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Abstract
In this paper we elevate the formalism for off-shell Abbott–Deser–Tekin
(ADT) conserved charges in the presence of arbitrary matter fields to includ-
ing the internal gauge transformation, when the gauge fields are present.
For this purpose, we resort to exact symmetry, and the symmetry generator
is combined by diffeomorphism and internal gauge transformation. For uni-
versality, we consider an apparently non-covariant Lagrangian, which con-
tains a matter Chern–Simons term. We show that the elevated off-shell ADT
formalism is equivalent to the covariant phase space method and the Bar-
nich–Brandt–Compère (BBC) formalism. To check the validity of our method,
we explicitly compute the conserved charges of general non-extremal rotating
charged Gödel black holes in minimal five-dimensional gauged supergravity,
reproducing the previously known results.

Keywords: off shell ADT charge, internal gauge transformation, exact symme-
try, Gödel black hole

1. Introduction

Symmetry plays an important role in modern physics. The well known Noether’s theorem,
relating symmetries to conserved charges, has become a cornerstone in modern physics and
provided a deep basis to understanding the conservation laws in classical mechanics, general
relativity and quantum field theory. However, symmetry is not so straightforward to define
conserved charges in an unambiguous manner in general theory of gravity. On the other hand,
because of the restriction of equivalence principle, till now there is no general consensus
for defining the local conservation quantities in general relativity. At most, one can define
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quasi-local conserved charges in finite spacetime domains (for quasi-local concepts and an
extensive review of conserved charges, please refer to reference [1]). Up to now, several
approaches have been proposed to compute the conserved quantities, each having their own
merits and demerits.

In the well known ADM approach [2], the conserved charges could be calculated for asymp-
totically flat spacetime at the asymptotic infinity. But this approach fails for anti-de Sitter (AdS)
spacetime. Extension to asymptotic AdS geometry has been given by Abbott, Deser and Tekin
(ADT) [3–7] in a covariant manner. In this traditional ADT method, one needs to linearize
the dynamical field and use the equations of motion (EOM), i.e. on-shell. As a result, the
procedures become highly complicated when the higher curvature or higher derivative terms
are present in the Lagrangian. Without resorting to the linearization of dynamical field, the
Brown–York method is put forwarded in [8] by introducing an appropriate counter term. This
formulation is especially useful in the context of the AdS/CFT correspondence. But usually, it
is difficult to find an appropriate counter term, and this method is not covariant.

Based on the Noether procedure, the covariant phase space method (CPSM) was proposed
in [9–12] by Wald and Iyer (see [13–15] for reviews). In the framework of CPSM, a conve-
nient method for calculating conserved charges associated with ‘exact symmetries’ of black
hole solutions in generally covariant gravitational theories was developed by K Hajian, which
is called solution phase space method (SPSM) [16] (see [17–20] for reviews and applications
of SPSM). Along another line, general theory of conserved charges based on the cohomol-
ogy principles was developed by Barnich–Brandt and Compère (BBC) [21–24] (see [25, 26]
for reviews). These formalisms have been extensively applied to investigate the black hole
thermodynamic properties, especially used to derive the first law of black hole mechanics for
generic theories of gravity. Recently, they have also been applied to investigate the holographic
properties [27].

Another interesting method to calculate the quasi-local conserved charges in a covariant the-
ory of gravity is proposed by Kim et al [28], which generalizes the on-shell Noether potential in
the ADT formalism to off-shell level. This method is based on the Lagrangian description, and
so completely covariant. In technology, it uses the one parameter path integral method devel-
oped in [12, 21–24] in solution phase space to obtain the finite charge difference. It works
well for higher curvature case. In [29], the quasi-local formulation of conserved charges has
been extended to a gravity theory containing a gravitational Chern–Simons term, and it was
shown that this quasi-local extension of ADT method is very effective even to an apparently
non-covariant Lagrangian. Extension to generally covariant theory of gravity in the presence
of arbitrary matter fields was presented in [30]. The case of including asymptotic Killing vec-
tors has also been considered in [31]. The applications of off-shell ADT formalism for various
interesting geometries were presented in [32–37] and references therein, for extensive review
see [38].

In [30], the quasi-local formalism for conserved charges has been extended to a theory of
gravity with arbitrary matter fields, but the internal gauge transformation was not included in. In
many cases, if the gauge fields are present, like in Einstein–Maxwell or Einstein–Yang–Mills
theories, one needs to consider a specific gauge transformation, which will lead to correspond-
ing conserved charges. In these cases the symmetry generators are combined by diffeomor-
phism and U(1)(n) gauge transformation. CPSM including the internal gauge freedom was
considered systematically in [39] on a principle bundle. For the off-shell ADT formalism the
internal gauge transformation was considered first in [40]. But different from [40], to obtain the
conserved current and potential, we resort to exact symmetries, which are well appreciated in
SPSM [16–20]. For universality, we consider an apparently non-covariant Lagrangian, which
contains a matter Chern–Simons term. The non-covariant Lagrangian case was first provided
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by Tachikawa [41] in Iyer–Wald formalism, and applied to calculate central charges in extreme
black hole/CFT correspondence in [42]. For more discussion see [43].

For quite some time, the calculation of conserved charges is a hard problem for Gödel
type black hole [44–47], which is the exact solution of Einstein–Maxwell Lagrangian with
a matter Chern–Simons term. The BBC method provides an effective way to calculate the
conserved charges for this type of solution [45, 46], which are previously obtained just via
indirect method. We show that the elevated off-shell ADT method is completely equivalent
to the CPSM and also the BBC formalism. To check the validity of our method, we give a
specific example for calculating the conserved charges in minimal five-dimensional gauged
supergravity.

The paper is organized as follows. In section 2, we generalize the off-shell ADT formal-
ism of conserved charges in the presence of arbitrary matter fields to including the internal
gauge transformation, when the gauge fields are present. For universality, we consider an
apparently non-covariant Lagrangian. We show that the elevated off-shell ADT formalism is
identical with the CPSM and the BBC formalism. In section 3, we give a general model of
Einstein–Maxwell–Scalar theory with cosmological constant and matter Chern–Simons term
for calculating the off-shell ADT potential and charges. In section 4, we explicitly compute
the conserved charges of general non-extremal rotating charged Gödel black holes in minimal
five-dimensional gauged supergravity. The conclusion and outlook are given in the last section.

2. Generalized off-shell ADT current and potential

In this section we elevate the off-shell ADT conserved charge formalism with arbitrary mat-
ter fields to including the internal gauge transformation, when the gauge fields are present.
We construct the off-shell ADT current and potential, which will provide an effective way to
compute conserved charges.

2.1. Formalism

Following [29, 30], we consider an action which contains a non-covariant term and with
arbitrary matter fields ψ =

(
AI
μ,φC, . . .

)

I[g,ψ] =
1

16πG

∫
dDx

√
−gL(g,ψ). (1)

For convenience, we denote the dynamic fields jointly as Φ =
(
gμν ,ψ

)
=

(
gμν , AI

μ,φC, . . .
)
.

The generic variation of the Lagrangian leads to

δ
(√

−gL
)
=

√
−gEΦδΦ+

√
−g∇μΘ

μ(δΦ,Φ) (2)

=
√
−g

(
−Eμνδgμν + Eψδψ

)
+ ∂μΘ̃

μ(δΦ,Φ), (3)

where EΦ =
(
Eμν , Eψ

)
and Θ̃μ =

√−gΘμ denote the Euler–Lagrange expression and the
surface term, respectively. And hereinafter, the tilde˜over a letter denotes X̃ =

√−gX.
In order to introduce the off-shell current and potential, we consider a vector field ξ = ξμ∂μ

defined over the spacetime, which generates the diffeomorphism xμ → xμ − ξμ. In addition,
if some number of U(1)(n) gauge fields are present, we might have gauge transformation
AI → AI + dλI for arbitrary scalars λI, under which the Lagrangian is invariant. In this case
we can denote the generator by ε = (ξ,λI), such that

δεΦ = δξΦ+ δλI AI . (4)
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The variation of Lagrangian induced by ε is given by

δε
(√

−gL
)
=

√
−gEΦδεΦ+ ∂μΘ̃

μ (δεΦ,Φ)

=
√
−g

(
−Eμνδεgμν + Eψδεψ

)
+ ∂μΘ̃

μ (δεΦ,Φ)

=
√
−g

(
−∇μ (2Eμνξν ) + 2ξν∇μEμν + Eψδεψ

)
+ ∂μΘ̃

μ (δεΦ,Φ) ,

(5)

where δεgμν = Lξgμν = 2∇(μ ξ ν), and Lξ is Lie derivative along the vector ξ.
On the other hand, the non-covariant Lagrangian transforms as [41]

δε
(√

−gL
)
= ∂μ

(√
−gξμL + Ξ̃μ

)
, (6)

where Ξ̃μ denotes an additional surface term which arises from the non-covariance of
Lagrangian. By equating the two expressions above, we can obtain an off-shell identity

2ξν∇μEμν + Eψδεψ = ∇μ (Zμνξν ) , (7)

where we have defined
√
−gZμνξν ≡

√
−gξμL + Ξ̃μ − Θ̃μ (δεΦ,Φ) + 2

√
−gEμνξν + ∂μŨ[μν], (8)

and Ũμν = Ũ[μν] is an arbitrary anti-symmetric second rank tensor, and we drop it out in what
follows since this ambiguity will not affect the final result. Furthermore, equation (7) can be
written as

∇μ (2Eμνξν) = Eμνδεgμν − Eψδεψ = −δεΦ, (9)

where

Eμν ≡ Eμν − 1
2
Zμν. (10)

If the transformation δεΦ is an exact symmetry, i.e. δεΦ = 0 (for more details and discussion
we refer the readers to SPSM [16–20], and at this stage we do not restrict the field Φ to satisfy
EOM), we can get

∇μ (Eμνξν ) = 0. (11)

To obtain the off-shell conserved current, we consider the double variations [30]

δ1δ2I [Φ] =
1

16πG

∫
dDx

[
δ1

(√
−gEΦδ2Φ

)
+ ∂μ

(
δ1Θ̃

μ (δ2Φ,Φ)
)]

. (12)

Using the property

(δ1δ2 − δ2δ1)I [Φ] = 0, (13)

and taking one of the varations as δε, we have

0 =
1

16πG

∫
dDx

[
δε

(√
−gEΦδΦ

)
− δ

(√
−gEΦδεΦ

)
+ ∂μω̃

μ (δΦ, δεΦ,Φ)
]

,

(14)
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where we have used the symplectic current definition in CPSM [9–12]

ω̃μ (δΦ, δεΦ,Φ) = δΘ̃μ (δεΦ,Φ) − δεΘ̃
μ(δΦ,Φ). (15)

Since the Euler–Lagrange expression is covariant, we can use the exact symmetry δεΦ = 0
and ω̃μ (δΦ, δεΦ,Φ) = 0 to obtain the formula

δε
(√

−gEΦδΦ
)
= δξ

(√
−gEΦδΦ

)
+ δλ

(√
−gEΦδΦ

)
= ∂μ

(
ξμ
√
−gEΦδΦ

)
= 0. (16)

Now we can introduce an off-shell ADT current for any diffeomorphism ξ as in [30] in the
presence of arbitrary matter fields

√
−gJ μ

ADT = δ
(√

−gEμνξν
)
+

1
2

√
−gξμEΦδΦ, (17)

where we have taken δξμ = 0, δλI = 0, i.e. the generatores are field independent. From
equations (11) and (16), it is easy to see the conservation of the off-shell ADT current as

∂μ
(√

−gJ μ
ADT

)
= 0. (18)

So we are allowed to introduce the off-shell ADT potential Qμν
ADT as

J μ
ADT = ∇νQμν

ADT. (19)

2.2. The correspondence of off-shell ADT potential and Noether potential

In this subsection we establish the relation between the off-shell ADT potential and Noether
potential, and we also establish the relation between off-shell ADT current in the presence of
matter fields and the symplectic current in the CPSM.

From equations (5) and (6), and using the off-shell identity (9), we can obtain the off-shell
Noether current

Jμ
ε = 2

√
−gEμνξν +

√
−gξμL + Ξ̃μ − Θ̃μ (δεΦ,Φ) , (20)

which satisfies ∂μJμ
ε = 0, so that the off-shell Noether potential Kμν

ε can be introduced as

Jμ
ε = ∂μKμν

ε , (21)

where Jμε =
√−gJ μ

ε , Kμν
ε =

√−gKμν
ε . The Lie derivative of surface term is

LξΘ̃
μ(δΦ,Φ) = ξν∂νΘ̃

μ − Θ̃ν∂νξ
μ + Θ̃μ∂νξ

ν , (22)

which leads to

ξμ∂νΘ̃
ν(δΦ,Φ) = ∂ν

(
2ξ[μ Θ̃ ν](δΦ,Φ)

)
+ LξΘ̃

μ(δΦ,Φ). (23)

Since the surface term Θ̃ is non-covariant,

δεΘ̃
μ(δΦ,Φ) = δξΘ̃

μ(δΦ,Φ) + δλΘ̃
μ(δΦ,Φ)

= LξΘ̃
μ(δΦ,Φ) + Ãμ(δΦ, δξΦ,Φ) + Π̃μ

λ(δA, A), (24)
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where Ã
μ
(δΦ, δξΦ,Φ) and Π̃μ

λ(δA, A) come from the non-covariance of surface term, and we
have denoted δλΘ̃

μ(δΦ,Φ) = Π̃μ
λ(δA, A). From equation (24) We obtain

LξΘ̃
μ(δΦ,Φ) = δεΘ̃

μ(δΦ,Φ) − D̃μ, (25)

where

D̃μ = Ãμ(δΦ, δξΦ,Φ) + Π̃μ
λ(δA, A)

= Ãμ(δg, δξg, g) + Π̃μ
λ(δA, A), (26)

here the second equality denotes Ã
μ

term mainly comes from the contribution of gravitational
part, which has been considered in [29] for gravitational Chern–Simons term. For convenience,
we consider in our case an apparently non-covariant term in Lagrangian only consisting of
gauge fields, i.e. the matter Chern–Simons term. So the Ã

μ
term vanishes. By varying the

off-shell Noether current (20) and using the off-shell ADT current (17), we get

δJμ
ε = 2

√
−gJ μ

ADT + ∂ν

(
2ξ[μ Θ̃ ν](δΦ,Φ)

)
− ω̃μ (δΦ, δεΦ,Φ) + δΞ̃μ − Π̃μ

λ, (27)

where we have used the equations (23)–(26) and the symplectic current definition (15).
On the other hand, from equation (21), we have

δJμ
ε = ∂ν

(
δKμν

ε

)
. (28)

Introducing Σ̃μν
λ as

Π̃μ
λ − δΞ̃μ ≡ ∂νΣ̃

μν
λ , (29)

and substituting equations (28) and (29) into equation (27), we obtain

2
√
−gJ μ

ADT = ∂ν

(
δKμν

ε − 2ξ[μ Θ̃ ν](δΦ,Φ) + Σ̃μν
λ

)
+ ω̃μ (δΦ, δεΦ,Φ)

≡ ∂ν
(
2
√
−gQμν

ADT

)
, (30)

where δεΦ = 0, ω̃μ (δΦ, δεΦ,Φ) = 0, for exact symmetry. Qμν
ADT is the off-shell ADT potential

corresponding to the off-shell ADT current J μ
ADT, which is given by

2
√
−gQμν

ADT = δKμν
ε − 2ξ[μΘ̃ ν](δΦ,Φ) + Σ̃μν

λ . (31)

Now we have established the one-to-one correspondence between the off-shell ADT potential
and the Noether potential similar to [28, 30], but in our formalism we have used the exact
symmetry δεΦ = 0.

In order to obtain finite conserved charges, we use the one parameter path integral method
[12, 21–24] in the space of solutions, in which the path is characterized by parameter s(s ∈
[0, 1]). This path interpolates between the given solution and the background solution through
parameterizing a set of free parametersM in the space for the solutions of EOM as sM. Finally
by assuming that the integral is path independent, we can define the off-shell ADT conserved
charge as

6
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Q(ε) ≡ 1
8πG

∫ 1

0
ds

∫
Σ

dD−2xμν
√
−gQμν

ADT

=
1

16πG

∫
Σ

dD−2xμν

[
ΔKμν(ε) − 2ξ[μ

∫ 1

0
ds Θ̃ ν](Φ, sM) +

∫ 1

0
ds Σ̃μν

λ (A, sM)

]
, (32)

where

ΔKμν = Kμν
s=1 − Kμν

s=0 (33)

is the finite difference of Noether potential between the given solution and the background
solution. Equation (32) will provide an effective way to compute quasi-local conserved charges.
From equations (31) and (32), we can see the elevated off-shell ADT formalism is completely
equivalent to the CPSM [9–12] and the BBC formalism [21–24].

3. A general model in Einstein–Maxwell–Scalar gravity theory with matter
Chern–Simons term

As an application, in this section we calculate the conserved charges for Ein-
stein–Maxwell–Scalar gravity theory with the cosmological constant and a matter
Chern–Simons term for any odd dimensions D = 2N + 1. The action has the form

I =
1

16πG

∫
d2N+1x

√
−g(Lg + Lφ + LEM + LCS), (34)

where

Lg = R − 2Λ,

Lφ = −1
2

fAB(φ)∂μφA∂μφB − V(φ),

LEM = −1
4
NIJ(φ)FI

μνFJμν ,

LCS =
1
2

F̂μν
I FI

μν , (35)

and

F̂μν
I = CIJK···Lε

μναβγ···ρσAJ
αFK

βγ · · ·FL
ρσ (36)

Here Λ is cosmological constant, and the ε-tensor is defined as
√−gε012···D−1 = −1.

We first consider the covariant part of the theory, i.e. the Einstein–Maxwell–Scalar
Lagrangian L = Lg + Lφ + LEM. The variation of the Lagrangian is

δ
(√

−gL
)
=

√
−g

[
(g)Eμνδgμν +

(A)Eν
I δAI

ν +
(φ)ECδφ

C
]
+
√
−g∇μΘ

μ(δΦ,Φ),

(37)

where the Euler–Lagrange expressions are

7
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(g)Eμν =−
(

Rμν − 1
2

gμνR + Λgμν

)

+
1
2

Lφgμν +
1
2

fAB(φ)∇μφA∇νφB

+
1
2
NIJ(φ)

[
FIμαFJν

α −
1
4

gμνFI
αβFJαβ

]
, (38)

(φ)Eφ
C =− 1

2
fAB,C(φ)∇μφ

A∇μφB − V ,C(φ) +∇μ

(
fCB(φ)∇μφB

)

− 1
4
NIJ,C(φ)FI

μνFJμν , (39)

(A)Eν
I =∇μ

[
NIJ(φ)FJμν

]
. (40)

And the surface terms are given by

Θμ(δΦ,Φ) = Θμ
g (δg, g) +Θμ

φ(δφ,φ) +Θμ
A(δA, A)

= 2∇[σh μ]
σ − fAB(φ)δφA∇μφB −NIJ(φ)δAI

νFJμν , (41)

where and in what follows

hμν = δgμν , hμν = gμαgνβδgαβ = −δgμν , h = gμνδgμν. (42)

Take the variation of Lagriangian induced by the generator ε

δε
(√

−gL
)
=

√
−g

[
(g)Eμνδεgμν +

(A)Eν
I δεA

I
ν+

(φ)ECδεφ
C
]
+
√
−g∇μΘ

μ (δεΦ,Φ)

=
√
−g∇μ (ξμL) , (43)

where the transformations are

δεgμν = Lξgμν = 2∇(μ ξ ν), (44)

δεA
I
ν = LξA

I
ν +∇νλ

I = ξσFI
σν +∇ν

(
AI
σξ

σ + λI
)

, (45)

δεφ
C = Lξφ

C = ξμ∇μφ
C. (46)

The surface term for this transformation is given by

Θμ (δεΦ,Φ) =2∇ν∇(μ ξ ν) − 2∇μ∇νξ
ν

−NIJ(φ)FJμν
[
ξσFI

σν +∇ν

(
AI
σξ

σ + λI
)]

− fAB(φ)ξν∇νφ
A∇μφB. (47)

Since we now only consider the covariant part of the theory, the Ξμ term vanishes.
From equation (20) we obtain the off-shell Noether current and Noether potential as

follows
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J μ
ε = ∇ν

[
2∇[μ ξ ν] +NIJ(φ)FJμν

(
AI
σξ

σ + λI
)]

= ∇νKμν
ε , (48)

Kμν
ε = 2∇[μξ ν] +NIJ(φ)FJμν

(
AI
σξ

σ + λI
)
. (49)

From equation (31) we have the off-shell ADT potential

Qμν
ADT(δΦ, ε) = Qμν

ADT(δg, ξ) +Qμν
ADT(δφ, ξ) +Qμν

ADT(δA, ε), (50)

where

Qμν
ADT(δg, ξ) =

1
2

h∇[μξ ν] − hα[μ∇αξ
ν] − ξ[μ∇αh ν]α + ξα∇[μh ν]α + ξ[μ∇ ν]h,

Qμν
ADT(δφ, ξ) = fAB(φ)δφAξ[μ∇ ν]φB,

Qμν
ADT(δA, ε) =

1
2

[(
1
2

hNIJ(φ)FJμν +NIJ,C(φ)δφCFJμν +NIJ(φ)δFJμν

)

·
(
AI
σξ

σ + λI
)
+NIJ(φ)FJμνδAI

σξ
σ + 2NIJ(φ)ξ[μ FJ ν]σδAI

σ

]
. (51)

Different from [30, 40], in our case when we consider the internal gauge transformation,
the gauge fields have contributions for off-shell Noether potential (49) and the off-shell ADT
potential (50).

Now we consider the Chern–Simons term LCS. The generic variation of the Chern–Simons
Lagrangian

δ(
√
−gLCS) =

√
−g

(A)
Eα

I δAI
α +

√
−g∇μΘ

μ
CS(δA, A), (52)

where the Euler–Lagrange expression and the surface term are given by

(A)Eα
I = (N + 1)∇ν F̂αν

I , (53)

Θμ
CS(δA, A) = NF̂μν

I δAI
ν . (54)

The variation of the Lagrangian induced by the generator ε has the form

δε(
√
−gLCS) =

√
−g(N + 1)∇νF̂αν

I

[
ξσFI

σα +∇α

(
AI
σξ

σ + λI
)]

+
√
−g∇μ

[
NF̂μν

I

(
ξσFI

σν +∇ν

(
AI
σξ

σ + λI
))]

. (55)

On the other hand,

δε(
√
−gLCS) =

√
−g∇μ

[
ξμLCS + Ξμ

]
, (56)

where

Ξμ = λI∇ν F̂μν
I (57)

comes from the non-covariance of the matter Chern–Simons Lagrangian.
By similar procedure to the covariant part, we can obtain off-shell Noether current and

potential

9



Class. Quantum Grav. 37 (2020) 085021 H-F Ding and X-H Zhai

J μ
CS = ∇ν

[
−NF̂μν

I

(
AI
σξ

σ + λI
)]

, (58)

Kμν
CS = −NF̂μν

I

(
AI
σξ

σ + λI
)
. (59)

From equation (29), the additional terms are

Πμ
λ(δA, A) = NδλI F̂μν

I δAI
ν , (60)

Σμν
λ (δA, A) = −NCIJK···Lε

μναβγ···ρσλIδAJ
αFK

βγ · · ·FL
ρσ. (61)

From equation (31), The contribution of the Chern–Simons term for the off-shell ADT
potential is given by

2
√
−gQμν

ADT = δ
(√

−gKμν
CS

)
− 2

√
−gξ[μΘ ν]

CS +
√
−gΣμν

λ (δA, A). (62)

The formulas above have already been calculated for Chern–Simons theory in [42, 45, 48–50]
in CPSM and the BBC formalism up to a supplementary term, which does not affect the
final integral results for conserved charge calculation. Therefore, we have explicitly shown
the equivalence of our formulation with the CPSM and the BBC formalism.

4. Conserved charges of general Gödel black holes in minimal
five-dimensional gauged supergravity

When D = 5,Λ = 0, and D = 3,Λ �= 02 we have checked that our off-shell ADT potentials
are completely equivalent to BBC surface charges obtained by Compère and collaborators in
[45, 46], respectively. By calculation we can get the same results of mass, angular momentum
and electric charge of Gödel black holes as those they got.

As an explicit example, in this section we use the elevated off-shell ADT for-
mulation to calculate the conserved charges of general non-extremal rotating charged
Gödel black holes in minimal five-dimensional gauged supergravity. This general Ein-
stein–Maxwell–Chern–Simons–Gödel (EMCS–Gödel) black hole was obtained by Wu in
[47] as

ds2 =− f (r)dt2 − 2g(r)σ3dt + h(r)σ2
3 +

dr2

V(r)
+

r2

4
dΩ2

3, (63)

A =B(r)dt + C(r)σ3, (64)

where the unit 3-sphere dΩ2
3 and the left invariant form σ3 are given by

dΩ2
3 = dθ2 + sin2 θ dψ2 + σ2

3, σ3 = dφ+ cos θ dψ, (65)

and

f (r) =1 − 2 m
r2

+
q2

r4

g(r) = jr2 + 3 jq +
(2 m − q)a

r2
− q2 a

2r4

2 The cosmological constant does not affect the conserved current and potential if it is fixed, but it affects the black
hole solutions (for example AdS), so it affects the final conserved charges.
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h(r) =− j2r2
(
r2 + 2 m + 6q

)
+ 3 jqa

+
(m − q)a2

2r2
− q2a2

4r4

V(r) =1 − 2 m
r2

+
8 j(m + q)[a + 2 j(m + 2q)]

r2

+
2(m − q)a2 + q2

[
1 − 16 ja − 8 j2(m + 3q)

]
r4

B(r) =

√
3q

2r2

C(r) =

√
3

2

(
jr2 + 2 jq − qa

2r2

)

is a solution to the theory

L = LgEM + LCS

= R − FμνFμν − 2

3
√

3
εγαβμνAγFαβFμν. (66)

From our previous conserved current and potential, when we take N = 2,NIJ(φ) = 4,
CIJK···L = − 4

3
√

3
and drop the IJK · · · L indices the relevant quantities can be summarized as

Θμ
gEM(δg, g; δA, A) = 2∇[σ h μ]

σ − 4δAνFμν ,

Kμν
gEM(A, ε) = 2∇[μ ξ ν] + 4Fμν (Aσξ

σ + λ) ,

Θμ
CS(δA, A) = − 8

3
√

3
εμναβγAαFβγδAν ,

Kμν
CS(A, ε) =

8

3
√

3
εμναβγAαFβγ (Aσξ

σ + λ) ,

Σμν
λ (δA, A) =

8

3
√

3
εμναβγδAαFβγλ. (67)

In order to obtain finite conserved charges, we use one parameter path integral method [12,
21–24] to calculate the mass, angular momentum and electric charge of EMCS–Gödel black
hole. The path γ : Φ(sM) interpolating between the background Gödel-type Universe Φ̄ and
the EMCS–Gödel black hole solution Φ is obtained by substituting (m, a, q) by (sm, sa, sq)
in (63) and (64), with s ∈ [0, 1]. Then the integration is performed along that path as Q(ε) =∫ 1

0 ds δQ(ε; sM). For convenience, we choose surface S : t = const = r to integrate. From
equation (32), the conserved charge has the form

Q(ε) =
1

16πG

∫
Σ

dD−2xμν

[
ΔKμν

gEM − 2ξ[μ
∫ 1

0
ds Θ̃ ν]

gEM(Φ, sM) +ΔKμν
CS

− 2ξ[μ
∫ 1

0
ds Θ̃ ν]

CS(Φ, sM) +
∫ 1

0
ds Σ̃μν

λ (A, sM)

]
. (68)

The time translational timelike Killing vector is taken as ξ = ξμ∂μ, ξμ = (−1, 0, 0, 0, 0), and
the generator ε = (ξ, 0), which satisfies the exact symmetry δεΦ = 0. The Noether potentials
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and the surface terms are calculated as

ΔKtr
gEM =

1
2

(
−8 j2m2 − 24 j2mq − 20 j2q2 + m

)
sinθ − 2 j2mr2 sin θ

+
q2

(
8a j− 8 j2(m + 3q) + 1

)
sin θ

4r2
− aq2(a − 12 jq) sinθ

4r4
− a2q3 sin θ

2r6
,

∫ 1

0
ds Θ̃r

gEM =− 1
4

(
m

(
4a j+ 24 j2q − 1

)
+ 4 jq(a + 6 jq) + 16 j2m2

)
sinθ + 2 j2mr2 sin θ

+
q2

(
8 j2(m − q) − 1

)
sinθ

4r2
+

aq2(a + 6 jq) sinθ
4r4

− a2q3 sinθ
10r6

,

ΔKtr
CS =8 j2q2 sinθ+ 2 j2qr2 sinθ+

2 jq2(4 jq − a) sinθ
r2

− 4a jq3 sinθ
r4

+
a2q3 sin θ

2r6
,

∫ 1

0
ds Θ̃r

CS =− 2 j2q2 sinθ − 2 j2qr2 sinθ − a jq3 sin θ
2r4

+
a2q3 sinθ

10r6
,

from which the mass of EMCS–Gödel black hole is given by

M =
1

16πG

∫
Σ

d3xtr

[
ΔKtr

gEM − 2ξ[t
∫ 1

0
ds Θ̃ r]

gEM(Φ, sM) +ΔKtr
CS

− 2ξ[t
∫ 1

0
ds Θ̃ r]

CS(Φ, sM)

]

=
π

G

[
3
4

m − j(m + q)a − 2 j2(m + q)(4 m + 5q)

]
. (69)

We can see that the mass not only comes from the gravitational part, but the electromagnetic
and matter Chern–Simons term have also contributions.

Taking the rotational Killing vector ξ = ξμ∂μ, ξμ = (0, 0, 0, 1, 0), ε= (ξ, 0). Since ξ is tan-
gent to the integral surface, the surface terms have no contributions to the angular momentum.
The Noether potentials are calculated as

ΔKtr
gEM =− 1

4

(
4a2 j(m − q) + a

(
16 j2m2 + 16 j2mq + 16 j2q2 − 2 m + q

)

− 6 jq2
(
8 j2(m + 3q) − 1

))
sinθ − 3 j2qr2(a − 8 jq) sinθ + 12 j3qr4 sin θ

+
3a jq2(a − 8 jq) sinθ

2r2
+

3a2 jq3 sinθ
r4

− a3q3 sinθ
4r6

,

ΔKtr
CS =12a j2q2 sinθ − 16 j3q3 sinθ + 3 j2qr2(a − 8 jq) sinθ − 12 j3qr4 sinθ

− 3a jq2(a − 8 jq) sinθ
2r2

− 3a2 jq3 sinθ
r4

+
a3q3 sinθ

4r6
,

then we obtain the angular momentum

Jφ =
1

16πG

∫
Σ

d3xtr

[
ΔKtr

gEM +ΔKtr
CS

]

=
π

2G

[
a

(
m − q

2
− 2 j(m − q)a − 8 j2

(
m2 + mq − 2q2

))

− 3 jq2 + 8 j3(3 m + 5q)q2
]

, (70)
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while the angular momenta for other rotational Killing vectors vanish.
When ε = (0,−1), which is a solution of δεΦ = 0, the additional non-covariant term has a

contribution to electric charge. The Noether potentials and the surface terms are calculated as

ΔKtr
gEM =− 1

2

√
3
(
4a jm + q

(
8 j2(m + 3q) − 1

))
sin θ − 8

√
3 j2qr2 sinθ

+
4
√

3a jq2 sinθ
r2

−
√

3a2q2 sinθ
2r4

,

ΔKtr
CS =

4 jq(−a + 4 jq) sinθ√
3

+
16 j2qr2 sinθ√

3
− 8a jq2 sin θ√

3r2
+

a2q2 sinθ√
3r4

,

∫ 1

0
ds Θ̃r

CS =
2 jq(−a + 4 jq) sinθ√

3
+

8 j2qr2 sinθ√
3

− 4a jq2 sinθ√
3r2

+
a2q2 sinθ

2
√

3r4
,

from which the electric charge is given by

Q =
1

16πG

∫
Σ

d3xtr

[
ΔKtr

gEM +ΔKtr
CS +

∫ 1

0
ds Σ̃tr

λ (A, sM)

]

=

√
3π

2G

[
q − 4 j(m + q)a − 8 j2(m + q)q

]
. (71)

Finally, if we take the generator ε = (−∂t − Ωφ
H∂φ, ΦH), analogous to the CPSM [9, 10],

we can define black hole entropy as the conserved charge

κ

2π
δS =

1
8πG

∫
H

dD−2xμν
√
−gQμν

ADT. (72)

If we consider the linearity of the off-shell ADT potential with respect to generator ε, it is easy
to verify the first law of black hole thermodynamics

δM = THδS +Ωφ
HδJφ +ΦHδQ. (73)

The first law can also be checked by substituting the entropy [47] S = A/4 and the Hawk-
ing temperature TH = κ/2π, where A is the horizon area of black hole and κ is the surface
gravity.

In the above we have chosen the minus sign for angular momentum and to satisfy the first
law of black hole thermodynamics. In expression (73) we have considered the Gödel param-
eter j as a fixed constant. The above conserved charges are completely agree with the ones in
[47]. Therefore, we have explicitly shown the validity of our elevated off-shell ADT conserved
charge formalism in the presence of arbitrary matter fields.

5. Conclusion and discussions

In this paper we elevated the formalism for off-shell ADT conserved charges in the presence
of arbitrary matter fields to including the internal gauge transformation, when the gauge fields
are present. For this purpose, we resort to exact symmetry, and the symmetry generator is com-
bined by diffeomorphism and gauge transformation. In this procedure we are not restricted to
Killing vector for diffeomorphism. For universality, we consider an apparently non-covariant
Lagrangian, which contains a matter Chern–Simons term. The elevated off-shell ADT formal-
ism provides an efficient way to compute the quasi-local conserved charges in the presence of
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gauge field. We have shown that the elevated off-shell ADT formalism is completely equiv-
alent to the CPSM and the BBC formalism. Finally, we computed the conserved charges of
general non-extremal rotating charged Gödel black holes in minimal five-dimensional gauged
supergravity, which agree with the previous known results. The off-shell ADT formulation
can be used even with slow falloff matter fields in asymptotic infinity [32]. It also does not
need to add counter terms to the Lagrangian [51] in order to get the correct results for our
formalism.

As a comparison, in the traditional linearized ADT formalism, the ADT potential is obtained
by linearizing the EOM with respect to a fixed background vacuum metric, which is usually
asymptotically flat or (A)dS, and the ADT charge merely involves the gravitational field and
its perturbation. Thus, the traditional linearized ADT formalism is based on the assumptions of
the fast falloff of matter fields and the perturbed metric at the infinity. The matter fields finally
make no contribution to the conserved charges. So the original ADT formulation may succeed
to produce the physical conserved charges when the matter fields fall off fast enough at infin-
ity. But usually the spacetime is not asymptotically flat or (A)dS and the matter fields are with
slow falloff condition, in which the contributions from the matter fields must be considered
and the traditional linearized ADT method is invalid. As a non-trivial generalization of the tra-
ditional linearized ADT method, the off-shell ADT method does not resort to the background
vacuum metric and the asymptotic behavior of spacetime, i.e., it is valid for any spacetime with
any asymptotic structure including asymptotic (A)dS and asymptotic Lifshitz. Our formalism
is the elevation of the off-shell method in the presence of arbitrary matter fields to including
the internal gauge transformation. The effect of matter fields is contained in our formalism, as
in equation (69) the electromagnetic field has a contribution to the mass of the EMCS–Gödel
black hole. In our off-shell ADT formalism it is not necessary to consider concretely the falloff
condition of the matter fields and the asymptotic structure of the spacetime. For slowly decay-
ing matter fields that may yield divergent contributions to the conserved charges, by using the
one parameter path integral method the conserved charges are automatically regular and need
not to be renormalized. At this point our formalism has the same advantages as the SPSM and
the BBC formalisms.

Usually, the effect of matter fields is very important for generic theories of gravity. The
off-shell ADT formalism will provide a systematic way to construct conserved quantities.
In the future work we will generalize the off-shell ADT formalism to including the non-
abelian symmetry, when the non-abelian gauge fields are present. There exists an extensive
class for supersymmetry black hole solutions in the presence of non-abelian gauge field [52].
It will be an intrigue and important issue to study the conserved quantities for this class of
solutions.

On the other hand, as we mentioned in the introduction, there are various methods pro-
posed to compute the conserved charges in gravity theories, each having their own merits
and demerits. Moreover, a given black hole solution might have quite different conserved
charges by using different method or in different gravity theories. For example, for three-
dimensional Oliva–Tempo–Troncoso (OTT) black hole solution [53] in BHT or ‘new massive
gravity’ (NMG), four-dimensional black hole in Weyl gravity [54], three- and five-dimensional
Lifshitz black holes in quadratic curvature gravity [55], and Gödel black hole, etc, the tradi-
tional ADT method cannot give the correct conserved charges consistent with the first law of
black hole thermodynamics. When the generator of gauge transformation λ is set to zero and
the diffeomorphism generator ξ is taken as Killing vector filed our formalism reduces to the
cases in [28, 30]. In [30] the equivalence of the off-shell ADT formalism with the boundary
stress tensor method [56] for the asymptotic AdS spacetime to obtain holographic conserved
charges consistent with the dual field theory has been proved. The off-shell ADT formalism
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already has many successful applications [32–38] when the diffeomorphism is restricted to
Killing vector field. By using the off-shell ADT method the problem presented in [54] has
been overcome in [35] in Weyl and Einstein–Gauss–Bonnet gravities and the correct con-
served charges are obtained. The problem presented in [55] has been overcome in [32] for
three- and five-dimensional Lifshitz black holes by using this method and the results are con-
firmed by Padmanabhan method, in which the conserved charges are consistent with the first
law of black hole thermodynamics. Furthermore, the quasilocal conserved charges have been
checked in topologically massive gravity (TMG) in [29]. For OTT black hole, by using the
off-shell ADT method in the first order gravity formalism, the conserved charges have been
examined in review article [38] (see equations (499) and (518) therein), in which the mass and
entropy are consistent with the first law of black hole thermodynamics but they are both twice
the ones obtained from GR when the OTT black hole reduced to the BTZ one. The same results
are obtained in [57] by using the Wald formalism in the first order gravity formalism, and con-
firmed in [58]. Actually, in this paper we proved the equivalence of the off-shell ADT method
with the SPSM and the BBC formalisms, in which many conserved charges, such as the con-
served charges in three-dimensional Lifshitz black hole and in warped AdS3 black hole in NMG
[18], have been checked to have the correct values consistent with the first law of black hole
thermodynamics.

Although the off-shell ADT formalism already has many successful applications, there are
still quite a few problems on the conserved charges to be studied. For example, the conserved
charges for OTT black hole solution are obtained by off-shell ADT method and CPSM in
[38] and in [57], respectively. Though the results coincide and consistent with the first law of
black hole thermodynamics, the values of the conserved charges are twice of the ones obtained
from GR when the OTT black hole reduces to the static and neutral BTZ black hole. For the
warped − AdS3 black hole with a scalar field [59] as mentioned in [36], the mass and angu-
lar momentum are zero by using the off-shell ADT method. These problems are important
directions for further study on the conserved charges.
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