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Abstract

Gravitational coupling between young planets and their parent disks is often explored using numerical simulations,
which typically treat the disk thermodynamics in a highly simplified manner. In particular, many studies adopt the
locally isothermal approximation, in which the disk temperature is a fixed function of the stellocentric distance. We
explore the dynamics of planet-driven density waves in disks with more general thermodynamics, in which the
temperature is relaxed toward an equilibrium profile on a finite cooling timescale tc. We use both linear
perturbation theory and direct numerical simulations to examine the global structure of density waves launched by
planets in such disks. A key diagnostic used in this study is the behavior of the wave angular momentum flux
(AMF), which directly determines the evolution of the underlying disk. The AMF of free waves is constant for
slowly cooling (adiabatic) disks but scales with the disk temperature for rapidly cooling (and locally isothermal)
disks. However, cooling must be extremely fast, with β=Ωtc10−3 for the locally isothermal approximation to
provide a good description of density wave dynamics in the linear regime (relaxing to β10−2 when nonlinear
effects are important). For intermediate cooling timescales, density waves are subject to a strong linear damping.
This modifies the appearance of planet-driven spiral arms and the characteristics of axisymmetric structures
produced by massive planets: in disks with β≈0.1–1, a near-thermal mass planet opens only a single wide gap
around its orbit, in contrast to the several narrow gaps produced when cooling is either faster or slower.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Planet formation (1241); Hydrody-
namics (1963)

1. Introduction

The gravitational interaction of a gaseous disk with a massive
orbital companion plays an important role in many astrophysical
systems, including circumstellar (i.e., protoplanetary) disks,
cataclysmic variables, and disk galaxies. The tidal gravitational
potential of the companion excites density waves at Lindblad
resonances—locations in the disk at which the natural frequency
of the disk is commensurate with the forcing frequency of the
companion (Goldreich & Tremaine 1980). These waves then
travel across the disk carrying angular momentum and energy
with them over large distances. Their dissipation, either due to
linear damping (e.g., viscous damping, Takeuchi et al. 1996), or
nonlinear dissipation (Goodman & Rafikov 2001; Rafikov
2002a), leads to the deposition of the wave angular momentum
into the background disk fluid and completes the process of the
global angular momentum transport in the disk (Lunine &
Stevenson 1982; Goldreich & Nicholson 1989; Rafikov &
Petrovich 2012). This transfer of angular momentum from the
density waves after their dissipation can be a significant driver of
disk evolution (Goodman & Rafikov 2001; Rafikov 2016;
Arzamasskiy & Rafikov 2018), often resulting in the formation
of axisymmetric features such as gaps and rings (Rafikov 2002b;
Dong et al. 2017). The detailed outcome of such planet–disk
coupling depends critically on the angular momentum flux
(AMF) carried by the waves. As shown by Goldreich &
Tremaine (1979), in adiabatic disks, the AMF of free waves (i.e.,
not subject to external torques) is conserved in the linear regime
and in the absence of dissipation. However, for other
thermodynamic assumptions, the AMF behavior may change.

In numerical simulations of protoplanetary disks, the disk
thermodynamics are often treated in a highly simplified manner
by using the so-called locally isothermal approximation. In this

approximation, the sound speed cs, or equivalently, the disk
temperature T, is assumed to be a prescribed function of the
radial coordinate r only, dispensing with the need to solve an
energy equation for the disk gas. In Miranda & Rafikov
(2019b), we showed that in the locally isothermal disks, the
AMF of free waves is not conserved, in contrast to the adiabatic
disks studied in Goldreich & Tremaine (1979). Instead, AMF is
proportional to cs

2. Since typically the disk temperature
decreases with radius, this means that waves traveling inward
accumulate AMF as they propagate. This occurs as a result of
extracting angular momentum from the background disk flow
(so that the total angular momentum of the disk-wave system is
conserved), an effect previously pointed out by Lin &
Papaloizou (2011) and Lin (2015). This has important
consequences for wave-driven disk evolution, since the impact
of a (dissipating) wave on the disk gets enhanced by this AMF
amplification process as the wave propagates to smaller and
smaller radii in locally isothermal disks (Miranda & Rafikov
2019b).
Adiabatic and locally isothermal disks represent the extreme

limits of a more general thermodynamics, in which the disk
temperature is relaxed toward an equilibrium profile on a finite
timescale. Physically, the locally isothermal approximation
corresponds to the scenario in which (1) the imposed
temperature profile is maintained externally, e.g., by irradiation
from the central star, and (2) deviations from the imposed
temperature profile, associated with either compression/expan-
sion of the gas or radial displacement of fluid elements, are
quickly neutralized by the radiation or absorption of thermal
energy. Here “quickly” means that the timescale for erasing
temperature perturbations, which we refer to loosely as the
cooling timescale tc, is small compared to all other relevant

The Astrophysical Journal, 892:65 (20pp), 2020 March 20 https://doi.org/10.3847/1538-4357/ab791a
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-2804-3657
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
https://orcid.org/0000-0002-0012-1609
mailto:miranda@ias.edu
http://astrothesaurus.org/uat/1300
http://astrothesaurus.org/uat/1241
http://astrothesaurus.org/uat/1963
http://astrothesaurus.org/uat/1963
https://doi.org/10.3847/1538-4357/ab791a
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab791a&domain=pdf&date_stamp=2020-03-30
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab791a&domain=pdf&date_stamp=2020-03-30


timescales. On the contrary, the adiabatic limit is expected to
apply when tc is very long. A common—but not rigorously
motivated—assumption is that the relevant timescale separating
these two limits and to which tc should be compared is the
orbital timescale.

In this paper, we carry out a linear perturbation analysis for
disks with thermodynamics affected by thermal relaxation
(cooling), in order to understand the behavior of planet-excited
density waves and implications for wave-driven disk evolution.
An important result of this analysis is the derivation of a
“master equation” describing the global behavior of non-
axisymmetric perturbations driven by an external gravitational
potential in a two-dimensional (2D) disk. Such an equation was
first presented by Goldreich & Tremaine (1979), for the case of
adiabatic perturbations in disks with uniform entropy, and was
later generalized to disks with general entropy profiles
(Baruteau & Masset 2008; Tsang 2014). We present an even
more general version of the equation for adiabatic perturbations
in disks with thermal relaxation, which reduces to the locally
isothermal and adiabatic regimes in the appropriate limits (short
and long cooling timescales, respectively). By solving for the
perturbations excited by an embedded planet, we determine the
full, global structure of planet-driven density waves (e.g.,
Ogilvie & Lubow 2002; Miranda & Rafikov 2019a). These
calculations are corroborated using fully nonlinear numerical
simulations of low-mass planets in disks with cooling.

Another key result of this paper is the analysis of the
behavior of the AMF for free waves in disks with cooling/
thermal relaxation in the linear regime. We not only confirm
that the AMF behavior reduces to the adiabatic limit (i.e.,
conserved) for sufficiently long tc, and to the locally isothermal
limit (i.e., proportional to cs

2) for sufficiently short tc, but we
also quantify the conditions on the cooling timescale required
for these regimes to be realized. In particular, we show that the
condition required for the locally isothermal approximation to
be valid is much more stringent than expected from simply
requiring that the cooling timescale tc is smaller than the orbital
timescale. Instead, tc must be a very small fraction (10−3) of
the orbital timescale. We also show that cooling leads to a
strong linear damping of density waves for a range of cooling
timescales. This has significant consequences for disk evol-
ution driven by density waves.

The plan for this paper is as follows. In Section 2, we present
the linear analysis for non-axisymmetric perturbations driven
by an external potential in disks with different thermodynamic
assumptions, deriving the master equation describing the global
structure of perturbations in each case. We numerically validate
the linear analysis using numerical simulations in Section 3. In
Section 4, we analyze the behavior of the wave AMF under the
different thermodynamic assumptions, including a discussion
of the disk torques. In Section 5, we explore the role of cooling
on disk evolution driven by a massive planet. We discuss our
results in Section 6 and summarize our main conclusions in
Section 7.

2. Linear Perturbation Theory with Different
Thermodynamic Assumptions

In this section, we derive different versions of the master
equation for non-axisymmetric linear perturbations driven by
an external potential in two-dimensional disks. We consider
three different thermodynamic assumptions: (i) adiabatic
perturbations in disks with radially varying entropy profiles

(“adiabatic disks”), (ii) isothermal perturbations in disks with
fixed radial temperature profiles (“locally isothermal disks”),
and (iii) perturbations in disks in which the internal energy (or
temperature) is relaxed toward a prescribed profile on a finite
cooling timescale (“disks with cooling”). We progress in a
pedagogical fashion to highlight the differences arising due to
varying thermodynamic assumptions. In each case, we discuss
the reduction to the master equation of Goldreich & Tremaine
(1979) for adiabatic perturbations in uniform entropy disks.

2.1. Basic Assumptions and General Approach

We consider an inviscid two-dimensional gas disk that is
subject to an external potential. The disk is described in polar
coordinates (r, f) by the surface density Σ, height-integrated
pressure = SP cs,iso

2 (where m=c k Ts,iso B
1 2( ) is the isothermal

sound speed), radial velocity ur, and azimuthal velocity uf. The
unperturbed disk is axisymmetric and described by the density
Σ0(r), pressure P0(r), radial velocity =u r 0r,0 ( ) and azimuthal
velocity = Wfu r r r,0 ( ) ( ), where Ω(r) is the rotation frequency.
We consider perturbations to the background state, S = S +0
d d dS = + = +P P P u u u, , r r r0 ,0 , and d= +f f fu u u,0 . For
convenience, we will typically drop the subscripts from the
unperturbed variables. The perturbed quantities are assumed to
have the form of Fourier harmonics, i.e.,

d f d f w= -x r t x r im t, , exp , 1p( ) ( ) [ ( )] ( )

for any perturbed variable δx. Here, ωp is the pattern frequency
of the perturbation. The perturbed variables satisfy the
following dynamical (mass and momentum conservation)
equations:

wd d d- S +
¶
¶

S +
S

=fi
r r

r u
im

r
u

1
0, 2r˜ ( ) ( )

wd d d d- - W = -
S

¶
¶

+
S

S -
¶
¶

Ffi u u
r

P
dP

dr r
2

1 1
, 3r m2

˜ ( )

wd
k

d
d

- +
W

= -
S

+ Ffi u u
im

r

P

2
. 4r m

2
⎜ ⎟⎛
⎝

⎞
⎠˜ ( )

Here, w w= - Wm p˜ ( ) is the Doppler-shifted frequency of the
perturbation, Φm is the Fourier component of the external
potential that has azimuthal number m and rotates at the rate
ωp, and k = W W ¢r r22 2( )( ) is the squared radial epicyclic
frequency (the prime denotes the radial derivative).
In order to provide a full description of behavior of the

perturbations, Equations (2)–(4) must be supplemented with an
equation of state (EoS), which relates P to Σ, as well as to other
thermodynamic quantities. Specifying an EoS provides a fourth
perturbation equation relating δP to δΣ(and potentially other
fluid variables). This equation, along with Equations (2)–(4),
then form a closed system. Through algebraic substitution,
these equations can be combined into a single equation, or
master equation, for one variable only.
We choose as the preferred variable the “enthalpy”

perturbation δh=δP/Σ. Note that δh is strictly equal to the
true thermodynamic enthalpy perturbation only in isentropic
disks. Nonetheless, the variable δh defined in this way serves as
a convenient variable for which a master equation can be
found.
Several useful intermediate results in the derivation of the final

master equation for δh for each of the different thermodynamic
assumptions are given in Appendices A and B. In Appendix A,
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Equations (2)–(4) are expressed with δΣand δP eliminated in
favor of δh only, and in Appendix B, the velocity perturbations
δur and δuf are given in terms of the enthalpy perturbation δh and
its radial derivative. The velocity perturbations expressed in this
way are also useful for the analysis of AMF conservation
presented in Section 4.

2.2. Adiabatic Disks

The master equation for planet-driven waves in an adiabatic,
non-barotropic disk (i.e., with a radially varying entropy S) has
been derived previously (Baruteau & Masset 2008; Tsang
2014). For completeness, we briefly restate its derivation here.

We assume an ideal equation of state

g= - SP e1 , 5( ) ( )

where γ is the adiabatic index, and e is the specific internal
energy, which is related to the adiabatic sound speed of the disk
according to g g g= - =c e c1s,adi

2
s,iso
2( ) . For adiabatic pertur-

bations, the fluid entropy µ SgS Pln( ) is conserved in the
Lagrangian sense, i.e., dS/dt=0. This results in the energy
equation for the total (background + perturbation) P and Σ,

+
S

=
de

dt
P

d

dt

1
0. 6⎜ ⎟⎛

⎝
⎞
⎠ ( )

The energy equation for the perturbed fluid variables is,
therefore,

w d d d- - S = -
S

i P c
c

L
u . 7

S
rs,adi

2 s,adi
2

˜ ( ) ( )

Here, we have defined

g
=

L

dS

dr

1 1
, 8

S
( )

the inverse length scale of entropy variation.
Equations (2)–(4) and (7) are combined into a single second-

order equation for δh, which we represent in the form

d d d+ + = Y
d

dr
h C

d

dr
h C h , 9m

2

2 1 0 ( )
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S
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L

d

dr

r

L D

m

r
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c
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1
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and the forcing due to the planetary potential is

w

w

Y =-
F

- +
S F

+
W SW

+

+ - F

d

dr L

d

dr

r

D

d

dr

m

r

d

dr D L

m

r

N

1
ln

2
ln

1

1 . 12

m
m

S S

m

S S

r
m

2

2

2

2

2

2

⎪

⎪

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎧⎨
⎩

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎫⎬
⎭

˜

˜
( )

Here,

k w= - +D N , 13S r
2 2 2˜ ( )

and

= -
S

-
S

N
dP

dr c

dP

dr

d

dr

1 1
14r

2
2

s,adi
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

is the square of the Brunt–Väisälä frequency.
For barotropic disks (S=constant),  ¥LS and N 0r ,

resulting in the reduction of Equations (10)–(12) to the
Goldreich & Tremaine (1979) equation.

2.3. Locally Isothermal Disks

In the locally isothermal treatment of the disk thermo-
dynamics, a fixed temperature profile T(r) is assumed. This
assumption corresponds to the situation in which T(r) is set by,
e.g., irradiation by the central star, and in which radiative
cooling eliminates any temperature variations very quickly. As
a result, cs,iso

2 is a fixed function of r, eliminating the need for an
explicit energy equation. The locally isothermal approximation
has been widely used in numerical simulations, but to the best
of our knowledge, the full master equation for planet-driven
waves has not been formulated before (Lee 2016 has
previously derived only the homogeneous part of the equation).
As a result of making the locally isothermal assumption, the

EoS (in terms of the total P and Σ) is expressed as

= SP c r , 15s,iso
2 ( ) ( )

and corresponding equation for the perturbed variables is
simply

d d= SP c r . 16s,iso
2 ( ) ( )

Combining Equations (2)–(4) and (16), we find a master
equation for δh (see Equation (9)):

=
S
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and the forcing is
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Here, we have defined

k w= -D , 202 2˜ ( )

and

=
L

d c

dr

1 ln
, 21

T

s
2

( )

the length scale of the variation of µT cs
2 (here cs refers to

either adiabatic or isothermal sound speed).
Note that if we take the limit g  1 in the adiabatic case

(Section 2.2), then D DS , L LS T and N 0r . However,
the Expressions (10)–(12) do not reduce to their locally
isothermal analogues (17)–(19) in this limit. This observation
highlights the singular nature of the locally isothermal
approximation and clearly shows why this approximation leads
to different results when compared to the adiabatic case with
g  1, something that has been pointed out in Miranda &
Rafikov (2019b).

Only in the globally isothermal limit (T=const), when
 ¥LT , Equations (10)–(12) become identical to the

Equations (17)–(19) and reduce to the master equation of
Goldreich & Tremaine (1979).

2.4. Disks with Cooling

The adiabatic and locally isothermal disks considered in the
previous subsections represent limiting cases of a more general
disk thermodynamics, in which the disk temperature is relaxed
toward an equilibrium profile on a finite timescale. We now
derive the generalized master equation for disks with cooling.

Analogous to adiabatic disks, we adopt an ideal equation of
state. We add a cooling term on the right-hand side of
Equation (6), which relaxes e toward a prescribed equilibrium
profile g g= -e r c r 10 s,adi

2( ) ( ) [ ( )] on a cooling3 timescale tc:

¶
¶
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e e
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Note that we allow tc to be an arbitrary function of r.
Equations (6) and (22) lead to the energy equation for the
perturbed fluid variables,
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Note that Equation (23) reduces to corresponding Equation (16)
for locally isothermal disks in the limit t 0c (noting that

g =c cs,adi
2

s,iso
2 ), and to the corresponding Equation (7) for

adiabatic disks in the limit  ¥tc .
Combining Equations (2)–(4) and (23), we find that the

master equation for the general cooling case is (see

Equation (9)):
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with forcing due to the planetary potential
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It is easily verified that Equations (24)–(26) reduce to the
master equation for adiabatic disks (Equations (10)–(12)) for
 ¥tc , and to the master equation for locally isothermal disks

(Equations (17)–(19)) for t 0c , as expected. Note that the
coefficients C1 and C0 (as well as the coefficients of Φm in the
source term Ψm) are real in these limits but are complex in
general for a finite tc.

3. Numerical Validation

The master Equations (9) and (24)–(26) can be used to
analytically determine the details of the density wave excitation
and their subsequent propagation in the linear regime, as has
been done in a number of past studies (Goldreich &
Tremaine 1979; Zhang & Lai 2006; Tsang 2014). However,
in this work, we take a different approach, making use of
numerical solutions of the master equation (following e.g.,
Korycansky & Pollack 1993; Rafikov & Petrovich 2012) to
characterize the waves excited by low-mass planets in
protoplanetary disks.
We consider the interaction of a disk around a star of mass

M* with a planet of mass Mp=M*. The planet is assumed to
have a circular orbit with radius rp and orbital period
tp=2π/Ωp, where W = GM rp p

3 1 2
*( ) . We present numerical

solutions of the different versions of the master equation for
planet-driven waves derived before and describe the basic
global structure of the perturbations. We also present the results
of direct numerical simulations of low-mass planets in disks,

3 The energy source term described by Equation (22) represents both heating
and cooling of the gas toward a fixed temperature. Therefore, it represents
thermal relaxation rather than strictly cooling. However, we will nonetheless
loosely refer to it as “cooling.”
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for which the disk response is well-approximated by the linear
regime, in order to validate our linear analysis.

3.1. Disk Model

The analysis presented in Section 2 is valid for disks with
arbitrary profiles for the disk surface density Σ(r) and
temperature T(r). For the purposes of the following numerical
calculations, it is necessary to adopt a concrete disk model, and
so we choose a simple power-law disk. The unperturbed disk
has an isothermal sound speed (see Section 6.3) given by

= W
-

c r h r
r

r
, 28

q

s,iso p p p
p

2⎛
⎝⎜

⎞
⎠⎟( ) ( )

where hp is the disk aspect ratio, = =h r H r( )
-h r r q

p p
1 2( )( ) , at rp. Here, = WH cs,iso is the pressure scale

height. The parameter q is the power-law index of the disk
temperature µT cs,iso

2 . The surface density profile is

S = S
-

r
r

r
, 29

p

p
p

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where the value of Σp is arbitrary and p is a constant.
Accounting for the radial pressure support, the orbital
frequency and radial epicyclic frequency resulting from
centrifugal balance are, therefore,

W = W - +h r q p1 , 30K
2 1 2[ ( )( )] ( )

k = W - + -h r q p q1 2 , 31K
2 1 2[ ( )( )( )] ( )

where W = GM rK
3 1 2

*( ) is the Keplerian frequency. The
(inverse) length scales of the variation of entropy and
temperature (Equations (8) and (21)) are

g
g

=
- -

= -
L

p q

r L

q

r

1 1
,

1
. 32

S T

( ) ( )

We choose the disk aspect ratio at the location of the planet
hp=0.1, and temperature power-law index q=1. As a result,
the aspect ratio h(r) is independent of r (this a theoretical
convenience and is not necessarily intended to describe realistic
disks). We choose a surface density power-law index p=1,
and (except in our locally isothermal calculations) adiabatic
index γ=7/5.

3.2. Linear Calculations

We compute the linear response of the disk to an orbiting planet
by solving the master equation for either disks with cooling
(Equation (9) with C1, C0, and Ψm given by Equations (24)–(26))
or for locally isothermal disks (in which case C1, C0, and Ψm are
given by Equations (17)–(19)), for modes with different azimuthal
numbers. The solution method, which closely follows that of
Korycansky & Pollack (1993), is described in detail in the
appendix of Miranda & Rafikov (2019a).4 We solve for the
structure of modes with m�mmax, where mmax=80 is
sufficient to achieve convergence of the perturbation structure.

We then construct the full two-dimensional structure of the
perturbed fluid variables by synthesizing them in real space.
For planets on circular orbits, the Fourier harmonics of the

gravitational potential are

F = -
GM

r
b r r , 33m

mp

p
1 2 p( ) ( )( )

where

òa
p

y y
a y a

=
- + +

p


b

m d1 cos

1 2 cos
34m

1 2
0

2

2 2 1 2
( ) ( )

[ ( ) ]
( )( )

are softened Laplace coefficients. We choose for the softening
parameter ò=0.6hp, corresponding to a softening length of 0.6Hp

(representing the effect of the finite vertical extent of the disk).
Note that for a circular orbit, the wave pattern frequency ωp is
equal to the orbital frequency of the planet Ωp for all m. We ignore
the indirect potential term, d GM r rm,1 p p

2, associated with the
orbital motion of the central star, as it has a negligible impact on
the overall perturbation structure (Miranda & Rafikov 2019a).

3.3. Hydrodynamical Simulations

We also run 2D inviscid hydrodynamical simulations of
planet–disk interaction using FARGO3D (Benítez-Llambay &
Masset 2016). The numerical grid extends from rin=0.05rp to
rout=5.0rp with logarithmic spacing in the radial direction and
uniform spacing in the azimuthal direction. The number of grid
cells is Nr×Nf=3004×4096. Wave damping (de Val-
Borro et al. 2006) is applied near the inner and outer
boundaries (r<0.06rp and r>4.5rp) to prevent wave
reflection. The mass of the planet is gradually increased from
zero to Mp over 10 orbits, and its potential is softened with a
length scale 0.6Hp, as in the linear calculations.
We choose either a locally isothermal EoS, or an ideal EoS

with γ=7/5 and cooling (Equation (22)). The same initial
temperature profile is used in both cases, in order to provide the
most direct comparison. Cooling is implemented using a simple
implicit (backward Euler) step performed after the main hydro
step. This implementation is stable and performs as expected
(based on agreement with linear theory) for cooling timescales
at least as small as 10−4 Ω−1.
We choose a planet mass = =-M M M10 0.01p

5
th* , where

=M h M 35th p
3
* ( )

is the thermal mass. Since Mp = Mth, the response of the disk
to the planet is well-approximated by the linear regime—at
least close to the planet. The waves may undergo significant
nonlinear evolution and develop into shocks at large distances
from the planet. However, as described in Miranda & Rafikov
(2019a), the waves excited by a 0.01Mth planet never develop
into shocks in the inner disk, as a result of the partitioning of
the wave AMF into multiple spiral arms (see Rafikov 2002a).
Shocks do develop at large radii in the outer disk, where there
is only one spiral arm carrying all of the AMF.

3.4. Structure of Perturbations

Figure 1 shows the disk surface density perturbation, δΣ (in
terms of the background surface density Σ) for a planet in a
locally isothermal disk and in disks with different dimensionless
cooling timescales β=Ωtc. The chosen values of β, 10−2–102,

4 In setting the outgoing wave boundary conditions using the asymptotic
(WKB) behavior of solutions, the variation of the wave amplitude is modified
as appropriate based on which version of the master equation is being solved.
The amplitude variation follows from the behavior of the wave AMF, see
Section 4.
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along with the locally isothermal case, representing the limit
b  0, represent the full range of behaviors for the different
thermodynamics we consider. The results of both numerical
solutions of the linear master equation (Figures 1(a)–(e)) and
numerical simulations (Figures 1(f)–(j)) are shown. The simula-
tion results show excellent agreement with the linear results, down
to fine details, confirming the validity of our linear analysis, as
well as of our numerical implementation of cooling in the
simulations.

Generically, the perturbations take the form of a single spiral
arm (i.e., an azimuthally narrow maximum of δΣ) in the outer
disk, and multiple spirals (as many as four) gradually emerging
in the inner disk. The spirals are the result of the complicated

interference of perturbations with different azimuthal mode
numbers, which can be understood based on the dispersion
relation for linear density waves (Bae & Zhu 2018; Miranda &
Rafikov 2019a). This basic mechanism is evidently not strongly
affected by the intricacies of the disk thermodynamics.
However, the detailed structure of the spirals is affected by a
particular choice of the nonzero cooling timescale in several
key ways.
The first effect is that the radial range of the waves depends

strongly on the cooling timescale. For fast cooling (β10−2;
Figures 1(a) and (b)) or slow cooling (e.g., β=100;
Figure 1(e)), the waves propagate far into both the inner and
outer disk. That is, the wave amplitude at radii far from the

Figure 1. Fractional surface density perturbation δΣ/Σ, shown in polar coordinates for disks with different thermodynamics: locally isothermal ((a) and (f)), and with
different constant values of the dimensionless cooling timescale β=Ωtc (all other panels). The top row ((a)–(e)) shows the results of numerical solutions of the linear
perturbation Equations ((9) and (17)–(19) in panel (a) and Equations (9) and (24)–(26) in other panels), and the bottom row ((f)–(j)) shows the results of nonlinear
simulations with a 0.01Mth planet (for which the perturbation is well in the linear regime) at 20 orbits. The disk has an aspect ratio hp=0.1, temperature power-law
index q=1, surface density power-law index p=1, and (for the non-locally isothermal calculations) adiabatic index γ=7/5.
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planet is comparable to (or in some cases larger than) the wave
amplitude near the planet. However, for the cases with
β=10−1 and β=1 (Figures 1(c) and (d)), the wave
amplitude decreases with distance from the planet. The waves
are most strongly damped in the inner disk for the case β=1
(Figure 1(d)), for which the amplitude decreases (relative to the
amplitude close to the planet) by nearly an order of magnitude
by the time the waves reach 0.5rp. In the outer disk, waves are
most strongly damped when the cooling time is somewhat
shorter, e.g., the case with β=10−1 (Figure 1(c)). In this case,
the wave amplitude has decreased by an order of magnitude
when the waves reach 2.5rp.

A second effect is that the the overall tightness or pitch angle
of the spirals (i.e., slope of density contours in Figure 1) varies
with the value of β. The spirals are most tightly wound for very
small values of β, and least tightly wound for large values of β.
This is related to the dependence of the effective sound speed
for density waves on the cooling timescale; see Section 6.2 for
a more in-depth discussion.

Finally, the details of the structure of the multiple spirals in
the inner disk—their relative amplitudes, separations, and
azimuthal widths—are modified by cooling. Although we forgo
a detailed analysis of the multiple spiral structure as carried out
in Miranda & Rafikov (2019a), trends regarding the multiple
spiral structure are evident in Figure 1. For β=10−1

–1, the
primary spiral arm (i.e., the one that touches the planet) is
wider than it is for either smaller or larger values of β, and the
primary and secondary spirals are more widely separated. The
case with β=10−1 represents an extreme modification of the
spiral structure; far in the inner disk (r0.1rp), the surface
density is almost a pure m=2 sinusoid. This pattern is very
distinct from the narrow, azimuthally concentrated spiral arms
found when β is very large or very small; it will be discussed
further in Section 6.2.

4. Angular Momentum Flux

We can gain insight into the behavior of density waves by
considering the behavior of the wave AMF,

d f d f f= S fF r r r u r u r d, , , 36J r
2 ∮( ) ( ) ( ) ( ) ( )

where δur and δuf=uf−rΩ are the velocity perturbations.
For a Fourier mode with azimuthal number m, the mode
AMF is given in terms of the complex perturbations
d d fµfu r u r im, expr ( ) ( ) ( ) by

p d d= S fF r u uRe . 37J
m

r
2 *( ) ( )

The total AMF FJ is found by summing over all of the modes,

å=
=

¥

F F . 38J
m

J
m

1

( )

We wish to describe the behavior of the AMF for free waves,
i.e., not subject to an external potential. Evolution of the AMF
of free waves is tied to wave-driven evolution of the disk (see
Sections 5 and 6.4). Planet-excited waves can be considered
free at locations far from the planet, where the torque density,

f
f= - S

¶F

¶
dT

dr
r d , 39

p∮ ( )

which describes wave excitation, is negligible (here, Φp is the
gravitational potential of the planet). Practically speaking, this

is satisfied beyond about 2–3 scale heights Hp from the planet
(Dong et al. 2011b; Rafikov & Petrovich 2012).
Our goal is to derive a conservation law for the Fourier AMF

FJ
m of free waves for each of the thermodynamic assumptions

described in Section 2. The general strategy is to express FJ
m

(Equation (37)) in terms of δh (see Appendix B), so that the
homogeneous version of the master Equation (9) for δh and
either Equations (10)–(11), (17)–(18), or (24)–(25) (with
Ψm=0) can be used to ascertain the behavior of FJ.

4.1. Adiabatic Disks

For adiabatic disks, plugging δur and δuf given by
Equations (80) and (81) into the Expression (37) for FJ, we
find that the AMF for free waves is

p
d d=

S ¢F
mr

D
h hIm , 40J

m

S

*( ) ( )

where the prime denotes the radial derivative. A global
conservation law for FJ can be found by taking the complex
conjugate of the general homogeneous version of the master
Equation ((9) with Ψm=0), multiplying by δh, and taking the
imaginary part of the resulting equation, leading to

d d d d+ =¢¢ ¢h h C h hIm Im 0. 411* *( ) ( ) ( )

On the other hand, differentiating (40) and making use of the
Expression (10) for C1 for adiabatic disks, one can easily see
that Equation (41) is equivalent to

=
dF

dr
0. 42J

m

( )

Therefore, FJ
m is constant or conserved (i.e., independent of r)

in adiabatic disks (Goldreich & Tremaine 1979). Since the
AMF of each wave mode is conserved, the total wave AMF
must also be conserved:

=
dF

dr
0. 43J ( )

4.2. Locally Isothermal Disks

For locally isothermal disks, using Expressions (82) and (83)
for δur and δuf in Equation (37), we find that FJ is given by

p
d d=

S ¢F
mr

D
h hIm , 44J

m *( ) ( )

i.e., the same as for adiabatic disks (Equation (40)) but with
D DS . We follow the same procedure as for the case of

adiabatic disks to find a global conservation law for FJ. In this
case, C1 is given by Equation (17). As a result, we see that
Equation (41) is equivalent to

=
d

dr

F

c
0. 45J

m

s
2

⎛
⎝⎜

⎞
⎠⎟ ( )

Therefore, FJ
m is not constant, but instead proportional to cs

2 in
locally isothermal disks (stated without a proof in Lee 2016).
Since Equation (45) applies to all wave modes, the total wave
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AMF obeys the same conservation law:

=
d

dr

F

c
0, 46J

s
2

⎛
⎝⎜

⎞
⎠⎟ ( )

generally disagreeing with Equation (42) even when g  1 in
the latter. Only in the limit of a globally isothermal disk
(  ¥LT ) Equation (46) reduces to Equation (43).

4.3. Disks with Cooling

For disks with cooling, using Equations (84) and (85), we
find that the Fourier AMF is given in terms of dh by

p

g b
g b d d

gb d d

gb
w

d
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˜
˜
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In the limit t 0c , we recover Equation (44) and for  ¥tc ,
we recover Equation (40).

The complexity of Equations (24)–(26) and (47) precludes us
from finding a global conservation law for the Fourier AMF, as in
the adiabatic and locally isothermal cases. Instead, we use a local
WKB analysis to determine the approximate behavior of FJ

m (e.g.,
Takeuchi et al. 1996), the details of which are given in
Appendix C. The result is

ò g w b
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where

g wb
gw b

=
- W

W +
k kIm

1

2
Re , 49

2 2 2
( ) ( ) ˜

( ˜ )
( ) ( )

=k
D

c
Re , 50

1 2

s,eff
( ) ∣ ∣ ( )

are the imaginary and real parts of the radial wavenumber k,
b = Wtc is the dimensionless cooling time, and r0 is an arbitrary
reference radius. We have introduced the effective sound speed

g w b
w b

=
W +
W +

c c , 51s,eff

2 2 2 2

2 2 2

1 4

s,iso

⎛
⎝⎜

⎞
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˜
˜

( )

which varies from cs,iso for β=0 to g =c c1 2
s,iso s,adi as

b  ¥. Equation (48) reduces to =FJ
m constant in the adiabatic

limit b  ¥ or the globally isothermal limit  ¥LT and
g = 1, and to µF cJ

m
s
2 in the locally isothermal limit b  0.

The accuracy with which the WKB analysis reproduces the true
behavior of the AMF components is examined in Appendix C.2.

Note that Equation (48) has explicit dependence on the
azimuthal number m, unlike the equivalent expression for adiabatic
(Equation (42)) or locally isothermal disks (Equation (45)).
Therefore, the behavior of the total FJ, found by summing up
the contributions for all azimuthal numbers, does not follow
trivially from Equation (48). In general, the variation of FJ depends
on the relative magnitudes of all of the FJ

m components at some
reference radius.

4.3.1. Inner Disk

In general, even the WKB Equation (48) must be evaluated
numerically to determine the behavior of FJ

m. However, its
asymptotic behavior in the inner disk can be expressed in a
simple analytic form if we assume that β is a constant, i.e., that
the cooling timescale is a fixed fraction of the orbital period, as
in our numerical calculations. A simple expression for the
behavior of FJ

m in the inner disk is of interest because of the
complex wave phenomena that occur there (e.g., multiple spiral
arms). The behavior of FJ

m in the outer disk cannot be described
by a simple expression for constant β, and so we leave detailed
characterization of the AMF evolution in this region to the
numerical results presented in Section 4.4.
At small radii in the inner disk, Ω ? ωp and, hence,

w » - Wm˜ . Making use of this approximation, the WKB
Equation (48) reduces to

x=
g b+

F r F r
c r

c r
g

r

r
exp , 52J
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with h0=h(r0), and

=
- - ¹

=

- -
g x

q x q
x q

2 1 1 1 ,
ln 1 .

54
q1 1 2⎧⎨⎩( ) ( ) [ ] ( )

( )
( )

( )

For the case q=1, further simplification is possible:

=
x g b- +

F r F r
r

r
. 55J

m
J
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0
0
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There are two distinct contributions to the radial variation of the
wave AMF for free waves in disks with cooling (Equation (48)).
The first is related to the disk temperature profile, described by the
term in Equation (48) involving LT. As typically, the disk
temperature varies on a global scale, i.e., LT∼r, this usually
constitutes a slow variation. The second contribution formally
describes a linear damping, as it is associated with an imaginary
part of the radial wavenumber (Equation (49)). Damping occurs
because thermal relaxation counteracts the adiabatic heating/
cooling associated with compression/expansion of a fluid
element, reducing the restoring action of the pressure for the wave.
We characterize this damping by examining the asymptotic

behavior of the WKB AMF FJ
m in the inner disk, as r 0.

Using Equation (52), we define the characteristic length scale
of the radial variation of the AMF,

=
-

l
d F

dr

ln
. 56F

m J
m 1⎛

⎝⎜
⎞
⎠⎟ ( )

Note that the sign of lF
m is important, as it indicates whether the

magnitude of FJ
m increases or decreases with radius. For inward

traveling waves in the inner disk, a positive lF
m means that FJ

m

decreases as the wave propagates toward the inner disk, and a
negative lF

m means that it grows as the wave propagates inward.
We first focus on the case of a disk with a q=1 temperature

profile, which has a constant aspect ratio h0=h= const in
Equation (53). In this case, Fm has a power-law dependence on
r in the inner disk (Equation (55)). Therefore, AMF varies with
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a length scale proportional to r, i.e., l rF
m is independent of

radius. Specifically, from Equation (55), we have

x
g b

= -
+

-
l

r m

1

1
. 57F

m

2 2 2

1⎛
⎝⎜

⎞
⎠⎟ ( )

Because of this simplification, a disk model with q=1 serves
as a convenient case for analysis. Figure 2 shows l rF

m as a
function of β for waves with different azimuthal numbers in the
inner disk for a disk with q=1 and aspect ratio h=0.1. The

azimuthal numbers shown are m=2–10, which carry most of
the AMF for planet-excited waves in a disk with this aspect
ratio (note that m= 1 waves are evanescent in the inner disk).
In Figure 2(a), we consider the case with γ=1.4,

appropriate for protoplanetary disks. We highlight several
key features of the behavior of the FJ

m illustrated by this figure.
First, for this γ, there is always a range of values of β for which
l rF

m is positive and 1; for the plotted values of m this range
falls into an interval b-  10 12 , with higher m modes
reaching lower l rF

m . This means that FJ
m decreases rapidly

toward the inner disk, i.e., waves are damped, with a damping
length significantly shorter than r, for all values of m.
Second, for large values of β (1), lF

m is positive and
increases with β. For β 10, >l r 1F

m , corresponding to weak
damping, and for β 100, l r 10F

m , so that the waves are
effectively undamped and the adiabatic limit is recovered. Note
also that lF

m is nearly independent of m for values of β in this
range.
Finally, for small values of β (depending on m but 10−1),

lF
m is negative, so that FJ

m grows as the wave propagates toward
the inner disk. For β≈10−4, » -l 1F

m (i.e., µF r1J
m ) for all

values of m that we consider, so that the locally isothermal limit
is recovered. Note that even for β as small as 10−3, lF

m still
shows significant variation with m, meaning that the locally
isothermal limit is not valid.
The details of this behavior can be understood by examining

Equation (57). We find that the minimum positive lF
m, i.e., the

shortest possible damping length, occurs when β=βcrit, where

b
g

»
m

1
. 58crit 1 2

( )

Note that, aside from the order unity factor γ1/2, βcrit can be
interpreted as an approximate equality of the cooling timescale
tc and 1/(mΩ), the time for a fluid element to cross through one
wavelength of the m-fold perturbation (in the inner disk).
When β=βcrit, the damping coefficient ξ in Equation (52)

reaches

x
g

g
=

- -m

h

1 1

2
, 59max

2 1 2

3 4

( )( ) ( )

and the shortest possible damping length is

x
g

g
» =

- -
l

r H

m

2

1 1
. 60m

d,min
max

3 4

2 1 2( )( )
( )

Note that µ -l mm
d,min

1 for large m, just as observed in Figure 2.
For planet-driven waves in a disk with aspect ratio hp, the
dominant mode has » » -m m h2 p

1
* ( ) (Ogilvie & Lubow

2002). For this mode, b g» h2crit p
1 2. For γ=7/5 and

h=0.1, the minimum damping length for the m* mode is
ld,min≈1.3Hp, i.e., very short.
Using Equation (57), we also find that the asymptotic

behavior for large values of β is

g b
g

»
-b b

l

r

h

1
, 61F

m 3 2

crit

⎛
⎝⎜

⎞
⎠⎟ ( )


which is independent of the value of m. This behavior is in
perfect agreement with the results shown in Figure 2.

Figure 2. Asymptotic behavior of FJ
m, the AMF of Fourier modes, for free

waves in the WKB limit in the inner disk, where the wave pattern frequency is
slow compared to the orbital frequency. The length scale lF

m (defined by
Equation (56) and normalized by r) associated with the variation of FJ

m is
shown as a function of the dimensionless cooling timescale β for different
azimuthal mode numbers m (different colored lines), and for different values of
the adiabatic index γ (different panels). The disk has a temperature power-law
index q=1 and aspect ratio h=0.1. Solid lines denote that lF

m is positive, so
that FJ

m decreases toward the center of the disk, and dashed lines denote that lF
m

is negative, hence, FJ
m increases toward the center. The dotted line in each panel

(labeled in (b)) indicates the asymptotic behavior for large β given by
Equation (61).
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Additionally, lF
m becomes negative for ββ±, where

b
g

»
-


h

m1
. 62

2( )
( )

For planet-driven waves with m=m* carrying most of the
angular momentum,

b
g

»
-

 m h
4

1
, 63p

3
*( ) ( )

which is about h10 p
3 for γ=7/5.

This value of the cooling rate has a very important meaning: it
sets an upper limit on the value of β below which the AMF
behavior begins to converge to the locally isothermal regime. One
can see from Figure 2 that β has to be at least an order of
magnitude smaller than the value b m*( ), at which lF

m changes
sign, for l rF

m to finally converge to−1, which signals the ultimate
transition to the locally isothermal behavior. Thus, it is natural to
expect that the locally isothermal behavior can be reproduced in
disks with cooling only when b b ~ m h0.1 p

3
*( ) . This point is

further discussed in Section 6.5.
The case of a smaller value for the adiabatic index, γ=1.1

(chosen only to explore the dependence on γ), is shown in
Figure 2(b). We see that the behavior of FJ

m is qualitatively very
similar to the case with γ=1.4. In particular, there are regions
of strong wave damping for β in the range 10−2β1. In
agreement with Equation (60), the damping is weaker, i.e.,
l rF

m is larger by a factor of a few as compared to the case with
γ=1.4, but nonetheless l r 1F

m  for these values of β. In
this case, the locally isothermal limit is reached for
b ´ - 3 10 3—larger than the limiting value for γ=1.4, in
agreement with Equation (62).

Finally, for γ very close to unity, γ=1.01 (see Figure 2(c)),
the damping is very weak for all values of β. The behavior of
FJ
m transitions almost monotonically from the locally isother-

mal limit to the adiabatic limit in this case. Note that for this γ,
the locally isothermal limit is valid for β0.03. This is much
larger than the limiting value for γ=1.4, again due to the
g - -1 1( ) dependence of β± (Equation (62)), but it is still =1.
The preceding analysis has focused on the case of a q=1

temperature profile. For ¹q 1, for which l rF
m varies with r,

the behavior is qualitatively similar to the q=1 case shown in
Figure 2 but quantitatively modified in two key ways (as
described by Equations (52) and (56)). First, since the
minimum damping length ld,min is proportional to the local
scale height H(r) (see Equation (60), which is valid for general
values of q), l rd,min is proportional to the local aspect ratio
h(r). This is independent of r for q=1, but µ -r q1 2( ) in
general. Second, for small values of β, in the nearly locally
isothermal limit, in general,  -l r q1F

m for all values of m.
The limiting value of β at which this transition occurs is still
given approximately by Equation (62), but modified by a factor
of q. This is a relatively minor effect, since q lies within a fairly
narrow range of values (i.e., varying by tens of percent) for
most physically reasonable disk models.

4.4. Numerical Results

Profiles of the Fourier AMF FJ
m for planet-excited waves are

shown in Figure 3, for disks with varied thermodynamics: a
locally isothermal disk, and disks with cooling characterized by
different values of β ranging from 10−4 to 102. The AMF is

expressed in terms of the characteristic scale

= S W-F
M

M
h r , 64J,0

p
2

p
3

p p
4

p
2

*

⎛
⎝⎜

⎞
⎠⎟ ( )

associated with the total angular momentum transfer at Lindblad
resonances (Goldreich & Tremaine 1980; Ward 1997). In each
panel, the results of numerical simulations (Section 3.3) for
M Mp th , when the perturbation is well in the linear regime, are
shown as solid lines, with different colors representing different
azimuthal mode numbers. The dashed lines show the results of
linear theory obtained by numerically solving the master
Equation (9) with the isothermal (Equations (17)–(21)) or cooling
(Equations (24)–(27)) inputs and fully accounting for the forcing
by the planetary potential (see Section 3.2). Clearly, there is
excellent agreement between the theoretical and numerical results,
again validating our theoretical analysis. Note that the linear
solutions self-consistently capture the behavior of FJ

m in the
vicinity of the planet where wave excitation occurs. Beyond this
region, the WKB approximation (see Section 4.3) provides an
excellent description of the evolution of FJ

m, as we demonstrate in
Appendix C.2. Profiles of the total AMF (resulting from the sum
of all Fourier modes) are shown in Figure 4(a) (for the same cases
as shown in Figure 3). Here, the solid and dashed lines again
represent the results of numerical simulations and linear
calculations, respectively, which show close agreement with one
another.
We first examine the AMF in the inner disk. The AMF

behavior for a locally isothermal disk (Figure 3(a)), for which
µ -F rJ

m 1 (for q= 1) for all m, is reproduced very closely for
the case β=10−4 (Figure 3(b)). The case with β=10−3

(Figure 3(c)) is qualitatively very similar, although there are
slight differences; the different FJ

m components and, hence, the
total FJ (see Figure 4(a)), do not increase toward the inner disk
quite as steeply.
For β=10−2 (Figure 3(d)), the results are substantially

different. In this case, the damping rates of the different FJ
m are

very different from one another. For modes with m5, FJ
m

increases toward the inner disk, while for m  5, it decreases as a
result of cooling-related damping. As a result, the total AMF (see
Figure 4(a)) is approximately constant in the inner disk. The
approximate behavior of the total AMF can be qualitatively
deduced from the behavior of FJ

m*, where =m 5* (for hp=0.1)
is the dominant mode for planet-excited waves. For β=10−1

(Figure 3(e)), all of the FJ
m decrease toward the inner disk

( >l 0F
m ), at a rate that increases with m. The resulting total AMF

therefore decreases rapidly toward the inner disk.
For β=1 (Figure 3(f)), the modes all have similar damping

rates. For β=10 (Figure 3(g)), all of the FJ
m behave essentially

the same, exhibiting only a weak decay toward the inner disk.
Finally, for β=100 (Figure 3(h)), the AMF of all of the modes
is approximately constant and, hence, so is the total AMF,
effectively reproducing the behavior expected in a purely
adiabatic disk.
In the outer disk, the behavior of the AMF is somewhat

simpler. This is because the effects of cooling can only act to
make FJ

m decrease with r in the outer disk (it would decrease
even in the locally isothermal case). This is a result of either the
AMF following or nearly following the global temperature
gradient, e.g., for b = - -10 104 3– , or due to linear damping,
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e.g., for β=10−2
–10. For intermediate values of β, the

different modes have different damping rates in the outer disk,
although the differences are less pronounced than in the
inner disk.

Taken together, the results for the AMF illustrate the fact
that the cooling time must be extremely short relative to the
orbital timescale, with β10−3, for the locally isothermal
approximation to provide an accurate description of density

Figure 3. Profiles of the Fourier components of the wave AMF FJ
m, in terms of the characteristic scale FJ,0 (Equation (64)), for a disk with adiabatic index g = 7 5,

aspect ratio =h 0.1p , temperature power-law index q=1, and different thermodynamics: locally isothermal and cooling with different values of β. Solid lines of
different colors, corresponding to different azimuthal numbers m, are the results of numerical simulations with a 0.01Mth planet at 20 orbits. The corresponding dashed
lines are the FJ

m components for planet-excited waves computed from linear theory.
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waves in the linear regime. The AMF behavior for purely
adiabatic disks is reproduced for β  10. There is, therefore, a
very wide range of cooling times, with β spanning about four
orders of magnitude, for which neither the adiabatic nor
locally isothermal approximations provide a good description
of the density wave dynamics.

4.4.1. Torque

Our analysis has so far been primarily concerned with the
radial variation of the wave AMF due to cooling that occurs
outside the wave excitation zone. However, as seen in Figure 4,
the “initial amplitude” of FJ (i.e., its value a few scale heights
away from the planet) varies with the cooling timescale. This is
indicative of a variation of the torque exerted on the disk with β.
As this torque is eventually responsible for planet migration, we
would like to quantify how it is affected by cooling. The net
torque on the disk is

ò=T
dT

dr
dr, 65

r

r

tot
in

out

( )

where dT/dr (Equation (39)) is the torque density. The orbital
evolution of the planet is described by = -L Tp tot , where

=L M GM rp p p
1 2

*( ) is the angular momentum of the planet.
There are three different contributions to the net torque.

These are the one-sided Lindblad torques TLR (where + and −
refer to the outer and inner disk), resulting from wave
excitation at Lindblad resonances, and the corotation torque
TC, associated with angular momentum transfer at the
corotation radius rC, where Ω(rC)=Ωp (e.g., Goldreich &
Tremaine 1979). These torques are computed using profiles of
the total (i.e., summed over m) AMF FJ and torque density dT/
dr computed from linear theory. We forgo an analysis of the
torques in our numerical simulations, as the corotation torque is
subject to oscillations and saturation (e.g., Paardekooper &
Papaloizou 2008) on timescales much longer than we have
simulated.
In adiabatic disks, the one-sided Lindblad torques are

identified as the asymptotic values of FJ at large distances
from the planet. This is a consequence of the conservation of
AMF for free waves—in adiabatic disks the wave AMF
changes only as a result of excitation by the planetary potential,

Figure 4. The total AMF FJ for planet-driven waves in disks with different thermodynamics (the same cases as in Figure 3). The dashed lines, which are the same in
both panels, are computed using linear theory. The solid lines are the results of numerical simulations, with a 0.01Mth planet in (a), and a 0.3Mth planet in (b), taken at
20 orbits. The filled points in (a) highlight the curve for the locally isothermal simulation, in order to help distinguish it from the other similar curves for small values
of β.
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described by dT/dr, except in the immediate vicinity of the
corotation resonance, where it experiences a discontinuous
jump. As we have shown, cooling results in additional radial
variation of FJ, described by the difference between dFJ/dr and
dT/dr. Therefore, the one-sided Lindblad torques can be
computed via the following formula:

ò=  -


T F r
dF

dr

dT

dr
dr. 66J

r

r
J

LR out in
C

out in
⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

The second term in Equation (66) compensates for the decay (or
growth) of AMF due to cooling that occurs between just outside
the corotation radius and the disk edge. The lower limit of
integration in this term is =  r rC C , with 0<ò0.005rp,
chosen to cut out the jump in FJ at rC due to the corotation torque
(which occurs over a finite radial distance in our numerical
results). For b  ¥, the integrand of the second term in
Equation (66) vanishes, and we recover the usual definition of the
one-sided Lindblad torque for adiabatic disks.

The total torque due to both the outer and inner Lindblad
resonances—the so-called differential Lindblad torque—is then

= ++ -T T T , 67LR LR LR ( )

and finally the corotation torque is given by

= -T T T . 68C tot LR ( )

The results of this decomposition are shown in Figure 5.
Results for several additional values of β not shown in
Figures 3 and 4 are displayed in order to fully illustrate the
behavior of the torques as a function of β. All of the
components of the torque shown in Figure 5 exhibit
approximately the same dependence on β. Each one is constant
for β10−1, undergoes a moderate decrease as β is increased
to ≈100, and is again constant for β 100. In the locally
isothermal limit (b  0), the torques are 30%–35% larger than
in the adiabatic limit (b  ¥). This is related to the variation
of the effective sound speed cs,eff (see Equation (51)) from cs,iso
to cs,adi as β is increased. The smaller cs,eff for small values of β
results in a stronger response of the disk to the planetary
potential and, therefore, a larger torque. Note that the total
torque on the disk (Figure 5(d)) is always positive, resulting in
inward migration of the planet.

Analytic studies of wave excitation at Lindblad resonances
(Goldreich & Tremaine 1980; Ward 1997) find the character-
istic scale of the one-sided Lindblad torques TLR to be FJ,0

(Equation (64)), while the characteristic scale of the differential
Lindblad torque TLR should be smaller by a factor hp. Hence,

µ -T cLR s
3 and µ -T cLR s

2. However, in practice, TLR and TLR
are found to be similar in magnitude when hp≈0.1
(Ward 1997; Papaloizou et al. 2007) as we have considered in
this work. As such, all of the torques in Figure 5 are shown in
terms of the differential Lindblad torque scale hp FJ,0.

The aforementioned scalings suggest that b T 0LR( )
b g ¥ »TLR

3 2( ) and b b g  ¥ »T T0LR LR( ) ( ) . In
our calculations, TLR obeys the expected scaling, whereas TLR
exhibits a somewhat weaker variation with β than expected.
This may be related to the the relatively large value of hp used,
or the softening of the planetary gravitational potential in our
calculations, which is not included in many analytic studies.
We note that our value for TLR in the adiabatic limit is in good
agreement (within a few percent) with the adiabatic Lindblad
torque formula given by Paardekooper et al. (2010), which is

based on numerical solutions of the linear perturbation
equations (including softening).
We conclude that cooling has only a modest effect (tens of a

percent) on the magnitude of the linear torque associated with
planet migration for the disk model we have considered.
However, more dramatic effects associated with cooling might
be possible. In particular, the corotation torque, which is prone
to becoming nonlinear even for low-mass planets, is sensitive
to the entropy gradient of the disk, and its behavior has
previously been shown to be sensitive to cooling. Reversal of
the direction of migration is possible when these effects are
taken into account (Paardekooper & Papaloizou 2008). A
thorough exploration of this topic, requiring an exploration of
different disk profiles and a full consideration of nonlinear
effects, is beyond the scope of this work.

5. Massive Planets and Disk Evolution

Simulations shown in the previous section explored the
linear regime of the planet–disk coupling. We now explore
numerically the role of cooling on the planet–disk interaction in
the presence of the nonlinear effects. It is well known that
density waves launched by massive planets in adiabatic disks
undergo rapid nonlinear evolution resulting in their shocking
and dissipation (Goodman & Rafikov 2001; Rafikov 2002a;
Dong et al. 2011a). Our goal will be to explore the interplay
between the wave evolution due to cooling (which is a linear

Figure 5. Different components of the torque exerted by the planet on the disk,
computed using linear theory, as a function of β=Ωtc: (a) magnitude of the
one-sided Lindblad torques TLR

± (note that <-T 0LR ), (b) differential Lindblad
torque TLR, (c) corotation torque TC, and (d) total torque Ttot. See Section 4.4.1
for details. The disk has an aspect ratio hp=0.1, temperature and surface
density power-law indices q=1 and p=1, respectively, and adiabatic index
γ=7/5.
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phenomenon) and due to the nonlinear effects. Another goal is
to examine the effect of the different levels of cooling on the
long-term evolution of the disk—the variation of its surface
density caused by the deposition of the angular momentum of
the density wake.

We consider a planet mass that is a moderate fraction of the
thermal mass, Mp=0. 3Mth. The setup for these simulations is
the same as described in Section 3.3, except that we reduce the
numerical resolution by a factor of two, to Nr×Nf=1502×
2048, in order to facilitate a longer evolution timescale of 500tp.
This is long enough for the surface density profile of the disk to
undergo significant evolution due to the planet-driven waves. We
make use of profiles of the wave AMF as a diagnostic of the
wave-driven evolution of the disk (e.g., Miranda & Rafikov
2019b). As before, we consider both locally isothermal disks and
disks with cooling with several values of β, which are
representative of the variety of different behaviors of FJ in the
linear regime studied before (Section 4.4).

5.1. AMF Profiles

Figure 4(b) shows the profiles of the total AMF at 20 orbits
(solid lines), along with the AMF profiles computed using
linear theory (dashed lines). For the locally isothermal case, FJ

begins to deviate from the linear prediction at about one or
two scale heights from the planet, which is consistent with the
theoretical shocking distance » »-l M M H1.6 psh p th

2 5( )
(Goodman & Rafikov 2001). Beyond this distance, the actual
FJ is always smaller than the linear FJ, as a result of nonlinear
dissipation. In most other cases (i.e., for different values of β),
FJ also begins to drop below the linear prediction at a distance
≈lsh from the planet.

Two particular cases shown in Figure 4(b), locally
isothermal and β=10−2, have very similar AMF profiles,
despite the fact that the corresponding linear AMF profiles are
quite different. Given that the linear AMF for the locally
isothermal case is always larger than it is for the case with
β=10−2, this indicates that in the locally isothermal case, the
waves experience more nonlinear dissipation, resulting in the
actual FJ being comparable between these two cases almost
everywhere in the disk. This similarity is probably coincidental,
resulting from the particular strength of the nonlinear
dissipation for our chosen planet mass and would not occur
for a different mass. Note, however, that, regardless of these
details, the fact that the AMF profile is nearly the same for
these two cases indicates that the resulting wave-driven disk
evolution should also be nearly the same.

The most important feature of Figure 4(b) is the fact that for
the case with β=10−1, the AMF profile is not substantially
different from the corresponding linear AMF profile. This is
also true for case with β=1, although, mostly in the inner disk
—there is some deviation in the outer disk. This indicates that
nonlinear dissipation plays a much smaller role in the evolution
of the density waves in these cases, i.e., for values of β in this
range. Instead, evolution of the wave AMF is mostly controlled
by the linear damping associated with cooling. Evidently, this
damping is so strong that it is the dominant source of
dissipation even for a fairly massive planet such as the one
considered here (0.3Mth).

The fact that nonlinear dissipation is subdominant to linear
dissipation for b » -10 1–1 suggests that wave-driven evol-
ution of the disk operates differently for disks with dimension-
less cooling timescales in this range. We may therefore expect

one of two different types of disk evolution, one associated
with nonlinear wave dissipation (for very long or very short
cooling timescales), and one dominated by linear wave
dissipation (in the aforementioned range of β). The exact
separation between these two regimes in terms of the cooling
timescale should be a function of Mp/Mth.

5.2. Surface Density Evolution

Figure 6 shows the evolution of the disk surface density profile
for the different β cases shown in Figure 4(b). There is a distinct
dichotomy in the resultant disk structures. For sufficiently short
and sufficiently long cooling times (Figures 6(a), (b), and (e)), for
which wave dissipation happens primarily through shocks, the
disk exhibits multiple gap and ring structures. For these cases,
three gaps (surface density minima) and four rings (surface
density maxima) are formed. Note that the surface density
perturbation in the case of β=10−2 is almost the same as in the
isothermal case, which is to be expected based on Figure 4(b) and
the discussion in the previous section.
For the intermediate cooling times, for which linear damping

is more important than nonlinear dissipation (β=10−1 and
β=1; Figures 6(c)–(d)), the resulting structure is dominated
by a single wide gap around the orbit of the planet. In these
cases, the gap extends from about 0.5rp to about 1.5rp, so that

Figure 6. Evolution of the disk surface density for Mp=0. 3Mth in disks with
different thermodynamics. The azimuthally averaged surface density perturba-
tion δΣ, relative to the initial surface density profile Σ0, is shown every 50
orbits for 500 orbits.
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its fractional width Δr/r is ≈1. Some hints of additional
structure are present, but the multiple ring/gap structure is
highly suppressed.

For the cases that develop multiple ring/gap structures, the
features are more pronounced, i.e., the gaps are deeper, for
short cooling timescales as compared to long cooling time-
scales. This is a consequence of the fact that for short cooling
timescales (i.e., in locally isothermal or approximately locally
isothermal disks), waves in the inner disk gain AMF from the
background disk flow at larger radii and carry it to small radii,
where it is returned to the disk through the nonlinear
dissipation. This results in stronger features, as compared to
disks with long cooling timescales, i.e., effectively adiabatic
disks, for which waves do not gain AMF from the disk as they
propagate but can only dissipate their initial AMF. This
difference in behaviors has been explored in Miranda &
Rafikov (2019b).

6. Discussion

6.1. Implications for Protoplanetary Disks

In protoplanetary disks, thermal relaxation is mediated by a
combination of (i) radiative cooling via thermal dust emission
from the surface of the disk and (ii) radiative diffusion along
the plane of the disk. In general, the full energy evolution
equation describing one or both of these processes may be
linearized, resulting in a cooling law of the form given by
Equation (22). The specific form of the resulting cooling
timescale tc or β depends on the details of the cooling processes
under consideration. Note that, in general, β must vary with the
distance from the star, unlike the idealized constant β scenario
considered in this work. However, our theoretical framework is
not limited to the constant β case and can be applied to
arbitrary β(r) profiles.

In the case of radiative cooling from the surface of the disk,
estimates of the cooling timescale s~ Se Teff

4( ) (where Teff is
the disk effective temperature) for typical disk parameters lead
to values of β ranging from ∼100 at several astronomical units
to ∼10−2 at 100 astronomical units (e.g., Zhu et al. 2015). We
have shown (see Section 4.4) that in the linear regime, the
locally isothermal approximation is applicable only for
β10−3. For more massive planets, β=10−2 is only
marginally compatible with the isothermal description (see
Section 5.1). Based on this, we conclude that even in the outer
regions of protoplanetary disks, radiative cooling is not
sufficiently rapid for the locally isothermal approximation to
provide an accurate description of wave dynamics.

However, in the optically thick inner disk (radii less than a
few tens of astronomical units), radiative diffusion may instead
be the dominant source of cooling. In this case, the cooling
timescale in Equation (22) should be identified with the
diffusion timescale (ηk2)−1, where η is the radiative diffusion
coefficient and k is the radial wavenumber of the perturbation
(e.g., Lin & Youdin 2015). Note that in this case, the cooling
timescale depends on the perturbation wavelength. In the
context of the linear theory presented in this work, this
translates to a dependence of the cooling timescale on the
azimuthal mode number m. Rather than a universal cooling
time, each Fourier harmonic of the internal energy is thermally
relaxed on its own cooling timescale t mc, .

It can be shown that the radiative diffusion cooling timescale
is smaller than the (optically thick) radiative cooling timescale

by a factor (kH)2∼m2 for a density wave with azimuthal
number m. For planet-driven waves with a characteristic
azimuthal number~ ~-h 10p

1 , this suggests that the value of β
associated with radial diffusion may range from ∼1 at several
astronomical units, down to some minimum value, perhaps
∼10−3, occurring at the optically thick/thin transition radius.
Therefore, when cooling is mediated by thermal diffusion, the
locally isothermal approximation may provide an accurate
treatment of wave dynamics in the outermost regions of
protoplanetary disks, but not at smaller radii, where a full
consideration of the effects of cooling is indispensable. In a
forthcoming work (R. Miranda & R. Rafikov 2020, in
preparation) we will explore the evolution of density waves
using a detailed prescription for the cooling timescale, which
accounts for both radiative cooling and diffusion, as appro-
priate for realistic protoplanetary disks.

6.2. Implications for Multiple Spiral Arms

In Section 3.4, we pointed out several modifications of the
multiple spiral arm structure of planet-driven density waves in
disks with cooling. We now discuss the reasons behind these
modifications in the context of AMF conservation.
As we noted, the basic fact that multiple spirals are formed in

the inner disk is not modified by cooling. Multiple spiral arms
are formed as a consequence of the mode interference governed
by the dispersion relation for spiral density waves. This
dispersion relation is not strongly modified by cooling (see
Equation (50)), with one key exception: the effective sound
speed for density waves varies from cs,iso for small values of β
to cs,adi for large values of β. As a result, the pitch angle of the
spirals gets effectively larger by a factor γ1/2 (i.e., 18% larger
for γ=7/5) for adiabatic disks as compared to locally
isothermal disks, see Figures 1(a) and (e).
In regards to this fact, note that in Miranda & Rafikov

(2019a), we pointed out that the spiral structure is nearly
independent of the value of γ for adiabatic disks. This
statement applies when the comparison is made between disks
that have the same adiabatic sound speed profile, i.e., for which
γT(r) is the same. If, instead, we consider disks with different
values of γ but with the same temperature profile T(r) (i.e., the
same isothermal sound speed profile), then the spiral structure
in the linear regime does in fact depend on the value of γ.
Specifically, different values of γ lead to different adiabatic
sound speeds (proportional to γ1/2). Correspondingly, the pitch
angles of the spirals are larger, and the evolution of the single
spiral into multiple spirals proceeds more slowly with distance
from the planet, for larger values of γ (and the same
temperature profile). See Section 6.3 for a further discussion
of this issue.
In Miranda & Rafikov (2019a), we performed a detailed

characterization of the spiral structure for adiabatic disks.
However, with a minor modification, it can also be applied to
locally isothermal disks. Specifically, the quantity δΣlin, which
characterizes the overall scaling of the wave amplitude as a
function of r as dictated by AMF conservation (see Equation
(16) of Miranda & Rafikov 2019a), should be modified to
account for the fact that FJ is not constant in this case but is
proportional to cs

2. Otherwise, the details of the emergence of
the different spirals at different radii, their relative amplitudes
and separations, and so on, are the same for both adiabatic and
locally isothermal disks. This can be traced to the fact that the
AMF for different wave modes FJ

m all obey the same radial
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scaling in both cases: they are all constant in adiabatic disks
and all proportional to cs

2 in locally isothermal disks.
The situation is rather different in cooling disks with

β≈10−2
–1. In such disks, the radial scaling of FJ

m and,
hence, of the amplitudes of the harmonics of the surface density
perturbation δΣm, varies with m (see Figures 2 and 3). As a
result, the structure of the spirals is different than in either the
short or long cooling timescale regimes. Therefore, the
secondary spiral, tertiary spiral, and so on, form at different
locations in the inner disk, and their relative amplitudes and
widths evolve differently in these cases. For example,
according to Figure 2(a), in a disk with β=0.1 all of the
modes except for m=2 have small and positive l rF

m ,
implying rapid decay of these modes toward the inner disk.
On the contrary, m=2 mode has large l rF

m in a disk with this
value of β. As a result, only the m=2 mode is present in the
inner disk—note the two broad, well azimuthally separated
arms, clearly visible in Figure 1(c) (see also the discussion in
the end of Section 3.4). We leave further quantitative analysis
of the multiple spiral structure for disks with cooling to
future work.

As a result of the modification of the spiral structure due to
cooling in the linear regime, the subsequent nonlinear evolution
of the spirals may also be modified. For example, if cooling
reduces the amplitude of a spiral arm or broadens it, then it will
develop into a shock at a larger distance from the planet (or
potentially not at all). This results in a shift of the axisymmetric
gap associated with the spiral developing into a shock. The
modified shape of the spiral arm due to cooling changes the
amount of AMF it carries and can ultimately deposit into
the disk, therefore also affecting the depth of the resultant gap.

6.3. Isothermal Versus Adiabatic Sound Speed

It is important to distinguish between the different sound
speeds relevant to wave dynamics in disks with different
thermodynamics. These are the isothermal and adiabatic sound
speeds:

m
g
m

= =c
k T

c
k T

, , 69s,iso
B

1 2

s,adi
B

1 2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

where μ is the mean molecular weight. Note that
g=c cs,adi

1 2
s,iso. In Section 2, we showed that cs,iso is the

appropriate sound speed in locally isothermal disks, while cs,adi

is the appropriate sound speed in adiabatic disks. We also
showed that, with a finite cooling timescale, the appropriate
sound speed is neither cs,adi nor cs,iso, but it can be represented
by an effective sound speed intermediate between the two (see
Equation (51)). This effective sound speed is nonuniversal,
with a nontrivial dependence on the cooling timescale, as well
as on the location in the disk and the azimuthal number of the
perturbation.

In numerical simulations, the disk temperature profile is
typically prescribed indirectly through the sound speed, which
itself is often parameterized by specifying the disk aspect ratio
h=H/r, with the disk thickness = WH cs , where cs is either
the isothermal sound speed or the adiabatic sound speed. In
locally isothermal simulations, H must be defined in terms of
cs,iso, since this is both the actual propagation speed of sound
waves, and the only sound speed that is properly defined in this
case. But in simulations with an ideal equation of state (with or

without cooling), we can, in principle, choose to define H in
terms of either of the two sound speeds. This ambiguity is
resolved by noting that, if H is defined in terms of cs,iso, then
disks with the same h(r) profile have the same temperature
profile, regardless of other thermodynamic considerations
(adiabatic index or cooling timescale). If we regard the
temperature as a fundamental physical property of the disk—
as opposed to the sound speed, which depends on thermo-
dynamic assumptions—then this is the preferred way of
defining H. Parameterizing the disk temperature in terms of
= Wh c rs,iso ( ), as we have done in this paper, facilitates the

most direct comparison of simulations of disks with different
thermodynamics—locally isothermal, adiabatic, or cooling.

6.4. Anomalous Mass Flux

As a result of angular momentum conservation in the disk +
density wave system, evolution of the wave AMF must result in
disk evolution. In particular, the mass flux f= - SM r u dr∮
(here defined to be positive for inflow) is related to the evolution
of the wave AMF according to (Rafikov 2002b)

= -
-

M
dl

dr

dF

dr

dT

dr
, 70J

1
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

where = Wl r2 is the specific angular momentum. For
simplicity, we have neglected an additional term related to
the time evolution of the angular momentum profile of the disk,
although in some situations, this term can be important (e.g.,
Arzamasskiy & Rafikov 2018).
The physical interpretation of Equation (70) is as follows.

The evolution of the wave AMF, described by dF drJ , occurs
for two different reasons. The first is wave excitation—transfer
of angular momentum to the wave by an external torque,
described by dT/dr. Far from the planet, this term can be
neglected. The second is the transfer of angular momentum
from the wave to the background disk (e.g., due to damping of
the wave), which necessarily leads to disk evolution. Therefore,
the disk evolution is determined by the difference between the
total variation of the AMF and the external torque density;
hence, this difference appears in Equation (70).
Consider planet-driven waves that are subject to dissipation

(either linear or nonlinear), so that FJ decreases as waves
propagate away from the planet. In this case, Equation (70)
indicates that <M 0 in the outer disk (as dFJ/dr<0 there)
and >M 0 in the inner disk (where dFJ/dr>0). In other
words, the effect of wave dissipation is effectively to repel
mass from the orbit of the planet. In the absence of dissipation,
the wave has no effect on the state of the disk (Goldreich &
Nicholson 1989).
However, in locally isothermal disks, the wave AMF,

described by Equation (45), increases as waves propagate
toward the inner disk, and decreases in the outer disk (see
Figure 4(a)), provided that the disk temperature decreases with
r. As a result, in the locally isothermal case, using
Equation (70), we find (setting dT/dr=0 as applicable for
free waves)

=
W

= -
W

M
F

r

d c

d r

qF

r

2 ln

ln

2
, 71J Js

2

2
( )

where the second equality applies to disks with T∝r− q. In this
case, provided that q>0, <M 0 everywhere in the disk, with

µ - +M r q 1 2∣ ∣ ( ) because µ µ -F c rJ s
q2 . This means that in the
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inner disk, there is a flow of mass toward the planet in the
linear regime, before the waves shock, in contrast to the
conventional expectation. In the outer disk, even before
the wave shocks, there is a flow of mass away from the
planetary orbit. This represents anomalous wave-driven disk
evolution that is not associated with wave dissipation in the
usual sense (cf., Goldreich & Nicholson 1989).

The case of a disk with cooling is distinct from the adiabatic
and locally isothermal cases: even in the absence of nonlinear
dissipation, evolution of the wave flux due to cooling (see
Figure 4(a)) will give rise to nonzero M . However, depending
on the value of β, M in the inner disk can be either positive
(e.g., for intermediate values of β∼0.1) or negative (e.g., for
small β10−3, close to the locally isothermal limit).

The behavior of the anomalous mass flux described above is
illustrated in Figure 7. The mass flux in the inner disk from
numerical simulations in the linear regime (for Mp=0. 01Mth,
when the wave does not shock) is shown along with the
theoretical mass flux (Equation (70)) predicted by linear theory
(using FJ computed in linear theory, see Figure 4(a)). The
locally isothermal case and cases with cooling and different
constant values of β are shown. The numerical and theoretical
results show good agreement, except at small radii (r0.1rp).

5

For β10−2, as well as in the locally isothermal case, there is
a substantial outward flow of gas, i.e., toward the planet
( <M 0 ). For β=10−1

–1, one can see a small positive M , as
expected from the FJ(r) behavior.

In Figure 7, M is expressed in terms of WF rJ,0 p
2

p( ) (see
Equation (64)). If we equate this scale to the mass flux for a
steady state viscous disk, 3π ν Σ, with ν parameterized using
the α-prescription, then the characteristic scale of M due to
planet-driven waves is equivalent to having

a ~
M

M
h . 72

p

th

2

p

⎛
⎝⎜

⎞
⎠⎟ ( )

ForMp∼Mth, this characteristic α can substantially exceed the
usual “viscous” α.

However, in practice the aforementioned anomalous mass
flux (away from the central star) can have a substantial impact
on the disk evolution only when the wave amplitude is small
enough for waves to travel far into the inner disk without
shocking and nonlinear dissipation. This requires planets to be
low-mass with Mp below roughly a few percent of Mth. In this
case, the effective α would be 10−4. Nonlinear dissipation of
the density waves driven by more massive (Mp∼Mth) planets
can give rise to substantially higher values of effective α
(Goodman & Rafikov 2001; Rafikov 2002a).

6.5. Other Implications

It is commonly assumed that the locally isothermal
approximation should be valid provided that β=Ωtc1,
i.e., the cooling timescale is short compared to the orbital
timescale. However, we showed that this expectation is too
naive and that, in fact, there are two key timescales to which tc
should be compared in order to assess the effects of cooling on
the dynamics of density waves, neither of which are the orbital
timescale.
The first relevant timescale is the time for a fluid element to

cross through one of the crests/troughs of the perturbation with
azimuthal number m, which is w -1∣ ˜ ∣ . This can be understood by
noticing that β enters Equations (24)–(26) only in the
combination b w b w= = - W Wt mc p

˜ ˜ ( ) . If the wave pattern
frequency is slow, e.g., in the inner disk, then b b» m∣ ˜ ∣ . When
b ~ 1∣ ˜ ∣ , there is a change in the behavior of the equations.
Density waves experience strong linear damping when b ~ 1∣ ˜ ∣ .
Damping is minimal for b 1∣ ˜ ∣  , which represents the
adiabatic limit, in which the wave AMF is constant. Damping
is also weak when b 1;∣ ˜ ∣  however, this constraint, which is
already more stringent than β1, still does not guarantee
convergence to the locally isothermal limit, in which the AMF
actually rises with the disk temperature.
This constraint is improved upon by considering the second

relevant (dimensionless) timescale β±∼h/m2 (Equation (62)),
for which the radial derivative of the AMF changes sign in the
inner disk. Only when ββ±, does the AMF grow as waves
travel inwards. This represents a transition toward the locally
isothermal regime, in which FJ∝r− q. Based on our numerical
results, we require β to be much smaller than β± (by at least an
order of magnitude) for the AMF behavior to fully converge to
the locally isothermal limit. For waves excited by planets, the
dominant azimuthal number of perturbations is ~ ~-m h 10p

1

(Goldreich & Tremaine 1980), and so the locally isothermal
limit corresponds to b ~ - h 10p

3 3 in realistic disks (see
Equation (63)). As waves become nonlinear, this requirement
relaxes to β10−2, see Section 5. For other types of density
waves (i.e., not driven by planets), the applicability of the
locally isothermal approximation depends on their character-
istic azimuthal wavenumber.
As a result of the stringent constraints on the cooling

timescale necessary for the locally isothermal approximation to
provide a good description of wave dynamics, its use is likely
to be unjustified in many studies involving wave dynamics in
disks. This is especially relevant for situations involving the
long-range propagation of planet-excited density waves. These
include modifications to disk-driven migration due to commu-
nication between planets via density waves (Podlewska-Gaca
et al. 2012), and due to wave reflection at disk edges
(Tsang 2011; Miranda & Lai 2018). Under more realistic

Figure 7. Mass flux M due to planet-driven waves in the inner disk for disks
with different dimensionless cooling timescales. The dashed lines show the
theoretical mass flux (Equation (70)) based on linear theory, and the solid lines
show the results of numerical simulations (with Mp=0. 01Mth). The
asymptotic behavior for r=rp in the locally isothermal limit (and for a
q = 1 temperature profile) is indicated in the lower left.

5 Discrepancies at these small radii may be the result of nonlinear evolution of
the waves, or boundary effects associated with the presence of the inner wave
damping zone.
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thermodynamics, the range over which the density waves can
propagate may be limited, reducing the efficacy of these
mechanisms. In studies of circumbinary accretion (e.g., Moody
et al. 2019; Muñoz et al. 2019), use of the locally isothermal
approximation may lead to a misestimation of the size of the
circumbinary cavity and of the circumstellar disks (or “mini-
disks”) around the individual stars. This could affect the
balance of gravitational torques exerted on the binary by
circumbinary and circumstellar disks, artificially influencing
the resulting orbital evolution of the binary.

A number of other problems critically dependent on globally
propagating density waves have been studied using locally
isothermal simulations. These include the origin of multiple
narrow rings and gaps (Bae et al. 2017; Dong et al. 2017, 2018;
Nazari et al. 2019; Weber et al. 2019), similar to the
substructures seen in submillimeter observations of protopla-
netary disks (ALMA Partnership et al. 2015; Andrews et al.
2016, 2018; Isella et al. 2016; Loomis et al. 2017; Long et al.
2018), Papaloizou–Pringle instability (Barker & Ogilvie 2016),
excitation of disk eccentricity in binaries (Regály et al. 2011),
and Lidov–Kozai oscillations in disks (Martin et al. 2014),
among many others. It may be useful to reconsider some
aspects of these problems in terms of AMF conservation as we
do in our work. The impact of the locally isothermal EoS on
the results of these studies, as well as any modifications of the
results that may arise under the consideration of realistic
thermodynamics should be identified.

The analysis presented in this work is 2D. We, therefore,
expect its validity to depend on the extent to which the
structure of planet-excited waves is confined to the midplane of
the disk. Irradiated disks may possess an increasing vertical
temperature gradient. In the presence of such a temperature
gradient, a portion of the angular momentum in planet-excited
waves is carried by buoyancy waves, which are channeled
toward the upper layers of the disk, possibly leading to
enhanced nonlinear dissipation (Lee & Gu 2015). It is unclear
whether or not such an effect would be subdominant to the
dissipation associated with cooling described in this work.
However, our 2D analysis with cooling may set a lower bound
to the amount of dissipation expected in 3D.

7. Summary

In this work, we explored the properties of density waves in
disks with varied thermodynamics, focusing on the effects of
disk cooling on the wave propagation and damping. We used
both linear theory and numerical simulations and used the
behavior of the AMF of the waves as a diagnostic of wave-
driven disk evolution. Our main results can be summarized as
follows.

1. While the AMF of free waves FJ is strictly conserved in
adiabatic disks (in the absence of linear or nonlinear
dissipation), it varies in locally isothermal disks as

µF cJ s
2 (or the disk temperature T).

2. In disks with a more general thermodynamics, in which
the temperature is cooled/relaxed toward an equilibrium
profile on a characteristic timescale tc, the adiabatic and
locally isothermal limits are recovered when the cooling
timescale is very long and very short, respectively.

3. However, for the locally isothermal approximation to
provide a good description of wave dynamics in the linear
regime, the cooling timescale must be very short, with

b = W » -t h 10pc
3 3. This constraint relaxes to

β10−2 for more massive planets because of the
nonlinear wave damping.

4. The adiabatic limit (i.e., conservation of FJ in the linear
regime) becomes applicable in disks with cooling for
β  10.

5. The transition between the two limiting regimes is non-
monotonic and highly nontrivial. For intermediate cool-
ing times, β=10−2

–1, the wave AMF rapidly decays
due to linear damping.

6. Differences in the decay rates of different Fourier modes
of the wave significantly modify the appearance of the
planet-driven spiral structure in the inner disk for
intermediate cooling times.

7. Non-conservation of the wave AMF in locally isothermal
and rapidly cooling disks gives rise to anomalous mass
flux driving disk evolution even in the absence of
viscosity or nonlinear dissipation.

8. In idealized disks with a radially constant dimensionless
cooling time β, the structure of the gaps and rings carved
in the disk by a moderately massive planet is strongly
affected by the value of β. When β is small (10−1) or
large (1), multiple narrow rings and gaps (one ring/gap
pair exterior to the orbit of the planet and several more
interior to the orbit) are formed. For intermediate values
of β, a single wide gap centered on the orbit of the planet
is formed instead.

Our results should provide guidance for future efforts to better
understand the appearance and evolution of density waves and
to interpret observations of protoplanetary disks.

We are grateful to an anonymous referee for comments that
helped improve the clarity of our presentation. Financial
support for this work was provided by NASA via grant 15-
XRP15-2-0139.

Appendix A
Perturbation Equations

A.1. Adiabatic

For adiabatic disks, Equations (2)–(4) become
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A.2. Locally Isothermal

For locally isothermal disks, Equations (2) and (3) become
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and Equation (4) is the same as for adiabatic disks (75).
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A.3. Disks with Cooling

For disks with cooling, Equations (2) and (3) become
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and again Equation (4) is the same as for adiabatic disks (75).

Appendix B
Velocity Perturbations

B.1. Adiabatic

For adiabatic disks, the velocity perturbations are given in
terms of δh by
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B.2. Locally Isothermal

For locally isothermal disks, the velocity perturbations are
given in terms of δh by
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B.3. Disks with Cooling

For disks with cooling, the velocity perturbations are given
in terms of δh by

d w d

gb
gb

wd

=
¶
¶

-
W

+ F

-
-
-

- -

u
i

D r

m

r
h

L i L

i
h

2

1
, 84

r m

T S

c

1 1

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

˜ ( )

˜
˜ ˜ ( )

d
k k

w
d

gb
gb

k
d

=
W

¶
¶

-
-

+ F

-
-
- W

f

- -

u
D r

m

r

D
h

L i L

i
h

1

c 2

1 2
. 85

m

T S

2 2
c

1 1 2

⎡
⎣
⎢⎢
⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

˜
( )

˜
˜ ( )

Appendix C
WKB Analysis for Disks with Cooling

Adopting the WKB ansatz, we write
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where k(r) is the radial wavenumber, and A(r) is a slowly
varying amplitude. The master equation for free waves
(Equations (9) and (24)–(26) with F  0m ) then reads
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In Equation (88), we have assumed a thin disk, cs/(rΩ) = 1, so
that only the last term in Equation (25) for C0 is retained. We
see that, in general, k is complex. We wish to obtain
expressions for the real and imaginary parts of k (rather than
k2), as we are interested in the attenuation coefficient Im(k). In
doing so, we use the approximation Dc≈D, since Nr

2 is
smaller than D by h2( ) (see Equation (27)). We find
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It can be shown that the argument of the inverse tangent
function inside the exponential, g b gb- +1 1 2( ) ˜ ( ˜ ), is
always small. For example, if γ=7/5, its maximum possible
(absolute) value is ≈0.17. We, therefore, expand Equation (89)
to leading order in this quantity and obtain Equations (49) and
(50) for the imaginary and real parts of k.
To the next leading order ( kr 1∣ ∣  ) after Equations (88),

Equation (87) gives
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ò
g wb
g w b

µ
S

W + W
W +

¢
A

D

r k

i dr

L
exp

1

2
, 91

r

T

1 2 2

2 2 2 2
⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

˜
˜

( )

where again we have taken Dc≈D.

C.1. Angular Momentum Flux

The AMF (Equation (47)) is, using d dk h h r∣ ∣ ∣ ∣ , and again
using DS≈D (or equivalently Dc≈D),
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Therefore, using (49) and (91), we have
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where r0 is an arbitrary reference radius. Note that we have taken
a prefactor k kRe( ) ∣ ∣ in this expression to be ≈1, since including
Im(k) in this term gives only a small correction and because FJ
depends on Im(k) much more strongly through the exponential.

C.2. Validity of the WKB Approximation

The validity of the WKB approximation of the Fourier
components of the wave AMF (Equation (48)) and its
asymptotic inner disk approximation (Equation (52)) are
examined in Figure 8 for the case with β=1. The WKB
approximation (dashed lines in Figure 8) gives a good
description of the radial variation of FJ

m once the wave AMF
has been fully accumulated, at distances from the planet -r rp∣ ∣
larger than about -r r2 p LR∣ ∣, where rLR is the location of either
the inner or outer Lindblad resonance (denoted by the
endpoints of the dashed lines Figure 8). Therefore, it is
typically valid beyond 2–3 scale heights from the planet, except
for modes with small azimuthal numbers (m2). The inner
disk WKB approximation (short dashed lines in Figure 8) has
approximately the same region of validity.
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m, (Equation (48)),
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