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Abstract
In this paper, we investigate a (2+1)-dimensional nonlinear equation model for Rossby waves in
stratified fluids. We derive a forced Zakharov–Kuznetsov(ZK)–Burgers equation from the quasi-
geostrophic potential vorticity equation with dissipation and topography under the generalized
beta effect, and by utilizing temporal and spatial multiple scale transform and the perturbation
expansion method. Through the analysis of this model, it is found that the generalized beta effect
and basic topography can induce nonlinear waves, and slowly varying topography is an external
impact factor for Rossby waves. Additionally, the conservation laws for the mass and energy of
solitary waves are analyzed. Eventually, the solitary wave solutions of the forced ZK–Burgers
equation are obtained by the simplest equation method as well as the new modified ansatz
method. Based on the solitary wave solutions obtained, we discuss the effects of dissipation and
slowly varying topography on Rossby solitary waves.

Keywords: Rossby solitary waves, dissipation, topography, forced ZK–Burgers equation,
simplest equation method, modified ansatz method
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1. Introduction

Solitary waves were discovered by Russell [1]. These waves
exist as a natural phenomenon due to the balance between dis-
persion and nonlinearity. Several kinds of nonlinear equation
models were used to characterize the evolution of waves such as
acoustic waves, gravity-inertial waves and Rossby waves. The
nonlinear wave model, especially on a solitary wave, is also of
great significance in other fields [2–4]. Solitary waves are one of
the wave phenomena with the most theoretical significance and
research value. The Korteweg–de Vries (KdV) equation is the
classical equation model used to describe solitary waves [5], and
its classical solitary wave solution has been presented [6–10].

In the complex atmospheric and oceanic wave motions,
Rossby waves are extremely important large-scale waves,

caused by the rotation of the Earth. Many kinds of nonlinear
equation models were generated and applied to characterize
the evolution of a Rossby wave’s amplitude and to explain
some further weather phenomena. Many studies prove that
Rossby waves affect the weather and climate change on a
planet, such as the red spot in the atmosphere of Jupiter,
atmospheric blocking and the Southern Oscillation [11–13].
Thus, the research on Rossby solitary waves can provide a
theoretical basis for actual weather and ocean forecasting.
Historically, theories on nonlinear large-scale Rossby waves
are significant research subjects. Different types of the non-
linear KdV equation were derived to reveal some physical
mechanisms of Rossby waves in the past [14–24], In recent
years, through Gardner–Morikawa transform and the pertur-
bation expansion method, the nonlinear equation models for
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describing the formation of Rossby waves or envelope waves
have been derived under the traditional beta plane approx-
imation [25–34], However, the beta is not constant for actual
atmospheric motions. In barotropic fluids, Liu et al [35]
studied the generation of Rossby waves under a change in the
beta plane. Song et al [36, 37] generalized the above results to
a general case, and concluded that the generalized beta effect
can induce solitary Rossby waves. Li et al [38] obtained the
evolution of the Rossby wave envelope with the generalized
beta effect in stratified fluids.

High-dimensional nonlinear equation models can be
more accurate for describing the propagation of Rossby
waves in the real atmosphere and ocean. Over the last few
years, plenty of studies have applied higher-dimensional
nonlinear equations to explore the formation of Rossby waves
in barotropic fluids. Gottwald derived the Zakharov–Kuz-
netsov (ZK) equation [39]. Yang et al [40] obtained the three-
dimensional ZK–Burgers equation. Zhao et al [41] derived
the ZK-mZK equation, and considered the impact of a com-
plete Coriolis force on Rossby waves. Zhang et al [42, 43]
obtained the (2+1)-dimensional generalized forced ZK
equation and ZK equation. Liu et al [44] derived a new
(2+1)-dimensional generalized Boussinesq equation. Chen
et al [45] derived a new generalized (2+1)-dimensional
nonlinear mKdV–Burgers equation, and analyzed the effects
of generalized beta, shear basic flow and dissipation on the
evolution of solitary waves. It is known that a stratified fluid
is more appropriate for actual atmospheric and oceanic
motions. However, due to density stratification and other
impact factors, it is hard to obtain models for Rossby waves in
stratified fluids. Lu et al [46] derived the classical (1+1)-
dimensional Boussinesq equation in stratified fluids. Meng
et al [47] obtained the (1+1)-dimensional mKdV equation to
describe Rossby waves. Therefore, it is essential to study the
high-dimensional models for Rossby waves in stratified fluid
to better explain the nonlinear dynamics of Rossby waves.
Dissipation and topography are extremely important factors in
large-scale motion. In particular, the impacts of varying
topography on Rossby solitary waves have attracted the
attention of many scholars [48–51]. However, the effect of
varying topography on Rossby solitary waves in stratified
fluids has not been examined. Ren et al [52] studied (3+1)-
dimensional Rossby waves in cylindrical coordinates using
the Lie symmetry approach. Recently, plenty of studies have
applied fractional order model equations to describe the for-
mation process of Rossby waves in the atmosphere and ocean
[53–60].

In the present study, we obtain a ZK–Burgers equation
with dissipation and topography forcing to describe Rossby
waves in stratified fluids. The rest of the paper is organized as
follows: in section 2, using temporal and spatial transform
and a perturbation expansion method, a new forced (2+1)-
dimensional nonlinear ZK–Burgers equation is derived. In
addition, we discuss the important physical factors that induce
the nonlinear Rossby waves, and analyze the conservation
laws of solitary waves. In section 3, the single solitary wave
solutions of the ZK equation are obtained using the simplest
equation method. The asymptotic solitary wave solutions of

the ZK–Burgers equation under dissipation and topographic
forcing are obtained by employing a new modified ansatz
method. We discuss the effects of dissipation and slowly
varying topography on solitary waves. Conclusions are pre-
sented in section 4.

2. Model and method

2.1. Derivation of the forced ZK–Burgers equation model

The dimensionless geostrophic potential vorticity equation,
including topography, h(x, y, t) and a heating source, Q(y, z),
is as follows [38, 47, 61]:
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The lower boundary condition, the governing equation,
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where k is the dissipative coefficient.
We assume the total stream function is
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where u y z,( ) is the basic shear flow function, c0 is the
velocity of the linear wave, ò=1 is a small parameter and y¢
is the disturbed stream function.

To balance between topography and nonlinearity, we
assume the topography as follows:

= + h x y t h y h x t, , , , 60
2

1( ) ( ) ( ) ( )

where h0(y) represents the basic topographic function, and
h1(x, t) represents the slowly varying topography function.
Substituting equations (5) and (6) into equations (1)–(4) we
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variable y, and from 0 to ¥ for variable z. Equation (27) is
integrated from 0 to 1 for variable y. Finally, using boundary
conditions of equations (24) and (25) we obtain
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Note that f0 and f1 are determined by eigen equations (24)
and (25). Equation (28) is the new forced (2+1)-dimensional
nonlinear equation for describing the evolution of Rossby
waves in stratified fluids. The new model is different to
[40, 42, 43]. The term with coefficient α1 indicates the effects
of multiple physical factors on the formation of nonlinear
Rossby waves; that is, the generalized β(y), stratification s,
and the shear flow u , basic topography h0(y). From the eigen
equations (24), it is found that a ¹ 01 when r=u 0, s and s
are constants, respectively; this shows that the generalized
beta and basic topography are all essential factors for the
formation of solitary waves. The term with coefficient α2 and
α3 represents the dispersion relation for linear Rossby waves,
which is related to the generalized beta and the shear basic
flow and stratification. Here, η A represents the dissipation
term, while g ¶

¶
H

X
represents the external force factor, caused

by slowly varying topography. The above theoretical analysis
shows that the dynamics of Rossby waves are very complex
in real atmospheric and oceanic motion. On the other hand,
when α3=0 equation (28) reduces to the case considered by
Jiang et al [24]. When η=0 and γ=0, equation (28) is the
normal ZK equation. Thus, equation (28) is the generalization
of previous research results for stratified fluids, and is called
the forced (2+1)-dimensional ZK–Burgers equation.

2.2. Analysis of Rossby solitary wave conservation law

In equation (28), we only consider the condition of η>0. We
do not consider η<0, because of the instability of dis-
turbance. To analyze the conservation law of Rossby waves,
we may assume that

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶ ¶

 A
A

X

A

Y

A

X

A

Y

A

X Y
as X Y, , , , , 0 , 0.

30

2

2

2

2

2⎛
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⎞
⎠⎟ ∣ ∣ ∣ ∣

( )

Equation (28) is transformed into as follows:

a
a a h g

¶
¶

+
¶
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+
¶
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+
¶
¶

+ =
¶
¶T

A
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A
A
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Y
A

H

X2
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⎛
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⎞
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Equation (31) is integrated with X and Y, and the mass
equation for solitary waves is obtained

ò ò ò ò
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A X Y A X Y

H

X
X Y

d d d d

d d . 32( )

Equation (28) multiplied by A2 yields:

a
a a

a

a h g

¶
¶

+
¶
¶

+
¶
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-
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-
¶
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+
¶
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¶
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T
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X
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Y
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Equation (33) is integrated with X and Y, and the energy
equation for solitary waves is obtained

ò ò ò ò

ò ò

h
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+

=
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+¥
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+¥
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+¥
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+¥
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A X Y A X Y

A
H

X
X Y

d d 2 d d

2 d d . 34

2 2

( )

From equations (32) and (34), we can find the influence of
dissipation and topography on solitary waves. Moreover,
when dissipation and slowly varying topography are not
considered, i.e. H(X, T)=0, η=0, the mass and energy of
solitary waves are conserved. When =¶

¶
0H

X
and h ¹ 0,

equations (32) and (34) become

ò ò

ò òh= -

-¥

+¥

-¥

+¥

-¥

+¥

-¥

+¥

A X Y

T A X Y X Y

d d

exp , , 0 d d . 35( ) ( ) ( )

ò ò

ò òh= -

-¥

+¥

-¥

+¥

-¥

+¥

-¥

+¥

A X Y

T A X Y X Y

d d

exp 2 , , 0 d d . 36

2

2( ) ( ) ( )

From equations (35) and (36) the mass and the energy of
solitary waves decrease exponentially with the increase in
time and the dissipative coefficient.

3. Solutions and methods

3.1. Single solitary solution of the ZK equation

The analytical solutions of the ZK equation using different
methods have been discussed [62–66]. We aim to obtain the
single solitary wave solutions of the ZK equation by
employing the simplest equation method [63].

Dissipation and slowly varying topography are absent in
equation (28) (i.e. η=γ=0 ), and α1, α2, α3 are constants.
Equation (28) transforms into the following form:

a a a
¶
¶

+
¶
¶

+
¶
¶

+
¶

¶ ¶
=

A

T
A

A

X

A

X

A

X Y
0. 371 2

3

3 3

3

2
( )

Assuming that

x x w= = + -A X Y T A kX lY T, , , . 38( ) ( ) ( )

Substituting equation (38) into equation (37), and integrating
once with respect to ξ , and taking the integral constant as
zero, yields

w
a

a a
x

- + + + =A
k

A k kl
A

2

d

d
0. 391 2

2
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3
2

2

2
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We assume

åx =
=

A a B , 40
j

M

j
j

0

( ) ( )

where x= =
-

x

xB B a

b

e

1 e

a

a( ) is the solution of the Bernoulli

equation, i.e. = +xB aB bB2 (referred to as the simplest
equation), a and b are arbitrary constants.

By balancing the highest-order derivative term and
nonlinear term in equation (39), we have M=2. Substituting
equation (40) into equation (39) yields

a a
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where w a a= +a k l2
2

2
3

2( ), and

w
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42
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where w a a= - +a k l2
2

2
3

2( ), when b<0 , equations (41)
and (42) are the solitary waves.

From figure 1, we can see that solitary waves have the
classical bell shape, and the shape does not change with time.
This shows that equations (41) and (42) are the single solitary
wave solutions of equation (37).

3.2. Asymptotic solitary wave solution of the forced ZK–
Burgers equation

First, equation (28) is considered with dissipation but without
topography, as follows:

a a a h
¶
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¶ ¶
+ =
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T
A

A
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X Y
A 0. 431 2

3
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3

2
( )

When h 1 , the asymptotic solitary wave solution of
equation (43) is obtained using a new modified ansatz
method. Assuming that the solution of equation (44) is as
follows:

q=A X Y T A, , sech , 44p
0( ) ( )

where q n= = + -A A T k T X Y T,0 0 ( ) ( )[( ) ( )], and p is a
non-negative integer to be determined. Substituting
equation (44) into equation (45), we obtain

q q q n
n

a q q a q q

a q q
a q q
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Matching the exponents of qsech p2 and q+sechp 2 in
equation (45), we obtain

=p 2. 46( )
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We set the coefficients of the q q qsech , sech tanhp p and
q qsech tanhp2 terms to zero. This leads to

h+ =
A

T
A

d

d
0, 470

0 ( )
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a a
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From equations (47) and (49) we obtain
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A A T 0 c
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3
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( ) . Substituting equation (50) into

equation (48) yields
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As h 1 , the term n- + -h X Y
2
( ) can be omitted in

equation (51). Accordingly

òn
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e d 0. 52
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So, we get the asymptotic solitary wave solution of
equation (43) as follows:
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The velocity and width of a solitary wave are obtained,
respectively,
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Second, we seek the asymptotic solitary wave solution of
equation (28) with dissipation and topographic forcing. To
simplify the calculation, and to consider that the variation of
topography with time is much smaller than that with the
meridional direction in large-scale atmospheric and oceanic
motion, we assume slowly varying topography as:

d
¶

¶
=

H X T

X

,
, 550

( ) ( )

where d 10  are small parameters that describe the variation
in the degree of topography with meridional direction.
Equation (55) is called the slowly varying linear topography.
We perform the following transformation:

gd
h

= +A X Y T B X Y T, , , , . 560( ) ( ) ( )

Substituting equations (55) and (56) into equation (28) yields
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Further, introducing the transformation ¢ = ¢ =T T X,
a- ¢ =gd

h
X T Y Y,1

0 , substituting the transformation into

equation (57) and omitting the apostrophe, we rewrite
equation (57) in the following form:

a a a h
¶
¶

+
¶
¶

+
¶
¶

+
¶

¶ ¶
+ =

B

T
B

B

X

B

X

B

X Y
B 0. 581 2

3

3 3

3

2
( )

Noting that equation (58) is in the same form as equation (43),
we can obtain the asymptotic solitary wave solution of
equation (28) with slowly varying topography (55).
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The velocity of the solitary wave is

a a gd
h

= +h-C
A

3
e . 60s

T1 0 1 0 ( )

From equations (53), (54), (59) and (60), it is evident that
dissipation and slowly varying topography affect the ampl-
itude and velocity and width of solitary waves.

From figure 2, It can be found that the topography
weakly affects the amplitude of solitary waves when T=1
and T=3. However, when T=5, the amplitude of solitary
waves increases slightly because of slowly varying topo-
graphy. This shows that dissipation and slowly varying
topography affect the formation of solitary waves. This is
consistent with asymptotic solutions (59).

Figure 1. Equation (41) is presented as a single solitary wave with
a a= = = = = - = =a k l Y b1, 1, 1,1 2

1
2
and a =3

3
2
.
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4. Conclusion

We derive the (2+1)-dimensional ZK–Burgers equation
based on the dimensionless quasi-geostrophic potential vor-
ticity equation by using multiple scales and the perturbation
expansion method; this is a high-dimensional mathematical
model for describing nonlinear Rossby waves in stratified
fluid for the first time. Also, we analyze the effects of the
generalized beta, dissipation and topography on the solitary
waves. We conclude that basic topography is an essential
factor; basic topography and the generalized beta can induce
nonlinear waves. The mass and energy of solitary waves are
conserved when without dissipation and slowly varying
topography. Moreover, we obtain the single solitary wave
solution for the ZK–Burgers equation in the absence of dis-
sipation and topography, which is a classical bell solitary
wave solution. We obtain asymptotic solitary wave solution
of the forced ZK-Bergurs equation with small dissipation and
slowly varying linear topography by a new modified ansatz
method. The results of the solitary wave solutions show that
the dissipation can cause the velocity and amplitude of soli-
tary waves to decrease exponentially with time, but opposite
to the width of solitary waves. Furthermore, slowly varying
linear topography can affect the velocity of solitary waves,

while it does not significantly influence the amplitude of
solitary waves when time is short. As time increases, slowly
varying linear topography affects the formation of solitary
waves. In the previous study, we have only considered the
slowly varying linear topography. For the general varying
topography, we will conduct further study in future work. In
addition, the numerical calculation of the model is our next
research work.
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