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Abstract
We derive the uncertainty principle for a Dirac fermion in a torsion field obey-
ing the Hehl–Datta (HD) equation. We find out how the non-linear term in the
HD equation modifies the uncertainty principle and how it compares with the
generalized uncertainty principle (GUP). We first discuss that there should be a
correction factor to the Heisenberg uncertainty principle (HUP) when torsional
effects are taken into consideration. We then derive the uncertainty relation
from a solitary wave solution of the HD equation in 1 + 1 dimensions. We
then introduce the unified length scale LCS (which unifies Compton wavelength
and Schwarzschild radius) into the HD equation and see how the probability
density of the solution transforms for particles of different masses.

Keywords: generalized uncertainty principle, torsion field, Hehl–Datta
equation, unified length scale LCS

(Some figures may appear in colour only in the online journal)

1. Introduction

The background space–time of Einstein’s general theory of relativity (GR) is formulated on a
Riemannian manifold (V4) which is torsion-less. If in this space–time continuum, spin angular
momentum is introduced and distributed continuously, torsion is produced. The space–time is
now a U4 manifold on which the Einstein–Cartan–Sciama–Kibble (ECSK), or simply Ein-
stein–Cartan (EC) theory is formulated. The affine connection is no longer required to be
symmetric and torsion is the anti-symmetric part of the connection. Here, both mass and spin
play a dynamical role. While mass ‘adds up’ on classical length scales due to its monopole
nature, spin, being of dipole character, usually averages out in the absence of external forces.
Therefore, matter in the macroscopic scale can be dynamically characterized entirely by the
energy momentum tensor. In the micro-regime however, a spin density tensor plays an analo-
gous role for spin which exhibits as torsion in the field. In this paper, we consider a minimal
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coupling of Dirac field on U4 manifold which is called the Einstein–Cartan–Dirac (ECD) the-
ory [1]. On U4, the Dirac equation becomes non-linear due to the presence of torsion in the
field; and is known as the Hehl–Datta equation [2]. In the ECD theory, the matter field is the
spinorial Dirac field ψ, and the four-component spinor is written as:

ψ =

[
PA

QB′

]
(1)

where PA and QB′ are two dimensional complex vectors in C
2 space. We redefine the spinors

as: P0 = F1, P1 = F2, Q1′ = G1 and Q0′ = −G2. This is in accordance with [3, 4].
The HD equation is given by:

iγμ∂μψ =
3
8

L2
Plψγ

5γaψγ
5γaψ +

1
λC

ψ (2)

where LPl is the Planck length and λC is the Compton wavelength.

1.1. Generalized uncertainty principle

In the microscopic domain, the Heisenberg uncertainty principle (HUP), is a key feature which
states that the uncertainty in position and momentum of a particle must satisfy

(Δz)(Δp) � �

2

where � is the Planck’s constant, Δz and Δp are position and momentum dispersion operators
respectively.

Two main length scales in relativistic physics are the Compton length λC = �

Mc , correspond-
ing to the uncertainty principle and the Schwarzschild radius RS = 2GM

c2 corresponding to the
existence of black holes. These two lines when plotted as a function of M intersect at Planck
scales mPl and LPl. The uncertainty principle is modified as the energy increases towards the
Planck value which leads to the conception of the generalized uncertainty principle [5–13] and
is of the form:

Δz � �

Δp
+ αL2

Pl

(
Δp
�

)
(3)

where LPl is the Planck length which is of the order 10−35m, α is a dimensionless con-
stant which depends on the particular model and the factor of 2 in the first term has been
dropped.

Formulating the uncertainty relation from Schrödinger equation by calculating the position
and momentum dispersion operators from the wave packet solution gives us HUP. Similar is
the case for Dirac equation which is given by:

iγμ∂μψ =
mc
�
ψ =

1
λC

ψ (4)

The extra non-linear term in the HD equation as given in (2) comes due to the anti-symmetric
nature of the affine connection which is in turn manifested as torsion in the field of the Dirac
fermions. We compute the uncertainty relation of Dirac fermions from the HD equation to see
how the non-linear term modifies the HUP and how it compares with the generalized uncer-
tainty principle which is a manifestation of the unified expression for the Compton wavelength
and the Schwarzschild radius [5–13].
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1.2. Notations and conventions

The following conventions are in use for the remainder of this paper:

• Space–time endowed with torsion is specified by U4 and V4 is a non-torsional space–time.
• In the standard theory, the Planck length is given by:

l1 = LPl =

√
G�

c3
(5)

and half Compton wavelength is:

l2 =
λC

2
=

�

2Mc
(6)

•

a(l1) = 3
√

2πl21

b(l2) =
1

2
√

2l2

(7)

• A unified length scale LCS in quantum gravity
Recent works [5, 14, 15] have provided motivation for unifying the Compton wave-

length
(
λC = �

Mc

)
and Schwarzschild radius

(
RS = 2GM

c2

)
of a point particle with mass

M into one single length scale, the Compton–Schwarzschild length (LCS). Such a treat-
ment suggests us to introduce torsion, and relate the Dirac field to the torsion field. This
modified theory is given by: l1 = l2 = LCS. So our HD equation becomes:

iγμ∂μψ =
3
8

L2
CSψγ

5γaψγ
5γaψ +

1
2LCS

ψ (8)

2. A non-static solution in 1 + 1 dimensions of the HD equation

The HD equation on U4 in Cartesian coordinate system (ct, x, y, z) given in [4] is as follows:

(∂0 + ∂3)F1 + (∂1 + i∂2)F2 = i
√

2[b(l2) + a(l1)ξ]G1 (9)

(∂0 − ∂3)F2 + (∂1 − i∂2)F1 = i
√

2[b(l2) + a(l1)ξ]G2 (10)

(∂0 + ∂3)G2 − (∂1 − i∂2)G1 = i
√

2[b(l2) + a(l1)ξ∗]F2 (11)

(∂0 − ∂3)G1 − (∂1 + i∂2)G2 = i
√

2[b(l2) + a(l1)ξ∗]F1 (12)

where ξ = F1G1 + F2G2 and ξ∗ = F1G1 + F2G2. These equations are compared and con-
trasted with the torsionless Dirac equations in [3], and then we see that the impact of torsion
is to include the term aξ on the right-hand side of (9) and (10), and aξ∗ in (11) and (12).

Now, let us assume the ansatz of the form F1 = G2 and F2 = G1 and further assume that
the Dirac states are a function of only t and z. The four equations in Cartesian coordinates
(9)–(12), reduce to the following two independent equations,

∂tψ1 + ∂zψ2 − i
√

2bψ1 +
ia√

2
(|ψ1|2 − |ψ2|2)ψ1 = 0

∂tψ2 + ∂zψ1 − i
√

2bψ2 +
ia√

2
(|ψ1|2 − |ψ2|2)ψ2 = 0

(13)
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where ψ1 = F1 + F2 and ψ2 = F1 − F2. We use the following solitary wave ansatz:

ψ =

[
ψ1

ψ2

]
=

[
A(z)
iB(z)

]
exp (−iΛt) (14)

where A(z) and B(z) are real functions. Substituting in (13), we obtain that [4]:

A(z) =
−i23/4(

√
2b − Λ)√
a

√√
2b + Λ cosh

(
z
√

2b2 − Λ2
)

[
Λ cosh

(
2z
√

2b2 − Λ2
)
−
√

2b
] (15)

B(z) =
−i23/4(

√
2b + Λ)√
a

√√
2b − Λ sinh

(
z
√

2b2 − Λ2
)

[
Λ cosh

(
2z
√

2b2 − Λ2
)
−
√

2b
] (16)

The probability density is given by the zeroth component of the four-vector fermion current
J̃0 = ψγ0ψ = ψ†ψ = (|A|2 + |B|2).

We define the following dimensionless variables:

q =
√

2bz

w = − Λ√
2b

A(q) =
√

a

2
√

b
A(z) (17)

B(q) =
√

a

2
√

b
B(z)

Scaled thus, A(q) and B(q) take the form:

A(q) =
i(1 + w)

√
1 − w cosh(q

√
1 − w2)

1 + w cosh(2q
√

1 − w2)
(18)

B(q) =
i(1 − w)

√
1 + w sinh(q

√
1 − w2)

1 + w cosh(2q
√

1 − w2)
(19)

The probability density is given by:

J̃0 = ψ†ψ =

[
(1 + w)2(1 − w)cosh2(q

√
1 − w2) + (1 − w)2(1 + w)sinh2(q

√
1 − w2)

[1 + w cosh(2q
√

1 − w2)]2

]

(20)

Six unique cases (corresponding to the range of values of w) which give different solutions
have been studied in [4], of which the case w ∈ (0, 1), contains no singularities anywhere thus
giving us a physically viable solution. Two sub-cases were considered: (a) with w ∈

(
0, 1

2

)
and

(b) with w ∈ [ 1
2 , 1). (a) has a local minimum at the origin and two global maxima symmetric

around the origin at non-zero q. This is given by the blue wave-function in figure 1. On the
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Figure 1. Case (a) blue: w = 0.25, case (b) green: w = 0.75, orange: w = 0.5. Case (a)
has local minima at origin and two maximas at two symmetrically opposite sides of the
origin at non-zero q and case (b) has global maxima at the origin.

Figure 2. 2(a) is a graph of the probability density when w = 0. This produces an
unphysical solution. 2(b) is a trivial solution when w = 1.

other hand, (b) has a global maxima at the origin and monotonically decays to zero at infinity.
This is shown by the orange and green wave-functions in figure 1.

The case w = 0 produces an unphysical solution and w = 1 gives us a trivial solution. This
is shown in figure 2

The substitution of different values ofw in the probability density given in (20), corresponds
to different Dirac–Hehl–Datta fermions. The non-linearity in the HD equation stems from
anti-symmetric nature of the affine connection but the total current is still conserved as in the
torsion free case [16]. The normalization factor for all the three cases, considered in figure 1
are different and the probability density integrates to unity in all the cases. Thus the non-static
solution (18) and (19) to the HD equation is valid.
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3. Calculating the uncertainty relation from the given solitary wave solution

3.1. Standard length scale

Here,

w = ws = − Λ√
2b

= −2Λl2 (21)

To compute the uncertainty relation, we find the expectation values of q, q2, p and p2, where
p̂ = −i� ∂

∂q

〈q〉 =
∫ ∞

−∞
ψ† qψdq =

∫ ∞

−∞
qψ†ψdq = 0 (22)

The Gaussian is symmetric with the z axis. Therefore, 〈q〉 = 0

〈q2〉 =
∫ ∞

−∞
q2ψ†ψdq

=

∫ ∞

−∞
q2

[
(1 − w2)

w + cosh(2q
√

1 − w2)

[1 + w cosh(2q
√

1 − w2)]2

]
dq (23)

The solution for this integral gives us a conditional expression which assumes all the values
of w, real and complex. But since we know that the HD equation produces physical solutions
only for w ∈ (0, 1), w, satisfies all the conditions and thus our answer is of the form:

〈q2〉 =
Li2

(−1
ν

)
+ Li2

(
1
ν

)
+ Li2

(
−1
μ

)
+ Li2

(
1
μ

)
w
√

1 − w2
(24)

= g(w)

where, ν =

√
−1+

√
1−w2

w
andμ =

√
−1−

√
1−w2

w
Lin(x) is a poly-logarithm function also known

as Jonquière’s function which is of the form:

Lin(x) =
∞∑

k=1

xn

kn

The dispersion of position operator is:

(Δq)2 = 〈q2〉 − 〈q〉2 = g(w) (25)

Given in figure 3 is the graph of Δq vs w.
Now moving on to the momentum operator given by p̂ = −i� ∂

∂q ,

〈p〉 = −i�
∫ ∞

−∞
ψ† ∂

∂q
ψdq (26)

∂

∂q
ψ =

⎡
⎢⎣

∂

∂q
A(q)

∂

∂q
iB(q)

⎤
⎥⎦ (27)

6
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Figure 3. Δq vs w.

∂

∂q
A(q) =

∂

∂q

[
i
√

1 − w(1 + w) cosh(q
√

1 − w2)

1 + w cosh(2q
√

1 − w2)

]

= −i(1 + w)
√

1 − w
√

1 − w2

[
(−1 + 2w + w cosh(2q

√
1 − w2)) sinh(q

√
1 − w2)

[1 + w cosh(2q
√

1 − w2)]2

]

(28)

∂

∂q
iB(q) =

∂

∂q

[
−
√

1 + w(1 − w) sinh(q
√

1 − w2)

1 + w cosh(2q
√

1 − w2)

]

= (1 − w)
√

1 + w
√

1 − w2
(−1 − 2w + w cosh(2q

√
1 − w2)) cosh(q

√
1 − w2)

[1 + w cosh(2q
√

1 − w2)]2

(29)

ψ† ∂

∂q
ψ = −A(q)

∂

∂q
A(q) + iB(q)

∂

∂q
iB(q)

= (−1 + w)(1 + w)
√

1 − w2
(−1 + 2w2 + w cosh(2q

√
1 − w2)) sinh(2q

√
1 − w2)

[1 + w cosh(2q
√

1 − w2)]3

(30)

〈p〉= −i�
∫ ∞

−∞
(−1 + w)(1 + w)

√
1 − w2 (−1 + 2w2 + w cosh(2q

√
1 − w2)) sinh(2q

√
1 − w2)

[1 + w cosh(2q
√

1 − w2)]3
dq

= 0

(31)

7
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〈p〉 is zero because it is an integral of odd function from −∞ to ∞.

〈p2〉 = −�
2
∫ ∞

−∞
ψ† ∂2

∂q2
ψdq (32)

∂2

∂q2
ψ =

⎡
⎢⎢⎣

∂2

∂q2
A(q)

∂2

∂q2
iB(q)

⎤
⎥⎥⎦ (33)

∂2

∂q2
A(q) =

i(1 − w)3/2(1 + w)2 cosh
(

q
√

1 − w2
)

2
[
1 + w cosh

(
2q

√
1 − w2

)]3

[
2 + 8w − 15w2

+ 4w(−3 + 2w) cosh
(

2q
√

1 − w2
)
+ w2 cosh

(
4q

√
1 − w2

)] (34)

∂2

∂q2
iB(q) =

(−1 + w)2(1 + w)3/2 sinh
(

q
√

1 − w2
)

2
[
1 + w cosh

(
2q

√
1 − w2

)]3

[
−2 + 8w + 15w2

+ 4w(3 + 2w) cosh
(

2q
√

1 − w2
)
− w2 cosh

(
4q

√
1 − w2

)] (35)

ψ† ∂2

∂q2
ψ = −A(q)

∂2

∂q2
A(q) + iB(q)

∂2

∂q2
iB(q) =

(1 − w2)2

4[1 + w cosh(2q
√

1 − w2)]4

×
[
(8w − 22w3) + (4 − 21w2) cosh(2q

√
1 − w2) + (2w(−6 + 5w2))

× cosh(4q
√

1 − w2) + + w3 cosh(6q
√

1 − w2)
]

(36)

Since the function is an even function, the integral finally becomes,

〈p2〉 = −�
2

[∫ ∞

0

(1 − w2)2(8w − 22w3)dq

2[1 + w cosh(2q
√

1 − w2)]4

+

∫ ∞

0

(1 − w2)2(4 − 21w2) cosh(2q
√

1 − w2)dq

2[1 + w cosh(2q
√

1 − w2)]4

+

∫ ∞

0

(1 − w2)22w(−6 + 5w2) cosh(4q
√

1 − w2)dq

2[1 + w cosh(2q
√

1 − w2)]4

+

∫ ∞

0

(1 − w2)2w2 cosh(6q
√

1 − w2)dq

2[1 + w cosh(2q
√

1 − w2)]4

]
(37)

8
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Evaluation of the individual integrals gives us:

∫ ∞

0

(1 − w2)2(8w − 22w3)

2[1 + w cosh(2q
√

1 − w2)]4
dq = −w(1 − w2)5/2(−4 + 11w2)

×

√
−1 + w2(11 + 4w2) + 6(2 + 3w2) arctan

(
1√

−1+w2

)
− 6(2 + 3w2) arctan

(
1+w√
−1+w2

)
12(−1 + w2)7/2

= f1(w)

(38)

∫ ∞

0

(1 −w2)2(4 − 21w2) cosh(2q
√

1 − w2)

2[1 + w cosh(2q
√

1 − w2)]4
dq = (4 − 21w2)

√
1 − w2

×
−
√
−1 + w2(2 + 13w2) − 6w2(4 + w2) arctan

(
1√

−1+w2

)
+ 6w2(4 + w2) arctan

(
1+w√
−1+w2

)
24w(−1 + w2)7/2

= f2(w)

(39)

∫ ∞

0

(1 − w2)22w(−6 + 5w2) cosh(4q
√

1 − w2)

2[1 + w cosh(2q
√

1 − w2)]4
dq = (1 − w2)3/2(−6 + 5w2)

×

√
−1 + w2(−2 + 9w2 + 8w4) + 30w4 arctan

(
1√

−1+w2

)
− 30w4 arctan

(
1+w√
−1+w2

)
12w(−1 + w2)7/2

= f3(w)

(40)

∫ ∞

0

(1 − w2)2w2 cosh(6q
√

1 − w2)

2[1 + w cosh(2q
√

1 − w2)]4
dq = (1 − w2)3/2

×

√
−1 + w2(−8 + 26w2 − 33w4) − 30w6 arctan

(
1√

−1+w2

)
+ 30w6 arctan

(
1+w√
−1+w2

)
24w(−1 + w2)7/2

= f4(w)

(41)

〈p2〉 is completely in terms of w. So let us call 〈p2〉 = −�
2f(w), where

f (w) = f1(w) + f2(w) + f3(w) + f4(w) (42)

9
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Figure 4. Δp vs w.

The dispersion of momentum operator is thus,

(Δp)2 = 〈p2〉 − 〈p〉2 = −�
2 f (w)

− f (w) =
(Δp)2

�2

(43)

The graph for Δp vs w is given in figure 4.
Though equations (38)–(41) contain the term

√
−1 + w2, after evaluation of all the terms

together, the end result is purely real. We would not have been able to plot the above figure for
complex values.The uncertainty relation is:

(Δq)2(Δp)2 = − f (w)g(w)�2 (44)

Let −f(w)g(w) = h2(w). The generalized uncertainty principle is obtained as:

(Δq)(Δp) = h(w)�

= (1 + h(w) − 1)�

= �+ α(w)�

= �+

(
α(w)
− f (w)

)
(− f (w))�

= �+ β(w)(− f (w))�

= �+ β(w)
(Δp)2

�2
�

(Δq) =
�

(Δp)
+ β(w)

�

(Δp)
(Δp)2

�2

(Δq) =
�

(Δp)
+ β(w)

(Δp)
�

(45)

10
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Figure 5. β(w) passes through 0 when w = 0.555 542 approximately.

Table 1. Values of functions f(w), g(w), h(w),α(w),β(w).

w f (w) g(w) h(w) α(w) β(w)

0.1 −3.25722 30.7774 10.0124 9.01243 2.76691
0.2 −1.53665 10.9016 4.09292 3.09292 2.01277
0.3 −0.946858 5.94122 2.37181 1.37181 1.4488
0.4 −0.647309 3.91751 1.59243 0.592432 0.915222
0.5 −0.465485 2.90075 1.16201 0.162005 0.348035
0.6 −0.342801 2.34209 0.896031 −0.103969 −0.303292
0.7 −0.254672 2.04638 0.721911 −0.278089 −1.09195
0.8 −0.188492 1.96371 0.608394 −0.391606 −2.07757
0.9 −0.131402 2.23559 0.541997 −0.458003 −3.48551

Thus, we are able to get uncertainty relation in the form of GUP for Dirac fermions in
torsion field. We can therefore assert that torsion has the same effect on uncertainty principle
as modified length LCS.

We can also say that HUP is an approximation of GUP. This happens when h(w) = 1 or
β(w) = 0. The graph of the modification term β(w) with respect to w is given in figure 5.

3.1.1. Checking for different values of w. We are considering that w lies in the range (0, 1).
Let us take 0.1 as our step function and find the values of f(w), g(w), h(w), α(w) and β(w) in
this range.

Table 1 specifies the values of all the functions for the respective w values.
For demonstration purposes, we take w = 0.1 and show how we got the GUP equation:

(Δq)(Δp) = h(w)� = 10.0124�

= �+ 9.012 43�

(Δq) =
�

(Δp)
+ 2.766 91

(Δp)
�

(46)

Δq vs Δp for the GUP with w ∈ (0, 1) (figure 6).

11
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Figure 6. Δq vs Δp for GUP with w ∈ (0, 1).

The above plot for GUP is similar to the one in [5], thus confirming our result that torsion
has the same effect on uncertainty principle as modified length LCS.

3.2. Modified length scale

A relativistic particle of mass m has two length scales associated with it: the half comp-
ton line, λC = �

2Mc and Schwarzschild radius, RS = 2GM
c2 . The particle either obeys the rel-

ativistic Dirac equation or the field equations of general relativity. This is known experi-
mentally. But theoretically however, both these concepts hold for objects of all masses. The
Dirac equation experimentally holds for particles with masses m 	 mPl (λC 
 LPl), and field
equations of GR holds for m 
 mPl (RS 
 LPl), where mPl is Planck mass having a value of
about 10−8 kg.

There is a need for one universal length such that it always stays higher than Planck length,
because it is the smallest meaningful length, which limits to λC in the Planck regime and RS

in the classical regime. This Compton–Schwarzschild length, LCS introduced in [5, 9, 14, 17]
is given in the following form:

LCS

2LPl
=

1
2

(
2m
mPl

+
mPl

2 m

)
(47)

12
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This can also be written as,

LCS

2LPl
=

mPl

4 m

(
1 +

4 m2

m2
Pl

)

LCS =
λC

2

(
1 +

R2
S

L2
Pl

) (48)

LCS takes the value λC for m 	 mPl and RS for m 
 mPl.
Now, in our theory, l1 = l2 = LCS, the modified HD equation given in (8). This implies,

b(l2), takes the form:

b(l2) = b(LCS) =
1

2
√

2LCS
(49)

Thus, w in the standard theory which was − Λ√
2b

denoted by ws, now takes the form,

wm = −2ΛLCS (50)

⇒ LCS = −wm
2Λ , where l2 was − ws

2Λ = λC
2

Substituting this in (48), we get,

LCS =
λC

2

(
1 +

R2
S

L2
Pl

)

= l2

(
1 +

R2
S

L2
Pl

)

−wm

2Λ
= −ws

2Λ

(
1 +

R2
S

L2
Pl

)
(51)

Thus, we get our modified w to be of the form,

wm = ws

(
1 +

R2
S

L2
Pl

)
(52)

where, RS = 2GM
c2 , the gravitational constant G = 6.674 × 10−11Nm2kg−2, LPl � 1.6 ×

10−35m.

RS = 1.483 11 × 10−27 × M (53)

R2
S

L2
Pl

= 8.592 26 × 1015 × M2 (54)

Let
R2

S

L2
Pl

= η. Then, η = (8.592 26 × 1015)M2.

wm is a function of two variables, M, mass of a particle and ws.

wm = ws(1 + (8.592 26M2 × 1015)) = wS(1 + η) (55)

As η → 0, i.e., M 	 mPl, wm → ws, the standard value for which the GUP form is already
derived.

13
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Figure 7. In both these graphs, we have taken the mass of the particle to be a little over
Planck mass i.e., 10−7kg. In graph (A), according to the standard length scale, when
ws = 0.001, the probability density has a minima at the origin. Transforming this stan-
dard ws to modified according to (52), wm = 0.869 226. The probability density of this
graph (B) has a maxima at the origin.

Figure 8. M = mPl. ws = 0.1 → wm = 0.51.

Figure 9. M = mass of the Sun. We can deduce that as M →∞,ws → 0. wm = 0.67 for
this particular standard w value.

Now, as M 
 mPl, η > 1. Let us take an example. Suppose M = 10−7 kg, then
η = 85.9226. If we consider ws = 0.001, which produces a double-headed wave with local
minima at the origin, wm takes the value 0.869 226 which produces the wave to give global
maxima at the origin. Figure 7 depicts this transformation (figure 8).

Let us now understand how the probability distribution changes when M =
mPl = 2.2 × 10−8kg. This is explained in figure 9. We see that at mPl, the probability

14
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distribution when ws = 0.1, is a double-headed wave function which transforms to a wave
functions having maxima at the origin using the formula of modified w.

Now, suppose we take the value of M to be quite large, say the mass of the Sun, ws value
must be extremely small of the order 10−77 in order to get a physical solution in terms of wm.
Figure 9 explains this.

The above transformations of the probability density can be seen for M � mPl. Those values
of ws that produced double-headed wave solutions with minima at the origin, upon introducing
the modified length scale LCS, now produces viable solutions with maxima at the origin.

4. Conclusion

We derived the uncertainty principle for a Dirac fermion in a torsion field obeying the HD
equation. We found that the non-linear term in the HD equation modifies the Heisenberg
uncertainty principle and this modification is of the form of generalized uncertainty princi-
ple. Therefore, torsion has the same effect on uncertainty principle as modified length LCS.
Upon incorporating the modified length in our solution, we find a transformation of system for
particles of mass greater than the Planck mass with double-headed wave solutions with minima
at origin to maxima at origin and hence, providing viable solutions.

Acknowledgments

We would like to thank Abhinav Varma, Shounak De, Swanand Khanapurkar for helpful dis-
cussions. I am grateful to Dr Tejinder P Singh under whom I conducted this project. He guided
me very patiently and I learnt a lot from him.

ORCID iDs

Anjali Ramesh https://orcid.org/0000-0001-5155-8862

References

[1] Khanapurkar S 2018 The Einstein-Cartan-Dirac theory (arXiv:1803.10621)
[2] Hehl F W and Datta B K 1971 Nonlinear spinor equation and asymmetric connection in general

relativity J. Math. Phys. 12 1334
[3] Chandrasekhar S 1998 The Mathematical Theory of Black Holes (Oxford: Oxford University Press)

vol 69
[4] Khanapurkar S, Varma A, Mittal N, Gupta N and Singh T P 2018 Einstein-Cartan-Dirac equations

in the Newman-Penrose formalism Phys. Rev. D 98 064046
[5] Carr B, Modesto L and Premont-Schwarz I 2011 Generalized uncertainty principle and self-dual

black holes (arXiv:1107.0708 [gr-qc])
[6] Carr B J 2014 The black hole uncertainty principle correspondence (arXiv:1402.1427)
[7] Lake M J and Carr B 2015 The Compton–Schwarzschild correspondence from extended de Broglie

relations J. High Energy Phys. JHEP11(2015)105
[8] Carr B J 2013 Black holes, the generalized uncertainty principle, and higher dimensions Mod. Phys.

Lett. A 28 1340011
[9] Carr B J, Mureika J and Nicolini P 2015 Sub-Planckian black holes and the generalized uncertainty

principle J. High Energy Phys. JHEP07(2015)052
[10] Adler R J, Chen P and Santiago D I 2001 The generalized uncertainty principle and black hole

remnants Gen. Relativ. Gravit. 33 2101

15

https://orcid.org/0000-0001-5155-8862
https://orcid.org/0000-0001-5155-8862
https://arxiv.org/abs/1803.10621
https://doi.org/10.1063/1.1665738
https://doi.org/10.1063/1.1665738
https://doi.org/10.1103/physrevd.98.064046
https://doi.org/10.1103/physrevd.98.064046
https://arxiv.org/abs/1107.0708
https://arxiv.org/abs/1402.1427
https://doi.org/10.1007/jhep11(2015)105
https://doi.org/10.1142/s0217732313400117
https://doi.org/10.1142/s0217732313400117
https://doi.org/10.1007/jhep07(2015)052
https://doi.org/10.1023/a:1015281430411
https://doi.org/10.1023/a:1015281430411


Class. Quantum Grav. 37 (2020) 085020 A Ramesh

[11] Adler R J and Santiago D I 1999 On gravity and the uncertainty principle Mod. Phys. Lett. A 14
1371

[12] Adler R J 2010 Six easy roads to the Planck scale Am. J. Phys. 78 925
[13] Maggiore M 1993 A generalized uncertainty principle in quantum gravity Phys. Lett. B 304 65
[14] Singh T P 2018 A new length scale, and modified Einstein–Cartan–Dirac equations for a point mass

Int. J. Mod. Phys. D 27 1850077–167
[15] Khanapurkar S and Singh T P 2018 A duality between curvature and torsion Int. J. Mod. Phys. D 27

1847008
[16] Zecca A 2003 Elementary solutions of Dirac equation with torsion in flat space-time Il Nuovo

Cimento B 118 65–70
[17] Singh T P 2017 A new length scale for quantum gravity Int. J. Mod. Phys. 26 1743015

16

https://doi.org/10.1142/s0217732399001462
https://doi.org/10.1142/s0217732399001462
https://doi.org/10.1119/1.3439650
https://doi.org/10.1119/1.3439650
https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1142/s0218271818500773
https://doi.org/10.1142/s0218271818500773
https://doi.org/10.1142/s0218271818470089
https://doi.org/10.1142/s0218271818470089
https://doi.org/10.1142/s0218271817430155
https://doi.org/10.1142/s0218271817430155

	Generalized uncertainty principle for Dirac fermion in a torsion field
	1. Introduction
	2. A non-static solution in 1 + 1 dimensions of the HD equation
	3. Calculating the uncertainty relation from the given solitary wave solution
	3.1. Standard length scale
	3.1.1. Checking for different values of w

	3.2. Modified length scale

	4. Conclusion
	Acknowledgments
	ORCID iDs
	References


