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Abstract
We calculate heat transfer between a 2D sheet (e.g. graphene) and a dielectric in presence of a
gate voltage. The gate potential induces surface charge densities on the sheet and dielectric,
which results in electric field, which is coupled to the surface displacements and, as a
consequence, resulting an additional contributions to the radiative heat transfer. The
electrostatic and van der Waals interactions between the surface displacement result in the
phonon heat transfer, which we calculate taking into account the nonlocality of these
interactions. Numerical calculations are presented for heat transfer between graphene and a
SiO2 substrate.
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1. Introduction

At present the problem of heat transfer in 2D devices is actively
discussed [1]. For example, it is important in the development
of graphene transistor. Heat generation during high-density
electric current flowing in graphene will increase the temper-
ature, which can damage the device. Therefore, it is important
to be able to control heat flux. Interfacial heat transfer between
2D crystal and substrate can occur via near-field radiative [2]
and phonon [1, 3, 4] heat transfer.

The ability to control the electrical properties of materi-
als underlies modern electronics. Currently, in connection with
the development of new technologies related to nanoscale ther-
mal management, energy storage and conversion, and informa-
tion processing, the problem of the management of the heat
transfer is being actively considered. In 2006, Li et al [5]
proposed a thermal analogue of the field effect transistor for
controlling heat transfer by phonons through solid segments,
paving the way for creating blocks for processing information
[6, 7] using heat flow instead of electric current. More recently
the concept of thermal transistor has been expanded to noncon-
tact systems out of thermal equilibrium [8]. In this case, heat
fluxes are associated with the transmission of thermal photons
from one material to another.

A radiation heat transistor consists of three elements, which
by analogy with its electronic counterpart, are called source,
drain and gate. Source and drain are maintained at differ-
ent temperatures to create a temperature gradient. Source,
being traditionally hotter than drain, emits thermal photons
that transmit heat to the drain. These two solids are separated
by intermediate layer made of insulator-metal phase transition
material [9]. This layer acts as a gate. By adjusting the gate
temperature near a critical value, it is possible radically change
the heat flow obtained by drain and even enhance this flow.
The device can work either at large separation (far field [10]),
where heat fluxes are associated with the propagating photons,
or at short distances (near field [8]), where heat is transmitted
primarily by photon tunneling. Beyond modulation and heat
flow amplification, these structures based on phase transition
materials can be used for storage thermal energy and logical
operations with thermal photons.

In this article we consider the possibility of controlling
the radiative and phonon heat flux between a 2D sheet (e.g.
graphene) and a dielectric substrate (e.g. SiO2) using the field
effect, similar to how it is used to control electronic proper-
ties in a graphene transistor [11].The gate voltage induces sur-
face charge densities on the sheet and dielectric. The thermal
fluctuations of the displacements of the charged surfaces give
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rise to an additional contribution to the fluctuating electro-
magnetic field which result in an additional contributions
to the radiative heat transfer. The electrostatic and van der
Waals interactions between surface displacements produce the
phonon heat transfer. In contrast to our previous ‘spring’ model
[3], now we take into account the nonlocality in these interac-
tions. The methodological approach that is used in this arti-
cle was previously used to calculate heat transfer between 3D
metals [12, 13]. The electrostatic and van der Waals phonon
heat transfer was also recently studied in reference [14] using
different approach.

2. Theory

2.1. Radiative heat transfer

Consider a 2D sheet (e.g. graphene) located in the (x, y)-plane
at z = 0 and separated from a dielectric slab with thickness
h (e.g. SiO2) by vacuum gap with thickness d (figure 1). The
application of the gate voltage (VG) induces a surface charge
density on the sheet, σg = ne = E0/4π, where n is the concen-
tration of the free charge carries in the sheet, E0 is the electric
field in the vacuum gap between the sheet and dielectric. In
general, the application of a gate voltage (VG) creates an elec-
trostatic potential difference ϕ between the graphene and the
gate electrode, and the addition of charge carriers leads to a
shift in the Fermi level (EF). Therefore VG is given by [15]

VG =
EF

e
+ ϕ (1)

with EF/e being determined by the chemical (quantum) capac-
itance of the graphene, andϕ being determined by the geomet-
rical capacitance CG. In this article we consider the back gate
for which [15] VBG ≈ ϕ, where ϕ = ne/CG is an electrostatic
potential difference between the sheet and the gating electrode
where CG = εd(0)/4πh, εd(0) is the dielectric constant of the
dielectric. The approach which is used in this article can also
be applied for the top gate. The radiative heat transfer is associ-
ated with the fluctuating electromagnetic field created by ther-
mal fluctuations of the charge and current densities inside the
bodies. In the case of a charged surface, thermal fluctuations
of the surface displacement will also contribute to the fluctuat-
ing electromagnetic field and radiative heat transfer. The heat
flux between two surfaces separated by a vacuum gap d, due to
evanescent (non-radiative) electromagnetic waves (for which
q > ω/c) is determined by the formula [16–18]

Jrad =

∫ ∞

0

dω
2π

[
Πg(ω) −Πd(ω)

]

×
∫

d2q
(2π)2

4 ImRd(ω) ImRg(ω)e−2qd

|1 − e−2qdRd(ω)Rg(ω)|2 , (2)

Πg(d)(ω) =
�ω

e�ω/kBTg(d) − 1
,

Rg(d) is the reflection amplitudes for the sheet (dielectric) for
p-polarized electromagnetic waves.

Figure 1. Schematic of the 2D device, in which the heat flux
between a 2D sheet and a dielectric slab can be controlled by the
potential difference.

To find the reflection amplitude for the charged sheet, write
the electric field of the p-polarized electromagnetic wave in the
non-retarded limit in the form:

E(q,ω, z) = eiq·x−iωt ×
{

n+ e−qz + Rp eqzn−, z < 0
Tn+ e−qz, z > 0

(3)

where x = (x, y), q is the wave vector in the (x, y)-plane,
n± = (∓iq̂, ẑ). The electric field of the electromagnetic wave
induces in the sheet the polarization

p(x, z) = (pqq̂ + pzẑ)δ(z)eiq·x−iωt (4)

where pq and pz are the parallel and normal components of the
surface dipole moment. The boundary condition for the nor-
mal component of the electric field can be obtained from the
Maxwell equation

∇ · E =
dEz

dz
+ iqEq = −4πpzδ

′(z) − 4πiqpqδ(z). (5)

Integrating (5) from −0 to +0, we get

Ez(z = +0) − Ez(z = −0) = −4πiqpq, (6)

To obtain the boundary condition for the component of the
electric field parallel to the surface, we calculate the circulation
of E around the contour of the rectangle, two sides of which are
parallel to the surface and located at z = ±0, and the other two
sides are perpendicular to the surface. The magnetic induction
field is continuous on the surface, so the magnetic flux through
the area of the rectangle will be zero. Then from the Faraday’s
law it follows that [12, 19]

Eq(z = +0) − Eq(z = −0) = iq
∫ +0

−0
dzEz(z)

= −iq
∫ +0

−0
dzz

dEz

dz
= −4πiqpz.

(7)

The electromagnetic wave will create mechanical stress on the
sheet σ̃zi = σzi(z = +0) − σzi(z = −0), where σzi(z = ±0) is
the Maxwell stress tensor at z = ±0, which in electrostatic
limit has the form

σi j =
1

4π

(
ẼiẼ j −

1
2
δi jẼ · Ẽ

)
, (8)
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where

Ẽ = E + ẑ

{
E′

0, z > 0
− E′

0, z < 0
(9)

where E
′
0 = E0/2 = 2πσg is the static electric field created by

the surface charge density σg = en on the sheet, E is the elec-
tric field of the electromagnetic wave, which is determined by
(3). To linear order in the amplitude of the electromagnetic
wave, the perpendicular component of the stress is determined
by

σ̃zz ≈ σg
Ez(+0) + Ez(−0)

2
, (10)

where E±
z(q) = Ez(q)(z = ±0). The stress σ̃zz produces a polar-

ization of the sheet, with normal component of the dipole
moment

pz = σguz = σ2
gMg

Ez(+0) + Ez(−0)
2

, (11)

where Mg is the mechanical susceptibility of the sheet which
determines the surface displacement of the sheet under an
action of the stress σ̃zz: uz = Mgσ̃zz. The stress σ̃zq, which pro-
duces the polarization parallel to the surface of the sheet, is

σ̃zq ≈ ne
E+

q + E−
q

2
(12)

Thus, the polarization of graphene parallel to the surface arises
due to the effective electric field Eeff

‖ = (E+
q + E−

q )/2, which

induces the sheet dipole moment pq = iσ(E+
q + E−

q )/2ω par-
allel to the surface, whereσ is the sheet conductivity. The sheet
conductivity can be expressed in terms of the dielectric func-
tion εg = 1 + 2πiqσ/ω. From (3), (6) and (7), the boundary
conditions can be written as

T − 1 − R = −(εg − 1)(T + 1 − R), (13)

T − 1 + R = 2πqσ2
gMg(T + 1 + R), (14)

From (13) and (14) follows

Rg =
εg − 1 + 2πqσ2

gMg

εg(1 − 2πqσ2
gMg)

. (15)

The reflection amplitude (15) has the resonances at Reεg = 0
and 1 − 2πqσ2

g ReMg = 0 associated with the plasmon and
phonon polaritons of the sheet, respectively. Close to the
phonon polariton resonance

Rg ≈ 1
1 − 2πqσ2

gMg
. (16)

Thus in this case the reflection amplitude depends only on Mg

and does not depend on εg what means that at the phonon
polariton resonance the optical properties of the sheet are
determined only by the mechanical properties of the flexural
mode. The reflection amplitude for the charged dielectric sur-
face can be calculated in the same way as above for the sheet.
Neglecting the polarization parallel to the surface, the bound-
ary conditions on the surface of the dielectric can be written
as

Ez(z = −d + 0) = εd(ω)Ez(z = −d − 0), (17)

Eq(z = −d + 0) − Eq(z = −d − 0) = −4πiqpd
z , (18)

where E(z > −d) determines the incident and reflected wave,
and E(z < −d) is the refracted wave. For a constant electric
field, the surface density of the polarization charge for the
dielectric

σd = −εd(0) − 1
εd(0)

σg, (19)

where εd(ω) is the dielectric function of a substrate, and
pd

z = σdMdEz(d = −d + 0) is the dipole moment normal to
the surface. From (17) and (18) the reflection amplitude for
a charged dielectric surface is

Rd =
εd − 1 + 4πqσ2

dMdεd

εd + 1 − 4πqσ2
dMdεd

. (20)

For metals σg = −σd, and in this case (20) is reduced to for-
mula obtained in reference [12]. The reflection amplitude has
resonance at

Re[εd(1 − 4πqσ2
dMd)] + 1 = 0. (21)

For a polar dielectric, this resonance is associated with sur-
face phonon polaritons arising from the hybridization of opti-
cal and acoustic waves. For small potential difference, when
2πqσ2

gMg � 1 and 4πqσ2
dMd � 1, the reflection amplitudes

are determined by well-known formulas [18]

Rg =
εg − 1
εg

, (22)

Rd =
εd − 1
εd + 1

. (23)

2.2. Phonon heat transfer

2.2.1. van der Waals interaction between semi-infinite medium
and a 2D sheet. In the case of the van der Waals interac-
tion between a semi-infinite dielectric and a 2D sheet, such as
graphene, the potential energy can be written as

U = C2

∫
d2x1

∫
d2x2

∫ ud(x1)

−∞
dz1

1
[(x1 − x2)2 + (d + ug(x2) − z1)2]6

×−C1

∫
d2x1

∫
d2x2

∫ ud(x1)

−∞
dz1

1
[(x1 − x2)2 + (d + ug(x2) − z1)2]3

, (24)

where ud(x) and ug(x) are the surface displacements for the
dielectric and sheet. Expanding (24) to second order in dis-
placements, we get

U = πA

(
C2

45d9
− C1

6d3

)
+π

[∫
d2x1ud(x1) −

∫
d2x2ug(x2)

]

×
(

C2

5d10
− C1

2d4

)
+ 6d

∫
d2x1

∫
d2x2ud(x1)ug(x2)

3
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×
{

C1

[(x1 − x2)2 + d2]4
− 2C2

[(x1 − x2)2 + d2]7

}

+ π

(
C2

d11
− C1

d5

)[∫
d2x1u2

d(x1) +
∫

d2x2u2
2(x2)

]
+ · · · ,

(25)

At the equilibrium distance the linear terms in the
displacement vanish. Thus, the equilibrium distance
d0 = (2C2/5C1)1/6. The stresses that act on surfaces of
the dielectric and sheet, when they are displaced, are
determined by

σd = − δU
δud(x)

= −6dC1

∫
d2x2ug(x2)

{
1

[(x − x2)2 + d2]4

− 5d6
0

[(x − x2)2 + d2]7

}
− πC1ud(x)

d5

[
5

(
d0

d

)6

− 2

]
,

(26)

σg = − δU
δug(x)

= −6dC1

∫
d2x2ud(x2)

{
1

[(x − x2)2 + d2]4

− 5d6
0

[(x − x2)2 + d2]7

}
− πC1ug(x)

d5

[
5

(
d0

d

)6

− 2

]
.

(27)

Using a Fourier transformation

ui(x) =
∫

d2q
(2π)2

ui eiq·x, (28)

we get
σd = aud − bug, (29)

σg = aug − bud, (30)

where

a =
πC1

d5

[
2 − 5

(
d0

d

)6
]

, (31)

b =
πq3C1

4d2

[
K3(qd) − q3d6

0K6(qd)
192d3

]
, (32)

where we have used that∫
d2x1

u1(x1)
[(x1 − x)2 + d2]μ+1

=

∫
d2q

(2π)2
ui eiq·xGμ+1(q),

(33)

Gμ+1(q) =
∫

d2x
eiq·x

(r2 + d2)μ+1
= 2π

∫ ∞

0

J0(qr)rdr
(r2 + d2)μ+1

=
π

2μ−1

(q
d

)μ Kμ(qd)
Γ(μ+ 1)

(34)

where Kμ(z) is the Bessel function of the second kind and order
μ (see reference [20]). For small argument the Bessel function
can be approximated by formula [20]

Kν(z) ∼ 2ν−1Γ(ν)
zν

(35)

where z � 1. Using equation (35) it can be shown that for
qd � 1 the ‘spring’ model [3] is valid for which b = a = −K,
where K is a spring constant per unit area characterizing the
interaction between the two solids [3]. At the equilibrium
distance

a = −3πC1

d5
0

= −K0, (36)

where K0 is the spring constant at d = d0. Thus the parameters
of the interaction can be written in the form

a =
K0

3

(
d0

d

)5
[

2 − 5

(
d0

d

)6
]

, (37)

b =
q3d5

0K0

12d2

[
K3(qd) − q3d6

0K6(qd)
192d3

]
. (38)

2.2.2. Electrostatic interaction between dielectric surface and
conducting 2D sheet. The electrostatic potential in the vac-
uum gap between the 2D sheet and dielectric has the form

ϕ = σgz + const. (39)

The surface displacements of the sheet and dielectric

uzi(x) = ui eiq·x (40)

will give rise to normal component of surface dipole moments
pzi = σiui resulting in a change of the electric field, which can
be described by the potential

φ(x, z) = eiq·x ×

⎧⎨
⎩

0, z > 0
ν−e−qz + ν+eqz,−d < z < 0

t eqz, z < −d
(41)

According to equations (17)–(19), on the dielectric surface
at z = −d the boundary conditions for the potential takes the
form

v+e−qd − v−eqd = εd(0)t e−qd, (42)

v+e−qd + v−eqd − t e−qd = 4π
εd(0) − 1
εd(0)

σgud, (43)

From equations (42)–(44) follows

ν−eqd = −Rd0ν+e−qd − 4πσgudRd0, (44)

where Rd0 is determined by (23) at ω = 0. Taking into
account that in the electrostatic limit E(z) = 0 for z > 0, from
equation (7) follows the boundary condition at the surface of
the sheet at z = 0

4πσgug + ν− + ν+ = 0. (45)

The boundary condition (45) is the consequence of the require-
ment that the potential of the sheet should remain unchanged
when the surface is displaced [14].

From (45) and (44)

ν+ =
E0

1 − e−2qdRd0

(
e−qdRd0ud − ug

)
, (46)

4
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ν− =
e−qdRd0E0

1 − e−2qdRd0

(
e−qdug − ud

)
. (47)

The electric field normal to the surfaces of the 2D sheet and
dielectric for −d < z < 0 is

Ez = −E0 +
qE0

1 − e−2qdR0
d

[(
eqz + e−2qdRd0 e−qz

)
ug − e−qd

×
(
eqz + e−qz

)
Rd0ud

]
eq·x, (48)

and from Maxwell stress tensor, the stresses that act on the
surfaces of the sheet and dielectric due to the surface displace-
ments are

σg = Kgug − Kud, (49)

σd = Kgud − Kug, (50)

where

Kg =
E2

0

4π
q
(
1 + e−2qdRd0

)
1 − e−2qdRd0

, (51)

Kd =
E2

0

4π
qRd0

(
1 + e−2qd

)
1 − e−2qdRd0

, (52)

K =
E2

0

2π
q e−qdRd0

1 − e−2qdRd0
. (53)

2.2.3. Phonon heat flux between surfaces. The displace-
ments of the surfaces ui = uf

i + uind
i , where uf

i is the fluctuating
displacement due to thermal and quantum fluctuations inside
the bodies and uind

i is the induced displacement, which occurs
due to the interaction between surfaces. Thus, according to
equations (29), (30), (49) and (50) the displacements of the
surfaces are determined by

ug = uf
g + Mgσg = uf

g + Mg(Kgug − Kud), (54)

ud = uf
d + Mdσd = uf

d + Md(Kdud − Kug), (55)

where Mi is the mechanical susceptibility which determines
the surface displacement under an action of the applied stress:
uind

i = Miσi, and where

Kg =
E2

0

4π
q
(
1 + e−2qdRd0

)
1 − e−2qdRd0

+
K0

3

(
d0

d

)5
[

2 − 5

(
d0

d

)6
]

,

(56)

Kd =
E2

0

4π
qRd0

(
1 + e−2qd

)
1 − e−2qdRd0

+
K0

3

(
d0

d

)5
[

2 − 5

(
d0

d

)6
]

,

(57)

K =
E2

0

2π
qe−qdRd0

1 − e−2qdRd0
+

q3d5
0K0

12d2

[
K3(qd) − q3d6

0K6(qd)
192d3

]
.

(58)
According to the fluctuation–dissipation theorem, the spec-

tral density of fluctuations of the surface displacements is
determined by [21]

〈|u f
g(d)|2〉 = � ImMg(d)(ω, q) coth

�ω

2kBTg(d)
. (59)

From (54) and (55)

ug =
(1 − MdKd)uf

g − MgKuf
d

(1 − MgKg)(1 − MdKd) − K2MgMd
, (60)

ud is obtained from ug by the permutation of indexes (g ↔ d).
The mechanical stress that acts on the surface of the dielectric,
due to fluctuations of the surface displacement of the sheet, is
determined by

σf
dg =

Kuf
g

(1 − MgKg)(1 − MdKd) − K2MgMd
. (61)

The stress σf
gd can be obtained from σf

dg by the permutation
(g ↔ d). The heat flux from the sheet to dielectric due to
the electrostatic and van der Waals interactions between the
fluctuating surface displacements is [12, 21]

Jph = 〈u̇ind
d σf

dg〉 − 〈u̇ind
g σf

gd〉

= 2
∫ ∞

0

dω
2π

∫
d2q

(2π)2
ω
[
ImMd〈|σdg|2〉 − ImMg〈|σgd|2〉

]

=
1
π2

∫ ∞

0
dω

[
Πg(ω) −Πd(ω)

]

×
∫ ∞

0
dqq

K2 ImMg ImMd

|(1 − KgMg)(1 − KdMd) − K2MgMd|2
.

(62)

In the ‘spring’ model [3] it is assumed that Kg = Kd = −K and
in this case (62) is reduced to

Jph
spr =

1
π2

∫ ∞

0
dω

[
Πg(ω) −Πd(ω)

]∫ ∞

0
dqq

K2 ImMg ImMd

|1 + K(Mg + Md)|2 .
(63)

3. Numerical results for graphene on a SiO2

substrate

For an elastic sheet [22]

Mg =
1

κq4 − ρω2 − iωργ
, (64)

where the bending stiffness of graphene κ ≈ 1 eV, ρ = 7.7 ×
10−7 kg m−2 is the surface mass density of graphene, γ is the
damping constant for flexural motion of graphene which was
estimated in reference [4] as

γ =
ωT

100TRT
(65)

where TRT = 300 K is the room temperature.
For an elastic semi-infinite medium the mechanical suscep-

tibility Md is determined by formula [23]

Md =
i

ρc2
t

(
ω

ct

)2 pl(q,ω)
S(q,ω)

, (66)

5
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where

S(q,ω) =

[(
ω

ct

)2

− 2q2

]2

+ 4q2 pt pl,

pt =

[(
ω

ct

)2

− q2 + i0

]1/2

, pl =

[(
ω

cl

)2

− q2 + i0

]1/2

,

where for SiO2 the density ρ = 2.65 × 103 kg m−3, cl = 5968
m s−1 and ct = 3764 m s−1 are the longitudinal and transverse
velocities of the acoustic waves.

The dielectric function of amorphous SiO2 can be described
using an oscillator model [24]

ε(ω) = ε∞ +

2∑
j=1

σ j

ω2
0, j − ω2 − iωγ j

, (67)

where parameters ω0,j, γj and σj were obtained by fitting the
measured ε for SiO2 to the above equation, and are given
by ε∞ = 2.0014, σ1 = 4.4767 × 1027 s−2, ω0,1 = 8.6732
× 1013 s−1, γ1 = 3.3026 × 1012 s−1, σ2 = 2.3584 × 1028 s−2,
ω0,2 = 2.0219 × 1014 s−1, and γ2 = 8.3983 × 1012 s−1.

In the numerical calculations we used the dielectric function
of graphene, which was calculated within the random-phase
approximation (RPA) [25, 26]. The dielectric function is an
analytical function in the upper half-space of the complex ω-
plane:

εg(ω, q) = 1 +
4kFe2

�vFq
− e2q

2�

√
ω2 − v2

Fq2

×
{

G

(
ω + 2vFkF

vFq

)
− G

(
ω − 2vFkF

vFq

)
− iπ

}
,

(68)

where
G(x) = x

√
x2 − 1 − ln(x +

√
x2 − 1), (69)

where the Fermi wave vector kF = (πn)1/2, n is the concentra-
tion of charge carriers, the Fermi energy εF = �vFkF, vF ≈ 106

m s−1 is the Fermi velocity.
For graphene on a SiO2 substrate at equilibrium distance,

according to density functional theory calculations, the spring
constants [4] K0 = KOH = 1.23 × 1020 N m−3 and K0 = KH =
1.56 × 1020 N m−3 for the OH- and H-terminated SiO2 sub-
strate, which agrees rather well with estimation K0 = 1.82 ×
1020 N m−3 in reference [3]

Figure 2 shows the dependence of the heat flux between
graphene and a SiO2 substrate on the separation between them
for different mechanisms and different free charge carries
concentration n. The heat fluxes associated with the radia-
tive and electrostatic phonon heat transfer have practically the
same distance dependence and the difference between them
decreases when the concentration n increases. The heat flux
associated with the van der Waals interaction decays with
distance much faster than for the radiative and electrostatic
phonon heat transfer. Thus for ng > 1019m−2 the radiative and
electrostatic phonon heat transfer dominate for practically all

Figure 2. Dependence of the heat flux between graphene and a SiO2
substrate on the separation between them for different mechanisms.
The red and brown lines show the heat flux for the radiative and
electrostatic phonon heat transfer: the solid and dashed lines for the
concentration of the free charge carries in graphene ng = 1019m−2

and ng = 1018m−2, respectively. The blue lines show the heat flux
associated with the van der Waals interaction: the solid and dashed
lines are for the nonlocal and local (the ‘spring’ model) theories of
the van der Waals phonon heat transfer. The black line shows the
radiative heat transfer associated with blackbody radiation.

separations. The blue solid and dashed lines show the contri-
butions to the heat flux calculated using nonlocal and local
theories of the van der Waals phonon heat transfer. For dis-
tances d < 10 nm the difference between these contributions
is small, which confirms the validity of the ‘spring’ model for
such distances.

Figure 3 shows the dependence of the heat flux asso-
ciated with the radiative and electrostatic phonon heat
transfer between graphene and a SiO2 substrate on the
concentration ng at d = 0.3 nm (top) and d = 1 nm (bot-
tom). In the SI units the potential difference ϕ between the
gate and graphene is related with the concentration ng by
equation

ϕ =
ngeh

εd(0)ε0
. (70)

The brown lines show only the contribution to the radia-
tion heat flux due to fluctuations of the electronic polariza-
tion of graphene when the reflection amplitude is given by
equation (22) while the pink line on top of figure 3 shows
the radiation contribution from phonon polariton resonance
associated with flexural mode of graphene when the reflec-
tion amplitude is given by equation (16). For the radiative
heat transfer, for ng > 1018m−2 dominates the contribution
which is associated with flexural modes of graphene. The
sharp maximum in the radiative heat flux at d = 0.3 nm and
ng ≈ 6 × 1018m−2 is related with the phonon polariton reso-
nance. Estimation of one Π electron from one carbon atom
leads to a surface charge density of about 8 × 1019m−2. Thus
phonon polariton resonance can exist in graphene. In graphene,
the interaction between flexural mode and in-plane mode are
demonstrated to be weak [27, 28] which provide the founda-
tion for separately modulating the thermal transport by flexural
mode in graphene.
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Figure 3. Dependence of the heat flux between graphene and a SiO2
substrate on the concentration of the free charge carries in graphene.
The violet and blue lines show the radiative and electrostatic phonon
heat flux at d = 0.3 nm (top) and d = 1 nm (bottom). The brown
lines show the radiative heat flux without contribution from the
thermally fluctuating surface displacements, while the pink line on
the top shows only these contributions.

4. Conclusion

The heat transfer between a 2D sheet and dielectric in pres-
ence of the gate voltage was calculated. The gate voltage
induces a surface charge density on the sheet and dielectric.
As a result, thermal fluctuations of the surface displacements
create a fluctuating electromagnetic field that leads to an addi-
tional contribution to the radiative heat transfer. The phonon
heat transfer due to the electrostatic and van der Waals interac-
tions between surface displacements was calculated taking into
account the nonlocality of these interactions. Numerical results
are presented for the heat transfer between graphene and a
SiO2 substrate. It has been shown that, when the charge density
σg > 0.1 Cm−2 is induced on the graphene surface, the main
contribution to the radiative heat transfer is associated with the
flexural vibrational modes of graphene, and this contribution
is of the same order and has the same distance dependence
as the contribution from the electrostatic phonon heat trans-
fer. Due to the strong distance dependence the van der Waals
phonon heat transfer is only important for sub nanometer dis-
tances. For σg > 1 Cm−2 the heat flux due to the radiative and
electrostatic phonon heat transfer dominate for practically all
distances. The obtained results can be important for the heat
managements in the 2D devices.
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