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Abstract
It is shown that a class of approximate resonance solutions in the three-body problemunder the
Newtonian gravitational force are equivalent to quantized solutions of amodified Schrödinger
equation for awide range ofmasses that transition between energy states. In themacroscopic scale, the
resonance solutions are shown to transition fromone resonance type to another throughweak capture
at one of the bodies, while in the Schrödinger equation, one obtains quantizedwave solutions
transitioning between different energies. The resonance transition dynamics provides a classical
model of a particlemoving between different energy states in the Schrödinger equation. This
methodology provides a connection between celestial and quantummechanics.

1. Introduction

The purpose of this paper is to describe amechanism to globallymodel the solutions of amodified Schrödinger
equation and how they transition between energy states, with a special set of approximate resonance solutions to
the classical gravitational Newtonian three-body problem, for awide range ofmasses. These resonance solutions
transition fromone resonance to another through the process of weak capture.

We consider a special version of the three-body problem that has proved to be useful in understanding the
complexities of three-bodymotion, in themacroscopic scale, going back to Poincaré [1]. This is the circular
restricted three body-problem, where themotion of one body, P0, is studied as itmoves under the influence of
the gravitational field of P P,1 2, assumed tomove inmutual circular orbits of constant frequencyω. It is also
assumed that themass ofP0, labeledm0, is negligible with respect to themasses of P P,1 2, labeled m m,1 2,
respectively. In this paper, wewill also assume thatm2 ismuch smaller thanm1, m m2 1 . For example, in the
case of planetary objects, one can take P P,1 2 to be the Earth,Moon, respectively, and P0 to be a rock.One can
scale down m m m, ,0 1 2, as well as the relative distances between the particles, until the quantum scale is reached
where the pure gravitationalmodeling is no longer sufficient.When using a rotating coordinate system that
rotates about the center ofmass of P P,1 2 with constant frequencyω, it is well known thatHamiltonian function
for themotion ofP0 is time independent defining a conservative system (see section 3 ).

For a general class of conservative systems, that includes, for example, the restricted three-body problem
considered here, it is known that such systems can be associated to the Schrödinger equation. As is described in
Lanczos [2], this can be done by computing the action function S x( ) for themotion ofP0, where x is the position
ofP0.

1 S is a solution of theHamilton-Jacobi partial differential equation associated to the restricted three-body
problem. The x t( ) are orthogonal to the surface =S x C( ) , for constantC. In this sense, the iso-S surfaces
locally determine the trajectories x t( ), that is for t having sufficiently small variation. On the other hand, it can
be shown that S is the phase of wave solutions to the Schrödinger equation. Thus, =S x C( ) is a wave surface.
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Conversely, starting with the S satisfying the Schrödinger equation, one obtains theHamiltonian-Jacobi
equation provided the Planck’s constant  0. This equivalence is local since in general S can only be shown to
locally exist as a solution to theHamiltonian-Jacobi equation, which is the case for the three-body problem. For
the full equivalence it is necessary that one restricts  0 that is not realistic.More significantly, this
equivalence does not determine the global behavior of the solutions x t( ) and how they dynamically canmodel
the transition of energy states for solutions of the Schrödinger equation.

This paperwill usemethods of dynamical systems to globally determine special resonancemotions forP0
that are shown to be equivalent to different energy states for amodified Schrödinger equation andwhere the
transition between energy states is equivalent to the process of weak capture in the three-body problem
described in this paper. This result does not require the restriction of Planck’s constant, and doesn’t use Planck’s
constant in themodeling. The action function S is not used.Due to the complexity of themotions described, it is
seen that using the iso-S surfaces to locally determine the global solutionswould not seem feasible.

We describe amechanism for the existence of a special family, F, of approximate resonancemotions ofP0
aboutP1, that transition fromone resonance to another by the process ofweak capture by P2. This is a temporary
capture defined in section 2. Thesemotions are approximately elliptical with frequency w wº m n1 1( ).
w m n t1( )( ) or equivalently w t1( ), are functions of the time t, where w m n1( ) is approximately equal to the
constant values wm n( ) , m n, are positive integers. That is, the period ofmotion ofP0 is approximately
synchronizedwith the circularmotion ofP2 aboutP1, where in the time P0makes approximately n revolutions
aboutP1,P2makesm revolutions aboutP1. The approximate resonance value of the frequencymeans that
w w d- <t m n1∣ ( ) ( ) ∣ , for a small tolerance δ as time varies for restricted time spans, described in section 2.
WhenP0 ismoving on an approximate resonance orbit aboutP1, it will eventuallymove away from this orbit and
become captured temporarily aboutP2, inweak capture.When P0 escapes from this capture, it againmoves
aboutP1 in another resonance elliptical orbit, with approximate resonance ¢ ¢m n . This process repeats either
indefinitely, or endswhen, for example, P0 escapes the P P,1 2-system. This also implies that the approximate
two-body energy E1 ofP0 aboutP1 can only take on a discrete set of values, E m n t1( )( ) at each time t, which are
approximately constant defined by the resonances. This is stated as result A in section 2 and as theoremA in
section 3. The properties and dynamics of weak capture, andweak escape, are described section 3. Comets can
perform such resonance transitions(see sections 2 3).

Amodified Schrödinger equation is defined for themotion ofP0 aboutP1, under the gravitational
perturbation ofP2. This isfirst considered in the case ofmacroscopicmasses. It is given by,

s
n

-  Y + Y = YV E
2

, 1
2

2 ¯ ( )

where  º  2 · is the Laplacian operator, V̄ is an averaged three-body gravitational potential, E is the
energy, and ν is the reducedmass for P P,0 1.σ is a function that depends on m m,0 1 andG, the gravitational
constant.σ replaces p= h 2 , h is Planck’s constant that is in the classical Schrödinger equation. In this case,
formacroscopic values of themasses, sinceP0 is not awave,Ψ is used to determine the probability distribution
function, Y 2∣ ∣ , of locatingP0 nearP1 as amacroscopic body.We show in section 4 thatE can only take on the
following approximate quantized values,

s
= -E

n

4
, 2n 2˜

( )˜

= ¼n 1, 2, 3,˜ . As seen in section 2, this implies that the frequency ofP0 takes a particularly simple form that is
independent of any parameters. These frequencies have the approximate values, n8 3˜ .Ψ is explicitly computed
in section 4. Y 2∣ ∣ is shown to be exponentially decreasing as a function of the distance ofP0 from P1. The general
solution,Ψ, of themodified Schrödinger equation is described in result B in section 2.

Amain result of this paper is that the quantized energy values Eñ correspond to a subset, U, of the resonance
orbit family, F, ofP0 aboutP1. This is listed as result C in section 2. This provides a global equivalence of the
solutions of themodified Schrödinger equationwith the transitioning resonance solutions of the the three-body
problem.

As a final result, we show is that the solution,Ψ, for the location ofP0 for themodified Schrödinger equation
for themacroscopic values of themasses, can be extended into the quantum-scale. This is summarized as result
D in section 2. This gives away tomathematically view the resonancemotions in the quantum-scale, as an
extension of the resonance solutions formacroscopic particles. Othermodels, such as the classical Schrödinger
and Schrödinger-Newton equations are given in latter sections.

The results of this paper are described in detail and summarized in section 2. This section contains themain
findings of this paper. Additional details, derivations, and proofs are contained in section 3 forweak capture and
in section 4 for themodified Schrödinger equation.
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2. Summary of results, definitions and assumptions

In this sectionwe elaborate on the results described in the Introduction. Thefirst set of results pertain to a family
of resonance orbits aboutP1 obtained from the three-body problem and the second set of results pertain to
finding these orbits using amodified Schrödinger equation.

2.1. Resonance orbits in the three-body problem andweak capture
Themotion ofP0 is defined for the circular restricted three-body problemdescribed in the Introduction. It is
sufficient to use the planar version of thismodel, without loss of generality for the purposes of this paper, where
P0moves in the same plane ofmotion as that of the uniform circularmotion of P P,1 2 of constant frequencyω
(see section 3). Themacroscopicmasses satisfy, m m 12 1  and themass ofm0 is negligibly small so thatP0
does not gravitationally perturb P P,1 2, but P P,1 2 perturb themotion ofP0.We consider an inertial coordinate
system, Î X X,1 2

2( ) , whose origin is the center ofmass of P P,1 2.
The differential equations forP0 are given by the classical system

= WX X t, , 3Ẍ ( ) ( )

where = Î X X X,1 2
2( ) , Î t 1, º

d

dt
· , W º W W,X X X1 2

( ) (W º ¶W ¶XX ) and

W = +
Gm

r t

Gm

r t
41

1

2

2( ) ( )
( )

where = -r t X a t1 1( ) ∣ ( )∣, = -r X a t2 2∣ ( )∣, ∣·∣ is the standard Euclidean norm. Themutual circular orbits of
P P,1 2 are given by r w w=a t t tcos , sina a1 1( ) ( ), r w w= -a t t tcos , sinb b2 2( ) ( ), with constant circular
frequencies w w,a b of P P,1 2, respectively.We have divided both sides of (3) bym0 and then took the limit as

m 00 . It is well known that the solutions of the circular restricted three-body problem forP0 accuratelymodel
themotion ofP0 in the general three-body problem for circular initial conditions for P P,1 2, withm0 kept positive
and negligibly small.

It is noted that all solutions x = Î t X t X t, 4( ) ( ( ) ( )) considered in this studywill be ¥C in both t and
initial conditions, x =t X t X t,0 0 0( ) ( ( ) ( )) at an initial time t0.We refer to ¥C as smooth dependence.More
exactly, thismeans that all derivatives of x t( )with respect to t of all orders are continuous and all partial
derivatives of x xt t, 0( ( ))with respect to X t X t X t X t, , ,1 0 2 0 1 0 2 0( ) ( ) ( ) ( )  , of all orders, are continuous.

Althoughm0 is taken in the limit to be 0 in the definition of the differential equations for themotion ofP0, we
will assume it is non-zero but still negligible inmasswith respect P P,1 2, m 00 ⪆ , in all equations that follow.

We transform to aP1-centered coordinate system for the restricted three-body problem. In this system,P2
moves aboutP1 at a constant distanceβ, with constant circular frequency w b= +G m m1 2( ) . Before stating
ourfirst result, two definitions are needed.

Assumingm2 ismuch smaller thanm1, when P0moves aboutP1 with elliptic initial conditions at an initial
time =t t0, this ellipticmotionwill be slightly perturbed byP2

2. Let a1 be the semi-major axis of P0 with respect
toP1. As a function of time, a1 will vary. If =m 02 , then a1 is constant since P0 willmove on a pure ellipse. Ifm2 is
small, thenP0moves in a nearly elliptic orbit aboutP1, and a t1( )will be nearly constant for restricted time spans.
This orbital element, alongwith the eccentricity, e t1( ), true anamoly, q t1( ), and other orbital elements, can be
calculated for each tusing the variational differential equations obtained from (3).(see [3–6]). These are referred
to as osculating elements. e1 will likewise be nearly constant for a nearly elliptical orbit ofP0 anoutP1.

The variation of the frequency w t1( ) can be obtained from a t1( ): The osculating two-body period,T1, ofP0 is
explicitly related to a t1( ) byKepler’s Third Law, p= +-a T G m m21

3 2
1
2

0 1( ) ( ), and w = -t T1
1( ) .

Definition 1.An approximate resonance orbit, F tm n( ), ofP0moving aboutP1 in aP1-centered coordinate
system, =Y Y Y,1 2( ), as a function of t in resonancewithP2, is an approximate elliptical orbit of frequency
w w= t1 1( ), where w w» m n1 ( ) . m n, are positive integers. Thus, w1 is approximately constant as time varies.
In phase space, Î Y Y, 4( ) , F =t Y t Y t Y t Y t, , ,m n 1 2 1 2( ) ( ( ) ( ) ( ) ( ))  . F tm n( ) has a period w= -T1 1

1, approxi-
mately constant. »T n m T1 ( ) ,T is the constant circular period ofP2 aboutP1, w= -T 1. For notational
purposes, we refer to an approximate resonance orbit as a resonance orbit for short. A resonance orbit with

ww » m n1 ( ) is also referred to as a n m: resonance orbit. (Nearly resonantmotion, related to approximate
resonancemotion, is described in [7].)

The term ‘approximate’ in definition 1means towithin a small tolerance, d( ), d = m m 12 1  . d( ) is a
function of time, t, and smooth in t. An approximate elliptic orbitmeans that the variation of the orbital
parameters (w1, a1, e1) of F =t Y t Y t,( ) ( ( ) ( )) , with respect toP1 in aP1-centered coordinate system, will slightly

2
By theKolmogorov-Arnold-Moser Theorem, themotionwill stay approximately elliptic for all time formany initial conditions [1].
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vary by d( ) due to the gravitational perturbation ofP2. The two-body energy of F tm n( )with respect toP1 is
labeled, E m n1( )=E m n t1( )( ), which is approximately constant. Note that the general Kepler energy E t1( )
along a trajectory Y t Y t,( ( ) ( ) is given by (7).

Thus, w w» m n1 ( ) is equivalent to w w d= + m n1 ( ) ( ). a e,1 1 likewise varywithin a variation d( ).
The variations d( ) are all different functions for the different parameters, but the same notation is used. The
tolerance on these orbital parameters is valid forfinite times.We assume that t varies overfinite time spans.
Thus, for a given variable, say w t1( ), if > 01 is a given number, and Ît t t,0 1[ ], >t t1 0,m2 can be taken small
enough so that d <  1∣ ( )∣

For a resonance orbit to bewell defined, it is assumed that >m 02 . If =m 02 , then even thoughω is defined,
P2 no longer exists. Thus, we assume >m 02 throughout this paper, unless otherwise indicated. This
assumption is also necessary for the definition of weak capture.

We define ‘weak capture’ ofP0 aboutP2. In this case, we change to aP2-centered coordinate system. This type
of capture is discussed in section 3.Weak capture is where the two-body energy, E2, of P0 with respect toP2 is
temporarily negative. It is used to define an interesting region aboutP2 described in the next section called the
weak stability boundary. Chaoticmotion occurs on and near this region.

Definition 2.P0 hasweak capture aboutP2, in aP2-centered coordinate system, =Z Z Z,1 2( ), at a time t0 if the
two-body energy, E2, ofP0 with respect toP2, is negative at t0 and for a finite time after where it becomes
positive(P0 escapes).More precisely, E2 is given by

= -
+

E Z
G m m

r

1

2
, 52

2 0 2

2

∣ ∣ ( ) ( )

= >r Z 02 ∣ ∣ . Let = t Z t Z t Z t Z t, , ,1 2 1 2( ) ( ( ) ( ) ( ) ( ))  be a solution for the differential equations (3) in
P2-centered coordinates for t t0.P0 is weakly captured at t0 if <E t 02( ( )) for <t t t0 1, <t t0 1,

=E t 02 1( ( )) ,  E t 02( ( )) for t t1. After P0 leaves weak capture at t1, we say thatP0 hasweak escape from P2
at =t t1.Weak capture in backwards time from t0 is similarly defined.

P0 is captured at a point Z t Z t,1 2( ( ) ( )) of a trajectory  t( ) at t* if <E t 02 *( ( )) . Capture at a point need not
implyweak capture, in forward time, since P0 could be captured for all time >t t*.

This dynamics is summarized in result A and proven in section 3, where it is formulatedmore precisely as
TheroemA.

Result A.Weak capture ofP0 aboutP2 at a time t0 yields resonancemotion ofP0 aboutP1, which repeats yielding
a family, F, of resonance orbits.More precisely,

Assume P0 is weakly captured byP2 at time =t t0, then

(i) As t increases from t0, P0 first escapes from P2 and then P0 moves onto a resonance orbit, F tm n( ), about P1.
P0 performs afinite number of cycles aboutP1 until it eventuallymoves again toweak capture by P2, where
the process continues and P0moves onto another resonance orbit.When P0moves from F tm n( ) to another
resonance orbit, F ¢ ¢ tm n ( ), ¢ ¢m n, may ormay not equal m n, . In general, a sequence of resonance orbits is
obtained, F F ¼¢ ¢t t, ,m n m n{ ( ) ( ) }. The process stopswhenP0 escapes the P P1 2-system, collides withP2 or
moves away froma resonance frequency. This set of resonance orbits forms a family, F, of orbits, that
depend on the initial weak capture condition.

(ii) When P0 moves onto a sequence of resonance orbits about P1 as described in (i), then a discrete set of
energies are obtained, ¢ ¢ ¼E m n E m n, , , ,1 1{ ( ) ( ) }.

The transitioning of F tm n( ) to F ¢ ¢ tm n ( ) is shown in a sketch infigure 1.
The proof of theoremA is given in detail in section 3.
Applications of theoremAa to cometmotions and numerical simulations is described in section 3.
A key result obtained in section 3 is,

LemmaA.The frequency w m n t1( )( ) of F tm n( ) is given by,

w w d= + m n m n , 61( ) ( ) ( ) ( )

where d t( )( ) is smooth in t.

(i) Is proven in section 3 as theoremA.We prove (ii): consider the general two-body energy ofP0 with respect
toP1. It is given by,
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º = -
+

E E Y Y Y
G m m

r
,

1

2
, 71 1

2 0 1

1

( ) ∣ ∣ ( ) ( ) 

where =Y Y Y,1 2( ), =r Y1 ∣ ∣, are inertialP1-centered coordinates. E1 can bewritten as
= - +E G m m a21 0 1 1( ) ( ), [8]. UsingKepler’s third law relating the period,T1, to a1, implies, w= -E A1 1

2 3,
p= +A G m m1 2 2 0 1

2 3( )( ( ) . (6) Implies E1 can bewritten as,

w dF º = - + E t E m n m n A , 8m n1 1
2 3( ( )) ( ) [( ) ] ( ) ( )

where the remainder is smooth in t. (8)Proves (ii). It is noted that in this case, w» -E m n A1
2 3[( ) ] .

It is noted that E1 can bewritten in an equivalent form to (7) bymultiplying both sides of (7) by the reduced
mass, n = + -m m m m0 1 0 1

1( ) , yielding

n
n

º = -E E Y
Gm m

r2
, 91 1

2 0 1

1

˜ ∣ ∣ ( )

which implies, = -E Gm m a2 .1 0 1 1˜ ( ) This scaled energy ismore convenient to usewhen themodified
Schrödinger equation is considered. To obtain the corresponding two-body differential equationswith (9) as an
integral, onemultiplies the differential equations associated to (7) by ν. The solutions are the same for both sets
of differential equations3. Thus, it is seen that n n w= = -E E A1 1 1

2 3˜ . Setting s n= A implies,

sw= -E , 101 1
2 3˜ ( )

s p= + -G m m m m1 2 2 . 112 3
0 1 0 1

1 3( )( ) ( ) ( )

w1 remains the same since the solutions haven’t changed. This defines the functionσ that plays a key role in this
paper.

2.2. Amodified Schrödinger equation:macroscopic scale

AnalogyA. It is noted that equation (10) has a form similar to the Planck-Einstein relation for quantum
mechanics for the energy,  , of a photon, l= h , whereλ is the frequency of the photon.σ is analogous to h
and w1

2 3˜ is analogous toλ. There is another analogy for the case of an electron, P0,moving about an atomic
nucleus: when P0 changes fromone orbital to another, the energy of the photon absorbed or emitted is given by

lD =E h , whereD = -E E E1 2, where Ei is the energy ofP0 in the ith orbital, =i 1, 2. This process is
analogous to amacroscopic particle P0 changing from fromone resonance orbit F tm n( ) in F to another,
F ¢ ¢ tm n ( ), throughweak capture and escape, whereD = - ¢ ¢E E m n E m n1 1 1˜ ˜ ( ) ˜ ( ).DE1̃ is analogous toDE.

We consider amodified Schrödinger equation (1). This Schrödinger equation differs from the classical one by
replacing  by the function s s= m m G, ,0 1( ) andV by a three-body potential V̂ derived from the circular
restricted three-body problem. The choice ofσ ismotivated by analogy A. In thismodeling, themasses

Figure 1.Transitioning fromone resonance orbit, Fm n, to another, F ¢ ¢m n , aboutP1 throughweak capture ofP0 near P2.

3
(7) is an integral for = - + -Y G m m Yr0 1 1

3̈ ( ) , and (9) is an integral for n = - -Y Gm m Yr0 1 1
3̈ .
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m m m, ,0 1 2 and distance between them is assumed to not be in the quantum scale. Under this assumption,Ψ
does not represent awavemotion and is used tomeasure the probability of locating P0 at a distance r1 from P1.

The potential V̄ in (1), is derived from the restricted three-body problemmodeling for themotion ofP0. In
inertial coordinates, =Y Y Y,1 2( ) centered at P1,P2moves aboutP1 on a circular orbit, g t( ) of constant radiusβ
and circular frequency w b= +G m m1 2( ) , g b w w=t t tcos , sin( ) ( ). The potential forP0 is given by

= +V V V , 121 2ˆ ( )

= - = -V
Gm m

r
V

Gm m

r
, , 131

0 1
2

0 2

2

( )

where g= = -r Y r Y t, 2∣ ∣ ∣ ( )∣. For simplicity of notation, we have replaced the symbol r1 by r ( ºr r1 ).
We replaceV2 by an approximation given by an averaged value ofV2 over one cycle of g t( ), p wÎt 0, 2[ ],

ò
w

p b b w w
= -

+ - +

p
w

V
Gm m dt

r Y t Y t2 2 cos sin
. 142

0 2

0 2 2
1 2

2

¯
( )

( )

It is proven in section 4 thatV2̄ can be reduced to three cases in (48) depending om < = >r r r0, 0, 0,
respectively, where the first order term inV2̄ has a form similar toV1.

As an approximation to V̂ weuse,

= +V V V . 151 2¯ ¯ ( )

Themodified Schrödinger equation thatwe consider is given by

s
n

-  Y + Y = YV E
2

, 16
2

2 ¯ ( )

The solution of thismodified Schrödinger equation is derived in section 4. The solution is summarized in
result B.

Result B.The explicit solution of themodified Schrödinger equation,more generally in a three-dimensional
P1-centered inertial coordinates, Y Y Y, ,1 2 3( ), (16), is given by,

f qY = + R r Y m m, . 17n l m l, , 0 2l( ) ( ) ( ) ( )˜

= ¼n 0, 1, 2˜ ; = ¼l 0, 1, 2, ;-  l m ll , r is the distance from P0 toP1, r 0, f pÎ 0, 2[ ] is the angle in
the Y Y,1 2-plane relative to theY1-axis, q pÎ 0,[ ] is the angle relative to theY3-axis. R rn l, ( )˜ is given by (39)
defined using Laguerre polynomials. f q= F QYl m m l m, ,l l l

( ) ( ) are spherical harmonic functions, where
f qF Q,m l m,l l

( ) ( ) are given by (35), (37), respectively. qQ( ) is defined by Legendre polynomials.
Y 2∣ ∣ is the probability distribution function of findingP0 at a location f qr, ,( ). In particular, the radial

probability distribution function offinding P0 at a radial distance r is given by

= + P r R r r m m , 182 2
0 2( ) ( ) ( ) ( )

where ºR Rn l,˜ .
Ψ exists provided the energy, E, is quantized as,

s
º = - + E E

n
m m

4
, 19n 2 0 2ˆ

˜
( ) ( )˜

where the remainder term is smooth in Y Y Y, ,1 2 3.

It is noted that the solution of (16) is valid for =V 0¯ . However, we assume ¹V 0¯ to comparewith the
resonance solutions of three-body problem,where =Y 03 . All the terms m m0 2( ) are smooth in Y Y Y, ,1 2 3.

It is assumed thatm0 can be taken sufficiently small, such that for any given small number, > 02 , and for
ÎY Y Y D, ,1 2 3( ) ,D compact, the term m m0 2( ) in (19) satisfies, <  m m0 2 2∣ ( )∣ . In this sense, » - sEn n

4
2

ˆ ˜ ˜
.

The planar case is now assumed, =Y 03 , unless otherwise indicated.

Assumptions 1.The use of the approximate symbol for En
ˆ ˜ using m m0 2( ), is different to the one given in

definition 1, for w1using d( ), d = m m2 1. In definition 1, d( ) depends on t, and to bound it by a given small
number 1, t varies on a compact set andm2 is taken sufficiently small. In the second case, m m0 2( ), depends on
Y Y,1 2( ), and to bound it by a small number 2, Y Y,1 2( ) varies on a compact setD andm0 is taken sufficiently
small. To satisfy both cases, it is necessary to assume m m,0 1 are sufficiently small. The use of» is taken from
context.
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2.3. Equivalence of quantized energies with resonance solutions
The quantized values of the energy, En

ˆ ˜, (19), are for themodified Schrödinger equation, (16). These energies are
not obtained for the three-body problem, but result from an entirely differentmodeling.When they are
substituted for E1̃ in the two-body energy relation, (10), forP0moving aboutP1, it is calculated in section 4, (53),
that they yield rational values for the two-body frequency, w1,

w wº = += n
n

m m
8

. 20E E1 1 3 0 2n1
∣ ( ˜)

˜
( ) ( )˜ ˆ ˜

It is significant that the leading dominant termof w n1( ˜) is independent ofmasses and distances. This implies that
tofirst order the frequencies do not depend on themasses or any other parameters.

Thus, for = ¼n 1, 2,˜ , infinitelymany frequencies are obtained, w n1( ˜).Wewould like to show that these
frequencies correspond to ñ resonance orbits of F for the three-body problem.Hence, we need to compare the
frequencies w n1( ˜), given by (20), with the frequencies w m n1( ), defined by (6). The following result is obtained,

Result C.The quantized energy values, (19), of themodified Schrödinger equation can be put into a one to one
correspondencewith a subset, U , of the resonance solutions F Îtm n( ) F of the circular restricted three-body
problem,where

= F = = = ¼t m n n n8, , 1, 2, . 21m n
3{ ( )∣ ˜ ˜ } ( )U

This is proven in section 4 by scaling the restricted three-body problem and using the fact that this scaling does
not effect the leading order term

n

8
3˜
of w n1((̃ )).

It is noted that = =m n n8, 3˜ implies that in the time it takes P0 tomake n3˜ cycles aboutP1,P2makes 8
cycles aboutP1.

As previously noted, the limiting case of =m 02 has been excluded in this paper since it is degenerate in the
sense that the resonance families of solutions no longer exist. One canmake a comparisonwith quantized two-
body elliptic orbits ofP0 aboutP1 with the classical Schrödinger equation for =m 02 (see [9], page 263), but this
case does not yield the transitioning resonance solutions described in this paper.

2.4.Quantum scale
The results presented thus far are formass values that are not in the quantum-scale. Consider the family, ÌU F,
of resonance periodic orbits forP0 in the three-body problem,whose frequencies, w m n,1( ), given by (6), where

»m n n8 3˜/ / . These frequencies correspond to the quantized energy values, En
ˆ ˜, of themodified Schrödinger

equation.When themasses,mk, =k 0, 1, 2, get smaller and smaller, alongwith the relative distances betwen
the particles, as they approach the quantum-scale, w1,ω, increase in value as b- -r ,1

1 2 1 2 as b r , 01 ,
respectively. The particles remain gravitationally bound to each other. Themass ofP0 is negligible with respect to
that of P P,1 2. As the distances decrease, themotions of the particles produces a gravitational field by the circular
motion of P P,1 2 and the resonancemotion ofP0.We refer to this gravitational field as a resonance
gravitational field.

When the systemof three particles reaches the quantum scale they take on awave-particle duality. The
differential equations for the three-body problem are no longer defined. The previous resonancemotion of the
particles takes on awave character.

The three-body problem is no longer defined in the quantum scale and therefore result A is no longer valid.
However, themodified Schrödinger equation is still well defined.We can now assume the three-dimensional
wave solutions. The quantized energy values are still defined, for = ¼n 1, 2˜ . Now, they are identifiedwith pure
wave solutions qY r,( ) given in result B. The values of En

ˆ ˜, can be viewed as taking onwave resonance values. This
is summarized in,

ResultD.The resonance solutions Y Îtm n( ) U forP0 for the three-body problem,which are given by the
solutionsΨ, (17), of themodified Schrödinger equation are also given byΨwhen themasses are reduced to the
quantum scale. This provides a quantization of the gravitational dynamics ofP1 for themotion ofm0

corresponding to the energies En
ˆ ˜, given by (19).

In the quantum scale, where s  0 as m m, 00 1 , shown in section 4, there is a transition of the resonance
solutions intowave solutions, as summarized in result D, usingΨ. However, tomake thesewave solutionsmore
physically relevant, wewould like to have s = m m G, ,0 1( ) .

It is shown in section (4), proposition 4.1, that as m m, 00 1 , there existmass valueswhere
s = m m G, ,0 1( ) . Thesemass values lie on an algebraic curve in m m,0 1( )-space. For these values of m m,0 1,

the term-  Ys
n2

2
2

of themodified Schrödinger equationmatches the same termof classial Schrödinger
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equation. In this case, only the gravitational potential is present. Tomake this accurate for atomic interaction,
for example, for themotion of an electron about a nucleus of theHydrogen atom, the gravitational potential
needs to be replaced by theCoulombpotential.

If we consider themodified Schrödinger equation, it can be further altered by adding, for example, a
Coulombpotential. If themasses are chosen so that s = , then one obtains a classical Newton-Schrödinger
equationmodel [10, 11]. This could also be studiedwith s ¹ .

Thewave solutions of themodified Schrödinger equation could be considered in the quantum scale where
s ¹ . This is not studied in this paper.

3.Weak capture and resonantmotions in the three-body problem

In this sectionwe showhow to prove result A. The idea of the proof of result A is to utilize the geometry of the
phase space aboutP1,P2, where themotion ofP0 is constrained byHill’s regions.Within theHill’s regions, the
dynamics associated toweak capture fromnear P2 together with the global properties of the invariant hyperbolic
manifolds around P1 will yield the proof.

The planar circular restricted three-body problem in inertial coordinates is defined in section 2 by (3) for the
motion ofP0. IfP0moves aboutP1 with elliptic initial conditions, and a rotating coordinate system is assumed
that rotates with the same constant circular frequencyω between P1 andP2, then themotion is understood by the
Kolmogorov-Arnold-Moser(KAM) theorem [1, 8]. It says that nearly all initial elliptic initial conditions ofP0
with respect toP1 give rise to quasi-periodicmotion, of the two frequencies, w w,1 , where w1 is the frequency of
the ellipticmotion ofP0 aboutP1, provided they satisfy the condition that w w1 is sufficiently non-rational. For
the relatively small set ofmotions of P0 where w w1 is sufficiently close to a rational number, themotion is
chaotic. It is also necessary to assume that m = +m m m2 1 2( ) is sufficiently small.

The planarmodeling is assumedwithout loss of generality. This follows since the resonance orbits wewill be
considering for P0moving aboutP1 are approximately two-body in nature. This implies approximate planar
motion. These same orbits result fromweak capture conditions and escape, which imply that the plane of
motion ofP0 aboutP1 will approximately be the same plane ofmotion as that ofP2 aboutP1. Thus, co-planar
modeling assumed in the restricted three-body problem is a reasonable assumption.

Whereas themotion ofP0 aboutP1 is well understood by theKAM theorem for smallm2, the generalmotion
ofP0 aboutP2 is not well understood since it’s considerablymore unstable. The instability arises due to the fact
thatm2 ismuch smaller thanm1, and theKAM theorm cannot be easily applied unlessP0moves infinitely close
toP2 [12]. This implies that ifP0 starts with an initial two-body elliptic state with respect toP2, its trajectory is
substantially perturbed by the gravitational effect ofP1. The resultingmotion ofP0 aboutP2 is unstable and
generally rapidly deviates from the initial elliptic state.Numerical simulations show themotion to be chaotic in
nature. Results described in this section provide away to better understandmotion aboutP2.

The notion of weak capture (defined in section 2) ofP0 aboutP2 is useful in trying to understand themotion
ofP0 aboutP2 with initial elliptic conditions. The idea is to numerically propagate trajectories of the three-body
problemwith initial conditions that have negative energy, <E 02 , with respect toP2, andmeasure how they
cycle aboutP2, described inmore detail later in this section. Generally, ifP0 performs k complete cycles aboutP2,
relative to a reference line emanating from P2, without cycling aboutP1, then themotion ofP2 is called ʼstable’,
provided it returns to the linewith <E 02 , while if does not return to the line after -k 1( ) complete cycles, and
cycles aboutP1, themotion is called ‘unstable’. It is also called unstable ifP0 does return to the line, butwhere

>E 02 . (see figure 4)The line represents a two-dimensional surface of section in the four-dimensional phase
space, 4. The set of all stable points aboutP2 defines the ‘kth stable set’,Wk

s, and the set of all unstable points is
called the ‘kth unstable set’,Wk

u. Points that lie on the boundary betweenWk
s andWk

u define a set,k, called the
‘kthweak stability boundary’. The boundary points are determined algorithmically, by iterating between stable
and unstable points [13].

Points that belong toWk
u are inweak capturewith respect toP2 since they start with <E 02 , which lead to

escapewith >E 02 (proposition 3.1). However, thismay not be the case for points inWk
s since after they cycle

aboutP2 k times, it is possible they can remainmoving aboutP2 for all future time andE2 will be negative each
time P0 intersects the line.
k was first defined in [14], for the case =k 1. This set has proved to have important applications in

astrodynamics to enable spacecraft to transfer to theMoon and automatically go intoweak capture about the
Moon, that requires no fuel for capture. This was a substantial improvement to theHohmann transfer, which
requires substantial fuel for capture [8, 15] 4. It also has applications in astrophysics on the Lithopanspermia

4
Itwas first used operationally in 1991 to rescue a Japanese lunarmission by providing a new type of transfer from the Earth to theMoon

used by its spacecraft,Hiten.
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Hypothesis [16]. Theweak stability boundary was generalized to k-cycles, >k 1, with new details about its
geometric structure in [17]. [13]makes an equivalence ofk with the stablemanifolds of the Lyapunov orbits
associated to collinear Lagrange points.

Wk
s,Wk

u,k are definedmore precisely: we transform from =X X X,1 2( ) defined in (3) to a rotating
coordinate system, =x x x,1 2( ), that rotates with frequencyω, so that in this system, P P,1 2 are fixed on the
x1-axis. Scaling m m m b w= - = > = = =m m G1 , , 0, 1, 1, 11 2 , asmentioned in section 2, we placeP1 at

m=x , 0( ) andP2 at m- +1 , 0( ). (3) becomes,

+ - = Wx x x2 , , 22x2 1̈ ( ) ˜ ( ) 

m m m mW = + - + + -- -x r r1 2 1 1 2 12
1

1
2

1˜ ( )∣ ∣ ( ) ( ) ( ), m= -r x , 01 ∣( ( )∣, m= - - +r x 1 , 02 ∣ ( )∣. The
Jacobi integral function, J x x,( ) for this system is given by

= W -J x2 . 232˜ ∣ ∣ ( )

The differential equations have 5well known equlibriumpoints, Li, =i 1, 2, 3, 4, 5, where L L L, ,1 2 3 are the
collinear Lagrange points, and L L,4 5 are equilateral points.We assume the convention that L2 lies between
P P,1 2. =J CL ii

∣ , where = = < < <C C C C C3 4 5 3 1 2. The collinear points are all local saddle-center points
with eigenvalues, a and bi , a b> > = -i0, 0, 12 . The equilateral points L L,4 5 are locally elliptic points.
Wewill focus on L L,1 2 in our analysis. As is described in [8, 18], the distance of L L,1 2 toP2, rLj

, =j 1, 2, is

m= rL
1 3

j
( ). m= +  C 3 3j

2 3∣ ( )∣ for m  0.

Projecting the three-dimensional Jacobi surface -J C1( ) into physical x x,1 2( )-space, yields theHill’s regions,
where P0 is constrained tomove. (see [8],figure 3.6) ForC slightly greater thanC2, C C2, theHill’s regions
about P P,1 2, labeled H H,1 2, respectively, are not connected, so that P0 cannot pass fromone region to another.
There is also a thirdHill’s region,H3 that surrounds both P P,1 2 disconnected from H H,1 2, where P0 canmove
about both primaries.When =C C2, H H,1 2 are connected at the single Lagrange point L2 andP0 still cannot
pass between the primaries.When C C2, a small opening occurs between P P,1 2 near the L2 location, we refer
to as a neck region,N2, first discussed in [19].WhenC decreases further, C C1, another opening occurs near
L1 and forms another neck region,N1, that connectsH2 with the outerHill’s region,H3.

A retrograde unstable hyperbolic periodic orbit is contained inN2, we label g2. g2 has local stable and
unstable two- dimensionalmanifolds g gM M,j

s
j
u

2 2( ) ( ), =j 1, 2, which extend fromN2 intoHj. These
manifolds are topologically equivalent to two-dimensional cylinders. It is shown in [19] that orbits can only pass
fromH2 toH1, or fromH1 toH2, by passingwithin the three-dimensional region contained inside

g gM M,j
s

j
u

2 2( ) ( ), which are called transit orbits. For example, to pass fromH2 toH1,P0must pass into the three-
dimensional region inside g ÌM Hs

2 2 2( ) and out from the region inside g ÌM Hu
1 2 1( ) (see figure 2) (see also [8],

figure 3.9).N2 is bounded on either side ofP2 by vertical lines l l,R L, that cut the x1-axis, to the right and left ofP2,
respectively. On the Jacobi surface, =J C{ }, -J N1

2( ) is a set with topological two-dimensional spheres as
boundaries, S S,R L

2 2 corresponding to the lift of l l,R L, respectively, onto =J C{ }.When a transit oribit passes
fromH2 toH1, then on the Jacobi surface, P0 passes from SL

2 to SR
2. The bounding spheres separate H H,1 2 from

N2.
For C C1,N1 contains the Lyapunov orbit g1.Manifolds, g gM M,j

s
j
u

2 2( ) ( ), =j 2, 3, are similarly
obtainedwhere transit orbits can pass betweenH2 andH3, passing through the respective bounding spheres. The
geometry in this case is shown infigure 3).

Figure 2.Hill’s regions, H H,1 2 connected in neck region about unstable Lyapunov orbit g2, C C2. Cylinderical stable and unstable
manifolds, Mk

s u, , =k 1, 2, in respective regionsHk, shownprojected from four-dimensional position-velocity space into position
space. The dot inside g2 is the location of L2 when =C C2.P0 can onlymove fromH2 toH1 through Ms

2 and then Mu
1 from an

unstable point on . This illustrates the separatrix property of themanifolds. (This projection is not to scale and shows M M,s u
2 1 , that

exist in 4-dimensional phase space, projected into physical space. It ismeant to give an idea of the geometry).
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It is noted that in center ofmass, rotating coordinates, x x,1 2( ), (5) becomes,

w= + - - -
+

E x x x x x x
G m m

r

1

2

1

2
, 24R2

2 2
1 2 2 1

0 2

2

∣ ∣ ∣ ∣ ( ) ( ) ( )  

with w m= = = =m m G1, 0, , 10 2 .
Finally, a translation, m= - - + =z x z x1 ,1 1 2 2( ) , ismade to aP2-centered coordinate system, z z,1 2( ),

where P1 is at 1, 0( ), and =r z2 ∣ ∣. For notation, we set ºr r2.We refer to E R2 in center ofmass rotating
coordinates x x,1 2( ) and also inP2-centered rotating coordinates z z,1 1( ), where E R2 is a different expression
from (24).

The line  emanates from P2 andmakes an angle q pÎ 0, 22 [ ]with respect to the z1-axis. Trajectories ofP0
are propagated from  such that at each point on  at a distance >r 0, the eccentricity, e2, is keptfixed to a
value, Îe 0, 12 [ ), by adjusting the velocitymagnitude, whose initial direction is perpendicular to . Also, the
velocity direction is assumed to be clockwise (similar results are obtained for counter clockwise propogation).
The initial points of propagation on  are periapsis points of an osculating ellipse of velocity

w= + + -v G m m e r r1p 0 2 2( )( ) , w m= = =m m1, 0,0 2 . It is noted that makes a two-dimensional

surface of section, defined in polar coodinates, q q q q q= = >qS r r, , , , 02 2 2 2 2 2
0

22
0 {( ∣ }   . It is also noted that as r

changes on , the Jacobi energy also changes. This implies that W W, ,k
u

k
s do not lie on a fixed Jacobi surface.

Also theHill’s regions varywithin these sets.
As is described in [13, 17], a sequence of consecutive open intervals, Ij

k, are obtained along , for a fixed

q e,2 2, that alternate between stable and unstable points, for k cycles. That is, = < <I r r rk k k
1 0 1{ }, =r 0k

0 , are
stable points, = < <I r r rk k k

2 1 2{ }are unstable points, etc (see figure 4)There are qN e,k 2 2( ) stable sets, and
unstable sets, for an integer N 1k . The boundary points q= ¼r j N e, 1, 2, , ,j

k
k 2 2( ), represent the transition

between stable and unstable points relative to k cycles, where the kth unstable points lead to stablemotion for
-k 1 cycles and are unstable on the kth cycle. The kth stable set for a given value of q e,2 2 is given by,

q =
q

=
+W r r, e , . 25k

s

j

N e

j
k

j
k

2 2
0

,

2 2 1

k 2 2

( ) ⋃ ( ) ( )
( )

This is a slice of the entire stable set,Wk
s, by varying q e,2 2, given by

q=
q pÎ Î

W W , e . 26k
s

e
k
s

0,2 , 0,1
2 2⋃ ( ) ( )

[ ] [ )

Wedefine = ¶ Wk k
s.k has aCantor-like structure as is described in [13]. The numerical estimation of

Wk
s,k is given in [13, 17, 20], for different values of k,μ, q2, e2. Themotion ofP0 is seen to be unstable and

sensitive for initial conditions neark. It is remarked that due to limitations of computer processing time, k is
not taken too large.

Amain result of [13], is thatk aboutP2 is equivalent to the set of global stablemanifolds,

Èg gM Ms s
2 1 2 2( ) ( ), to the Lyapunov orbits, g g,1 2, respectively, about the collinear Lagrange points, L L,1 2, on

Figure 3.Hill’s regions, H H,1 2 connected in neck region about unstable Lyapunov orbit g2, and also about g1, for C C1. The
opening about g1 connectsH2 to a largerHill’s region,H3, about H H,1 2. The hatched region is where the point P0 cannotmove for the
given Jacobi energyC. (This is a sketch and not to scale. It ismeant to give an idea of the geometry).
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either side ofP2 for C C1 andμ sufficiently small, inH2. Similarly, one could restrict C C2 and have
equivalence to only the globalmanifold gMs

2 2( ) inH2. This is demonstrated numerically by examining the
intersections of g gM M,s s

2 1 2 2( ) ( ) on surfaces of section qS
2
0 satisfying = <r E0, 02 forμ sufficiently small, and

varying q p 0 22
0 . It is shown in [13] that a very small set of points exist onk that do not satisfy this

equivalence. These points are not considered5 .
The reason this equivalence is true is due to the separatrix property of themanifolds (see [13, 19]). Assume

C C2. The separatrix propertymeans that if a trajectory point is inside of the region bounded by gMs
2 2( ) on ,

it will wind aboutP2 staying inside the region contained by gMs
2 2( ) as gMs

2 2( )winds aboutP2.P0 can’t go outside
thismanifold region. Eventually, gMs

2 2( )will go to g2, andP0 will pass throughN2 intoH1 as a transit orbit, after
itmakes -k 1 complete cycles, before completing the kth cycle. This corresponds to an unstable point on the
setWk

u. If a trajectory point is outside gMs
2 2( ) on ,P0 will remain inH2,making k complete cycles aboutP2 near

the outside of gMs
2 2( ), but it can’t escape toH1. Thus, gMs

2 2( ) itself is equivalent tok. That is, gMs
2 2( ) separates

between stable and unstablemotion.
The intersections of gMs

2 2( ) on  in physical space as it cycles around P2 give rise to the alternating intervals

between stable and unstablemotion, ¼I I, ,k k
1 2{ }, where there are qN e,k 2 2( ) such intervals. Points inside gMs

2 2( )
on  correspond to points in the setWk

u, and points outside of gMs
2 2( ) on , and close to it, correspond to

points of the setWk
s.

The relationship between themanifolds andW W,k
s

k
u is shown infigure 5.

It can be shown that if gMs
2 2( ) has transverse intersections, which is numerically demonstrated, where the

manifold tube breaks, the separatrix property is still satisfied even though a section through the tube no longer
gives a circle, but rather parts of broken up circles.

Numerical simulations in [13, 18], indicate for C C1, that gMs
2 1( ) can intersect gMu

2 2( ) transversally,
giving rise to a complex network of invariantmanifolds aboutP2, and for C C2, gMu

2 2( ) can intersect gMs
2 2( )

transversally, for a set ofμ andC. This supports the fact that themotion neark is sensitive.
Let z = Î t z t z t z t z t, , ,1 2 1 2

4( ) ( ( ) ( ) ( ) ( ))  be the trajectory of P0 in rotating P2-centered coordinates, and
= Î z t z t z t,1 2

2( ) ( ( ) ( )) the trajectory of P0 in physical coordinates. Similarly, in inertialP2 centered
coordinates, we define, = t Z t Z t Z t Z t, , ,1 2 1 2( ) ( ( ) ( ) ( ) ( )  , and =Z t Z t Z t,1 2( ) ( ( ) ( )).Wewill use inertial and
rotating coordinates to describe themotion ofP0,

The following result, referenced previously, is proven,

Proposition 3.1 ( ÎP Wk
u

0 impliesP0 is weakly captured byP2).Assume ÎP Wk
u

0 at time =t t0, which implies
<E t 02 0( ) . There are two possibilities: (i.)P0 cycles aboutP2 -k 1 times, thenmoves to cycle about P1 without

cycling about P2. This implies thatP0 weakly escapesP2. That is, there exists a time >t t0* , after the -k 1( ) st cycle
where =E t 02 *( ) , E 02 for t t*, and <E t 02( ) for <t t t0 *, (ii.)P0 does k complete cycles about P2,
where on the kth cycleP0 returns to with >E 02 . (It is assumed the set of collision orbits toP1 andP2,Γ, are
excludedwhich are a set ofmeasure 0.)

Figure 4.Alternating stable and unstable intervals Ij
k on  for =k 1 cycles illustrating the algorithm. The boundary points rj

k belong
to theweak stability boundary. Unstable points in the intervals leading to unstablemotion(labeled u). These points areweakly
captured. Stablemotion, labled s, for points in stable intervals. (Sketch, not to scale).

5
It is noted that the proof of equivalence ofk with the global stablemanifolds to L L,1 2 in [13] is numerically supported and based on

rigorous analytical estimates. Thus, the proof is rigorous in that sense. This is also true of the structure ofk obtained in [17]. A purely
analytic proof for the globalmanifold stricture aboutP2 andk is not available at this time.However, in the case ofmotion about P1, the
analogous structure ofk is analytically proven [21].

11

J. Phys. Commun. 4 (2020) 015012 EBelbruno



Proof of proposition 3.1–(i.).This is shown to be true by noting that when P0 does a cycle aboutP1, it will cross
the x1-axis, where > +r c12 , >c 0. (24) implies that m m= + + + - + -E x x c c1 2 1 2 1 1R2 1

2 2
2

1( ) ( ) ( ) ( )  ,
where >x 02 , m 1 . This implies there exists a time t**where >E 0R2 . Since <E 0R2 at =t t0, then there
exists a time < <t t t0 * **where =E 0R2 and E 02 for t t*. (ii.)This yields weak capture since <E 02

for =t t0 andE2 becomes positive. Thus, there exists a time t*where =E t 02 *( ) , then becomes slightly
positive.

Global trajectory after weak capture
We rigorously prove result A, that after weak capture with respect toP2,P0 canmove onto a resonance orbit

aboutP1 in resonancewith P2, and then return toweak capture. This is done by a series of Propositions.
The following sets are defined for trajectories forP0 starting inweak capture at =t t0 that go toweak escape

at a time >t t1 0.

Assumptions A.

Type I={z = z z,( ) at t0 is on or nearWk
u ( <E 02 , =r 0 or r 0∣ ∣ , resp.)}

Type II={z =t z t z t,0 0 0( ) ( ( ) ( )) is not nearWk
u, where r t0∣ ( )∣ is not near 0 and <E t 02 0( ) }

Type IIa={z t0( ) is a Type II point where z t( ) goes toweak escape at >t t1 0 with r t1∣ ( )∣ not near 0 } (i.e. there is
no cycling aboutP2.)

Type IIb={z t0( ) is a Type II point where there exists a time >t t0ˆ , such that z t(ˆ) on or near ¢Wk
u , for some

integer ¢ k 1}

Case A={P0 cycles about -P k 12( ) times, thenmoves to cycle about P1 }

Case B={ P0 does not cycle about P1 after -k 1( ) st cycle. Instead, on k-th cycle about P P,2 0 returns to with
>E 02 }

Γ={ P0 goes to collisionwith P1or P2 for >t t0 }

Result A is statedmore precisely as,

TheoremA.AssumeP0 is weakly captured at a distance r fromP2 at =t t0. Assume the weak capture point, z t0( ) is
of Type I, Type IIb, Case A, which are numerically observed to be generic [13], and assume the following sets are ruled
out: Type IIa, Case B, Gamma (numerically observed to be small [13]). Assume also that C C2, μ sufficintly small.

Figure 5.The relationship between themanifolds, g gM M,s u
2 2 2 2( ) ( ), projected into physical space and the stable and unstable sets,

W W,k
s

k
u, relative to =k 2 cycles about P2. The stable pointsmake two complete cycles aboutP2 inH2, while the unstable points

transition to theH1 region after thefirst cycle. One sees alternating stable and unstable intervals on the section qS 2. (This projection is
not accurate and not to scale. It shows Ms

2 projected onto physical space. It ismeant to give a rough idea of the geometry).

12

J. Phys. Commun. 4 (2020) 015012 EBelbruno



ThenP0 will escapeP2 throughN2 by passing within the region containedwithin g ÌM Hs
2 2 2( ) , andmoving into the

H1 through the regionwithin gMu
1 2( ). This escape is approximately parabolic since »E 02 on ÌS HR

2
1. (Parabolic

escape is when there exists a time >t t0 where =E 02 .) z t( ) evolves into an approximate resonance orbit about P1
with an apoapsis near SR

2 ofN2, peforming several cycles about P1, then returns to SR
2 passing throughN2 within the

region containedwithin gMs
1 2( ) and exitingN2 through the interior of gMu

2 2( ) andmoving onto weak capture about
P2. The process repeats unlessP0moves on any of the sets: Type IIa, Case B,Γ, orP0 escapes the P P,1 2-system.

If C C1, thenP0 can parabolically escapeP2 through SR
2 ofN2, as previously described obtaining a sequence of

resonance orbits inH1, or it can parabolically escapeP2 through = ¶S NL
2

1 intoH3, by passing through the region
within gMs

2 1( ) and exiting from the regionwithin gMu
3 1( ), and form a larger resonance orbit aboutP1 with a periapsis

near SL
2 inH3, which eventually returns to weak capture aboutP2 thoughN1, reversing the previous pathway. This

process terminates ifP0moves on any of the sets Type IIa, Case B,Γ or escapes the P P,1 2 system.
This yields a sequence of approximate resonance orbits depending on the choice of the weak capture initial

condition. The set of all such resonance orbits form the family, F. The frequencies of these orbits satisfy (6) of
lemmaA.

Proposition 3.2 (Capture byP2 implies weak capture). LetP0 be capturedwith respect toP2 at a distance r fromP2
at a time t0, where z= <E t E t 0R2 0 2 0( ( )) ( ( )) . Then,P0 is weakly captured at t0. That is,P0moves to weak escape
at a time = >t t t0* , where =   E t E t t t0, 0,2 2* *( ( )) ( ( )) . (It is assumed Type IIa, Case B,Γ points are
excluded.)

Proof of proposition 3.2.Wedistinguish several types of weak capture points.

Type I is where P0 is on or nearWk
u at =t t0. In this case, P0 is at a distance r from P2 where =r 0 or r 0∣ ∣ ,

wherewe havemade use of the factWk
u is open, so that <e 12 and <E t 02 0( ) . Thus,P0 is captured at =t t0.

For >t t0, the proof follows by proposition 3.1.
Type II is where P0 is not nearWk

u since r∣ ∣ is not near 0 at =t t0. There are two types. Type IIa is where P0
starts at =t t0 withE2 and then toweak escape, with no cycling, by definition. IfP0 starts on a Type IIb point for
=t t0, then for >t t0 therewill be a time >t t0ˆ where =r 0 or r 0∣ ∣ . In that case, P0 is on or near ¢Wk

u at
=t t̂ , for some ¢ k 1. This yields a Type I point, that implies weak capture.
In all these cases, P0moves toweak escape at a time = >t t t0* , where z =E t 0R2 *( ( )) ,
z  E t t t0,R2 *( ( )) . This proves proposition 3.2.
As in [13], we exclude Type IIa points as they are not generic. Points onΓ are a set ofmeasure 0 and can be

omitted. Case B points are non-generic and excluded.
Wenowdeterminewhat kind ofmotionP0 has aboutP2 for times up toweak escape at t*. Consider the

trajectory ofP0 as it undergoes counterclockwise cycling aboutP2 after leaving points on or nearWk
u on a line 

in both Types I, IIb. (similar results are obtained for clockwise cycling)AsP0 performs -k 1 cycles, it either has
weak escape prior to completing the kth cycle, where =E 02 , and thenwhen it intersects , >E 02 , we call Case
B, or itmoves to cycleP1 after the -k 1( ) st cycle where it was shown in proposition 3.1 thatP0 achieves weak
escape, we refer to as Case A.

Proposition 3.3 (P0 escapes fromP2 through the N N,1 2 regions).Assume ÎP Wk
u

0 at t=0, C C2, assuming
Case A, and excluding Case B. Then after -k 1( )-cycles aboutP2,P0moves away from P2, passing through the
interior region of gMs

2 2( ) intoN2, betweenH2 andH1, through the interior of gMu
1 2( ), intoH1 where it starts to cycle

P1.WhenP0 is withinN2, E 02 . If C C1, then after -k 1( )-cycles aboutP2,P0moves away fromP2, passing
through the interior of gMs

2 2( ) intoN2 betweenH2 andH1, and out intoH1 as before, or P0 passes through the interior
of gMs

2 1( ) intoN1 betweenH2 andH3, and out intoH3 through the interior of gMu
3 1( ).WhenP0 is withinN1,

E 02 .

Proof of proposition 3.3.Case A is consideredwith C C2.P0 starts on  at =t t0 with <E 02 , =r 0 . It
cycles aboutP2, completes the -k 1( ) st cycle, thenmoves toH1 where it starts to cycle aboutP1, where q > 01

 ,
for q p 0 21 (see [8]). By the separatrix property P0 is within the interior region contained by qMs

2 2( ) on 
at =t t0 and itmust pass fromP2, throughN2, where it is a transit orbit [13].WhenP0 passes throughN2 itmust
pass inside the region bounded by gMs

2 2( ), and emerge fromN2 inside the region bounded by gMu
1 2( ) at SR

2,
where it will begin to cycle aboutP1. Forμ sufficiently small, thewidth ofN2 is near 0, and geometrically this
implies the velocity ofP0 with respect toP2 is near 0 since it passes close to L2 in phase space.

When ÎP SR0
2 inH1, the distance fromP0 toP2 can be estimated. The value of C C2, and

m m= + + C 3 3 32
2 3( ) ( ).P2 is near L2. It directly follows that m mº = + r r 3 32

1 3 2 3( ) (( ) )). (This
implies, m= - r 1 31

1 3∣ (( ) ) ) 1∣ since P0 is slightly to the right of L2 at SR
2.)
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The estimate of r2 implies that forμ sufficiently small m»r 32 . Also, at L2, =x 0 . Thus, equation (24)
implies

m m= - + +- -  E 3 1 2 3 0, 27R
b

2
1 3 2 3 2 3( ( ) ) ( ) ( )

>b 2 3.
Case A is consideredwith C C1. (As r increases along , keeping a constant eccentricity,Cwill decrease

andmove slightly below the other value,C1 for L1, 180 degrees away from L2 on the anti-P1 side ofP2, C C1.)
As t increases from t0, by the separatrix property, P0 has two possibilities: (i)P0 can pass through the region
bounded by gMs

2 1( ), throughN1 and exiting within the region bounded by gMu
3 1( ) intoH3 intersecting

= ¶S NL
2

1 at a time t1. It can then start to cycle aboutP1 inH3 for >t t1, where >theta 01
 . This implies unstable

motion occurs, where after -k 1( )-cycles aboutP2,P0 starts to cycle aboutP1 in theH3 region. It is similarly
verified that (27) is satisfied on SL

2 at =t t1. This is different fromwhen P0 cycles aboutP1 after -k 1( )-cycles as
it emerges fromN2 into theH1 region.However, in both cases, as seen, E 02 in the neck region bounding
spheres. (ii)P0 passes throughN2 intoH1. This yields the same results as inCase A. (It is verified that C C1 is
sufficient to yield the same estimates in this proof for E R2 as obtained for C C2.)

In summary, given ÎP Wk
u

0 at time =t t0 there exists a time >t t1 0 where E 02 which occurs at ÌS HR
2

1

for C C2, and for C C1, E 02 on ÌS HL
2

3, or on ÌS HR
2

1. Thus, in both cases, approximate parabolic
escape occurs.

In the next step, we seewhat happens as P0 starts tomove aboutP1 after leaving = ¶S NR
2

2 inH1, or
= ¶S NL

2
1 inH3, through gMu

1 2( ), or gMu
3 1( ), respectively.

Proposition 3.4 (P0 leaves SR
2 (SL

2),moves in approximate resonance orbit aboutP1, returns to SR
2 (SL

2) and
then toweak capture byP2).Assume Î ÌP S HR0

2
1 at =t t1.P0moves from SR

2 for >t t1 into an approximate
resonance orbit aboutP1. After j cycles, j 1,P0 returns to SR

2 where E 02 . It thenmoves throughN2 to weak
capture byP2.

(Similarly, assuming Î ÌP S HL0
2

3 at =t t1,P0moves from SL
2 for >t t1 into an approximate resonance orbit

aboutP1 in the outerHills regionH3. After j cycles, j 1, about P1,P0 returns SL
2 where it thenmoves throughN1 to

weak capture byP2.)

Proof of proposition 3.4.The case of Î ÌP S HR0
2

1 is consideredfirst, where =t t1, C C2. [21] is referenced
since it determines the setk about the larger primary P1 analytically.

When ÎP SR0
2 for =t t1, this implies it lies in the three-dimensional region bounded by Mu

1 .Moreover, for
>t t1, due to the separatrix property, P0 stays within this region inside Mu

1 for all timemoving forward [21]. This
manifold stayswithin a bounded region, 1M , bounded by the following: SR

2, the boundary ofH1 (a zero velocity
curve), and a two-dimensionalMcGehee torus,TM, aboutP1 [18, 21]

6. Thewidth of 1M is m 1 3( ).
There are two cases. Thefirst is where Mu

1 is a homoclinic two-dimensional tubewhich transitions from Mu
1

to Ms
1 which goes to SR

2. This implies P0 returns to SR
2 at a later time.Now, if Mu

1 intersects Ms
1 transversally, then

thesemanifolds intersect in a complexmanner, where the image of Mu
1 on two-dimensional sections, qS

1
0, are

not circles, but parts of circles after several cycles ofP0 aboutP1, However, the separatrix property is still
preserved, andP0 still returns to SR

2 [21].
Let’s assume it returns to SR

2 after a timeT, ( = +t t T2 1 ).P0 is a transit orbit andmust pass throughN2 for
>t t2 intoH2 through the interior region bounded by Mu

2 , where it is againweakly captured by P2. This follows
sincewhen P0 passes throughN2 intoH2, within the interior region bounded by Mu

2 , it will intersect ÌS NL
2

2 in
H2. The estimate obtained in (27) is also obtained at SL

2. This implies P0 is captured byP2 at ÌS NL
2

2 at a time
d+t2 , d > 0. Under the previous assumptions on capture points in theoremA,P0 is weakly captured and

weakly escapes P2.
Themotion ofP0 as it leaves weak capture nearP2, passing into theH1 region andmoving back to theH2 to

weak capture is illustrated infigure 6.
It is noted that there exists a time <t t3 2˜ where >E 02 , which follows from the proof of proposition 3.1.

Thus,P0 is weakly captured in backwards time at d= +t t2 .
A similar argument holds for C C1.WithinH2 there are openings atN1 to the left ofP2 andN2 to the right.

P0 can nowmove intoH3 throughN1, in addition tomoving intoH1 throughN2, fromweak capture points on
Ç Wk

u inH2 after j cycles. IfP0moves intoH1, it does so from the region bounded by gMu
1 2( ) and the same

argument follows from the case C C2.
IfP0moves aboutP1 inH3, itmoves in a bounded region 3M . This region is bounded by = ¶S NL

2
1 inH3, a

McGehee torusTM aboutP1 inH3 and the boundary ofH3.P0moves inside the region enclosed by gMu
3 1( ) and

6
TM exists due to the fact that KAM tori on =J C{ } cannot exist too close to P2.
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stayswithin it as thismanifold either transitions into gMs
3 1( ) as a homoclinic tube or if themanifolds have

transverse intersection. The separatrix property is satisfied, andP0 will cycle aboutP1 inH3 j times until transits
intoH2 and intersects = ¶S NR

2
1 inH2, where (27) is satisfiedwhich implies P0 is captured by P2 at a time d+t2 .

Under the assumptions of theoremA,P0 is weakly captured at P2.
It is noted P0 is weakly captured in backwards time, since there is a time <t t3 2 where >E 02 , when P0 was

moving inH3, using the same argument as in the proof of proposition 3.1.
Thefinal part of the proof of proposition 3.4 is to prove thatP0moves in resonance orbits aboutP1.
We consider C C2, where P0 ismoving inH1.P0 is on an approximate resonance orbit inH1 aboutP1 for

 t t T1 . This is proven as follows: P0moves in 1M . The orbit forP0 will not deviate toomuch forμ
sufficiently small, by the amount m 1 3( ) [18]. It is an approximate elliptic Keplarian orbit aboutP1, since its
energy <E 01 (proven in the following text, see propositionA). It has a uniform approximate Keplerian period,
T1, forμ sufficiently small, with approximate frequency w = -T1 1

1. Once P0moves away from SR
2 for >t t1, and

returns to SR
2 for = = +t t T t2 1.WhenP0 returns to SR

2, it returns to nearP2 to approximately the distance
m 3 2 3(( ) ), as follows from the proof of proposition 3.3.
Since P0 returns to SR

2, near toP2,Tmust approximately be an integermultiple, n, of the period,T2, ofP2
aboutP1. That is, »T nT2. Also, since P0 returns to near where it started, »T mT1. Thus, »mT nT1 2.
Equivalently, w w»n m1 . Thus,P0moves in an approximate n m: resonancewith P2. It is noted that the
approximate elliptic orbits ofP0 have an apoapsis distance from P1 that is approximately the distance of SR

2 toP1.
This can also be visualized in inertial coordinates, Y Y,1 2( ) centered at P1.When P0 has started itsmotion on a

near ellipse, for >t t1, it has just left weak capture fromnear P2 at the location, Y*.P0 then cycles aboutP1 and
keeps returning to near Y* each approximate periodT1.When it arrives near Y*,P2 needs to be nearby as when
P0 started itsmotion.Otherwise, P0 won’t becomeweakly captured by P2 and leave the ellipse tomove to theH2

toweak capture byP2. In that case it will continue cycling aboutP1. If it does return to near Y* andP2 has also
returned near towhere it started also near Y*, then thismeans P2 has gone around P1 approximately n times and
P0 has gone around P1 approximatelym times.

In the case where P0moves in theH3 region after leaving SL
2 for >t t1, one also obtains a resonance orbit by

an analogous argument. In this case, P0 has a periapsis near = ¶S NL
2

1with respect toP1, where = ¶S NL
2

1 is near

P2 at a distance of approximately, m 3 1 3(( ) ). These resonance orbits inH3 aremuch larger than the resonance
orbits inH1 since theymove about both P P,1 2.

PropositionA. <E 01 whenP0moves inH1 about P1 in a resonance orbit.

Proof of propisitionA.WhenP0moves for >t t1 itmoves in an approximate two-bodymanner forfinite time
spans, where the osculating eccentricty e1 and semi-major axis a1 vary only for a small amount amount by

m 1 3( ) since P0moves within 1M . The energy E1 is estimated(in an inertial frame). Since at =t t1,
» -V t z t11 1 1( ) ∣ ( )∣.We can estimate z t1∣ ( )∣as roughly the distance of L2 toP2. This implies,

Figure 6.The trajectory ofP0 is illustrated from leavingweak capture near P2 at time t0, passing into the neckN2 from the interior
three-dimensional region bounded by gMs

2 2( ), to the line lR at = -t t 1, or equivalently the bounding sphere = -S J lR R
2 1( ).P0 then

cycles aboutP1 inH1 within the region 1M and eventually returns to SR
2 at =t t2 It then goes back intoH2 throughN2 and toweak

capture relative to P2 at SL
2. Thisfigure is a sketch.
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a a» + z t1 1 3 2 3∣ ( )∣ ( ), a m= 3, and a a» - + r 11
1 3 2 3( ). Thus,

a a m a a» - + - - - + - E 1 2 1 1 1 3 . 281
1 3 2 3 2 1 3 2 1( )( ( ) ( )( ( ) ( )

Thus a» - + E 1 21
1 3( ) ( ). This implies that <E 01 forμ sufficiently small.P0 will then bemoving on

an approximate ellipse aboutP1 of an eccentricity, <e 11 . The apoapsis of this ellipse will approximately be
m» » -r r t 1 3a 1 1

1 3( ) ( ) . The semi-major axis of the ellipse at =t t1 is approximately,
m m m» - - » - + a E1 2 1 31 1

1 3( ) ( ) ( ) (( ) ). » - <e r a1 1a1 1( ) .
When P0moves in resonance orbits inH3 for C C1, similar estimates aremadewhere <E 01 .
End of proof of propositionA.

The resonance orbits ofP0 aboutP1move in an approximate two-body fashionwhere the perturbation due
toP2 is negligible for finite time spans. Thus, w w»t m n1( ) ( ) until it enters either neck tomove toweak
capture near P2.

We assume C C2 and examinewhat happens to themotion ofP0 near Y*when in n m: resonancewith
P2.P0 is at aminimal distance toP2 when near Y*. In the rotating system, it is near SR

2, and lies in the three-
dimensional region containedwithin Ms

1 , since it has beenmoving aboutP1 within this region by the seperatrix
property. At thisminimal distance, Ms

1 is close enough to g2 so that it can connect with it, and P0 canmove as a
transit orbit andmove throughN2 and exit intoH1 through the three-dimensional interior region bounded by
Mu

1 . It is then captured byP2, with E 02 at SL
2. An analogous arument holds when C C1.

Assuming the generic assumptions are satisfied for theoremA,P0 will weakly escape P2 and againmove into
H1, orH3, obtaining resonance orbits, satisfying, w w» ¢ ¢m n1 ( ) , for integers ¢ ¢ n m1, 1. The set of all
such resonance orbits forms the family F. This concludes the proof of theoremA.

An example of the geometry of resonance transitions for an observed comet, Oterma, from a 2: 3 to a 3: 2, in
1936, and then back froma 3: 2 to a 2: 3, in 1962, ([22, 23] ) is illustrated infigure 7. (See section 3.1 at the end of
this section.)

It is noted that the estimates of E E,1 2 in the proof of theorem 2whileP0moves inHi, =i 1, 2, 3, are
observed in themotions of the resonating comets studied in [22]. It can be seen in [22] that when the comet
Gehrels 3wasweakly captured by Jupiter(P2) from a 2:3 resonance orbit into an approximate 3:2 resonance
orbit, E 02 . Also, when the cometmoved about the Sun(P1) in an approximate 2:3 resonance orbit, >E 02

and <E 01 .
For each resonance orbit obtained from the choice of theweak capture initial condition, (6) is satisfied,

proving lemmaA.

Figure 7.A sketch showing the trajectory of the cometOterma about the Sun(S) as it changes resonance types byweak capture near
Jupiter(J) from 2: 3 to 3: 2, relative to the regions,Hk, =k 1, 2, 3. (Sketch and not to scale) (see [22, 23] for accurateOterma plot)
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3.1. Examples of resonance orbits in F and U.
Result A describes a dynamicalmechanism of resonance orbits aboutP1. The resonancemotion described in this
paper is observed both in nature and numerically.

It was originally inspired by the fact that comets are observed to perform it.More exactly, there exists a
special set of comets thatmove about the Sun that transition between approximate resonance orbits about the
Sun due toweak capture at Jupiter. This is studied in [22–24]. Several comets are described in [22, 24], that
perform thismotion. For example, the cometOterma transitions between a 3:2-resonance with respect to the
Sun, where w w= 2 31 ( ) ,ω is the frequency of Jupiter, to a 2:3-resonance.When passing between these
resonances, the comet, P0, is weakly captured by Jupiter. There aremany others, listed in [22] (table 1), and in
[24]. These comets includeHelin-Roman-Crockett ( 3: 2 3: 2), Harrington-Abell ( 5: 3 8: 5). It is
important to note that themodeling used to describe the resonance orbits of these comets is not exactly the
model used in this paper. Itmodels the true orbit of Jupiter about the Sun using the planetary ephemeris and the
observed orbits of the comets for initial conditionswhich are not exactly planar. Thismodel is very close to the
planar restricted three-body problem. The definition of approximate resonance orbits in this paper for the
restricted three-body problem iswell suited to the resonances comets perform.

The existence of orbits performing resonance transitions as in F can also be found in the planar circular
restricted three-body problemused in this paper. A special case where the resonance orbit precisely returns to its
initial condition after preforming a transitionwas shown to exist in [25]. This yields an exact periodic orbit that
repeats the same transition over and over. Other simulations of approximate resonance orbits as in F for the
planar circular restricted three-body problem andmodels very close to thatmodel are done in [26, 27].

An interesting example of orbits that occur in nature can be obtained for U given in Result C. These are the
subset of resonance transition orbits that have frequencies, w w»m n m n1( ) ( ) , = =m n n8, 3˜ , = ¼n 1, 2,˜ .
That is, the orbits have n : 83˜ resonances. A special case of these resonances is an 8: 8 resonance for =n 2˜ . On
the other hand, a 1: 1 resonance orbit is a special case of an 8: 8 resonance orbit. An example of this is for the
Trojan asteroids, where P1 is the Sun,P2 is Jupiter, and P0 is a Trojan asteroid.Many other examples can be
found by asteroids located near the equilateral Lagrange points with respect to a body P2, orbiting P1.

4.Modeling resonancemotionswith themodifed Schrödinger equation

In this section some of the results are expanded upon in section 2.
The family F of resonance periodic orbits, Fm n, aremodeled in the plane by the restricted three-body

problem. The planarmodeling is justified in section 3. To try andmodel F with quantummechanical ideas, we
therefore use planarmodeling. Thus, we consider the planar, time independent,modified Schrödinger equation
given in the Introduction by (1), obtained from the classical Schrödinger equation, (?), by replacing  byσ, and
the potential is given by the three-body potential V̄ derived from the planar restricted three-body problem. This
partial differential equation is time independent.

Themotivation of replacing  byσ is given by analogy A in section 2, whereσ given by (11). The potential V̄
is given by (15), obtained from = +V V V1 2

ˆ . It is recalled thatV1 is the potential due toP1 andV2 is the potential
due toP2, in an inertialP1-centered coordinate system, Y Y,1 2( ). It is also recalled that P2moves aboutP1 on the
circular orbit, g t( ), m 00 , and as described in section 2 for Results A, it is necessary that m m,0 2 are
sufficiently small for the approximations in assumptions 1.

As described in section 2 themodified Schrödinger equation is given by (16), where V̄ is the average of V̂ ,
obtained by averagingV2 over a cycle ofP2 aboutP1 on γ, given by (14). For reference, we recall (16),

s
n

-  Y + Y = YV E
2

, 29
2

2 ¯ ( )

In themacroscopic scale for themasses, and relative distances, two dimensions is required, where, in the inertial

P1-centered coordinates, Y Y,1 2( )  º +¶
¶

¶
¶Y Y

2
2

1
2

2

2
2 .When solving (29), the three-dimensional problem is solved

for generality. The three-dimensional problem is discussedwhen considering the quantum scale.
It is noted that the units ofσ are -m kgs2 4 3. This needs tomatch the units of  which are -m kgs2 1.

( = ´ - - m kgs6.626 07 10 34 2 1)Thus, we need tomultiplyσ by r = s1 1 3, s rs=* . s*has the same units as
. Keeping the same notation, s sº* . At the end of this section it is seen that when themasses approach the
quantum scale,σ also gets small, and m m,0 1 can be adjusted so that s = .

We recall (15), = +V V V1 2¯ ¯ , where = -V Gm m r1 0 1 , =r Y∣ ∣andV2̄ is the time average of
= -V Gm m r2 0 2 2, g= -r Y t2 ∣ ( )∣. It is shown in this section,V2̄ is given by (48)which has a form similar toV1.

This enables solving (16).
The solution to (29) is done in two steps. In the first step, we solve (29) in the absence of gravitational

perturbations due toP2 for =m 02 , where =V 02̄ . Thus, in this case =V V1¯ . It is then solved for >m 02 where
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V2̄ is non-zero. (Since the formofV2̄ is shown to have a form analogous toV1, we canmodify the solution
obtained forV1 for the addition ofV2̄.)

Weexplicitly solve (29), with =m 02 , by separation of variables. This is for the two-bodymotion ofP0 about
P1. It isfirst solved for three-dimensions, then restricted to the planar case studied in this paper for the
macroscopic scale. The three-dimensional solution is referred towhen discussing solutions in the quantum
scale. (29) is transformed to spherical coordinates, f qr, , . It is assumed the solution is of the form,

f qY = R r Y , . 30( ) ( ) ( )

r 0, andf is the angle relative to theY1-axis, f p 0 2 . θ is the angle relative to theY3-axis, q p 0 .
Y 2∣ ∣ is the probability offinding P0 at distance r from P1.

The solution of (29) for =V 02̄ follows themethod described in [28] for the case of an electron in the
Hydrogen atommoving about the nucleus. This is a standard approach used in solving the classical Schrödinger
equation in quantummechanics found inmany references. There are someminormodifications. TheCoulomb
potential is used in [28] forV1 and herewe are using the gravitational potential between two particles P P, ;0 1

however, they are of the same form, both proportional to -r 1, = + +r Y Y Y2
1
2

2
2

3
2. Instead of the

proportionality termof Gm m0 1, the Coulombpotential has the term, pZe c 42
1 0( ), whereZ is the atomic

number,Z=1 forHydrogen, e is the charge of the electron and the charge of the nucleus,P0 and an atomic
nucleus,P1, 0 is the permittivity of vacuum,  is replaced byσ. The reducedmass n = +m m m m0 1 0 1( ) is
defined for either the gravitational or Coulombmodeling.When referring to [28], one replaces pe 42

0( )
by Gm m0 1.

When solving (29) by separation of variables, (30) is substituted into (29), obtaining differential equations
for R r( ) and f qY ,( ),

ns a+ + + - =- - - -d R

dr
r

dR

dr
E Gm m r r R2 2 0, 31

2

2
1 2

0 1
1 2[ ( ) ] ( )

q
q

q
q

q
f

a
¶
¶

¶
¶

+
¶
¶

+ =- -Y Y
Ysin sin sin 0. 321 2

2

2
⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

αis a separation constant.
(32) is solved first, yielding spherical harmonics. Using separation of variables, solutions are obtained in the

form, f q f q= F QY ,( ) ( ) ( ). This gives the differential equations,

q
q

q
q

a q bQ
Q

+ - =- d

d

d

d
sin sin sin 0, 331 2⎜ ⎟⎛

⎝
⎞
⎠ ( )

f
b

F
+ F =

d

d
0, 34

2

2
( )

whereβ is a separation constant [28].
(34) gives the solution,

f f pF º F = f1 2 e , 35m
im1 2

l
l( ) ( ) ( ) ( )

b = =   ¼m m, 0, 1, 2,l l
2 , = -i 12 . fF( ) varies in the Y Y,1 2-plane.

The solution of (33) follows by setting q=x cos , º QG x xcos( ) ( ) transforming (33) into an associated
Legendre type differential equation,

a- - + - - =-x
d G

dx
x

dG

dx
m x G1 2 1 0, 362

2

2
2 2 1( ) ( ( ) ) ( )

a = + = + + ¼l l l m m m1 , , 1, 2,l l l( ) ∣ ∣ ∣ ∣ ∣ ∣ [28]. l varies between ml∣ ∣. The solutions of (36) are given by
associated Legendre polynomials P xl m, l

( )∣ ∣ . (see [29] for tables of these polynomials)The solutions of (33) are
given by ([28], page 527),

q qQ =
+ -

+
l m

m
P

2 1

2

1

1
cos . 37l m

l

l
l m,

1 2

,l l
⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ∣ ∣!

∣ ∣!
( ) ( )∣ ∣

It is remarked that in the two-dimensional problem,with coordinates Y Y,1 2( ), q p= 2. In this case, there is no
variationwith respect to θ andΘ is only defined at q p= 2.

The solution f qY ,( ) is given by the spherical harmonics f q= F QYl m m l m, ,l l l
( ) ( ). To solve (31), set =u Rr .

(31) becomes,

l+ - =- -d u

dr
ar br u u, 38

2

2
1 2 2( ˜ ) ( )

where l n s= -E22 2∣ ∣ , ns= -a Gm m2 2
0 1˜ , = +b l l 1( ). It is verified that solving this differential equation yields

the solution of (31),
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r rº = -
- -

+
r

+
+ -R R r

n

n l

n n l
L

2 1

2
e , 39n l

l
n l

l
, 3

1 1 2
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )

˜
( ˜ )!

˜[( ˜ )!]
( ) ( )˜ ˜

where, = ¼n 1, 2˜ , = ¼ -l n1, , 1˜ , r = na r2( ( ˜ )) , n s= -a Gm m0 1
1 2( ) , and Lj

i are the associated Laguerre
polynomials ([28], page 8, table 3.2), and

np
s

º = -E E
Gm m

n

2
. 40n

2
0 1

2

2 2
ˆ ( )

˜
( )˜

E can bewritten as,

s
= -E

n

4
. 41n 2

ˆ
˜

( )˜

This follows by the identity,

np r s =-2 4, 422 2 3˜ ( )

where r = Gm m0 1˜ .
The solution forE yields quantized values of the energy, which quantizes the gravitational field betweenP0,

P1.
The general solution to (29) is given bymultiplying (39)with Yl m, l

,

f q f qY º Y = F Qr R r, , . 43n m l n l m l m, , , ,l l l( ) ( ) ( ) ( ) ( )˜ ˜

n l m, , l˜ are the quantumnumbers associatedwithΨ. ñ is called the principle quantumnumber and is
independent of l m, l. It specifies the energy value and limits the value of l. The quantumnumbers l m, l occur by
consideration of the spherical harmonics.

We compute the probability distribution function, F, of locatingP0 relative toP0 at a given point f qr, ,( ).
Sincewe are currently considering themasses and the relative distances to bemacroscopic, this probability is
used tomeasure the location of amacroscopic particle, and not as awave as is done in the quantum scale, that is
considered later in this section. By definition, f q f q= YF r r, , , ,n m l, ,

2
l

( ) ∣ ( )∣˜ , depending on the quantum
numbers.

It ismore convenient to compute the probability at a given radial distance r, independent of f q, . It is
labeled P r( ).

It is verified that =P r R r2 2( ) . This is valid in the two-dimensional case aswell for Y Y,1 2( ).
As an example, calculate P r( ) at the lowest energy value corresponding to =n 1˜ , =l 0.

= - -P r a r4 e . 44r a3 2 2( ) ( )

(see [28], table 3.2, where a is given in theHydrogen atom case). It is verified that P r( ) has amaximumat =r a,
with =P 0 0( ) andwhere P r 0( ) as  ¥r . It yields a curve Î ¥r P r r, 0,{( ( ))∣ [ ]}analogous to the
Hydrogen atom case (see [28],figure 3.20). The numerical values of P r( )will differ from theHydrogen atom
case, since in the gravitational case n s= -a Gm m0 1

1 2( ) .
Themaximumof the distribution function at =r a says thatP0, as amacroscopic body, has the highest

probability of being located at this distance. In the case of theHydrogen atom,where P0 has wave-particle
duality, this distance corresponds to the Bohr radius, which is themost probable location tofind an electron in
general, referred to as the s1 -orbital (s denotes l=0).

In the sameway, P r( ) can be computed for = ¼ = ¼ -n l n1, 2 , 0, 1, 2, , 1˜ ˜ , which determinesmost
probable radial locations forP0 to be located.

If one considers computing f q f q= YF r r, , , ,n m l, ,
2

l
( ) ∣ ( )∣˜ over n l m, , l˜ , where-  m l ml l∣ ∣ ∣ ∣, then one

obtains precise regions aboutP1 where P0 ismost probable to be located. These arewell known in the case of the
Hydrogen atom [28]. It is remarkable these are observed to occur. In the gravitational case considered in this
paper, the regionswill have a similar geometry, butwith different scaling.

The solution of (29) has been obtained in three dimensions for =m 02 .We solve this for >m 02 , m m2 1 ,
and then reduce to the planar case in order to compare to the planar restricted three-body problem in the
macroscopic scale.

When the gravitational perturbation due toP2 is included, the previous results are obtainedwith a small
perturbation. It is also seen that the frequencies w n1( ˜) correspond to the subset, U , of the resonant family F.

Three-body potential
The previous analysis can be done for amore general three-body potential by taking into account the
gravitational perturbation due toP2.We do this by using an averaged potential,V2̄, obtained from the potential
V2, due to the gravitational interaction of P P,0 2. This yields the three-body potential, = +V V V1 2¯ ¯ that
approximates = +V V V1 2

ˆ . This is done as follows,
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Wedo this analysis in three-dimensional intertial coordinates, =Y Y Y Y, ,1 2 3( ), centered atP1,P2moves
aboutP1 on a circular orbit of radiusβ, and angular frequencyω, in the Y Y,1 2( )-plane,
g b w w=t t tcos , sin , 0( ) ( ),β is a constant. The potential forP0 due to the perturbation ofP2 is given by

= + = - -V V V
Gm m

r

Gm m

r
, 451 2

0 1 0 2

2

ˆ ( )

where g= = -r Y r Y t, 2∣ ∣ ∣ ( )∣.We canwrite r2 as

b b w w= + - +r r Y t Y t2 cos sin ,2
2 2

1 2( )

WeconsiderV2 and take the average of it over one cycle ofP2, where p wÎt 0, 2[ ],

ò
w

p b b w w
= -

+ - +

p
w

V
Gm m dt

r Y t Y t2 2 cos sin
. 462

0 2

0 2 2
1 2

2

¯
( )

( )

This averaged potential term is an approximation toV2, representing the average value ofV2 felt by P0 at a point
Y Y Y, ,1 2 3( ) over the circular orbit ofP2 aboutP1 in the Y Y,1 2( )-plane. It is advantageous to use since it eliminates
the time dependence inV2, and as we’ll show, can bewritten so that it approximately takes the formofV1. This
implies we can solve (29) as before, withminormodifications. ApproximatingV2 in this way yieldsV2̄.

Expressing Y Y,1 2 in polar coordinates, q q= =Y r Y rcos , sin1 2 , andmaking a change of the independent
variable, t, f w= t , we obtain

òp
f

b b f q
= -

+ - -

p
V

Gm m d

r r2 2 cos
. 472

0 2

0

2

2 2
¯

( )
( )

V2̄ is simplified by considering three cases, b<r , and b>r , b=r , and expandingV2̄ as a binomial series.
We prove,

SummaryA.The general three-body potential = +V V V1 2
ˆ , (12), forP0 can be approximated by replacingV2,

due to the perturbation ofP2, with the averaged potentialV2̄, (47).V2̄ can bewritten as,

b
b b

b
=

- + >
- + <

- + =

-

-

-







V

Gm m r m m r

Gm m m m r

Gm m r m m r

,

,
1

2
, .

482

0 2
1

0 2

0 2
1

0 2

0 2
1

0 2

⎧
⎨
⎪⎪

⎩
⎪⎪

¯

( )
( )

( )
( )

The quantized energy, En
ˆ ˜, for the approximated three-body potential = +V V V1 2¯ ¯ is given by,

s m m b
s b b

s m m b
=

- + + + >
- - + <

- + + + =

-

- -

-







E

n m m r

n Gm m m m r

n m m r

4 1 ,

4 ,

4 1
1

2

1

2
,

49n

2 2
0 2

2
0 2

1
0 2

2 2
0 2

⎧
⎨
⎪⎪

⎩
⎪⎪

ˆ

˜ ( ) ( )
˜ ( )

˜ ( ) ( )
( )˜

which reduces to (41) for =m 02 , andwhere m = m m2 1.

From the formofσ, (49) implies,

s= - +- E n m m4 . 50n
2

0 2ˆ ˜ ( ) ( )˜

Similarly,

SummaryB.

r r= -
- -

+
+r

+
+ - R r

n

n l

n n l
L m m

2 1

2
e , 51n l

l
n l

l
, 3

1 1 2
0 2

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )

˜
( ˜ )!

˜[( ˜ )!]
( ) ( ) ( )˜ ˜

for b b<r r, . The probability distribution function is generalized to,

= + P r R r r m m . 522 2
0 2( ) ( ) ( ) ( )

When adding the gravitational perturbation due toP2 represented byV2̄, one obtains smooth dependence on
this term in all the calculations. This proves summary B.

Equivalence of solutions of themodified Schrödinger equationwith the family F of the three-body problem
The two-dimensional case is now considered to compare the solutions of themodified Schrödinger equation,
(29), to the family of solutions F of the planar restricted three-body problem.
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We set =Y 03 , q p= 2. The quantized energy En
ˆ ˜, (41), for (29) of the two-bodymotion ofP0 aboutP1,

with =m 02 , is not defined in the sameway as the two-bodyKepler energy E1̃, (10). En
ˆ ˜ is computed from the

modified Schrödinger equation and E1̃ is computed for theKepler problem for general ellipticmotion of P0
aboutP1. These are different expressions. However, they both represent the energy ofP0 for the two-body
gravitational potential. Also, En

ˆ ˜ is quantized and E1̃ is not quantized.
A key observation of this paper is that when one solves for theKepler frequency w1 in (10) as a function of E1̃

and substitutes En
ˆ ˜ in place of E1̃, a simple equation is obtained for w1,

w wº ==
-n n8 . 53E E1 1

3
n1

∣ ( ˜) ˜ ( )˜ ˆ ˜

It is remarked that this equation is also valid in three-dimensions since (10) is also valid for the three-
dimensional Kepler two-body problem.

This follows by noting that (10) implies,

w s= - - E . 541
1

1
3 2[ ˜ ] ( )

This yields (53)
Inclusion of gravitational perturbation ofP2 ( >m 02 ), impliesmore generally,

w wº = +=
- n n m m8 . 55E E1 1

3
0 2n1

∣ ( ˜) ˜ ( ) ( )˜ ˆ ˜

(53) does not depend on themasses or any other physical parameter. This says substituting the quantized energy
from themodified Schrödinger equation, with =m 02 , into theKepler energy for the frequency, yields a
frequency ofmotion forP0moving aboutP1 in elliptical orbits that is same for allmasses only depending on the
wave number ñ. This discretizes theKepler frequencies.

The discretization of theKepler frequencies restricts the elliptical two-bodymotion ofP0. This result
becomes relevant in the three-body problem for F when the gravitational perturbationP2 is included since it
selects a the set of resonance orbits, ÌU F (see result C, section 2).

We prove result C from section 2, whichwe state as w n1( ˜), given by (55), which are the frequencies in the
restricted three-body problem corresponding to themodified Schrödinger equation energies, form a subset

ÌU F of resonance orbits where = =m n n8, ˜.

Proof of result C.This is proven by first noting that the circular restricted three-body problem can rescaled so
that m m b= - = = =m m G1 , , 1, 11 2 where m = +m m m2 1 2( ) [8]. This scaling does not reduce the
generality of themass values norβ. This scaling implies w = 1. Thus, (6) becomes,

w d= + m n m n . 561( ) ( ) ( ) ( )

Akey observation is that this scaling does not effect the leading term n8 3˜ of w n1( ˜) given by (55). Thus, after the
scaling, subtracting (55) from (56) yields,

w w- = - + m n n
m

n n
m m

8
. 571 1 3 0 2( ) ( ˜)

˜
( ) ( )

Thus, taking = =m n n8, 3˜ and assumingm2 is sufficiently small, implies,

w w»m n n , 581 1( ) ( ˜) ( )

This condition is preserved by rescaling to general bm m, ,1 2 , yielding w w»m n n81
3( ) ( ˜ ) for U .

From themacro to quantum scale
When m m m, ,0 2 3 are in themacroscopic scale then as described in section 2, in results B andC, the family

ÌU F of near resonance orbits can be described by the solution (17) of (29).
For themasses in the quantum scale, the family U are no longer valid.Ψ given by (17) is still valid but now as

purewave solutions. This is summarized in result D, section 2. Thus,Ψ is defined for bothmacroscopic and
quantum scales. In themacroscopic scale,Ψ is interpreted as a probability, whereas in the quantum scale,Ψ is a
purewave solution. The quantized energies En

ˆ ˜ are still well defined.  is still defined and yields the single
domain , for = ¼n 1, 2, 3˜ . This is discussed in section 2.

This section is concludedwith an analysis ofσ, referred to in section 2.

Proposition 4.1 s =  is satisfied for a one-dimensional algebraic curve (59) in m m,0 1( )-space.This is proven
by noting s p p= + <- -G m m m m G m m m1 2 2 1 2 22 3

0 1 0 1
1 3 2 3

0 1 0
1 3( )( ) ( ) ( )( ) . Hence,

s p< G m m1 2 2 2 3
0
2 3

1( )( ) . Thus, s  0 as m m, 00 1 . This implies there exists values of m m,0 1 such that
s = . This is equivalent to the equation,

- + =-m m a m m 0, 590
3

1
3 3

0 1( ) ( )

21

J. Phys. Commun. 4 (2020) 015012 EBelbruno



p=a G1 2 2 2 3( )( ) . (59) yields a one-dimensional algebraic curve,Γ, in the coordinates m m,0 1. This proves
proposition 4.1.

The relevancy of possible wavemotions for m m,0 1( ) not onΓ, with m m m, ,0 1 2 in the quantum scale, is not
considered in this paper. This is discussed in section 2.Differentmodels are also discussed in section 2.
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Appendix. Proof of summaryA

Summary A is proven as follows: the integrand, I, ofV2̄ is given by

b b f q b f q
=

+ - -
=

+ - -b
b+

I
r r r

1

2 cos

1 1

1 cos
. 60

r

r

2 2 2 2 2
2 2

( ) ( )
( )

Case 1: b>r
This implies,

b+
=

+
= +

b


r r r
x

1 1

1

1
1 , 61

r

2 2 2

2

( ( )) ( )

where b= <x r 1. This results from expanding the fraction containing the square root into a binomial series.
Likewise, we can also expand thefirst termon the right in (60) in a binomial expansion since f q- cos 1∣ ( )∣
and

b
b+

<
r

r

2
1, 62

2 2
( )

yielding

f q- -
= +

b
b+

 y
1

1 cos
1 , 63

r

r

2
2 2 ( )

( ) ( )

where

b
b

f q=
+

-y
r

r

2
cos , 64

2 2
( ( )) ( )

<y 1∣ ∣ . Thus, (60) becomes,

= + I
r

w
1

1 , 65( ( )) ( )

<w 1∣ ∣ , =w x ymax ,{ }. Thus, in this case,

= - + = - + V
Gm m

r
w

Gm m

r
m m1 . 662

0 2 0 2
0 2¯ ( ( )) ( ) ( )

This implies in the derivation of En
ˆ ˜, we proceed as before and replace the numerator Gm m0 1ofV1 in (31)with

+Gm m m0 1 2( ) and adding m m0 2( ) to this term. This yields,

np
s

= -
+

+ E
Gm m m

n
m m

2
67n

2
0 1 2

2

2 2 0 2ˆ ( ( )
˜

( ) ( )˜

This can bewritten as,

s
m m= - + + + E

n
m m

4
1 , 68n 2

2
0 2ˆ

˜
( ) ( ) ( )˜

where m = m m2 1, andwherewe have used (42).
Case 2: b<r
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This case is done in a similar way as inCase 1. Instead of factoring out -r 1 from (61), we factor out b-1,
which yields,

b b b+
=

+
= +

b


r

x
1 1

1

1
1 , 69

r2 2 2

2

( ( ˜)) ( )

where b= <x r 1˜ . Proceeding as inCase 1, we obtain,

b
= + I w

1
1 , 70( ( ˜ )) ( )

<w 1∣ ˜ ∣ , =w x ymax ,˜ { ˜ }. This implies,

b b
= - + = - + V

Gm m
w

Gm m
m m1 . 712

0 2 0 2
0 2¯ ( ( ˜ )) ( ) ( )

Sinceβ is a constant, then in the derivation of En
ˆ ˜, we replaceEwith b+ + E Gm m m m0 2 0 2( ) ( ) in (31)

keepingV1 as was used in the case of =m 02 in (31). This yields,

np
s b

= - - + E
Gm m

n

Gm m
m m

2
72n

2
0 1

2

2 2
0 2

0 2ˆ ( )
˜

( ) ( )˜

This can be reduced to,

s
b

= - - + E
n

Gm m
m m

4
. 73n 2

0 2
0 2ˆ

˜
( ) ( )˜

Case 3: b=r
In this final case,

b+
=

+
=

b
r r r

1 1

1

1

2
. 74

r2 2 2

2

( )

Thus,

b f q y
=

+ - -
=

-b
b+

I
r r h

1 1

1 cos

1

2

1

1
, 75

r

r

2 2 2
2 2 ( ) ( )

( )

where y=h cos( ), y f q= - .We assume thatP0 does not collidewithP2, implying y p¹  j0, 2 ,
= ¼j 1, 2, 3, . Thus, <h 1∣ ∣ .We canwrite I as,

= + I
r

h
1

2
1 . 76( ( )) ( )

Hence,

= - + V
Gm m

r
m m

2
. 772

0 2
0 2¯ ( ) ( )

Proceeding as inCase 1,

np

s
= -

+
+ E

Gm m m
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This can bewritten as,

s
m m= - + + + E
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m m

4
1

1
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