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On conditions for an operator to be in the class Sp

A. S. Holevo

The Schatten classes Sp of operators on a Hilbert space H play a significant
role in recent studies in quantum information theory (for instance, see [1]–[3] and
references therein). In the present paper we give sufficient conditions for an oper-
ator to belong to Sp in the case when the Hilbert space is the space of an irre-
ducible representation of the canonical commutation relations (CCR) (for example,
H = L2(Rs) — the case often occurring in applications). The problem is closely
related to the asymptotics of the singular values, and in this question we rely on the
classical treatise [4] (see also the papers [5] and [6], devoted to the case H = L2(G),
where G is a bounded domain in Rs).

Let H be a separable Hilbert space, and Sp (p > 0) the Schatten class consisting
of all compact operators τ on H whose singular values sn(τ) satisfy the condition∑∞

n=1 |sn(τ)|p < ∞. In what follows H will be the space of an irreducible repre-
sentation of the CCR:

aja
∗
k − a∗kaj = δjkI, ajak − akaj = 0.

The annihilation operators aj and creation operators a∗j are necessarily unbounded,
and, strictly speaking, these relations hold on a common invariant dense domain D
(for instance, see [7] and [8] for details and rigorous treatments). It is well known
that the operators

Nj = a∗jaj = aja
∗
j − I (1)

are essentially selfadjoint and have pure point spectrum with eigenvalues nj =
0, 1, 2, . . . . The operators Nj , j = 1, . . . , s, commute, so that the eigenvalues of the
total number operator N =

∑s
j=1Nj have the form

∑s
j=1 nj .

Theorem. Let τ ∈ S2 and assume that for some k = 1, 2, . . . the range of τ is
contained in the domains dom ak

j for all j = 1, . . . , s and that ak
j τ ∈ S2 . Then

sn(τ) = o(n−[k/(2s)+1/2]), (2)

which implies that τ ∈ Sp for all p > 2s/(k + s).

The idea of the proof is to use the decomposition τ = (I +N)−k/2σ, where the
operator σ = (I +N)k/2τ is well defined and can be shown to be Hilbert–Schmidt
under the conditions of the theorem, so that by equation (III.7.12) in [4]

sn(σ) = o(n−1/2). (3)

To prove that σ ∈ S2 we use the inequality

(I +N)k ⩽ (s+ 1)k−1

(
I +

s∑
j=1

Nk
j

)
(4)
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and the identity

Nk
j =

k∑
r=1

cr(a∗j )
rar

j (cr > 0, ck = 1) (5)

(following from the second equality in (1)), both holding on an appropriate domain
containing D .

The operator (I +N)k/2 has a compact inverse (I + N)−k/2, so that by the
properties of the singular values (see [4], Corollary II.2.2)

s2n(τ) ⩽ s2n−1(τ) ⩽ sn

(
(I +N)−k/2

)
sn(σ). (6)

Arguing along the lines in [6], we obtain

sn

(
(I +N)−k/2

)
= O(n−k/(2s)). (7)

Indeed, the eigenvalues of (I+N)−k/2 have the form
(
1+

∑s
j=1 nj

)−k/2, nj ⩾ 0. The
number #(R) of integer points (n1, . . . , ns) in the simplex

∑s
j=1 xj ⩽ R, xj ⩾ 0,

is estimated by its volume Rs/s!. Given n, take R such that sn

(
(I + N)−k/2

)
=

(1 + R)−k/2; then n ⩽ #(R) = O(Rs) = O
(
sn

(
(I + N)−k/2

)−2s/k)
, hence (7)

follows. Combining (7), (3), and (6), we get (2).
In the Schrödinger representation, H = L2(Rs) and

ajψ =
1√
2

(
xj +

∂

∂xj

)
ψ =

1√
2

e−x2
j/2 ∂

∂xj
ex2

j/2ψ,

hence ak
jψ = 2−k/2e−x2

j/2∂kex2
j/2ψ/∂xk

j (all the derivatives are generalized). Then
the condition of the theorem takes the following form: the kernel τ(x, y) of the
operator τ , as well as all the functions

e−x2
j/2 ∂

k

∂xk
j

ex2
j/2τ(x, y), j = 1, . . . , s,

are square integrable with respect to (x, y). Similar formulations are obtained for
the Bargmann–Berezin representation in the space of holomorphic functions and
for the ‘noncommutative Fourier transform’ of the operator τ [8].

The action of the operator a is especially simple when τ has the P -representation
with respect to the coherent states: τ =

∫
Cs P (z)|z⟩⟨z| dsz (here P (z) is a complex-

valued function; see [8], for instance). Then the condition of the theorem takes the
form ∫

Cs

∫
Cs

P (z)P (w)
[
1 +

s∑
j=1

(z∗jwj)k

]
exp(−|z−w|2) dsz dsw <∞.
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