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Abstract

Itis shown that a class of approximate resonance solutions in the three-body problem under the
Newtonian gravitational force are equivalent to quantized solutions of a modified Schrodinger
equation for a wide range of masses that transition between energy states. In the macroscopic scale, the
resonance solutions are shown to transition from one resonance type to another through weak capture
at one of the bodies, while in the Schrodinger equation, one obtains quantized wave solutions
transitioning between different energies. The resonance transition dynamics provides a classical
model of a particle moving between different energy states in the Schrédinger equation. This
methodology provides a connection between celestial and quantum mechanics.

1. Introduction

The purpose of this paper is to describe a mechanism to globally model the solutions of a modified Schrodinger
equation and how they transition between energy states, with a special set of approximate resonance solutions to
the classical gravitational Newtonian three-body problem, for a wide range of masses. These resonance solutions
transition from one resonance to another through the process of weak capture.

We consider a special version of the three-body problem that has proved to be useful in understanding the
complexities of three-body motion, in the macroscopic scale, going back to Poincaré [1]. This is the circular
restricted three body-problem, where the motion of one body, Py, is studied as it moves under the influence of
the gravitational field of Py, P,, assumed to move in mutual circular orbits of constant frequency w. Itis also
assumed that the mass of Py, labeled 1y, is negligible with respect to the masses of P;, P,,labeled my, m,,
respectively. In this paper, we will also assume that m1, is much smaller than m;, m, < my. For example, in the
case of planetary objects, one can take P;, P, to be the Earth, Moon, respectively, and Py to be a rock. One can
scale down myg, my, my, as well as the relative distances between the particles, until the quantum scale is reached
where the pure gravitational modeling is no longer sufficient. When using a rotating coordinate system that
rotates about the center of mass of P;, P, with constant frequency w, it is well known that Hamiltonian function
for the motion of P, is time independent defining a conservative system (see section 3 ).

For a general class of conservative systems, that includes, for example, the restricted three-body problem
considered here, it is known that such systems can be associated to the Schrodinger equation. Asis described in
Lanczos [2], this can be done by computing the action function S (x) for the motion of Py, where x is the position
of P,,." Sis a solution of the Hamilton-Jacobi partial differential equation associated to the restricted three-body
problem. The x (¢) are orthogonal to the surface S(x) = C, for constant C. In this sense, the iso-S surfaces
locally determine the trajectories x (t), that is for t having sufficiently small variation. On the other hand, it can
be shown that Sis the phase of wave solutions to the Schrodinger equation. Thus, S(x) = Cis a wave surface.

! Sis obtained as the integral of the Lagrangian function L(x, y), y = dx/dt, over minimizing trajectories x ().

© 2020 The Author(s). Published by IOP Publishing Ltd
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Conversely, starting with the S satisfying the Schrodinger equation, one obtains the Hamiltonian-Jacobi
equation provided the Planck’s constant i — 0. This equivalence is local since in general S can only be shown to
locally exist as a solution to the Hamiltonian-Jacobi equation, which is the case for the three-body problem. For
the full equivalence it is necessary that one restricts # — 0 that is not realistic. More significantly, this
equivalence does not determine the global behavior of the solutions x (¢) and how they dynamically can model
the transition of energy states for solutions of the Schrédinger equation.

This paper will use methods of dynamical systems to globally determine special resonance motions for P
that are shown to be equivalent to different energy states for a modified Schrédinger equation and where the
transition between energy states is equivalent to the process of weak capture in the three-body problem
described in this paper. This result does not require the restriction of Planck’s constant, and doesn’t use Planck’s
constant in the modeling. The action function S is not used. Due to the complexity of the motions described, it is
seen that using the iso-S surfaces to locally determine the global solutions would not seem feasible.

We describe a mechanism for the existence of a special family, §, of approximate resonance motions of Py
about Py, that transition from one resonance to another by the process of weak capture by P,. This is a temporary
capture defined in section 2. These motions are approximately elliptical with frequency w; = w;(m/n).
wy(m/n)(t) or equivalently wy (¢), are functions of the time ¢, where w; (1 /) is approximately equal to the
constant values (m/n)w, m, n are positive integers. That is, the period of motion of P, is approximately
synchronized with the circular motion of P, about P;, where in the time Py makes approximately # revolutions
about Py, P, makes m revolutions about P;. The approximate resonance value of the frequency means that
|wi(t) — (m/n)w| < 6, forasmall tolerance 6 as time varies for restricted time spans, described in section 2.
When P, is moving on an approximate resonance orbit about Py, it will eventually move away from this orbit and
become captured temporarily about P,, in weak capture. When P, escapes from this capture, it again moves
about P in another resonance elliptical orbit, with approximate resonance m’/n’. This process repeats either
indefinitely, or ends when, for example, P, escapes the P;, P,-system. This also implies that the approximate
two-body energy E; of Pyabout P, can only take on a discrete set of values, E;(m/n)(t) at each time f, which are
approximately constant defined by the resonances. This is stated as result A in section 2 and as theorem A in
section 3. The properties and dynamics of weak capture, and weak escape, are described section 3. Comets can
perform such resonance transitions(see sections 2 3).

A modified Schrédinger equation is defined for the motion of Py about P}, under the gravitational
perturbation of P,. This is first considered in the case of macroscopic masses. It is given by,

2
~ 2V 4+ VO = EV, )
2v

where V2 = V - V is the Laplacian operator, V is an averaged three-body gravitational potential, E is the
energy, and v is the reduced mass for Py, P;. o isa function that depends on m, 1 and G, the gravitational
constant. o replaces i = h/2m, his Planck’s constant that is in the classical Schrodinger equation. In this case,
for macroscopic values of the masses, since Py is not a wave, ¥ is used to determine the probability distribution
function, |¥?, of locating Py near P; as a macroscopic body. We show in section 4 that E can only take on the
following approximate quantized values,

Ep= —=2 ®)

i =1, 2, 3,.... Asseen in section 2, this implies that the frequency of P, takes a particularly simple form that is
independent of any parameters. These frequencies have the approximate values, 8/7°. ¥ is explicitly computed
in section 4. |¥|? is shown to be exponentially decreasing as a function of the distance of P, from P;. The general
solution, ¥, of the modified Schrédinger equation is described in result B in section 2.

A main result of this paper is that the quantized energy values E; correspond to a subset, 4, of the resonance
orbit family, §, of Py about P;. This is listed as result C in section 2. This provides a global equivalence of the
solutions of the modified Schrédinger equation with the transitioning resonance solutions of the the three-body
problem.

As a final result, we show is that the solution, ¥, for the location of P, for the modified Schrodinger equation
for the macroscopic values of the masses, can be extended into the quantum-scale. This is summarized as result
Din section 2. This gives a way to mathematically view the resonance motions in the quantum-scale, as an
extension of the resonance solutions for macroscopic particles. Other models, such as the classical Schrodinger
and Schrodinger-Newton equations are given in latter sections.

The results of this paper are described in detail and summarized in section 2. This section contains the main
findings of this paper. Additional details, derivations, and proofs are contained in section 3 for weak capture and
in section 4 for the modified Schrédinger equation.

2
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2. Summary of results, definitions and assumptions

In this section we elaborate on the results described in the Introduction. The first set of results pertain to a family
of resonance orbits about P; obtained from the three-body problem and the second set of results pertain to
finding these orbits using a modified Schrodinger equation.

2.1.Resonance orbits in the three-body problem and weak capture
The motion of Py is defined for the circular restricted three-body problem described in the Introduction. Itis
sufficient to use the planar version of this model, without loss of generality for the purposes of this paper, where
Pymoves in the same plane of motion as that of the uniform circular motion of P, P, of constant frequency w
(see section 3). The macroscopic masses satisfy, m, /m; < 1and the mass of 1, is negligibly small so that P,
does not gravitationally perturb P;, P, but P, P, perturb the motion of Py. We consider an inertial coordinate
system, (X, X;) € R?, whose origin is the center of mass of P;, P,.

The differential equations for Py are given by the classical system

X = QX(X) t)) (3)

where X = (X}, X;) e RB,t € R, "= %, U = Qx, Ny) OQx = 9Q/0X)and

_ Gm1 Gﬂ’lz

n(t)  n(t)

where r(t) = |X — a1(t)|, » = |X — ax(¢)|, || is the standard Euclidean norm. The mutual circular orbits of
Py, Pyaregivenby a;(t) = p,(cosw,t, sinw,t), a(t) = —p,(coswyt, sinwyt), with constant circular
frequencies w;,, wy of P}, Py, respectively. We have divided both sides of (3) by 1 and then took the limit as
mg — 0. Itis well known that the solutions of the circular restricted three-body problem for P, accurately model
the motion of Py in the general three-body problem for circular initial conditions for P;, P,, with 1, kept positive
and negligibly small.

Itis noted that all solutions & () = (X (t), X (t)) € R* considered in this study will be C* in both tand
initial conditions, & (¢y) = (X (to), X (t,)) at an initial time t,. We refer to C* as smooth dependence. More
exactly, this means that all derivatives of £ (¢) with respect to t of all orders are continuous and all partial
derivatives of £ (t, & (t,)) with respect to X, (to), X (to), X1(to), Xa(to), of all orders, are continuous.

Although my is taken in the limit to be 0 in the definition of the differential equations for the motion of Py, we
will assume it is non-zero but still negligible in mass with respect Py, P,, mq % 0, in all equations that follow.

We transform to a P;-centered coordinate system for the restricted three-body problem. In this system, P,
moves about P; at a constant distance 3, with constant circular frequency w = /G(m; + m,) /3. Before stating
our first result, two definitions are needed.

Assuming m;, is much smaller than m,, when Py moves about P, with elliptic initial conditions at an initial
time ¢t = t, this elliptic motion will be slightly perturbed by P, *. Let a, be the semi-major axis of P, with respect
to P;. Asafunction of time, a; will vary. If m, = 0, then a, is constant since P, will move on a pure ellipse. If 1, is
small, then Py moves in a nearly elliptic orbit about P;, and a; (¢) will be nearly constant for restricted time spans.
This orbital element, along with the eccentricity, e, (t), true anamoly, 0, (), and other orbital elements, can be
calculated for each t using the variational differential equations obtained from (3).(see [3—6]). These are referred
to as osculating elements. e; will likewise be nearly constant for a nearly elliptical orbit of Py anout P;.

The variation of the frequency wj (¢) can be obtained from a, (¢): The osculating two-body period, T}, of Py is
explicitly related to a, (t) by Kepler’s Third Law, 4} = 2m) 2T G (mg + my),and w(t) = T; ..

4)

Definition 1. An approximate resonance orbit, ®,,/,(t), of Py moving about P, in a P;-centered coordinate
system, Y = (Y, Y,), asa function of tin resonance with P,, is an approximate elliptical orbit of frequency

wy = wi (1), where w; &~ (m/n)w. m, nare positive integers. Thus, w; is approximately constant as time varies.
In phase space, (Y, Y) € R4, @,,/,(1) = (Yi(1), Y2(2), Yi(1), Y2(1)). ®,,/n(t) hasaperiod T, = wy !, approxi-
mately constant. T, ~ (n/m) T, T'is the constant circular period of P, about P;, T = w™!. For notational
purposes, we refer to an approximate resonance orbit as a resonance orbit for short. A resonance orbit with

wy &~ (m/n)w is also referred to as a n: m resonance orbit. (Nearly resonant motion, related to approximate
resonance motion, is described in [7].)

The term ‘approximate’ in definition 1 means to within a small tolerance, O(6), 6 = m,/m; < 1. O(d)isa
function of time, , and smooth in t. An approximate elliptic orbit means that the variation of the orbital

parameters (wy, a1, e;) of @(t) = (Y (¢), Y ()), with respect to P, in a P;-centered coordinate system, will slightly

2 By the Kolmogorov-Arnold-Moser Theorem, the motion will stay approximately elliptic for all time for many initial conditions [1].
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vary by O(6) due to the gravitational perturbation of P,. The two-body energy of ®,,,,,(t) with respect to P; is
labeled, Ey(m/n) =E;(m/n)(t), which is approximately constant. Note that the general Kepler energy E, ()
alonga trajectory (Y (¢), Y () is given by (7).

Thus, w; &~ (m/n)w isequivalentto w; = (m/n)w + O(6). a;, e likewise vary within a variation O(6).
The variations O(9) are all different functions for the different parameters, but the same notation is used. The
tolerance on these orbital parameters is valid for finite times. We assume that ¢ varies over finite time spans.
Thus, for a given variable, say w (¢),if ¢, > 0isagiven number, and t € [y, #], f; > ¢y, m, can be taken small
enough so that |O(0)| < €

For aresonance orbit to be well defined, it is assumed that m, > 0.If m, = 0, then even though wis defined,
P, no longer exists. Thus, we assume 1, > 0 throughout this paper, unless otherwise indicated. This
assumption is also necessary for the definition of weak capture.

We define ‘weak capture’ of Py about P,. In this case, we change to a P,-centered coordinate system. This type
of capture is discussed in section 3. Weak capture is where the two-body energy, E,, of P, with respect to P, is
temporarily negative. It is used to define an interesting region about P, described in the next section called the
weak stability boundary. Chaotic motion occurs on and near this region.

Definition 2. Py has weak capture about P,, in a P,-centered coordinate system, Z = (Z;, Z,), atatime f, if the
two-body energy, E,, of P, with respect to P, is negative at t, and for a finite time after where it becomes
positive(P, escapes). More precisely, E, is given by
G(my + my)

p) ’

1 .
E,=—|Z) — S
2= 2 |Z] 5)
rn = |Z| > 0.Let Z(t) = (Z(t), Z,(t), Zi(t), Z»(t)) beasolution for the differential equations (3) in
P,-centered coordinates for t > t,. Py is weakly captured at #y if E;(Z(¢)) < Oforty < t < #, 1y < 8,
Ey(Z(1)) = 0, E;(Z(1)) = 0fort = 1. After Pyleaves weak capture at #;, we say that Py has weak escape from P,
att = #. Weak capture in backwards time from f, is similarly defined.

Py is captured ata point (Zy(t), Z,(t)) of atrajectory Z(t) at t* if E,(Z(t*)) < 0.Capture ata point need not
imply weak capture, in forward time, since Py could be captured for all time t > £*.

This dynamics is summarized in result A and proven in section 3, where it is formulated more precisely as
Theroem A.

Result A. Weak capture of P, about P, at a time t, yields resonance motion of Py about Py, which repeats yielding
afamily, §, of resonance orbits. More precisely,
Assume P is weakly captured by P, at time t = £, then

(i) As tincreases from ty, P first escapes from P, and then P, moves onto a resonance orbit, ®,, /,(¢), about P;.
P, performs a finite number of cycles about P; until it eventually moves again to weak capture by P,, where
the process continues and P, moves onto another resonance orbit. When P, moves from ®,,,,,(¢) to another
resonance orbit, ®,,//,(t), m’, n’ may or may not equal m, n. In general, a sequence of resonance orbits is
obtained, {®,,/,(t), By /4 (2)s...}. The process stops when Py escapes the Py P,-system, collides with P, or
moves away from a resonance frequency. This set of resonance orbits forms a family, §, of orbits, that
depend on the initial weak capture condition.

(ii) When P, moves onto a sequence of resonance orbits about P; as described in (i), then a discrete set of

energies are obtained, { E; (m, n), Ej(m’, n'),...}.

The transitioning of ®,, /,(t) to B,/ (t) is shown in a sketch in figure 1.

The proof of theorem A is given in detail in section 3.

Applications of theorem A a to comet motions and numerical simulations is described in section 3.
Akeyresult obtained in section 3 is,

Lemma A. The frequency wy(m/n)(t) of ®,,,,(t) is given by,
wi(m/n) = (m/mw + O), (6)

where O(6)(t) is smooth in t.

(i) Is proven in section 3 as theorem A. We prove (ii): consider the general two-body energy of P, with respect
to P;. Itis given by,
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Figure 1. Transitioning from one resonance orbit, ®,,,, to another, ®,,/,/, about P, through weak capture of P near P,.

G(mo + my)
r'l b

Ei=E(Y,Y) = E|Y|2 — 7

where Y = (Y}, Y5), 1 = |Y]|, areinertial P;-centered coordinates. E; can be written as
E, = —G(mgy + my)/(2ay), [8]. Using Kepler’s third law relating the period, T}, to a,, implies, E; = —Awf/ 3
A = (1/2)(27G (my 4+ my)>/3. (6) Implies E; can be written as,

Ei(®uyn(t) = Ei(m/n) = —[(m/mwP/*A + O(6), ®

where the remainder is smooth in ¢. (8) Proves (ii). It is noted that in this case, E; & —[(m/n)w]*/A.
Itis noted that E; can be written in an equivalent form to (7) by multiplying both sides of (7) by the reduced
mass, v = momy(my + my)~}, yielding

E = vE = %|Y|2 — m,

©
n

which implies, £, = —Gmgom, /(2a;). This scaled energy is more convenient to use when the modified
Schrodinger equation is considered. To obtain the corresponding two-body differential equations with (9) as an
integral, one multiplies the differential equations associated to (7) by v. The solutions are the same for both sets

of differential equations’. Thus, itis seen that £ = vE, = —vAw?’>. Setting o = VA implies,
E = _lez/s’ (10)
o= (1/2)2rG)* 3momy(mq + my)~1/3. (11)

w) remains the same since the solutions haven’t changed. This defines the function o that plays a key role in this
paper.

2.2. Amodified Schrodinger equation: macroscopic scale

Analogy A. Itis noted that equation (10) has a form similar to the Planck-Einstein relation for quantum
mechanics for the energy, £, of a photon, £ = hA, where A is the frequency of the photon. ¢ is analogous to h
and @,%/? is analogous to \. There is another analogy for the case of an electron, P, moving about an atomic
nucleus: when Py changes from one orbital to another, the energy of the photon absorbed or emitted is given by
AE = h\,where AE = E; — E,, where E;is the energy of Py in the ith orbital, i = 1, 2. This process s
analogous to a macroscopic particle Py changing from from one resonance orbit ®,,,,(f) in § to another,

@,/ (), through weak capture and escape, where AE, = E (m/n) — Ej(m’/n’). AE isanalogousto AE.

We consider a modified Schrédinger equation (1). This Schrodinger equation differs from the classical one by
replacing / by the function & = & (1, m;, G)and Vbya three-body potential V derived from the circular

restricted three-body problem. The choice of o is motivated by analogy A. In this modeling, the masses

3 (7)isanintegral for Y = —G(moy + my) Yr; %, and (9) isan integral for v¥ = —Gmomy Yr 3.
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my, my, m, and distance between them is assumed to not be in the quantum scale. Under this assumption, ¥

does not represent a wave motion and is used to measure the probability of locating P, at a distance r; from P;.
The potential V in (1), is derived from the restricted three-body problem modeling for the motion of P. In

inertial coordinates, Y = (Y}, Y,) centered at P}, P, moves about P, on a circular orbit, v (¢) of constant radius (3

and circular frequency w = /G (my + my) /3, v(t) = B(coswt, sinwt). The potential for Py is given by
. Gmo ny . Gmo my

‘/1: _ ‘/2 = —— (13)
r 1]

where r = |Y|, , = |Y — ~(t)|. For simplicity of notation, we have replaced the symbol , by r (5 = r).
We replace V, by an approximation given by an averaged value of V, over one cycle of v (), t € [0, 27/w],

_Gmomzw f%ﬁ dt
2 0 \/72+ﬁ2— 28 (Y, coswt + Y, sinwt)

‘/2:

(14)

Itis proven in section 4 that V; can be reduced to three cases in (48) dependingom r < 0, r = 0, r > 0,
respectively, where the first order term in V; has a form similar to V.
Asan approximation to V we use,

V=V+V. 15)

The modified Schrédinger equation that we consider is given by
o? _
—— VX + VU = EV, (16)
2v

The solution of this modified Schrédinger equation is derived in section 4. The solution is summarized in
result B.

Result B. The explicit solution of the modified Schrédinger equation, more generally in a three-dimensional
P;-centered inertial coordinates, (Y, Y5, Y3), (16), is given by,

W = Riz1(r) Yo, 1(¢ 0) + O(momy). 17)

Ai=0,1,2..;1=0,1, 2,..;—1 < my < I, risthe distance from Pyto P}, r > 0, ¢ € [0, 27]is the angle in
the Y}, Y;-planerelative to the Y;-axis, 6 € [0, m]is the angle relative to the Y3-axis. R ;(r) is given by (39)
defined using Laguerre polynomials. Y} ,,, = ®p,,(¢) Oy, (0) are spherical harmonic functions, where
D, (9), Oy, () are given by (35), (37), respectively. ©(0) is defined by Legendre polynomials.

|W]? is the probability distribution function of finding Py atalocation (r, ¢, #).In particular, the radial
probability distribution function of finding Py at a radial distance r is given by

P(r) = R*(r)r? + O(mymy), (18)

where R = Rj.
W exists provided the energy, E, is quantized as,

N 4
E; = —~—Z + O(momy), (19)
i

E

where the remainder term is smoothin Y}, Y5, Y3.

Itis noted that the solution of (16) is valid for V = 0. However, we assume V = 0 to compare with the
resonance solutions of three-body problem, where ¥; = 0. All the terms O(1m,m,) are smoothin ¥}, V5, Y;.

It is assumed that 11, can be taken sufficiently small, such that for any given small number, ¢, > 0, and for
(Y1, Ya, ¥3) € D, D compact, the term O(mgym,) in (19) satisfies, | O(mym,)| < €. In this sense, Ein —22.

The planar case is now assumed, Y3 = 0, unless otherwise indicated.

Assumptions 1. The use of the approximate symbol for E; using O(mqms), is different to the one given in
definition 1, for wy using O(6), 6 = m, /m;,. In definition 1, O(§) depends on t, and to bound it by a given small
number €,  varies on a compact set and m, is taken sufficiently small. In the second case, O(mqym;,), depends on
(Y3, Y5), and to bound it by a small number ¢,, (V;, Y;) varies on a compact set D and 1 is taken sufficiently
small. To satisfy both cases, it is necessary to assume 1y, 1y are sufficiently small. The use of ~ is taken from
context.
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2.3. Equivalence of quantized energies with resonance solutions

The quantized values of the energy, E;, (19), are for the modified Schrodinger equation, (16). These energies are
not obtained for the three-body problem, but result from an entirely different modeling. When they are
substituted for E; in the two-body energy relation, (10), for Py moving about Py, it is calculated in section 4, (53),
that they yield rational values for the two-body frequency, wy,

.8
wilg—g, = wi(fi) = = + O(momy). (20)

It is significant that the leading dominant term of w (1) is independent of masses and distances. This implies that
to first order the frequencies do not depend on the masses or any other parameters.

Thus, for7 = 1, 2, ... ,infinitely many frequencies are obtained, w) (7i). We would like to show that these
frequencies correspond to i resonance orbits of § for the three-body problem. Hence, we need to compare the
frequencies w; (#), given by (20), with the frequencies w; (11/1), defined by (6). The following result is obtained,

Result C. The quantized energy values, (19), of the modified Schrédinger equation can be put into a one to one
correspondence with a subset, 11, of the resonance solutions ®,,,,(t) € § of the circular restricted three-body
problem, where

U= {Bpyu()|m =8, n=7i=1,2..} 21)

This is proven in section 4 by scaling the restricted three-body problem and using the fact that this scaling does
not effect the leading order term % of wy ((n)).

Itisnoted that m = 8, n = #° implies that in the time it takes P, to make 7> cycles about P;, P, makes 8
cyclesabout P;.

As previously noted, the limiting case of m, = 0 has been excluded in this paper since it is degenerate in the
sense that the resonance families of solutions no longer exist. One can make a comparison with quantized two-
body elliptic orbits of Py about P, with the classical Schrédinger equation for m, = 0 (see [9], page 263), but this
case does not yield the transitioning resonance solutions described in this paper.

2.4. Quantum scale

The results presented thus far are for mass values that are not in the quantum-scale. Consider the family, 4 C §,
of resonance periodic orbits for Py in the three-body problem, whose frequencies, w; (1, n), given by (6), where
m/n ~ 8. These frequencies correspond to the quantized energy values, E;, of the modified Schrodinger
equation. When the masses, 1y, k = 0, 1, 2, get smaller and smaller, along with the relative distances betwen
the particles, as they approach the quantum-scale, w), w, increase in value as rfl/ 2, I6] /235, 68— 0,
respectively. The particles remain gravitationally bound to each other. The mass of P is negligible with respect to
that of P;, P,. As the distances decrease, the motions of the particles produces a gravitational field by the circular
motion of P}, P, and the resonance motion of Py. We refer to this gravitational field as a resonance

gravitational field.

When the system of three particles reaches the quantum scale they take on a wave-particle duality. The
differential equations for the three-body problem are no longer defined. The previous resonance motion of the
particles takes on a wave character.

The three-body problem is no longer defined in the quantum scale and therefore result A is no longer valid.
However, the modified Schrédinger equation is still well defined. We can now assume the three-dimensional
wave solutions. The quantized energy values are still defined, for 7 = 1, 2.... Now, they are identified with pure
wave solutions W(r, #) given in result B. The values of E;, can be viewed as taking on wave resonance values. This
is summarized in,

Result D. The resonance solutions W, /,,(t) € 4l for P, for the three-body problem, which are given by the
solutions ¥, (17), of the modified Schrédinger equation are also given by W when the masses are reduced to the
quantum scale. This provides a quantization of the gravitational dynamics of P; for the motion of
corresponding to the energies Ej;, given by (19).

In the quantum scale, where o — 0 as mg, m; — 0, shown in section 4, there is a transition of the resonance
solutions into wave solutions, as summarized in result D, using W. However, to make these wave solutions more
physically relevant, we would like to have o (my, m;, G) = h.

It is shown in section (4), proposition 4.1, that as m,, m; — 0, there exist mass values where
o (mg, my, G) = h.These mass values lie on an algebraic curve in (11, m,)-space. For these values of my, m;,

the term — ;—:VZ\I/ of the modified Schrédinger equation matches the same term of classial Schrédinger
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equation. In this case, only the gravitational potential is present. To make this accurate for atomic interaction,
for example, for the motion of an electron about a nucleus of the Hydrogen atom, the gravitational potential
needs to be replaced by the Coulomb potential.

If we consider the modified Schrodinger equation, it can be further altered by adding, for example, a
Coulomb potential. If the masses are chosen so that ¢ = #, then one obtains a classical Newton-Schroédinger
equation model [10, 11]. This could also be studied with o = f.

The wave solutions of the modified Schrodinger equation could be considered in the quantum scale where
o = h.Thisis not studied in this paper.

3. Weak capture and resonant motions in the three-body problem

In this section we show how to prove result A. The idea of the proof of result A is to utilize the geometry of the
phase space about Py, P,, where the motion of P, is constrained by Hill’s regions. Within the Hill’s regions, the
dynamics associated to weak capture from near P, together with the global properties of the invariant hyperbolic
manifolds around P, will yield the proof.

The planar circular restricted three-body problem in inertial coordinates is defined in section 2 by (3) for the
motion of Py. If Py moves about P, with elliptic initial conditions, and a rotating coordinate system is assumed
that rotates with the same constant circular frequency wbetween P; and P,, then the motion is understood by the
Kolmogorov-Arnold-Moser(KAM) theorem [ 1, 8]. It says that nearly all initial elliptic initial conditions of P
with respect to P, give rise to quasi-periodic motion, of the two frequencies, w;, w, where w; is the frequency of
the elliptic motion of Py about Py, provided they satisfy the condition that w; /w is sufficiently non-rational. For
the relatively small set of motions of Py where w; /w is sufficiently close to a rational number, the motion is
chaotic. It is also necessary to assume that y = m, /(m; + my) is sufficiently small.

The planar modeling is assumed without loss of generality. This follows since the resonance orbits we will be
considering for P, moving about P, are approximately two-body in nature. This implies approximate planar
motion. These same orbits result from weak capture conditions and escape, which imply that the plane of
motion of Py about P; will approximately be the same plane of motion as that of P, about P;. Thus, co-planar
modeling assumed in the restricted three-body problem is a reasonable assumption.

Whereas the motion of Py about P, is well understood by the KAM theorem for small 71,, the general motion
of Py about P, is not well understood since it’s considerably more unstable. The instability arises due to the fact
that m, is much smaller than m,, and the KAM theorm cannot be easily applied unless Py moves infinitely close
to P, [12]. This implies that if P, starts with an initial two-body elliptic state with respect to P,, its trajectory is
substantially perturbed by the gravitational effect of P;. The resulting motion of Py about P, is unstable and
generally rapidly deviates from the initial elliptic state. Numerical simulations show the motion to be chaotic in
nature. Results described in this section provide a way to better understand motion about P,.

The notion of weak capture (defined in section 2) of Py about P, is useful in trying to understand the motion
of Py about P, with initial elliptic conditions. The idea is to numerically propagate trajectories of the three-body
problem with initial conditions that have negative energy, E, < 0, with respect to P,, and measure how they
cycle about P,, described in more detail later in this section. Generally, if P, performs k complete cycles about P,,
relative to a reference line emanating from P,, without cycling about P;, then the motion of P, is called ’stable’,
provided it returns to the line with E, < 0, while if does not return to the line after (k — 1) complete cycles, and
cycles about Py, the motion is called ‘unstable’. It is also called unstable if Py does return to the line, but where
E; > 0. (see figure 4) The line represents a two-dimensional surface of section in the four-dimensional phase
space, R*, The set of all stable points about P, defines the ‘kth stable set’, W}, and the set of all unstable points is
called the ‘kth unstable set’, Wy'. Points that lie on the boundary between Wi and W}/ define a set, W, called the
‘kth weak stability boundary’. The boundary points are determined algorithmically, by iterating between stable
and unstable points [13].

Points that belong to W} are in weak capture with respect to P, since they start with E, < 0, whichlead to
escape with E, > 0 (proposition 3.1). However, this may not be the case for points in W} since after they cycle
about P, k times, it is possible they can remain moving about P, for all future time and E, will be negative each
time P, intersects the line.

Wy was first defined in [14], for the case k = 1. This set has proved to have important applications in
astrodynamics to enable spacecraft to transfer to the Moon and automatically go into weak capture about the
Moon, that requires no fuel for capture. This was a substantial improvement to the Hohmann transfer, which
requires substantial fuel for capture [8, 15] *. It also has applications in astrophysics on the Lithopanspermia

* It was first used operationally in 1991 to rescue a Japanese lunar mission by providing a new type of transfer from the Earth to the Moon
used by its spacecraft, Hiten.
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Figure 2. Hill’s regions, H,, H, connected in neck region about unstable Lyapunov orbit 7,, C S C,. Cylinderical stable and unstable
manifolds, M, k = 1, 2,in respective regions Hy, shown projected from four-dimensional position-velocity space into position
space. The dot inside 7, is the location of L, when C = C,. Py can only move from H, to H; through M; and then M)" from an
unstable pointon £. This illustrates the separatrix property of the manifolds. (This projection is not to scale and shows M;, M{", that
exist in 4-dimensional phase space, projected into physical space. It is meant to give an idea of the geometry).

Hypothesis [16]. The weak stability boundary was generalized to k-cycles, k > 1, with new details about its
geometric structure in [17]. [13] makes an equivalence of W with the stable manifolds of the Lyapunov orbits
associated to collinear Lagrange points.

WE, Wi, W are defined more precisely: we transform from X = (Xj, X;) defined in (3) to a rotating
coordinate system, x = (x}, %), that rotates with frequency w, so that in this system, P}, P, are fixed on the
xp-axis. Scalingmy = 1 — p, my = p, 4 > 0, G =1, f = 1, w = 1,as mentioned in section 2, we place P; at
x = (u, 0)and P,at (—1 + p, 0).(3) becomes,

X+ 2(—%, %) = Q, (22)

Q=1/Df + 0 = wr ' + pry' + A/2pd = pn =10 = (1 O o= |x = (=1 + p1, 0)|. The
Jacobi integral function, J (x, x) for this system is given by

J =20 — |5 (23)

The differential equations have 5 well known equlibrium points, L;, i = 1, 2, 3, 4, 5, where L, L,, L; arethe
collinear Lagrange points, and Ly, Ls are equilateral points. We assume the convention that L, lies between

Py, P,. ]|, = Ci,where 3 = Cy = G5 < G5 < (G < C,. The collinear points are all local saddle-center points
with eigenvalues, =« and i3, o > 0, 3 > 0, i> = —1. The equilateral points Ly, Ls are locally elliptic points.
Wewill focus on L;, L in our analysis. As is described in [8, 18], the distance of Ly, Ly to Py, 1, j = 1, 2,1s

1, = OGI/).C = 3 + |0 2 3for i 2 0.

Projecting the three-dimensional Jacobi surface J~!(C) into physical (x;, x)-space, yields the Hill’s regions,
where P, is constrained to move. (see [8], figure 3.6) For Cslightly greater than C,, C 2 C,, the Hill’s regions
about P}, Py, labeled H), H,, respectively, are not connected, so that Py cannot pass from one region to another.
There is also a third Hill’s region, H; that surrounds both Py, P, disconnected from H,, H,, where Py can move
about both primaries. When C = C,, Hj, H, are connected at the single Lagrange point L, and Py still cannot
pass between the primaries. When C < C,, a small opening occurs between P;, P; near the L, location, we refer
to as aneck region, N, first discussed in [19]. When C decreases further, C < G, another opening occurs near
L, and forms another neck region, Ny, that connects H, with the outer Hill’s region, Hs.

A retrograde unstable hyperbolic periodic orbit is contained in N,, we label ,. ~, haslocal stable and
unstable two- dimensional manifolds M; (v,), M} (7,), j = 1, 2, which extend from N, into H;. These
manifolds are topologically equivalent to two-dimensional cylinders. It is shown in [19] that orbits can only pass
from H, to H,, or from H, to H,, by passing within the three-dimensional region contained inside
M; (1), Mj'(7,), which are called transit orbits. For example, to pass from H, to H,, P, must pass into the three-
dimensional region inside M, (,) C H, and out from the region inside M/’ (v,) C H, (see figure 2) (see also [8],
figure 3.9). N, is bounded on either side of P, by vertical lines I, I, that cut the x;-axis, to the right and left of P,,
respectively. On the Jacobi surface, {J = C}, J~1(N,) is a set with topological two-dimensional spheres as
boundaries, S3, S7 corresponding to the lift of I, I;, respectively, onto {J = C}. When a transit oribit passes
from H, to Hy, then on the Jacobi surface, P, passes from SLZ to S}%. The bounding spheres separate H, H, from
N,.

For C < G, N, contains the Lyapunov orbit +,. Manifolds, Mj (7,), M} (7,), j = 2, 3,aresimilarly
obtained where transit orbits can pass between H, and Hj, passing through the respective bounding spheres. The
geometry in this case is shown in figure 3).
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Figure 3. Hill’s regions, H;, H, connected in neck region about unstable Lyapunov orbit 7,, and also about 7, for C < G. The
openingabout , connects H, to a larger Hill’s region, H3, about H,, H,. The hatched region is where the point P, cannot move for the
given Jacobi energy C. (This is a sketch and not to scale. It is meant to give an idea of the geometry).

Itis noted that in center of mass, rotating coordinates, (x;, %), (5) becomes,

G(mg + my)

L. 1 . .
Eyp = ZI&P + —|x — wlin — %x) —
2 2 1]

(24)
withw=1,my=0,m =pu, G=1.

Finally, a translation, z; = x; — (—1 + p), 2z = %, is made to a P,-centered coordinate system, (z, z,),
where Py isat (1, 0),and r, = |z|. For notation, we set r = r,. We refer to E,g in center of mass rotating
coordinates (x;, %) and also in P,-centered rotating coordinates (z,, z;), where Ep is a different expression
from (24).

Theline £ emanates from P, and makes an angle 6, € [0, 27] with respect to the z;-axis. Trajectories of Py
are propagated from £ such thatat each point on £ atadistance r > 0, the eccentricity, e,, is kept fixed to a
value, e; € [0, 1), by adjusting the velocity magnitude, whose initial direction is perpendicular to L. Also, the
velocity direction is assumed to be clockwise (similar results are obtained for counter clockwise propogation).
The initial points of propagation on L are periapsis points of an osculating ellipse of velocity
v, = \/G (mo + my)(1 + &) /r — wr,w =1, my = 0, my = p.Itisnoted that £ makes a two-dimensional

surface of section, defined in polar coodinates, S = {(n 6, 15, 5|60, = 65, B, > 0}.Itisalso noted that as r
changes on £, the Jacobi energy also changes. This implies that Wy, W§, W do notlie on a fixed Jacobi surface.
Also the Hill’s regions vary within these sets.

Asisdescribed in [13, 17], a sequence of consecutive open intervals, I }‘, are obtained along £, for a fixed
0,, e, thatalternate between stable and unstable points, for k cycles. That s, Ilk = {ré‘ <r< rlk}, ré‘ = 0, are
stable points, Izk = {rlk <r< rzk} are unstable points, etc (see figure 4) There are N (6, e,) stable sets, and
unstable sets, for an integer Ny > 1. The boundary points r}‘, j=1,2, ..., Nx(6) e),represent the transition
between stable and unstable points relative to k cycles, where the kth unstable points lead to stable motion for
k — 1cycles and are unstable on the kth cycle. The kth stable set for a given value of 65, e, is given by,

Ni(02,€2) vk
Wil en= U b, (25)
=0

i
This is a slice of the entire stable set, W}, by varying 6, e,, given by

le = U W,i(@z, ez). (26)
0€[0,27],e€[0,1)

Wedefine W, = OW§. W, has a Cantor-like structure as is described in [13]. The numerical estimation of
W§, Weisgivenin [13, 17, 20], for different values of k, 1, 65, ;. The motion of Py is seen to be unstable and
sensitive for initial conditions near W;. It is remarked that due to limitations of computer processing time, k is
not taken too large.

A main result of [13], is that W, about P, is equivalent to the set of global stable manifolds,

M; () U M;(7,), to the Lyapunov orbits, -, ,, respectively, about the collinear Lagrange points, L;, L,, on

10
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~e

Figure 4. Alternating stable and unstable intervals [ ]k on L for k = 1 cyclesillustrating the algorithm. The boundary points rf belong
to the weak stability boundary. Unstable points in the intervals leading to unstable motion(labeled u). These points are weakly
captured. Stable motion, labled s, for points in stable intervals. (Sketch, not to scale).

either side of P, for C < C; and p sufficiently small, in H,. Similarly, one could restrict C < C, and have
equivalence to only the global manifold M; (,) in H,. This is demonstrated numerically by examining the
intersections of M; (7;), M; (7,) onsurfaces of section Sy satisfying 7 = 0, E, < 0 for psufficiently small, and

varying 0 < 69 < 2. Itis shown in [13] that a very small set of points exist on W that do not satisfy this
equivalence. These points are not considered” .

The reason this equivalence is true is due to the separatrix property of the manifolds (see [13, 19]). Assume
C < C,. The separatrix property means that if a trajectory point is inside of the region bounded by M; (v,) on L,
it will wind about P, staying inside the region contained by M, (7,) as M; (,) winds about P,. P, can’t go outside
this manifold region. Eventually, M; (+,) will go to ,, and P, will pass through N, into H, as a transit orbit, after
itmakes k — 1 complete cycles, before completing the kth cycle. This corresponds to an unstable point on the
set Wy'. If a trajectory point is outside M; (v,) on £, Py will remain in H,, making k complete cycles about P, near
the outside of M; (), but it can’t escape to H;. Thus, M; (7,) itself is equivalent to W. That is, M; () separates
between stable and unstable motion.

The intersections of M (7,) on £ in physical space as it cycles around P, give rise to the alternating intervals
between stable and unstable motion, {Ilk, Izk,. ..}, where there are N (6,, e,) such intervals. Points inside M, (,)
on £ correspond to points in the set Wy, and points outside of M; (v,) on £, and close to it, correspond to
points of the set Wj.

The relationship between the manifolds and W§, W is shown in figure 5.

It can be shown that if M; (,) has transverse intersections, which is numerically demonstrated, where the
manifold tube breaks, the separatrix property is still satisfied even though a section through the tube no longer
gives a circle, but rather parts of broken up circles.

Numerical simulations in [13, 18], indicate for C S G, that M; (+,) can intersect My’ (vy,) transversally,
giving rise to a complex network of invariant manifolds about P,, and for C < C,, Mj'(7y,) can intersect M (y,)
transversally, for a set of yrand C. This supports the fact that the motion near W is sensitive.

Let (t) = (a1 (1), z2(t), 21(t), 2,(t)) € R*be the trajectory of P, in rotating P,-centered coordinates, and
z(t) = (z1(t), z2(t)) € R?the trajectory of Py in physical coordinates. Similarly, in inertial P, centered
coordinates, we define, Z(t) = (Z,(t), Z,(t), Zi(t), Z,(t),and Z(¢) = (Z\(t), Z(t)). We will use inertial and
rotating coordinates to describe the motion of P,

The following result, referenced previously, is proven,

Proposition 3.1 (P, € W} implies P, is weakly captured by P,). Assume Py € W} attime t = to, which implies
E»(ty) < 0. Thereare two possibilities: (i.) Py cycles about P, k — 1 times, then moves to cycle about P; without
cycling about P,. This implies that Py weakly escapes P,. That is, there exists a time t* > to, after the (k — 1) st cycle
where E,(t*) = 0, E; = 0fort 2> t*, and E,(t) < 0forty < t < t*, (ii.) Py does k complete cycles about P,
where on thekth cycle Py returns to L with E, > 0. (It is assumed the set of collision orbits to P; and P,, I, are
excluded which are a set of measure 0.)

5 Itis noted that the proof of equivalence of W, with the global stable manifolds to L, L, in [13]is numerically supported and based on
rigorous analytical estimates. Thus, the proofis rigorous in that sense. This is also true of the structure of Wy obtained in [17]. A purely
analytic proof for the global manifold stricture about P, and W is not available at this time. However, in the case of motion about P}, the
analogous structure of W is analytically proven [21].
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Figure 5. The relationship between the manifolds, M, (,), Mj'(7,), projected into physical space and the stable and unstable sets,
WE, Wi, relative to k = 2 cycles about P,. The stable points make two complete cycles about P, in H,, while the unstable points
transition to the H; region after the first cycle. One sees alternating stable and unstable intervals on the section Sy,. (This projection is
not accurate and not to scale. It shows M; projected onto physical space. It is meant to give a rough idea of the geometry).

Proof of proposition 3.1—(i.). This is shown to be true by noting that when P, does a cycle about Py, it will cross
the x,-axis, where r, > 1 + ¢, ¢ > 0.(24) implies that E,g = (1/2)%% + (1/2) 1> + %(1 + ¢) — p(1 + )Y,
where % > 0, . < 1. This implies there exists a time t** where E, > 0. Since E;g < 0att = t;, then there
existsatime fy < t* < t** where E;g = Oand E, 2> 0 for t 2 t*. (ii.) This yields weak capture since E; < 0
for t = t;and E, becomes positive. Thus, there exists a time t* where E,(t*) = 0, then becomes slightly
positive.

Global trajectory after weak capture

We rigorously prove result A, that after weak capture with respect to P,, Py can move onto a resonance orbit
about P; in resonance with P,, and then return to weak capture. This is done by a series of Propositions.

The following sets are defined for trajectories for P, starting in weak capture at t = #, that go to weak escape
atatime f; > t,.

Assumptions A.

Typel = {{ = (z, 2) attyisonornear Wi (E; < 0,7 = Oor|f| = 0,resp.)}
Typell = {{(ty) = (z(ty), 2(ty)) is not near Wi/, where |7 (¢,) | is not near 0 and E,(#;) < 0 }

Typella = {((ty) isa Type Il point where ( (¢) goes to weak escape at f; > t, with |7 (#)| notnear 0 } (i.e. there s
no cycling about P,.)

TypeIlb = {{(t;)isa Type Il point where there exists a time £ > t;, such that { (f) on or near W}, for some
integer k' > 1}

Case A = { Py cyclesabout P,(k — 1) times, then moves to cycle about P, }

Case B = { P, doesnot cycleabout P, after (k — 1) stcycle. Instead, on k-th cycle about P,, P, returns to £ with
E, >0}

I' = { Py goesto collision with P, or P, for t > ¢, }
Result A is stated more precisely as,
Theorem A. Assume Py is weakly captured at a distancer from P, at t = t,. Assume the weak capture point, { (t,) is

of Type I, Type ITb, Case A, which are numerically observed to be generic [13], and assume the following sets are ruled
out: Type 1la, Case B, Gamma (numerically observed to be small [13]). Assume also that C < C,, p sufficintly small.
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Then P will escape P, through N, by passing within the region contained within M, (y,) C H,, and movinginto the
H, through the region within My" (,). This escape is approximately parabolic since E; ~ 0 on Sg C Hy. (Parabolic
escape is when there exists a time t > towhere E; = 0.) ( (¢) evolves into an approximate resonance orbit about P;
with an apoapsis near S of N, peforming several cycles about P, then returns to S} passing through N, within the
region contained within M (y,) and exiting N, through the interior of My (y,) and moving onto weak capture about
P,. The process repeats unless Py moves on any of the sets: Type Ila, Case B, I, or Py escapes the Pj, P,-system.

IfC < C, then P, can parabolically escape P, through Si of N, as previously described obtaining a sequence of
resonance orbits in Hy, or it can parabolically escape P, through S} = ON| into Hs, by passing through the region
within M (7)) and exiting from the region within Mj'(v,), and form a larger resonance orbit about P; with a periapsis
near S} in Hs, which eventually returns to weak capture about P, though N, reversing the previous pathway. This
process terminates if Py moves on any of the sets Type IIa, Case B, I or escapes the Py, P, system.

This yields a sequence of approximate resonance orbits depending on the choice of the weak capture initial
condition. The set of all such resonance orbits form the family, §. The frequencies of these orbits satisfy (6) of
lemma A.

Proposition 3.2 (Capture by P, implies weak capture). Let P, be captured with respect to P, at a distancer from P,
ata timety, where E;(Z(ty)) = Er(((t9)) < 0. Then, Pyisweakly captured atty. That is, Py moves to weak escape
atatimet = t* > ty, where E;(Z(t*)) = 0, E,(Z2(t)) = 0, t = t*. (Itisassumed Type Ila, Case B, I"points are
excluded.)

Proof of proposition 3.2. We distinguish several types of weak capture points.

Type Lis where Py is on or near W} at t = t,. In this case, Py is at a distance r from P, where # = Q or |#| = 0,
where we have made use of the fact W} is open, so that e, < 1and E,(#y) < 0. Thus, Py is captured at t = t.
For t > tg, the proof follows by proposition 3.1.

Type Ilis where Py is not near Wy since |#|is not near 0 at t = t;. There are two types. Type Ilais where P,
startsat t = t, with E, and then to weak escape, with no cycling, by definition. If Py starts on a Type IIb point for
t = to,thenfort > t;therewillbeatime f > tywhere # = 0 or|#| > 0.In that case, P is on or near W}’ at
t = t,forsome k' > 1. Thisyields a Type I point, that implies weak capture.

In all these cases, Py moves to weak escape ata time t = t* > to, where E;({(t*)) = 0,

Exr(C(¢)) 2 0, t = t*. This proves proposition 3.2.

Asin [13], we exclude Type Ila points as they are not generic. Points on I are a set of measure 0 and can be
omitted. Case B points are non-generic and excluded.

We now determine what kind of motion P, has about P, for times up to weak escape at t*. Consider the
trajectory of P, as it undergoes counterclockwise cycling about P, after leaving points on or near W} onaline £
inboth Types I, IIb. (similar results are obtained for clockwise cycling) As Py performs k — 1 cycles, it either has
weak escape prior to completing the kth cycle, where E; = 0, and then when itintersects £, E, > 0, we call Case
B, or it moves to cycle P, after the (k — 1) st cycle where it was shown in proposition 3.1 that Py achieves weak
escape, we refer to as Case A.

Proposition 3.3 (Py escapes from P, through the Nj, N, regions). Assume Py € Wi att=0, C < C,, assuming
Case A, and excluding Case B. Then after (k — 1)-cycles about P,, Py moves away from P,, passing through the
interior region of M; (,) into Ny, between H, and H,, through the interior of M"(y,), into H; where it starts to cycle
P;. WhenPyiswithinNy, E; < 0.IfC < G, then after (k — 1)-cycles about P,, Py moves away from P, passing
through the interior of M; (vy,) into N between H and H;, and out into H, as before, or P, passes through the interior
of M (v,) into N between H, and Hs, and out into H; through the interior of M5 (,). When Py is within N,

E, 5.

Proof of proposition 3.3. Case A is considered with C < C,. Pystartson Latt = tywith E; < 0,7 = 0.1t
cycles about P,, completes the (k — 1) st cycle, then moves to H; where it starts to cycle about P}, where 6, > 0,
for 0 < 6, < 27 (see [8]). By the separatrix property P, is within the interior region contained by M; (6,) on £
att = tpand it must pass from P,, through N,, where it is a transit orbit [ 13]. When Py passes through N, it must
pass inside the region bounded by M; (7,), and emerge from N inside the region bounded by My (v,) at Sz,
where it will begin to cycle about P;. For p sufficiently small, the width of N, is near 0, and geometrically this
implies the velocity of P, with respect to P, is near 0 since it passes close to L, in phase space.

When P, € S§in Hj, the distance from P, to P, can be estimated. The value of C < C,, and
Cy =3 + (u/3)*? + O(u/3). Pyisnear L. It directly follows that r = r, = (11/3)"/> + O((11/3)*/?)). (This
implies, n = 1 — |O((11/3)'/?)) | <1since Py is slightly to the right of L, at S3.)
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The estimate of r, implies that for u sufficiently small , ~ /3. Also, at L,, x = 0. Thus, equation (24)
implies

Exr = (=33 4+ (1/2)37 33 + O(ub) <0, (27)

b>2/3.

Case A is considered with C < C,. (As rincreases along £, keeping a constant eccentricity, Cwill decrease
and move slightly below the other value, C; for L, 180 degrees away from L, on the anti-P; side of P,, C < C;.)
As tincreases from f,, by the separatrix property, Py has two possibilities: (i) Py can pass through the region
bounded by M; (,), through N; and exiting within the region bounded by Mj'(+,) into H; intersecting
S7 = ONjatatime t;. It can then start to cycle about P; in Hz for t > #, where theta; > 0. This implies unstable
motion occurs, where after (k — 1)-cycles about P, Py starts to cycle about P; in the H; region. Itis similarly
verified that (27) is satisfied on S at t = t,. This is different from when P, cycles about P after (k — 1)-cycles as
itemerges from N, into the H; region. However, in both cases, as seen, E; < 0 in the neck region bounding
spheres. (ii) Py passes through N, into H,. This yields the same results as in Case A. (Itis verified that C < G is
sufficient to yield the same estimates in this proof for E, as obtained for C < C,.)

In summary, given P, € W} attime t = t, there existsatime t; > t, where E, < 0 whichoccursat Sg C H,
for C < Cy,andfor C < G, E; < Oon SLZ C H;,oron SI% C H,. Thus, in both cases, approximate parabolic
escape occurs.

In the next step, we see what happens as P, starts to move about P; after leaving S = 0N, in H,, or
Sf = ON,in Hs, through M*(7,), or My (7,), respectively.

Proposition 3.4 (P, leaves S} (S7), moves in approximate resonance orbit about P;, returns to S3 (S7) and
then to weak capture by P,). Assume Py € SZ C Hyatt = t,. Pymoves from SI% fort > 1, into an approximate
resonance orbit about P,. Afterj cycles, j > 1, Pyreturnsto Sy where E; < 0. It then moves through N, to weak
capture by P,.

(Similarly, assuming Py € S} C Hyatt = t, Pymoves from Sf fort > t, into an approximate resonance orbit
about P in the outer Hills region Hs. Afterj cycles, j > 1, about Py, Py returns S} where it then moves through N to
weak capture by P,.)

Proof of proposition 3.4. The case of P, € Si C H, is considered first, where t = ,, C < C;.[21]isreferenced
since it determines the set )V about the larger primary P, analytically.

When P, € S fort = t, thisimplies it lies in the three-dimensional region bounded by M. Moreover, for
t > #, due to the separatrix property, Py stays within this region inside M;" for all time moving forward [21]. This
manifold stays within a bounded region, 91}, bounded by the following: S, the boundary of H, (a zero velocity
curve), and a two-dimensional McGehee torus, Ty, about P; [18,21]°. The width of 90t is O(1'/3).

There are two cases. The first is where M}" is a homoclinic two-dimensional tube which transitions from M;'
to M; which goes to S. This implies P returns to S at a later time. Now, if M" intersects M; transversally, then
these manifolds intersect in a complex manner, where the image of M;" on two-dimensional sections, S o> are
not circles, but parts of circles after several cycles of Py about Py, However, the separatrix property is still
preserved, and P, still returns to S3 [21].

Let’s assume it returns to S3 afteratime T, (t; = # + T). Py is a transit orbit and must pass through N for
t > t,into H, through the interior region bounded by M,', where it is again weakly captured by P,. This follows
since when P, passes through N, into Ha, within the interior region bounded by MY, it will intersect S} C N, in
H,. The estimate obtained in (27) is also obtained at S7. This implies Py is captured by P, at S} C N, atatime
t, + 6,6 > 0.Under the previous assumptions on capture points in theorem A, P, is weakly captured and
weakly escapes P,.

The motion of Py as it leaves weak capture near P,, passing into the H; region and moving back to the H, to
weak capture is illustrated in figure 6.

Itis noted that there exists a time 3 < t, where E, > 0, which follows from the proof of proposition 3.1.
Thus, Py is weakly captured in backwards timeat t = t, + 6.

A similar argument holds for C < C;. Within H, there are openings at N, to the left of P, and N;, to the right.
Py can now move into H; through N, in addition to moving into H; through N,, from weak capture points on
Wy N L in H, after j cycles. If Py moves into Hj, it does so from the region bounded by M{*(~y,) and the same
argument follows from the case C < C,.

If P, moves about P; in H, it moves in a bounded region 9. This region is bounded by S7 = 0N in Hs, a
McGehee torus Tysabout P; in H; and the boundary of H;. P, moves inside the region enclosed by Mj'(v;) and

6 . . .
Ty exists due to the fact that KAM torion {J = C} cannot exist too close to P,.
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Figure 6. The trajectory of Py is illustrated from leaving weak capture near P, at time #,, passing into the neck N, from the interior
three-dimensional region bounded by M; (), to theline Iz at t = t — 1, or equivalently the bounding sphere S7 = J~!(Ig). Py then
cycles about P, in H; within the region 90t and eventually returns to S at ¢ = t, It then goes back into H, through N, and to weak
capture relative to P, at S7. This figure is a sketch.

stays within it as this manifold either transitions into Mj (y,) as ahomoclinic tube or if the manifolds have
transverse intersection. The separatrix property is satisfied, and Py will cycle about P; in H; j times until transits
into H, and intersects S3 = ONj in H,, where (27) is satisfied which implies P, is captured by P, ata time ¢, + 6.
Under the assumptions of theorem A, Py is weakly captured at P,.

Itis noted P, is weakly captured in backwards time, since there isa time t3 < t, where E; > 0, when Py was
moving in H;, using the same argument as in the proof of proposition 3.1.

The final part of the proof of proposition 3.4 is to prove that P, moves in resonance orbits about P;.

We consider C < C,, where Py is moving in H;. P, is on an approximate resonance orbit in H; about P, for
i < t < T.Thisisproven as follows: Py moves in 9. The orbit for P, will not deviate too much for
sufficiently small, by the amount O(p!/?) [18]. It is an approximate elliptic Keplarian orbit about P;, since its
energy E; < O(proven in the following text, see proposition A). It has a uniform approximate Keplerian period,
Ty, for pu sufficiently small, with approximate frequency w, = T;'. Once P, moves away from Sf for t > #,and
returnsto Sz for t = t, = T + #,. When P, returns to S, it returns to near P, to approximately the distance
O((11/3)*'3), as follows from the proof of proposition 3.3.

Since P, returns to Sﬁ, near to P,, T must approximately be an integer multiple, n, of the period, T, of P,
about P;. Thatis, T ~ nT. Also, since P, returns to near where it started, T ~ mT,. Thus, mT] ~ n'l,.
Equivalently, nw;, ~ mw. Thus, P, moves in an approximate n: m resonance with P,. Itis noted that the
approximate elliptic orbits of Py have an apoapsis distance from P, that is approximately the distance of S; to P,.

This can also be visualized in inertial coordinates, (Y}, Y>) centered at P,. When P has started its motion on a
near ellipse, for ¢ > £, it has just left weak capture from near P, at the location, Y*. P, then cycles about P, and
keeps returning to near Y* each approximate period T;. When it arrives near Y*, P, needs to be nearby as when
Py started its motion. Otherwise, P, won’t become weakly captured by P, and leave the ellipse to move to the H,
to weak capture by P,. In that case it will continue cycling about P,. If it does return to near Y* and P, has also
returned near to where it started also near Y*, then this means P, has gone around P, approximately n times and
Py has gone around P, approximately m times.

In the case where P, moves in the Hs region after leaving S for t > #,, one also obtains a resonance orbit by
an analogous argument. In this case, P, has a periapsis near Sf = ON] with respect to P, where S} = 0N is near
P, at a distance of approximately, O((j1/3)'/?). These resonance orbits in Hs are much larger than the resonance
orbits in H; since they move about both Py, P,.

Proposition A. E; < 0 when P, movesin H; about P, in a resonance orbit.

Proof of propisition A. When Py moves for t > # it moves in an approximate two-body manner for finite time
spans, where the osculating eccentricty e, and semi-major axis a, vary only for a small amount amount by
O(y1'/3) since Py moves within 9t,. The energy E; is estimated(in an inertial frame). Since at t = ,

Vi(t) = 1 — |z()|- We can estimate |z (# )| as roughly the distance of L, to P,. This implies,
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Figure 7. A sketch showing the trajectory of the comet Oterma about the Sun(S) as it changes resonance types by weak capture near
Jupiter(J) from 2: 3 to 3: 2, relative to the regions, H, k = 1, 2, 3. (Sketch and not to scale) (see [22, 23] for accurate Oterma plot)

lz(®)| ~ '3 + O@??),a = p/3,andn =~ 1 — /3 + O(a?/3). Thus,

E = (1/2)(1 — o1 4+ 0?3 — (1 — w1 — a3 + O(a?/3)7L (28)

Thus E; = —(1/2) + O(a!/?). This implies that E; < 0 for x sufficiently small. P, will then be moving on
an approximate ellipse about P; of an eccentricity, e; < 1. The apoapsis of this ellipse will approximately be
.~ 1(t) ~ 1 — (j1/3)"/3. The semi-major axis of the ellipse at ¢ = t, is approximately,
ar~—(1—p)/QE)~ 1 —p+ O(u/3)".em 1 — (/) < 1.

When P, moves in resonance orbits in H; for C < C, similar estimates are made where E; < 0.

End of proof of proposition A.

The resonance orbits of Py about P, move in an approximate two-body fashion where the perturbation due
to P, is negligible for finite time spans. Thus, w; (¢) ~ (m/n)w until it enters either neck to move to weak
capture near P,.

Weassume C < C, and examine what happens to the motion of Py near Y* when in n: m resonance with
P,. Py is at a minimal distance to P, when near Y*. In the rotating system, it is near S3, and lies in the three-
dimensional region contained within M;', since it has been moving about P within this region by the seperatrix
property. At this minimal distance, M’ is close enough to -, so that it can connect with it, and P, can move as a
transit orbit and move through N, and exit into H; through the three-dimensional interior region bounded by
M. Itis then captured by P, with E, < 0at S7. An analogous arument holds when C < C,.

Assuming the generic assumptions are satisfied for theorem A, P, will weakly escape P, and again move into
H,, or H;, obtaining resonance orbits, satisfying, w, ~ (m’/n")w, forintegers n’ > 1, m’ > 1. Theset ofall
such resonance orbits forms the family §. This concludes the proof of theorem A.

An example of the geometry of resonance transitions for an observed comet, Oterma, froma 2: 3toa 3: 2,in
1936, and then back froma 3: 2toa 2: 3,in 1962, ([22, 23] ) is illustrated in figure 7. (See section 3.1 at the end of
this section.)

Itis noted that the estimates of E;, E, in the proof of theorem 2 while Pymovesin H;, i = 1, 2, 3, are
observed in the motions of the resonating comets studied in [22]. It can be seen in [22] that when the comet
Gehrels 3 was weakly captured by Jupiter(P,) from a 2:3 resonance orbit into an approximate 3:2 resonance
orbit, E; < 0. Also, when the comet moved about the Sun(P;) in an approximate 2:3 resonance orbit, E, > 0
and F; < 0.

For each resonance orbit obtained from the choice of the weak capture initial condition, (6) is satisfied,
proving lemma A.
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3.1. Examples of resonance orbits in § and l.
Result A describes a dynamical mechanism of resonance orbits about P;. The resonance motion described in this
paper is observed both in nature and numerically.

It was originally inspired by the fact that comets are observed to perform it. More exactly, there exists a
special set of comets that move about the Sun that transition between approximate resonance orbits about the
Sun due to weak capture at Jupiter. This is studied in [22—24]. Several comets are described in [22, 24], that
perform this motion. For example, the comet Oterma transitions between a 3:2-resonance with respect to the
Sun, where w; = (2/3)w, wis the frequency of Jupiter, to a 2:3-resonance. When passing between these
resonances, the comet, Py, is weakly captured by Jupiter. There are many others, listed in [22] (table 1), and in
[24]. These comets include Helin-Roman-Crockett (3: 2 — 3: 2), Harrington-Abell (5: 3 — 8: 5).Itis
important to note that the modeling used to describe the resonance orbits of these comets is not exactly the
model used in this paper. It models the true orbit of Jupiter about the Sun using the planetary ephemeris and the
observed orbits of the comets for initial conditions which are not exactly planar. This model is very close to the
planar restricted three-body problem. The definition of approximate resonance orbits in this paper for the
restricted three-body problem is well suited to the resonances comets perform.

The existence of orbits performing resonance transitions as in § can also be found in the planar circular
restricted three-body problem used in this paper. A special case where the resonance orbit precisely returns to its
initial condition after preforming a transition was shown to exist in [25]. This yields an exact periodic orbit that
repeats the same transition over and over. Other simulations of approximate resonance orbits asin § for the
planar circular restricted three-body problem and models very close to that model are done in [26, 27].

An interesting example of orbits that occur in nature can be obtained for {l given in Result C. These are the
subset of resonance transition orbits that have frequencies, w,(m/n) ~ (m/n)w,m = 8, n = i, fi = 1, 2,....
That is, the orbits have 7i: 8 resonances. A special case of these resonances is an 8: 8 resonance for 7i = 2. On
the other hand, a 1: 1resonance orbitis a special case of an 8: 8 resonance orbit. An example of this is for the
Trojan asteroids, where P, is the Sun, P, is Jupiter, and P is a Trojan asteroid. Many other examples can be
found by asteroids located near the equilateral Lagrange points with respect to a body P,, orbiting P;.

4. Modeling resonance motions with the modifed Schrodinger equation

In this section some of the results are expanded upon in section 2.

The family § of resonance periodic orbits, ®,,/,, are modeled in the plane by the restricted three-body
problem. The planar modeling is justified in section 3. To try and model § with quantum mechanical ideas, we
therefore use planar modeling. Thus, we consider the planar, time independent, modified Schrodinger equation
given in the Introduction by (1), obtained from the classical Schrodinger equation, (?), by replacing %2 by o, and
the potential is given by the three-body potential V derived from the planar restricted three-body problem. This
partial differential equation is time independent.

The motivation of replacing 7 by o is given by analogy A in section 2, where o given by (11). The potential V
is given by (15), obtained from V =V, + V. Itisrecalled that V, is the potential due to P, and V, is the potential
due to P,, in an inertial P;-centered coordinate system, (Y}, Y,). Itis also recalled that P, moves about P; on the
circular orbit, v (t), my 2 0,and as described in section 2 for Results A, it is necessary that my, m, are
sufficiently small for the approximations in assumptions 1.

As described in section 2 the modified Schridinger equation is given by (16), where V is the average of V/,
obtained by averaging V, over a cycle of P, about P, on v, given by (14). For reference, we recall (16),

2
—;’_VZ\IJ + VU = EV, (29)
14

In the macroscopic scale for the masses, and relative distances, two dimensions is required, where, in the inertial
P,-centered coordinates, (Y}, ;) V2 = 86—;2 + ;—;2. When solving (29), the three-dimensional problem is solved
for generality. The three-dimensional probllem is discussed when considering the quantum scale.

Itis noted that the units of o are m%kgs /3. This needs to match the units of /2 which are m?kgs .
(h = 6.626 07 x 10~>*m?kgs~") Thus, we need to multiply by p = 15'/3, 0* = po. o* has the same units as
I. Keeping the same notation, o = o. Atthe end of this section it is seen that when the masses approach the
quantum scale, o also gets small, and 1, m; can be adjusted so that 0 = 7.

Werecall (15), V = V| + Vy,where Vi = —Gmgm, /r,r = |Y|and V, is the time average of
Vo = —Gmgmy, /15, 1, = |Y — ~(¢)|. Itis shown in this section, V; is given by (48) which has a form similar to V.
This enables solving (16).

The solution to (29) is done in two steps. In the first step, we solve (29) in the absence of gravitational
perturbations due to P, for m, = 0, where V, = 0. Thus, in this case V = V].Itis then solved for m, > 0 where

17



10P Publishing

J. Phys. Commun. 4(2020) 015012 E Belbruno

V, is non-zero. (Since the form of V; is shown to have a form analogous to V;, we can modify the solution
obtained for V; for the addition of V5.)

We explicitly solve (29), with m, = 0, by separation of variables. This is for the two-body motion of Py about
P,. Itis first solved for three-dimensions, then restricted to the planar case studied in this paper for the
macroscopic scale. The three-dimensional solution is referred to when discussing solutions in the quantum
scale. (29) is transformed to spherical coordinates, r, ¢, . Itisassumed the solution is of the form,

U = R(r)Y (o, 0). (30)

r > 0,and ¢ is the angle relative to the Y;-axis, 0 < ¢ < 2. fis the angle relative to the Y3-axis, 0 < 6 < 7.
|| is the probability of finding P, at distance r from P,.

The solution of (29) for V, = 0 follows the method described in [28] for the case of an electron in the
Hydrogen atom moving about the nucleus. This is a standard approach used in solving the classical Schrodinger
equation in quantum mechanics found in many references. There are some minor modifications. The Coulomb
potential is used in [28] for V; and here we are using the gravitational potential between two particles Py, Py
however, they are of the same form, both proportional to 7!, 72 = Y? 4 Y7 + Y;.Instead of the
proportionality term of G my, the Coulomb potential has the term, Ze?¢ / (47¢), where Z is the atomic
number, Z = 1 for Hydrogen, eis the charge of the electron and the charge of the nucleus, P, and an atomic
nucleus, Py, ¢ is the permittivity of vacuum, # is replaced by . The reduced mass v = mgym, /(mq + my) is
defined for either the gravitational or Coulomb modeling. When referring to [28], one replaces e%/(47¢,)
by Gmymy.

When solving (29) by separation of variables, (30) is substituted into (29), obtaining differential equations
for R(r)and Y (¢, 0),

2
4R + 2r*1d—R + [2uo™2(E + Gmomr~") — ar ?)]R = 0, (31)
dr? dr
2
(sin@)~! %(sin 92—;) + (sinf)~2 % + aY=0. (32)

« is aseparation constant.
(32) is solved first, yielding spherical harmonics. Using separation of variables, solutions are obtained in the
form, Y (¢, 0) = ®(¢)O(6). This gives the differential equations,

O~ 'sin 0;—0(sin 0%) + asin’f — 3=0, (33)
d*®
— + 0P =0, 34
i’ B (34)

where (s a separation constant [28].
(34) gives the solution,

D(¢) = B (¢) = (1/2m)!/2e™™, (35)

B =mf m =0, £1, £2,...,i> = —1. &(¢) variesin the ¥;, Y>-plane.
The solution of (33) follows by setting x = cos 8, G(x) = ©(cos x) transforming (33) into an associated
Legendre type differential equation,
d’G dG
1 —x)— —2x— + (a« — m*(1 — xH)HG =0, 36

( ) I T ( ( ) (36)
a=I110+1),1=|m), |m| + 1, |my| + 2,...[28]. varies between +|m]|. The solutions of (36) are given by
associated Legendre polynomials Py, (x). (see [29] for tables of these polynomials) The solutions of (33) are
given by ([28], page 527),

2+ 1yt = w17
O (8) = [( 5 )1 " |mz|!] P,y (cos 0). (37)

It is remarked that in the two-dimensional problem, with coordinates (V;, Y;), # = 7 /2. In this case, there is no
variation with respect to § and © is only defined at § = 7 /2.
The solution Y (¢, 0) is given by the spherical harmonics Y, ,,,, = ®,,,(¢) ©},,,,,(#). To solve (31), set u = Rr.
(31) becomes,
2

d_u -+ (dr_l — br_z)u = )\21,{) (38)

dr?
where ¥ = 2v|E|l0—2, & = 2vo~2Gmgmy, b = [(I + 1).Itis verified that solving this differential equation yields
the solution of (31),
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2(G=1=D\] s,
R=Rur) = —| 2| 22— ||pL} e /2, 39
1) [ﬁ(zﬁ[(ﬁ . Z)!]S)]p o) (39)
where,i=1,2 ..,1=1, ..., i — 1, p = 2/(Aa))r,a = WGmym;) 'o? and L]? are the associated Laguerre
polynomials ([28], page 8, table 3.2), and
2 2
E=f, = 2 (Gmom)” ((ﬁ’zoml) . (40)
o
E can be written as,
E;= —4~—Z. (41)
i
This follows by the identity,
un?pio3 = 4, (42)

where p = Gmgmy.

The solution for E yields quantized values of the energy, which quantizes the gravitational field between Py,
P,.

The general solution to (29) is given by multiplying (39) with Y7 ,,,,,

W(r, ¢, 0) = Wi, = Rai(r) Py (&) O, (6). (43)

i, I, my are the quantum numbers associated with W. 7i is called the principle quantum number and is
independent of [, my. It specifies the energy value and limits the value of . The quantum numbers /, m; occur by
consideration of the spherical harmonics.

We compute the probability distribution function, F, of locating Py relative to P, at a given point (r, ¢, 6).
Since we are currently considering the masses and the relative distances to be macroscopic, this probability is
used to measure the location of a macroscopic particle, and not as a wave as is done in the quantum scale, that is
considered later in this section. By definition, F(r, ¢, 8) = |Wj ,,i(r, ¢, 0)[*, depending on the quantum
numbers.

Itis more convenient to compute the probability at a given radial distance r, independent of ¢, . Itis
labeled P (r).

Itis verified that P(r) = R?r2. This is valid in the two-dimensional case as well for (Y, Y3).

As an example, calculate P (r) at the lowest energy value correspondingto7 = 1,1 = 0.

P(r) = 4a3r2e=%/7, (44)

(see [28], table 3.2, where a is given in the Hydrogen atom case). It is verified that P (r) hasa maximumat r = a,
with P(0) = 0and where P(r) — Oasr — oo.Ityieldsacurve {(r, P(r))|r € [0, co]} analogous to the
Hydrogen atom case (see [28], figure 3.20). The numerical values of P (r) will differ from the Hydrogen atom
case, since in the gravitational case a = (vGmgm;)~'o2.

The maximum of the distribution function at r = a says that Py, as a macroscopic body, has the highest
probability of being located at this distance. In the case of the Hydrogen atom, where P, has wave-particle
duality, this distance corresponds to the Bohr radius, which is the most probable location to find an electron in
general, referred to as the 1s-orbital (s denotes [ = 0).

In the same way, P (r) canbe computedforii = 1,2 ... , =0, 1, 2, ..., # — 1, which determines most
probable radial locations for P, to be located.

If one considers computing F(r, ¢, 0) = |5 (1, ¢, O)|* over 7, I, m;, where —|my| < I < |my], then one
obtains precise regions about P; where Py is most probable to be located. These are well known in the case of the
Hydrogen atom [28]. It is remarkable these are observed to occur. In the gravitational case considered in this
paper, the regions will have a similar geometry, but with different scaling.

The solution of (29) has been obtained in three dimensions for 1, = 0. We solve this for m, > 0, m, < my,
and then reduce to the planar case in order to compare to the planar restricted three-body problem in the
macroscopic scale.

When the gravitational perturbation due to P, is included, the previous results are obtained with a small
perturbation. It is also seen that the frequencies w; (77) correspond to the subset, I, of the resonant family §.

Three-body potential

The previous analysis can be done for a more general three-body potential by taking into account the
gravitational perturbation due to P,. We do this by using an averaged potential, V5, obtained from the potential
V5, due to the gravitational interaction of Py, P,. This yields the three-body potential, V = V| + V; that
approximates V = V; 4+ V5. Thisis done as follows,
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We do this analysis in three-dimensional intertial coordinates, Y = (Y, Y, ¥3), centered at Py, P, moves
about P, on a circular orbit of radius (3, and angular frequency w, in the (Y, Y;)-plane,
~v(t) = B(coswt, sinwt, 0), Bis a constant. The potential for Py due to the perturbation of P, is given by

VZ\/1+V2= _Gmoml_GmOmZ) (45)
r 1

wherer = |Y|, , = |Y — ~(t)|. We can write r, as

= \/rz + 8% — 2B(Ycoswt + Y, sinwt),
We consider V;, and take the average of it over one cycle of P,, where ¢ € [0, 27 /w],
Gmomyw % dt
 or fO \/rz—i-ﬁz—2ﬁ(Y1coswt+stinwt)‘

Hh =

(46)

This averaged potential term is an approximation to V,, representing the average value of V, felt by Py ata point
(Y3, Y5, Y3) over the circular orbit of P, about P; in the (Y], Y;)-plane. It is advantageous to use since it eliminates
the time dependence in V5, and as we’ll show, can be written so that it approximately takes the form of V;. This
implies we can solve (29) as before, with minor modifications. Approximating V in this way yields V5.

Expressing Y], Y, in polar coordinates, ¥; = r cos #, Y, = r sin 6, and making a change of the independent
variable, t, ¢ = wt, we obtain

f27r d¢
0 \/rz + B2 — 208rcos(¢p — 0) '

h = (47)

= _Gmomz
2T

V, is simplified by considering three cases, r < 3,and r > 3, r = (3, and expanding V; as a binomial series.
We prove,

Summary A. The general three-body potential V = V{ + V3, (12), for Py can be approximated by replacing V5,
due to the perturbation of P,, with the averaged potential V3, (47). V; can be written as,

—Gmomyr~! + O(mymy), r>f
V= —GmomZﬂII + O(momy), r<p 48)
—GmomZﬁr’l + O(momy), r=p.
The quantized energy, Ej, for the approximated three-body potential V = V; + V, is given by,
—40i2(1 + p + p?) + O(memy), r>pf
b= —40fi 2 — Gmimzﬁ‘ll—i— O(momy,), r<p (49)
—4oii (1 + Hht Z#) + Olmomy), v =3
which reduces to (41) for m, = 0,and where u = m, /m;.
From the form of o, (49) implies,
E;i = —40ii 2 + O(mom,). (50)
Similarly,
Summary B.
Roi(r) = [E(H)]p’%‘(mem + Olmomy), 51)

forr > 3, r < (3. The probability distribution function is generalized to,
P(r) = R¥*(r)r? + O(mom,). (52)

When adding the gravitational perturbation due to P, represented by V5, one obtains smooth dependence on
this term in all the calculations. This proves summary B.

Equivalence of solutions of the modified Schrodinger equation with the family § of the three-body problem
The two-dimensional case is now considered to compare the solutions of the modified Schrodinger equation,
(29), to the family of solutions § of the planar restricted three-body problem.
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Weset Y; = 0, 0§ = w/2. The quantized energy E,, (41), for (29) of the two-body motion of Pyabout P,
with 1, = 0, is not defined in the same way as the two-body Kepler energy E, (10). Ej is computed from the
modified Schrodinger equation and F; is computed for the Kepler problem for general elliptic motion of P,
about P;. These are different expressions. However, they both represent the energy of P, for the two-body
gravitational potential. Also, E; is quantized and E| is not quantized.

Akey observation of this paper is that when one solves for the Kepler frequency w) in (10) as a function of E;
and substitutes E; in place of E;, a simple equation is obtained for w,

wilg—g, = wi(ii) = 8. (53)

Itis remarked that this equation is also valid in three-dimensions since (10) is also valid for the three-
dimensional Kepler two-body problem.
This follows by noting that (10) implies,

w) = [—071E~1]3/2. (54)

This yields (53)
Inclusion of gravitational perturbation of P, (111, > 0), implies more generally,

wilg—g, = wi(ii) = 87 + O(momy). (55)

(53) does not depend on the masses or any other physical parameter. This says substituting the quantized energy
from the modified Schrédinger equation, with m, = 0, into the Kepler energy for the frequency, yields a
frequency of motion for P, moving about P; in elliptical orbits that is same for all masses only depending on the
wave number 7i. This discretizes the Kepler frequencies.

The discretization of the Kepler frequencies restricts the elliptical two-body motion of Py. This result
becomes relevant in the three-body problem for § when the gravitational perturbation P, is included since it
selects a the set of resonance orbits, 4 C F (see result C, section 2).

We prove result C from section 2, which we state as w) (7), given by (55), which are the frequencies in the
restricted three-body problem corresponding to the modified Schrodinger equation energies, form a subset
4 C F ofresonance orbits where m = 8, n = 7.

Proof of result C. This is proven by first noting that the circular restricted three-body problem can rescaled so
thatm; =1 — u, my = p, G =1, B = 1where p = m, /(m; + my) [8]. This scaling does not reduce the
generality of the mass values nor 3. This scaling implies w = 1. Thus, (6) becomes,

wi(m/n) = (m/n) + O(). (56)

Akey observation is that this scaling does not effect the leading term 8 /7 of w) (77) given by (55). Thus, after the
scaling, subtracting (55) from (56) yields,

r(m/ ) — () = 2 % + Omomy). (57)

Thus, taking m = 8, n = 7> and assuming m, is sufficiently small, implies,
wi(m/n) ~ wi(f), (58)

This condition is preserved by rescaling to general m, m,, 3, yielding w,(m/n) ~ (8/#>)w for 4.

From the macro to quantum scale
When my, m,, mj are in the macroscopic scale then as described in section 2, in results B and C, the family
31 C § of near resonance orbits can be described by the solution (17) of (29).

For the masses in the quantum scale, the family ${ are no longer valid. ¥ given by (17) is still valid but now as
pure wave solutions. This is summarized in result D, section 2. Thus, W is defined for both macroscopic and
quantum scales. In the macroscopic scale, W is interpreted as a probability, whereas in the quantum scale, Uis a
pure wave solution. The quantized energies Ej are still well defined. P is still defined and yields the single
domain D, for7i = 1, 2, 3.... Thisis discussed in section 2.

This section is concluded with an analysis of o, referred to in section 2.

Proposition 4.1 o = 7 is satisfied for a one-dimensional algebraic curve (59) in (1, m;)-space. This is proven
by noting o = (1/2)27G)* *mymy (my + my)/* < (1/2)2nG)*3momymy /3. Hence,

o< (1/2) (27TG)2/311102/3 my. Thus, 0 — 0 as mg, my — 0. Thisimplies there exists values of mg, my such that

o = h. Thisis equivalent to the equation,

mgm; — ha=>(mq + my) = 0, (59)
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a = (1/2)(2nG)*/3. (59) yields a one-dimensional algebraic curve, T, in the coordinates mo, my. This proves
proposition 4.1.

The relevancy of possible wave motions for (111, m;) noton I', with g, my, m, in the quantum scale, is not
considered in this paper. This is discussed in section 2. Different models are also discussed in section 2.
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Appendix. Proof of summary A

Summary A is proven as follows: the integrand, I, of V, is given by

1 1

1
I= = : (60)
2 2 2 —_0 2 2 . 20r .
\/7 + 0 Brcos(¢p — 0) \/7 + 3 \/1 5 cos(¢ 0)
Casel:r > (3
This implies,
1 1 1
= = = —(1+ O(x)), (61)
\/rz + 3 r\/l + 3—2 r

where x = 3/r < 1. This results from expanding the fraction containing the square root into a binomial series.
Likewise, we can also expand the first term on the right in (60) in a binomial expansion since | cos(¢p — 0)| < 1
and

20r
<L 62
r2 + ﬂZ ( )
yielding
1
% =1+0O, (63)
\/1 - ﬁ%zcos(gb -0
where
20r
= =0, 64
y 217 (cos(¢ ) (64)
|yl < 1.Thus, (60) becomes,
1
I=—(14 O(w)), (65)
;
|w] < 1, w = max{x, y}. Thus, in this case,
V=~ S (1 o) = — ST Oy ms). ©6)
,

This implies in the derivation of E;, we proceed as before and replace the numerator Grigm, of V; in (31) with
Gmg(m, + my) and adding O(mm,) to this term. This yields,

. 2V7r2(Gm0(m1 + I’ﬂz)Z

o

L= + O(momy) (67)

This can be written as,
o 40 2
E; = _ﬁ(l + p + p?) + O(momy), (68)

where ;1 = m, /m;, and where we have used (42).
Case2:r < 8
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This case is done in a similar way as in Case 1. Instead of factoring out r~! from (61), we factor out 371,
which yields,

L ___ 1 _1liiow, (69)

e+ 5 ﬁ\/1+§2 s

where ¥ = r/(3 < 1. Proceeding as in Case 1, we obtain,

1
I=—(1+ OW)), (70)
g
|[W] < 1, " = max{%, y}. Thisimplies,
V= Gmgomza + O) = M L Omomy. (71)

Since 3is a constant, then in the derivation of E;, we replace Ewith E + (Gmgm, /3) + O(mgmy)in(31)
keeping V; as was used in the case of m, = 0in (31). This yields,

21/7r2(Gm0m1)2 . Gm0m2

E;=— + O(mom 72
g g (momy) (72)
This can be reduced to,
Eﬁ = —{—U — 7Gmom2 + O(mymy). (73)
2 3
Case3:r = (3
In this final case,
1 1 1
= = = . (74)
\/rz + B3 r\/l n # J2r
Thus,
1 1 1 , (75)
\/” "‘52 \/1— — cos(¢p — 6) \/Efvl—h(w)
where h = cos(y), 1) = ¢ — 0. We assume that Py does not collide with P,, implying ¥ = 0, £2j,
j=1,2,3,..Thus,|h| < 1. Wecanwriteas,
1
I=—(1 + O(h)). (76)
2r
Hence,
V= S o memy) 77)
’ 2 omma):
Proceedingasin Case 1,
2
A 2um? (Gmo(m1 + = ))
This can be written as,
. 4o 1 1,
E; = —;(1 + f,u + Eu ) + O(momy). (79)
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