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Abstract
In this paper, we present magnetic properties of a finite graphene sheet with a triangle
punctured vacancy, and its counterpart single-wall carbon nanotube as a rolled-up graphene
sheet in the framework of the Hubbard model in the presence of an axial electric field, in order
to form a comparison study between these two graphene samples. We have noticed that the
tight-binding part of the Hamiltonian consists of two types of zero-energy states in the case of
the graphene sheet, the strict zero-energy states, and the quasi zero-energy states. The first type
takes part in a ferromagnetic coupling between the triangle edges and one edge of the
rectangle graphene sheet, while the latter one has an antiferromagnetic alignment with the
opposite edge of the rectangle graphene sheet. Involving the Coulomb interaction through
Hubbard term, we have observed that the slope of the cluster edge states in nanotube is higher
than the graphene sheet. Additionally, spin-depolarization happens in single-wall nanotube
sooner than the graphene sheet by slightly increasing an axial electric field. Also, the graphene
sheet is more robust than the single wall nanotube at low electric
fields.

Keywords: electronic structure, magnetic properties, Hubbard model, tight-binding, graphene,
carbon nanotube

(Some figures may appear in colour only in the online journal)

1. Introduction

Carbon nanomaterials reveal a rich various allotrope, which
exhibits different physical properties; that is why carbon
nanostructures are playing an essential role in nanoscience
[1]. One of these structures is graphene that is a single layer
graphite sheet with chiral vectors (n, m) consists of two sublat-
tices (A and B) forming a honeycomb lattice. It has numerous
properties such as edge effect on the zigzag graphene nanorib-
bons, which depends strongly on the geometry of the boundary
[2–4] and magnetization in graphene nanostructures which is
not a trivial property in carbon nanomaterials [5]. Particular
interest is the graphene edges of a specific crystallographic
1 Author to whom any correspondence must be addressed.

orientation comprising carbon atoms from only one sub-lattice
of the bipartite hexagonal lattice are predicted to host magnetic
order [6, 7]. Carbon nanotubes attracted much attention due to
its possible applications for nanoscale electronic devices [8, 9]
like ballistic transport [10–12], high-performance field-effect
transistors [13–17] and logic devices [18–23].

A single-wall carbon nanotube is a graphene sheet rolled
into a cylindrical shape. A high ratio of surface to volume
of carbon nanotube is one of the most important properties
of produced materials at the nanoscale, in which their bulk
behavior replaces with surface one. Furthermore, magnetic
properties of graphene-based nanostructures exhibit different
features from ordinary graphene (which is not magnetic) due
to the existence of edge states. There are three well-known
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methods to fabricate carbon nanotubes of desired properties
that are needed for a particular application, including the elec-
tric arc discharge [24, 25], UV-sensitive self-assembled pho-
toresist [26], and the chemical self-assembly [27, 28]. In each
technique, it is possible to have some vacancies in produc-
ing carbon nanotube structures. The origin of magnetism is
generally attributed to atomic-scale structural defects locally
breaking the sub-lattice balance of the bipartite hexagonal lat-
tice. The imbalance of sublattice atoms leads to a band of
degenerate states near the Fermi energy level, as illustrated
in figures 1(c) and (d). These midgap states are localized at
the zigzag edges and lead to spin polarization of the ground
state, although a graphene nanostructure with zigzag edges
may have either ferromagnetic or antiferromagnetic ordered
ground states, while graphene nanostructures with armchair
edges are always nonmagnetic. As in the zigzag case, elec-
tron–electron interactions split the zero-energy bands and give
rise to edge magnetization. Both the density functional the-
ory (DFT) calculations and the mean-field approximation of
the single-band Hubbard model with first-neighbors hopping,
yield very similar results in all cases considered in the litera-
ture [6, 29]. Mean-field calculations confirm that the total spin
of the ground state is S = (NA − NB)/2 and almost always
localized on the edges. Where NA and NB are the number
of sites belonging to each sublattice. Thus, a defective struc-
ture can present a finite sublattice imbalance with |NA − NB|
midgap states. Importantly, the Lieb theorem [30] predicts that
any imbalance between A and B sites generates ferromagnetic
ordering in the ground state of the Hubbard model and bipar-
tite lattices at half-filling. Lieb theorem provides an intensive
connection between vacancies in the graphene lattice and the
emergence of magnetism.

By tuning the electric field, first, we compare spin-resolved
edge states and spin depolarization which strongly depend on
the applied electric field and the action of rolling. Second, the
evolution of total spin and variation of the HOMO–LUMO
gaps of a graphene sheet and single-wall carbon nanotube.
Finally, we show that the local density of electrons on the edges
can be tuned by increasing the strength of the electric field
and have different behavior in both structures. We applied the
electric field in a way that finite graphene sample with a trian-
gle defect and its counterpart carbon nanotube as a rolled-up
graphene sheet, experience exactly, the same on-site energy
condition. This identical condition leads to a comparison study
between the graphene sheet and carbon nanotube and inves-
tigates the rolling action inflict negligible effect in magnetic
properties. This rolling procedure does not destroy birpartitism
of the graphene lattice, which means each atom in sublattice A
is connected to its first-neighbors atom in sublattice B in both
structures.

To the best of our knowledge, this kind of comparison
between single-layer graphene sheet and single-wall carbon
nanotube has not been studied yet. Since single-wall carbon
nanotube is a rolled-up graphene sheet with a well-defined tri-
angle zigzag edge, this theoretical calculation motivates our
study of the magnetization because of surface or more properly
edge effects.

The rest of this paper is organized as follows. In section 2,
we specify the structures and review the single-orbital Hub-
bard model in the presence of an axial electric field. Results
and discussion are presented in section 3 and give a conclusion
view in section 4.

2. Structure and method

The system of interest in the present paper is focused on two
types of graphene nanostructures. The first one is a single layer
finite graphene sheet with a single hole drilled into the system
figure 1(a). The hole is created by removing a set of atoms
and built as a triangle hole with zigzag edges. The second type
of structure is rolled-up mentioned graphene sheet as a single-
wall carbon nanotube with the exact hole figure 1(b). Note that
this hole is the reason for zigzag edge orientation in both sys-
tems. Sublattices A and B have not differed from each other
in two structures. Bottom-up fabrication [31, 32] has shown
that precisely controlled processes can be developed in the near
future to consider such defects with clean zigzag configuration.
We assume that all edge carbon atoms are passivated.

In this paper, we study the magnetic properties of a defec-
tive finite graphene sheet and its counterpart nanotube as
a rolled-up graphene sheet using a combination of tight-
binding Hamiltonian and one-orbital Hubbard model, which
is expressed at the mean-field approximation in the pres-
ence of an axial electric field. This model considers only
the π-symmetry electronic states, which are formed by unhy-
bridized pz atomic orbitals of sp2 carbon atoms. We solve the
Hamiltonian

H = HE + H0 + H′ (1)

The first term is due to electric field pointed along x axes
and can be written as follows:

HE =
∑

i,σ

εi,σc†i,σc j,σ , (2)

in which the εi = −exiE describes the effect of the electric
field. E denote the electric field strength, e is the electron
charge and xi is the position of ith carbon atom along the
x-direction. Operators c†i,σ and ci,σ create and annihilate the
electron with spin σ at site i, respectively.

The second term is the usual tight-binding Hamiltonian

H0 = −t
∑

〈i, j〉,σ
(c†i,σc j,σ + h.c.), (3)

The notation 〈i, j〉 stands for pairs of first nearest-neighbors
atoms and also h.c. is the Hermitian conjugate counterpart. The
hopping integral between site i and j is chosen t = −2.66eV
that defines the energy spectrum of the Hamiltonian. From the
computational point of view, the off-diagonal matrix elements
(i, j) and ( j, i) are set to t when atoms i and j are covalently
bonded, and to 0 otherwise. In addition, electron–electron
interactions have to be introduced in order to describe the onset
of magnetism. These interactions can be written in terms of the
single-band Hubbard model:
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Figure 1. Single-particle spectra and atomic structure. (a) Atomic structure of the graphene sheet with a triangle vacancy, and (b) rolled-up a
graphene sheet as a carbon nanotube with the exact vacancy. (c) Single-particle energy spectrum of the graphene sheet, and (d) its
counterpart as a carbon nanotube, both in the presence of an axial electric field. Degenerate states are shown in a solid square. The Fermi
energy is set to zero.

H′ = U
∑

i

ni↑ni↓, (4)

The parameter U is defining the magnitude of the Coulomb
repulsion. niσ = c†iσciσ is the local density of electrons with
spin σ at site i. In this model, two electrons interact only if they
occupy the pz atomic orbital of the same atom. Whereas, the
exact solutions are unavailable from the computational point
of view. Therefore, the mean-field Hamiltonian can be written
as the sum of a Hamiltonian for a spin up, a Hamiltonian for a
spin down and a constant as follows:

HMF = U
∑

i

(ni↑〈ni↓〉+ 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉), (5)

In this case, the Hamiltonian reduces to one particle
problem, and there are a couple of advantages to name. First,
the enormous Hilbert space is reduced to the size of the system.
Second, the SU(2) symmetry is broken. Finally, the mean-field
approximation is closer to an exact solution at a small U [33].
From the computational point of view, the electron–electron

interactions term affects only on diagonal matrix elements of
the Hamiltonian and the spin-up and spin-down depends on
the unknown expectation values 〈ni↑〉 and 〈ni↓〉, respectively.
Through a self-consistent procedure starting from an initial
condition for average spin-resolved densities 〈niσ〉 which can
be chosen randomly. Diagonalization and computation of the
updated spin densities is then repeated iteratively until the
values of 〈niσ〉 are converged. Such a method has been used
successfully in the theoretical study of similar graphitic sys-
tems, as reported in the literature [6, 29, 34, 35]. Recently,
the single-orbital Hubbard model applied to the punctured car-
bon nanotube in order to study the electronic and transport
properties [36].

3. Results and discussions

3.1. Tight-binding model results

In order to assess our theoretical considerations, we first
start the development of the tight-binding energy spectrum of
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Figure 2. Electronic probability distribution for edge states. (a) An
example of wave function in the cluster of strict zero-energy, and (b)
in the non-strict zero-energy states in the graphene sheet.

the graphene sheet and its counterpart carbon nanotube. The
single-particle spectrum of a nearest-neighbor tight-binding
model exhibits electron-hole symmetry due to the bipartite lat-
tice in both structures. The imbalance in sublattices leads to
degenerate zero-energy cluster states near the Fermi energy.
These zero-energy states are mainly localized at the edges,
whereas; the others are extended states. The most striking dif-
ference between the energy spectrum of the graphene sheet
and its counterpart as a carbon nanotube reflects in the clus-
ter of zero-energy states in both structures. In the case of
the graphene sheet with a triangle punctured vacancy, there
are 11 zero-energy states available. There are 7 strict zero-
energy states due to the imbalance between carbon atoms
in sublattice A and B; also, 4 quasi-zero energy states as
a result of the ordinary compensated rectangular graphene
sheet. These strict zero-energy states are sublattice polar-
ized which means their corresponding wave functions nor-
mally widespread on one sublattice, whereas the quasi-zero
energy states distributed on different sublattices. Accordingly,
the strict zero states wave functions reside in both triangle
edges and upper rectangle edge figure 2(a). However, the
wave function of quasi-zero energy states is a hybridization
of triangle edges and bottom edge of the rectangle graphene
sheet figure 2(b). On the other hand, in the case of car-
bon nanotube, the strict states are exactly as a result of tri-
angle vacancy edges, which makes the imbalance between
sublattices.

If we change the coordinate of the triangle vacancy ver-
tically, the probability distributions of electrons for single
orbital wavefunctions may vary in the graphene sheet. While
this movement through circumferential of the carbon nanotube
does not affect electronic probability distribution. Next, when
a relatively small electric field is applied to both structures,
the cluster zero-energy states are not degenerate anymore
in resemblance to the Stark effect [37–39]. And the energy
difference between two consecutive energy levels increases
almost linearly with the strength of the electric field. The
higher electric field strength, the more increase in energy levels
figures 1(c) and (d).

3.2. Mean-field Hubbard model results

A simple model which is used for studying magnetic prop-
erties of sp2 carbon allotrope is the single-orbital mean-field
Hubbard model. This computational approach is executed in
a large number of computer codes. Additionally, this model
allows a simple understanding of the many-body systems at
the nanoscale and captures the low-energy physics of graphene
nanoislands [29].

Self-consistent solution provides the spin densities

Mi =
〈ni↑〉 − 〈ni↓〉

2
(6)

at each atom i and the total spin of the system S =
∑

iMi.
For both structures, the average spin densities and local mag-
netic moments depend merely on the dimensionless param-
eter U/t. The magnitude parameter U/t may be computed
from DFT calculations through some approximations such as
the gradient corrected functional PBE, and the local-density
approximation (LSDA) [40, 41]. The range of meaningful
magnitude is U/t ∼ 1.0–1.3. In this work a value of U/t =
1.06 will be used.

When we add on-site electron–electron interactions to the
tight-binding Hamiltonian, we can see the cluster of edge states
split into the two sets of different eigenvalues, which each indi-
cates spin up and spin down energy eigenvalues. Each spin-
resolved state could be populated by one electron. There is
a cluster of NA − NB states (e.g., spin-up states) which their
energies are lower than the energy of the first state in men-
tioned cluster with oppositely oriented spins. That is, populat-
ing these states at half-filling can be considered as a single-
atom Hund’s rule figures 3(a) and (e). In the absence of an
axial electric field, the maximum total spin of the ground
state for both structures is S = 3.5. This result is in agreement
with the prediction of Lieb’s theorem for a bipartite system at
half-filling [30].

Spin-resolved energy spectra for both graphene sheet and
its counterpart nanotube are shown in figures 3(e) and (a). The
energy spreading for such a spin-resolved state is denoted by
ΔD. Figure 4(a) shows the U dependence of energy spread-
ing for both structures. We see that, in the case of the nan-
otube, the energy spreading is more than the graphene sheet
as the strength of Coulomb repulsion increase, and thus the
slope of the cluster edge states in nanotube is higher than the
graphene sheet due to the rolling operation in nanotube. This
rolling action creates circumferential confinement, which led
more electrons to move through the entire system, whereas, in
the graphene sheet, there is not such confinement. Also, the
electronic states demonstrate the highest occupied and low-
est unoccupied molecular orbitals (HOMOs–LUMOs). The
higher (lower) ΔD, the more (less) HOMO–LUMO gap in
both structures. The position of the triangle vacancy in the
graphene sheet is essential. However, this position for a rolled-
up graphene sheet as a carbon nanotube is unimportant. Every
time the coordinate of the triangle vacancy changes upward
(GNR+) or downward (GNR−) in the graphene sheet, the
slope of the energy spreading for cluster edge states is still less
than the nanotube. Eventually, the energy gap of the nanotube
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Figure 3. Ground state spin-resolved energy levels obtained through the mean-field Hubbard model calculations for both finite graphene
sheet and its counterpart as a carbon nanotube. In the absence of electric field, the ground-state spin is S = 3.5 (a), at E = 0.4 V nm−1 the
ground-state spin is S = 2.5 (b), at E = 0.9 V nm−1 the ground-state spin is S = 1.5 (c), and finally at E = 1.6 the ground-state spin is
S = 0.5 (d) for carbon nanotube. Likewise for the graphene sheet in the absence of electric field the ground-state spin is S = 3.5 (e), at
E = 0.8 V nm−1 the ground-state spin is S = 2.5 (f), at E = 1.3 V nm−1 the ground-state spin is S = 1.5 (g), and at E = 1.5 V nm−1 the
ground-state spin is S = 0.5. We assume Coulomb repulsion (U/t = 1.06). Filled (empty) symbols indicate filled (empty) states, and also up
(down) arrows represents up (down) spin.

Figure 4. (a) Energy speared for spin-resolved, and (b) the variation
of HOMO–LUMO energy gap as a function of Coulomb strength
for both graphene sheet and carbon nanotube. ± symbols for the
graphene sheet shows the shift of triangle vacancy upward and
downward respectively.

is less than two different situations of the graphene sheet, as
illustrated in figure 4(b). Comparing the figures 3(a) and (e)
with results displayed in figure 4, one can conclude that the
evolution in the electronic structure of the carbon nanotube
is more sensitive to the Coulomb repulsion compared to the
graphene sheet.

Local magnetic moments of the triangle edges in carbon
nanotube are in the same directions. Furthermore, the triangle
edges with the upper edge of the rectangular graphene sheet

Figure 5. Local spin densities for (a) carbon nanotube at
E = 0.0 V nm−1 with the ground-state spin S = 3.5, and (b) at
E = 1.6 V nm−1 with the ground-state spin S = 0.5. Besides, local
spin-densities for (c) graphene sheet at E = 0.0 V nm−1 with the
ground-state spin S = 3.5, and (d) at E = 1.5 V nm−1 with the
ground-state spin S = 0.5.

are also in the same directions and represent spin-up densities.
These edges are from one sublattice, while the lower rectangu-
lar edge of the graphene sheet is in the opposite direction and
expresses spin-down densities, as shown in figures 5(a) and
(c). The radius of each circle is proportional to the magnitude
of density on each site.

Now we are in a position to turn on the axial electric field.
As shown in figure 1, we consider the electric field distribu-
tion along the mentioned axis for both structures. Electric field
increases the energy dispersion of edge states while the spin-
resolved extended states tend to be degenerate, as shown in
figures 3(b)–(d) for carbon nanotube and figures 3(f)–(h) for
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Figure 6. In plane view of the carbon nanotube. Arch of the triangle
vacancy illustrated by red. Two critical azimuthal directions shown
by α1 and α2. (b) Total spin of the both graphene sheet and its
counterpart carbon nanotube as a rolled-up graphene sheet as a
function of an axial electric field. (c) Total spin of the carbon
nanotube at two different directions as a function of perpendicular
electric field to the axis.

graphene sheet. By increasing the electric field, the magnetic
moment on each edge atom remains almost unchanged below
a crucial value E. The maximum spin-polarized ground state
of both structures will be demolished, and spin depolarization
may be taking place above a crucial value E (see figure 3).
Since the electric field increased to 0.4 V nm−1 in carbon nan-
otube, the lowest unoccupied state in spin-down lies below the
highest occupied state in spin-up; thus, the total spin of the
system decreases to 2.5. While in the case of graphene sheet,
spin depolarization may occur at E = 0.8 V nm−1. When the
electric field increases to 0.9 or 1.6 V nm−1, the total spin of
the carbon nanotube decrease to 1.5 or 0.5, respectively, due to
the fewer edge atoms carrying magnetic moments. But, in the
graphene sheet, the total spin of the system decreases to 1.5 or
0.5 at E = 1.3 or 1.5 V nm−1, respectively. This result demon-
strates the fact that carbon nanotube is more sensitive than the
graphene sheet at low electric fields. On the other hand, both
structures have almost similar spin depolarization at the high
electric field. As illustrated in figures 5(b), (d) and 6(b). Our

computational results show that the total spin of the graphene
sheet is more robust to depolarize than the total spin of car-
bon nanotube, stating more sensitivity to the electric field in
carbon nanotube compared to the graphene sheet because of
the circumferential confinement where exist in carbon nan-
otube structure which allows more hopping through the whole
system.

Finally, a few words have to be said about applying an elec-
tric field perpendicular to the axis. For practical applications,
we usually use the top or back gate to control the electron
or spins. Hence, we consider an electric field perpendicular
to the axis to understand how this electric field affects the
spin depolarization in carbon nanotube. Due to the asymme-
try that the triangle vacancy imposes to the structure, there are
two critical azimuthal directions in our selected structure, as
it is illustrated in figure 6(a). By applying the perpendicular
electric field to the axis at α1 = 63 degree, the total spin of
the carbon nanotube decreases to S = 2.5 with electric field
strength E = 0.3 V nm−1. In contrast, the first spin depolar-
ization happens in carbon nanotube at α2 = 153 degree with
E = 0.6 V nm−1, which is due to different on-site ener-
gies in two different directions. Furthermore, by increas-
ing the strength of the electric field to E = 1.1 V nm−1 and
E = 1.2 V nm−1, we have found that the total spin of the sys-
tem decrease to S = 1.5 and 0.5 at α1, respectively. Besides,
we have spotted that at α2, the total spin of the system
decreases to S = 1.5 and 0.5 at E = 1.1 V nm−1 and E =
1.8 V nm−1 as it is clear in figure 6(c).

4. Conclusion

To sum up, by using tight-binding Hamiltonian in combination
with the one-orbital Hubbard model at the mean-field approx-
imation, we have compared the magnetic properties, such as
spin-resolved edge states, spin depolarization, and the evolu-
tion of HOMO–LUMO gaps of the finite graphene sheet and
it is counterpart single-walled carbon nanotube as a rolled-up
graphene sheet in the presence of a triangle vacancy and an
axial electric field. Our results show that the magnetic proper-
ties generally depend on the edge states in both structures. By
diagonalizing the tight-binding term, we have seen that there
is a cluster of 11 edge states, which, 7 out of 11, are strict
zero-energy states in the case of graphene sheet as a result
of a triangle punctured vacancy. These strict zero states wave
functions simultaneously distributed on the edges of the tri-
angle and one zigzag edge of the rectangle graphene sheet.
However, the wave functions of the other 4 quasi zero-energy
states concentrate on triangle edges and the opposite zigzag
edge of the rectangle graphene sheet. Also, there exist 7 strict
zero-energy states in the case of carbon nanotube due to the
imbalance between sublattice A and B. By adding the single-
orbital Hubbard term to the mentioned tight-binding Hamil-
tonian, we have observed the spin-resolved edge states may
happen for both structures and represent spin-up and -down
energy levels. Moreover, electron–electron interaction opens a
spin gap between the edge states. By increasing an axial elec-
tric field, we have spotted that the slope of the cluster edge
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states in nanotube is higher than the graphene sheet because of
the rolling action in nanotube, which creates circumferential
confinement. We observed spin-depolarization might occur in
nanotube at E = 0.4 V nm−1, while in the case of the graphene
sheet, it happens at E = 0.8 V nm−1. This indicates that carbon
nanotube is more sensitive than the graphene sheet at low elec-
tric fields. Moreover, both structures have almost similar spin
depolarization at the high electric fields.
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