support 
of all interaction terms nontrivially acting on spins in A. We decompose B = Bin ∪ Bout so 
that Bin = A+ ∩ Din (Bout = A+ ∩ Dout) contains spins around inner (outer) boundaries of A 
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(figure B3). We choose the directions of the boundaries of A+ in the same way as we did for A. 
Let us fix labels {hi} and {Hi} in A. Spins in Bin, with the inner boundary of A, form another 
annulus. By requiring to be a  +1 eigenstate of all Bp  acting on Bin, we can label states in HBin 
by

|{si}, {hi}, t1〉Bin ,� (B.18)

where {si} corresponds to the inner boundary of A+ (thick black circle in figure B3), t1 is the 
spin next to t. Other spins in Bin are specified by fixing {hi} by the same reason we did for {gi} 
in A. Note that {hi} is not included in Bin, but needed to uniquely specify a vector in HBin. We 
repeat the same argument on Bout  to denote a vector by

|{oi}, {Hi}, t2〉Bout ,� (B.19)

where {oi} labels the outer boundary of A+ after removing the corner effects by fur-
ther requiring to be a  +1 eigenstate of all Av  on Bout . The total charges of {si} and {oi} 
are constrained by s = t1ht−1

1  and H = t2ot−1
2 , where s = s1...sn′ and o = o1...oN′. h, H ∈ C 

implies that s and o are also in the same conjugacy class C. By using these notation, we 
can define |(R, C), u, v, {si}qi{hi}pi〉Bin

 and 
∣∣(R, C), u, v, {Hi}pj{oi}qj

〉
Bout

 in the same way as in 
equation (B.10).

A basis of KAB is given by

∣∣(R, C); u, v; {sk}qi , {ok}qj

〉
AB :=

√
1

|G|n+N−2

∑
pi,pj,c,d

∑
{hi}pi

∑
{Hi}pj

|(R, C), (qi, pi), (a, c), {si}qi{hi}pi〉Bin

�

Figure B3.  Region A+ (surrounded by thick lines) includes all supports of interaction 
terms overlapping with A (dotted region). We can label the basis of the ground subspace 
of HA+ as in a similar way as we did for A.
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⊗
∣∣(R, C), ( pi, pj), (c, d), {hi}pi{Hi}pj

〉
A ⊗

∣∣(R, C), ( pj, qj), (d, b), {Hi}pj{oi}qj

〉
Bout

,� (B.20)

where u = (qi, qj) and v = (a, b). By construction, any basis element is a superposition of  +1 
eigenstates of all Bp  acting on A+ . It is also easy to check for Ag

v  by using the fact that they are 

combinations of permutations of terms in the superposition, and unitary rotations on (c, d). 
There are d2

(R,C) choices of (u, v) for fixed (R, C), and there are |G|n′+N′−2 choices of {si}qi  
and {oi}qj for fixed u and v, and thus in total dimKAB = |G|n′+N′

. The vacuum sector of D(G) 
corresponding to the label (R, C) = (id, {e}) has dimension |G|n′+N′−2, since d(id,{e})  =  1. 
Therefore

I(A)Ω = log
d1
Ω

dΩ
= − log(|G|n

′+N′−2/|G|n
′+N′

) = log |G|2,� (B.21)

which completes the proof.

Remark B.1.  The argument can be straightforwardly generalized to annuli containing only 
smooth boundaries. The boundaries of general annulus are mixtures of smooth and rough 
boundaries. One can still label the basis by using {hi} and {Hj } which corresponds to the 
(coarse-grained) boundaries. To do so, first choose the largest subregion of A formed by only 
squares, which we denote by A−. We can label the  +1 eigenstates of Bp  and Av  within A− by 
|{hi}, {Hj}, t〉A− as in the same way as in the case of the thinnest annulus (here, t = t1...tk 
labels the total charge of the sites along a line crossing the annulus). All other degrees of 
freedom are specified by the restrictions. Then, we consider a product basis spanned by 
|{hi}, {Hj}, t〉A− ⊗ |f1...fm〉A\A−, where |f1...fm〉  is a vector in the space of A\A−. Each |fk〉  is 
in a support of some Av  on A. Suppose Av  acts on |h1〉, |h2〉, |f1〉  and a site on A− which is 
already fixed and will be omitted. By applying Ag

v , the labels change to h1g−1, gh2 and gf1. 
Therefore, h1h2 and h1f1 are preserved under the action of Av . Define a new basis by taking 
the equal weight superposition over all h1, h2, f1 satisfying h1h2 = h′1 and h1f1 = f ′1. We denote 
the new basis by |{hi}, {Hj}, t〉A after redefining h1 ≡ h′1 and h2 ≡ f ′1. Each element of this 
new basis is a  +1 eigenstate of Av . By repeating this argument, we can specify a basis of the 
ground subspace by |{hi}, {Hj}, t〉A.

Appendix C.  Fibonacci anyons

The way the invariant in equation (45) is defined makes clear that it is always the logarithm of 
a rational number. However, it is known that there are anyon models with irrational quantum 
dimension. Perhaps the best known example are the Fibonacci anyons [45], which is similar 
to the Yang-Lee model. This raises the obvious question: can the invariant we define capture 
such phases? More precisely, we are interested in models where the square of the quantum 
dimensions is not an integer (compare with theorem 4.1). Models for which the square of 
the quantum dimensions are integers are called weakly integral, and include quantum double 
models coming from groups (including the so-called twisted quantum double models) [46]. 
Unfortunately we do not have direct answer to this. We will however here consider a slightly 
different setting, where we can define a similar quantity, and will comment on how it relates 
to the definition of I(A)Ω.

Consider the Fibonacci anyon model, which has only one non-trivial anyon τ , with fusion 
rule τ ⊗ τ = ι⊕ τ . Note that in particular the model is non-abelian and that τ  is self-dual. 
Now consider a chain of n τ -anyons, whose combined charge is trivial, in the sense that the n 
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anyons together fuse to the trivial sector. We will group the anyons in two blocks, n = nA + nB, 
where we picture the anyons on a line, with the nA leftmost anyons belonging to group A, and 
nB τ -anyons on the right of that. A basis for the state space of such a configuration is most 
conveniently described by fusion trees, which in the category theory picture correspond to 
morphisms in Hom(τ⊗n, ι) in the language of tensor categories6. Readers who are not famil-
iar with the category theoretical picture can consult the book by Wang [19]. If F(k) is the 
kth Fibonacci number, it is easy to deduce by induction that dimHom(τ⊗n, ι) = F(n − 1). 
Similarly, for fusions to τ , we have dimHom(τ⊗n, τ) = F(n). This explains the name of the 
model.

Let Hn be the total Hilbert space of the system, which has dimension F(n − 1) as we have 
seen. Operators on Hn can be represented using the graphical language of tensor catego-
ries. In particular, a basis can be obtained by taking fusion trees, and pasting them together 
with a ‘flipped’ fusion tree. This gives a morphism in End(τ⊗n) ≡ Hom(τ⊗n, τ⊗n). Note that 
since the total charge of the system is trivial, we only have to consider those diagrams that 
go through a single ι line. The algebra of all such operators, which can be identified with 
End(τ⊗n), will be denoted by E.

We can now define projections onto the total charge in the regions A and B, respectively. 
We will call them PA

ι  and PA
τ , and similarly for B. Again these can be represented by gluing 

together fusion trees with their (horizontally) flipped version, where one has to consider all 
trees that fuse to ι and τ  respectively, and straight lines (i.e. identity morphisms) on the B part. 
Note that PA

ι PB
τ = 0, since a ι and a τ  cannot fuse to the vacuum. However, the projections 

Pι ≡ PA
ι PBι and Pτ ≡ PA

τPB
τ  are non-trivial, mutually commuting, and sum up to the identity.

We say that an operation is local with respect to the bipartition AB if it does not change the 
total charge in either the A or B region (note that it is not possible to change the charge in only 
one region, since all anyons together have to fuse to the vacuum, hence the total charge in A 
and B must be either both ι, or both τ ). This leads to the algebra

C ≡ {PA
ι PB

ι , PA
τPB

τ}′ ∩ E = PιEPι ⊕ PτEPτ ≡ Cι ⊕ Cτ .

Note the similarity with equation  (23): again we have a decomposition into superselection 
sectors.

Remark C.1.  We do not need to divide out the ideal N , or use the idea of the annulus, since 
we already are working on the level of charges here. This is a key difference with the approach 
we used above, where a key step is to identify the states which a certain total charge within 
the annulus.

First consider the algebra Cι. This algebra is generated by diagrams in End(τ⊗n) which only 
act non-trivially on the first nA anyons, and similar diagrams acting only on B. The total sub-
space of states that have charge ι in both regions A and B has dimension F(nA − 1)F(nB − 1). 
It follows that Cι ∼= MF(nA−1)F(nB−1)(C). Similarly, the dimension of the space fusing to τ ⊗ τ  
charges fusing to ι is F(nA)F(nB), and Cτ ∼= MF(nA)F(nB). As a consistency check, note that

F(nA − 1)F(nB − 1) + F(nA)F(nB) = F(nA + nB − 1),

so the dimensions match up. This equation  can be verified by using repeatedly that 
F(k − 1)F(l − 1) + F(k)F(l) = F(k − 2)F(l) + F(k − 1)F(l + 1).

It turns out that we can recover the quantum dimensions by comparing the size of the alge-
bra for each sector with the size of the algebra of the trivial sector. More precisely, let σ be a 

6 Equivalently one could look at the space Hom(ι, τ⊗n), which could be interpreted as all the ways to create τ  
anyons out of the vacuum.
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tracial state on E. Note that since E is irreducible, this is unique and coincides with the usual 
trace of a matrix algebra. Note that the sectors are obtained by cutting down E with projections 
Pι and Pτ . Hence we can look at the ratios σ(Pk)/σ(Pι) to compare the sizes of the different 
algebras. Since the quantum dimension for the τ -anyon is not rational, it is particularly inter-
esting to consider the limit where both nA and nB go to infinity. For the τ -sector, this yields

lim
nA,nB→∞

τ(PAB
τ )

τ(PAB
ι )

= lim
nA,nB→∞

F(nA)F(nB)

F(nA − 1)F(nB − 1)
= φ2,

where φ is the golden ratio. Here we used that limn→∞
F(n+1)

F(n) = φ. Similarly, σ(I)/σ(PAB
ι ) 

tends to 1 + ϕ2 , the total quantum dimension of the theory. Note that this is very similar to 
theorem 3.6, up to a logarithm. However, here the step of identifying the correct central pro-
jections (or, equivalently, the correct subspaces) is much more direct, since we directly work 
with the ‘internal’ fusion trees. Since we work directly with the charges, the question of stabil-
ity under perturbations does not directly apply here. This is because we do not talk about how 
to get the anyon structure (as a modular tensor category) from the underlying physical model. 
That is precisely what is non-trivial in showing that quantity is stable.

This simple example illustrates a pathway to obtain irrational quantum dimensions. Since 
we are discussing finite dimensional systems, it is clear that some limit procedure has to be 
involved. Translating the Fibonacci example back to our original setting suggests that one has 
to consider limits where the inside (and outside) of the annulus can contain more and more 
excitations. Hence one either has to take a limit of growing system size and growing annuli, 
or keep the annulus fixed and increase the number of sites inside the annulus. The latter essen-
tially means that one has to rescale the distance between the sites inside the annulus, hence 
both ways are essentially the same. This makes the stability argument more subtle, since one 
needs a ‘stable logical algebra’ condition for whole sequence of anyon configurations. Finally, 
note that in the Fibonacci example there is only one non-trivial superselection sector. Hence in 
the general case, one has to consider all possible ways that anyons in region A (not necessarily 
of the same type!) can fuse to one of the charges, and to the conjugate charge for the remaining 
anyons in region B. We leave this analysis open for future work.

Appendix D.  Comparison to thermodynamic limit

The different superselection sectors appear in the analysis in section 2 as different blocks in 
the decomposition of E/N . This decomposition is key in identifying the different types of 
anyons the system has. The analysis is partly motivated by the study of superselection sec-
tors in the thermodynamic limit, where an operator algebraic approach is used. There one can 
study the anyons (and all their properties such as braiding) directly in the thermodynamic 
limit. It is therefore instructive to compare these different frameworks. A brief introduction to 
this approach can be found in [33].

The main idea behind this approach is that superselection sectors can be identified with 
(equivalence classes of) irreducible representations of the algebra of quasi-local observables, 
which is generated by all observables that act only on finitely many (but otherwise arbitrarily 
large) number of sites. If two representations π1 and π2  are inequivalent, it can be shown that 
there is no unitary U that maps a vector state |ψ〉  in one representation to a vector state in the 
other representation (in a way that is compatible with both representations). Physically this 
can be understood as the impossibility to transform a state in one representation to a state in 
the other one with a local operation. Or in the language of anyons: with local operations one 
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cannot change the total charge of the system. Hence one recovers the notion of superselection 
sectors we have used earlier.

It is possible to give a more direction connection between the thermodynamic limit 
approach and the one we take here, at least in the case of abelian quantum double models. In 
the thermodynamic limit of such models, one can calculate what is called the Jones index of a 
certain inclusion of operator algebras, and show that it is equal to the total quantum dimension 
of the theory. In [47] it is shown that this can in fact be obtained using a limiting procedure of 
finite dimensional algebras Ri ⊂ R̂i, or more precisely, from an optimization of certain rela-
tive entropies related to these finite dimensional systems. The finite dimensional algebras Ri 
are generated by the operators supported on two disjoint patches separated by a large enough 
distance. Note that this is quite similar to the annulus picture above, with the distinction that 
the ‘annulus’ encloses two regions. This geometric configuration is more convenient once one 
wants to take the limit where the two isolated regions grow to infinity. The algebra Ri can then 
be understood as the algebra of all operations on the two patches that leave the charge in both 
regions invariant. It does however not decompose into different sectors, but rather corresponds 
to the C1 component from equation (23).

The algebra R̂i is then generated by Ri, and operators which create a pair of excitations in 
each of the patches (without creating any excitations outside of the two patches). Hence this 
algebra can be compared to E of equation (12). For the toric code, it can be generated by Ri, 
together with a string operator of each type connecting the two regions. This algebra can then 
be decomposed into four sectors, corresponding to the different anyon types in the toric code. 
Moreover, Ri embeds into R̂i as A �→ A ⊕ A ⊕ A ⊕ A. We expect a similar structure to be true 
at least for any abelian model.

The advantage is that R̂ (and their finite dimensional approximations R̂i) in the thermo-
dynamic limit can be defined in a purely algebraic way, without any direct reference to the 
Hamiltonian, as the algebra of all operators that commute with all local observables localized 
outside of the two cones. The algebra does however depend on the Hamiltonian in a subtle 
way: to define it, one first has to represent the algebra of observables of the system on a Hilbert 
space. This is done by taking a ground state of the system (which can be defined abstractly), 
and looking at the corresponding GNS representation. This algebra R̂ depends very much on 
this representation. It should be noted however that it is not necessary to make any assump-
tions on the Hamiltonian, in particular we do not have to restrict to LCPC Hamiltonians.

Since we are particularly interested in phases of matter (which are further explained in 
section 3), it is important to understand what happens after perturbing the Hamiltonian. If the 
perturbation is small enough that it does not close the gap, the ground state of the perturbed 
model is in the same phase. Hence, one would expect that the superselection structure of the 
perturbed model is the same. It can be shown that under natural assumptions, this is indeed 
the case, and the perturbed model has for example the same sectors and the anyons have the 
same braiding properties [48]. It is however less clear how certain von Neumann algebraic 
aspects behave under perturbations. In particular, this is true for the Jones index of the inclu-
sion R ⊂ R̂  which we mentioned above. For certain unperturbed models (such as the toric 
code), this can be calculated explicitly and be shown to be equal to the the total quantum 
dimension of the theory. However, even though we know that the superselection structure is 
invariant under perturbations, we presently have no control over the Jones index. Hence our 
understanding is far from satisfactory at the moment. This is even more so the case for the 
topological entanglement entropy, of which we do not have a satisfactory understanding in 
the infinite sytem size setting. Indeed, this is one of the motivations behind the present work.
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