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1. Introduction

This paper is a survey of results since 1990 on long-time behaviour and attractors
for solutions of nonlinear Hamiltonian partial differential equations.

The theory of attractors for nonlinear PDEs began in Landau’s 1944 seminal
paper [156], where he proposed the first mathematical interpretation of the onset
of turbulence as the growth of the dimension of attractors of the Navier–Stokes
equations when the Reynolds number increases.

The foundation for the corresponding mathematical theory was laid in 1951 by
Hopf, who first established the existence of global solutions of the 3D Navier–Stokes
equations [71]. He introduced the ‘method of compactness’, which is a nonlinear
version of Faedo–Galerkin approximations. This method is based on a priori esti-
mates and Sobolev embedding theorems and has had an essential influence on the
development of the theory of nonlinear PDEs (see [161]).

The modern development of the theory of attractors for general dissipative sys-
tems, that is, systems with friction, originated in 1975–1985 in publications by Foiaş,
Ghidaglia, Hale, Henry, and Temam, and was developed further by Vishik, Babin,
Chepyzhov, Ilyin, Pata, Titi, Zelik, and others. A typical property of dissipative
systems is global convergence to stationary states in the absence of external exci-
tation: any finite-energy solution of a dissipative autonomous equation in a region
Ω ⊂ Rn converges to a stationary state:

ψ(x, t) → S(x), t→ +∞, (1.1)

where as a rule the convergence holds in the L2(Ω)-metric. In particular, the relax-
ation to an equilibrium regime in chemical reactions is due to energy dissipation.

The results obtained concern a wide class of nonlinear dissipative PDEs, includ-
ing fundamental equations of applied and mathematical physics: the Navier–Stokes
equations, nonlinear parabolic equations, reaction-diffusion equations, wave equa-
tions with friction, integro-differential equations, equations with delay, with mem-
ory, and so on. Very clever techniques of functional analysis of nonlinear PDEs
were developed for the study of the structure of attractors, their smoothness and
their fractal and Hausdorff dimensions, dependence on parameters, on averaging,
and so on. An essential part of the theory up to 2000 was covered in the mono-
graphs [8], [28], [53], [64], [67], [70], and [202].

The development of a similar theory for Hamiltonian PDEs seemed at first to
be unmotivated and even impossible in view of energy conservation and time rever-
sal for these equations. However, it turned out that such a theory is possible,
and its basic directions were suggested by a novel mathematical interpretation of
fundamental postulates of quantum theory:

I. Transitions between quantum stationary orbits (Bohr, 1913).
II. Wave-particle duality (de Broglie, 1924).
III. Probabilistic interpretation (Born, 1927).

Namely, postulate I can be interpreted as the global attraction (1.8) of all quantum
trajectories to an attractor formed by stationary orbits (see § 8), and postulate II
can be interpreted as decay into solitons (1.7). The probabilistic interpretation can
also be justified by the asymptotics (1.7). More details can be found in [102].
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Results obtained in 1990–2019 suggest that such long-time asymptotics of solu-
tions are in fact typical for nonlinear Hamiltonian PDEs. These results are pre-
sented in this survey. The theory is only at an initial stage of development and
cannot be compared with the theory of attractors of dissipative PDEs with regard
to richness and diversity of results. For Hamiltonian PDEs it differs significantly
from the case of dissipative systems, where the attraction to stationary states is
connected with energy dissipation due to friction. For Hamiltonian equations the
friction and energy dissipation are absent, and the attraction is caused by radiation
which irreversibly carries energy to infinity.

The modern development of the theory of nonlinear Hamiltonian equations dates
back to Jörgens [85], who established the existence of global solutions for nonlinear
wave equations of the form

ψ̈(x, t) = ∆ψ(x, t) + F (ψ(x, t)), x ∈ Rn, (1.2)

by developing the Hopf method of compactness. The subsequent studies in this
direction were well presented by Lions in [161].

The first results on the long-time asymptotics of solutions of nonlinear Hamil-
tonian PDEs were obtained by Segal ([187], [188]) and Morawetz and Strauss ([172],
[173], [196]). In these papers local energy decay was proved for solutions of equa-
tions (1.2) with defocusing type nonlinearities F (ψ) = −m2ψ − κ|ψ|pψ, where
m2 ⩾ 0, κ > 0, and p > 1. Namely, for sufficiently smooth and small initial
data, ∫

|x|<R

[
|ψ̇(x, t)|2 + |∇ψ(x, t)|2 + |ψ(x, t)|2

]
dx→ 0, t→ ±∞, (1.3)

for any finite R > 0. Moreover, the corresponding nonlinear wave and scattering
operators were constructed in these papers. In [198] and [199] Strauss established
the completeness of the scattering operators for small solutions of more general
equations. The decay (1.3) means that the energy escapes each bounded region for
large times.

For convenience, characteristic properties of all finite-energy solutions of an equa-
tion will be referred to as global, in order to distinguish them from the corresponding
local properties of the solutions with initial data sufficiently close to an attractor.

All the above-mentioned results on local energy decay (1.3) mean that the corres-
ponding local attractor of solutions with small initial states consists of only the zero
point. The first results on global attraction for nonlinear Hamiltonian PDEs were
obtained by one of the present authors in 1991–1995 for 1D models ([93], [95], [96]),
and were later extended to nD equations. Note that global attraction to a (proper)
attractor is impossible for all finite-dimensional Hamiltonian systems, because of
energy conservation.

Global attraction for Hamiltonian PDEs is derived from an analysis of the irre-
versible energy radiation to infinity, which plays the role of dissipation. Such
an analysis requires subtle methods of harmonic analysis: the Wiener Tauberian
theorem, the Titchmarsh convolution theorem, the theory of quasi-measures, the
Paley–Wiener estimates, eigenfunction expansions for non-selfadjoint Hamiltonian
operators based on M.G. Krein’s theory of J-selfadjoint operators, and others.
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The results obtained so far indicate a certain dependence of long-time asymp-
totics of solutions on the symmetry group of the equation: for example, it may be
the trivial group G = {e}, or the unitary group G = U(1), or the group of transla-
tionsG = Rn. Namely, the results suggest the conjecture that for ‘generic’ nonlinear
Hamiltonian autonomous PDEs with a Lie symmetry group G, any finite-energy
solution admits the asymptotics

ψ(x, t) ∼ eg±tψ±(x), t→ ±∞. (1.4)

Here, eg±t is a representation of the one-parameter subgroup of G which corre-
sponds to the generators g± in the corresponding Lie algebra, while the ψ±(x) are
some ‘scattering states’ depending on the trajectory ψ(x, t) considered. Both pairs
(g+, ψ+) and (g−, ψ−) are solutions of the corresponding nonlinear eigenfunction
problem.

In the case of the trivial symmetry group, the conjecture (1.4) means global
attraction to the corresponding stationary states

ψ(x, t) → S±(x), t→ ±∞ (1.5)

(see Fig. 1), where the S±(x) depend on the trajectory ψ(x, t) under consideration,
and the convergence holds in local seminorms, that is, in norms of type L2(|x| < R)
with any R > 0. The convergence (1.5) in global norms (that is, corresponding to
R = ∞) cannot hold due to energy conservation.

In particular, the asymptotics (1.5) can easily be proved for the d’Alembert
equation (see (2.1)–(2.7)). In this example the convergence (1.5) in global norms
obviously fails due to the presence of travelling waves f(x± t). Similarly, a solution
of the 3D wave equation with unit velocity of propagation is concentrated in spher-
ical layers |t|−R < |x| < |t|+R if the initial data have support in the ball |x| ⩽ R.
Therefore, the solution converges to zero as t→ ±∞, although its energy remains
constant. This convergence corresponds to the well-known strong Huygens prin-
ciple. Thus, attraction to stationary states (1.5) is a generalization of the strong
Huygens principle to nonlinear equations. The difference is that for a linear wave
equation the limit is always zero, while for nonlinear equations the limit can be any
stationary solution.

Further, in the case of the symmetry group of translations G = Rn the asymp-
totics (1.4) means global attraction to solitons (travelling waves)

ψ(x, t) ∼ ψ±(x− v±t), t→ ±∞, (1.6)

for solutions of the generic translation-invariant equation. In this case the con-
vergence holds in local seminorms in the comoving frame of reference, that is, in
L2(|x−v±t| < R) for any R > 0. The validity of such local asymptotics in comoving
reference systems suggests that there may be several such solitons which provide
the refined asymptotics

ψ(x, t) ∼
∑
k

ψ±(x− vk±t) + w±(x, t), t→ ±∞, (1.7)

where the w± are some dispersion waves that are solutions of the corresponding free
equation, and the convergence now holds in some global norm. A trivial example is
given by the d’Alembert equation (2.1) with solutions ψ(x, t) = f(x− t) + g(x+ t).
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Asymptotic expressions (1.7) with several solitons were first discovered in 1965
by Kruskal and Zabusky in numerical simulations of the Korteweg–de Vries (KdV)
equation. Later on, global asymptotics of this type were proved for nonlinear
integrable translation-invariant equations (KdV and others) by Ablowitz, Segur,
Eckhaus, van Harten, and others, using the method of the inverse scattering prob-
lem [46].

Finally, for the unitary symmetry group G = U(1), the asymptotics (1.4) mean
global attraction to ‘stationary orbits’ (or ‘solitary waves’ )

ψ(x, t) ∼ ψ±(x)e−iω±t, t→ ±∞, (1.8)

in the same local seminorms (see Fig. 3). These asymptotics were inspired by the
Bohr postulate on transitions between quantum stationary states (see the Appendix
(§ 8) for details). Our results confirm such asymptotics for generic U(1)-invariant
nonlinear equations of type (5.4) and (5.16)–(5.18). More precisely, we have proved
global attraction to the manifold of all stationary orbits, though attraction to a par-
ticular stationary orbit, with fixed frequencies ω±, is still an open problem.

The existence of stationary orbits ψ(x)eiωt for a broad class of U(1)-invariant
nonlinear wave equations (1.2) was extensively studied in the 1960s–1980s. The
most complete results were obtained by Strauss, Berestycki, and Lions [17], [18],
[196]. Moreover, Esteban, Georgiev, and Séré [51] constructed stationary orbits for
relativistically invariant nonlinear Maxwell–Dirac equations (8.5). The key role in
these papers was played by the Lusternik–Schnirelmann theory [163], [164].

The orbital stability of stationary orbits was studied by Grillakis, Shatah, Strauss,
and others [62], [63].

Let us emphasize that we are conjecturing the asymptotics (1.8) for generic
U(1)-invariant equations. This means that the long-time behaviour of solutions
may be quite different for U(1)-invariant equations of ‘positive codimension’. In
particular, for solutions of the linear Schrödinger equation

iψ̇(x, t) = −∆ψ(x, t) + V (x)ψ(x, t), x ∈ Rn,

the asymptotics (1.8) generally fail. Namely, any finite-energy solution admits the
spectral representation

ψ(x, t) =
∑

Ckψk(x)e−iωkt +
∫ ∞

0

C(ω)ψ(ω, x)e−iωt dω,

where ψk and ψ(ω, · ) are the corresponding eigenfunctions of the discrete and
continuous spectrum, respectively. The last integral is a dispersion wave, which
decays to zero in the norms L2(|x| < R) with any R > 0 (under appropriate
conditions on the potential V (x)). Correspondingly, the attractor is the linear
span of the eigenfunctions ψk. Thus, the long-time asymptotics does not reduce to
a single term like (1.8), so the linear case is degenerate in this sense. Note that our
results for equations (5.4) and (5.16)–(5.18) are established for a strictly nonlinear
case: see the condition (5.12) below, which eliminates linear equations.

For more sophisticated symmetry groups G = U(N), the asymptotics (1.4) mean
the attraction to N -frequency trajectories, which can be quasi-periodic. In partic-
ular, the symmetry groups SU(2), SU(3) and others were suggested in 1961 by
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Gell-Mann and Ne’eman for strong interaction of baryons [58], [175]. This sugges-
tion is based on the parallelism discovered between the empirical data for baryons
and the ‘Dynkin scheme’ of the Lie algebra su(3) with eight generators (the famous
‘eightfold way’). This theory resulted in the scheme of quarks and in the devel-
opment of quantum chromodynamics [3], [65], and also in the prediction of a new
baryon with prescribed values of its mass and decay products. This particle, the
Ω−-hyperon, was promptly discovered experimentally [12].

This empirical correspondence between Lie algebra generators and elementary
particles presumably gives evidence in favour of the general conjecture (1.4) for
equations with Lie symmetry groups.

Note that our conjecture (1.4) specifies the notion of ‘localized solution / coherent
structures’ from the ‘Grande Conjecture’ and the ‘Petite Conjecture’ of Soffer
(see [190], p. 460) in the context of G-invariant equations. The Grande Conjecture
was proved in [124] for a 1D wave equation coupled to a nonlinear oscillator (2.20).
Moreover, suitable versions of the Grande Conjecture were also proved in [78], [79]
for the 3D wave, Klein–Gordon, and Maxwell equations coupled to a relativis-
tic particle with sufficiently small charge (3.34) (see Remark 3.12). Finally, for
any matrix symmetry group G, (1.4) implies the Petite Conjecture, since then the
localized solutions eg±tψ±(x) are quasi-periodic.

Below we dwell upon available results on the asymptotics (1.5)–(1.8). In §§ 2
and 3 we review results on global attraction to stationary states and to solitons,
respectively. Section 4.1 concerns adiabatic effective dynamics of solitons, and § 4.2
concerns the mass-energy equivalence. In § 5 we give a concise complete proof of
the attraction to stationary orbits. Sections 6.1 and 6.2 concern the asymptotic
stability of stationary orbits and solitons, and § 6.3 is devoted to various general-
izations. In § 7 we present results on numerical simulation of soliton asymptotics for
relativistically invariant equations. In the Appendix (§ 8) we comment on the rela-
tionship between the general conjecture (1.4) and the Bohr postulates in quantum
mechanics.

In conclusion let us comment on previous related surveys in this area. The sur-
vey [98] presents results only for 1D equations. The results on asymptotic stability
of solitons were described in detail in [74] for linear equations coupled to a particle,
and in [135] for the relativistically invariant Ginzburg–Landau equations. In the
present article we give only a short statement of these results (§§ 2.1, 2.2, and 6.3).
Finally, our survey gives much more information on our methods than [101]. Our
main novelties are as follows.

(i) Streamlined and simplified proofs of the results in [128]–[130] on global attrac-
tion to stationary states and to solitons for systems of a relativistic particle coupled
to a scalar wave equation and to the Maxwell equation. These results give the first
rigorous justification of the famous radiation damping in classical electrodynamics.
We omit unessential technical details, but we carefully explain our approach, which
relies on the Wiener Tauberian theorem, in §§ 2.3, 2.4, and 3.1.

(ii) The complete proof of the nonlinear analogue of the Kato theorem on the
absence of embedded eigenvalues (§ 5.3), which is a crucial point in the proof of
global attraction to stationary orbits for U(1)-invariant equations in [99], [103]–[108],
[92], [136], [142], [143], [30], [31].
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(iii) Informal arguments on the dispersion radiation and the nonlinear spreading
of the spectrum (§ 5.8), which mean a nonlinear energy transfer from lower to higher
harmonics and lie behind our application of the Titchmarsh convolution theorem.

(iv) Recent results in [136], [137], [142], [143] on global attractors for nonlinear
wave, Klein–Gordon, and Dirac equations with concentrated nonlinearities. We
give a detailed survey of the methods and results in § 2.5.

These methods and ideas are being presented here for the first time in a survey.

The authors express their deep gratitude to H. Spohn and B. Vainberg for the
longtime collaboration with them on attractors of Hamiltonian PDEs, as well as to
A. Shnirelman for many useful discussions. We are also grateful to V. Imaykin and
A. A. Komech for their collaboration over many years.

2. Global attraction to stationary states

Here we review the results on global attraction to stationary states (1.5) that
were obtained in 1991–1999 for nonlinear Hamiltonian PDEs. The first results of
this type were obtained for one-dimensional nonlinear wave equations [93], [95]–[98].
Later on these results were extended to three-dimensional wave equations and
Maxwell’s equations coupled to a charged relativistic particle [130], [129], and also
to three-dimensional wave equations with concentrated nonlinearity [137]. In [45],
[204] the attraction (1.5) was established for finite systems of oscillators coupled to
an infinite-dimensional thermostat.

The global attraction (1.5) can easily be demonstrated using the trivial (but
instructive) example of the d’Alembert equation

ψ̈(x, t) = ψ′′(x, t), x ∈ R. (2.1)

All derivatives here and below are understood in the sense of distributions. This
equation is formally equivalent to the Hamiltonian system

ψ̇(t) = DπH , π̇(t) = −DψH (2.2)

with Hamiltonian

H (ψ, π) =
1
2

∫
[|π(x)|2 + |ψ′(x)|2] dx, (ψ, π) ∈ Ec := H1

c (R)⊕ [L2(R)∩L1(R)],

(2.3)
where H1

c (R) is the space of continuous functions ψ(x) with finite norm

∥ψ∥H1
c (R) := ∥ψ′∥L2(R) + |ψ(0)|. (2.4)

Furthermore, let
ψ(x) → C±, x→ ±∞. (2.5)

For such initial data (ψ(x, 0), ψ̇(x, 0)) = (ψ(x), π(x)) ∈ Ec the d’Alembert formula
gives

ψ(x, t) → S±(x) =
C+ + C−

2
± 1

2

∫ ∞

−∞
π(y) dy, t→ ±∞, (2.6)
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where the convergence is uniform on every finite interval |x| < R. Moreover,

ψ̇(x, t) =
ψ′(x+ t)− ψ′(x− t)

2
+
π(x+ t) + π(x− t)

2
→ 0, t→ ±∞, (2.7)

where the convergence holds in L2(−R,R) for each R > 0. Thus, the set of states
(ψ(x), π(x)) = (C, 0), where C ∈ R is any constant, is an attractor. Note that for
positive and negative times the limits (2.6) may be different.

2.1. 1D nonlinear wave equations. In [97], global attraction to stationary
states was proved for nonlinear wave equations of the type

ψ̈(x, t) = ψ′′(x, t) + χ(x)F (ψ(x, t)), x ∈ R, (2.8)

where
χ ∈ C∞0 (R), χ(x) ⩾ 0, χ(x) ̸≡ 0,

F (ψ) = −∇U(ψ), ψ ∈ RN , U(ψ) ∈ C2(RN ).
(2.9)

The equation (2.8) can be formally written as the Hamiltonian system (2.2) with
Hamiltonian

H (ψ, π) =
1
2

∫
[|π(x)|2+|ψ′(x)|2+χ(x)U(ψ(x, t))] dx, (ψ, π) ∈ EN

c = Ec⊗RN .

We assume that the potential is confining, that is,

U(ψ) →∞, |ψ| → ∞. (2.10)

In this case it is easy to prove that a finite-energy solution Y (t) = (ψ(t), π(t)) ∈
C(R,EN

c ) exists and is unique for any initial state Y (0) ∈ EN
c , and that the energy

is conserved:
H (Y (t)) = const, t ∈ R. (2.11)

Definition 2.1. (i) EN
F denotes the space EN

c endowed with the seminorms

∥(ψ, π)∥E N
c ,R = ∥ψ′∥R + |ψ(0)|+ ∥π∥R, R = 1, 2, . . . , (2.12)

where ∥ · ∥R denotes the norm in L2
R := L2(−R,R).

(ii) Convergence in EN
F is defined as convergence in every seminorm (2.12).

The space EN
F is not complete, and convergence in EN

F is equivalent to conver-
gence in the metric

dist(Y1, Y2) =
∞∑
R=1

2−R
∥Y1 − Y2∥E N

c ,R

1 + ∥Y1 − Y2∥E N
c ,R

, Y1, Y2 ∈ EN
c . (2.13)

The main result in [97] is the following theorem, which is illustrated by Fig. 1.
Denote by S the set of stationary states (ψ(x), 0) ∈ EN

c , where ψ(x) is the solution
of the stationary equation

ψ′′(x) + χ(x)F (ψ(x)) = 0, x ∈ R.
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Figure 1. Convergence to stationary states.

Theorem 2.2. (i) Let the conditions (2.9) and (2.10) hold. Then any finite-energy
solution Y (t) = (ψ(t), π(t)) ∈ C(R,EN

c ) is attracted to S :

Y (t)
E N

F−−→ S , t→ ±∞, (2.14)

in the metric (2.13). This means that

dist(Y (t),S ) := inf
S∈S

dist(Y (t), S) → 0, t→ ±∞. (2.15)

(ii) Suppose additionally that the function F (ψ) is real-analytic for ψ ∈ RN .
Then S is a discrete subset of EN

c , and for any finite-energy solution Y (t) =
(ψ(t), π(t)) ∈ C(R,EN

c )

Y (t)
E N

F−−→ S± ∈ S , t→ ±∞. (2.16)

Sketch of the proof. It suffices to consider only the case where t → ∞. Our proof
of (2.14) and (2.16) in [97] was based on the new method of omega-limit trajec-
tories, which is a development of the method of omega-limit points used in [96].
Subsequently this method played an essential role in the theory of global attractors
for U(1)-invariant PDEs ([99], [103]–[108], [92], [136], [142], [143], [30], [31]).

First we note that the finiteness of the energy radiated from the segment [−a, a] ⊃
suppχ implies the finiteness of the ‘dissipation integral’:∫ ∞

0

[
|ψ̇(−a, t)|2 + |ψ′(−a, t)|2 + |ψ̇(a, t)|2 + |ψ′(a, t)|2

]
dt <∞

(see [97], (6.3)). This means, roughly, that

ψ(±a, t) ∼ C±, ψ′(±a, t) ∼ 0, t→∞. (2.17)

More precisely, the functions ψ(±a, t) and ψ′(±a, t) are slowly varying for large
times, so their shifts form omega-compact families. Namely, from an arbitrary
sequence sk →∞, one can choose a subsequence sk′ →∞ for which

ψ(±a, t+ sk′) → C±, k′ →∞, (2.18)
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where the constants C± depend on the subsequence, and the convergence holds in
C[0, T ] for any T > 0. It remains to prove that

ψ(x, t+ sk′) → S+(x) ∈ S , k′ →∞, (2.19)

in C([0, T ];H1[−a, a]) for any T > 0. In other words, each omega limit trajectory
is a stationary state.

Roughly speaking, we need to justify the well-posedness of the boundary value
problem for a nonlinear differential equation (2.8) in the half-strip −a ⩽ x ⩽ a,
t > 0, with the Cauchy boundary conditions (2.17) on the sides x = ±a. Then
the convergence (2.18) of boundary values implies the convergence (2.19) of the
solution inside the strip.

Our main idea is to use the evident symmetry of the wave equation with respect
to interchange of the variables x and t with simultaneous change of the sign of
the potential U . However, in this equation with ‘time’ x the condition (2.10)
makes the new potential −U unbounded below! Consequently, this dynamics
with x as the time variable is not correct on the interval |x| ⩽ a. For example,
in the case U(ψ) = ψ4, the equation (2.8) for solutions of type ψ(x, t) = ψ(x) is
ψ′′(x) − 4ψ3(x) = 0. Solutions of this ordinary differential equation with finite
Cauchy initial data at x = −a can become infinite at any point x ∈ (−a, a). How-
ever, in our situation local correctness is sufficient due to a priori bounds which
follow from the energy conservation (2.11) in view of the conditions (2.9) and (2.10).

Remark 2.3. (i) The energy of the limit states S± may be less than the conserved
energy of the corresponding solution. This limit jump of energy is similar to the
well-known property of the norm for weak convergence of a sequence in the Hilbert
space.

(ii) The discreteness of the set S is essential for the asymptotics (2.16). For
example, the convergence (2.16) fails for the solution

ψ(x, t) = sin[log(|x− t|+ 2)]

in the case when F (ψ) = 0 for |ψ| ⩽ 1.

2.2. A string coupled to a nonlinear oscillator.
I. The first results on global attraction to stationary states (2.14) and (2.16) were

established in [93], [95], and [124] for the case of a point nonlinearity (the ‘Lamb
system’):

(1 +mδ(x))ψ̈(x, t) = ψ′′(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (2.20)

This equation describes transversal oscillations of a string with vector displacements
ψ(t) ∈ RN coupled to an oscillator attached at x = 0 and acting on the string with
a force F (ψ(0, t)) orthogonal to the string; m > 0 is the mass of a particle attached
to the string at the point x = 0. For a linear force function F (ψ) = −kψ such
a system was first considered by Lamb [155].

The conserved energy is

H (ψ, π, p) =
1
2

∫ [
|π(x)|2 + |ψ′(x)|2

]
dx+

mp2

2
+ U(ψ(0)). (2.21)
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We write Z := {z ∈ RN : F (z) = 0}. Obviously, every finite-energy stationary
solution of the equation (2.20) is a constant function ψz(x) = z ∈ Z. Let S denote
the manifold of all finite-energy stationary states,

S := {Sz = (ψz, 0) : z ∈ Z}.

This set is discrete in Ec if Z is discrete in RN . The proof of the attraction (2.14)
and (2.16) is now based on the reduced equation for the oscillator

mÿ(t) = F (y(t))− 2ẏ(t) + 2ẇin(t), t > 0,

where ẇin ∈ L2(0,∞). This equation follows from the d’Alembert representation
for the solution ψ(x, t) at x > 0 and x < 0.

In [124] stronger asymptotics in the global norm of the Hilbert space Ec were
obtained instead of the asymptotics (2.16) in local seminorms. This was achieved by
identifying the corresponding d’Alembert outgoing and incoming waves. In [125]
and [126] the asymptotic completeness of the corresponding nonlinear scattering
operators was proved.

II. In [96] we extended the results in [93] and [95] on global attraction to sta-
tionary states, to the case of a string with several oscillators:

ψ̈(x, t) = ψ′′(x, t) +
M∑
k=1

δ(x− xk)Fk(ψ(xk, t)).

This equation reduces to a system of M ordinary differential equations with delay.
Its study required a new approach based on a special analysis of omega-limit points
of trajectories.

We remark that detailed proofs of all results in [93] and [95]–[97] are available
in the survey [98].

2.3. Wave-particle system. In [130] the first result on global attraction to sta-
tionary states (1.5) was obtained for a three-dimensional real scalar wave field
coupled to a relativistic particle. The scalar field satisfies the 3D wave equation

ψ̈(x, t) = ∆ψ(x, t)− ρ(x− q(t)), x ∈ R3, (2.22)

where ρ ∈ C∞0 (R3) is a fixed function representing the charge density of the particle,
and q(t) ∈ R3 is the particle position. The particle motion obeys the Hamiltonian
equation with relativistic kinetic energy

√
1 + p2 :

q̇(t) =
p(t)√

1 + p2(t)
, ṗ(t) = −∇V (q(t))−

∫
∇ψ(x, t)ρ(x− q(t)) dx. (2.23)

Here −∇V (q) is the external force corresponding to the real potential V (q), and
the integral term is a self-force.

Thus, the wave function ψ is generated by the charged particle and plays the
role of a potential acting on the particle, along with the external potential V (q).

The system (2.22), (2.23) can be formally represented in the Hamiltonian form

ψ̇ = DπH , π̇ = −DψH , q̇(t) = DpH , ṗ = −DqH (2.24)
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with Hamiltonian (energy)

H (ψ, π, q, p) =
1
2

∫ [
|π(x)|2 + |∇ψ(x)|2

]
dx+

∫
ψ(x)ρ(x− q) dx+

√
1 + p2 +V (q).

(2.25)
By ∥ · ∥ we denote the norm in the Hilbert space L2 := L2(R3), and by ∥ · ∥R

the norm in L2(BR), where BR is the ball |x| ⩽ R. Let H̊1 := H̊1(R3) be the
completion of the space C∞0 (R3) in the norm ∥∇ψ(x)∥.

Definition 2.4. (i) E := H̊1⊕L2⊕R3⊕R3 is the Hilbert phase space of quadruples
(ψ, π, q, p) with finite norm

∥(ψ, π, q, p)∥E = ∥∇ψ∥+ ∥π∥+ |q|+ |p|.

(ii) Eσ with σ ∈ R is the space of quadruples Y = (ψ, π, q, p) ∈ E with ψ ∈
C2(R3) and π ∈ C1(R3) satisfying the estimate

|∇ψ(x)|+ |π(x)|+ |x|(|∇∇ψ(x)|+ |∇π(x)|) = O(|x|−σ), |x| → ∞. (2.26)

(iii) EF is the space E with metric of the type (2.13), where the corresponding
seminorms are defined by

∥(ψ, π, q, p)∥E ,R = ∥∇ψ∥R + ∥ψ∥R + ∥π∥R + |q|+ |p|. (2.27)

Obviously, the energy (2.25) is a continuous functional on E , and Eσ ⊂ E for
σ > 3/2, and moreover, convergence in EF is equivalent to convergence in every
seminorm (2.27). We assume that the external potential is confining:

V (q) →∞, |q| → ∞. (2.28)

In this case the Hamiltonian (2.25) is bounded below:

inf
Y ∈E

H (Y ) = V0 +
1
2
(ρ,∆−1ρ), (2.29)

where
V0 := inf

q∈R3
V (q) > −∞. (2.30)

The following lemma was proved in [130], Lemma 2.1.

Lemma 2.5. Let V (q) ∈ C2(R3) satisfy the condition (2.30). Then for any initial
stateY (0) ∈ E there is a unique finite-energy solutionY (t) = (ψ(t), π(t), q(t), p(t)) ∈
C(R,E ) such that:

(i) for every t ∈ R the map Wt : Y0 7→ Y (t) is continuous both in the space E
and in EF ;

(ii) the energy H (Y (t)) is conserved, that is,

H (Y (t)) = H (Y0), t ∈ R; (2.31)
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(iii) there are a priori estimates

sup
t∈R

[∥∇ψ(t)∥+ ∥π(t)∥] <∞, sup
t∈R

|q̇(t)| = v < 1; (2.32)

(iv) if (2.28) holds, then also

sup
t∈R

|q(t)| = q0 <∞. (2.33)

Remark 2.6. In the case of a point particle ρ(x) = δ(x), the system (2.22), (2.23) is
incorrect, since in this case any solution of the wave equation (2.22) is singular at
the point x = q(t), and, accordingly, the integral in (2.23) is not defined. The energy
functional (2.25) in this case is not bounded below, because the integral in (2.29)
diverges and is equal to −∞. Indeed, in the Fourier transform this integral has the
form

(ρ,∆−1ρ) = −
∫
|ρ̂(k)|2

k2
dk,

where ρ̂(k) ≡ 1. This is the famous ‘ultraviolet divergence’. Thus, the self-energy
of the point charge is infinite, which prompted Abraham to introduce the model of
an ‘extended electron’ with continuous charge density ρ(x).

Let Z = {q ∈ R3 : ∇V (q) = 0}. It is easy to verify that stationary states
of the system (2.22), (2.23) have the form Sq = (ψq, 0, q, 0), where q ∈ Z and
∆ψq(x) = ρ(x− q). Therefore, ψq(x) is the Coulomb potential

ψq(x) := − 1
4π

∫
ρ(y − q) dy
|x− y|

.

Correspondingly, the set of all stationary states of this system is

S := {Sq : q ∈ Z}.

If the set Z ⊂ RN is discrete, then the set S is also discrete in E and in EF .
Finally, assume that the ‘form-factor’ ρ satisfies the Wiener condition

ρ̂(k) :=
∫
eikxρ(x) dx ̸= 0, k ∈ R3. (2.34)

Remark 2.7. The Wiener condition means a strong coupling of the scalar wave field
ψ(x) to the particle. It is a corresponding version of the ‘Fermi Golden Rule’ for the
system (2.22), (2.23): the perturbation ρ(x− q) is not orthogonal to eigenfunctions
of the continuous spectrum of the Laplacian ∆.

For simplicity we assume that

ρ ∈ C∞0 (R3); ρ(x) = 0 for |x| ⩾ Rρ; ρ(x) = ρr(|x|). (2.35)

The main result in [130] is as follows.
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Theorem 2.8. (i) Let the conditions (2.28) and (2.34) hold, and let σ > 3/2.
Then for any initial state Y (0) = (ψ0, π0, q0, p0) ∈ Eσ the corresponding solution
Y (t) = (ψ(t), π(t), q(t), p(t)) ∈ C(R,E ) of the system (2.22), (2.23) is attracted to
the set of stationary states:

Y (t) EF−−→ S , t→ ±∞, (2.36)

where the attraction holds in the metric (2.13) defined by the seminorms (2.27).
(ii) In addition, let the set Z be discrete in R3 . Then

Y (t) EF−−→ S± ∈ S , t→ ±∞. (2.37)

The key point in the proof of this is the relaxation of the acceleration

q̈(t) → 0, t→ ±∞. (2.38)

This relaxation has long been known in classical electrodynamics as ‘radiation
damping’. Namely, the Liénard–Wiechert formulae for retarded potentials suggest
that a particle with a non-zero acceleration radiates energy to infinity. The radi-
ation cannot last forever, because the total energy of the solution is finite. These
arguments result in the conclusion (2.38) that can be found in any textbook on
classical electrodynamics.

However, a rigorous proof is not so obvious, and a proof was first given in [130].
It is based on a calculation of the total energy radiated to infinity using the
Liénard–Wiechert formulae. The central point is the representation of this radi-
ated energy as a convolution and the subsequent application of Wiener’s Tauberian
theorem.

Below we give a streamlined version of this proof for t→ +∞.

Remark 2.9. (i) The condition (2.28) is not necessary for the relaxation (2.38).
Relaxation also takes place under the condition (2.30) (see Remark 2.12).

(ii) The Wiener condition (2.34) is not necessary for the relaxation (2.38) either.
For example, (2.38) obviously holds in the case when V (x) ≡ 0 and ρ(x) ≡ 0. More
generally, such relaxation also holds when V (x) ≡ 0 and the norm ∥ρ∥ is sufficiently
small (see (3.34)).

2.3.1. Liénard–Wiechert asymptotics. We recall the long-range asymptotics of the
Liénard–Wiechert potentials [130], [129]. Denote by ψr(x, t) the retarded potential

ψr(x, t) = − 1
4π

∫
d3y θ(t− |x− y|)

|x− y|
ρ(y − q(t− |x− y|)), (2.39)

let πr(x, t) = ψ̇r(x, t), and let Tr := q0 +Rρ.

Lemma 2.10. The following asymptotics hold:{
πr(x, |x|+ t) = π(ω(x), t)|x|−1 + O(|x|−2),
∇ψr(x, |x|+ t) = −ω(x)π(ω(x), t)|x|−1 + O(|x|−2),

|x| → ∞, (2.40)

uniformly with respect to t ∈ [Tr, T ] for any T > Tr . Here ω(x) = x/|x|, and
π(ω(x), t) is given in (2.42).
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Proof. The integrand in (2.39) vanishes for |y| > Tr. Then |x−y| ⩽ t for t−|x| > Tr,
and (2.39) implies that

∇ψr(x, t) =
∫

d3y

4π|x− y|
n∇ρ(y − q(t− |x− y|)) · q̇(t− |x− y|) + O(|x|−2)

= −ω(x)πr(x, t) + O(|x|−2), t− |x| > Tr,

because n = (x − y)/|x − y| = ω(x) + O(|x|−1) for bounded |y|. Hence, it suffices
to prove only the asymptotics (2.40) for πr. We have

πr(x, t) = −
∫
d3y

1
4π|x− y|

∇ρ(y − q(τ)) · q̇(τ), τ := t− |x− y|. (2.41)

Replacing t by |x|+ t in the definition of τ , we obtain

τ = |x|+ t− |x− y| = t+ ω(x) · y + O(|x|−1) = τ + O(|x|−1), τ = t+ ω · y,

since

|x|− |x−y| = |x|−
√
|x|2 − 2x · y + |y|2 ∼ |x|

(
x · y
|x|2

− |y|2

2|x|2

)
= ω(x) ·y+O(|x|−1).

Hence (2.41) implies (2.40) with

π(ω, t) := − 1
4π

∫
d3y∇ρ(y − q(τ)) · q̇(τ). □ (2.42)

2.3.2. The free wave equation. Consider now the solution ψK(x, t) of the free wave
equation with the initial conditions

ψK(x, 0) = ψ0(x), ψ̇K(x, 0) = π0(x), x ∈ R3. (2.43)

The Kirchhoff formula gives us that

ψK(x, t) =
1

4πt

∫
St(x)

d2yπ0(y) +
∂

∂t

(
1

4πt

∫
St(x)

d2yψ0(y)
)
, (2.44)

where St(x) is the sphere {y : |y − x| = t}. Let πK(x, t) = ψ̇K(x, t).

Lemma 2.11. Let Y0 ∈ Eσ . Then for any R > 0 and any T2 > T1 ⩾ 0∫ R+T2

R+T1

dt

∫
∂BR

d2x(|πK(x, t)|2 + |∇ψK(x, t)|2) ⩽ I0 <∞. (2.45)

Proof. The formula (2.44) implies that

∇ψK(x, t) =
t

4π

∫
S1

d2z∇π0(x+ tz) +
1
4π

∫
S1

d2z∇ψ0(x+ tz)

+
t

4π

∫
S1

d2z∇x(∇ψ0(x+ tz) · z).
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Here S1 := S1(0). From (2.26) it follows that

|∇ψK(x, t)| ⩽ C

1∑
s=0

ts
∫
S1

d2z|x+ tz|−σ−1−s

= C

1∑
s=0

2πts−1

(σ + s− 1)|x|
(
(t− |x|)−σ−s+1 − (t+ |x|)−σ−s+1

)
.

Therefore,∫ R+T2

R+T1

dt

∫
∂BR

d2x |∇ψk(x, t)|2

⩽ C

∫ R+T2

R+T1

[
(t+R)2−2σ + (t−R)2−2σ

t2
+ (t−R)−2σ

]
dt

⩽ C1

∫ R+T2

R+T1

dt

[(
1 +

R

t

)2

+
(

1− R

t

)2

+ 1
]
(t−R)−2σ ⩽ I0 <∞.

The integral with ∇πK(x, t) can be estimated similarly. □

2.3.3. Scattering of energy to infinity. We now obtain a bound on the total energy
radiated to infinity, which we will represent as a ‘radiation integral’. This integral
has to be bounded a priori in view of (2.32). Indeed, the energy HR(t) at time
t ∈ R in the ball BR is defined by

HR(t) =
1
2

∫
BR

d3x
(
|π(x, t)|2 + |∇ψ(x, t)|2

)
+

√
1 + p2(t) + V (q(t))

+
∫
d3xψ(x, t)ρ(x− q(t)).

Consider the energy IR(T1, T2) radiated from the ball BR during the time interval
[T1, T2] with T2 > T1 > 0:

IR(T1, T2) = HR(T1)−HR(T2).

This energy is bounded a priori, because by (2.32) the energy HR(T1) is bounded
above, while HR(T2) is bounded below. Thus,

IR(T1, T2) ⩽ I <∞, (2.46)

where I does not depend on T1, T2, or R. Further, one has

d

dt
HR(t) =

∫
∂BR

d2xω(x) · π(x, t)∇ψ(x, t), t > R.

Hence, (2.46) implies that∫ R+T2

R+T1

dt

∫
∂BR

d2xω(x) · π(x, t)∇ψ(x, t) ⩽ I.
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The solution admits the splitting π = πr + πK , ψ = ψr + ψK , and hence∫ R+T2

R+T1

dt

∫
∂BR

d2xω(x) · (πr∇ψr + πK∇ψr + πr∇ψK + πK∇ψK) ⩽ I.

Lemmas 2.10 and 2.11 together with the Cauchy–Schwarz inequality imply that∫ T

Tr

dt

∫
S1

d2ω|π(ω, t)|2 ⩽ I1 + TO(R−1), T > Tr,

where I1 < ∞ does not depend on T or R. Taking the limit as R → ∞ and then
as T →∞, we obtain the finiteness of the energy radiated to infinity:∫ ∞

0

dt

∫
S1

d2ω |π(ω, t)|2 <∞. (2.47)

2.3.4. A convolution representation and relaxation of acceleration and velocity.
Applying integration by parts in (2.42), we obtain

π(ω, t) =
∫
d3y∇ρ(y − q(τ)) · q̇(τ) =

∫
d3y∇yρ(y − q(τ)) · q̇(τ) 1

1− ω · q̇(τ)

= −
∫
d3y ρ(y − q(τ))

∂

∂yα

q̇α(τ)
1− ω · q̇(τ)

=
1
4π

∫
d3y ρ(y − q(τ))

ω · q̈(τ)
(1− ω · q̇(τ))2

. (2.48)

The function π(ω, t) is globally Lipschitz-continuous in ω and t in view of (2.32).
Hence, (2.47) implies that

lim
t→∞

π(ω, t) = 0 (2.49)

uniformly for ω ∈ S1. Let

r(t) = ω · q(t), s = ω · y, ρ̃(q3) =
∫
dq1 dq2 ρ(q1, q2, q3)

and decompose the y-integration in (2.48) into integration along ω and transversal
to it. Then we obtain the convolution

π(ω, t) =
∫
ds ρ̃(s− r(t+ s))

r̈(t+ s)
(1− ṙ(t+ s))2

=
∫
dτ ρ̃(t− (τ − r(τ)))

r̈(τ)
(1− ṙ(τ))2

=
∫
dθ ρ̃(t− θ)gω(θ) = ρ̃ ∗ gω(t).

Here θ = θ(τ) = τ − r(τ) is a non-degenerate diffeomorphism of R since ṙ ⩽ r < 1
due to (2.32), and

gω(θ) =
r̈(τ(θ))

(1− ṙ(τ(θ)))3
. (2.50)

Let us extend q(t) to be 0 for t < 0. Then ρ̃∗gω (t) is defined for all t and coincides
with π(ω, t) for sufficiently large t. Hence (2.49) is the convolution limit

lim
t→∞

ρ̃ ∗ gω(t) = 0. (2.51)
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Moreover, g′ω(θ) is bounded in view of (2.32). Therefore, (2.51) and the Wiener
condition (2.34) imply that

lim
θ→∞

gω(θ) = 0, ω ∈ S1, (2.52)

by Pitt’s extension of Wiener’s Tauberian theorem ([185], Theorem 9.7, (b)). Hence
(2.50) implies that

lim
t→∞

q̈(t) = 0 (2.53)

since θ(t) →∞ as t→∞. Finally,

lim
t→∞

q̇(t) = 0, (2.54)

because |q(t)| ⩽ q0 in view of (2.32).

Remark 2.12. (i) We used the condition (2.28) in the proof of (2.46), but (2.30) is
also sufficient at this point. Consequently, the relaxation (2.53) holds also under
the condition (2.30).

(ii) For a point charge ρ(x) = δ(x), (2.51) implies (2.52) directly.
(iii) The condition (2.34) is necessary for the implication (2.52)⇒ (2.53). Indeed,

if (2.34) is violated, then ρ̂a(ξ) = 0 for some ξ ∈ R, and with the choice g(θ) =
exp(iξθ) we have ρa ∗ g(t) ≡ 0, whereas g does not tend to zero.

2.3.5. A compact attracting set. Here we show that the set

A = {Sq : q ∈ R3, |q| ⩽ q0} (2.55)

is an attracting subset. It is compact in EF since A is homeomorphic to a closed
ball in R3.

Lemma 2.13. The following attraction holds:

Y (t) EF−−→ A , t→ ±∞. (2.56)

Proof. We need to check that for every R > 0

distR(Y (t),A ) = |p(t)|+ ∥π(t)∥R
+ inf
Sq∈A

(
|q(t)− q|+ ∥ψ(t)− ψq∥R + ∥∇(ψ(t)− ψq)∥R

)
→ 0, t→∞.

(2.57)

We estimate each summand separately.
(i) |p(t)| → 0 as t→∞ by (2.53).
(ii) inf |q|⩽q0 |q(t)− q| = 0 for any t ∈ R by (2.32).
(iii) (2.39) implies that

|πr(x, t)| ⩽ C max
t−R−Tr⩽τ⩽t

|q̇(τ)|
∫
|y|<Tr

d3y
1

|x− y|
|∇ρ(y − q(t− |x− y|))|

for t > R + Tr and |x| < R. The integral on the right-hand side is bounded
uniformly for t > R + Tr and x ∈ BR. Hence ∥πr(t)∥R → 0 as t → ∞ by (2.54).
Then also ∥π(t)∥R → 0.
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(iv) Obviously, we can replace q by q(t) in the last summand in (2.57). Then for
t > R+ Tr and |x| < R one has

ψr(x, t)− ψq(t)(x) = −
∫
|y|<Tr

d3y
1

4π|x− y|
[
ρ(y − q(t− |x− y|))− ρ(y − q(t))

]
by (2.39). Moreover, ρ(y − q(t − |x − y|)) − ρ(y − q(t)) → 0 as t → ∞ uniformly
for x ∈ BR in view of (2.54). Hence ∥ψr(t) − ψq(t)∥R → 0 as t → ∞. Then also
∥ψ(t)− ψq(t)∥R → 0. Finally, ∥∇(ψ(t)− ψq(t))∥R can be estimated similarly. □

2.3.6. Global attraction. Now we complete the proof of Theorem 2.8.
(i) Let Y (t) ∈ C(R,E ) be any finite-energy solution of the system (2.22), (2.23).

If the attraction (2.36) does not hold, then there is a sequence tk →∞ for which

dist(Y (tk),S ) ⩾ δ > 0, k = 1, 2, . . . . (2.58)

Since A is a compact set in EF , (2.56) implies that

Y (tk′)
EF−−→ Y ∈ A , k′ →∞, (2.59)

for some subsequence k′ → ∞. It remains to check that Y = Sq∗ ∈ S with some
q∗ ∈ Z, since this contradicts (2.58).

First, Y = Sq with some |q| ⩽ q0 by the definition (2.55). Similarly, by the
continuity of the map Wt in EF ,

WtY (tk′) = Y (tk′ + t) EF−−→WtY = SQ(t), k′ →∞, (2.60)

where Q( · ) ∈ C2(R,E ), since WtY ∈ C(R,E ) is a solution of the system (2.22),
(2.23). Finally, for SQ(t) to be a solution of the system (2.22), (2.23), it is necessary
that Q̇(t) ≡ 0. Therefore, Q(t) ≡ q∗ ∈ Z and Y = Sq∗ ∈ S .

(ii) If the set Z is discrete in R3, then the solitary manifold S is discrete in EF .
Theorem 2.8 is proved.

2.4. The Maxwell–Lorentz equations: radiation damping. In [129] global
attraction to stationary states that is analogous to (2.36), (2.37) was extended to
the Maxwell–Lorentz equations with a charged relativistic particle:

Ė(x, t) = rotB(x, t)− q̇ρ(x− q), Ḃ(x, t) = − rotE(x, t),
divE(x, t) = ρ(x− q), divB(x, t) = 0,

q̇(t) =
p(t)√

1 + p2(t)
,

ṗ(t) =
∫ [

E(x, t) + Eext(x, t) + q̇(t) ∧ (B(x, t) +Bext(x, t))
]
ρ(x− q(t)) dx.

(2.61)

Here ρ(x− q) is the particle charge density, q̇ρ(x− q) is the corresponding current
density, and Eext = −∇ϕext(x) and Bext = − rotAext(x) are the external static
Maxwell fields. Similarly to (2.28), we assume that the effective scalar potential is
confining:

V (q) :=
∫
ϕext(x)ρ(x− q) dx→∞, |q| → ∞. (2.62)
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This system describes classical electrodynamics with the ‘extended electron’
introduced by Abraham [1], [2]. In the case of a point electron, when ρ(x) = δ(x),
such a system is not well defined. Indeed, in this case any solutions E(x, t) and
B(x, t) of Maxwell’s equations (the first lines in (2.61)) are singular for x = q(t),
and, accordingly, the integral in the last equation in (2.61) does not exist.

This system may be formally represented in the Hamiltonian form if the fields
are expressed in terms of the potentials: E(x, t) = −∇ϕ(x, t)−Ȧ(x, t) and B(x, t) =
− rotA(x, t) [76]. The corresponding Hamiltonian functional is

H =
1
2
[⟨E,E⟩+ ⟨B,B⟩] + V (q) +

√
1 + p2

=
1
2

∫
[E2(x) +B2(x)] dx+ V (q) +

√
1 + p2 . (2.63)

The Hilbert phase space of finite-energy states is defined as E := L2⊕L2⊕R3⊕R3.
Under the condition (2.62) a finite-energy solution

Y (t) = (E(x, t), B(x, t), q(t), p(t)) ∈ C(R,E )

exists and is unique for any initial state Y (0) ∈ E .
The Hamiltonian (2.63) is conserved along solutions, and this provides a priori

estimates that play an important role in proving attraction of the type (2.36), (2.37)
in [129]. The key role in the proof of relaxation of acceleration is again played
by (2.38), which is derived by a suitable generalization of our methods [130]: the
expression of the energy radiated to infinity via Liénard–Wiechert retarded poten-
tials, its representation in the form of a convolution, and the use of Wiener’s Taube-
rian theorem.

In classical electrodynamics the relaxation (2.38) is known as radiation damping.
It is traditionally derived from the Larmor and Liénard formulae for the radiation
power of a point particle (see the formulae (14.22) and (14.24) in [83]), but this
approach ignores the field feedback even though it plays the key role in relaxation.
The main problem is that this reverse field reaction for point particles is infinite.
The rigorous meaning of these classical calculations was first found in [130] and [129]
for the Abraham model of an ‘extended electron’ under the Wiener condition (2.34).
Details can be found in [195].

2.5. The wave equation with concentrated nonlinearities. Here we prove
the result in [136] on global attraction to the solitary manifold for the 3D wave
equation with point coupling to an U(1)-invariant nonlinear oscillator. This goal is
inspired by the fundamental mathematical problem of interaction of point particles
with fields.

Point interaction models were first considered beginning in 1933 in the papers
of Wigner, Bethe and Peierls, Fermi, and others (see [6] for a detailed survey), and
also of Dirac [40]. Rigorous mathematical results were obtained beginning in 1960
by Zeldovich, Berezin, Faddeev, Cornish, Yafaev, Zeidler, and others ([19], [32],
[59], [209], [212]), and since 2000 by Noja, Posilicano, and others ([176], [210], [4]).

We consider a real wave field ψ(x, t) coupled to a nonlinear oscillator{
ψ̈(x, t) = ∆ψ(x, t) + ζ(t)δ(x),
lim
x→0

(ψ(x, t)− ζ(t)G(x)) = F (ζ(t)),
x ∈ R3, t ∈ R, (2.64)
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where G(x) = 1/(4π|x|) is the Green’s function of the operator −∆ in R3. The
nonlinear function F (ζ) admits a potential:

F (ζ) = U ′(ζ), ζ ∈ R, U ∈ C2(R). (2.65)

We assume that the potential is confining, that is,

U(ζ) →∞, ζ → ±∞. (2.66)

The system (2.64) has stationary solutions ψq = qG(x) ∈ L2
loc(R3), where q ∈ Q :=

{q ∈ R : F (q) = 0}. We assume that the set Q is non-empty and does not contain
intervals, that is,

[a, b] ̸⊂ Q (2.67)

for any a < b.
As before, ∥ · ∥ and ∥ · ∥R denote the norms in L2 = L2(R3) and L2(BR),

respectively, and H̊1 = H̊1(R3) is the completion of the space C∞0 (R3) in the
norm ∥∇ψ(x)∥. Let

H̊2 = H̊2(R3) := {f ∈ H̊1 : ∆f ∈ L2}, t ∈ R.

We define the sets of functions

D =
{
ψ ∈ L2 : ψ(x) = ψreg(x) + ζG(x), ψreg ∈ H̊2, ζ ∈ R, lim

x→0
ψreg(x) = F (ζ)

}
and

Ḋ = {π ∈ L2 : π(x) = πreg(x) + ηG(x), πreg ∈ H̊1, η ∈ R}.

Obviously, D ⊂ Ḋ.

Definition 2.14. D is the Hilbert manifold of states Ψ = (ψ, π) ∈ D × Ḋ.

First we prove global well-posedness for the system (2.64).

Theorem 2.15. Assume the conditions (2.65) and (2.66). Then the following
assertions hold.

(i) For arbitrary initial data Ψ0 = (ψ0, π0) ∈ D the system (2.64) has a unique
solution Ψ(t) = (ψ(t), ψ̇(t)) ∈ C(R,D).

(ii) The energy is conserved:

H (Ψ(t)) :=
1
2
(
∥ψ̇(t)∥2+∥∇ψreg(t)∥2

)
+U(ζ(t)) = const, t ∈ R. (2.68)

(iii) There is an a priori bound

|ζ(t)| ⩽ C(Ψ0), t ∈ R. (2.69)

Proof. It suffices to prove the theorem for t ⩾ 0.
Step (i). First we consider the free wave equation with initial data in D :

ψ̈f (x, t) = ∆ψf (x, t), (ψf (0), ψ̇f (0)) = (ψ0, π0) = (ψ0,reg, π0,reg)+(ζ0G, η0G) ∈ D ,
(2.70)

where (ψ0,reg, π0,reg) ∈ H̊2 ⊕ H̊1.
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Lemma 2.16. There exists a unique solution ψf (t) ∈ C([0;∞), L2
loc) of the prob-

lem (2.70). Moreover, for any t > 0 there exists the limit

λ(t) := lim
x→0

ψf (x, t) ∈ C[0,∞),

and
λ̇(t) ∈ L2

loc[0,∞). (2.71)

Proof. We split ψf (x, t) into two terms

ψf (x, t) = ψf,reg(x, t) + g(x, t),

where ψf,reg and g solve the free wave equation with initial data (ψ0,reg, π0,reg) and
(ζ0G, η0G), respectively. We note that

ψf,reg ∈ C([0,∞), H̊2)

by energy conservation. Hence, the limit limx→0 ψf,reg(x, t) exists for any t ⩾ 0
since H̊2(R3) ⊂ C(R3).

Let us obtain an explicit formula for g. Note that the function h(x, t) = g(x, t)−
(ζ0 + η0t)G(x) satisfies the equations

ḧ(x, t) = ∆h(x, t)− (ζ0 + η0t)δ(x), h(x, 0) = 0, ḣ(x, 0) = 0. (2.72)

The unique solution of this Cauchy problem is the spherical wave

h(x, t) = −θ(t− |x|)
4π|x|

(ζ0 + η0(t− |x|)), t ⩾ 0. (2.73)

Here θ is the Heaviside function. Hence,

g(x, t) = h(x, t) + (ζ0 + η0t)G(x)

= −θ(t− |x|)(ζ0 + η0(t− |x|))
4π|x|

+
ζ0 + η0t

4π|x|
∈ C([0,∞), L2

loc(R3)),

and then
lim
x→0

g(x, t) =
η0
4π

, t > 0.

Finally, ψ̇f,reg(0, t) ∈ L2
loc[0,∞) by [176], Lemma 3.4. Then (2.71) follows. □

Step (ii). Now we prove local well-posedness. We modify the nonlinearity F so
that it becomes globally Lipschitz-continuous. Define

Λ(Ψ0) = sup{|ζ| : ζ ∈ R, U(ζ) ⩽ H (Ψ0)}.

We may pick a modified potential function Ũ(ζ) ∈ C2(R) so that{
Ũ(ζ) = U(ζ), |ζ| ⩽ Λ(Ψ0),
Ũ(ζ) > H (Ψ0), |ζ| > Λ(Ψ0),

(2.74)

and the function F̃ (ζ) = Ũ ′(ζ) is Lipschitz-continuous:

|F̃ (ζ1)− F̃ (ζ2)| ⩽ C|ζ1 − ζ2|, ζ1, ζ2 ∈ R.

The following lemma is trivial.
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Lemma 2.17. For small τ > 0 the Cauchy problem

1
4π
ζ̇(t) + F̃ (ζ(t)) = λ(t), ζ(0) = ζ0, (2.75)

has a unique solution ζ ∈ C1[0, τ ].

Let
ψS(t, x) :=

θ(t− |x|)
4π|x|

ζ(t− |x|), t ∈ [0, τ ],

with ζ in Lemma 2.17.

Lemma 2.18. The function ψ(x, t) := ψf (x, t) +ψS(x, t) is the unique solution of
the system

ψ̈(x, t) = ∆ψ(x, t) + ζ(t)δ(x),
lim
x→0

(ψ(x, t)− ζ(t)G(x)) = F̃ (ζ(t)),

ψ(x, 0) = ψ0(x), ψ̇(x, 0) = π0(x),

x ∈ R3, t ∈ [0, τ ], (2.76)

satisfying the condition

(ψ(t), ψ̇(t)) ∈ D , t ∈ [0, τ ]. (2.77)

Proof. The initial conditions in (2.76) follow from (2.70). Further,

lim
x→0

(ψ(t, x)− ζ(t)G(x)) = λ(t) + lim
x→0

(
θ(t− |x|)ζ(t− |x|)

4π|x|
− ζ(t)

4π|x|

)
= λ(t)− 1

4π
ζ̇(t) = F̃ (ζ(t)).

Thus, the second equation in (2.76) is satisfied. Finally,

ψ̈ = ψ̈f + ψ̈S = ∆ψf + ∆ψS + ζδ = ∆ψ + ζδ,

and then ψ solves the first equation in (2.76).
It remains to check (2.77). The function φreg(x, t) = ψ(x, t) − ζ(t)G1(x) =

ψreg(x, t) + ζ(t)(G(x)−G1(x)), where G1(x) = G(x)e−|x|, satisfies the equation

φ̈reg(x, t) = ∆φreg(x, t) + (ζ(t)− ζ̈(t))G1(x)

with initial data in H2 ⊕H1. Moreover, (2.71) and (2.75) imply that ζ̈ ∈ L2[0, τ ].
Consequently,

(φreg(x, t), φ̇reg(x, t)) ∈ H2 ⊕H1, t ∈ [0, τ ],

by Lemma 3.2 in [176]. Therefore, the function

ψreg(x, t) = ψ(x, t)− ζ(t)G(x) = φreg(x, t) + ζ(t)(G1(x)−G(x))

satisfies (ψreg(t), ψ̇reg(t)) ∈ H̊2 ⊕ H̊1, t ∈ [0, τ ], and then (2.77) holds.
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It remains to prove uniqueness. Suppose now that there exists another solution
ψ̃ = ψ̃reg + ζ̃G of the system (2.76) with (ψ̃, ˙̃

ψ) ∈ D . Then by a reversal of the
above argument, the second equation in (2.76) implies that ζ̃ solves the Cauchy
problem (2.75). The uniqueness of the solution of (2.75) implies that ζ̃ = ζ. Then,
defining

ψS(t, x) :=
θ(t− |x|)

4π|x|
ζ(t− |x|), t ∈ [0, τ ],

we get for the difference ψ̃f = ψ̃ − ψS that

¨̃
ψf = ¨̃

ψ − ψ̈S = ∆ψ̃reg − (∆ψS + ζδ) = ∆(ψ̃reg − (ψS − ζG)) = ∆ψ̃f ,

that is, ψ̃f solves the Cauchy problem (2.70). Hence, ψ̃f = ψf by the uniqueness
of the solution of (2.70), and thus ψ̃ = ψ. □

Step (iii). We are now able to prove global well-posedness. According to [176],
Lemma 3.7,

HF̃ (Ψ(t)) = ∥ψ̇(t)∥2 + ∥∇ψreg(t)∥2 + Ũ(ζ(t)) = const, t ∈ [0, τ ]. (2.78)

First, note that
Ũ(ζ(t)) = U(ζ(t)), t ∈ [0, τ ]. (2.79)

Indeed, HF (Ψ0) ⩾ U(ζ0) by the definition of the energy in (2.68). Therefore,
|ζ0| ⩽ Λ(Ψ0), and then Ũ(ζ0) = U(ζ0) and HF̃ (Ψ0) = HF (Ψ0). Further,

HF (Ψ0) = HF̃ (Ψ(t)) ⩾ Ũ(ζ(t)), t ∈ [0, τ ],

and (2.74) implies that

|ζ(t)| ⩽ Λ(Ψ0), t ∈ [0, τ ]. (2.80)

Now we can replace F̃ by F in Lemma 2.18 and in (2.78). The solution Ψ(t) =
(ψ(t), ψ̇(t)) ∈ D constructed in Lemma 2.18 exists for 0 ⩽ t ⩽ τ , where the time τ
in Lemma 2.17 depends only on Λ(Ψ0). Hence, the estimate (2.80) at t = τ allows
us to extend the solution Ψ to the time interval [τ, 2τ ]. We proceed by induction
to obtain a solution for all t ⩾ 0. Theorem 2.15 is proved. □

The main result in [136] is as follows.

Theorem 2.19. Let Ψ(x, t) = (ψ(x, t), ψ̇(x, t)) be a solution of (2.64) with initial
data in D . Then

Ψ(x, t) → (ψq± , 0), t→ ±∞,

where q± ∈ Q and the convergence holds in L2
loc(R3)⊕ L2

loc(R3).

Proof. It suffices to prove this theorem only for t→ +∞. By Lemma 2.18, the solu-
tion ψ(x, t) of (2.64) with initial data (ψ0, π0) ∈ D can be represented as the sum

ψ(x, t) := ψf (x, t) + ψS(x, t), t ⩾ 0, (2.81)



26 A. I. Komech and E.A. Kopylova

where the dispersion component ψf (x, t) is the unique solution of (2.70) and the
singular component ψS(x, t) is the unique solution of the Cauchy problem

ψ̈S(x, t) = ∆ψS(x, t) + ζ(t)δ(x), ψS(x, 0) = 0, ψ̇S(x, 0) = 0. (2.82)

Here ζ(t) ∈ C1
b [0,∞) is the unique solution of the Cauchy problem

1
4π
ζ̇(t) + F (ζ(t)) = λ(t), ζ(0) = ζ0. (2.83)

We can now prove the local decay of ψf (x, t).

Lemma 2.20. For any R > 0,

∥(ψf (t), ψ̇f (t))∥H2(BR)⊕H1(BR) → 0, t→∞, (2.84)

where BR is the ball of radius R.

Proof. We represent the initial data

(ψ0, π0) = (ψ0,reg, π0,reg) + (ζ0G, η0G) ∈ D

as the sum
(ψ0, π0) = (φ0, p0) + (ζ0χG, η0χG),

where the cut-off function χ ∈ C∞0 (R3) satisfies

χ(x) =

{
1, |x| ⩽ 1,
0, |x| ⩾ 2.

(2.85)

Let us show that
(φ0, p0) ∈ H2 ⊕H1.

Indeed,
(φ0, p0) = (ψ0 − ζ0χG, π0 − η0χG) ∈ L2 ⊕ L2.

On the other hand,

(φ0, p0) = (ψ0,reg + ζ0(1− χ)G, π0,reg + η0(1− χ)G) ∈ H̊2 ⊕ H̊1.

Now we split the dispersion component ψf (x, t) into the two terms

ψf (x, t) = φ(x, t) + φG(x, t), t ⩾ 0,

where φ and φG are defined as the solutions of the free wave equation with the initial
data (φ0, p0) and (ζ0χG, η0χG), respectively, and we study the decay properties of
φG and φ.

First, by the strong Huygens principle,

φG(x, t) = 0 for t ⩾ |x|+ 2.

Indeed, φG(x, t) = ζ0ψ̇G(x, t)+η0ψG(x, t), where ψG(x, t) is the solution of the free
wave equation with initial data (0, χG) ∈ H1⊕L2, and ψG(x, t) satisfies the strong
Huygens principle by [180], Theorem XI.87.
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It remains to check that

∥(φ(t), φ̇(t))∥H2(BR)⊕H1(BR) → 0, t→∞, ∀R > 0. (2.86)

For r ⩾ 1 let χr = χ(x/r), where χ(x) is the cut-off function (2.85), and let
ϕ0 = (φ0, π0). Let ur(t) and vr(t) be solutions of the free wave equations with
the initial data χrϕ0 and (1 − χr)ϕ0, respectively, so that φ(t) = ur(t) + vr(t).
By the strong Huygens principle,

ur(x, t) = 0 for t ⩾ |x|+ 2r.

To obtain (2.86), it remains to note that

∥(vr(t), v̇r(t))∥H2(BR)⊕H1(BR) ⩽ C(R)∥(vr(t), v̇r(t))∥H̊2⊕H1

= C(R)∥(1− χr)ϕ0∥H̊2⊕H1

⩽ C(R)∥(1− χr)ϕ0∥H2⊕H1 (2.87)

by the energy conservation for the free wave equation. We also use the embedding
H̊1(R3) ⊂ L6(R3). The right-hand side of (2.87) can be made arbitrarily small if
r ⩾ 1 is sufficiently large. □

By (2.81) and (2.84), to prove Theorem 2.19 it suffices to verify the convergence
of ψS(x, t) to stationary states.

Lemma 2.21. Let ψS(x, t) and ζ(t) be solutions of (2.82) and (2.83), respectively.
Then

(ψS(t), ψ̇S(t)) → (ψq± , 0), t→∞,

where q± ∈ Q and the convergence holds in L2
loc(R3)⊕ L2

loc(R3).

Proof. The unique solution of (2.82) is the spherical wave

ψS(x, t) =
θ(t− |x|)

4π|x|
ζ(t− |x|), t ⩾ 0 (2.88)

(cf. (2.72) and (2.73)). Then the a priori bound (2.69) and equation (2.83) imply
that

(ψS(t), ψ̇S(t)) ∈ L2(BR)⊕ L2(BR), 0 ⩽ R < t.

First we prove the convergence of ζ(t). From (2.69) it follows that ζ(t) has upper
and lower limits:

lim
t→∞

ζ(t) = a and lim
t→∞

ζ(t) = b. (2.89)

Suppose that a < b. Then the trajectory ζ(t) oscillates between a and b. The
assumption (2.67) implies that F (ζ0) ̸= 0 for some ζ0 ∈ (a, b). Assume for definite-
ness that F (ζ0) > 0. The convergence (2.84) implies that

λ(t) = ψf (0, t) → 0, t→∞. (2.90)

Hence, for sufficiently large T we have

−F (ζ0) + λ(t) < 0, t ⩾ T.
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Then for t ⩾ T the transition of the trajectory from left to right through the point
ζ0 is impossible by (2.83). Therefore, a = b = q+, where q+ ∈ Q since F (q+) = 0
by (2.83). Hence (2.89) implies that

ζ(t) → q+, t→∞. (2.91)

Further,
θ(t− |x|) → 1, t→∞, (2.92)

uniformly for |x| ⩽ R. Then (2.88) and (2.91) imply that

ψS(t) → q+G, t→∞,

where the convergence holds in L2
loc(R3). It remains to verify the convergence

of ψ̇S(t). Differentiating (2.88), we have

ψ̇S(x, t) =
θ(t− |x|)

4π|x|
ζ̇(t− |x|), |x| < t.

From (2.83), (2.90), and (2.91) it follows that ζ̇(t) → 0 as t→∞. Then

ψ̇S(t) → 0, t→∞,

in L2
loc(R3) by (2.92). □

This completes the proof of Theorem 2.19. □

2.6. Remarks. All the above results on global attraction to stationary states refer
to ‘generic’ systems with trivial symmetry group. These systems are characterized
by a suitable discreteness of attractors, by the Wiener condition, and so on.

The global attraction to stationary states (1.5) resembles the analogous asymp-
totics (1.1) for dissipative systems. However, there are a number of fundamental
differences.

I. In dissipative systems an attractor always consists of stationary states, the
attraction (1.1) holds only as t → +∞, and this attraction is associated with
absorption of energy and can be in global norms. Such an attraction also holds for
all finite-dimensional dissipative systems.

II. On the other hand, in Hamiltonian systems an attractor may differ from
the set of stationary states, as will be seen below. In addition, energy absorption
in these systems is absent, and the attraction (1.5) to stationary states is due to
radiation of energy to infinity, which plays the role of energy absorption. This
attraction takes place both as t → ∞, and as t → −∞, and it holds only in local
seminorms. Finally, it cannot hold for any finite-dimensional Hamiltonian system
(except in the case when the Hamiltonian is identically constant).

3. Global attraction to solitons

As already mentioned in the Introduction, soliton asymptotic expressions (1.7)
with several solitons were first discovered numerically in 1965 by Kruskal and
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Zabusky for KdV. Such asymptotics were later proved by Ablowitz, Segur, Eck-
haus, van Harten, and others using the method of the inverse scattering problem
for nonlinear translation-invariant integrable Hamiltonian equations (see [46]).

Here we present results on global attraction to one soliton (1.6) for nonlinear
translation-invariant non-integrable Hamiltonian equations. Such an attraction was
first proved in [128] and in [76] for a charged relativistic particle coupled to a scalar
wave field and to the Maxwell field, respectively.

3.1. A translation-invariant ‘wave-particle’ system. In [128] the system
(2.22), (2.23) was considered in the case of zero potential V (x) ≡ 0:

ψ̈(x, t) = ∆ψ(x, t)− ρ(x− q), x ∈ R3;

q̇ =
p√

1 + p2
, ṗ = −

∫
∇ψ(x, t)ρ(x− q) dx.

(3.1)

This system can be written in the Hamiltonian form (2.24). Its Hamiltonian is
given by (2.25) with V = 0, and it is conserved along trajectories. By Lemma 2.5
with V (x) ≡ 0, global solutions exist for all initial data Y (0) ∈ E , and there are
a priori estimates (2.32).

The system is translation-invariant, so the corresponding total momentum

P = p−
∫
π(x)∇ψ(x) dx (3.2)

is also conserved. Correspondingly, the system (3.1) admits traveling-wave type
solutions (solitons)

ψv(x− a− vt), q(t) = a+ vt, pv =
v√

1− v2
, (3.3)

where v, a ∈ R3 and |v| < 1. These functions are easily determined: for |v| < 1
there is a unique function ψv which makes (3.3) a solution of (3.1),

ψv(x) = −
∫
d3y (4π|(y − x)∥ + λ(y − x)⊥|)−1ρ(y), (3.4)

where λ =
√

1− v2 and x = x∥ + x⊥, with x∥ ∥ v and x⊥ ⊥ v for x ∈ R3. Indeed,
substituting (3.3) into the wave equation in (3.1), we get the stationary equation

(v · ∇)2ψv(x) = ∆ψv(x)− ρ(x). (3.5)

In terms of the Fourier transform,

ψ̂v(k) = − ρ̂(k)
k2 − (v · k)2

, (3.6)

which implies (3.4). The set of all solitons forms a 6-dimensional soliton submanifold
in the Hilbert phase space E :

S = {Sv,a = (ψv(x− a), πv(x− a), a, pv) : v, a ∈ R3, |v| < 1}, (3.7)

where πv := −v∇ψv. Recall that the spaces E and Eσ were defined in Definition 2.4.
The following theorem is the main result in [128].
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Theorem 3.1. Let the Wiener condition (2.34) hold and let σ > 3/2. Then for
any initial state Y (0) ∈ Eσ the corresponding solution Y (t) = (ψ(t), π(t), q(t), p(t))
of the system (3.1) converges to the solitary manifold S in the sense that

q̈(t) → 0, q̇(t) → v±, t→ ±∞, (3.8)

(ψ(x, t), ψ̇(x, t)) = (ψv±(x− q(t)), πv±(x− q(t))) + (r±(x, t), s±(x, t)), (3.9)

where the remainder tends to zero locally in the comoving frame: for each R > 0

∥∇r±(q(t) + x, t)∥R + ∥r±(q(t) + x, t)∥R + ∥s±(q(t) + x, t)∥R → 0, t→ ±∞.
(3.10)

This theorem means that, in particular,

ψ(x, t) ∼ ψv(x− v±t+ φ±(t)), where φ̇±(t) → 0, t→ ±∞. (3.11)

The proof in [128] is based on (a) relaxation of acceleration (2.38) in the case V = 0
(see Remark 2.12, (i)), and (b) a canonical change of variables to the comoving
frame. The key role is played by the fact that the soliton Sv,a minimizes the
Hamiltonian (2.25) (in the case V = 0) with fixed total momentum (3.2), which
implies orbital stability of the solitons [62], [63]. In addition, the proof essentially
relies on the strong Huygens principle for the three-dimensional wave equation.

Before beginning a more precise and technical discussion of the proof, it may be
useful to give the general idea of our strategy. As we mentioned above, the total
momentum (3.2) is conserved because of translation invariance. We transform the
system (3.1) to the new variables

(Ψ(x),Π(x), Q, P ) = (ψ(q + x), π(q + x), q, P (ψ, q, π, p)).

The key role in our strategy is played by the fact that this transformation is canon-
ical, as is proved in § 3.2. Through this canonical transformation one obtains the
new Hamiltonian

HP (Ψ,Π) = H (ψ, π, q, p) =
∫
d3x

(
1
2
|Π(x)|2 +

1
2
|∇Ψ(x)|2 + Ψ(x)ρ(x)

)
+

[
1 +

(
P +

∫
d3xΠ(x)∇Ψ(x)

)2]1/2

.

Since Q is a cyclic coordinate (that is, the Hamiltonian HP does not depend on Q),
we may regard P as a fixed parameter and consider only the reduced system for
(Ψ,Π). Let us define

πv(x) = −v ·∇ψv(x), P (v) = pv+
∫
d3x v ·∇ψv(x)∇ψv(x), pv =

v

(1− v2)1/2
.

(3.12)
We will prove that (ψv, πv) is the unique critical point and global minimum of HP (v).
Thus, if the initial data are close to (ψv, πv), then the corresponding solution must
always remain close by conservation of energy, which means the orbital stability of
the solitons. Here we follow the ideas from the paper [11] by Bambusi and Galgani,
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where the orbital stability of solitons for the Maxwell–Lorentz system was first
proved. For general nonlinear wave equations with symmetries such an approach
to orbital stability of solitons was developed in the well-known papers [62], [63].

However, orbital stability itself is not enough. It only ensures that initial states
close to a soliton remain so always; it not only fails to yield the convergence of q̇(t)
in (3.8), but even less so the asymptotics (3.9) and (3.10). Thus, we need an addi-
tional (far from obvious) argument which combines the relaxation (2.38) with the
orbital stability, in order to establish the soliton-like asymptotics (3.8)–(3.10). As
one essential input we will use the strong Huygens principle for the wave equation.

3.1.1. A canonical transformation and a reduced system. Since the total momen-
tum is conserved, it is natural to use P as a new coordinate. To maintain the
symplectic structure we have to complete this coordinate to a canonical transfor-
mation of the Hilbert phase space E .

Definition 3.2. Let the transformation T : E → E be defined by

T : Y = (ψ, π, q, p) 7→ Y T = (Ψ(x),Π(x), Q, P ) = (ψ(q+x), π(q+x), q, P (ψ, q, π, p)),
(3.13)

where P (ψ, q, π, p) is the total momentum (3.2).

Remark 3.3. (i) T is continuous on E and Fréchet-differentiable at the points Y =
(ψ, q, π, p) with sufficiently smooth functions ψ(x) and π(x), but it is not everywhere
differentiable.

(ii) In the T -coordinates the solitons

Yv,a(t) = (ψv(x− a− vt), πv(x− a− vt), q = a+ vt, pv)

are stationary except for the coordinate Q:

TYv,a(t) = (ψv(x), πv(x), a+ vt, P (v)), (3.14)

with the total momentum P (v) of the soliton defined in (3.12).

Let H T (Y ) = H (T−1Y ) for Y = (Ψ,Π, Q, P ) ∈ E . Then

H T (Ψ,Π, Q, P ) = HP (Ψ,Π)

= H

(
Ψ(x−Q),Π(x−Q), Q, P +

∫
d3xΠ(x)∇Ψ(x)

)
=

∫
d3x

[
1
2
|Π(x)|2 +

1
2
|∇Ψ(x)|2 + Ψ(x)ρ(x)

]
+

(
1 +

[
P +

∫
d3xΠ(x)∇Ψ(x)

]2)1/2

.

The functionals H T and H are Fréchet-differentiable on the phase space E .

Proposition 3.4. Let Y (t) ∈ C(R,E ) be a solution of the system (3.1). Then

Y T (t) := TY (t) = (Ψ(t),Π(t), q(t), p(t)) ∈ C(R,E )



32 A. I. Komech and E.A. Kopylova

is a solution of the Hamiltonian system{
Ψ̇ = DΠH T , Π̇ = −DψH T ,

Q̇ = DPH T , Ṗ = −DQH T .
(3.15)

Proof. The equations for Ψ̇, Π̇, and Q̇ can be checked by direct computation, while
the one for Ṗ follows from conservation of the total momentum (3.2) since the
Hamiltonian H T does not depend on Q. □

Remark 3.5. Formally, Proposition 3.4 follows from the fact that T is a canonical
transformation (see § 3.2).

Recall thatQ is a cyclic coordinate. Consequently, the system (3.15) is equivalent
to a reduced Hamiltonian system for Ψ and Π only, which can be written as

Ψ̇ = DΠHP , Π̇ = −DψHP . (3.16)

By (3.14), the soliton (ψv, πv) is a stationary solution of (3.16) with P = P (v).
Moreover, for every P ∈ R3 the functional HP is Fréchet-differentiable on the
Hilbert space F = H̊1 ⊕ L2. Hence, (3.16) implies that the soliton is a critical
point of HP (v) on F . The next lemma demonstrates that (ψv, πv) is a global
minimum of HP (v) on F .

Lemma 3.6. (i) For every v ∈ R3 with |v| < 1 the functional HP (v) has the lower
bound

HP (v)(Ψ,Π)−HP (v)(ψv, πv) ⩾
1− |v|

2
(∥Ψ− ψv∥2 + ∥Π− πv∥2), (Ψ,Π) ∈ F .

(3.17)
(ii) HP (v) has no other critical points on F except for the point (ψv, πv).

Proof. (i) Letting Ψ− ψv = ψ and Π− πv = π, we have

HP (v)(ψv + ψ, πv + π)−HP (v)(ψv, πv)

=
∫
d3x (πv(x)π(x) +∇ψv(x) · ∇ψ(x) + ρ(x)ψ(x))

+
1
2

∫
d3x (|π(x)|2 + |∇ψ(x)|2) + (1 + (pv +m)2)1/2 − (1 + p2

v)
1/2,

(3.18)

where pv = P (v) +
∫
d3xπv(x)∇ψv(x), and

m =
∫
d3x (π(x)∇ψv(x) + πv(x)∇ψ(x) + π(x)∇ψ(x)).

Taking into account that v = (1 + p2
v)
−1/2pv, we obtain

HP (v)(ψv + ψ, πv + π)−HP (v)(ψv, πv)

=
1
2

∫
d3x(|π(x)|2 + |∇ψ(x)|2) + (1 + p2

v)
−1/2

∫
d3xπ(x) pv · ∇ψ(x)

− (1 + p2
v)
−1/2pv ·m+ (1 + (pv +m)2)1/2 − (1 + p2

v)
1/2.
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It is easy to check that the expression in the third line is non-negative. Then the
lower bound in (3.17) follows because |(1 + p2

v)
−1/2pv| = |v|.

(ii) If (Ψ,Π) ∈ F is a critical point for HP (v), then it satisfies the equations

0 = Π(x)+ (1+ p̃ 2)−1/2p̃ ·∇Ψ(x), 0 = −∆Ψ(x)+ρ(x)− (1+ p̃ 2)−1/2p̃ ·∇Π(x),

where p̃ = P (v)+
∫
d3xΠ(x)∇Φ(x). This system is equivalent to the equation (3.5)

for solitons in the case of the velocity ṽ = (1 + p̃ 2)−1/2p̃. Hence Ψ = ψṽ, Π = πṽ,
and P (ṽ) = P (v).

It remains to check that ṽ = v. Indeed, for the total momentum P (v) of the
soliton-like solution (3.3), the Parseval identity and (3.6) imply that

P (v) = pv +
∫

d3x v · ∇ψv(x)∇ψv(x) =
v√

1− v2
+

1
(2π)3

∫
d3k

(v · k)ρ̂(k)kρ̂(k)
(k2 − (v · k)2)2

.

Hence, P (v) = κ(|v|)v with κ(|v|) ⩾ 0, and for v ̸= 0 one has

|P (v)| = |v|√
1− v2

+
1

(2π)3|v|

∫
d3k

|(v · k)ρ̂(k)|2

(k2 − (v · k)2)2
.

Since |P (v)| = κ(|v|)|v| is a monotone increasing function of |v| ∈ [0, 1), we conclude
that v = ṽ. □

Remark 3.7. Proposition 3.4 is not really needed for the proof of Theorem 3.1.
However, this proposition, together with (3.14) and (3.16), shows that (ψv, πv) is
a critical point and suggests an investigation of stability through a lower bound as
in (3.17). In § 3.2 we sketch the derivation of Proposition 3.4 for sufficiently smooth
solutions based only on the invariance of the symplectic structure. We expect that
a similar proposition holds for other translation-invariant systems like (3.1).

3.1.2. Orbital stability of solitons. We follow [11] in deducing orbital stability from
conservation of the Hamiltonian HP together with its lower bound in (3.17). For
|v| < 1 let

δ = δ(v) = ∥ψ0(x)− ψv(x− q0)∥+ ∥π0(x)− πv(x− q0)∥+ |p0 − pv|. (3.19)

Lemma 3.8. Let Y (t) = (ψ(t), π(t), q(t), p(t)) ∈ C(R,E ) be a solution of (3.1)
with initial state Y (0) = Y 0 = (ψ0, π0, q0, p0) ∈ E . Then for any ε > 0 there exists
a δε > 0 such that

∥ψ(q(t)+x, t)−ψv(x)∥+ ∥π(q(t)+x, t)−πv(x)∥+ |p(t)− pv| ⩽ ε, t ∈ R, (3.20)

for δ ⩽ δε .

Proof. Denote by P 0 the total momentum of the solution Y (t) under consideration.
There exists a soliton-like solution (3.3) corresponding to some velocity ṽ with
the same total momentum P (ṽ) = P 0. Then (3.19) implies that |P 0 − P (v)| =
|P (ṽ)− P (v)| = O(δ). Hence also |ṽ − v| = O(δ) and

∥ψ0(x)− ψṽ(x− q0)∥+ ∥π0(x)− πṽ(x− q0)∥+ |p0 − pṽ| = O(δ).
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Therefore, with the notation (Ψ0, Q0,Π0, P 0) = TY 0 we have

HP (ṽ)(Ψ0,Π0)−HP (ṽ)(ψṽ, pṽ) = O(δ2). (3.21)

For (Ψ(t), Q(t),Π(t), P 0) = TY (t) it follows from conservation of the total momen-
tum and energy that

HP (ṽ)(Ψ(t),Π(t)) = H (TY (t)) = HP (ṽ)(Ψ0,Π0), t ∈ R.

Hence (3.21) and (3.17) with ṽ instead of v imply that

∥Ψ(t)− ψṽ∥+ ∥Π(t)− πṽ∥ = O(δ) (3.22)

uniformly for t ∈ R. On the other hand, conservation of the total momentum
implies that

p(t) = P (ṽ) + ⟨Π(t),∇Ψ(t)⟩, t ∈ R.

Therefore, (3.22) leads to
|p(t)− pṽ| = O(δ) (3.23)

uniformly for t ∈ R. Finally, (3.22) and (3.23) together imply (3.20) because
|ṽ − v| = O(δ). □

3.1.3. The strong Huygens principle and soliton asymptotics. We combine the
relaxation of the acceleration and orbital stability with the strong Huygens principle
to prove Theorem 3.1.

Proposition 3.9. Assume the conditions of Theorem 3.1. Then for any δ > 0
there exist a t∗ = t∗(δ) and a solution

Y∗(t) = (ψ∗(x, t), π∗(x, t), q∗(t), p∗(t)) ∈ C([t∗,∞),E )

of the system (3.1) such that:
(i) Y∗(t) coincides with Y (t) in the future cone,

q∗(t) = q(t) for t ⩾ t∗, (3.24)
ψ∗(x, t) = ψ(x, t) for |x− q(t∗)| < t− t∗; (3.25)

(ii) Y∗(t∗) is close to a soliton Yv,a with some v and a,

∥Y∗(t∗)− Yv,a∥E ⩽ δ. (3.26)

Proof. The Kirchhoff formula gives

ψ(x, t) = ψr(x, t) + ψ0(x, t), x ∈ R3, t > 0,

where

ψr(x, t) = −
∫

d3y

4π|x− y|
ρ(y − q(t− |x− y|)), (3.27)

ψ0(x, t) =
1

4πt

∫
St(x)

d2y π(y, 0) +
∂

∂t

(
1

4πt

∫
St(x)

d2y ψ(y, 0)
)

(3.28)
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(St(x) is the sphere |y − x| = t).
Assume for simplicity that the initial fields vanish. The general case can easily be

reduced to this situation by using the strong Huygens principle. We will comment
on this reduction at the end of the proof.

In the case of zero initial data the solution reduces to the retarded potential:

ψ(x, t) = ψr(x, t), x ∈ R3, t > 0.

We construct the solution Y∗(t) as a modification of Y (t). First we modify the
trajectory q(t). The relaxation of acceleration (3.8) means that for any ε > 0 there
exists a tε > 0 such that

|q̈(t)| ⩽ ε, t ⩾ tε.

Hence, for large times the trajectory tends locally to a straight line, that is, for any
fixed T > 0

q(t) = q(tε) + (t− tε)q̇(tε) + r(tε, t), where max
t∈[tε,tε+T ]

|r(tε, t)| → 0, tε →∞.

Let λε(t) := q(tε) + q̇(tε)(t− tε) and define a modified trajectory by

q∗(t) =

{
λε(t), t ⩽ tε,

q(t), t ⩾ tε.
(3.29)

Then

q̈∗(t) =

{
0, t < tε,

q̈(t), t > tε.

The next step is to define the modified field as a retarded potential of the form
(3.27):

ψ∗(x, t) = −
∫

d3y

4π|x− y|
ρ(y − q∗(t− |x− y|)), x ∈ R3, t ∈ R. (3.30)

Lemma 3.10. The right-hand side of (3.30) depends on the trajectory q∗(τ) only
on the bounded time interval τ ∈ [t− T (x, t), t], where

T (x, t) :=
Rρ + |x− q(t)|

1− v
. (3.31)

Here v = supt∈R |q̇(t)| < 1 by (2.32).

Proof. This lemma is obvious geometrically, and a formal proof of it is also easy.
The integrand in (3.30) vanishes for |y−q∗(t−|x−y|)| ⩾ Rρ by (2.35). Therefore,

the integration is over the region |y − q∗(t − |x − y|)| ⩽ Rρ, which implies that
|y − q∗(t) + q∗(t)− q∗(t− |x− y|)| ⩽ Rρ. Hence,

|y − q∗(t)| ⩽ Rρ + v|x− y|.

On the other hand, |x− y| ⩽ |x− q∗(t)|+ |y − q∗(t)|, and thus

|y − q∗(t)| ⩾ −|x− q∗(t)|+ |x− y|.

Therefore, −|x − q∗(t)| + |x − y| ⩽ Rρ + v|x − y|, which implies that |x − y| ⩽
Rρ + |x− q∗(t)|

1− v
. □
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The potential (3.30) satisfies the wave equation

ψ̈∗(x, t) = ∆ψ∗(x, t)− ρ(x− q∗(t)), x ∈ R3, t ∈ R.

We must also prove equations for the trajectory q∗(t):

q̇∗(t) =
p∗(t)√

1 + p2
∗(t)

, ṗ∗(t) = −
∫
∇ψ∗(x, t)ρ(x− q∗(t)) dx, t > t∗, (3.32)

with sufficiently large t∗ ⩾ tε. Note that the integration here is over the ball
|x − q∗(t)| ⩽ Rρ. Lemma 3.10 now implies that ψ∗(x, t) depends only on the
trajectory q∗(τ) on the bounded time interval τ ∈ [t− T , t], where

T :=
2Rρ
1− v

.

Let t∗ := tε + T . Then by Lemma 3.10

ψ∗(x, t) = ψ(x, t), t > t∗, |x− q∗(t)| ⩽ Rρ,

since q∗(t) ≡ q(t) for t > t∗ − T = tε by (3.29). Hence, the equations (3.32) hold
not only for q∗(t) but also for q(t).

It remains to prove (3.26). The key observation is that outside the cone Kε :=
{(x, t) ∈ R4 : |x − q(tε)| < t − tε} the retarded potential (3.30) coincides with
the soliton ψv,a(x, t), where v = q̇(tε) and a = q(tε) by our definition (3.29). In
particular,

ψ(x, t∗) = ψv,a(x− a− vt∗), |x− q(tε)| > t∗ − tε = T .

In the ball |x−q(t∗)| < T the coincidence generally does not hold, but the difference
between the left-hand and right-hand sides converges to zero as ε → 0 uniformly
for |x − q(t∗)| < T , and the same uniform convergence holds for the gradient of
the difference. This follows from the integral representation (3.30) by Lemma 3.10
since

max
t∈(t∗−T (x,t∗),t∗)

[|q∗(t)− λε(t)|+ |q̇∗(t)− λ̇ε(t)|] → 0, ε→ 0,

by the relaxation of acceleration (3.8). It is important that T (x, t∗) is bounded for
|x − q(t∗)| < T in view of (3.31). This proves Proposition 3.9 in the case of zero
initial data.

The next step is to consider initial data with bounded support:

ψ(x, 0) = π(x, 0) = 0, |x| > R0.

We now apply the strong Huygens principle: in this case the potential (3.28) van-
ishes in the future cone,

ψ0(x, t) = 0, |x| < t−R0.

Nevertheless, the estimate |q̇(t)| ⩽ v < 1 implies that the trajectory (q(t), t) lies in
this cone for all t > t0. Hence, the solution for t > t0 again reduces to the retarded
potential, and the required conclusion follows.
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Finally, arbitrary finite-energy initial data admit a splitting into two terms: the
first vanishing for |x| > R0 and the second vanishing for |x| < R0−1. The energy of
the second term is arbitrarily small for large R0, and the energy of the corresponding
potential (3.28) is conserved in time since it is a solution of the free wave equation.
Consequently, its role is negligible for sufficiently large R0. □

Now we can prove our main result.

Proof of Theorem 3.1. For any ε > 0 there is a δ > 0 such that by Lemma 3.8, (3.26)
implies that

∥ψ∗(q∗(t) + x, t)− ψv(x)∥+ ∥π∗(q∗(t) + x, t)− πv(x)∥+ |q̇∗(t)− v| ⩽ ε

for t > t∗. Therefore, (3.24) and (3.25) imply that for any R > 0 and t > t∗+
R

1− v

∥ψ(q(t) + x, t)− ψv(x)∥R + ∥π(q(t) + x, t)− πv(x)∥R + |q̇(t)− v|
= ∥ψ∗(q∗(t) + x, t)− ψv(x)∥R + ∥π∗(q∗(t) + x, t)− πv(x)∥R + |q̇∗(t)− v| ⩽ ε.

Since ε > 0 is arbitrary, we obtain (3.10). □

3.2. Invariance of symplectic structure. The canonical equivalence of the
Hamiltonian systems (3.1) and (3.15) can formally be seen from the Lagrangian
point of view. We remain at the formal level. For a complete mathematical justi-
fication we would have to develop a certain theory of infinite-dimensional Hamil-
tonian systems, which is beyond the scope of this paper. By definition we have
H T (Ψ,Π, Q, P ) = H (ψ, π, q, p), where the arguments are related through the
transformation T . With each Hamiltonian we associate a corresponding Lagrangian
through the Legendre transformation

L(ψ, ψ̇, q, q̇) = ⟨π, ψ̇⟩+ p · q̇ −H (ψ, π, q, p), ψ̇ = DπH , q̇ = DpH ,

LT (Ψ, Φ̇, Q, Q̇) = ⟨Π, Ψ̇⟩+ P · Q̇−H T (Ψ,Π, Q, P ), Ψ̇ = DΠH T, Q̇ = DPH T.

These Legendre transforms are well defined because the Hamiltonian functionals
are convex in the momenta.

Lemma 3.11. The following identity holds:

LT (Ψ, Ψ̇, Q, Q̇) = L(ψ, ψ̇, q, q̇).

Proof. Clearly, we have to check the invariance of the canonical 1-form,

⟨Π, Ψ̇⟩+ P · Q̇ = ⟨π, ψ̇⟩+ p · q̇. (3.33)

For this purpose we substitute

Π(x) = π(q + x), Ψ̇(x) = ψ̇(q + x) + q̇ · ∇ψ(q + x),

P = p−
∫
ψ̇ · ∇ψ dx, Q̇ = q̇.

Then the left-hand side of (3.33) becomes

⟨π(q + x), ψ̇(q + x) + q̇ · ∇ψ(q + x)⟩+ (p− ⟨π(x),∇ψ(x)⟩) · q̇ = ⟨π, ψ̇⟩+ p · q̇. □
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This lemma implies that the corresponding action functionals become identical
when transformed by T . Hence finally, the two Hamiltonian systems (3.1) and
(3.15) are equivalent, since the dynamical trajectories are stationary points of the
respective action functionals.

3.3. The translation-invariant Maxwell–Lorentz system. In [76] asymptotics
of the form (3.8)–(3.10) were extended to the Maxwell–Lorentz translation-invariant
system (2.61) without external fields. In this case the Hamiltonian coincides with
(2.63), where V (x) ≡ 0. The extension of methods in [128] to this case required
a new detailed analysis of the corresponding Hamiltonian structure, which is neces-
sary for the canonical transformation. The key role in applying the strong Huygens
principle is now played by new estimates of long-time decay for oscillations of energy
and total momentum solutions for a perturbed Maxwell–Lorentz system (the esti-
mates (4.24), (4.25) in [76]).

3.4. The case of weak interaction. Soliton asymptotic expressions of the type
(3.8)–(3.10) for the system (2.22), (2.23) were proved in a stronger form for the
case of weak coupling

∥ρ∥L2(R3) ≪ 1. (3.34)

Namely, in [78] initial fields were considered with decay |x|−5/2−ε, where ε > 0
(condition (2.2) in [78]) provided that ∇V (q) = 0 for |q| > const. Under these
assumptions, stronger decay holds:

|q̈(t)| ⩽ C(1 + |t|)−1−ε, t ∈ R, (3.35)

for ‘outgoing’ solutions that satisfy the condition

|q(t)| → ∞, t→ ±∞. (3.36)

With these assumptions the asymptotics (3.8)–(3.10) can be significantly strength-
ened: now

q̇(t) → v±,

(ψ(x, t), π(x, t)) = (ψv±(x− q(t)), πv±(x− q(t))) +W (t)Φ± + (r±(x, t), s±(x, t)),

where the ‘dispersion waves’ W (t)Φ± are solutions of the free wave equation, and
the remainder converges to zero in the global energy norm:

∥∇r±(q(t), t)∥+ ∥r±(q(t), t)∥+ ∥s±(q(t), t)∥ → 0, t→ ±∞.

This progress in comparison with the local decay (3.10) is due to the fact that we
could identify the dispersion wave W (t)Φ± under the smallness condition (3.34).
This was possible because of the more rapid decay (3.35), in contrast to (2.38).

All solitons propagate with velocities v < 1, and therefore they are spatially
separated for large times from the dispersion waves W (t)Φ±, which propagate with
unit velocity (see Fig. 2).

The proofs are based on the integral Duhamel representation and on the rapid
dispersion decay of solutions of the free wave equation. A similar result was obtained
in [75] for a system of the form (2.22), (2.23) with the Klein–Gordon equation
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Figure 2. Soliton and dispersion waves.

and in [77] for the Maxwell–Lorentz system (2.61) with the same smallness con-
dition (3.36) under the assumption that Eext(x) = Bext(x) = 0 for |x| > const.
In [79], this result was extended to the Maxwell–Lorentz system of the form (2.61)
with a rotating charge.

Remark 3.12. The results in [78] and [79] imply Soffer’s ‘Grande Conjecture’ ([190],
p. 460) in a moving frame for translation-invariant systems under the smallness
condition (3.34).

4. The adiabatic effective dynamics of solitons

The existence of solitons and the global attraction to them (1.6) are typical
features of translation-invariant systems. However, if the deviation of a system
from translational invariance is small in a certain sense, then the system can admit
solutions which are always close to solitons with time-dependent parameters (the
velocity, and so on). Moreover, in some cases it is possible to identify an ‘effective
dynamics’ which describes the evolution of these parameters.

4.1. A ‘wave-particle’ system with a slowly varying external potential.
The solitons (3.3) are solutions of the system (3.1) with zero external potential
V (x) ≡ 0. However, even for the system (2.22), (2.23) with non-zero external
potential, soliton-like solutions of the form

ψ(x, t) ≈ ψv(t)(x− q(t)) (4.1)

may exist if the potential is slowly changing:

|∇V (q)| ⩽ ε≪ 1. (4.2)

In this case the total momentum (3.2) is generally not conserved, but its slow
evolution and the evolution of the parameter q(t) in (4.1) can be described in terms
of some finite-dimensional Hamiltonian dynamics.

Namely, let P = Pv be the total momentum of the soliton Sv,Q in the nota-
tion (3.7). It is important that the map P : v 7→ Pv is an isomorphism of the ball
|v| < 1 on R3. Therefore, we can consider Q, P as global coordinates on the solitary
manifold S . We define the effective Hamiltonian functional

Heff(Q,Pv) ≡ H0(Sv,Q), (Q,Pv) ∈ R3 ⊕ R3, (4.3)
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where H0 is the unperturbed Hamiltonian (2.25) with V = 0. This functional can
be represented as Heff(Q,Π) = E(Π) + V (Q), since the first integral in (2.25)
does not depend on Q while the last integral vanishes on the solitons. Hence, the
corresponding Hamiltonian equations have the form

Q̇(t) = ∇E(Π(t)), Π̇(t) = −∇V (Q(t)). (4.4)

The main result in [122] is the following theorem.

Theorem 4.1. Let the condition (4.2) hold, and suppose that the initial state S0 =
(ψ0, π0, q0, p0) ∈ S is a soliton with total momentum P (0). Then the corresponding
solution ψ(x, t), π(x, t), q(t), p(t) of the system (2.22), (2.23) admits the ‘adiabatic
asymptotics’

|q(t)−Q(t)| ⩽ C0, |P (t)−Π(t)| ⩽ C1ε for |t| ⩽ Cε−1, (4.5)

sup
t∈R

[
∥∇[ψ(q(t) + x, t)− ψv(t)(x)]∥R + ∥π(q(t) + x, t)− πv(t)(x)∥R

]
⩽ Cε, (4.6)

where P (t) denotes the total momentum (3.2), v(t) = P−1(Π(t)), and (Q(t),Π(t))
is the solution (trajectory) of the effective Hamiltonian equations (4.4) with initial
conditions

Q(0) = q(0), Π(0) = P (0).

We note that such relevance of the effective dynamics (4.4) is due to the consis-
tency of Hamiltonian structures:

1) The effective Hamiltonian (4.3) is the restriction of the Hamiltonian func-
tional (2.25) with V = 0 to the solitary manifold S .

2) As shown in [122], the canonical form of the Hamiltonian system (4.4) is also
the restriction to S of the canonical form of the system (2.22), (2.23): formally,

P dQ =
[
p dq +

∫
π(x) dψ(x) dx

]∣∣∣∣
S

.

Therefore, the total momentum P is canonically conjugate to the variable Q on
the solitary manifold S . This fact justifies the definition (4.3) of the effective
Hamiltonian as a function of the total momentum Pv, and not of the particle
momentum pv.

One of the important results in [122] is the following ‘effective dispersion relation’:

E(Π) ∼ Π2

2(1 +me)
+ const, |Π| ≪ 1. (4.7)

It means that the non-relativistic mass of a slow soliton increases because of inter-
action with the field, by the amount

me = −1
3
⟨ρ,∆−1ρ⟩. (4.8)

This increment is proportional to the field energy of the soliton at rest:

H (∆−1ρ, 0, 0, 0) = −1
2
⟨ρ,∆−1ρ⟩,

which agrees with the Einstein mass-energy equivalence principle (see below).
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Remark 4.2. The relation (4.7) suggests that me is an increment of the effective
mass. The true dynamical justification for such an interpretation is given by the
asymptotics (4.5), (4.6), which demonstrate the relevance of the effective dynam-
ics (4.4).

Generalizations. After [122], adiabatic effective asymptotics of the form (4.5), (4.6)
were obtained in [56] and [55] for the nonlinear Hartree and Schrödinger equations
with slowly varying external potentials, and in [39], [162], and [200] for the nonlinear
Einstein–Dirac, Chern–Simon–Schrödinger, and Klein–Gordon–Maxwell equations
with small external fields.

Recently, a similar adiabatic effective dynamics was established in [9] for an
electron in the second-quantized Maxwell field in the presence of a slowly changing
external potential.

4.2. Mass-energy equivalence. In [152], the asymptotic expressions (4.5), (4.6)
were extended to solitons of the Maxwell–Lorentz equations (2.61) with small exter-
nal fields. In this case the increment of non-relativistic mass also turns out to be
proportional to the energy of the static soliton’s own field.

Such equivalence of the self-energy of a particle with its mass was first discovered
in 1902 by Abraham: he obtained by direct calculation that the electromagnetic
self-energy Eown of an electron at rest adds

me =
4
3
Eown

c2

to its non-relativistic mass (see [1], [2], and also [100], pp. 216, 217). It is easy to see
that this self-energy is infinite for a point electron at the origin with charge density
δ(x), because in this case the Coulomb electrostatic field is |E(x)| = C/|x|2, so the
integral in (2.63) diverges near x = 0. This means that the field mass for a point
electron is infinite, which contradicts experiment. That is why Abraham introduced
the model of electrodynamics with ‘extended electron’ (2.61), whose self-energy is
finite.

At the same time, Abraham conjectured that the entire mass of an electron is
due to its own electromagnetic energy; that is, m = me: “. . .matter disappeared,
only energy remains. . . ”, as philosophically-minded contemporaries wrote (see [73],
pp. 63, 87, 88).

This conjecture was justified in 1905 by Einstein, who discovered the famous
universal relation E = m0c

2 which follows from the special theory of relativity [49].
The additional factor 4/3 in the Abraham formula is because of the non-relativistic
character of the system (2.61). According to the modern view, about 80% of an
electron’s mass is of electromagnetic origin [52].

5. Global attraction to stationary orbits

Global attraction to stationary orbits (1.8) was first established in [99], [103],
and [104] for the Klein–Gordon equation coupled to a nonlinear oscillator

ψ̈(x, t) = ψ′′(x, t)−m2ψ(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (5.1)
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We consider complex solutions, identifying complex values ψ ∈ C with the real
vectors (ψ1, ψ2) ∈ R2, where ψ1 = Reψ and ψ2 = Imψ. Suppose that F ∈
C1(R2,R2) and

F (ψ) = −∇ψU(ψ), ψ ∈ C, (5.2)

where U is a real function and ∇ψ := (∂1, ∂2). In this case the equation (5.1)
is formally equivalent to the Hamiltonian system (2.2) in the Hilbert phase space
E := H1(R)⊕ L2(R). The Hamiltonian functional is

H (ψ, π) =
1
2

∫ [
|π(x)|2 + |ψ′(x)|2 +m2|ψ(x)|2

]
dx+U(ψ(0)), (ψ, π) ∈ E . (5.3)

Let us write (5.1) in the vector form as

Ẏ (t) = F (Y (t)), t ∈ R, (5.4)

where Y (t) = (ψ(t), ψ̇(t)). We assume that

inf
ψ∈C

U(ψ) > −∞. (5.5)

In this case, a finite-energy solution Y (t) ∈ C(R,E ) exists and is unique for any
initial state Y (0) ∈ E . The a priori bound

sup
t∈R

[∥ψ̇(t)∥L2(R) + ∥ψ(t)∥H1(R)] <∞ (5.6)

holds due to conservation of the energy (5.3). Note that the condition (2.10) is
no longer necessary, since conservation of the energy (5.3) with m > 0 ensures
boundedness of solutions.

Further, we assume the U(1)-invariance of the potential:

U(ψ) = u(|ψ|), ψ ∈ C. (5.7)

Then the differentiation in (5.2) gives us that

F (ψ) = a(|ψ|)ψ, ψ ∈ C, (5.8)

and therefore
F (eiθψ) = eiθF (ψ), θ ∈ R. (5.9)

By ‘stationary orbits’ we mean solutions of the form

ψ(x, t) = ψω(x)e−iωt (5.10)

with ω ∈ R and ψω ∈ H1(R). Each stationary orbit corresponds to some solution
of the equation

−ω2ψω(x) = ψ′′ω(x)−m2ψω(x) + δ(x)F (ψω(0)), x ∈ R,

which is the nonlinear eigenvalue problem.
Solutions ψω ∈ H1(R) of this equation have the form

ψω(x) = Ce−κ|x|, where κ :=
√
m2 − ω2 > 0,
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and the constant C satisfies the nonlinear algebraic equation 2κC = F (C). The
solutions ψω exist for ω in some set Ω ⊂ R lying in the spectral gap [−m,m]. Denote
the corresponding solitary manifold by S :

S = {(eiθψω,−iωeiθψω) ∈ E : ω ∈ Ω, θ ∈ [0, 2π]}. (5.11)

Finally, suppose that the equation (5.4) is strictly nonlinear :

U(ψ) = u(|ψ|2) =
N∑
j=0

uj |ψ|2j , uN > 0, N ⩾ 2. (5.12)

For example, the well-known Ginzburg–Landau potential U(ψ) = |ψ|4/4 − |ψ|2/2
satisfies all the conditions (5.5), (5.7), and (5.12).

Definition 5.1. (i) EF ⊂ H1
loc(R3) ⊕ L2

loc(R3) is the space E endowed with the
seminorms

∥Y ∥E ,R := ∥Y ∥H1(−R,R) + ∥Y ∥L2(−R,R), R = 1, 2, . . . . (5.13)

(ii) Convergence in EF is equivalent to convergence in every seminorm (5.13).

Convergence in EF is equivalent to convergence in the metric of type (2.13),

dist(Y1, Y2) =
∞∑
R=1

2−R
∥Y1 − Y2∥E ,R

1 + ∥Y1 − Y2∥E ,R
, Y1, Y2 ∈ E . (5.14)

Theorem 5.2. Let the conditions (5.2), (5.5), (5.7), and (5.12) hold. Then any
finite-energy solution Y (t) = (ψ(t), ψ̇(t)) ∈ C(R,E ) of (5.4) is attracted to the
solitary manifold (see Fig. 3):

Y (t) EF−−→ S , t→ ±∞, (5.15)

where the attraction is in the sense of (2.15).

Generalizations. The attraction (5.15) was extended in [107] to the 1D Klein–
Gordon equation with N nonlinear oscillators

ψ̈(x, t) = ψ′′(x, t)−m2ψ +
N∑
k=1

δ(x− xk)Fk(ψ(xk, t)), x ∈ R, (5.16)

and in [30], [106], and [108] it was extended to the Klein–Gordon and Dirac equa-
tions in Rn with n ⩾ 3 and non-local interaction

ψ̈(x, t) = ∆ψ(x, t)−m2ψ +
N∑
k=1

ρ(x− xk)Fk(⟨ψ( · , t), ρ( · − xk)⟩), (5.17)

iψ̇(x, t) = (−iα · ∇+ βm)ψ + ρ(x)F (⟨ψ( · , t), ρ⟩), (5.18)

under the Wiener condition (2.34), where α = (α1, . . . , αn) and β = α0 are Dirac
matrices.



44 A. I. Komech and E.A. Kopylova

Figure 3. Convergence to stationary orbits.

Recently, the attraction (5.15) was extended in [143] to the 1D Dirac equation
coupled to a nonlinear oscillator, and in [136], [137], [142] it was extended to the
3D wave and Klein-Gordon equations with concentrated nonlinearities.

In addition, the attraction (5.15) was extended in [31] to nonlinear space-time
discrete Hamiltonian equations that are discrete approximations of equations of
type (5.17), that is, they are the corresponding difference schemes. The proof relies
on a new version in [92] of the Titchmarsh theorem for distributions on a circle.

Open questions.
I. Global attraction (1.8) to orbits with fixed frequencies ω± has not yet been

proved.
II. Global attraction to stationary orbits for nonlinear Schrödinger equations

has also not been proved. In particular, such attraction is not known for the 1D
Schrödinger equation coupled with a nonlinear oscillator

iψ̇(x, t) = −ψ′′(x, t) + δ(x)F (ψ(0, t)), x ∈ R. (5.19)

The main difficulty is the infinite ‘spectral gap’ (−∞, 0) (see Remark 5.15).
III. Global attraction to solitons (1.6) for the relativistically invariant nonlin-

ear Klein–Gordon equations is an open problem. In particular, it is open for the
one-dimensional equations

ψ̈(x, t) = ψ′′(x, t)−m2ψ(x, t) + F (ψ(x, t)). (5.20)

The main difficulty is the presence of nonlinear interaction at every point x ∈ R.
The asymptotic stability of solitons (that is, local attraction to them) for such
equations was first proved in [140] and [141] (see § 6.3 below).

5.1. Method of omega-limit trajectories. The proof of Theorem 5.2 is based
on the general strategy of omega-limit trajectories first introduced in [99] and devel-
oped further in [103]–[108], [92], [136], [142], [143], [30], and [31].
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Definition 5.3. An omega-limit trajectory for a function Y (t) ∈ C(R,E ) is any
limit function Z(t) such that

Y (t+ sj)
EF−−→ Z(t), t ∈ R, (5.21)

as sj →∞.

Definition 5.4. A function Y (t) ∈ C(R,E ) is omega-compact if for any sequence
sj →∞ there exists a subsequence sj′ →∞ such that (5.21) holds.

These concepts are useful in view of the following lemma, which lies at the basis
of our approach.

Lemma 5.5. Suppose that any solution Y (t) ∈ C(R,E ) of (5.4) is omega-compact,
and any omega-limit trajectory is a stationary orbit

Z(x, t) = (ψω(x)e−iωt,−iωψω(x)e−iωt), (5.22)

where ω ∈ R. Then the attraction (5.15) holds for each solution Y (t) ∈ C(R,E )
of (5.4).

Proof. We need to show that

lim
t→∞

dist(Y (t),S ) = 0.

Assume by contradiction that there exists a sequence sj →∞ such that

dist(Y (sj),S ) ⩾ δ > 0 ∀ j ∈ N. (5.23)

According to the omega-compactness of the solution Y , the convergence (5.21) holds
for some subsequence sj′ →∞ and some stationary orbit (5.22):

Y (t+ sj)
EF−−→ Z(t), t ∈ R. (5.24)

But this convergence with t = 0 contradicts (5.23) since Z(0) ∈ S by defini-
tion (5.11). □

For the proof of Theorem 5.2 it now suffices to check the conditions of Lemma 5.5:
(I) each solution Y (t) ∈ C(R,E ) of (5.4) is omega-compact;

(II) any omega-limit trajectory is a stationary orbit (5.22).
We check these conditions by analyzing the Fourier transform of solutions with

respect to time. The main steps of the proof are as follows.
(1) Spectral representation for solutions of the nonlinear equation (5.4):

ψ(t) =
1
2π

∫
e−iωtψ̃(ω) dω. (5.25)

By the spectrum of a solution ψ(t) := ψ( · , t) we mean the support of its spectral
density ψ̃( · ), which is a tempered distribution of ω ∈ R with values in H1(R).

(2) The absolute continuity of the spectral density ψ̃(ω) on the continuous spec-
trum (−∞,−m)∪ (m,∞) of the free Klein–Gordon equation, which is an analogue
of the Kato theorem on the absence of embedded eigenvalues.
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(3) The omega-limit compactness of each solution.
(4) The reduction of the spectrum of each omega-limit trajectory to a subset of

the spectral gap [−m,m].
(5) The reduction of this spectrum to a single point using the Titchmarsh con-

volution theorem.
Below we follow this programme, referring at some points to the papers [99] and

[104] for technically important properties of quasi-measures.

5.2. The spectral representation and the limiting absorption principle.
It suffices to prove the attraction (5.15) only for positive times. For simplicity we
consider only the solution ψ(x, t) of (5.1) corresponding to zero initial data:

ψ(x, 0) = 0, ψ̇(x, 0) = 0. (5.26)

The general case of non-zero initial data can be reduced to this case by a trivial
subtraction of the dispersion-wave solution of the free Klein–Gordon equation with
these initial data ([99], [104]). We extend ψ(x, t) and f(t) := F (ψ(0, t)) by zero for
t < 0:

ψ+(x, t) :=

{
ψ(x, t), t > 0,
0, t < 0,

f+(t) :=

{
f(t), t > 0,
0, t < 0.

(5.27)

From (5.1) and (5.26) it follows that these functions satisfy the equation

ψ̈+(x, t) = ψ′′+(x, t)−m2ψ+(x, t) + δ(x)f+(t), (x, t) ∈ R2, (5.28)

in the distribution sense.

The Fourier–Laplace transform with respect to time. For tempered distributions
g(t) we let g̃(ω) denote their Fourier transform, which is defined for g ∈ C∞0 (R) by

g̃(ω) =
∫

R
eiωtg(t) dt, ω ∈ R.

The a priori estimates (5.6) imply that ψ+(x, t) and f+(t) are bounded functions
of t ∈ R with values in the Sobolev space H1(R) and in C, respectively. Therefore,
their Fourier transforms are (by definition) quasi-measures with values in H1(R)
and in C, respectively [57]. Moreover, these Fourier transforms can be extended
from the real axis to analytic functions in the upper complex half-plane C+ :=
{ω ∈ C : Imω > 0} with values in H1(R) and in C respectively:

ψ̃+(x, ω) =
∫ ∞

0

eiωtψ(x, t) dt, f̃+(ω) =
∫ ∞

0

eiωtf(t) dt, ω ∈ C+.

Further, we have the following convergence of tempered distributions with values
in H1(R) and C, respectively:

e−εtψ+(x, t) → ψ+(x, t), e−εtf+(t) → f+(t), ε→ 0+.

Hence, their Fourier transforms also converge in the same sense:

ψ̃+(x, ω + iε) → ψ̃+(x, ω), f̃+(ω + iε) → f̃+(ω), ε→ 0+. (5.29)
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The analytic functions ψ̃+(x, ω) and f̃(ω) grow (in norm) no faster than | Imω|−1

as Imω → 0+ in view of (5.6). Hence, their boundary values at ω ∈ R are tem-
pered distributions of small singularity: they are the second-order derivatives of
continuous functions, as in the case of f̃+(ω) = i/(ω − ω0) with ω0 ∈ R, which
corresponds to f+(t) = θ(t)e−iω0t.

The limiting absorption principle. By (5.26), in terms of the Fourier transform the
equation (5.28) becomes the stationary Helmholtz equation

− ω2ψ̃+(x, ω) = ψ̃′′+(x, ω)−m2ψ̃+(x, ω) + δ(x)f̃+(ω), x ∈ R. (5.30)

This equation has two linearly independent solutions, but only one of them is
analytic and bounded in Imω > 0 with values in H1(R):

ψ̃+(x, ω) = −f̃+(ω)
eik(ω)|x|

2ik(ω)
, Imω > 0. (5.31)

Here k(ω) :=
√
ω2 −m2, where the branch has a positive imaginary part for

Imω > 0. For the other branch this function grows exponentially as |x| → ∞.
Such an argument in the selection of solutions of stationary Helmholtz equations is
known as the ‘limiting absorption principle’ in diffraction theory ([112], [127]).

Spectral representation. We rewrite (5.31) in the form

ψ̃+(x, ω) = α̃(ω)eik(ω)|x|, Imω > 0, where α(t) := ψ+(0, t). (5.32)

It is a non-trivial fact that the identity (5.32) between analytic functions keeps its
structure for their restrictions to the real axis:

ψ̃+(x, ω + i0) = α̃(ω + i0)eik(ω+i0)|x|, ω ∈ R, (5.33)

where ψ̃+( · , ω+i0) and α̃(ω+i0) are the corresponding quasi-measures with values
in H1(R) and C, respectively. The problem is that the factor Mx(ω) := eik(ω+i0)|x|

is not smooth with respect to ω at the points ω = ±m. Correspondingly, the
identity (5.33) must be justified, based on quasi-measure theory [104].

Finally, the inversion of the Fourier transform can be written as

ψ+(x, t) =
1
2π
⟨ψ̃+(x, ω+ i0), e−iωt⟩ =

1
2π
⟨α̃(ω+ i0)eik(ω+i0)|x|, e−iωt⟩, x, t ∈ R,

(5.34)
where ⟨ · , · ⟩ is the bilinear duality between distributions and smooth bounded func-
tions. The right-hand side exists by Theorem 5.6 (see below).

5.3. A nonlinear analogue of Kato’s theorem. It turns out that the prop-
erties of the quasi-measure α̃(ω + i0) with |ω| < m and that with |ω| > m differ
significantly. This is because the set {iω : |ω| ⩾ m} is the continuous spectrum of
the generator

A =
(

0 1
d2/dx2 −m2 0

)
,

which is the generator of the linearization of (5.4). The following theorem plays
a key role in the proof of Theorem 5.2. It is a nonlinear analogue of Kato’s theorem
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on the absence of embedded eigenvalues in the continuous spectrum (see Remark 5.9
below). Let Σ := {ω ∈ R : |ω| > m}. Below we will also write α̃(ω) and k(ω) instead
of α̃(ω + i0) and k(ω + i0) for ω ∈ R.

Theorem 5.6 (see [104], Proposition 3.2). Let the conditions (5.2), (5.5), and (5.7)
hold, and let ψ(t) ∈ C(R,E ) be any finite-energy solution of (5.1). Then the cor-
responding tempered distribution α̃(ω) is absolutely continuous on Σ. Moreover,
α ∈ L1(Σ) and ∫

Σ

|α̃(ω)|2|ωk(ω)| dω <∞. (5.35)

Proof. We first explain the main idea of the proof. By (5.34), the function ψ+(x, t)
is formally a ‘linear combination’ of the functions eik|x| with the amplitudes ẑ(ω):

ψ+(x, t) =
1
2π

∫
R
ẑ(ω)eik(ω)|x|e−iωt dω, x ∈ R.

For ω ∈ Σ the functions eik(ω)|x| have an infinite L2(R)-norm, while ψ+( · , t) has
a finite L2(R)-norm. This is possible only if the amplitude is absolutely continuous
in Σ. This idea is suggested by the Fourier integral f(x) =

∫
R e

−ikxg(k) dk, which
belongs to L2(R) if and only if g ∈ L2(R). For example, if one took ẑ(ω) = δ(ω−ω0)
with ω0 ∈ Σ, then ψ+( · , t) would have infinite L2(R)-norm.

The rigorous proof is based on estimates of Paley–Wiener type [94]. Namely, the
Parseval identity and (5.6) imply that∫

R
∥ψ̃+( · , ω + iε)∥2H1(R) dω = 2π

∫ ∞

0

e−2εt∥ψ+( · , t)∥2H1(R) dt ⩽
const
ε

, ε > 0.

(5.36)
On the other hand, we can estimate exactly the integral on the left-hand side
of (5.36). Indeed, according to (5.34),

ψ̃+( · , ω + iε) = α̃(ω + iε)eik(ω+iε)|x|.

Consequently, (5.36) gives us that

ε

∫
R
|α̃(ω + iε)|2∥eik(ω+iε)|x|∥2H1(R) dω ⩽ const, ε > 0. (5.37)

Here is a crucial observation about the asymptotics of the norm of eik(ω+iε)|x|

as ε→ 0+.

Lemma 5.7. (i) For ω ∈ R,

lim
ε→0+

ε∥eik(ω+iε)|x|∥2H1(R) = n(ω) :=

{
ωk(ω), |ω| > m,

0, |ω| < m,
(5.38)

where the norm in H1(R) is chosen to be ∥ψ∥H1(R) = (∥ψ′∥2L2(R) +m2∥ψ∥2L2(R))
1/2 .

(ii) For any δ > 0 there exists an εδ > 0 such that for all |ω| > m + δ and
ε ∈ (0, εδ),

ε∥eik(ω+iε)|x|∥2H1(R) ⩾
n(ω)

2
. (5.39)
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Proof. Let us compute the H1(R)-norm using the Fourier space representation.
Setting kε = k(ω+ iε), so that Im kε > 0, we get that Fx→k[eikε|x|] = 2ikε/(k2

ε−k2)
for k ∈ R. Hence, by the Cauchy theorem on residues

∥eikε|x|∥2H1(R) =
2|kε|2

π

∫
R

(k2 +m2) dk
|k2
ε − k2|2

= −4 Im
[
(k2
ε +m2)kε
k2
ε − k

2

ε

]
.

Substituting here k2
ε = (ω + iε)2 −m2, we get that

∥eik(ω+iε)|x|∥2H1(R) =
1
ε

Re
[
(ω + iε)2k(ω + iε)

ω

]
, ε > 0, ω ∈ R, ω ̸= 0.

The limits (5.38) now follow, since the function k(ω) is real for |ω| > m but purely
imaginary for |ω| < m. Therefore, the second statement of the lemma also follows,
since n(ω) > 0 for |ω| > m and n(ω) ∼ |ω|2 for |ω| → ∞. □

Remark 5.8. Clearly, n(ω) ≡ 0 for |ω| < m without any calculations, since in that
case the function eik(ω)|x| decays exponentially in x, and hence the H1(R)-norm of
eik(ω+iε)|x| remains finite when ε→ 0+.

Substituting (5.39) into (5.37), we get that∫
Σδ

|α̃(ω + iε)|2ωk(ω) dω ⩽ 2C, 0 < ε < εδ, (5.40)

with the same C as in (5.37), and with the region Σδ := {ω ∈ R : |ω| > m+ δ}. We
conclude that for each δ > 0 the set of functions

gδ,ε(ω) = α̃(ω + iε)|ωk(ω)|1/2, ε ∈ (0, εδ),

is bounded in the Hilbert space L2(Σδ), so that by the Banach theorem it is weakly
compact. Hence, convergence of the distributions (5.29) implies weak convergence
in L2(Σδ):

gε ⇀ g, ε→ 0+,

and the limit function g(ω) coincides with the distribution ẑ(ω)|ωk(ω)|1/2 restricted
to Σδ. It remains to note that the norms of g in L2(Σδ) with all δ > 0 are bounded
in view of (5.40), and this implies (5.35). Finally, α̃(ω) ∈ L1(Σ) by (5.35) and the
Cauchy–Schwarz inequality. Theorem 5.6 is proved. □

Remark 5.9. Theorem 5.6 is a nonlinear analogue of Kato’s theorem on the absence
of embedded eigenvalues in the continuous spectrum. Indeed, solutions of type

ψ∗(x)e−iω∗t become ψ∗(x)
[
πiδ(ω − ω∗) + p. v.

1
i(ω − ω∗)

]
in the Fourier–Laplace

transform, and this is forbidden for |ω∗| > m by Theorem 5.6.

5.4. Splitting into dispersion and bound components. Theorem 5.6 presup-
poses a splitting of the solutions (5.34) into a ‘dispersion’ component and a ‘bound’
component:

ψ+(x, t) =
1
2π

∫
Σ

(1− ζ(ω))α̃(ω)eik(ω)|x|e−iωt dω +
1
2π
⟨ζ(ω)α̃(ω)eik(ω)|x|, e−iωt⟩

= ψd(x, t) + ψb(x, t), t > 0, x ∈ R, (5.41)
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where
ζ(ω) ∈ C∞0 (R), and ζ(ω) = 1 for ω ∈ [−m− 1,m+ 1].

Note that ψd(x, t) is a dispersion wave, because

ψd(x, t) :=
1
2π

∫
Σ

(1− ζ(ω))e−iωtα̃(ω)eik(ω)|x| dω → 0, t→∞,

according to the Riemann–Lebesgue theorem, since α ∈ L1(Σ) by Theorem 5.6.
Moreover, it is easy to prove that

(ψd( · , t), ψ̇d( · , t)) → 0, t→∞, (5.42)

in the seminorms (2.12). Therefore, it remains to prove the attraction (5.15)
for Yb(t) := (ψb( · , t), ψ̇b( · , t)) instead of Y (t):

Yb(t)
EF−−→ S , t→∞. (5.43)

5.5. Omega-compactness. Here we establish the omega-compactness of the tra-
jectory Yb(t), which is necessary for the application of Lemma 5.5. First we note
that the bound component ψb(x, t) is a smooth function for x ̸= 0, and

∂jx∂
l
tψb(x, t) =

1
2π
⟨ζ(ω)(ik(ω) sgnx)jα̃(ω)eik(ω)|x|, (−iω)le−iωt⟩, t > 0, x ̸= 0,

(5.44)
for any j, l = 0, 1, . . . . These formulae must be justified, since the function k(ω) is
not smooth at the points ω = ±m. The needed justification is done in [99], [104]
by a suitable development of the theory of quasi-measures. These formulae imply
the boundedness of each derivative.

Lemma 5.10 (see [104], Proposition 4.1). For all j, l = 0, 1, 2, . . .

sup
x ̸=0

sup
t∈R

|∂jx∂ltψb(x, t)| <∞. (5.45)

Proof. Note that the distribution α̃(ω) generally is not a finite measure, since we
only know that α(t) := ψ+(0, t) is a bounded function by (5.32) and (5.6). To prove
the lemma, it suffices to check that

ζ(ω)(ik(ω) sgnx)jeik(ω)|x|(−iω)l = g̃x(ω),

where the function gx( · ) belongs to a bounded subset of L1(R) for x ̸= 0 and t ∈ R.
This implies the lemma, since by the Parseval identity the right-hand side of (5.44)
is the convolution

⟨α(t− s), gx(s)⟩,

where α(t) is a bounded function. □

Remark 5.11. All the properties of quasi-measures used are justified in [99], [104]
by similar arguments relying on the Parseval identity.
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By the Ascoli–Arzelà theorem, for any sequence sj →∞ there is a subsequence
sj′ →∞ such that

∂jx∂
l
tψb(x, sj′ + t) → ∂jx∂

l
tβ(x, t), x ̸= 0, t ∈ R, (5.46)

for any j, l = 0, 1, 2, . . . , and this convergence is uniform for |x| + |t| ⩽ R. The
estimates (5.45) imply that

sup
(x,t)∈R2

|∂jx∂ltβ(x, t)| <∞. (5.47)

Corollary 5.12. Each solution Y (t) ∈ C(R,E ) of (5.4) is omega-compact.

This follows from (5.41), (5.42), and (5.46).

5.6. Reduction of spectrum of omega-limit trajectories to a spectral gap.
The convergence of the functions (5.46) implies the convergence of their Fourier
transforms:

ψ̃b(x, ω)e−iωsj′ → β̃(x, ω) ∀x ∈ R, (5.48)

in the sense of tempered distributions of ω ∈ R.

Lemma 5.13. For any x ∈ R

β̃(x, ω) = 0, |ω| > m. (5.49)

Proof. The convergence (5.48) and the representation (5.44) with j = l = 0 imply
that

ζ(ω)α̃(ω)eik(ω)|x|e−iωsj′ → β̃(x, ω) ∀x ∈ R, (5.50)

in the sense of tempered distributions of ω ∈ R. Moreover, this convergence takes
place in the stronger Ascoli–Arzelà topology in the space of quasi-measures [104].
In addition, the function e−ik(ω)|x| is a multiplier in the space of quasi-measures
with this topology by Lemma B.3 of [104]). Therefore, (5.50) implies that

ζ(ω)α̃(ω)e−iωsj′ → γ̃(ω) := β̃(x, ω)e−ik(ω)|x| ∀x ∈ R, (5.51)

in the same topology of quasi-measures. Applying the same lemma again, we obtain

β(x, t) =
1
2π
⟨γ̃(ω)eik(ω)|x|, e−iωt⟩, (x, t) ∈ R2. (5.52)

Note that
β(0, t) = γ(t). (5.53)

Finally, the key observation is that (5.51) and Theorem 5.6 imply that

supp γ̃ ⊂ [−m,m] (5.54)

by the Riemann–Lebesgue theorem. □
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5.7. Reduction of spectrum of omega-limit trajectories to a single point.

5.7.1. Equation for omega-limit trajectories and spectral inclusion. The question
arises of the available means for verifying the representation (5.22) for omega-limit
trajectories. We have no formulae for solutions of equation (5.4), and so the only
hope is to use the nonlinear equation itself. The key observation, albeit simple,
is that β(x, t) is a solution of this nonlinear equation for all t ∈ R, despite the fact
that ψ+(x, t) is a solution of the equation (5.4) only for t > 0, due to (5.27).

Lemma 5.14. The function β(x, t) satisfies the original equation (5.4):

β̈(x, t) = β′(x, t)−m2β(x, t) + δ(x)F (β(0, t)), (x, t) ∈ R2. (5.55)

Proof. This lemma follows by (5.42) and (5.46) in the limit as sj′ → ∞ in the
equation (5.4) for ψ+(x, sj′ + t) = ψd(x, sj′ + t) +ψb(x, sj′ + t) with sj′ + t > 0. □

Applying the Fourier transform to the equation (5.55), we now get the corres-
ponding ‘nonlinear stationary Helmholtz equation’

− ω2β̃(x, ω) = β̃′′(x, ω)−m2β̃(x, ω) + δ(x)f̃(ω), (x, ω) ∈ R2, (5.56)

where we define f(t) := F (β(0, t)) = F (γ(t)) in accordance with (5.53). From (5.8)
we get that

f(t) = a(|γ(t)|)γ(t) = A(t)γ(t), A(t) := a(|γ(t)|), t ∈ R.

Finally, in the Fourier transform we get the convolution f̃ = Ã ∗ γ̃, which exists
by (5.54). Correspondingly, (5.56) is now

−ω2β̃(x, ω) = β̃′′(x, ω)−m2β̃(x, ω) + δ(x)[Ã ∗ γ̃](ω), (x, ω) ∈ R2.

This identity implies the key spectral inclusion

supp Ã ∗ γ̃ ⊂ supp γ̃, (5.57)

because supp β̃(x, · ) ⊂ supp γ̃ and supp β̃′(x, · ) ⊂ supp γ̃ in view of the represen-
tation (5.52). From this inclusion, we will derive (5.22) below, using a fundamental
result in harmonic analysis — the Titchmarsh convolution theorem.

5.7.2. Titchmarsh convolution theorem. In 1926 Titchmarsh proved a theorem on
the distribution of zeros of entire functions (see [159], p. 119, and [203]), which
implies, in particular, the following corollary (see [72], Theorem 4.3.3).

Theorem. Let f(ω) and g(ω) be distributions of ω ∈ R with bounded supports.
Then

[supp f ∗ g] = [supp f ] + [supp g],

where [X] denotes the convex hull of a set X ⊂ R.
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Note that in our situation, supp γ̃ is bounded in view of (5.54). Consequently,
supp Ã is also bounded, since A(t) := a(|γ(t)|) is a polynomial in |γ(t)|2 according
to (5.12). Now the spectral inclusion (5.57) and the Titchmarsh theorem imply
that

[supp Ã] + [supp γ̃] ⊂ [supp γ̃],

whence it immediately follows in turn that [supp Ã] = {0}. Besides, A(t) is
a bounded function in view of (5.47), because γ(t) = β(0, t). Therefore, Ã(ω) =
Cδ(ω), and hence

a(|γ(t)|) = C1, t ∈ R.

The strict nonlinearity condition (5.12) now implies that

|γ(t)| = C2, t ∈ R.

This immediately gives us that supp γ̃ = {ω+} by the same Titchmarsh theorem
for the convolution γ̃ ∗ γ̃ = C3δ(ω). Therefore, γ̃(ω) = C4δ(ω−ω+), and now (5.22)
follows from (5.52).

Remark 5.15. In the case of the Schrödinger equation (5.19), the Titchmarsh the-
orem does not work. The fact is that the continuous spectrum of the operator
−d2/dx2 is the half-line [0,∞), so now the role of the ‘spectral gap’ is played by
the unbounded interval (−∞, 0). Correspondingly, in this case the spectral inclu-
sion (5.58) gives us only that supp β̃(x, · ) ⊂ (−∞, 0), while the Titchmarsh theorem
applies only to distributions with bounded support.

5.8. Remarks on dispersion radiation and nonlinear energy transfer. Let
us explain the informal arguments for attraction to stationary orbits behind the
formal proof of Theorem 5.2. The main part of the proof involves the study of
the spectrum of omega-limit trajectories

β(x, t) = lim
sj′→∞

ψ(x, sj′ + t).

Theorem 5.6 implies the spectral inclusion (5.54), which leads to the inclusion

supp β̃(x, · ) ⊂ [−m,m], x ∈ R. (5.58)

The Titchmarsh theorem then lets us conclude that

supp β̃(x, · ) = {ω+}. (5.59)

These two inclusions are suggested by the following two informal considerations.
A. Dispersion radiation in the continuous spectrum.
B. Nonlinear spreading of the spectrum and energy transfer from lower to higher

harmonics.
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A. Dispersion radiation in the continuous spectrum. The inclusion (5.58) is because
of the dispersion mechanism, which can be illustrated by the example of energy radi-
ation in a wave field of a harmonic source with a frequency lying in the continuous
spectrum. Namely, let us consider a one-dimensional linear Klein–Gordon equation
with a harmonic source

ψ̈(x, t) = ψ′′(x, t)−m2ψ(x, t) + b(x)e−iω0t, x ∈ R, (5.60)

where b ∈ L2(R) and the real frequency ω0 is different from ±m. Then the limiting
amplitude principle holds [153], [171], [112]:

ψ(x, t) ∼ a(x)e−iω0t, t→∞. (5.61)

For the equation (5.60), this follows directly from the Fourier–Laplace transform in
time

ψ̃(ω, t) =
∫ ∞

0

eiωtψ(x, t) dt, x ∈ R, Imω > 0. (5.62)

Indeed, applying this transform to equation (5.60), we get that

−ω2ψ̃(x, ω) = ψ̃′′(x, ω)−m2ψ̃(x, ω) +
b(x)

i(ω − ω0)
, x ∈ R, Imω > 0,

where for simplicity we assume zero initial data. Hence,

ψ̃( · , ω) =
R(ω)b

i(ω − ω0)
=
R(ω0 + i0)b
i(ω − ω0)

+
R(ω)b−R(ω0 + i0)b

i(ω − ω0)
, Imω > 0, (5.63)

where
R(ω) := (H − ω2)−1

is the resolvent of the Schrödinger operator H := −d2/dx2 +m2. This resolvent is
a convolution operator with fundamental solution−eik(ω)|x|/(2ik(ω)), where k(ω) =√
ω2 −m2 ∈ C+ for ω ∈ C+, as in (5.31). The last quotient in (5.63) is regular at

ω = ω0, and therefore its contribution is a dispersion wave which decays like (5.42)
in local energy seminorms. Consequently, the long-time asymptotics of ψ(x, t) is
determined by the middle quotient in (5.63), and therefore (5.61) holds with the
limiting amplitude a(x) = R(ω0 + i0)b. The Fourier transform of this limiting
amplitude is equal to

â(k) = − b̂(k)
k2 +m2 − (ω0 + i0)2

, k ∈ R.

This formula shows that the properties of the limiting amplitude differ significantly
in the cases |ω0| < m and |ω0| ⩾ m: a(x) ∈ H2(R) for |ω0| < m, but

a(x) /∈ L2(R) for |ω0| ⩾ m (5.64)

if |̂b(k)| ⩾ ε > 0 in a neighbourhood of the ‘sphere’ |k|2 +m2 = ω2
0 (which consists

of two points in the 1D case). This means the following.
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I. In the case |ω0| ⩾ m the energy of the solution ψ(x, t) tends to infinity for
large times according to (5.61) and (5.64). This means that energy is transmitted
from the harmonic source to the wave field!

II. On the contrary, for |ω0| < m the energy of the solution remains bounded, so
there is no radiation.

It is this radiation in the case of |ω0| ⩾ m that prohibits the presence of har-
monics with such frequencies in omega-limit trajectories. Indeed, any omega-limit
trajectory cannot radiate at all, because the total energy is finite and bounded from
below, and hence the radiation cannot last forever. These physical arguments make
the inclusion (5.58) plausible, although a rigorous proof of it, as was seen above,
requires special arguments.

Recall that the set iΣ := {iω0 ∈ R : |ω0| ⩾ m} coincides with the continuous
spectrum of the generator of the free Klein–Gordon equation. Radiation in the
continuous spectrum is well known in the theory of waveguides. Namely, waveguides
can transmit only signals with a frequency |ω0| > µ, where µ is a threshold frequency,
which is an edge point of the continuous spectrum [160]. In our case, the waveguide
occupies the ‘entire space’ x ∈ R and is described by the nonlinear Klein–Gordon
equation (5.1) with the threshold frequency m.
B. Nonlinear inflation of spectrum and energy transfer from lower to higher har-
monics. Let us show that the single-frequency spectrum (5.59) is due to infla-
tion of the spectrum by nonlinear functions. For example, consider the potential
U(ψ) = |ψ|4. Correspondingly, F (ψ) = −∇ψU(ψ) = −4|ψ|2ψ. We consider the
sum ψ(t) = eiω1t + eiω2t of two harmonics, whose spectrum is shown in Fig. 4.

Figure 4. Two-point spectrum.

We substitute this sum into the nonlinearity:

F (ψ(t)) ∼ ψ(t)ψ(t)ψ(t) = eiω2te−iω1teiω2t + · · · = ei(ω2+∆)t + · · · , ∆ := ω2 − ω1.

The spectrum of this expression contains harmonics with the new frequencies ω1−∆
and ω2 + ∆. As a result, all the frequencies ω1 − ∆, ω1 − 2∆, . . . and ω2 + ∆,
ω2 + 2∆, . . . also will appear in the nonlinear dynamics described by (5.1) (see
Fig. 5). Consequently, these frequencies will appear also in the nonlinear δ-function
term which plays the role of a source.

As we already know, these frequencies lying in the continuous spectrum |ω| > m
will surely cause energy radiation. This radiation will continue until the spectrum
of the solution contains at least two different frequencies. It is this fact that pro-
hibits the presence of two different frequencies in omega-limit trajectories because
the total energy is finite, and thus the radiation cannot continue forever.

However, we underscore that the precise meaning of inflation of the spectrum by
a nonlinearity is established by the Titchmarsh convolution theorem.
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Figure 5. Nonlinear inflation of the spectrum.

Remark 5.16. The above arguments physically mean the following two-step nonlin-
ear radiation mechanism:

(i) a nonlinearity inflates the spectrum, which means energy transfer from lower
to higher harmonics;

(ii) the dispersion radiation transfers energy to infinity.
We have rigorously justified such a nonlinear radiation mechanism for the first

time for the nonlinear U(1)-invariant Klein–Gordon and Dirac equations (5.4)
and (5.16)–(5.18). Our numerical experiments demonstrate an analogous radiation
mechanism for nonlinear relativistic wave equations (see Remark 7.1). However,
a rigorous proof is still missing.

Remark 5.17. Let us comment on the term generic equation in our conjecture (1.4).
(i) The asymptotic expressions (2.36), (2.37) hold under the Wiener condition

(2.34), which defines a certain ‘open dense set’ of functions ρ. This asymptotic
expression may break down if the Wiener condition fails. For example, if ρ(x) ≡ 0,
then the particle dynamics is generally independent of the fields, and hence the
attraction to stationary states can fail.

(ii) Similarly, for an open set of U(1)-invariant equations corresponding to the
polynomials (5.12) with N ⩾ 2 the asymptotic expression (5.15) is valid. However,
this asymptotic expression may break down for ‘exceptional’ U(1)-invariant equa-
tions, in particular, for the linear equations corresponding to the polynomials (5.12)
with N = 1. Such examples are constructed in [104].

(iii) The general situation is the following. Let a Lie group g be a (proper) sub-
group of some larger Lie group G. Then G-invariant equations form an ‘exceptional
subset’ among all g-invariant equations, and the corresponding asymptotics (1.4)
may be completely different. For example, the trivial group {e} is a subgroup in
U(1) and in Rn, and the asymptotic expressions (1.6) and (1.8) may differ signifi-
cantly from (1.5).

6. Asymptotic stability of stationary orbits and solitons

Asymptotic stability of solitary manifolds means local attraction, that is, for
states sufficiently close to the manifold. The main feature of this attraction is the
instability of the dynamics along the manifold. This follows directly from the fact
that solitons move with different speeds and therefore scatter apart over large times.

Analytically, this instability is caused by the presence of the eigenvalue λ = 0
in the spectrum of the generator of the linearized dynamics. Namely, the tangent
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vectors to solitary manifolds are eigenvectors and associated vectors of the gener-
ator. They correspond to the zero eigenvalue. Therefore, the Lyapunov theory is
not applicable to this case.

In a series of articles by Weinstein and Soffer and by Buslaev, Perelman, and
Sulem in 1985–2003, an original strategy was developed for proving asymptotic
stability of solitary manifolds. This strategy is based on (i) a special projection of
a trajectory on the solitary manifold, (ii) modulation equations for the parameters
of the projection, and (iii) long-time decay of the transversal component. This
approach is a far-reaching development of the Lyapunov stability theory.

6.1. Asymptotic stability of stationary orbits. Orthogonal projection.
This strategy arose in 1985–1992 in the pioneering work of Soffer and Weinstein
([191], [192], [208]; see also the review [190]) involving the nonlinear U(1)-invariant
Schrödinger equations with real potential V (x),

iψ̇(x, t) = −∆ψ(x, t) + V (x)ψ(x, t) + λ|ψ(x, t)|pψ(x, t), x ∈ Rn, (6.1)

where λ ∈ R, p = 3 or 4, n = 2 or 3, and ψ(x, t) ∈ C. The corresponding
Hamiltonian functional is

H =
∫ [

1
2
|∇ψ|2 +

1
2
V (x)|ψ(x)|2 +

λ

p
|ψ(x)|p

]
dx.

For λ = 0, the equation (6.1) is linear. It is assumed that the discrete spectrum of
the Schrödinger operator H := −∆ + V (x) with short-range potential is a single
point ω∗ < 0, and the point zero is neither an eigenvalue nor a resonance for H.
Let ϕ∗(x) denote the corresponding ground state:

(−∆ + V (x))ϕ∗(x) = ω∗ϕ∗(x). (6.2)

Then the functions Cϕ∗(x)e−iω∗t are periodic solutions for arbitrary complex con-
stants C. The corresponding phase curves are circles filling the complex plane.

For nonlinear equations (6.1) with a small real λ ̸= 0, it turns out that a remark-
able bifurcation occurs: a small neighbourhood of the zero of the complex plane
turns into an analytic invariant solitary manifold S that is still filled with invariant
circles which are trajectories of stationary orbits of the form (5.10):

ψ(x, t) = ψω(x)e−iωt, (6.3)

with frequencies ω close to ω∗.

Remark 6.1. All these solutions ψω(x)e−iωt are called ground states in this case.

The main result in [191] and [192] (see also [179]) is the long-time attraction to
one of these ground states for any solution with sufficiently small initial data,

ψ(x, t) = ψ±(x)e−iω±t + r±(x, t), (6.4)

where the remainder term decays in weighted norms: for σ > 2

∥⟨x⟩−σr±( · , t)∥L2(Rn) → 0, t→ ±∞,



58 A. I. Komech and E.A. Kopylova

where ⟨x⟩ := (1 + |x|)1/2. The proof is based on linearization of the dynamics and
decomposition of solutions into two components,

ψ(t) = e−iΘ(t)(ψω(t) + ϕ(t)),

with the orthogonality condition

⟨ψω(t), ϕ(t)⟩ = 0 (6.5)

(see [191], (3.2) and (3.4)). This orthogonality and the dynamics (6.1) imply the
modulation equations for ω(t) and γ(t), where γ(t) := Θ(t) −

∫ t
0
ω(s) ds (see (3.2)

and (3.9a), (3.9b) in [191]). The orthogonality (6.5) also implies that the compo-
nent ϕ(t) lies in the space of the continuous spectrum of the Schrödinger operator
H(ω0) := −∆+V +λ|ψω0 |p, and this leads to the long-time decay of ϕ(t) (see [191],
(4.2a) and (4.2b)). Finally, this decay implies the convergence ω(t) → ω± and the
asymptotics (6.4).

These results and methods have been further developed in the many publications
for nonlinear Schrödinger, wave, and Klein–Gordon equations with potentials under
various spectral assumptions on linearized dynamics ([24], [22], [120], [191], [192],
[179], [193], [194], [190], [208]).

6.2. Asymptotic stability of solitons. Symplectic projection. A genuine
breakthrough in the theory of asymptotic stability was achieved in 1990–2003 by
Buslaev, Perelman, and Sulem [25]–[27], who first generalized asymptotics of the
type (6.4) for translation-invariant 1D Schrödinger equations

iψ̇(x, t) = −ψ′′(x, t)− F (ψ(x, t)), x ∈ R, (6.6)

which are also assumed to be U(1)-invariant. The latter means that the nonlinear
function F (ψ) = −∇ψU(ψ) satisfies the identities (5.7)–(5.9). Also assumed is the
condition

U(ψ) = O(|ψ|10), ψ → 0, (6.7)

which is apparently due to an inadequacy in the technique. Under some simple
additional conditions on the potential U (see below), there exist stationary orbits,
that is, finite-energy solutions of the form

ψ(x, t) = ψ0(x)eiω0t (6.8)

with ω0 > 0. The amplitude ψ0(x) satisfies the corresponding stationary equation

− ω0ψ0(x) = −ψ′′0 (x)− F (ψ0(x)), x ∈ R, (6.9)

which implies the ‘conservation law’

|ψ′0(x)|2

2
+ Ue(ψ0(x)) = E, (6.10)

where the ‘effective potential’ Ue(ψ) = U(ψ) + ω0
|ψ|2

2
is equivalent to ω0

|ψ|2

2
as

ψ → 0 by (6.7). For the existence of a finite-energy solution (6.8), the graph of the
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Figure 6. Reduced potential and soliton.

effective potential Ue(ψ) must be similar to the graph of the potential in Fig. 6.
The finite-energy solution is defined by (6.10) with the constant E = Ue(0), since
for other values of E the solutions of (6.10) do not converge to zero as |x| → ∞.
This equation with E = Ue(0) implies that

|ψ′0(x)|2

2
= Ue(0)− Ue(ψ0(x)) ∼

ω0

2
ψ2

0(x). (6.11)

Hence, for finite-energy solutions

ψ0(x) ∼ e−
√
ω0 |x|, |x| → ∞. (6.12)

It is easy to verify that the following functions are also solutions (moving soli-
tons):

ψω,v,a,θ(x, t) = ψω(x− vt− a)ei(ωt+kx+θ), ω = ω0 −
v2

4
, k =

v

2
. (6.13)

The set of all such solitons with parameters ω, v, a, and θ forms a four-dimensional
smooth submanifold S in the Hilbert phase space X := L2(R). The moving
solitons (6.13) are obtained from the standing soliton (6.8) by the Galilean trans-
formation

G(a, v, θ) : ψ(x, t) 7→ φ(x, t) = ψ(x− vt− a, t) exp
(
i

(
−v

2

4
t+

v

2
x+ θ

))
. (6.14)

It is easy to verify that the Schrödinger equation (6.6) is invariant with respect to
this transformation group.

The linearization of the Schrödinger equation (6.6) on the stationary orbit (6.8)
is obtained by substituting ψ(x, t) = (ψ0(x)+χ(x))e−iω0t and then retaining terms
of first order in χ. This linearized equation contains χ and χ, and hence it is
not linear over the field of complex numbers. This follows from the fact that the
nonlinearity F (ψ) is not complex-analytic because of the U(1)-invariance (5.7). The
complexification of this linearized equation is

Ψ̇(x, t) = C0Ψ(x, t), C0 = −jH0, (6.15)
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where j is a real 2 × 2 matrix representing multiplication by i, Ψ(x, t) ∈ C2, and
H0 = −d2/dx2+ω0+V (x), with V (x) a real matrix potential which decreases expo-
nentially as |x| → ∞ according to (6.12). Note that the operator C0 = Cω0,0,0,0

corresponds to the linearization on the soliton (6.13) with parameters ω = ω0

and a = v = θ = 0. Similar operators Cω,a,v,θ corresponding to linearization
on the solitons (6.13) with various parameters ω, a, v, and θ are also connected
by the linear Galilean transformation (6.14). Therefore, their spectral proper-
ties completely coincide. In particular, their continuous spectrum coincides with
(−i∞,−iω0] ∪ [iω0, i∞).

The main results in [25]–[27] are asymptotics of the form (6.4) for solutions with
initial data close to the solitary manifold S :

ψ(x, t) = ψ±(x− v±t)e−i(ω±t+k±x) +W (t)Φ± + r±(x, t), ±t > 0, (6.16)

where W (t) is the dynamical group of the free Schrödinger equation, the Φ± are
some scattering states of finite energy, and the r± are remainder terms which decay
to zero in a global norm:

∥r±( · , t)∥L2(R) → 0, t→ ±∞. (6.17)

These asymptotics were obtained under the following assumptions about the spec-
trum of the generator B0.

U1. The discrete spectrum of the operator C0 consists of exactly three eigenval-
ues, 0 and ±iλ, and

λ < ω0 < 2λ. (6.18)

This condition means that the discrete mode can interact with the continuous
spectrum already in the first order of perturbation theory.

U2. The edge points ±iω0 of the continuous spectrum are neither eigenvalues
nor resonances of C0.

U3. Furthermore, the condition (1.0.12) in [27] is assumed, which means a strong
coupling of the discrete and continuous spectral components that ensures energy
radiation, as in the case of the Wiener condition (2.34). This condition (1.0.12)
ensures that the interaction of the discrete component with the continuous spectrum
does not vanish in the first order of perturbation theory; it is a nonlinear version
of the Fermi Golden Rule [181] introduced by Sigal in the context of nonlinear
PDEs [189].

Examples of potentials satisfying all these conditions were constructed in [117].
In 2001, Cuccagna [33] extended results in [25]–[27] to nD translation-invariant

Schrödinger equations with n ⩾ 2.

Method of symplectic projection in the Hilbert phase space. The novel approach
in [25]–[27] is based on symplectic projection of solutions on the solitary manifold.
This means that

Z := ψ − S is symplectic-orthogonal to the tangent space T := TSS
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for the projection S := Pψ. This projection is correctly defined in a small neigh-
bourhood of S because S is a symplectic manifold, that is, the corresponding
symplectic form is non-degenerate on the tangent spaces TSS . In particular, the
approach in [25]–[27] does not require smallness of the initial data.

Thus, for each t > 0 the solution ψ(t) decomposes as ψ(t) = S(t) + Z(t), where
S(t) := Pψ(t), and the dynamics is linearized on the soliton S(t). Similarly, for
each t ∈ R the whole Hilbert phase space X := L2(R) splits into a direct sum
X = T (t) ⊕ Z (t), where Z (t) is the symplectic-orthogonal complement of the
tangent space T (t) := TS(t)S . The corresponding equation for the transversal
component Z(t) is

Ż(t) = A(t)Z(t) +N(t),

where A(t)Z(t) is the linear part, and N(t) = O(∥Z(t)∥2) is the corresponding
nonlinear part.

The main difficulties in studying this equation are: (i) it is non-autonomous,
and (ii) the generators A(t) are not self-adjoint (see the Appendix in [114]). It
is important that the A(t) are Hamiltonian operators, for which the existence of
a spectral resolution is provided by the Krein–Langer theory of J-selfadjoint oper-
ators ([149], [157]). In [114] and [116] we developed a special version of this theory
providing the corresponding eigenfunction expansion necessary for justification of
the general approach in [25]–[27]. The main steps in this strategy are as follows.
• Modulation equations. The parameters of the soliton S(t) satisfy the mod-

ulation equations: for example, for the speed v(t) we have

v̇(t) = M(ψ(t)),

where M(ψ) = O(∥Z∥2) for small norms ∥Z∥. This means that the change in the
parameters is ‘superslow’ near the solitary manifold, like adiabatic invariants.
• Tangent and transversal components. The transversal component Z(t)

in the splitting ψ(t) = S(t) + Z(t) belongs to the transversal subspace Z (t). The
tangent space T (t) is the root space of the generator A(t) and corresponds to the
‘unstable’ spectral point λ = 0. The key observation is that:

(i) the transversal subspace Z (t) is invariant with respect to the generator A(t),
since the subspace T (t) is invariant, and A(t) is a Hamiltonian operator;

(ii) moreover, the transversal subspace Z (t) does not contain ‘unstable’ tangent
vectors.

• Continuous and discrete components. The transversal component admits
in turn a further splitting Z(t) = z(t) + f(t), where z(t) and f(t) belong, respec-
tively, to the discrete and the continuous spectral subspaces Zd(t) and Zc(t) of
A(t) in the space Z (t) = Zd(t) + Zc(t).
• Poincaré normal forms and Fermi Golden Rule. The component z(t)

satisfies a nonlinear equation, which reduces to the Poincaré normal form up to
higher-order terms (see [27], (4.3.20)). (A similar reduction was done in [141], (5.18)
for the relativistically invariant Ginzburg–Landau equation.) The normal form
made it possible to obtain a certain ‘conditional decay’ for z(t) using the Fermi
Golden Rule (see [27], (1.0.12)).
• Method of majorants. A skillful combination of the conditional decay for

z(t) with the superslow evolution of the soliton parameters enables us to prove
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decay for f(t) and z(t) by the method of majorants. Finally, this decay implies the
asymptotics (6.16) and (6.17).

6.3. Generalizations and applications.

N -soliton solutions. The methods and results in [27] were developed in [166]–[170],
[177], [178], [183], and [184] forN -soliton solutions of translation-invariant nonlinear
Schrödinger equations.

Multiphoton radiation. In [35] Cuccagna and Mizumachi extended the methods
and results in [27] to the case when the inequality (6.18) is changed to

Nλ < ω0 < (N + 1)λ

with some natural number N > 1, and the corresponding analogue of the condi-
tion U3 holds. This means that the interaction of discrete modes with the continu-
ous spectrum occurs only in the Nth order of perturbation theory. The decay rate
of the remainder term (6.17) worsens with growing N .

Linear equations coupled to nonlinear oscillators and particles. The methods and
results in [27] were extended: (i) in [24] and [120] to the Schrödinger equation
coupled to a nonlinear U(1)-invariant oscillator; (ii) in [80] and [82] to systems (3.1)
and (2.61) with zero external fields; (iii) in [81], [109], and [119] to similar translation-
invariant systems of the Klein–Gordon, Schrödinger and Dirac equations coupled
to a particle. A survey of these results can be found in [74].

For example, the article [82] concerns solutions of the system (3.1) with initial
data close to a solitary manifold (3.3) in the weighted norm

∥ψ∥2σ =
∫
⟨x⟩2σ|ψ(x)|2 dx

with sufficiently large σ > 0. Namely, for an initial state close to the soliton (3.3)
with some parameters v0 and a0 we have

∥∇ψ(x, 0)−∇ψv0(x− a0)∥σ + ∥ψ(x, 0)− ψv0(x− a0)∥σ
+ ∥π(x, 0)− πv0(x− a0)∥σ + |q(0)− a0|+ |q̇(0)− v0| ⩽ ε,

where σ > 5, and ε > 0 is sufficiently small. Moreover, the Wiener condition (2.34)
is assumed for k ̸= 0. In addition, let

∂αρ̂(0) = 0, |α| ⩽ 5,

which is equivalent to the equalities∫
xαρ(x) dx = 0, |α| ⩽ 5.

Under these conditions, the main results in [82] are the asymptotics

q̈(t) → 0, q̇(t) → v±, q(t) ∼ v±t+ a±, t→ ±∞

(cf. (3.8) and (3.11)) and the attraction to the solitons (3.9), where the remainder
now decays in global weighted norms in the comoving frame (cf. (3.10)):

∥∇r±(q(t)+x, t)∥−σ + ∥r±(q(t)+x, t)∥−σ + ∥s±(q(t)+x, t)∥−σ → 0, t→ ±∞.
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Relativistic equations. In [16], [23], [135], [140], and [141] the methods and results
in [27] were extended for the first time to relativistically invariant nonlinear equa-
tions. Namely, in [16] and [135], [140], [141] asymptotics of the type (6.16) were
obtained for the 1D relativistically invariant nonlinear wave equations (5.20) with
potentials of Ginzburg–Landau type, and in [23] for the relativistically invariant
nonlinear Dirac equations. In [117] we constructed examples of potentials pro-
viding all spectral properties of the linearized dynamics imposed in [135], [140],
and [141].

In [114] and [116] we justified the eigenfunction expansions for non-selfadjoint
Hamiltonian operators which were used in [135], [140], and [141]. For the justifi-
cation we developed a special version of the Krein–Langer theory of J-selfadjoint
operators [149], [157].

Vavilov–Cherenkov radiation. The article [54] concerns a system of type (3.1) with
the Schrödinger equation instead of the wave equation (the system (1.9), (1.10)
in [54]). This system is considered as a model of the Cherenkov radiation. The
main result in [54] is long-time convergence to a soliton with sonic speed for initial
solitons with a supersonic speed in the case of weak interaction (‘Bogolyubov limit’)
and small initial field. Asymptotic stability of solitons for a similar system was
established in [109].

6.4. Further generalizations. Results on asymptotic stability of solitons have
been developed in different directions.

Systems with several bound states. The papers [10], [34], and [205]–[207] con-
cern asymptotic stability of stationary orbits (6.3) for the nonlinear Schrödinger,
Klein–Gordon, and wave equations in the case of several simple eigenvalues of the
linearization. The typical assumptions are as follows:

(i) an endpoint of the continuous spectrum is neither an eigenvalue nor a reso-
nance for the linearized equation;

(ii) the eigenvalues of the linearized equation satisfy several non-resonance con-
ditions;

(iii) a new version of the Fermi Golden Rule.
One typical difficulty is the possible long stay of solutions near metastable tori

which correspond to approximate resonances. Major efforts are being made to show
that the role of metastable tori decreases like t−1/2 as t → ∞. A typical result is
a long-time asymptotic expression of type ‘ground state + dispersion wave’ in the
norm of H1(R3) for solutions close to the ground state.

General theory of relativity. The article [66] concerns so-called ‘kink instability’
of self-similar and spherically symmetric solutions of the equations of the general
theory of relativity with a scalar field, as well as with a ‘hard fluid’ as sources. The
authors have constructed examples of self-similar solutions that are unstable to the
kink perturbations.

The article [36] examines linear stability of slowly rotating Kerr solutions for
the Einstein equations in a vacuum. In [201] a pointwise damping of solutions
of the wave equation is investigated for the case of stationary asymptotically flat
space-time in the three-dimensional case.
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In [7] the Maxwell equations are considered outside a slowly rotating Kerr black
hole. The main results are:

(i) boundedness of a positive-definite energy on each hypersurface t = const;
(ii) convergence of each solution of a stationary Coulomb field.
In [41] pointwise decay was proved for linear waves on a Schwarzschild black hole

background.

Concentration compactness method. In [89] the concentration compactness method
was used for the first time to prove global well-posedness, scattering, and blow-up
of solutions of the critical focusing nonlinear Schrödinger equation

iψ̇(x, t) = −∆ψ(x, t)− |ψ(x, t)|4/(n−2)ψ(x, t), x ∈ Rn,

in the radial case. Later on, these methods were extended in [42], [44], [90], and [150]
to general non-radial solutions and to nonlinear wave equations of the form

ψ̈(x, t) = ∆ψ(x, t) + |ψ(x, t)|4/(n−2)ψ(x, t), x ∈ Rn.

One of the main results is a splitting of the set of initial states close to the crit-
ical energy level, into three subsets with a certain long-term asymptotics: either
a blow-up in a finite time, or an asymptotically free wave, or the sum of the ground
state and an asymptotically free wave. All three alternatives are possible, and
all nine combinations with t → ±∞ are also possible. The lectures [174] give an
excellent introduction to this area. The articles [43] and [91] concern supercritical
nonlinear wave equations.

Recently these methods and results were extended to critical wave maps ([88],
[87], [150], [151]). Namely, ‘decay into solitons’ was proved: every 1-equivariant
finite-energy wave map of the exterior of a ball with Dirichlet boundary conditions
into a three-dimensional sphere exists globally in time and dissipates into the unique
stationary solution in its own topological class.

Weak convergence to equilibrium distributions in nonlinear Hamiltonian systems.
The papers [145]–[148] concern weak convergence to an equilibrium distribution
in the Liouville, Vlasov, and Schrödinger equations. In [146] the authors introduced
the quantum Poincaré model.

6.5. Linear dispersion. The key role in all results on the long-time asymptotics
for nonlinear Hamiltonian PDEs is played by dispersion decay of solutions of the
corresponding linearized equations. A huge number of publications concern this
decay, so we choose only those most important or most recent.

Dispersion decay in weighted Sobolev norms. Dispersion decay for wave equations
was first proved in linear scattering theory [158].

A powerful systematic approach to dispersion decay for the Schrödinger equation
with a potential was proposed by Agmon, Jensen, and Kato [5], [84]. This theory has
been extended by many authors to the wave, Klein–Gordon, and Dirac equations
and to the corresponding discrete equations (see [14], [15], [37], [38], [50], [60],
[61], [47], [48] and [86], [110], [139], [111], [112], [127], [113], [115], [118], [121],
[131]–[134], [138], [144], and references therein).
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L1 − L∞ decay. The estimate

∥Pcψ(t)∥L∞(Rn) ⩽ Ct−n/2∥ψ(0)∥L1(Rn), t > 0, (6.19)

for solutions of the linear Schrödinger equation

iψ̇(x, t) = Hψ(x, t) := (−∆ + V (x))ψ(x, t), x ∈ Rn, (6.20)

with n ⩾ 3 was first proved by Journet, Soffer, and Sogge [86] under the condition
that λ = 0 is neither an eigenvalue nor a resonance for H. The potential V (x) is
assumed to be sufficiently smooth and rapidly decaying as |x| → ∞. Here Pc is the
orthogonal projection on the space of the continuous spectrum of H. This result
was later generalized by many authors (see below).

In [182] a decay of type (6.19) and Strichartz estimates were established for
the 3D Schrödinger equations (6.20) with ‘rough’ and time-dependent potentials
V = V (x, t) (in the stationary case V (x) belongs to both the Rollnik class and the
Kato class). Similar estimates were obtained in [14] for the 3D Schrödinger and
wave equations with (stationary) Kato-class potentials.

In [50] the 4D Schrödinger equations (6.20) are considered for the case when
there is a resonance or an eigenvalue at zero energy. In particular, in the case of
an eigenvalue at zero energy, there is a time-dependent operator Ft of rank 1 such
that ∥Ft∥L1→L∞ ⩽ 1/ log t for t > 2, and

∥eitHPc − Ft∥L1→L∞ ⩽ Ct−1, t > 2.

Similar dispersion estimates were proved also for solutions of the 4D wave equation
with a potential.

In [60] and [61] the Schrödinger equation (6.20) is considered in Rn with n ⩾ 5
when there is an eigenvalue at the zero point of the spectrum. It is shown, in par-
ticular, that there is a time-dependent rank-1 operator Ft such that ∥Ft∥L1→L∞ ⩽
C|t|2−n/2 for |t| > 1 and

∥eitHPc − Ft∥L1→L∞ ⩽ C|t|1−n/2, |t| > 1.

With a stronger decay of the potential, the evolution (dynamical group) admits an
operator-valued decomposition

eitHPc(H) = |t|2−n/2A−2 + |t|1−n/2A−1 + |t|−n/2A0,

where A−2 and A−1 are finite-rank operators L1(Rn) → L∞(Rn), while A0 maps
weighted L1-spaces to weighted L∞-spaces. The main terms A−2 and A−1 are equal
to zero under certain conditions of orthogonality of the potential V to an eigen-
function with zero energy. Under the same orthogonality conditions, the remainder
term |t|−n/2A0 also maps L1(Rn) to L∞(Rn), and therefore the group eitHPc(H)
has the same dispersion decay as the free evolution, despite its eigenvalue at zero.

Lp − Lq decay was first established in [165] for solutions of the free Klein–Gordon
equation ψ̈ = ∆ψ − ψ with initial state ψ(0) = 0:

∥ψ(t)∥Lq ⩽ Ct−d∥ψ̇(0)∥Lp , t > 1, (6.21)
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where 1 ⩽ p ⩽ 2, 1/p + 1/q = 1, and d ⩾ 0 is a piecewise-linear function of
(1/p, 1/q). The proofs use the Riesz interpolation theorem.

In [13], the estimates (6.21) were extended to solutions of the perturbed Klein–
Gordon equation

ψ̈ = ∆ψ − ψ + V (x)ψ

with ψ(0) = 0. The authors show that (6.21) holds for 0 ⩽ 1/p− 1/2 ⩽ 1/(n+ 1).
The smallest value of p and the fastest decay rate d occur when 1/p = 1/2+1/(n+1)
and d = (n − 1)/(n + 1). The result is proved under the assumption that the
potential V is smooth and small in a suitable sense. For example, the result is true
when

|V (x)| ⩽ c(1 + |x|2)−σ

where c > 0 is sufficiently small. Here

σ > 2 for n = 3; σ >
n

2
for odd n ⩾ 5;

σ >
2n2 + 3n+ 3

4(n+ 1)
for even n ⩾ 4.

The results also apply to the case when ψ(0) ̸= 0.
The seminal article [86] concerns Lp − Lq decay of solutions of the Schrödinger

equation (6.20). It is assumed that (1 + |x|2)αV (x) is a multiplier in the Sobolev
spaces Hη for some η > 0 and α > n + 4, and that the Fourier transform of V
belongs to L1(Rn). Under these conditions the main result in [86] is the following
theorem: if λ = 0 is neither an eigenvalue nor a resonance for H, then

∥Pcψ(t)∥Lq ⩽ Ct−n(1/p−1/2)∥ψ(0)∥Lp , t > 1, (6.22)

where 1 ⩽ p ⩽ 2 and 1/p + 1/q = 1. The proofs are based on the L1 − L∞

decay (6.19) and the Riesz interpolation theorem.
In [211] the estimates (6.22) were proved for all 1 ⩽ p ⩽ 2 under suitable

conditions on decay of V (x) if λ = 0 is neither an eigenvalue nor a resonance for H,
and for all 3/2 < p ⩽ 2 otherwise.

The Strichartz estimates were extended: (i) in [38] to the Schrödinger equation with
a magnetic potential in Rn, n ⩾ 3; (ii) in [37] to wave equations with a magnetic
potential in Rn, n ⩾ 3; (iii) in [15] to the wave equation in R3 with Kato-class
potential.

7. Numerical simulation of soliton asymptotics

Here we describe the results of joint work with Arkady Vinnichenko (1945–2009)
on numerical simulation of (i) global attraction to solitons (1.6) and (1.7) and
(ii) adiabatic effective dynamics of solitons (4.6) for relativistically invariant 1D
nonlinear wave equations. Additional information can be found in [123].

7.1. Kinks of relativistically invariant Ginzburg–Landau equations. First
let us describe numerical simulations of solutions of relativistically invariant 1D
nonlinear wave equations with a polynomial nonlinearity:

ψ̈(x, t) = ψ′′(x, t) + F (ψ(x, t)), where F (ψ) := −ψ3 + ψ. (7.1)
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Since F (ψ) = 0 for ψ = 0,±1, there are three equilibrium states: S(x) ≡ 0,+1,−1.
This equation is formally equivalent to a Hamiltonian system (2.2) with the Hamil-
tonian

H (ψ, π) =
∫ [

1
2
|π(x)|2 +

1
2
|ψ′(x)|2 + U(ψ(x))

]
dx, (7.2)

where the potential is U(ψ) = ψ4/4 − ψ2/2 + 1/4. This Hamiltonian is finite for
functions (ψ, π) in the space Ec defined in (2.3)–(2.5) with C± = ±1, for which the
convergence

ψ(x) → ±1, |x| → ±∞,

is sufficiently fast.
The potential U(ψ) has minima at ψ = ±1 and a maximum at ψ = 0. Corre-

spondingly, two finite-energy solutions ψ = ±1 are stable, and the solution ψ = 0
with infinite energy is unstable. Such potentials with two wells are called potentials
of Ginzburg–Landau type.

In addition to the constant stationary solutions S(x) ≡ 0,+1,−1, there is also
a non-constant solution S(x) = tanh(x/

√
2 ), called a ‘kink’. Its shifts and reflec-

tions ±S(±x− a) are also stationary solutions, as well as their Lorentz transforms

±S(γ(±x− a− vt)), γ =
1√

1− v2
, |v| < 1.

These are uniformly moving ‘travelling waves’ (that is, solitons). The kink is
strongly compressed when the velocity v is close to ±1. This compression is known
as the ‘Lorentz contraction’.

Numerical Simulation. Our numerical experiments show a decay of finite-energy
solutions on a finite set of kinks and dispersion waves outside the kinks, which
corresponds to the asymptotics (1.7). The result of one of the experiments is shown
in Fig. 7: a finite-energy solution of the equation (7.1) decays to three kinks. Here
the vertical line is the time axis, and the horizontal line is the space axis. The
spatial scale redoubles at t = 20 and t = 60.

The red colour corresponds to the values ψ > 1+ ε, the blue colour to the values
ψ < −1− ε, and the yellow colour to the intermediate values −1 + ε < ψ < 1− ε,
where ε > 0 is sufficiently small. Thus, the yellow stripes represent the kinks, while
the blue and red zones outside the yellow stripes are filled with dispersion waves.

For t = 0 the solution begins with a rather chaotic behaviour, when there are no
visible kinks. After 20 seconds, three separate kinks appear, which subsequently
move almost uniformly.

The Lorentz contraction. The left kink moves to the left at a low speed v1 ≈ 0.24,
the central kink is almost standing, because its velocity v2 ≈ 0.02 is very small,
and the right kink moves very fast with speed v3 ≈ 0.88. The Lorentz spatial
contraction

√
1− v2

k is clearly visible in this picture: the central kink is the widest,
the left is a bit narrower, and the right one is quite narrow.

The Einstein time delay. The Einstein time delay is also very pronounced. Namely,
all three kinks oscillate (pulsate) because of the presence of a non-zero eigenvalue in
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Figure 7. Decay to three kinks.

the equation linearized on the kink. Indeed, substituting ψ(x, t) = S(x) + εφ(x, t)
into (7.1), we get in the first-order approximation the linearized equation

φ̈(x, t) = φ′′(x, t)− 2φ(x, t)− V (x)φ(x, t), (7.3)
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where the potential

V (x) = 3S2(x)− 3 = − 3
cosh2(x/

√
2)

decays exponentially for large |x|. It is very fortunate that for this potential the
spectrum of the corresponding Schrödinger operator

H := − d2

dx2
+ 2 + V (x)

is well known [154]. Namely, the operator H is non-negative, and its continuous
spectrum is the interval [2,∞). It turns out that H also has a two-point discrete
spectrum: the points λ = 0 and λ = 3/2. It is this non-zero eigenvalue that
is responsible for the pulsations that we observe for the central slow kink, with
frequency ω2 ≈

√
3/2 and period T2 ≈ 2π/

√
3/2 ≈ 5. On the other hand, for the

fast kinks the ripples are much slower, that is, the corresponding period is longer.
This time delay agrees numerically with the Lorentz formulae, which confirms the
relevance of these results of numerical simulation.

Dispersion waves. An analysis of dispersion waves provides additional confirmation.
Namely, the space outside the kinks in Fig. 7 is filled with dispersion waves whose
values are very close to ±1, with an accuracy of 0.01. These waves satisfy with
high accuracy the linear Klein–Gordon equation obtained by linearization of the
Ginzburg–Landau equation (7.1) on the stationary solutions ψ± ≡ ±1:

φ̈(x, t) = φ′′(x, t) + 2φ(x, t).

The corresponding dispersion relation ω2 = k2 + 2 determines the group velocities
of high-frequency wave packets:

ω′(k) =
k√

k2 + 2
= ±

√
ω2 − 2
ω

. (7.4)

These wave packets are clearly visible in Fig. 7 as straight lines whose propagation
speeds converge to ±1. This convergence is explained by the high-frequency limit
ω′(k) → ±1 as ω → ±∞. For example, for dispersion waves emitted by the central
kink the frequencies ω = ±nω2 → ±∞ are generated by the polynomial nonlinearity
in (7.1) in accordance with Fig. 5.

Remark 7.1. These observations of dispersion waves agree with the radiation mech-
anism in Remark 5.16.

The nonlinearity in (7.1) is chosen exactly because of the well-known spectrum
of the linearized equation (7.3). In numerical experiments [123] more general non-
linearities of Ginzburg–Landau type have also been considered. The results were
qualitatively the same: for ‘any’ initial data, the solution decays for large times
to a sum of kinks and dispersion waves. Numerically, this is clearly visible, but
rigorous justification remains an open problem.
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7.2. Numerical observation of soliton asymptotics. Besides the kinks the
numerical experiments [123] also revealed soliton-like asymptotics of type (1.7)
and adiabatic effective dynamics of the form (4.6) for complex solutions of the
1D relativistically invariant nonlinear wave equations (5.20). Polynomial potentials
of the form

U(ψ) = a|ψ|2m − b|ψ|2n (7.5)

were considered with a, b > 0 and m > n = 2, 3, . . . . Correspondingly,

F (ψ) = 2am|ψ|2m−2ψ − 2bn|ψ|2n−2ψ. (7.6)

The parameters a, b, m, and n were taken as follows.
N a m b n
1 1 3 0.61 2
2 10 4 2.1 2
3 10 6 8.75 5

Various ‘smooth’ initial functions ψ(x, 0), ψ̇(x, 0) with supports on the interval
[−20, 20] were considered. The second-order finite-difference scheme with ∆x∼ 0.01
and ∆t ∼ 0.001 was employed. In all cases the asymptotics of type (1.7) were
observed with the numbers 0, 1, 3, and 5 of solitons for t > 100.

7.3. Adiabatic effective dynamics of relativistic solitons. In the numeri-
cal experiments [123] the adiabatic effective dynamics of the form (4.6) was also
observed for soliton-like solutions of type (4.1) of the 1D equations (5.20) with
a slowly varying external potential (4.2):

ψ̈(x, t) = ψ′′(x, t)− ψ(x, t) + F (ψ(x, t))− V (x)ψ(x, t), x ∈ R. (7.7)

This equation is formally equivalent to the Hamiltonian system (2.2) with the
Hamiltonian

HV (ψ, π) =
∫ [

1
2
|π(x)|2 +

1
2
|ψ′(x)|2 + U(ψ(x)) +

1
2
V (x)|ψ(x)|2

]
dx. (7.8)

The soliton-like solutions are of the form (cf. (4.1))

ψ(x, t) ≈ eiΘ(t)ϕω(t)

(
γv(t)(x− q(t))

)
. (7.9)

The numerical experiments [123] qualitatively confirm the adiabatic effective Hamil-
tonian dynamics for the parameters Θ, ω, q, and v, but it has not yet been rigorously
justified. Figure 8 represents solutions of equation (7.7) with the potential (7.5),
where a = 10, m = 6 and b = 8.75, n = 5. The potential is V (x) = −0.2 cos(0.31x)
and the initial conditions are

ψ(x, 0) = ϕω0(γv0(x− q0)), ψ̇(x, 0) = 0, (7.10)

where v0 = 0, ω0 = 0.6, and q0 = 5.0. We note that the initial state does not belong
to the solitary manifold. The effective width (half-amplitude) of the solitons is in
the range [4.4, 5.6]. It is quite small when compared with the spatial period of
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Figure 8. Adiabatic effective dynamics of relativistic solitons.



72 A. I. Komech and E.A. Kopylova

the potential 2π/0.31 ∼ 20. The results of the numerical simulations are shown in
Fig. 8.
• The blue and green colours represent a dispersion wave with values |ψ(x, t)| <

0.01, while the red colour represents a soliton with values |ψ(x, t)| ∈ [0.4, 0.8].
• The soliton trajectory (‘red snake’) corresponds to oscillations of a classical

particle in the potential V (x).
• For 0 < t < 140 the solution is rather distant from the solitary manifold, and

the radiation is rather intense.
• For 3020 < t < 3180 the solution approaches the solitary manifold, and the

radiation weakens. The oscillation amplitude of the soliton is almost unchanged
over a long time, confirming the Hamiltonian type of the effective dynamics.
• However, for 5260 < t < 5420 the amplitude of the soliton oscillation is halved.

This suggests that on a large time scale the deviation from Hamiltonian effective
dynamics becomes essential. Consequently, the effective dynamics gives a good
approximation only on an adiabatic time scale of type t ∼ ε−1.
• The deviation of the effective dynamics from being Hamiltonian is due to

radiation, which plays the role of dissipation.
• The radiation is realized as dispersion waves which bring energy to infinity.

The dispersion waves combine into uniformly moving wave packets with a discrete
set of group velocities, as in Fig. 7. The magnitude of the solution is of order ∼ 1
on the trajectory of the soliton, while the values of the dispersion waves are less
than 0.01 for t > 200, so that their energy density does not exceed 0.0001. The
amplitude of the dispersion waves decays at large times.
• In the limit as t → ±∞ the soliton should converge to a static position cor-

responding to a local minimum of the potential V (x). However, the numerical
observation of this ‘ultimate stage’ is hopeless, since the rate of the convergence
strongly decays with decrease of the radiation.

8. Appendix: attractors and quantum mechanics

The foregoing results on attractors for nonlinear Hamiltonian equations were
suggested by fundamental postulates of quantum theory, primarily the Bohr pos-
tulate on transitions between quantum stationary orbits. Namely, in 1913 Bohr
proposed the following two postulates, which give the ‘Columbus’ solution of the
problem of stability and radiation of atoms and molecules [20].

B1. Atoms and molecules stay in some stationary orbits |En⟩ with energies En,
and sometimes make transitions between the orbits,

|En⟩ 7→ |En′⟩.

B2. Such a transition is accompanied by radiation of an electromagnetic wave of
frequency

ωnn′ = ωn′ − ωn, where ωk =
Ek
ℏ
.

Both these postulates should have become theorems in the quantum theory of
Schrödinger and Heisenberg later discovered. However, this did not happen, and
both postulates are still actively used in quantum theory. This lack of theoretical
clarity hinders the progress in the theory (for example, in superconductivity and in
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nuclear reactions), and in numerical simulation of many engineering processes (of
laser radiation and quantum amplifiers, for instance) since a computer can solve
dynamical equations but cannot take the postulates into account.

8.1. On dynamical interpretation of quantum jumps. The simplest dynamic
interpretation of the postulate B1 is the attraction to stationary orbits (1.8) for any
finite-energy quantum trajectory ψ(t). This means that the stationary orbits form
a global attractor of the corresponding quantum dynamics. However, this attraction
contradicts the linear Schrödinger equation because of the superposition principle.
Thus, in the linear theory Bohr transitions B1 do not exist.

It is natural to suggest that the attraction (1.8) holds for a nonlinear modi-
fication of the linear Schrödinger theory. On the other hand, it turns out that
even the original Schrödinger theory is nonlinear, because it involves interaction
with the Maxwell field. The corresponding nonlinear Maxwell–Schrödinger system
is essentially already contained in Schrödinger’s first papers [186]:iψ̇(x, t) =

1
2
[−i∇+ A(x, t) + Aext(x, t)]2ψ + [A0(x, t) +Aext

0 (x)]ψ,

□Aα(x, t) = 4πJα(x, t), α = 0, 1, 2, 3,
x ∈ R3,

(8.1)
where the system of units is chosen so that ℏ = e = m = c = 1. The Maxwell
equations are written here in the four-dimensional form, where A = (A0,A) =
(A0, A1, A2, A3) denotes four-dimensional potential of the Maxwell field with the
Lorentz gauge Ȧ0 +∇ ·A = 0. Further, Aext = (Aext

0 ,Aext) denotes the external
four-dimensional potential, and J = (ρ, j1, j2, j3) is the four-dimensional current.
To make these equations a closed system, we must also express the density of charges
and currents via the wave function:

J0(x, t) = |ψ(x, t)|2; Jk(x, t) = ψ(x, t) · [(−i∇k +Ak(x, t) +Aext
k (x, t))ψ(x, t)],

(8.2)
where k = 1, 2, 3, and ‘ · ’ denotes the scalar product of two-dimensional real vectors
corresponding to complex numbers. In particular, these expressions satisfy the
continuity equation ρ̇+ div j = 0 for any solution of the Schrödinger equation with
arbitrary real potentials (see [100], § 3.4).

The system (8.1) is nonlinear in the functions (ψ,A) although the Schrödinger
equation is formally linear in the wave function ψ and the Maxwell equations are
linear in the potential A. Now the question arises as to what the ‘stationary orbits’
should be for the nonlinear hyperbolic system (8.1). It is natural to suggest that
these are solutions of the form

(ψ(x)e−iωt, A(x)) (8.3)

in the case of static external potentials Aext(x, t) = Aext(x).
Indeed, in this case the functions (8.3) give stationary distributions of the charges

and currents (8.2). Moreover, these functions are the trajectories of one-parameter
subgroups of the symmetry group U(1) of the system (8.1). Namely, for any solution
(ψ(x, t), A(x, t)) and any θ ∈ R the functions

Uθ(ψ(x, t), A(x, t)) := (ψ(x, t)eiθ, A(x, t)) (8.4)
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are also solutions. The same remarks apply to the Maxwell–Dirac system introduced
by Dirac in 1927:

3∑
α=0

γα[i∇α −Aα(x, t)−Aext
α (x, t)]ψ(x, t) = mψ(x, t),

□Aα(x, t) = Jα(x, t) := ψ(x, t)γ0γαψ(x, t), α = 0, 1, 2, 3,

x ∈ R3, (8.5)

where ∇0 := ∂t. Thus, Bohr transitions B1 for the systems (8.1) and (8.5) with
a static external potential Aext(x, t) = Aext(x) can be interpreted as the long-time
asymptotics

(ψ(x, t), A(x, t)) ∼ (ψ±(x)e−iω±t, A±(x, t)), t→ ±∞, (8.6)

for any finite-energy solution, where the asymptotics hold in local energy norms.
The maps Uθ form a group isomorphic to U(1), and the functions (8.3) are the tra-
jectories of its one-parametric subgroups. Hence, the asymptotics (8.6) correspond
to our general conjecture (1.4) with the symmetry group G = U(1).

Furthermore, in the case of zero external potentials these systems are translation-
invariant. Correspondingly, for their solutions one should expect soliton asymp-
totics of type (1.7) in global energy norms as t→ ±∞:

ψ(x, t) ∼
∑
k

ψk±(x− vk±t) exp(iΦk±(x, t)) + φ±(x, t), (8.7)

A(x, t) ∼
∑
k

Ak±(x− vk±t) +A±(x, t). (8.8)

Here Φk±(x, t) are suitable phase functions, and each soliton

(ψk±(x− vk±t) exp(iΦk±(x, t)), Ak±(x− vk±t))

is a solution of the corresponding nonlinear system, while φ±(x, t) and A±(x, t) are
some dispersion waves which are solutions of the free Schrödinger and free Maxwell
equations, respectively. The existence of the solitons for the Maxwell–Schrödinger
and Maxwell–Dirac systems was established in [29] and [51], respectively.

For the Maxwell–Schrödinger and Maxwell–Dirac equations (8.1) and (8.5) the
asymptotics (8.6) and (8.7) have not yet been proved. One might expect that
these asymptotics should follow by a suitable modification of the arguments in § 5.
Indeed, let the time spectrum of an omega-limit trajectory ψ(x, t) contain at least
two different frequencies ω1 ̸= ω2: for example, ψ(x, t) = ψ1(x)e−iω1t+ψ2(x)e−iω2t.
Then the currents Jα(x, t) in the systems (8.1) and (8.5) contain terms with har-
monics ein∆t with n ∈ Z, where ∆ := ω1 − ω2 ̸= 0. Thus, the nonlinearity inflates
the spectrum as in the U(1)-invariant equations considered in § 5.

In turn, these harmonics ein∆t with n ̸= 0 on the right-hand side of the Maxwell
equations induce radiation of electromagnetic waves with frequencies n∆ according
to the limiting amplitude principle (5.61), since the continuous spectrum of the
Maxwell generator is R\0. Finally, this radiation brings energy to infinity, which is
impossible for omega-limit trajectories, a contradiction proving the validity of the
single-frequency asymptotics (8.6).
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The methods in § 5 give a rigorous justification of similar arguments for the
U(1)-invariant equations (5.4) and (5.16)–(5.18). However, a rigorous justification
for the systems (8.1) and (8.5) is still an open problem.

8.2. Bohr postulates via perturbation theory. The remarkable success of
the Schrödinger theory was the explanation of the Bohr postulates in the case
of static external potentials with the help of perturbation theory applied to the
coupled Maxwell–Scrödinger equations (8.1). Namely, as a first approximation,
the time-dependent fields A(x, t) and A0(x, t) in the Schrödinger equation of the
system (8.1) can be neglected:

iℏψ̇(x, t) = Hψ(x, t) :=
1

2m

[
−iℏ∇− e

c
Aext(x)

]2

ψ(x, t) + eA0
ext(x)ψ(x, t). (8.9)

For ‘sufficiently good’ external potentials and initial conditions, any finite-energy
solution can be expanded in eigenfunctions:

ψ(x, t) =
∑
n

Cnψn(x)e−iωnt + ψc(x, t), ψc(x, t) =
∫
C(ω)e−iωt dω, (8.10)

where the integration is over the continuous spectrum of the Schrödinger opera-
tor H, and the integral decays as t → ∞ in each bounded domain |x| ⩽ R (see,
for example, [112], Theorem 21.1). The substitution of this expansion into the
expression for currents (8.2) gives the series

J(x, t) =
∑
n,n′

Jnn′(x)e−iωnn′ t + (complex conjugate) + Jc(x, t), (8.11)

where Jc(x, t) has a continuous frequency spectrum. Therefore, the currents on the
right-hand side of the Maxwell equation in (8.1) contain, besides the continuous
spectrum, only the discrete frequencies ωnn′ . Hence, the discrete spectrum of the
corresponding Maxwell field also contains only these frequencies ωnn′ . This proves
the Bohr rule B2 in the first order of perturbation theory, since this calculation
ignores the inverse effect of radiation on the atom.

Moreover, these arguments also clarify the asymptotics (8.6). Namely, the cur-
rents (8.11) on the right-hand side of the Maxwell equation in (8.1) produce the radi-
ation when non-zero frequencies ωnn′ are present. However, this radiation cannot
last forever since the total energy is finite. Hence, only the zero frequency ωnn′ = 0
should remain in the long-time limit, which means exactly the single-frequency
asymptotics (8.6) and the limiting stationary Maxwell field.

8.3. Conclusion. The discussion above suggests that the Bohr postulates cannot
be explained by the linear Schrödinger equation alone, but admit a hypothetical
explanation in the framework of the coupled Maxwell–Schrödinger equation.

This fact was the cause of heated discussions among Einstein, Bohr, and other
physicists [21]. In [68] and [69], Heisenberg began developing a nonlinear theory of
elementary particles.
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[86] J.-L. Journé, A. Soffer, and C.D. Sogge, “Decay estimates for Schrödinger
operators”, Comm. Pure Appl. Math. 44:5 (1991), 573–604.

[87] C. Kenig, A. Lawrie, B. Liu, and W. Schlag, “Stable soliton resolution for exterior
wave maps in all equivariance classes”, Adv. Math. 285 (2015), 235–300.

[88] C. E. Kenig, A. Lawrie, and W. Schlag, “Relaxation of wave maps exterior to
a ball to harmonic maps for all data”, Geom. Funct. Anal. 24:2 (2014), 610–647.

[89] C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for
the energy-critical, focusing, non-linear Schrödinger equation in the radial case”,
Invent. Math. 166:3 (2006), 645–675.

[90] C. E. Kenig and F. Merle, “Global well-posedness, scattering and blow-up for
the energy-critical focusing non-linear wave equation”, Acta Math. 201:2 (2008),
147–212.

[91] C. E. Kenig and F. Merle, “Nondispersive radial solutions to energy supercritical
non-linear wave equations, with applications”, Amer. J. Math. 133:4 (2011),
1029–1065.

[92] А.А. Комеч, А.И. Комеч, “Вариант теоремы Титчмарша о свертке для
распределений на окружности”, Функц. анализ и его прил. 47:1 (2013), 26–32;
English transl., A.A. Komech and A. I. Komech, “On the Titchmarsh convolution
theorem for distributions on the circle”, Funct. Anal. Appl. 47:1 (2013), 21–26.

[93] А.И. Комеч, “О стабилизации взаимодействия струны с нелинейным
осциллятором”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1991, № 6, 35–41;
English transl., A. I. Komech, “On the stabilization of interaction of a string with
a nonlinear oscillator”, Moscow Univ. Math. Bull. 46:6 (1991), 34–39.

[94] А.И. Комеч, “Линейные уравнения в частных производных с постоянными
коэффициентами”, Дифференциальные уравнения с частными
производными – 2, Итоги науки и техн. Сер. Соврем. пробл. матем.
Фундам. направления, 31, ВИНИТИ, М. 1988, с. 127–261; English transl.,
A. I. Komech, “Linear partial differential equations with constant coefficients”,
Partial differential equations II, Encyclopaedia Math. Sci., vol. 31, Springer, Berlin
1994, pp. 121–255.

https://zbmath.org/?q=an:1104.78301
https://zbmath.org/?q=an:1104.78301
https://zbmath.org/?q=an:1104.78301
https://doi.org/10.3934/dcds.2004.10.387
https://doi.org/10.3934/dcds.2004.10.387
https://doi.org/10.1007/s00605-004-0232-9
https://doi.org/10.1007/s00605-004-0232-9
https://doi.org/10.1007/s00605-004-0232-9
https://doi.org/10.1063/1.3567957
https://doi.org/10.1063/1.3567957
https://doi.org/10.1007/s00220-006-0088-z
https://doi.org/10.1007/s00220-006-0088-z
https://doi.org/10.1007/s00220-006-0088-z
https://doi.org/10.1016/j.jmaa.2011.12.016
https://doi.org/10.1016/j.jmaa.2011.12.016
https://zbmath.org/?q=an:0920.00012
https://zbmath.org/?q=an:0920.00012
https://doi.org/10.1215/S0012-7094-79-04631-3
https://doi.org/10.1215/S0012-7094-79-04631-3
https://doi.org/10.1007/BF01180181
https://doi.org/10.1007/BF01180181
https://doi.org/10.1002/cpa.3160440504
https://doi.org/10.1002/cpa.3160440504
https://doi.org/10.1016/j.aim.2015.08.007
https://doi.org/10.1016/j.aim.2015.08.007
https://doi.org/10.1007/s00039-014-0262-y
https://doi.org/10.1007/s00039-014-0262-y
https://doi.org/10.1007/s00222-006-0011-4
https://doi.org/10.1007/s00222-006-0011-4
https://doi.org/10.1007/s00222-006-0011-4
https://doi.org/10.1007/s11511-008-0031-6
https://doi.org/10.1007/s11511-008-0031-6
https://doi.org/10.1007/s11511-008-0031-6
https://doi.org/10.1353/ajm.2011.0029
https://doi.org/10.1353/ajm.2011.0029
https://doi.org/10.1353/ajm.2011.0029
https://doi.org/10.4213/faa3102
https://doi.org/10.4213/faa3102
https://doi.org/10.1007/s10688-013-0003-2
https://doi.org/10.1007/s10688-013-0003-2
https://doi.org/10.1007/s10688-013-0003-2
http://mi.mathnet.ru/eng/vmumm3923
http://mi.mathnet.ru/eng/vmumm3923
https://zbmath.org/?q=an:0784.35011
https://zbmath.org/?q=an:0784.35011
https://zbmath.org/?q=an:0784.35011
http://mi.mathnet.ru/eng/intf113
http://mi.mathnet.ru/eng/intf113
http://mi.mathnet.ru/eng/intf113
http://mi.mathnet.ru/eng/intf113
https://doi.org/10.1007/978-3-642-57876-2_2
https://doi.org/10.1007/978-3-642-57876-2_2
https://doi.org/10.1007/978-3-642-57876-2_2
https://doi.org/10.1007/978-3-642-57876-2_2


Attractors of nonlinear Hamiltonian partial differential equations 81

[95] A. I. Komech, “On stabilization of string-nonlinear oscillator interaction”, J. Math.
Anal. Appl. 196:1 (1995), 384–409.

[96] A. I. Komech, “On the stabilization of string-oscillator interaction”, Russ. J. Math.
Phys. 3:2 (1995), 227–247.

[97] A. Komech, “On transitions to stationary states in one-dimensional nonlinear
wave equations”, Arch. Ration. Mech. Anal. 149:3 (1999), 213–228.

[98] А.И. Комеч, “Аттракторы нелинейных гамильтоновых одномерных волновых
уравнений”, УМН 55:1(331) (2000), 45–98; English transl, A. I. Komech,
“Attractors of non-linear Hamiltonian one-dimensional wave equations”, Russian
Math. Surveys 55:1 (2000), 43–92.

[99] A. I. Komech, “On attractor of a singular nonlinear U(1)-invariant Klein–Gordon
equation”, Progress in analysis, vols. I, II (Berlin, 2001), World Sci. Publ., River
Edge, NJ 2003, pp. 599–611.

[100] A. Komech, Quantum mechanics: genesis and achievements, Springer, Dordrecht
2013, xviii+285 pp.

[101] A. Komech, “Attractors of Hamilton nonlinear PDEs”, Discrete Contin. Dyn. Syst.
36:11 (2016), 6201–6256.

[102] A. Komech, “Quantum jumps and attractors of Maxwell–Schrödinger equations”,
Nonlinearity (to appear); 2019, 14 pp., arXiv: 1907.04297.

[103] A. I. Komech and A.A. Komech, “On the global attraction to solitary waves for
the Klein–Gordon equation coupled to a nonlinear oscillator”, C. R. Math. Acad.
Sci. Paris 343:2 (2006), 111–114.

[104] A. Komech and A. Komech, “Global attractor for a nonlinear oscillator coupled to
the Klein–Gordon field”, Arch. Ration. Mech. Anal. 185:1 (2007), 105–142.

[105] A. I. Komech and A.A. Komech, “Global attraction to solitary waves in models
based on the Klein–Gordon equation”, SIGMA 4 (2008), 010, 23 pp.

[106] A. Komech and A. Komech, “Global attraction to solitary waves for Klein–Gordon
equation with mean field interaction”, Ann. Inst. H. Poincaré Anal. Non Linéaire
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