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Abstract
There are at least two ways to encode gravity into geometry: Einstein’s gen-
eral theory of relativity (GR) for the metric tensor, and teleparallel gravity,
where torsion as opposed to curvature encodes the dynamics of the gravita-
tional degrees of freedom. The main purpose of the paper is to explore the
relation between loop gravity and teleparallel gravity. We argue that these two
formulations of gravity are related to two different discretizations of the Ein-
stein–Cartan action, which were studied recently in the literature. The first
discretization leads to the loop gravity kinematical phase space where the zero
torsion condition is enforced first and the other is the dual loop gravity kine-
matical phase space where curvature is imposed to vanish first. Our argument is
based on the observation that the GR first-order Einstein–Cartan action can also
be seen as a first-order action for teleparallel gravity up to a boundary term. The
results of our paper suggest that the dual loop gravity framework is a natural
discretization of teleparallel gravity, whereas loop gravity is naturally related to
the standard GR metric description.

Keywords: teleparallel gravity, loop quantum gravity, dual loop quantum gravity

1. Introduction

When solving the field equations for gravity, typically one deals with a first-order or a second-
order formulation. In the first-order formulation, the equations of motion are first-order (partial)
differential equations, whereas in the second-order formalism, the equations of motion are
second-order (partial) differential equations. The two formulations are related, starting from
the first-order formalism, one can eliminate some of the first-order equations of motion to
3Author to whom any correspondence should be addressed.
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obtain the second-order formalism. As a consequence, there are fewer independent variables
in the second-order formulation than there are in the first-order formulation. Classically, using
the first-order or the second-order formalism does not really matter, since the space of initial
data is the same in either formulation. At the quantum level the difference matters. Indeed, from
the perspective of canonical quantization, the first-order formulation is the preferred choice,
because the evolution and constraint equations are now all polynomial, and the quantization
ambiguities reduce to relatively mild ordering ambiguities. In the second-order formulation, on
the other hand, the field equations are non-polynomial. They involve square roots and require
the metric to be invertible4, which adds further difficulties to the problem. These observations
were made first by Ashtekar, who showed how the Einstein–Cartan formulation leads to a more
promising approach to quantum gravity than the original Wheeler–De Witt approach. There-
fore, the first-order Einstein–Cartan action or some variant of it (e.g. the self-dual Plebanski
action, the constrained BF action, or the MacDowell–Mansouri action) is usually taken as the
starting point for the Hamiltonian analysis, and the loop quantum gravity (LQG) formulation
[1, 2].

There are several possibilities to encode gravity into geometry5. The first and most nat-
ural way to do so is to consider the curved metric gab and the metric compatible and tor-
sionless Christoffel connection with covariant derivative ◦∇a : ◦∇agab = 0. For a vanishing
cosmological constant Λ, the dynamics can be derived from the familiar Einstein–Hilbert
action

SEH[g] =
1

16πG

∫
M

d4vg
◦R[g], (1.1)

where ◦R is the Ricci scalar built for the metric tensor gab, and d4vg =
√
− det gμν dx0 ∧ . . . dx3

is the canonical volume element. The metric formulation is a second-order formulation since
the connection is expressed in terms of the metric and the field equations are second-order
partial differential equations.

By studying how half-integer spin degrees of freedom interact with gravity, Weyl intro-
duced the concept of frame field e in general relativity [5]. This led ultimately to the
Sciama–Kibble–Einstein–Cartan (SKEC) formalism for gravity. This formalism puts on equal
footing both the massive and spinning degrees of freedom. For the Lorentzian D-dimensional
case,

SEC[e, A] =
1

8πG

∫
〈B[e] ∧ F[A]〉so(1,D−1), (1.2)

where F = dA + 1
2 [A, A] is the curvature of the spin connection, B denotes the (D − 2)-

form B = ∗ (∧D−2e), which is built from the internal hodge dual of (D − 2) frame fields
eI1 ∧ . . . eID−2 , and 〈·, ·〉so(1,D−1) is the Killing form for so(1, D − 1). Our conventions are
〈X, Y〉so(1,D−1) = − 1

2 XI
JYJ

I . On the space of histories, the SO(1, D − 1) connection A has both
non-trivial curvature and torsion. The SKEC formalism is a first-order formalism for gravity,
because the equations of motion only contain first derivatives of the fundamental configuration
variables.

4 In fact, the first-order formulation is slightly more general than the second-order formulation, because the field
equations can be integrated even when the metric is degenerate.
5 In the following, we will restrict ourselves to the context of metric compatible theories. One could indeed relax the
metric compatibility condition and explore how gravity can be encoded in this context. We refer to [3, 4] for more
details on such generalised gravitational theories.

2



Class. Quantum Grav. 37 (2020) 085023 M Dupuis et al

If there are no spin degrees of freedom, we get as an equation of motion that the spin connec-
tion A should be torsionless. Plugging this back into the action (1.2), we get the Palatini action
for gravity, in terms of frame fields and a torsionless spin connection. The Palatini formalism
for gravity is a second-order formalism since the equations of motion are now of second order
in the metric or frame field.

Another way to encode gravity into geometry [6] is based on an affine and metric compatible
flat derivative •∇a : •∇agbc = 0. The underlying connection •ωI

J is the so-called Weitzenböck
connection and it has no curvature,

•Ra
bcdZbXcYd = •∇X

•∇Y Za − •∇Y
•∇XZa − •∇[X,Y]Z

a = 0, (1.3)

where [X, Y]a ∈ TM is the Lie bracket between vector fields Xa, Ya ∈ TM. The gravity
dynamics is encoded into the associated torsion two-form •Ta

bc,

•Ta
bcX

bYc = •∇XYa − •∇Y Xa − [X, Y]a. (1.4)

The key idea behind teleparallelism is to treat the torsion two-form as the field strength of an
abelian connection, which is the frame field eI

a,

•Tc
ab = 2eI

c •∇[ aeI
b ], (1.5)

where •∇ is the covariant exterior derivative with respect to the Weitzenböck connection,
•∇aVI = ∂aVI + •ωI

JaVJ . This is the teleparallel formulation, which has been slightly less
explored than the GR metric formulation. For an extensive review of the theory see [7] and the
references therein. The standard teleparallel action we will consider is,

STP[e; •ω] = − 1
16πG

∫
M

d4vg

(
1
4
•Tcab

•Tcab − 1
2
•Tcab

•Tabc − •Tb
ab

•Tca
c

)
.

(1.6)

The field equations are satisfied when the action is stationary with respect to variations of
the frame field eI

a. The flat reference connection •ω can be taken as an independent variable
[8], but the resulting field equations are redundant. The action defines a second-order theory
for gravity, because the equations of motion derived from the action (1.6) are second-order
partial differential equations for the frame field eI

a. The field equations will involve the inverse
frame field eI

a : eI
aeI

b = δa
b , which enters the action through the definition of the torsion two-

form (1.6). From the perspective of the program of canonical quantization, we would prefer,
however, a formulation where the (i) field equations are polynomial and (ii) do not require the
co-frame fields to be invertible6.

It is well-known that the two actions, the Einstein–Hilbert action (1.1) and the teleparallel
action (1.6), are equal up to a boundary term [7],

SGR[g] = STP[e; •ω] − 1
8πG

∫
M

d4vg
◦∇a

•Tba
b. (1.7)

The two actions coincide up to a boundary term and the equations of motion for both the-
ories are of second-order, which suggests that they are equally hard to quantise in either
formulation.

6 The condition det eI
a > 0 defines an anholonomic constraint on phase space, which is difficult to impose at the

quantum level.
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While there is the duality (1.7) between the teleparallel action and the GR action in the
second-order formalism, to our knowledge, there is no similar derivation of teleparallel gravity
from a first-order action. Indeed, having a zero-curvature connection would solve the equation
of motion (when there is no massive degrees of freedom), but plugging this back into the
action (1.2) yields a totally vanishing action, which is undesirable. Some ways to avoid a van-
ishing action is to either supplement (1.2) with a constraint implementing the zero-curvature
constraint [9], or even to add quadratic contributions in torsion and curvature [10].

Recent developments in loop quantum gravity (LQG) indicate that there ought to be also
a first-order formulation of teleparallel gravity and a more symmetric treatment of the GR
and teleparallel formulations at the quantum level7. The standard LQG framework is based
on imposing the Gauss constraint first, which amounts—at least in three spacetime dimen-
sions—to deal with a torsionless connection. At the quantum level, this leads to the so-called
Ashtekar–Lewandowski vacuum. From this perspective, LQG can be seen as quantization of
the metric GR formalism [2].

Dittrich and Geiller suggested that there should be another interesting realisation of quantum
geometry to start with, not based on the imposition of the Gauss constraint first, but instead on
a zero curvature constraint. At the quantum level, this leads to the so-called BF vacuum [12,
13], which resembles the teleparallel formulation since it is based on a global notion of flat
parallel transport. The idea that the BF vacuum provides a realisation of teleparallel gravity at
the quantum level is strengthened by two recent developments: it was shown in [14, 15] that
there are two natural ways to discretize the Einstein–Cartan gravity action. The first way is to
start with the Gauss constraint (this is the ‘loop gravity’ framework), the other way implements
a zero curvature constraint first (this is the ‘dual loop gravity’ framework). The dual framework
provides a semi-classical realisation of the idea suggested by Dittrich and Geiller [12]. In each
case, the starting point is the classical BF type of gravitational action. However, it was not
shown explicitly that the dual loop gravity framework is related to teleparallelism. Two further
developments provide additional evidence in favor of such a relation: in [16], it was argued
that t’Hooft’s discrete approach to three-dimensional gravity can be seen as a discretization of
the teleparallel formulation, and in [17], which builds upon the results of Dittrich and Geiller,
a quantization of a dual loop gravity model was developed, which led to the Dijkgraaf–Witten
model.

Many arguments point, therefore, to the fact that the teleparallel formulation should also
be present in the Einstein–Cartan formulation. In this note, we want to illustrate how this
could be achieved at least in three spacetime dimensions. In section 2, we show that the Ein-
stein–Cartan first-order formulation of the standard GR theory, is also a first-order formulation
of the teleparallel theory up to a boundary term. This is done first in the three-dimensional
Euclidean case where the Einstein–Cartan action is simply the SU(2) BF action. We then gen-
eralize our derivation to arbitrary dimensions. The main idea of the derivation is to decompose
the off-shell spin connection into a fiducial reference connection plus a difference tensor ΔI

Ja.
Depending on whether the reference connection is flat or given by the Levi-Civita connection,
the Einstein–Cartan action is equal to either the Palatini action of GR or the teleparallel action
plus a boundary term.

We will then discuss the different discretizations performed in [14, 15] (for three-
dimensional gravity) in light of the observation that both the GR and teleparallel frameworks
can be derived from the same first-order action (up to a boundary term). In the Hamiltonian
picture, each of these frameworks can be naturally associated to a choice of polarization. The

7 See also [11] which used the Ashtekar variables in the teleparallel context.
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physical equivalence of the different polarizations is the mathematical manifestation of the
physical equivalence between the GR and teleparallel frameworks. We will argue however that
different choices of polarization at the continuum level lead to different discretized theories.
More explicitly, the choice of polarization in the continuum and the discretization procedure
used in [14, 15] do not commute. Finally, we will discuss how the dual loop gravity picture
can be seen as a discretized version of the teleparallel formulation.

2. First order action for teleparallel gravity

We detail below how the Einstein–Cartan action (1.2) can be seen as the first-order formulation
of the teleparallel action. We first focus on the three-dimensional Euclidean case as a warm-
up. Three-dimensional Euclidean gravity is very well understood in the loop quantum gravity
framework. We then study the general D-dimensional Lorentzian case.

The key idea is based on the observation that the space of SO(1, D − 1) connections
is an affine space: any two spin connections are separated by a difference tensor ΔI

Ja.
As a consequence, any connection AI

Ja can be parametrised in terms of a reference con-
nection ωI

Ja, which provides an arbitrary origin in the affine space of connections, plus a
difference tensor ΔI

Ja that encodes the dynamical degrees of freedom. In the absence of
symmetries, there are only two natural choices (modulo internal SO(1, D − 1) gauge trans-
formations) for such a metric-compatible reference connection, namely the Weitzenböck con-
nection, •ω , and the Levi-Civita connection ◦ω . They respectively have no curvature or no
torsion.

Solving the equations of motion for the difference tensor Δ will allow us to re-express the
Einstein–Cartan action (1.2) as the teleparallel action provided the reference connection is the
Weitzenböck connection, while the other choice gives the standard GR case.

2.1. The BF action in three dimensions

The starting point is the Einstein–Cartan action (1.2) for three-dimensional Euclidean gravity.

SEC[e, A] = − 1
8πG

∫
M

〈e ∧ F[A]〉 , F[A] = dA +
1
2

[A, A], (2.1)

where 〈X, Y〉 = XIYI is the Killing form for su(2), and both the frame field e and the connection
A are with value in su(2). Taking into account the parametrisation AI

a = ωI
a +ΔI

a of the
connection into an arbitrary fiducial reference connection ωI

a and a displacement vector ΔI
a,

the SU(2) field strength becomes

F[A] = dA +
1
2

[A, A] = dω +
1
2

[ω,ω] + dΔ+ [ω,Δ] +
1
2

[Δ,Δ]

= F[ω] + ωDΔ+
1
2

[Δ,Δ] . (2.2)

where ωD = d + [ω, ·] is the exterior covariant derivative with respect to the reference connec-
tion. At the level of the action, we thus have,

SEC[e, A]= SEC[e,Δ;ω]

= − 1
8πG

∫
M

〈
e ∧ F[ω] − d(e ∧Δ) + ωT ∧Δ+

1
2

e ∧ [Δ ∧Δ]

〉

(2.3)

5
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where ωT = de + [ω, e] is the torsion of the connection ω. The second term is a total exterior
derivative, using Stokes’s theorem it turns into a surface integral.

Let us then consider the case where ω = •ω , which by definition of the Weitzenböck con-
nection •ω is such that F[•ω] = 0. Hence the first term in the action (2.3) vanishes. Up to a
boundary term, we then have

SEC[e,Δ; •ω] = − 1
8πG

∫
M

〈
•T ∧Δ+

1
2

e ∧ [Δ ∧Δ]

〉
, (2.4)

where we denoted •T = •De = de + [•ω , e]. Variations in terms of e and Δ respectively
give,

•DΔ+
1
2

[Δ ∧Δ] = 0 (2.5)

•T + [e ∧Δ] = 0. (2.6)

Provided the frame field is invertible, we can solve the last equation of motion, and express the
difference tensor Δ in terms of the frame field and the torsion tensor •TI

ab associated to the
Weitzenböck connection.

ΔI
a = −1

2
εI

JK

(
ebJ •TK

ab −
1
2

ecJ ebK •Tacb

)
, (2.7)

where •Ta
bc = eI

a•TI
bc. We can now plug this expression back in the action (2.4). After some

algebra, we recover the teleparallel action [7].

SEC[e, A] − 1
8πG

∫
∂M

〈e ∧Δ〉

≈ − 1
16πG

∫
d3ve

(
1
4

•Ta
bc

•T bc
a − 1

2
•Tc

ab
•Tab

c − •Tc
bc

•Tab
a

)

= :Seucl.
TP [e; •ω], (2.8)

where ≈ means that we went on-shell in terms of the equation of motion for Δ, and d3ve =
1
6εIJKeI ∧ eJ ∧ eK is the three-volume element.

The Einstein–Cartan action is therefore a first-order formulation of teleparallel gravity.
As we have just shown the standard teleparallel action is recovered by choosing as ref-
erence connection ω the Weitzenböck connection •ω and by plugging back the equations
of motion coming from the variations with respect to Δ into the Einstein–Cartan action.
The equality between the two actions (2.8) is indeed valid up to a boundary term and
on-shell.

Choosing a different reference connection, and repeating the same steps as before to elim-
inate Δ, we obtain the Palatini action. Let us briefly sketch the different steps. First of all,
we take the reference connection ω to be the Levi-Civita connection ◦ω , which is such that
◦T = ◦De = 0, where ◦D = d + [◦ω , ·] is the covariant exterior derivative with respect to the
Levi-Civita connection. The action (2.1) then becomes

SEC[e, A]= SEC[e, ◦ω +Δ]

= − 1
8πG

∫
M

〈
e ∧ F[◦ω] + e ∧ ◦DΔ+

1
2

e ∧ [Δ ∧Δ]

〉
.

(2.9)

6
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Variations along Δ give [e,Δ] = 0. Assuming again that e is invertible, the solution of this
equation is given by Δ = 0. Plugging back this solution in (2.9) yields the Palatini action for
three-dimensional gravity in the second-order formalism,

SEC[e, A] ≈ SEC[e, ◦ω] = − 1
8πG

∫
〈e ∧ F[◦ω]〉 ≡ SPalatini[e]. (2.10)

2.2. Teleparallel gravity in D dimensions from D-dimensional Einstein–Cartan action

The same construction holds in D Lorentzian spacetime dimensions. Consider the Ein-
stein–Cartan action

SEC[A, e] =
1

16πG

∫
M

BIJ[e] ∧ FIJ[A], (2.11)

where FI
J is the curvature two-form

FI
J = dAI

J + AI
M ∧ AM

J , (2.12)

and BIJ is the bivector-valued (D − 2)-form

BIJ =
1

(D − 2)!
εIJK1...KD−2 eK1 ∧ · · · ∧ eKD−2 . (2.13)

To write the action in a more familiar form, we decompose the curvature two-form into its
components with respect to the D-bein, namely

FI
J =

1
2

FI
JKL[A, e] eK ∧ eL, (2.14)

which is possible as long as the D-bein is invertible. A short calculation gives,

SEC[A, e] =
1

16πG

∫
M

dDve FIJ
IJ[A, e], (2.15)

where we introduced the D-dimensional volume element,

dDve =
1
D!

εI1...ID eI1 ∧ · · · ∧ eID . (2.16)

Let us now explain how to recover the GR and teleparallel formulations. Consider first an
arbitrary origin ωI

J in the affine space of connections and parametrize any connection in terms
of ωI

J and a displacement vector ΔI
J , which is an so(1, D − 1)-valued one-form. Thus,

AI
J = ωI

J +ΔI
J. (2.17)

Let now ωD denote the exterior covariant derivative with respect to ωI
J . The curvature two-

form satisfies

FI
J[A] = FI

J[ω] + ωDΔI
J +ΔI

L ∧ΔL
J . (2.18)

7
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If ωI
Ja is the torsionless Levi-Civita spin connection ◦ωI

Ja, the corresponding curvature two-
form is nothing but the Riemann curvature tensor. In components,

FI
Jab[◦ω] = eI

ceJ
dRc

dab[g]. (2.19)

In this case, the action (2.15) reduces, therefore, to the usual metrical Einstein–Hilbert action,
provided Δ = 0.

If we are interested in teleparallel gravity, the relevant reference connection is the Weitzen-
böck connection •ω , which has vanishing curvature. Performing a partial integration, we are
then left with the following expression for the action,

SEC[A, e] + (−1)D−1
∫
∂M

BIJ ∧ΔIJ

=
1

16πG

∫
M

[
1

(D − 3)!
εL1...LD−3IJKeL1 ∧ · · · ∧ eLD−3 ∧ •TI ∧ΔJK

+
1

(D − 2)!
εL1...LD−2IJeL1 ∧ · · · ∧ eLD−2 ∧ΔI

L ∧ΔLJ

]
. (2.20)

where we introduced the Weitzenböck torsion,

•TI = •DeI . (2.21)

The algebraic structure of the action (2.20) can be considerably simplified by noting that

εL1...Ld−nI1...Inε
L1...Ld−nJ1 ...Jn = −n!(d − n)!δ[ J1

I1
. . . δJn]

In
. (2.22)

Consider then the components of the Weitzenböck torsion with respect to the D-bein,

•TI = •DeI =
1
2
•TI

LMeL ∧ eM. (2.23)

This allows us to write the action (2.20) in the following compact form

SEC[A, e] +
(−1)D−1

16πG

∫
∂M

BIJ ∧ΔIJ

=
1

16πG

∫
M

dDve

[
3•TI

MNΔ
JK

Rδ
[ M
I δN

J δ
R]
K + 2δ[ M

I δN]
J ΔI

LMΔ
LJ

N

]

=
1

16πG

∫
M

dDve

[
2•TM

MJΔ
JN

N + •TIJKΔ
JKI −ΔI

LIΔ
JL

J −ΔN
[LM]Δ

LM
N

]
.

(2.24)

where we decomposed the difference tensor one-form ΔI
Ja into its components ΔI

Ja =
ΔI

JMeM
a with respect to the D-bein eI.

To express this action in terms of the torsion two-form alone, we have to impose strongly the
torsionless condition at the level of the action. In other words, part of the equations of motion
are plugged back into the action to eliminate Δ as an independent variable. Consider first the
variation of the action with respect to the difference tensor one-form ΔI

Ja, which yields the
condition,

•TI +ΔI
J ∧ eJ = 0. (2.25)

8
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In terms of its components, the condition (2.25) is now solved by

ΔIJK = −ΔJIK =
1
2

(•TIJK + •TJKI − •TKIJ

)
. (2.26)

This in turn implies

ΔN
[LM] =

1
2
•TN

LM , (2.27a)

ΔJN
N = •T NJ

N . (2.27b)

If we now insert (2.26), (2.27a), (2.27b) back into (2.24), we get the usual teleparallel action
which is now quadratic in the components of the torsion two-form,

S[A, e]+
(−1)D−1

16πG

∫
∂M

BIJ ∧ΔIJ

≈ 1
16πG

∫
M

dDve

[
•TM

MJ
•T NJ

N +
1
2
•TNLM

•TLMN − 1
4
•TNLM

•TNLM

]
,

(2.28)

where ≈ denotes terms that vanish provided the torsionless condition (2.25) is satisfied.
As in the three-dimensional Euclidean case, we have proved in the Lorenztian

D-dimensional case that the Einstein–Cartan action, a well-known first-order formulation of
the standard GR formulation (Palatini action), is also a first-order formulation of the teleparallel
action up to a boundary term.

3. Relating the dual loop picture to the teleparallel formulation in three
dimensions

We now focus on the three-dimensional Euclidean case, and restrict ourselves to a trivial
topology M ∼ R× Σ, with the spatial manifold Σ having no boundary for simplicity. As
in section 2.1, the fundamental configuration variables, namely the triad e and the connection
A, are one-forms with value in su(2).

We will show that starting from the Einstein–Cartan action there are two natural sym-
plectic potentials that appear, related by an integration by parts. They amount to different
choices of polarization. Following our previous result, namely that the Einstein–Cartan action
can be seen as the first-order action of both GR and teleparallel gravity, we will argue that
the different choices of polarization are naturally related to either the GR or teleparallel
frameworks.

We will then recall how the discretization procedure described in [14, 15] gives rise to dif-
ferent discrete theories. Each discrete theory can be then naturally identified with the different
choices of polarization in the continuum. Hence we will argue that the dual loop gravity discrete
theory can naturally be seen as a discretization of the teleparallel framework.

3.1. Pre-symplectic forms in the continuum

Standard calculations for the Einstein–Cartan action

SEC[e, A] = − 1
8πG

∫
M

〈e ∧ F[A]〉 , (3.1)

9
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lead to the pre-symplectic potential

ΘEC = − 1
8πG

∫
Σ

Ẽ a
I δAI

a, (3.2)

where δ is the differential in field space and Ẽ a
I denotes the densitized triad8

Ẽ a
I = ε̃abeIb. (3.3)

On the other hand, we now also have on field space

δAI
a = δ

[
ωI

a +ΔI
a

]
= δΔI

a, (3.4)

since ω is a reference connection, which is kept fixed on field space.

ΘEC =
1

8πG

∫
Σ

Ẽ a
I δΔI

a, (3.5)

Let us now choose the Weitzenböck connection •ω as the reference connection. Then, the
action (3.1) becomes, up to a boundary term, (2.4)

SEC[e, •ω] = − 1
8πG

∫
M

〈
•T ∧Δ+

1
2

e ∧ [Δ ∧Δ]

〉
. (3.6)

We refer to section 2.1 for more details. Direct calculations lead this time to the symplectic
potential

ΘTP = − 1
8πG

∫
Σ

〈δe ∧Δ〉 = − 1
8πG

∫
Σ

ε̃abδeIa Δ
I
b = − 1

8πG

∫
Σ

Δ̃ a
I δeI

a,

(3.7)

where we introduced the densitized difference tensor

Δ̃ a
I = ε̃abΔIb. (3.8)

We refer to this symplectic potential as the symplectic potential for the teleparallel picture
since (3.6) is the teleparallel action (2.8) on-shell.

The actions (3.1) and (3.6) are related by an integration by part. The relevant connection
variables for the symplectic form are actually given in terms of the difference tensor. Since
we are dealing with densitized fields, the canonical map between the two polarizations also
implements a (Poincaré) dualization via the Levi-Civita tensor density ε̃ab,

(ε̃abeIb,ΔI
a) → (ε̃abΔIb, eI

a). (3.9)

These two sets of variables represent two polarizations on the classical phase space, corre-
sponding to either the GR formulation or the teleparallel formulation in the continuum. The
physics must be independent of the choice of polarization. This is another way to say that we
can equivalently work with the GR or teleparallel formulations.

Hence from an abstract perspective, the choice of polarization does not matter at the contin-
uum level. At the discrete level, however, things will be more subtle. Indeed, the discretization

8 In the following, indices a, b, c, . . . , are two-dimensional abstract tensor indices and ε̃ba is the Levi-Civita skew-
symmetric tensor density on the spatial slice.

10



Class. Quantum Grav. 37 (2020) 085023 M Dupuis et al

procedure is sensitive to the dualization induced by the Levi-Civita tensor density ε̃ba. Let us
explain this point below.

3.2. Symplectic forms in the discrete picture

We recall the construction of [14], neglecting the possible existence of curvature and tor-
sion defects at the vertices of the triangulation. For further details about such issues,
see [18].

The phase space underlying the spin network quantum states can be obtained through a
discretization procedure, which relies on two steps. The first step is to discretize the spatial
manifold using a triangulation. The second step is to truncate the degrees of freedom by assum-
ing that on the faces c∗ of the triangulation we have the constraints satisfied, meaning that there
is neither torsion nor curvature inside c∗. The solutions of such zero torsion and zero curvature
constraints are respectively given by

e(x) = g−1
c dycgc, A = g−1

c dgc, (3.10)

with x any point of a given face c∗ of the triangulation, gc(x) the holonomy joining the reference
point c to x in c∗, and yc a Lie algebra element.

We intend to discretize the pre-symplectic potential ΘEC (3.5) rather than ΘTP (3.7), as the
latter cannot be written in terms of boundary data only. Nevertheless, we will still be able to
have the discrete analogue of the potential ΘTP (3.7) precisely because the discretized version
of ΘEC (3.5) will be an exact two-form, essentially allowing for an integration by parts that
relates the discretization of ΘEC to a discrete version of ΘTP.

Starting from ΘEC (3.5), within a face c∗ of the triangulation, we replace the frame field and
the connection by their respective discrete expression given in (3.10)

ΘEC =
1

8πG

∫
c∗
〈e ∧ δA〉 = 1

8πG

∫
c∗

〈
dyc ∧ d(δgcg

−1
c )

〉
. (3.11)

As the integrand is an exact two-form, this integral can be evaluated on the boundary of c∗ and
there are two possible choices to do so.

∫
c∗

〈
dyc ∧ d(δgcg

−1
c )

〉
= −

∫
∂c∗

〈
dyc (δgcg

−1
c )

〉
=

∫
∂c∗

〈
yc d(δgcg

−1
c )

〉
. (3.12)

Such discretization can be performed for any face, in particular for the face c′∗ which shares
an edge 	 as boundary with c∗. Furthermore the fields gc′ (x) and yc′(x) being evaluated on 	 can
be related to the fields gc(x) and yc(x) evaluated at the same point on 	 .

gc′ = hc′cgc, yc′ = hc′c(yc + xcc′ )h
−1
c′c . (3.13)

These are the continuity conditions at 	, the common edge of the faces c∗ and c′∗. Implementing
these relations for each contributions c∗, c′∗ for the edge 	 = [vv ′], which is dual to the spin
network link [cc′] = 	∗, we get the two different potentials, for each edge 	.

Θ	
LG = − 1

8πG

〈(∫
	

dyc

)
δh	∗h−1

	∗

〉
= − 1

8πG

〈
X	 δh	∗h

−1
	∗

〉
, (3.14)

Θ	
LG∗ = +

1
8πG

〈
(gvcx	∗gcv)δg	g

−1
	

〉
= +

1
8πG

〈
X	∗ δg	g

−1
	

〉
, (3.15)

11
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where we used the notations

X	 ≡
∫
	

dyc, h	∗ ≡ gcvgvc′ (3.16)

X	∗ ≡ gvcx	∗gcv , g	 ≡ gvcgcv′ . (3.17)

Θ	
LG refers to the loop gravity potential, whereas Θ	

LG∗ refers to the dual loop gravity potential.
By construction, in (3.14), the fluxes X	 satisfy the Gauss constraint when summing over

the edges of a given triangle.
∑
	∈∂c∗

X	 = 0. (3.18)

This is the discretized version of the torsionless condition (a two-form) on a triangle. The
data (X	, h	∗ ,Θ

	
LG) provides the classical phase space for the standard spin networks: we have

holonomies decorating the dual of the triangulation, i.e. the spin network graph. This is often
coined the loop gravity framework.

On the other hand we also have the dual picture (3.15) where the holonomies g	 around the
triangles satisfy the flatness constraint,

∏
	∈∂c∗

g	 = 1. (3.19)

This is the discretized version of the constraint that imposes that the curvature is flat. The
data (g	, X	∗ ,Θ

	
LG∗) provides the classical phase space for the ‘dual’ spin networks: we have

fluxes decorating the dual of the triangulation, i.e. the spin network graph. This is naturally
coined dual loop gravity. Such a discrete theory was shown to be related to t’Hooft approach
to three-dimensional gravity [16] and the Dijkgraaf–Witten model [17].

The parallel with the previous section should now be clear. The configuration variablesΔI
a,

eI
a, are discretized along the link 	∗, where as the momentum variables Ẽ a

I , Δ̃ a
I , are discretized

along the edge 	.

‘GR polarization’ → loop gravity ‘Teleparallel polarization’ → dual loop gravity

Ẽ a
I → X	 Δ̃ a

I → g	

ΔI
a → h	∗ eI

a → X	∗

ΘEC →Θ	
LG ΘTP →Θ	

LG∗

Dual loop gravity can be interpreted as the discretization of the teleparallel framework, just
like loop gravity can be seen as a discretization of GR.

The momentum variables are discretized on structures dual to the ones which the configura-
tion variables are associated to. Hence to different polarizations in the continuum are associated
different discretizations. Change of polarization at the continuum level and discretization do
not commute.

Yet, the physics cannot depend on the choice of polarization, and different discretizations
should not lead to different physics either. Ignoring issues with the continuum limit [19], which
can be set aside in three-dimensional gravity, because the theory is topological, we expect,
therefore, that the two discretizations must be related by a duality map, encoding their equiv-
alence. Such a duality was conjectured in [17] and is probably related to the one found in the
context of the Kitaev model [20]. We will leave this for further investigations.
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4. Discussion

To the best of our knowledge, until now there was no proposal for a first-order formulation for
teleparallel gravity. In the second-order formalism, the teleparallel action is obtained from the
usual GR action by an integration by part. It is not so surprising to see, therefore, that the first-
order action for teleparallel gravity is obtained from an integration by parts from the first-order
Einstein–Cartan action for gravity. The key idea is to parametrise the spin connection degrees
of freedom in terms of a fiducial reference connection, which is undynamical, and a difference
tensor9 Δ that encodes the dynamical degrees of freedom. Then, this parametrisation allows
us to show that the Einstein–Cartan action provides the first-order formulation of both metric
general relativity as well as the first-order formulation of teleparallel gravity.

This result allows us to justify the statement made in [14]. Namely that dual loop gravity is
related to the teleparallel picture and that furthermore the loop gravity and dual loop gravity
representations are related by a change of polarization. These two polarizations are equivalent
in the continuum but lead to two different discrete theories. We expect that the equivalence
between these different polarizations should be realised as an equivalence between different
dual lattice regularisations (implementing the Poincaré duality found in the continuum). This
is currently being investigated.

Another interesting question is to understand how the cosmological constant modifies the
construction described in this article. From the three-dimensional quantum gravity side, it is
well known that a quantum group structure emerges. This can be traced back to the fact that we
discretize the theory using homogeneously curved geometries. On the other hand Dittrich and
Geiller [21] discussed how the dual BF vacuum construction is also deformed using quantum
group structures. This suggests that there must be a teleparallel formulation of gravity that is
discretized along some teleparallel analogue of homogeneously curved geometries. We leave
this intriguing question for further investigations.
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