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Abstract. Extremal problems in hypergraph colouring originate implic-
itly from Hilbert’s theorem on monochromatic affine cubes (1892) and van
der Waerden’s theorem on monochromatic arithmetic progressions (1927).
Later, with the advent and elaboration of Ramsey theory, the variety of
problems related to colouring of explicitly specified hypergraphs widened
rapidly. However, a systematic study of extremal problems on hypergraph
colouring was initiated only in the works of Erdős and Hajnal in the 1960s.
This paper is devoted to problems of finding edge-minimum hypergraphs
belonging to particular classes of hypergraphs, variations of these problems,
and their applications. The central problem of this kind is the Erdős–Hajnal
problem of finding the minimum number of edges in an n-uniform hyper-
graph with chromatic number at least three. The main purpose of this
survey is to spotlight the progress in this area over the last several years.
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1. Introduction

We start with basic definitions. A pair of sets H := (V,E) is called a hypergraph
if V is finite and E ⊂ 2V . In this case V is called the set of vertices and E the set
of (hyper)edges, and it is supposed that each vertex is incident to at least one edge.
Note that an ordinary graph is a particular example of a hypergraph. A hypergraph
is said to be n-uniform if all of its edges have cardinality n. Accordingly, any
graph is a 2-uniform hypergraph. In most sections of this survey all the hypergraphs
under consideration are uniform; for brevity we sometimes refer to them just as
n-graphs.

A colouring of a hypergraph with r colours is a map f : V → {1, . . . , r}. A colour-
ing of a hypergraph with r colours is said to be proper if each edge e ∈ E contains
two vertices v1, v2 ∈ e such that f(v1) ̸= f(v2). In other words, the existence of
a proper colouring of a hypergraph with r colours means that the set of its vertices
can be partitioned into r subsets, V = V1∪V2∪ · · ·∪Vr, so that no edge is a subset
of Vi. The minimum number r for which there exists a proper r-colouring of H is
called the chromatic number of the hypergraph H.

There arises a natural problem, first formulated in 1961 by Erdős and Haj-
nal ([67], [68]): find the minimum number of edges in a 2-uncolourable n-uniform
hypergraph. They also introduced the notation m(n) for this quantity.

Let us explain why this problem is so pertinent. In some sense the chromatic
number is indicative of the extent to which the hypergraph is non-trivial. Below
we shall see that this agrees well with the fact that all examples of n-uniform
hypergraphs with large chromatic numbers and few edges are constructed with the
use of probabilistic techniques. Moreover, the first explicit method for constructing
a somewhat comparable example appeared only as recently as 2013 [81]. It also
turns out that the size of the hypergraph is characterized by the number of edges
rather than the number of vertices, and furthermore it does not make sense to
regard the number of vertices as an additional parameter.

The Erdős–Hajnal problem is considered in § 2. In the voluminous literature
2-colourability of hypergraphs is often referred to as property B. This term was
introduced by Miller [126] in honor of Bernstein, who proved [33] that any count-
able family of infinite sets has property B. The Erdős–Hajnal problem and its
generalizations were the subject of a survey by Raigorodskii and Shabanov [132].

Our survey does not cover the complexity aspects of hypergraph colourings. We
note only that in contrast to graphs, even the problem of deciding the 2-colourability
of a 3-uniform hypergraph is NP-complete [59]. In the case of a graph it is sufficient
to suspend the graph by any one of its vertices and to make sure that there are no
edges within each level, which can be realized in a time O(|V |+ |E|).

Nor do we address the structural theory of hypergraphs. The interested reader
is referred to Berge’s classical monograph [28] or the more recent survey [105]
by Kostochka.

Section 3 is devoted to generalizations of the Erdős–Hajnal problem to various
classes of hypergraphs. A generalization to simple (or linear) hypergraphs is con-
sidered in § 3.1. It turns out that the simplicity condition significantly increases the
order of growth of the minimum number of edges in a hypergraph with a given chro-
matic number. The class of intersecting families appears in § 3.2, a class especially
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notable for two reasons: first, there is no way to effectively apply the probabilistic
approach, and second, it turns out that any large intersecting family is 2-colourable.
In § 3.3 we consider the problem with the uniformity condition replaced by a con-
straint on the minimum size of an edge. Surprisingly, dropping the uniformity
condition results in a significantly larger gap between the best known upper and
lower bounds.

Sections 4, 5, and 6 are devoted to variations of the problem with modified
requirements on the colouring. In § 4 we consider colourings of hypergraphs with
prescribed colours (listed colourings). It turns out that the list chromatic number
of a simple graph increases with the average vertex degree. Section 5 is concerned
with the situation which is in a certain sense opposite to the classical one, namely,
a panchromatic colouring requires that each of the colours be used on every edge;
thus, as the number of colours increases, this constraint strengthens rather than
weakens. Section 6 is devoted to generalizations of a well-known theorem of Hajnal
and Szemerédi on equitable colourings of graphs to the case of hypergraphs.

In § 7 we discuss the known problem of discrepancy. In the Erdős–Hajnal problem
a proper colouring has discrepancy less than n. Surprisingly, all estimates of the
size of a minimal (with respect to the number of edges) n-uniform hypergraph with
a positive discrepancy depend only on number-theoretic properties of n.

In § 8 we gather explicit constructions and examples of various parts of the survey.
Understandably, in the same section we consider small values of n.

Finally, § 9 is devoted to mathematical applications of the methods and theorems
mentioned in this survey. Applications to other branches of science can be found
in the monograph [40].

The authors thank Fedor Petrov for an endless list of important remarks. We are
grateful to Margarita Akhmejanova, who kindly made us aware of several interesting
manuscripts by Dmitrii Shabanov and his students. A lot of inaccuracies were
noticed by Alexey Gordeev, Margarita Akhmejanova, Anatoly Kulikov, Dmitrii
Shabanov, and Alexander Sidorenko.

2. The Erdős–Hajnal problem

We recall that the Erdős–Hajnal problem consists in finding the minimum num-
ber m(n) such that there exists an n-uniform hypergraph with m(n) edges which
cannot be properly coloured with two colours.

2.1. Classical estimates. In 1961 Erdős and Hajnal proposed [67] the first
upper bound for m(n), which is attained on the set of all n-element subsets of
a (2n− 1)-element set:

m(n) ⩽

(
2n− 1

n

)
=

(
4 + o(1)

)n
. (2.1)

As early as 1963 Erdős derived the first non-trivial estimates for the quan-
tity m(n).

Theorem 2.1.1 (Erdős [63], [64], 1963). For any n ⩾ 2

2n−1 ⩽ m(n) ⩽ (1 + o(1))
e log 2

4
n2 · 2n. (2.2)
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The lower estimate was improved by Schmidt [141] in 1964 by about a factor of
two. It is noteworthy that both estimates were derived using a simple probabilis-
tic approach, whereas deterministic methods still give no results with comparable
asymptotics: it was only in 2013 that Gebauer [81] constructed an explicit example
of an n-uniform hypergraph with 2n+O(n2/3) edges and chromatic number 3; up to
that moment the smallest base of the exponential was

√
7 . These examples, as well

as the solution of the problem for small values of n, are presented in § 8.

Proof of Theorem 2.1.1. We start by deriving the lower bound. Consider an arbi-
trary n-graph H = (V,E) with |E| < 2n−1 and let us show that it admits a proper
2-colouring.

It turns out to be sufficient to colour each vertex blue or red with probability 1/2
independently of all the other vertices. In this case the probability that the edge e is
monochromatic equals 21−n, and the probability that there exists a monochromatic
edge clearly does not exceed the sum over all edges e ∈ E of the probability that e
is monochromatic. Since there are fewer than 2n−1 edges, this sum is strictly less
than 1. Thus, the random colouring is proper with positive probability, which
proves the existence of a proper colouring.

The proof of the upper bound is not that trivial. To avoid rounding in calcula-
tions, assume that n is even. Consider a set of vertices of cardinality v = n2/2,
and choose m random edges uniformly and independently. The number m will be
specified later.

Easy calculations show that for any fixed colouring C the probability that a ran-
domly chosen edge is monochromatic equals

p :=

(
v1

n

)
+

(
v2

n

)
(

v
n

) ,

where v1 and v2 denote the numbers of vertices of the first and second colour,
respectively. Hence, since the edges are chosen independently, the probability is
(1−p)m that after choosing m random independent edges the colouring C is proper.
Let

q :=
2

(
v/2
n

)
(

v
n

) = 2

(
n2/4

n

)
(

n2/2
n

) = (1 + o(1))
2e

2n
.

Note that p ⩾ q by virtue of the convexity of the sequence
{(

v
n

)}
v⩾0

. Since the

total number of colourings is 2n2/2, it suffices to verify the inequality

2n2/2(1− q)m ⩽ elog 2·n2/2−qm < 1, (2.3)

which holds for an appropriately chosen value of m of the form

m = (1 + o(1))
e log 2

4
n2 · 2n. (2.4)
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Thus, for the chosen value of m the probability is positive that none of the colour-
ings are proper. This means that we have established the existence of a hypergraph
with the required number of edges and chromatic number at least 3. □

Moreover, it follows from our arguments that a random hypergraph on m edges
is almost surely not 2-colourable if m is chosen in accordance with (2.4) but with
another choice of o(1).

Such a concentration of probability is one of the reasons why the upper bound
for a fixed number of colours still remains unimproved. Even for slightly weaker
problems (for example, see § 3.3) we still have no other ways of proving upper
bounds. The situation with lower bounds is quite different.

2.2. Improvements of the lower bound. In their famous 1973 paper [70],
Erdős and Lovász put forward the conjecture that

m(n)
2n

→∞.

In the 1970s this conjecture was proved in a series of papers by Beck [23], [24] and
Spencer [160], who brought Beck’s calculations to optimal form. In these papers
the following estimate was established:

m(n) ⩾ c

(
n

log n

)1/3

· 2n.

We note that the lower bound in Theorem 2.1.1 was proved by substituting a ran-
dom colouring which is completely independent of the hypergraph. In the above
papers this problem was solved using the method of recolouring. In a nutshell, this
method consists in the following: suppose that the hypergraph contains k · 2n−1

edges; then for a random colouring an average of k edges are monochromatic. If
we now randomly recolour the vertices belonging to monochromatic edges, then we
can succeed even for k > 1.

In 2000 Radhakrishnan and Srinivasan [131] modified the Beck–Spencer method
of recolouring and demonstrated that m(n) ⩾ c

√
n/ log n ·2n. In 2009 Pluhár [130]

proposed a very simple and completely new greedy method and derived the inequal-
ity m(n) > cn1/4 · 2n, which, however, is weaker even than the Beck–Spencer
estimates, but is remarkable for its simplicity. Finally, in 2015 Cherkashin and
Kozik simplified [50] the arguments of Radhakrishnan and Srinivasan on the basis
of Pluhár’s ideas. We present these in the next subsection.

2.2.1. Greedy approach. Pluhár’s argument [130] consists in the following. Instead
of a random colouring consider a random ordering of vertices (we denote this order
by π).

Definition 2.2.1. An ordered pair of edges is called a 2-chain if these edges have
exactly one vertex in common. A 2-chain (e1, e2) is said to be ordered according to
the order π if π(v1) ⩽ π(v2) for any two vertices v1 ∈ e1, v2 ∈ e2.

Lemma 2.2.2 (Pluhár [130], 2009). A hypergraph admits a proper 2-colouring if
and only if there exists a vertex order π containing no ordered 2-chains.
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Proof. If there exists a proper 2-colouring, then any order in which all vertices of
one colour precede all vertices of the other colour obviously contains no ordered
2-chains.

Assume that there exists a vertex order π containing no ordered 2-chains. Con-
sider the vertices one by one according to the order π and colour each vertex with
the minimal colour that does not form monochromatic edges on the already coloured
vertices. If a vertex v cannot be coloured, then there exists an edge e2 ∋ v such
that all other vertices of this edge already have the colour 2. Consider the π-least
vertex w ∈ e2. Since w cannot be coloured with the first colour, there exists an
edge e1 ∋ w in which all other vertices have already been coloured with the first
colour. This is a contradiction, since (e1, e2) is a π-ordered 2-chain. Hence, each
vertex can be coloured in this way, and by construction the colouring is proper. □

Remark 2.2.3. There is a simpler way to prove the ‘if’ part (however, it cannot be
generalized to more colours). Let us colour the π-least vertex in each edge with the
first colour, and the π-maximal vertex with the second colour. Note that none of
the vertices will be coloured with both colours, since the hypergraph contains no
π-ordered 2-chains.

Now consider the random order. The probability that a particular 2-chain is
ordered equals

p :=
[(n− 1)!]2

(2n− 1)!
.

Note that the number of 2-chains is not greater than |E|2, hence for p|E|2 < 1 the
hypergraph is 2-colourable with a positive probability. With the use of Stirling’s
formula we obtain the following result.

Theorem 2.2.4 (Pluhár [130], 2009). There exists a constant c > 0 such that for
any n

m(n) ⩾ cn1/4 · 2n.

In particular, Lemma 2.2.2 shows that a hypergraph whose chromatic number
is greater than r should contain many r-chains. This observation is sometimes
referred to as the Lovász criterion, and further investigations for r = 2 were carried
out in [73].

Remark 2.2.5. With use of the greedy approach one can also derive the Caro–Tuza
bound [44] on the independence number. If H = (V,E) is an n-graph, then

α(H) ⩾
∑
v∈V

(
deg(v) + 1/(n− 1)

deg(v)

)−1

,

where deg(v) is the degree of the vertex v.

2.2.2. Mixed approach. We start by presenting the Radhakrishnan–Srinivasan
algorithm, which gives the estimate

m(n) ⩾ c

√
n

log n
· 2n. (2.5)
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In the first step we colour all vertices independently with either colour with prob-
ability 1/2. Then we order the vertices randomly and consider them in accor-
dance with this order. Suppose that the current vertex v appears in a monochro-
matic edge e (with respect to the initial colouring), and that no other vertex of
the edge e has been recoloured so far. Then we change the colour of v with proba-
bility p := (log n)/(2n).

In the next subsection we prove the correctness of the Cherkashin–Kozik algo-
rithm, which gives the result (2.5) with the same constant c in the case of two
colours. In the first step of the algorithm each vertex is coloured independently
with probability (1 − p)/2 with either colour (correspondingly, the vertex remains
uncoloured with probability p). In the second step the remaining vertices are
coloured in accordance with Pluhár’s algorithm.

We conclude this subsection with the Erdős conjecture on the correct order of
growth of m(n).

Conjecture 2.2.6 (Erdős [64], 1964).

m(n) = (1 + o(1))n · 2n.

2.3. The case of r > 2 colours. The problem of finding the minimum num-
ber m(n, r) of edges in an n-uniform hypergraph that admits no proper colouring
with r colours was posed by Herzog and Schönheim [93]. They also proposed direct
generalizations of Theorem 2.1.1 and presented some easy observations. For exam-
ple, the inequalities in Theorem 2.1.1 turn into the inequalities

rn−1 ⩽ m(n, r) ⩽

(
1 + O

(
1
n

))
e

2
n2(log r)(r − 1)rn−1. (2.6)

In this subsection we consider the case of a fixed r and increasing n. In this case
no upper estimates better than (2.6) are known as yet.

The lower bound, in turn, has already been improved several times in the 21st
century. We start with an algorithm due to Kostochka [104] which yields the fol-
lowing result.

Theorem 2.3.1 (Kostochka [104], 2004). If r <

√
1
8

log
log n

2
, then for a = ⌊log2 r⌋

m(n, r) > e−4r2
(

n

log n

)a/(a+1)

rn.

Now let us present a generalization of Pluhár’s algorithm.

Theorem 2.3.2 (Pluhár [130] and Shabanov [148], 2009). For any n ⩾ 2 and r ⩾ 2

m(n, r) ⩾ cn1/2−1/(2r)rn.

Proof. A sequence of edges a1, . . . , ar is called an r-chain if |ai∩aj | = 1 for |i−j| = 1
and ai ∩ aj = ∅ otherwise, and an r-chain is called an ordered r-chain if it follows
from i < j that no vertex of ai exceeds any vertex of aj (with respect to the fixed
total order on V ).
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Pluhár’s theorem [130] states that the existence of a total order on V having
no ordered r-chains is equivalent to r-colourability of the hypergraph H = (V,E)
(the statement and the proof are completely analogous to those of Lemma 2.2.2).
Consider a random order on the vertex set V . Note that the probability of any
r-chain being ordered is

[(n− 1)!]2[(n− 2)!]r−2

((n− 1)r + 1)!
.

On the other hand, the number of r-chains does not exceed 2|E|r/r! (any family
of r edges gives at most two r-chains). Therefore, the inequality

2
|E|r

r!
[(n− 1)!]2[(n− 2)!]r−2

((n− 1)r + 1)!
< 1

guarantees that there exists a proper r-colouring of H. Some technical details
complete the proof of the theorem. □

Now we turn to the generalizations announced in the previous subsection. First
of all, a generalization of the Radhakrishnan–Srinivasan algorithm (Shabanov [147])
yields the estimate

m(n, r) ⩾ c

√
n

log n
rn−1

for all n, r ⩾ 2. Three years later this result was slightly improved.

Theorem 2.3.3 (Shabanov [151], 2012). For any n ⩾ 3 and r ⩾ 3

m(n, r) ⩾
1
2
√

n rn−1.

In the general case the result of Cherkashin and Kozik is formulated as follows.

Theorem 2.3.4 (Cherkashin–Kozik [50], 2015). For any fixed integer r ⩾ 2

m(n, r) ⩾ c

(
n

log n

)(r−1)/r

rn−1. (2.7)

Proof. Let (V,E) be an n-uniform hypergraph with krn−2 edges, with k to be speci-
fied later. To each vertex we assign a weight, a random real number between 0 and 1
(chosen uniformly and independently), and denote it by w. Put p := (2 log n)/n
and call an edge short if the weights of all its vertices lie in an interval of length
less than (1− p)/r. The expected number of short edges does not exceed

krn−2n

(
1− p

r

)n−1

≈ k

rn
,

since we sum up the expectations of the indicator functions of the events A(e, v)
corresponding to the edge e being short and the vertex v ∈ e having the smallest
weight in e for all e and v.

Let us estimate the probability of occurrence of an ordered r-chain without short
edges. Suppose that the edges e1, . . . , er form such an r-chain and ei ∩ ei+1 = {vi}.
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Then since the chain contains no short edges, each w(vi) (1 ⩽ i ⩽ r− 1) lies in the

interval
[
i− ip

r
,
i + (r − i)p

r

]
(otherwise one of the remaining edges of the chain

does not fit on the left or on the right). The probability that all the wi lie in the
required intervals is pr−1, since each interval has length p. Let w0 := 0, wr := 1,
and wi = w(vi). Then all other vertices of the edge ei should fall in the interval
[wi−1, wi]. The probability of this event is

r−1∏
i=0

(wi+1 − wi)n−2 ⩽ r−r(n−2),

where the estimate follows from the inequality between the arithmetic and geometric
means. Accordingly, the expected number of chains in question does not exceed

2|E|r

r!
pr−1r−r(n−2) =

2
r!

kr

(
2 log n

n

)r−1

.

For

k < cr

(
n

log n

)(r−1)/r

the expected number is less than 1/2 for an appropriately chosen constant c > 0.
The same condition on k is sufficient for the expected number of short edges to tend
to zero with increasing n. Consequently, with a positive probability the algorithm
returns a proper colouring of the graph. □

2.4. The case of a large number of colours. Consider the situation where the
number of colours r is much greater than n. In the case of graphs the problem is
trivial, since for any colouring of the vertices of a graph G with χ(G) colours there
should be at least one edge between any two colours. Thus,

m(2, r) ⩾

(
r + 1

2

)
.

On the other hand, the complete graph on r + 1 vertices cannot be coloured with r

colours, and therefore, m(2, r) =
(

r + 1
2

)
.

2.4.1. Upper estimates. Similarly, the complete n-uniform hypergraph on
r(n− 1) + 1 vertices cannot be properly coloured with r colours. Consequently,

m(n, r) ⩽

(
r(n− 1) + 1

n

)
.

Note that for large values of r this example is already better than the main proba-
bilistic bound in (2.6). Erdős posed the conjecture [66] that for any n there exists
an integer r0(n) such that for r > r0 the best possible example is the complete
hypergraph on r(n− 1) + 1 vertices. In other words,

m(n, r) =
(

r(n− 1) + 1
n

)
for r > r0.
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This conjecture was disproved by Alon [10] with the use of the Turán numbers.
The Turán number T (v, b, n) is the minimum number of edges in an n-uniform
hypergraph on v vertices such that any b-element subset of vertices contains an
edge of the hypergraph. It follows immediately from the pigeonhole principle that

m(n, r) ⩽ min
b⩾n

T
(
r(b− 1) + 1, b, n

)
.

With the use of this inequality Alon derived the estimates

m(n, r) ⩽

(
rn
n

)
log n

log n− 1
1

⌊n/ log n⌋

and

m(n, r) ⩽ cn2(log n)
(

3e

4

)n

rn.

Note that for n ⩾ 13 the first of Alon’s estimates disproves Erdős’ conjecture (for
n ⩾ 4, substituting other estimates of Turán numbers also disproves this conjec-
ture). More information about the Turán numbers can be found in the survey [158]
by Sidorenko (an overview of a more general problem of Turán is presented in [97]).

Alon also conjectured [10] that for any n the sequence an := m(n, r)/rn has
a limit. This conjecture was affirmed by Cherkashin and Petrov [52]. We give
a sketch of their proof in § 2.4.3.

With the use of the best estimates on the Turán numbers presented in [159] for
b = n2 (it should be noted that Alon substituted b = n + 1 and b = 1.5n) Akolzin
and Shabanov obtained in [9] the current best upper estimate

m(n, r) ⩽ cn3 · log n · rn.

In conclusion we note that for n = 3 Erdős’ conjecture still remains open; this
case is discussed in § 2.4.4.

2.4.2. Lower bounds. Alon [10] invented the following trick, which employs the
so-called alterations method (see Chap. 3 in [15]): colour an n-graph randomly
with a < r colours, and then recolour dangerous edges. The expected number of
dangerous edges (see end of § 3.1.1) is

|E| · a1−n.

We note that there remain r − a unused colours, and with each of these we can
colour an arbitrary assembly of at most n− 1 vertices in such a way that there are
no monochromatic edges. Thus, for

|E| < an−1(r − a)(n− 1)

the hypergraph can be coloured properly with r colours. Substituting a =
⌊

n− 1
n

r

⌋
,

we get that

m(n, r) ⩾ (n− 1)
⌈

r

n

⌉⌊
n− 1

n
r

⌋n−1

. (2.8)
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Note that Theorem 2.3.2 in our case yields an estimate of the form m(n, r) ⩾
c
√

n rn. Combining the methods of Alon and Cherkashin–Kozik, Akolzin and Sha-
banov [9] derived the estimate

m(n, r) ⩾ c
n

log n
rn.

This result required refining the estimate in Theorem 2.3.4 up to rn for large values
of r, which can be done by carrying out a more precise analysis instead of using
the inequality between the means.

2.4.3. Regularity of the chromatic number. In this subsection we give a sketch of
the proof of the Alon conjecture.

Theorem 2.4.1 (Cherkashin–Petrov [52], 2018). The sequence ar := m(n, r)/rn

has a limit for any fixed n.

The main idea of the proof is to consider the inverse function and employ
subadditivity-like inequalities. Let f(N) denote the maximum chromatic number
of an n-uniform hypergraph with N edges (we extend the definition to f(0) := 1).
Obviously, f is a weakly increasing function and

m(n, r) = min{N | f(N) > r}. (2.9)

Therefore, m(n, r) ∼ Crn is equivalent to f(N) ∼ (N/C)1/n.

Lemma 2.4.2. For any N > 0 and any positive integer p

f(N) ⩽ max
a1+a2+···+ap⩽N/pn−1

(
f(a1) + f(a2) + · · ·+ f(ap)

)
.

Proof. Let H = (V,E) be an n-uniform hypergraph with E = N . We colour
the vertices of the hypergraph randomly and independently with auxiliary colours
η(v) ∈ {1, 2, . . . , p}. Let Vi = η−1({i}), and let Hi be the hypergraph induced by H
on Vi. Suppose that Hi has ai edges. The expected sum

∑
i ai is |E|/pn−1 (since

each edge e ∈ E belongs to each hypergraph Hi with probability 1/pn). Hence,
there exists an auxiliary colouring η with

∑
ai ⩽ N/pn−1. Fix η and colour each Hi

using f(ai) colours in such a way that no colour is used for more than one i. Thus,
we have used a total of

∑
f(ai) colours to properly colour the hypergraph H. □

Various problems and results of this kind were considered in the survey [39].
The rest of the proof consists of a purely analytic argument: it remains to show

that for any function f(N) satisfying the hypotheses of Lemma 2.4.2 the function
g(N) := f(N)N−1/n has a limit as N →∞.

The question of whether m(n, r) is regular with respect to the first argument
remains open: is it true that

lim
n→∞

m(n + 1, r)
m(n, r)

= r?
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2.4.4. The case of 3-graphs. We are interested in estimating the limit of the ratio
m(3, r)/r3. In the previous subsection we showed that such a limit exists. Denote
it by L.

Let us compare the applicability of the above methods in this case. We first note
that the Erdős conjecture implies that L = 4/3, and the example of a complete
3-graph does give the estimate L ⩽ 4/3.

Now we turn to lower bounds. First of all, Alon’s bound in (2.8) yields L ⩾
8/27 = 0.296 . . . . Pluhár’s method in this case gives the estimate L ⩾ 4/e3 =
0.199 . . . . Akolzin and Shabanov presented no specific calculations of constants,
but their method gives the estimate L ⩾ 0.205 . . . , as demonstrated in [49].

The equality (2.9) shows that the asymptotic upper bounds on f(N) and lower
bounds on L are equivalent. The paper [52] contains the following lemma.

Lemma 2.4.3. For cn := ⌈(1− 21/n−1)−n⌉ and any N ⩾ M > 0

f(N) ⩽ N1/n max
M⩽a<cnM

f(a) a−1/n .

It is known that f(0) = 1, f(1) = · · · = f(6) = 2 (this is shown below
in § 8.1), and f(7) = · · · = f(26) = 3 (see [8]). Taking Lemmas 2.4.2 and 2.4.3
into account and carrying out some machine calculations, we obtain the inequality

m(3, r) ⩾ 0.324 . . . · r3

for r > r0.
Finally, we note that the number of r-chains in the graph can be estimated more

accurately than by |E|r/r!.

Proposition 2.4.4 (Cherkashin [49], 2019). Any hypergraph H = (V,E) contains
at most

|E|
2

(
|E|

r − 1

)r−1

r-chains.

The proof is based on a study of the induced r-paths in the auxiliary graph
G = (E,F ). The vertices of G are edges of the original hypergraph H, and a pair
(e1, e2) ∈ E × E of vertices in G is joined by an edge in G if |e1 ∩ e2| = 1. It is
clear that the number of r-chains in H is estimated from above by the number of
r-chains in G.

It remains to apply an estimate obtained by Pippenger and Golumbic [129] for
the number of such paths. This made it possible to improve Pluhár’s bound to
L ⩾ 0.54 . . . .

2.5. The Lovász. local lemma The well-known Brooks’ theorem states that if
a connected graph with vertex degrees at most d is neither a cycle of odd length
nor a complete graph, then it can be properly coloured with d colours.

In the process of solving a similar local problem for hypergraphs the Lovász local
lemma was invented. This lemma is widely used in the most diverse areas of math-
ematics, from combinatorics and probability theory to Diophantine approximations
and analytic number theory. This is one of the few general ways to pass from local
assertions to global assertions.
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Theorem 2.5.1 (Erdős–Lovász [70], 1973). Let A1, . . . , Am be events in a proba-
bility space, and let J(1), . . . , J(m) be subsets of {1, . . . ,m} such that i /∈ J(i). Also
let xi be real numbers with 0 < xi < 1 for 1 ⩽ i ⩽ m. Suppose that the following
conditions are valid:

(a) for any i the event Ai is independent of the algebra generated by the events
{Aj , j /∈ J(i) ⊔ {i}};

(b) for each i

Pr(Ai) ⩽ xi

∏
j∈J(i)

(1− xj),

where Pr(Ai) is the probability of the event Ai .
Then with positive probability none of the events Ai occur.

Sometimes the local lemma is employed just in this form. In the case where all
events have the same probability estimates, we obtain the following result.

Theorem 2.5.2 (symmetric version of the local lemma).Assume that ep(d+1) ⩽ 1,
each event Ai occurs with probability at most p, and |J(i)| ⩽ d for all i. Then with
positive probability none of the events Ai occur.

Proof. Take xi = x = 1/(d+1). Then (1−x)d ⩾ 1/e: for example, this follows from
the definition of the quantity e. Consequently, p ⩽ x(1 − x)d, and the hypotheses
of the local lemma is satisfied. □

Theorem 2.5.2 directly implies the following non-trivial result.

Theorem 2.5.3 (Erdős–Lovász [70], 1973). If each edge of an n-uniform hyper-
graph meets at most 2n−3/n other edges, then the graph can be coloured properly
with two colours.

The next version of the local lemma was obtained by Kozik [113]. We will use it
in § 3.1. More specific versions were used by Beck [25] and Szabó [162].

Lemma 2.5.4. Let X1, . . . , Xm be independent random variables, and let A be
the set of events determined by these variables. For A ∈ A let vbl(A) denote the
minimum set of variables that determine A. For each Xi define the polynomial

wXi
(z) =

∑
A∈A :Xi∈vbl(A)

Pr(A)z|vbl(A)|.

Suppose that there exists a function w(z) such that for any z > 1 and any Xi

w(z) > wXi
(z).

If there exists a τ ∈ (0, 1) such that

w

(
1

1− τ

)
⩽ τ,

then with positive probability none of the events A occur.
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Proof. We apply Lemma 2.5.1 with the parameters

J(i) := {Aj | vbl(Ai) ∩ vbl(Aj) ̸= ∅}

and xi := (1− τ)−| vbl(Ai)| Pr(Ai). It remains only to verify the condition

xi

∏
Aj∈J(i)

(1− xj) ⩾ xi

∏
X∈vbl(Ai)

∏
j:X∈vbl(Aj)

(1− xj)

⩾ xi

∏
X∈vbl(Ai)

(
1−

∑
j:X∈vbl(Aj)

xj

)

⩾ xi

∏
X∈vbl(Ai)

(
1− wX

(
1

1− τ

))

⩾ xi

(
1− w

(
1

1− τ

))| vbl(Ai)|

= Pr(Ai). □

The local version of Theorem 2.3.1 was obtained by Kostochka, Rödl, and
Kumbhat [111]. Local versions of Theorems 2.2.4, 2.3.3, 2.3.4, as well as of the
Radhakrishnan–Srinivasan estimate, were obtained in the same papers as the orig-
inal theorems. The estimate (2.8) admits no local version.

Further development of the combinatorial local theory can be found in [31], for
example.

2.6. Critical hypergraphs. A hypergraph is said to be critical (edge-critical),
if the removal of any of its edges decreases the chromatic number. The following
theorem proved to be rather important, for it appears in different areas of combi-
natorics.

Theorem 2.6.1 (Lovász [119], 1970; Woodall [168], 1972; Seymour [143], 1974;
Burshtein [43], 1976). A critical hypergraph H = (V,E) without vertices of zero
degree and with chromatic number greater than two satisfies the inequality |E| ⩾ |V |.

It should be noted that this theorem is often formulated without the condition
that the hypergraph be edge-critical. Such a formulation is clearly erroneous, since
one can take any hypergraph with chromatic number greater than two and add
a sufficiently large edge to it.

More details about critical hypergraphs can be found in the survey [105] by
Kostochka.

3. Other classes of hypergraphs

3.1. Simple (linear) and b-simple hypergraphs. A hypergraph is said to be
simple (sometimes, linear) if no two different edges share more than one vertex. By
analogy with the quantity m(n, r) we define the quantity s(n, r) as the minimum
number of edges in a simple n-graph that admits no proper r-colouring. Corre-
spondingly, we denote the local version (with respect to the edge degree) by d(n, r).
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3.1.1. Lower bounds. First of all, let us show that the local version of the lower
bound for a simple hypergraph yields a significantly stronger estimate for the num-
ber of edges. This argument is due to Erdős and Lovász [70]. Consider an n-uniform
simple hypergraph H = (V,E) that admits no proper colouring with r colours. We
remove a vertex of maximum degree from each edge and thereby obtain a sim-
ple (n − 1)-graph H1 = (V1, E1) (this is called trimming the graph H). Clearly,
it is still not r-colourable. Hence d(H1) > d(n − 1, r), which means that there
exists a vertex v ∈ V1 of degree at least d(n − 1, r)/n. However, each of the edges
e1, . . . , et ∈ E1 (t > d(n− 1, r)/n) containing v was obtained by removing a vertex
vi ∈ V (i = 1, . . . , t) of higher degree, and due to the simplicity of H all these ver-
tices are distinct. Note that by taking the total sum of the degrees of the vertices vi

we count each edge at most n times, which immediately implies that

s(n, r) ⩾
[d(n− 1, r)]2

n3
.

The best asymptotic lower bounds of the quantity s(n, r) for fixed r follow from
this inequality, and for this reason we estimate only the quantity d(n, r) in this
subsection.

Kostochka [105] showed how to improve the argument that involves trimming.
Above we saw that a simple n-graph H = (V,E) with chromatic number larger
than r contains at least d(n− 1, r)/n vertices of degree at least d(n− 1, r)/n. We
sort the vertices of H in descending order of their degrees, and then we remove
the vertices one by one; in removing a vertex we also remove all the edges incident
to it. It follows from the simplicity of the graph that along with the vertex vi we
remove at least deg(vi) − (i − 1) edges. Hence, in the first ⌊d(n − 1, r)/n⌋ steps
we remove at least⌊

d(n− 1, r)
n

⌋
+

⌊
d(n− 1, r)

n
− 1

⌋
+ · · ·+ 1 ⩾ c

⌊
d(n− 1, r)

n

⌋2

edges, which gives the estimate

s(n, r) ⩾ c
⌊d(n− 1, r)⌋2

n2
.

Lower bounds of the form d(n, r) ⩾ cn1−ε(n)rn−1 were derived for various func-
tions ε(n) tending to zero in papers of Szabó [162], Kostochka and Kumbhat [106],
Shabanov [152], Kozik [113], and Kupavskii and Shabanov [115]. Finally, Kozik
and Shabanov obtained a lower estimate without ε(n).

Theorem 3.1.1 (Kozik–Shabanov [114], 2016). For any r ⩾ 2 and n ⩾ 3

d(n, r) ⩾ cnrn−1.

We sketch the proof of this theorem. The colouring algorithm is amazingly sim-
ple. Fix a value of the parameter p ∈ [0, 1] and choose a cyclic order on r colours.
Consider a random (uniformly and independently distributed) colouring of vertices
with r colours and assign to each vertex a weight, a randomly (uniformly and inde-
pendently) chosen number in the interval [0, 1]. As long as there are monochromatic
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edges we recolour the vertex having the lowest weight among those that have not
yet been recoloured with the next consecutive colour, provided that its weight is
less than p (a vertex with such weight is said to be free).

Since each vertex is recoloured at most once, the algorithm eventually stops.
Now let us give a sketch of the proof that the algorithm returns a proper colouring

with positive probability. We call an edge degenerate if it contains at least n/2 free
vertices, and dangerous if after the initial colouring and the assigning of weights
there is a possibility that this edge becomes monochromatic (that is, all non-free
vertices have colour i, whereas the free vertices have colour i or i− 1).

If the algorithm does not work, then for this order and the precolouring there
exists the structure of a subhypertree with certain properties (exact formulations of
the properties are rather cumbersome, and the proofs are almost tautological). Tak-
ing p := (5 log n)/n and applying the Lovász local lemma in the form of Lemma 2.5.4
completes the proof.

3.1.2. b-simple hypergraphs and upper estimates. First of all, the general Theo-
rem 3.1.4 yields the estimate

s(n, r) ⩽ 1600n4r2(n+1).

It turns out that most of the upper bounds that follow can be established in a more
general form.

A hypergraph is said to be b-simple if any two of its edges share at most b
vertices. Sometimes ([128], [133], [109]) a b-simple n-graph is called a partial Steiner
(n, b + 1)-system. The case b = 1 was considered in the previous subsection, but
now we consider the case of arbitrary b. The quantities s(n, r, b) and d(n, r, b) are
defined by analogy with s(n, r) and d(n, r).

The Kostochka–Kumbhat lower estimates [106] can be generalized to b-simple
hypergraphs. A generalization of Theorem 3.1.1 to b-simple hypergraphs was
obtained by Akhmejanova and Shabanov.

Theorem 3.1.2 (Akhmejanova–Shabanov [5], 2017, [6], 2019). For any b ⩾ 1,
r ⩾ 2, and n ⩾ n0(b)

d(n, r, b) ⩾
1

16e4
nrn−b.

In 2009 Kostochka and Kumbhat [106] obtained an upper bound for s(n, r, b),
which was improved by Kostochka and Rödl a year later.

Theorem 3.1.3 (Kostochka–Rödl [110], 2010). For any r ⩾ 2, b ⩾ 1, and suffi-
ciently large n

s(n, r, b) ⩽ (4er)b(n log r)1+1/brn+n/b.

3.1.3. Hypergraphs with large girth. A cycle of length s in a hypergraph H =
(V,E) is a sequence

(A0, v0, . . . , As−1, vs−1, As),

where A0, . . . , As−1 are distinct edges of H, the edge As coincides with A0, and
v0, . . . , vs−1 are distinct vertices of H such that vi ∈ Ai∩Ai+1 for i = 0, 1, . . . , s−1.
The girth of the hypergraph H is the length g(H) of its shortest cycle. Note that
according to this definition simple hypergraphs are hypergraphs with g(H) > 2.
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Erdős and Lovász proposed a far-reaching generalization of the well-known the-
orem of Erdős [62] that there exist graphs with arbitrarily large chromatic number
and girth.

Theorem 3.1.4 (Erdős–Lovász [70], 1973). For given positive integers s ⩾ 2,
n ⩾ 2, and r ⩾ 2 define the quantities

v := 4 · 20s−1n3s−2rsn−n+s, m := 4 · 20sn3s−2rs(n+1), and d := 20n2rn−1.

Then there exists an n-uniform hypergraph H on v vertices with at most m edges
and with vertex degrees at most d such that g(H) > s and χ(H) > r .

Let ∆(n, r, g) denote the minimum number d such that there exists an n-uniform
hypergraph with chromatic number larger than r, girth g, and maximum vertex
degree d. It follows from Theorem 3.1.4 that for g ⩾ 3

∆(n, r, g) ⩽ 20n2rn+1.

This estimate was improved by Kostochka and Rödl.

Theorem 3.1.5 (Kostochka–Rödl [110], 2010). For all n, r ⩾ 2 and g ⩾ 3

∆(n, r, g) ⩽ nrn−1 log r.

Let us briefly mention the known results for graphs. Kim [100] showed that
∆(2, r, 5) > (r + o(r)) log r for sufficiently large r. On the other hand, Kostochka
and Mazurova [107], and also Bollobás [38], demonstrated that ∆(2, r, g) ⩽ 2r log r
for all g. Tashkinov [163] proved that ∆(2, 3, g) ⩽ 6 for all g.

Ajtai, Komlós, Pintz, Spencer, and Szemerédi [4] proved that any n-uniform
hypergraph H = (V,E) with girth at least 5 and maximum vertex degree d contains
an independent set of size at least

|V |
(

log d

d

)1/(n−1)

.

Spencer conjectured that it suffices to assume only that the hypergraph is simple,
and this was shown by Duke, Lefmann, and Rödl [60]. Frieze and Mubayi strength-
ened that theorem and showed that not only is there an independent set (say, α) of
the indicated size, but also the hypergraph can be coloured with O(|V |/α) colours.

Theorem 3.1.6 (Frieze–Mubayi [80], 2013). Let H be an n-uniform simple hyper-
graph with maximum vertex degree d. Then

χ(H) ⩽

(
d

log d

)1/(n−1)

.

As an immediate corollary we get that any n-uniform hypergraph with vertex
degree at most

c(n)rn−1 log r

can be coloured with r colours.
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3.1.4. The case of a large number of colours. In this subsection we discuss estimates
in the situation where r is much larger than n. With the use of random designs
Grable, Phelps, and Rödl [84] improved the Erdős–Lovász estimate. They showed
that for infinitely many values of r with r > r0(n) the following inequality holds:

s(n, r) ⩽ c · 4nn2r2n−2 log2 r.

Kostochka, Mubayi, Rödl, and Tetali [108] derived the following bounds for the
class of b-simple hypergraphs: for given n and b

c(n, b)(rn−1 log r)1+1/b ⩽ s(n, r, b) ⩽ C(n, b)(rn−1 log r)1+1/b, (3.1)

and moreover, for given b the constant C(n, b) is polynomial in n.
In the same paper [108] they obtained for even r the estimate

s(n, r, b) ⩾
n− b

n

1
(2n−1ne)b/(b−1)

r(n−1)(b+1)/b.

In the case of a simple hypergraph the last estimate was later strengthened.

Theorem 3.1.7 (Shabanov [152], 2012). For n ⩾ 3 and any even r ⩾ 4

s(n, r, b) ⩾ c
n

n2 · 22n
r2n−2.

3.1.5. F -free hypergraphs. Let F be a family of n-graphs. Define the quan-
tity m(r, F ) as the minimum number of edges in an n-graph that contains no
n-graph F ∈ F as a subgraph and has chromatic number at least r +1. Obviously,
the class of b-simple n-graphs is obtained through forbidding (n− b− 1) particular
n-graphs. With the use of this fact Bohman, Frieze, and Mubayi [37] strengthened
the lower bound (3.1) for s(n, r, b).

Even for graphs and rather simple families F the problem is fairly difficult.
Gimbel and Thomassen [82] demonstrated that the minimum number of edges in
a triangle-free graph with chromatic number r has order of growth r3 log2 r. At the
same time, no asymptotic expression is known for the cases of forbidden complete
graph on four vertices or forbidden cycle on four vertices. Bohman, Frieze, and
Mubayi showed that the cases of graphs and hypergraphs differ essentially.

Theorem 3.1.8 (Bohman–Frieze–Mubayi [37], 2010). Let k > n ⩾ 3. Then the
minimum number of edges in a Kn

k -free hypergraph with chromatic number r has
order of growth

rn+o(1),

where Kn
k is the complete n-graph on k vertices. On the other hand, for any s ⩾ 3

there exists an ε(s) > 0 such that the minimum number of edges in a Ks-free graph
with chromatic number r has order of growth at least r2+ε .

Conjecture 3.1.9 (Bohman–Frieze–Mubayi [37], 2010). There is a simple 3-graph
H such that the minimum number of edges in an H-free hypergraph with chromatic
number r has order of growth

r3+o(1).



108 A.M. Raigorodskii and D.D. Cherkashin

In the same paper the authors posed the problem of describing the class of
3-graphs H such that the minimum number of edges in an H-free hypergraph with
chromatic number r has order of growth r3+o(1).

Bohman, Frieze, and Mubayi [37] showed that any n-graph with chromatic num-
ber at least 2(n − 1)(t − 1) + 2 contains a copy of any n-tree with t edges. They
also conjectured that their statement is far from optimal, and this was later proved
by Loh.

Theorem 3.1.10 (Loh [118], 2009). Let H = (V,E) be an n-uniform hypergraph
with chromatic number larger than r . Then H contains a copy of any n-uniform
hypertree with r edges.

Subsequently, Gyárfás and Lehel [87] demonstrated that this theorem follows
directly from the greedy approach of Pluhár.

3.1.6. Steiner systems. A Steiner system with parameters (v, n, l) is an n-graph
on v vertices in which any collection of l vertices is contained in exactly one edge
(as a subset).

Papers by Grable, Phelps, and Rödl [84] and Phelps and Rödl [128] have
described the asymptotic behaviour (up to a constant multiplicative factor) of
the minimum independence number for Steiner (n, k, 2)- and (n, k, 3)-systems for
a given k as n tends to infinity. This asymptotic expression and the inequality
χ(H) ⩾ |V (H)|/α(H), where H = (V,E), yield estimates for the corresponding
chromatic numbers.

The chromatic numbers for Steiner systems have also been studied in the case of
small parameters. For example, Horak [96] showed that any Steiner (25, 3, 2)-system
has chromatic number 3 or 4. The authors of [55] studied various properties of
vertex and edge colourings of (19, 3, 2)-systems.

3.2. Intersecting (cliques) and cross-intersecting families. In this subsec-
tion we show that the gap between the upper and lower bounds increases consider-
ably in the case where the probabilistic method is not applicable.

Definition 3.2.1. An intersecting family is a hypergraph H = (V,E) such that
e ∩ f ̸= ∅ for any e, f ∈ E.

Intersecting families were introduced in combinatorics in the paper [69] by Erdős,
Ko, and Rado, where they found the largest number of elements in an n-uniform
intersecting family on a given set of vertices.

Definition 3.2.2. A cross-intersecting family is a hypergraph H = (V,E) equipped
with a (not necessarily disjoint) covering E = A ∪ B by non-empty sets A and B
of edges such that any a ∈ A intersects any b ∈ B. With a slight abuse of notation,
we write both H = (V,E) and H = (V,A, B) interchangeably.

Cross-intersecting families appeared in the study of maximal and almost maximal
intersecting families (the corresponding notation was introduced in [125]). In the
Hilton–Milner theorem [95] this notion is used to determine the maximum number
of edges in an n-uniform intersecting family with empty intersection on a given
set of vertices. Frankl’s theorem [75] refines the Hilton–Milner theorem in the case
where the maximum vertex degree is bounded. Recently a general approach to the
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study of the indicated problems was proposed by Kupavskii and Zakharov [116]
(which the reader may also consult for a survey). An even wider range of related
problems was considered in [79].

Erdős and Lovász [70] carried over the classical problems of hypergraph colour-
ing to the subclass of intersecting families (cliques, in their terminology). Unfor-
tunately, no probabilistic methods are known so far which would enable one to
effectively construct an intersecting family. For example, it is much more difficult
to derive a probabilistic upper bound in the case of a specific class of hypergraphs
than in the general case.

As shown by Cherkashin in [47], it is somewhat simpler to solve the same prob-
lems for cross-intersecting families.

3.2.1. Chromatic number. We formulate an obvious corollary of Pluhár’s algorithm
(this assertion is also not hard to establish directly).

Corollary 3.2.3. Let H = (V,E) be an intersecting family. Then:
(i) for any vertex v ∈ V there exists a proper colouring of H with three colours

such that one of the colours is used only for the vertex v ;
(ii) if any two edges share at least two vertices, then H can be properly coloured

with two colours.

Below we shall see that intersecting families are in a certain sense divided into
the categories of ‘simple’, or 2-colourable, families and ‘complex’ families, having
chromatic number 3.

The situation with cross-intersecting families is much more interesting. First, we
observe that the chromatic number of a cross-intersecting family can be arbitrarily
large. Take an arbitrary positive integer r > 1 and consider a hypergraph H0 =
(V0, E0) with chromatic number r. Let A := E0 and B := {V0}. It is clear that
H := (V0, A,B) is a cross-intersecting family with chromatic number r. However,
under quite natural conditions (which obviously hold for n-uniform hypergraphs)
the chromatic number of a cross-intersecting family is bounded.

Proposition 3.2.4. Let H = (V,A, B) be a cross-intersecting family. Suppose that
both A and B contain minimal elements of E , that is, there are a ∈ A and b ∈ B
that contain no subedges of H . Then χ(H) ⩽ 4.

Proof. We colour a ∩ b with colour 1, a \ b with colour 2, b \ a with colour 3, and
all other vertices with colour 4. It is easily seen that this is a proper colouring,
because a and b contain no subedges. □

It turns out that if there is no pair of edges e1, e2 ∈ E such that e1 ⊂ e2, and each
edge has size at least 3, then the cross-intersecting family has chromatic number 2
or 3. Moreover, the following theorem is valid.

Theorem 3.2.5 (Cherkashin [47], 2018). Let H = (V,A, B) be a cross-intersecting
family such that there is no pair e1, e2 ∈ A ∪ B with e1 ⊂ e2 (that is, (V,E) is
a Sperner system). Then either χ(H) ⩽ 3 or V = {v1, . . . , vm, u1, . . . , ul}, B =
{{v1, . . . , vm}, {u1, . . . , ul}},and A = {{vi, uj} for all i, j} (modulo A-B-symmetry),
where m, l ⩾ 2.
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We shall prove the following corollary.

Corollary 3.2.6. Let H satisfy the hypotheses of Theorem 3.2.5 and assume that
min(|A|, |B|) ⩾ 3. Then χ(H) ⩽ 3.

Proof. Consider a pair a ∈ A, b ∈ B on which the minimum of |a ∪ b| is realized.
Take arbitrary vertices va ∈ a \ b and vb ∈ b \ a and colour va and vb with colour 1,
a ∪ b \ {va, vb} with colour 2, and all other vertices with colour 3.

We show that this colouring is proper. Since any edge has size at least 3, there
are no monochromatic edges of colour 1. Any edge intersects either a or b, which
means that there are no monochromatic edges of colour 3. Assume that there is
a monochromatic edge e of colour 2. Without loss of generality it may be supposed
that e ∈ A. Then e ⊂ |a ∪ b \ {va}|, and hence |e ∪ b| < |a ∪ b|, a contradiction. □

3.2.2. Maximum number of edges. For such classes of hypergraphs it is also sur-
prisingly interesting to study the problem which is in a certain sense opposite in its
statement to most problems discussed in this survey: find the maximum number
of edges in a ‘non-trivial’ hypergraph. In the case of intersecting families there
are two conventional ways to formalize the notion of a non-trivial hypergraph in
relation to hypergraph colourings. The first way is to call a hypergraph non-trivial
if χ(H) ⩾ 3 (the corresponding maximum will be denoted by M(n)). According to
the second approach, H is non-trivial if and only if τ(H) = n (the corresponding
maximum will be denoted by r(n)), where τ(H) is defined below.

Definition 3.2.7. Let H = (V,E) be a hypergraph. The covering number τ(H)
(also called the transversal number or the blocking number) of the hypergraph H
is defined to be the cardinality of the smallest set A ⊂ V such that any e ∈ E
intersects A.

Although this definition is not directly related to colourings, it turns out that,
first, M(n) ⩽ r(n) (since for an n-graph H it follows from the estimate τ(H) < n
that χ(H) = 2), and second, it is not yet known whether these quantities can take
different values. For this reason, in what follows we use the authors’ notation.

Erdős and Lovász derived the first bounds for M(n).

Theorem 3.2.8 (Erdős–Lovász [70], 1973). The following inequalities hold:

⌊(e− 1)n!⌋ ⩽ M(n) ⩽ nn.

The upper bound in Theorem 3.2.8 follows from Lemma 3.2.12 below. This
bound was improved in [46], [51], and [17]). The current best upper bound is due
to Frankl: r(n) ⩽ nne−n1/4/6 (see [76]).

The lower bound established in Theorem 3.2.8 is attained in Example 3.2.13.
Lovász conjectured [120] that the lower bound is sharp. However, this conjecture
was disproved by Frankl, Ota, and Tokushige [78]. They gave an explicit example
of an n-uniform hypergraph H with τ(H) = n and at least

c

(
n

2

)n−1

(3.2)

edges.
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It is remarkable that a very similar bound can also be found for cross-intersecting
families. We introduce the notion of a non-trivial cross-intersecting family.

Definition 3.2.9. A cross-intersecting family H = (V,A, B) is said to be critical
if:

(a) for any edge a ∈ A and any vertex v ∈ a there is a b ∈ B such that a∩b = {v};
(b) for any edge b ∈ B and any vertex v ∈ b there is an a ∈ A such that

a ∩ b = {v}.

Note that if an n-uniform intersecting family H = (V,E) has τ(H) = n, then
(V,E, E) is a critical cross-intersecting family.

Theorem 3.2.10 (Cherkashin [47], 2018). For a critical cross-intersecting family
H = (V,A, B) let

n := max
e∈A∪B

|e|.

Then
max(|A|, |B|) ⩽ nn.

Proof. We need the following definition.

Definition 3.2.11. Let H = (V,E) be a hypergraph, let W be a subset of V , and
let

HW := (V \W, {e \W | e ∈ E}).

If τ(HW ) ⩾ k, then the hypergraph H is called a flower with k petals and core W .

Lemma 3.2.12 (H̊astad–Jukna–Pudlák [89], 1995). Let H = (V,E) be a hyper-
graph and let n := maxe∈E |e|. If |E| > (k − 1)n , then H contains a flower
with k petals.

Proof. We use induction on n. The basis n = 1 is trivial.
Induction step. Supposing that the statement is true for n−1, we prove it for n.

If τ(H) ⩾ k, then H itself is a flower with k petals (and an empty core). Otherwise,
some set of size k − 1 intersects all the edges of H, and hence at least |E|/(k − 1)
edges must contain some vertex x. The hypergraph H{x} = (V{x}, E{x}) has

|E{x}| ⩾
|E|

k − 1
> (k − 1)n−1

edges, each of cardinality at most n−1. By the induction hypothesis, H{x} contains
a flower with k petals and some core Y . Adding the element x back to the sets
in this flower, we obtain a flower in H with the same number of petals and core
Y ∪ {x}. □

We turn to the proof of the theorem. Suppose the contrary: without loss of
generality assume that |A| ⩾ nn + 1. Then by Lemma 3.2.12 the hypergraph
contains a flower with n + 1 petals. This means that every set b ∈ B intersects the
core of the flower, which means that H is not a critical family, a contradiction. □

For cross-intersecting families Example 3.2.15 presented in the next subsection
shows that the estimate established in Theorem 3.2.10 is sharp.



112 A.M. Raigorodskii and D.D. Cherkashin

3.2.3. Examples. It is evident that for v ⩽ 2n− 1 the set
(

[v]
n

)
is an intersecting

family (even with chromatic number 3 for v = 2n−1). Now we present an example
where the lower estimate in Theorem 3.2.8 is attained.

Example 3.2.13. We construct a series of examples Hn = (Vn, En) using induc-
tion on n.

The basis: take a complete graph on three vertices as H2.
The step. Consider the hypergraph Hn−1 = (Vn−1, En−1) and an n-element

set T that does not intersect Vn−1. Define

Vn := Vn−1 ∪ T and En := {T} ∪ {e ∪ {t} | e ∈ En−1, t ∈ T}.

It is clear that Hn is an n-uniform intersecting family with chromatic number 3.
Moreover,

|En| = n|En−1|+ 1 = n⌊(e− 1)(n− 1)!⌋+ 1 = ⌊(e− 1)n!⌋.

We recall that an example with a larger number of edges was constructed by
Frankl, Ota, and Tokushige [78]. We present their construction in the case of an
even k.

Example 3.2.14. Let k = 2a + 2, a ⩾ 1. The set of vertices consists of a distin-
guished vertex x and 2a+1 disjoint (a+2)-element sets Ai, i = 0, 1, . . . , 2a, none of
which contain x. The edge set consists of edges of 2a + 2 types: for i = 0, 1, . . . , 2a
define

Ei := {e : |e| = k, Ai ⊂ e, |e ∩Aj | = 1, j = i + 1, . . . , i + a (mod 2a + 1)},

and also define the distinguished type

F := {e : |e| = k, x ∈ e, |e ∩Ai| = 1, i = 0, 1, . . . , 2a}.

This is an intersecting set with size

(a + 2)k−1 + (k − 1)(a + 2)a = (1 + o(1))e
(

k

2

)k−1

.

Already for k = 4 there are examples with 42 edges [78], [122] which disprove
the Lovász conjecture, since in Example 3.2.13 we are dealing with 41 edges.

Example 3.2.15. Consider an arbitrary n > 2 and let

V := {vij | 1 ⩽ i, j ⩽ n}, A :=
{
{vi1, . . . , vin} | 1 ⩽ i ⩽ n

}
,

B :=
{
{v1i1 , v2i2 , . . . , vnin} | 1 ⩽ i1, i2, . . . , in ⩽ n

}
.

Note that |A| = n and |B| = nn. Obviously, H := (V,A, B) is a cross-intersecting
family and χ(H) = 3.
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3.2.4. Open questions. We mention several unsolved problems which do not reduce
to a direct improvement of the estimates for the quantities defined above.

I. A lower bound for the number of edges in an intersecting family with chromatic
number 3. It is quite natural to suppose that this estimate is rather strong. Under
such an assumption it would be interesting to establish a stronger lower bound than
an estimate for m(n), that is, a bound for an arbitrary hypergraph. It follows from
results of Österg̊ard [127] (namely, the uniqueness of the 4-graph on which the value
m(4) = 23 is attained) that the minimum number of edges in a 4-uniform clique
with chromatic number 3 is larger than m(4). Unfortunately, no other results in
this direction have been obtained so far.

II. The set of cardinalities of pairwise intersections of edges. For a hypergraph
H = (V,E) consider the set of pairwise intersections of edges:

Q(H) := {|e1 ∩ e2| : e1, e2 ∈ E}.

It follows from Pluhár’s algorithm (the Lovász criterion) that Q(H) contains 1 if
χ(H) > 2.

Erdős and Lovász [70] showed with the use of a theorem of Deza [58] that for
an n-uniform intersecting family H with χ(H) = 3, where n is sufficiently large,
the following estimate holds: 3 ⩽ |Q(H)|. On the other hand, so far no example
with |Q(H)| < (n − 1)/2 is known (this bound is attained on the ‘exponentiated’
Fano plane; see § 8). At the same time, for cross-intersecting families there is
a simple example with |Q(H)| = 4 (see [47]).

It also follows from Lemma 3.2.12 and the estimate m(n) > 2n−1 that the car-
dinality of the maximum intersection of edges in an intersecting family with χ ⩾ 3
cannot be less than n/ log2 n. However, in all examples of non-trivial intersecting
families there are pairs of edges that intersect in at least n− 2 elements.

III. Problems on intersecting and cross-intersecting families which are not related
to colourings are presented in [79].

3.3. Non-uniform hypergraphs. Let H = (V,E) be a hypergraph. Define the
quantity q(H) by

q(H) :=
∑
e∈E

2−|e|,

where |e| is the size of the edge. As a natural generalization of the Erdős–Hajnal
problem we are interested in the minimum value of q(H) over all hypergraphs that
are not 2-colourable and all of whose edges contain at least n vertices. Denote
this minimum by q(n). Theorem 2.1.1 immediately yields the estimate q(n) ⩽
m(n) · 2−n. Unfortunately, we are not aware of any better upper estimate.

Now we turn to lower bounds for q(n). It is clear that arguments similar to the
ones in Theorem 2.1.1 give q(n) ⩾ 1/2, but even the inequality q(n) ⩾ 1 is not
that easy to establish. In 1978 Beck [24] proved the inequality q(n) ⩾ log∗ n, where
log∗ is the iterated logarithm. It should be noted that in 2008 Lu announced [121]
significant progress, but in his argument he made a fundamental mistake, and it
works only for simple hypergraphs (details are given below in this subsection).
Finally, quite recently Duraj, Gutowski, and Kozik established an even stronger
result.
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Theorem 3.3.1 (Duraj–Gutowski–Kozik [61], 2018). There is a constant C > 0
such that

q(n) > C log n. (3.3)

We present here the algorithm without the corresponding calculations. In the
first step we colour each vertex independently and uniformly. Then for each vertex
we sample a weight, a real number chosen uniformly between 0 and 1.

In the second step consider the vertices one by one in the increasing order of
weights. Suppose that the current vertex is v. If after the first step there is
a monochromatic edge e such that v is its heaviest vertex and none of its vertices
with smaller weight have been recoloured, then we change the colour of v. Note
that in any edge which was monochromatic after the first step we have recoloured
at least one vertex (that is, monochromatic edges appear in the final colouring after
all vertices with one of the colours have been recoloured).

Non-uniform simple hypergraphs. Recall that in 2008 Lu [121] announced the
estimate

q(n) ⩾ c
log n

log log n
.

Unfortunately, the proof proposed in that paper works only for simple hypergraphs.
This was noticed by Shabanov, who strengthened these estimates significantly.

We define qg(n) to be the corresponding minimum taken over n-graphs with
girth at least g.

Theorem 3.3.2 (Shabanov [153], 2014). For any n ⩾ 3

q4(n) ⩾
1
2

(
n

log n

)2/3

.

A year later Shabanov improved his own result.

Theorem 3.3.3 (Shabanov [154], 2015). For any n ⩾ 2

q3(n) ⩾ c
√

n , q4(n) ⩾ cn.

Note that these theorems are proved for colourings with r colours.

4. List colourings of graphs and hypergraphs

4.1. List colourings. To each vertex v we assign a list L(v) of colours which
can be used for v. The list chromatic number ch(H) of the hypergraph H is the
minimum number k such that for any lists L(v) of length at least k there exists
a proper colouring of the hypergraphs. List colourings of graphs and hypergraphs
were introduced by Vizing [167] and by Erdős, Rubin, and Taylor [71].

Clearly, ch(H) ⩾ χ(H), since all lists can be taken equal to {1, . . . , ch(H)}. At
the same time, the chromatic number and the list chromatic number are different,
for example, for the graph K3,3, for which ch(K3,3) = 3 (equality is attained for
the lists {1, 2}, {1, 3}, {2, 3} assigned to the vertices of each part).
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Kostochka [104], [105] generalized the Erdős–Hajnal problem to list colourings.
He proposed finding the quantity ml(n, r) defined as the minimum number of edges
in a hypergraph H satisfying the condition ch(H) > r. It is clear that

ml(n, r) ⩽ m(n, r).

No upper estimates are known so far which do not follow immediately from this
inequality. In particular, as in § 3.3, in the case r = 2 no one has succeeded in
deriving an upper bound which would be better than the one provided by Theo-
rem 2.1.1.

Let us turn to lower estimates for ml(n, r). First of all,

ml(2, r) = m(2, r) =
(

r + 1
2

)
,

since the degree of each vertex should be at least r (and, hence, there should be at
least r + 1 vertices).

Repeating the proof of the lower bound in Theorem 2.1.1, we derive the inequality

ml(n, r) ⩾ rn−1.

It was noted by Kostochka in [104] that the proof of the Radhakrishnan–Srinivasan
estimate applies as well to list colourings, whereas the methods of Alon and Kos-
tochka do not. Raigorodskii and Shabanov [132] noted that the estimates due to
Pluhár and Shabanov also cannot be carried over directly to list colourings.

Theorem 4.1.1 (Rozovskaya–Shabanov [135], 2010). For any n ⩾ 3 and r ⩾ 2

ml(n, r) ⩾ (
√

3− 1)
√

n

log n
rn−1.

Proof. We present here another proof, without finding the precise constant (that
is, with a constant c instead of

√
3 − 1). Consider the 1-skeleton of the unit sim-

plex ∆ with
∣∣⋃ L(v)

∣∣ vertices and with the induced metric, and fix a one-to-one
correspondence f between the colours and the vertices of the simplex. Any vertex v
is uniformly mapped onto the 1-skeleton of the subsimplex spanned by f(L(v)).

Fix a parameter p ∈ [0, 1] and on each edge of the simplex distinguish a segment
of length p which is equidistant from the vertices. A vertex v is said to be free if
it lies in the union of the distinguished segments. If v is not free, then we colour v
with the colour corresponding to the vertex of ∆ closest to v. The free vertices will
later be coloured with the colour corresponding to an endpoint of the simplex edge
containing v.

Thus, at the current moment all vertices outside the distinguished segments are
coloured. The expected number of completely coloured monochromatic edges at
the moment does not exceed

|E|r
(

1− p

r

)n

. (4.1)

Now consider the set of edges that may become monochromatic after the free
vertices are coloured. All the vertices of such an edge e that have been coloured
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have the same colour (say, the colour q(e)), and all the free vertices belong to edges
containing f(q). Then we try to colour its vertex that is farthest from f(q) (denote
it by v; with probability 1 it is unique) with the colour corresponding to the second
vertex of the simplex edge containing v.

If the resulting colouring is internally consistent, that is, no vertex is coloured
with two colours, then it is proper. Note that internal inconsistency means that
there exists a pair of edges e1, e2 which colour v with colours q1 and q2 (that is,
a 2-chain). Then none of the vertices of e1 are closer to f(q1) than v, and none of
the vertices of e2 are closer to f(q2) than v. The probability of such an event is∫ (1+p)/2

(1−p)/2

(
2a

r

)n−1(2− 2a

r

)n−1

da < pr2−2n.

In combination with (4.1) this is completely similar to the probabilities occurring
in the proof of Theorem 2.3.4 for r = 2. Hence, putting p := (2 log n)/n completes
the proof of the theorem. □

Theorem 2.3.3 can be carried over to list colourings and provides the current
best result

ml(n, r) ⩾
1
4
√

n rn−1.

We turn to the case when the number of colours significantly exceeds the edge
size. The following unpublished result was obtained by Sudakov.

Theorem 4.1.2. For all n ⩾ 2 and r ⩾ r0(n)

ml(n, r) ⩾ Crn.

Proof. We need to slightly modify Alon’s method. Consider an n-graph H = (V,E)
with |E| = crn and a sample of lists {L(v)}, v ∈ V . Let

L :=
⋃

v∈V (H)

L(v).

Consider a random partition of the set of colours into two classes: with probability
(n−1)/n (independently of each other) each colour occurs in the class L1 and with
probability 1/n it occurs in L2. We note that |V (H)| ⩽ Cnrn+1 and |L | ⩾ r.
Consequently, by the central limit theorem we can assume that for each v ∈ V (H)
the size of the set L(v) ∩L1 is almost surely (1 + o(1))(n− 1)r/n.

We turn to colouring. In the first step we assign to each vertex a random colour
(uniformly and independently) from the list L1. In the second step we consider
monochromatic edges one by one and change the colour of one arbitrarily chosen
vertex in each monochromatic edge to any other colour in the list L(v)∩L2 in such
a way that no new monochromatic edges occur, if possible.

Let us show that with positive probability we obtain a proper colouring. The
expected number of monochromatic edges after the first step is not greater than

|E|(1 + o(1))
(n− 1)r

n

(
(1 + o(1))

(n− 1)r
n

)−n

⩽ c|E|r1−n.
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Thus, for a suitable constant C in the statement of the theorem at most r/3 vertices
are recoloured in the second step. Assume that there is a vertex v that cannot be
recoloured. This means that for any colour in L(v) ∩L2 there are already n − 1
vertices which have been coloured with this colour. Hence, we have already changed
the colour of at least (n− 1)|L(v) ∩L2| vertices, and this almost surely is greater
than r/3. □

In [52] Theorem 2.4.1 was also generalized to list colourings (that is, it was shown
that the sequence ml(n, r)/rn has a limit for a fixed n).

Finally, we remark that it would be interesting to describe the set of pairs n, r,
for which

ml(n, r) < m(n, r),

and in particular, to find out whether there is at least one such pair.

4.2. List colourings of arbitrary hypergraphs. It turns out that under some
natural conditions the list chromatic number of any n-graph grows with the average
degree. This was shown by Alon and Kostochka in [14]. For ordinary graphs it was
established by Alon [12]). We present the current best numerical versions of this
assertion. Here and below we assume that n remains constant, whereas the average
degree of the n-graph increases.

Theorem 4.2.1 (Saxton–Thomason [138], 2015, [139], 2016). Let n be a fixed inte-
ger and let H be an n-graph with average vertex degree d. Suppose that any set of
j ⩾ 2 vertices is contained in at most d(n−j)/(n−1)+o(1) edges. Then

ch(H) ⩾ (1 + od(1))
1

(n− 1)2
logn d.

If H is d-regular, then a stronger inequality is valid:

ch(H) ⩾ (1 + od(1))
1

n− 1
logn d.

The bounds in this theorem are sharp up to a constant, since, as shown by Haxell
and Verstraete [90],

ch(Kn×m) = (1 + o(1)) logn m,

where Kn×m denotes the complete n-partite n-graph with parts of size m. The
proof of this theorem is very similar to that of Theorem 9.4.3.

In § 4.3 below we illustrate the idea of the proof with the following simplest
example.

Theorem 4.2.2 (Saxton–Thomason [137], [140], 2012). Let G be a simple d-regular
n-graph. Then

ch(G) ⩾

(
1

(2n− 1) log n
+ o(1)

)
log d.

4.3. Containers. Since a proper colouring of a hypergraph is the same as a par-
tition of its vertices into independent sets, examining the set I (H) of independent
sets of the hypergraph H is a closely related problem.
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4.3.1. The method of containers for graphs. The method of containers for graphs
appeared in the papers [101] and [102] by Kleitman and Winston. We briefly
describe this method. Consider a graph G = (V,E).

It is clear that

2α(G) ⩽ i(G) ⩽
α(G)∑
m=0

(
|V (G)|

m

)
,

where i(G) = |I (G)|. Obviously, if α(G) is not very close to |V (G)|, then the upper
and lower estimates differ significantly. The method of containers was invented with
the express aim of improving the upper estimate in this case. It is based on a quite
natural idea of associating with each independent set a collection of vertices which
almost completely determines it. Clearly, if we already have a set of vertices, then
we cannot include adjacent vertices in the independent set. The idea is that, given
a set, we choose such vertices greedily. Below we present the formal algorithm and
the Kleitman–Winston lemmas.

Fix an order π on the vertices of the graph G. For each set A ⊂ V (G) define
an internal order on the vertices of A in the following way: the vertex vi has the
maximum degree in the induced graph formed from A \ {v1, . . . , vi−1} (if there are
several ways to choose vi, then we choose the smallest with respect to π). Now we
describe the algorithm: the input consists of an independent set I and a number
q < |I|. Let A = V (G) and S = ∅, and carry out the following steps for s = 1, . . . , q:

1) consider the internal order (v1, . . . , v|A|) on the vertices of A;
2) consider the minimum index js such that vjs

belongs to I;
3) move vjs

from A to S;
4) remove v1, . . . , vjs−1 from A;
5) remove from A all the vertices adjacent to vjs .
The algorithm returns the sequence (j1, . . . , jq) and A ∩ I.
We note that the sets A and S can be uniquely reconstructed from (j1, . . . , jq),

since the algorithm can be executed again. On the other hand,

I = S(j1, . . . , jq) ∪ (A(j1, . . . , jq) ∩ I).

Lemma 4.3.1. Let G be a graph on n vertices, let q be a positive integer, and let
the real numbers R and β ∈ [0, 1] be such that

R > eβqn. (4.2)

Suppose that for any set U ⊂ V (G) such that |U | > R the following inequality is
valid:

e[G(U)] > β

(
|U |
2

)
.

Then for any integer m > q

i(G, m) ⩽

(
n
q

) (
R

m− q

)
,

where i(G, m) is the number of independent sets of size m in the graph G.
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Proof. Since we remove at least js vertices from A in step s,

j1 + · · ·+ jq ⩽ |V (G)| − |A(j1, . . . , jq)|.

Further,

i(G, m) ⩽
∑
(js)

i(G[A(j1, . . . , jq)], m− q) ⩽
∑
(js)

(
|A(j1, . . . , jq)|

m− q

)

for any m > q.

Note that we have exactly
(

n
q

)
sequences (j1, . . . , jq) satisfying the condition

j1 + · · · + jq ⩽ n and such that js ⩾ 1 for each s. Correspondingly, there

are at most
(

n
q

)
terms in the sum. Thus, it suffices to show that for each

sequence (j1, . . . , jq) returned by the algorithm the set A(j1, . . . , jq) contains at
most R elements. Assume the opposite: for a certain output (j1, . . . , jq) the set
A \ {v1, . . . , vjs−1} contains more than R elements for each s with 1 ⩽ s ⩽ q. Then
the subgraph G[A(j1, . . . , js)] has edge density at least β. Hence, each iteration
reduces |A| by a factor of at least (1− β)−1, and we obtain

|A(j1, . . . , jq)| ⩽ (1− β)qn ⩽ eβqn ⩽ R,

which is a contradiction. □

Examples of this method in various combinatorial and additive-combinatorial
problems can be found in the remarkable survey [136].

4.3.2. Containers for hypergraphs. The method of containers for hypergraphs was
independently proposed by Saxton and Thomason and by Balogh, Morris, and
Samotij as a far-reaching (and technically sophisticated) extension of the method
for graphs.

We give an informal definition of a container. Let H = (V,E) be an n-graph.
A family C ⊂ 2V (H) of subsets is called a container if the following conditions are
satisfied:

(a) any independent set I is contained in some C ∈ C ;
(b) there exists a constant q such that the ‘cardinality’ of each container C ∈ C

is at least q times less than that of V (H);
(c) |C | ⩽ 2α|V (H)| for a certain α.
In different formulations ‘cardinality’ means the number of elements, the total

degree of the elements, or the number of edges entirely contained in the set.
At the present moment there are a lot of theorems that establish the existence

of containers under certain conditions on H, which are usually rather general. The
most general theorems were presented in the fundamental papers [138] and [21].
An improvement (and a simplification) of the probabilistic algorithm in [138] was
proposed in [139]. Versions of these theorems for simple hypergraphs are presented
in [140]. A short proof by induction can be found in [32]. Wide applications of the
method of containers to problems in various areas of combinatorics were described
in the survey [22].
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4.3.3. List colourings of arbitrary simple hypergraphs. In this subsection we give
a sketch of how Theorem 4.2.2 is derived from the container theorem in the form
of Theorem 4.3.2 below. Let H = (V,E), let C ⊂ V , and let E[C] denote the set of
edges of H that are contained in C.

Theorem 4.3.2 (Saxton–Thomason [140], [137]). Let H = (V,E) be a simple
d-regular n-graph, and let 0 < δ < 1. Then there exists a family C ⊂ 2V (H) of
subsets such that:

(a) any independent set I is contained in some C ∈ C ;
(b) |E[C]| ⩽ δ|E(H)| for any C ∈ C ;
(c) |C | ⩽ 2α|V (H)| , where α = d−1/(2n−1) .

Let C ⊂ 2V (H). A colouring is said to be C -compatible if for any colour the set
of all vertices coloured with this colour is contained in some C ∈ C .

Theorem 4.3.3 (Saxton–Thomason [137]). Fix a c > 0 and let k0(c) < k < |V (H)|.
If a family C ⊂ 2V (H) satisfies the conditions

(a) |C | ⩽ 2|V (H)|/k ,
(b) |C| ⩽ (1− c)|V (H)| for all C ∈ C ,

then there exists a collection of lists, each of size

(1 + o(1))
log k

− log c
,

which does not admit a C -compatible colouring.

Let

l :=
⌊
(1− ε

log k

− log c

⌋
and t :=

⌊
2l2

c

⌋
, ε > 0.

It turns out that for a sufficiently small ε a random (uniform and independent)
choice of l-element subsets of a t-element set as lists satisfies the hypotheses of the
theorem with positive probability.

Consider the set C in Theorem 4.3.2. We show that the inequality |E[C]| ⩽
δ|E(H)| implies that |C| ⩽ (1− 1/n + δ/n)|V (H)|. Indeed, the sum of the degrees
of the vertices in C satisfies the estimate

d|C| ⩽ n|E[C]|+ (n− 1)(|E(H)| − |E[C]|),

since each edge in E(H) \ E[C] intersects C in at most n− 1 vertices. If |E[C]| ⩽
δ|E(H)|, then

d|C| ⩽ (n− 1 + δ)|E(H)|,

which is equivalent to the desired inequality |C| ⩽ (1− 1/n + δ/n)|V (H)|, since H
is d-regular.

Thus, we can apply Theorem 4.3.3 to the family C and find lists which do not
admit a C -compatible colouring, and hence (by the first property of containers)
not a proper colouring. In this case we get that k = d1/(2n−1), c = (1− δ)/n, and

χ(H) ⩾ (1 + o(1))
log k

− log c
=

(
1

(2n− 1) log n
+ o(1)

)
log d.
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5. Panchromatic colourings

An r-colouring of vertices of a hypergraph is said to be panchromatic if every
edge contains vertices of every colour. This definition, as well as an analogue of
Theorem 2.5.3, appeared in the paper [70] by Erdős and Lovász. Kostochka [103]
posed the problem of finding the minimum number of edges p(n, r) in an n-uniform
hypergraph admitting no panchromatic r-colouring (clearly, m(n, 2) = p(n, 2)).
Kostochka also presented the estimates

1
r
ecn/r ⩽ p(n, r) ⩽ reCn/r, (5.1)

where c < 1 and C ⩾ 4 are positive constants. This result follows from Theo-
rem 9.4.1 and Alon’s estimates [11] on the list chromatic number of a graph. Later
both the upper and lower estimates were improved several times.

A sufficient condition for panchromatic n-colourability was obtained by Kos-
tochka and Woodall in terms of the Hall ratio.

Theorem 5.0.1 (Kostochka–Woodall [112], 2001). Let H = (V,E) be an n-uniform
graph with n ̸= 3, 5 such that for any non-empty subset F of edges the following
inequalities hold:

∣∣∣∣ ⋃
f∈F

f

∣∣∣∣ ⩾


(n2 − 2n + 2)|F |+ n− 1

n
, n ̸= 3, 5,

(n2 − 2n + 2)|F |+ n

n
, n = 3, 5.

Then H is panchromatically n-colourable.

In the same paper they conjectured that there was no need to strengthen the
hypotheses of the theorem for the case n ∈ {3, 5}.

5.1. Upper bounds. By the pigeonhole principle any r-colouring contains
a colour of size at most ⌊(1/r)|V |⌋. The complement of this colour has size at least

|V | −
⌊

1
r
|V |

⌋
=

⌈
r − 1

r
|V |

⌉
.

Consequently, p(n, r) ⩽ p′(n, r). In spirit this argument resembles the standard
estimate for the chromatic number of a graph in terms of the number of vertices
and the independence number.

In [149] and [150] Shabanov derived the following upper estimates:

p(n, r) ⩽ c
n2 log r

r2

(
r

r − 1

)n

if 3 ⩽ r = O(
√

n ) and n > n0; (5.2)

p(n, r) ⩽ c
n3/2 log r

r

(
r

r − 1

)n

if r = O(n2/3) and n0 < n = O(r2); (5.3)

p(n, r) ⩽ c max
(

n2

r
, n3/2

)
log r

(
r

r − 1

)n

for all n, r ⩾ 2. (5.4)
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It is clear that (5.2)–(5.4) give estimates of the form (5.1) with C = 1 under the
condition r ⩽ cn/ log n.

We present the idea that underlies the derivation of most of the upper estimates.
Let p′(n, r) be the minimum number of edges in an n-uniform hypergraph H =

(V,E) such that any subset V ′ ⊂ V of vertices of size |V ′| ⩾
⌈

r − 1
r

|V |
⌉

contains

an edge. In fact, p′(n, r) coincides with

min
|V |

T

(
|V |, r − 1

r
|V |, n

)
(recall that T (a, b, c) denotes the Turán number; see § 2.4.1).

Erdős’ proof of the upper bound in Theorem 2.1.1 can be generalized as follows.

Theorem 5.1.1 (Cherkashin [48], 2018). For all n ⩾ 2 and r ⩾ 2

p(n, r) ⩽ c
n2 log r

r

(
r

r − 1

)n

.

5.2. Lower bounds. We remark that standard probabilistic arguments yield the
estimate

p(n, r) ⩾
1
r

(
r

r − 1

)n

(that is, the lower bound in (5.1), where c = 1). It was significantly improved by
Shabanov [149]:

p(n, r) ⩾ c
1
r2

(
n

log n

)1/3(
r

r − 1

)n

for n, r ⩾ 2, r < n.

Later Rozovskaya and Shabanov [135] showed that

p(n, r) ⩾ c
1
r2

√
n

log n

(
r

r − 1

)n

for n, r ⩾ 2, r ⩽
n

2 log n
.

The proof of the next theorem involves the so-called method of small alterations
(see [15], Chap. 3, and § 2.4.2). The result of this theorem is the best known estimate
for r ⩾ c

√
n .

Theorem 5.2.1 (Cherkashin [48], 2018). For n ⩾ r ⩾ 2

p(n, r) ⩾ e−1 r − 1
n− 1

e(n−1)/(r−1).

Proof. Consider a uniform independent random colouring of the set of vertices
with a > r colours. Then the expected number of pairs (e, q) such that the edge

e ∈ E does not contain the colour q is |E|a
(

a− 1
a

)n

. Therefore, if |E|a
(

a− 1
a

)n

< a− r, then with positive probability there are r colours contained in each edge.

Taking a =
n− 1
n− r

r, we get the existence of a panchromatic colouring for

|E| ⩽ r − 1
n− 1

(
nr − r

nr − n

)n

⩽ e−1 r − 1
n− 1

e(n−1)/(r−1). □
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Theorem 5.2.1 does not admit a local version. We shall prove a somewhat weaker
estimate based on a geometric interpretation of ideas due to Pluhár [130] which can
be combined with the Lovász local lemma. Consider an (r − 1)-dimensional unit
simplex with measure which is continuously and uniformly distributed over the
1-skeleton (edges of the simplex) and the induced metric on this skeleton, and fix
a one-to-one correspondence f between the colours and the vertices of the simplex.

Let us construct a random map of the set of vertices of H onto the 1-skeleton
independently and in accordance with the uniform measure. We try to colour the
hypergraph in the following way: for each edge e and each colour i we assign the
colour i to the vertex of e which is closest to the simplex vertex f(i) (with prob-
ability 1 such a vertex is unique). If this method is internally consistent (that is,
each vertex is coloured at most once), then the colouring is obviously panchromatic.
Now we estimate the probability of internal inconsistency: if the number of edges
is bounded above, then this probability is less than 1, which proves the following
theorem.

Theorem 5.2.2 (Cherkashin [48], 2018). For n ⩾ r ⩾ 2 such that r ⩽ cn/ log n

p(n, r) ⩾ c max
(

n1/4

r
√

r
,

1√
n

)(
r

r − 1

)n

.

5.3. The case of small n/r. Consider the case where the ratio n/r is small (that
is, r > cn/ log n); n/r = const is a good example. The best of the upper bounds
mentioned above in the case n/r = O(log n) is the bound recn/r (see (5.1)), where
c ⩾ 4 is a constant. With the use of the following theorem we establish an estimate
that depends only on n/r.

Proposition 5.3.1 (Cherkasin [48], 2018). For any positive integers m, n, and r

p(mn, mr) ⩽ p′(n, r).

As a corollary of Theorem 5.3.1 and the obvious inequality

max(p(n, r), p(n + 1, r + 1)) ⩽ p(n + 1, r),

we obtain a bound which is best in the case where n/r is small.

Corollary 5.3.2. For any positive integer k ⩽ r

p(n, r) ⩽ p′
(⌈

n

r − k + 1

⌉
k, k

)
.

In particular, if n < r2 , then one can take k := αn/r and obtain

p(n, r) ⩽ c

(
n

r

)2

log
n

r
· en/r.

Theorem 5.2.1 provides a non-trivial lower estimate even in the case of small n/r,
but at the same time it should be noted that there exists an elementary greedy
algorithm.
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Proposition 5.3.3. For all positive integers n ⩾ r

p(n, r) ⩾

⌊
n

r

⌋
.

Proof of Proposition 5.3.3. Consider a hypergraph H = (V,E) such that |E| ⩽
⌊n/r⌋. We take an arbitrary edge e ∈ E and colour any r of its vertices with
different colours. Next we remove from H the edge e and all the vertices that have
been coloured. The remaining hypergraph has |E| − 1 edges and the size of each
edge is at least n− r. Therefore, we can repeat this operation ⌊n/r⌋ times. □

6. Equitable colourings

A vertex colouring is said to be equitable if the cardinalities of the colours differ
by at most 1. Erdős posed the following conjecture, which was later proved by
Hajnal and Szemerédi.

Theorem 6.0.1 (Hajnal–Szemerédi [88]). Let G be a graph all of whose vertices
have degree at most d. Then it can be equitably coloured with d + 1 colours.

A considerably simpler proof is due to Kierstead and Kostochka [99]. They also
formulated a similar result in terms of edge degrees.

Theorem 6.0.2 (Kierstead–Kostochka [98], 2008). Let the graph G be such that
for each edge xy the inequality d(x) + d(y) ⩽ 2r + 1 is satisfied. Then G has an
equitable (r + 1)-colouring.

The problem was generalized to n-graphs in [29] and [161].
The following theorem was proved in [155].

Theorem 6.0.3 (Shabanov [155], 2015). Let H = (V,E) be an n-graph with |V | ⩾
n2 · 2n . If

d(H) ⩽
1
64

2n

√
n log n

,

where d(H) is the maximum vertex degree inH , thenH has an equitable 2-colouring.

Recently this theorem was significantly strengthened.

Theorem 6.0.4 (Akhmejanova–Shabanov [7], 2019). For sufficiently large n and
for r ⩽ 5

√
log n an n-graph H = (V,E) is equitably r-colourable if

|E| ⩽ 0.01
(

n

log n

)(r−1)/r

rn−1 and |V | is divisible by r.

Equitable colourings of simple hypergraphs. Shabanov also considered the
problem in the classes of simple and b-simple hypergraphs. We present a corollary
to the main theorem in [155].

Theorem 6.0.5 (Shabanov [155], 2015). Let H = (V,E) be a simple n-graph. If

d(H) ⩽ c
2n

√
n log n

,

where d(H) is the maximum vertex degree inH , thenH has an equitable 2-colouring.
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The case of non-uniform simple hypergraphs. Shirgazina proved ([156], [157])
that if H = (V,E) is a simple hypergraph with minimum edge-cardinality n,∑

e∈E

r1−|e| ⩽ c
√

k, and |V | is divisible by r,

then H has an equitable r-colouring.

7. Discrepancy

The discrepancy of a 2-colouring of a hypergraph with red and blue colours is
the maximum absolute value of the difference between the number of red and blue
vertices in an edge, taken over all edges of the hypergraph. The discrepancy of
a hypergraph is the minimum discrepancy over all colourings of the hypergraph.
Discrepancy problems were studied in the monographs [124] and [45].

7.1. Hadamard matrices. A Hadamard matrix H is a square matrix of order n
with entries +1 and −1 whose columns are mutually orthogonal. In other words,

H ·HT = nEn,

where En is the identity matrix of size n and HT is the transpose of the matrix H.
There are a lot of explicit constructions for Hadamard matrices. It can easily be

shown that the order n of a Hadamard matrix should be either two or a multiple
of four. The famous Hadamard conjecture states that such matrices exist for all
values of n divisible by four. Details can be found in the fundamental survey [54].

Theorem 7.1.1. Suppose that there exists a Hadamard matrix of order n. Then
there is a family of n sets on n vertices with discrepancy at least

√
n/2.

Proof. Consider the Hadamard matrix H = {hij} of order n such that all the entries
in the first row and the first column are 1s (any Hadamard matrix can be reduced
to such a form by multiplying its rows and columns by −1).

Let J be the n×n matrix of 1s. Note that the entries of (H +J)/2 are 0s and 1s.
The supports of its columns constitute a desired family.

With a colouring we associate a vector v = (v1, . . . , vn) with vi = ±1 (the red
colour corresponds to 1s, the blue to minus 1s). Then

Hv = v1c1 + · · ·+ vncn,

where ci denotes the ith column of H. Put Hv = (L1, . . . , Ln) and let |c| denote
the Euclidean norm. Then

L2
1 + · · ·+ L2

n = |Hv|2 = v2
1 |c1|2 + · · ·+ v2

n|cn|2 = n + · · ·+ n = n2,

since the ci are pairwise orthogonal. Note also that

L1 + · · ·+ Ln =
n∑

i,j=1

vjhij =
n∑

j=1

vj

n∑
i=1

hij = nv1 = ±n.
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Let λ = v1 + · · ·+ vn. Then λ is an even number, and Jv = (λ, . . . , λ). We have

H + J

2
v =

(
L1 + λ

2
, . . . ,

Ln + λ

2

)
,

n∑
i=1

(Li + λ)2 =
n∑

i=1

L2
i + 2λ

n∑
i=1

Li + nλ2 = n2 ± 2nλ + nλ2

= n2 − n + n(x± 1)2 ⩾ n2. (7.1)

Hence, for some i ∣∣∣∣Li + λ

2

∣∣∣∣ ⩾

√
n

2
. □

7.2. Local setting. Beck and Fiala [26] estimated the discrepancy from above in
terms of the maximum vertex degree deg(H) of the hypergraph H.

Theorem 7.2.1 (Beck–Fiala [26], 1981). Let H be a hypergraph with deg(H) = t.
Then

disc(H) ⩽ 2t− 1. (7.2)

They also conjectured that Theorem 7.2.1 can be significantly strengthened.

Conjecture 7.2.2. There exists a constant C such that for any hypergraph H
with deg(H) = t

disc(H) ⩽ C
√

t . (7.3)

However, despite the fact that this conjecture is widely known, the best result
2t − log∗ t (here log∗ t denotes the iterated logarithm) was obtained only in 2016,
by Bukh [42] (intermediate estimates were obtained in [27] and [92]).

7.3. Uniform hypergraphs with positive discrepancy. Let f(n) denote the
minimum number of edges in an n-uniform hypergraph with positive discrepancy.
Quite unexpectedly, all the existing estimates of f(n) depend only on the smallest
non-divisor of n (denoted below by snd(n)).

Obviously, if 2 ∤ n, then f(n) = 1, whereas if 2 | n but 4 ∤ n, then f(n) = 3.
Erdős and Sós were concerned with the question of whether the function f(n)
is unbounded. Alon, Kleitman, Pomerance, Saks, and Seymour [13] proved the
following theorem, which shows, in particular, that f(n) is unbounded.

Theorem 7.3.1 (Alon–Kleitman–Pomerance–Saks–Seymour [13], 1987). Let n be
a positive integer such that 4 | n. Then

c1
log snd(n/2)

log log snd(n/2)
⩽ f(n) ⩽ c2

log3 snd(n/2)
log log snd(n/2)

. (7.4)

To prove the upper bound the authors introduced several definitions. Let M
denote the set of all matrices M with entries in {0, 1} such that the equation Mx = e
has exactly one non-negative solution (here e is the vector with all components equal
to 1). This solution is denoted by xM . Let z(M) be the least positive integer such
that z(M)xM is an integer and let yM = z(M)xM . For each positive integer n,
let t(n) be the least r for which there is a matrix M ∈ M with r rows such that
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z(M) = n (it is clear that t(n) ⩽ n + 1, because z(Jn+1− In+1) = n, where Jn+1 is
the (n+1)× (n+1) matrix of 1s and In+1 is the (n+1)× (n+1) identity matrix).
The upper bound in (7.4) follows from the inequality f(n) ⩽ t(m) proved in [13]
for values of m with ⌊n/m⌋ odd.

Alon and Vũ [16] later showed that

t(m) ⩽ (2 + o(1))
log m

log log m

for infinitely many values of m. However, they noted that the validity of the
inequality t(m) ⩽ c log m for arbitrary m was not obvious. This gap was filled by
Cherkashin and Petrov.

Theorem 7.3.2 (Cherkashin–Petrov [53], 2019). Let n be a positive integer. Then

f(n) ⩽ c log snd(n) (7.5)

for some constant c > 0.

Corollary 7.3.3. Let n be a positive integer. Then

f(n) ⩽ c log log n

for some constant c > 0.

The main idea of the proof is to find a matrix with small entries and determinant
snd(n) which satisfies some technical conditions. We conclude this subsection with
several conjectures.

Conjecture 7.3.4 (Alon–Kleitman–Pomerance–Saks–Seymour [13]). There exists
a function g such that

f(n) = g(snd(n)).

Conjecture 7.3.5 (Alon–Kleitman–Pomerance–Saks–Seymour [13]). There exists
a function Θ such that

f(n) = Θ
(

log snd(n)
log log snd(n)

)
.

7.4. Discrepancy of uniform hypergraphs. Consider an n-uniform hyper-
graph H and all possible colourings of its vertices with two colours. It is clear
that the existence of a colouring such that each edge contains at least k vertices
of each colour is equivalent to the existence of a colouring with discrepancy at
most n− 2k. In this connection it is natural to introduce the quantity mk(n) equal
to the minimum number of edges in an n-uniform hypergraph such that for any
2-colouring of its vertices there is an edge that contains at most k − 1 vertices of
one colour.

The quantity mk(n) was first introduced by Raigorodskii (a very similar problem
with the same notation was considered in [117]). Using the same arguments as in
the proof of Theorem 2.1.1, one can derive the estimate

mk(n) ⩾
2n−1∑k−1
i=0

(
n
i

) .
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In [144]–[146] Shabanov adapted various algorithms and proved that for k ⩽
c log n

mk(n) ⩾ c

(
n

log n

)1/2 (4e)k/2

√
k

2n−1(
n

k−1

) .

In [134] Rozovskaya applied a generalization of Pluhár’s method and showed that
for k ⩽ c

√
n

mk(n) ⩾ cn1/4 2n−1(
n

k−1

) .

In [144] and [145] Shabanov obtained a result corresponding to Theorem 2.1.1
for k < cn/ log n:

mk(n) ⩽ cn2 2n∑k−1
i=0

(
n
i

) .

Finally, Demidovich proved the following theorem.

Theorem 7.4.1 (Demidovich [57], 2019). For any n ⩾ 30 and k ⩾ 2 such that

k ⩽
√

n

log n
,

the following inequality holds:

mk(n) ⩾
√

n

k log n

2n−1(
n

k−1

) .

8. Explicit constructions and small values of variables

8.1. Small parameters. Recall that m(2, r) =
(

r + 1
2

)
, in particular, m(2) = 3.

8.1.1. Fano plane. Let us show that m(3) = 7 and that the only example is the
Fano plane (the projective plane over F2).

We define the operation of merging vertices. Let v1 and v2 be vertices of a hyper-
graph H = (V,E). Then the result of merging v1 and v2 is the hypergraph Hv1v2

in which v1 and v2 are replaced by a single vertex v and the edges of the new
hypergraph are obtained from those of the original one by replacing v1 and (or) v2

by v.
Consider an n-uniform hypergraph H0 which is not 2-colourable. As long as there

is a pair of vertices not contained in any one edge, we merge the pair. After such
an operation the graph remains n-uniform and two-uncolourable, and the number
of edges does not increase. As a result, we obtain an n-uniform two-uncolourable
hypergraph H = (V,E) such that any two of its vertices are adjacent. Hence

|E| ⩾
⌈
|V |
n

⌈
|V | − 1
n− 1

⌉⌉
. (8.1)

On the other hand, if the number of vertices is small, then it is much more
efficient to use an equal number of colours. A randomly chosen equitable colouring
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provides the estimate

m(n) ⩾

⌈(
v

⌈v/2⌉

) ((
v − n

⌈v/2⌉ − n

)
+

(
v − n

⌊v/2⌋ − n

))−1⌉
. (8.2)

Now consider an arbitrary hypergraph H0 that realizes m(3), and apply the
operation of merging until we obtain an unmergeable hypergraph H = (V,E). If
|V | ⩽ 6, then the estimate (8.2) implies that m(3) ⩾ 10, which is not true, since
we already have an example with 7 edges. In the case |V | ⩾ 7 the estimate (8.1)
yields |E| ⩾ 7, with equality only when |V | = 7 and any pair of vertices belongs
to exactly one edge. However, this precisely determines the finite projective plane,
since:

(i) through any two points there is exactly one line incident to both of them;
(ii) any two lines intersect in exactly one point incident to both of them (this is

so because by (i) they share at most one point, and if they do not intersect, then
the remaining line passes through the remaining point x7, but the degree of x7 is 3,
a contradiction);

(iii) there are four points such that no line contains more than two of them (this
follows from (ii), since the complement of any line cannot contain a line).

It is well known (and easily established by exhaustion) that the projective plane
of order 2 is unique. It remains to note that application of the inverse of the merging
operation to the Fano plane immediately reduces the chromatic number.

The Erdős–Hajnal problem was considered in [65] in the case of arbitrary n and
a number of vertices which is linear in n.

The complete 3-graph on seven vertices realizes the estimate m(3, 3) ⩽ 35. The
inequality m(3, 3) ⩾ 27 was established by Akolzin [8]. It is noteworthy that the
same inequality served as a starting point for the paper [108] but was omitted from
its final version.

8.1.2. m(4) and larger values of n. Seymour [142] and Toft [165] independently
showed that m(4) ⩽ 23. They used the example of a hypergraph on 11 vertices
with the following edges:

{1, 2, 9, 10}, {3, 4, 9, 10}, {5, 6, 9, 10}, {7, 8, 9, 10},
{1, 2, 9, 11}, {3, 4, 9, 11}, {5, 6, 9, 11}, {7, 8, 9, 11},

{1, 2, 10, 11}, {3, 4, 10, 11}, {5, 6, 10, 11}, {7, 8, 10, 11},
{1, 3, 5, 8}, {1, 3, 6, 7}, {1, 4, 5, 7}, {1, 4, 6, 7}, {1, 4, 6, 8},

{2, 3, 5, 7}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 4, 5, 7}, {2, 4, 5, 8}, {2, 4, 6, 8}.

Toft obtained this example as a particular case of a construction yielding the rela-
tion (8.5). Österg̊ard [127] proved by a computer search that m(4) = 23, and the
example on 11 vertices is unique.

For m(5) the range is rather wide — the best estimates are 29 ⩽ m(5) ⩽ 51, the
lower bound was derived in [3], and the upper was established by the construction
for (8.4).

8.2. Recurrence relations. The following proposition summarizes various recur-
rence relations. Some other relations can be found in [3] and [123]. They are all
established by explicit constructions.
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Proposition 8.2.1 (Abbott–Moser–Hanson–Toft [2], [1], [165]). For any positive
a, b, n ⩾ 2 the following inequalities hold:

m(ab) ⩽ m(a)[m(b)]a; (8.3)

m(n) ⩽ m(n− 2)n + 2n−1 if n is odd; (8.4)

m(n) ⩽ m(n− 2)n + 2n−1 +
1
2

(
n

n/2

)
if n is even; (8.5)

m(n) ⩽ (2n− 1)(m(n− 2) + 1). (8.6)

Let us prove the inequality (8.3). Suppose that Ha and Hb are hypergraphs on
which the values of m(a) and m(b) are attained. We shall use them to construct
a hypergraph H that gives the necessary estimate. We replace each vertex of Ha

by a copy of Hb. Thus,
V (H) :=

⊔
v∈V (Ha)

V (Hv
b ).

Now from each edge of Ha we make an edge of H by replacing the vertex of Ha by
an edge of the corresponding copy of Hb in all possible ways:

E(H) :=
{ ⊔

1⩽i⩽a

evi
| (v1, . . . , va) ∈ E(Ha), evi

∈ E(Hvi

b )
}

.

Clearly, |E(H)| = m(a)[m(b)]a. Since Hb is not 2-colourable, for any 2-colouring
of H each copy of Hb contains a monochromatic edge. Since Ha is not 2-colourable,
out of these edges we can assemble a monochromatic edge of H, which means that
H is not 2-colourable, as required.

8.3. Asymptotic explicit constructions. First of all, note that all n-element
subsets of a (2n− 1)-element set form a hypergraph with chromatic number 3 and

with
(

2n− 1
n

)
= (4 + o(1))n edges.

Substituting various explicit constructions into recurrence relations makes it pos-
sible to obtain hypergraphs with at least (2.65 . . . + o(1))n edges. This number is
attained on the hypergraph obtained by repeated application of (8.3) to Fano planes
(note that the resulting hypergraph is an intersecting set).

In 2013 Gebauer constructed a hypergraph with 2n+O(n2/3) edges which admits
no proper 2-colouring (and a similar example with (r + o(1))n edges for r colours).
We present the latter construction. For simplicity, below we ignore divisibility
problems.

Theorem 8.3.1 (Gebauer [81], 2013). For any r there exists an explicit construc-
tion of an n-uniform hypergraph H = (V,E) admitting no proper r-colouring and
such that

|E(H)| = (r + o(1))n.

Proof. Let
V := {(i, j) | 1 ⩽ i ⩽ k, 1 ⩽ j ⩽ rt} = [k]× [rt]



Extremal problems 131

for some positive integer t and k = rtn/t. We define the set of edges in the following
way:

E :=
⋃

A⊂[rt]
|A|=t

⋃
0⩽iα<k

α∈A

⋃
B⊂[k]
|B|=n/t

{((β + iα) mod k, α) | α ∈ A, β ∈ B}.

Note that

|E| ⩽
(

rt
t

)
kt

(
k

n/t

)
⩽ (rt)t

(
rtn

t

)t

(ert)n/t(rn)trt2en/trn.

Let

t :=
(

n

log r

)1/3

.

Note that (rn)t ⩽ n2t = e2t log n = eo(n). Moreover, rt2 = ro(n) and en/t = eo(n).
As a result, |E(H)| = (r + o(1))n.

Now we show that H admits no proper colouring. Assume the opposite and
consider a proper colouring. We call a colour q a major colour for a line [k]×{i} if
the line has at least ⌊k/r⌋ vertices. By the pigeonhole principle every line [k]×{i}
has at least one major colour. Similarly, we obtain a set A ⊂ [rt] of lines with the
same major colour q such that |A| ⩾ t. Next, for any fixed β the proportion of
{iα}α∈A such that {((β+iα) mod k, α) | α ∈ A} is contained in q is at least (1/r)t.
By the linearity of the mathematical expectation there is a choice of {iα}α∈A such
that at least k(1/r)t = n/t indices β ∈ B give q-free sets {((β + iα) mod k, α) |
α ∈ A}. Therefore, for any colouring there is an edge with colour q, which is
a contradiction. □

The same example carries over to the case of panchromatic colourings.

Theorem 8.3.2 (Cherkashin [48], 2018). Let r = o(
√

n/ log n ). Then there exists
an explicit construction of an n-uniform hypergraph H = (V,E) admitting no
panchromatic r-colouring and such that

|E(H)| =
(

r

r − 1
+ o(1)

)n

.

Proof. We construct a hypergraph H1 = (V1, E1) in the following way. Fix an
integer t | n and put

k :=
⌈(

r

r − 1

)t ⌉
n

t
.

Then V := {(i, j) | 1 ⩽ i ⩽ k, 1 ⩽ j ⩽ rt} = [k] × [rt]. We define the set of edges
as follows:

E :=
⋃

A⊂[rt]
|A|=t

⋃
0⩽iα<k

α∈A

⋃
B⊂[k]
|B|=n/t

{((β + iα) mod k, α) | α ∈ A, β ∈ B}.
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Note that

|E| ⩽
(

rt
t

)
kt

(
k

n/t

)
⩽ (rt)t

((
r

r − 1

)t
n

t

)t(
e

(
r

r − 1

)t)n/t

⩽ (rn)t

(
r

r − 1

)t2

en/t

(
r

r − 1

)n

.

Let t :=
√

n/log n . Since r = o(
√

n/log n ), we can see that (rn)t ⩽ n2t =
e2t log n = eo(n/r). Moreover,(

r

r − 1

)t2

=
(

r

r − 1

)o(n)

and en/t = eo(n/r).

As a result, |E(H)| = (r/(r − 1) + o(1))n.
Now we show that H has no panchromatic colouring. Assume the opposite

and consider a panchromatic colouring. We call a colour q a minor colour for
a line [k]× {i}, if it has at most ⌊k/r⌋ vertices. By the pigeonhole principle every
line [k]×{i} has a minor colour. Again, there is a set A ⊂ [rt] of lines with the same
minor colour q and |A| ⩾ t. Next, for any fixed β the proportion of {iα}α∈A such
that {((β + iα) mod k, α) | α ∈ A} has no colour q is at least ((r − 1)/r)t. By the
linearity of the mathematical expectation there is a choice of {iα}α∈A such that at
least k((r−1)/r)t = n/t indices β ∈ B give q-free sets {((β+iα) mod k, α) | α ∈ A}.
Thus, there is an edge without the colour q, which is a contradiction. □

9. Applications

9.1. Hilbert’s monochromatic cubes. The pioneering result related to colour-
ings of hypergraphs is in fact Hilbert’s theorem [94] on monochromatic affine cubes.
An affine cube for a set A ⊂ Z and a number x is the set of numbers

HC(A, x) := {x + Σ(B) | B ⊂ A},

where Σ(B) denotes the sum of the elements of the set B. The dimension of the
cube is |A|. We note that sometimes hypercubes are also considered for multisets A.

Hilbert’s theorem states that for any n and r there exists an N such that for any
colouring of the set [N ] with r colours it contains a monochromatic affine n-cube.
Denote the minimum value of such N by h(n, r). Hilbert’s proof gives the estimate

h(n, r) ⩽ r((3+
√

5 )/2)n

.

The asymptotic behaviour of the quantity h(2, r) was established by Brown, Erdös,
Chung, and Graham [41]:

h(2, r) = (1 + o(1))r2.

Conlon, Fox, and Sudakov [56] improved a result due to Hegyvári [91] and showed
that

h(n, r) ⩾ rcn2
.
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In [86] and [85] Gunderson, Rödl, and Sidorenko derived the estimate

h(n, r) ⩾ r(2n−1/n)(1−o(1)).

Finally, quite recently Balogh, Lavrov, Shakan, and Wagner [20] demonstrated that
for any constant ε > 0

h(n, r) ⩾ min(W (c(ε)k2, 2), 2k2.5−ε

),

where W is the van der Waerden number, which we introduce in the next subsection.

9.2. Van der Waerden function. The well-known theorem of van der Waer-
den [166] states that if a sufficiently long segment [N ] of positive integers is coloured
with r colours, then it contains a monochromatic arithmetic progression of pre-
scribed length. If the length of the desired progression is denoted by n, then the
function W (n, r) returns the smallest integer N for which the theorem is valid.

The problem of finding the value of W (n, r) can be reformulated in the fol-
lowing way: find the smallest integer N , for which the hypergraph H(N, n) =
([N ], AP(N, n)) is not r-colourable, where AP(N, n) denotes the set of arithmetic
progressions of length n composed of integers from 1 through N .

We note that this hypergraph is ‘almost’ simple in the sense that most pairs of
edges share at most one vertex. Modifications of methods employed in colouring
simple hypergraphs give the best lower estimates which do not depend on the
number-theoretic properties of n (the best estimates in the case of a prime n − 1
were presented in [30] and [34]). These modifications were presented in almost
all the papers cited in § 3.1. Correspondingly, the current best lower estimate is
established by a modification of the proof of Theorem 3.1.1.

Theorem 9.2.1 (Kozik–Shabanov [114], 2016). For any r ⩾ 2 and n ⩾ 3

W (n, r) ⩾ crn−1.

At the same time, the best known upper estimate for an arbitrary n involves an
exponentiation tower.

Theorem 9.2.2 (Gowers [83], 2001). For any r ⩾ 2 and n ⩾ 3

W (n, r) ⩽ 22r22
n+9

.

For n = 3 Bloom [35] recently proved that

W (3, r) ⩽ 2cr(log r)4 .

It should also be mentioned that Graham has offered $ 1000 for a proof or disproof
of the inequality

W (n, 2) < 2n2
.
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9.3. Explicit estimates in Folkman’s theorem. For a set A of integers define
the set of its partial sums as

SA := {Σ(B) | B ⊂ A, B ̸= ∅},

where Σ(B) is the sum of the elements of the set B. Take the hypergraph H(N, k)
whose vertices are the integers from 1 through N and whose edges are the sets SA

for all A ⊂ [N ] of size k such that SA ⊂ [N ] (that is, the sum of the numbers
in A does not exceed N). Clearly, the size of any edge does not exceed 2k − 1.
Define F (k) as the smallest number N such that the hypergraph H(N, k) is not
2-colourable. Folkman’s famous theorem states that such a number F (k) exists for
any k.

Erdős and Spencer [72] noted that the size of an edge cannot be less than
k(k +1)/2 (this value is attained on A = {1, . . . , k}) and that at most (kN)log uu2k

edges have size at most u. Then they randomly (uniformly and independently)
coloured the vertices with two colours, estimated the probability of success, and
derived the estimate

F (k) ⩾ 2ck2/ log k.

Quite recently this result was significantly improved by a group of authors.

Theorem 9.3.1 (Balogh–Eberhard–Narayanan–Treglown–Wagner [19], 2017).
The following estimate holds:

F (k) ⩾ 22k−1k−1
.

Proof. Consider the class of 2-colourings in which n and 2n have different colours
for any n. Such colourings are uniquely determined by an arbitrary colouring of
the odd numbers. The key observation is that in such a colouring there are no
monochromatic edges of non-maximal size. Indeed, assume that for a set A there
are two equal representatives of S(A). Then

Σ(B) = Σ(C)

for B, C ⊂ A, which is equivalent to

Σ(B \ C) = Σ(C \B).

However, in that case

2Σ(B \ C) = Σ(B \ C ∪ C \B),

which gives elements of different colours in S(A).
Note that if |S(A)| = 2k − 1, then S(A) contains exactly 2k−1 odd elements.

Then the probability that S(A) is monochromatic in a randomly (uniformly and
independently) chosen 2-colouring of odd numbers is equal to 21−2k−1

. Hence, the
expected number of monochromatic edges in H(N, k) is at most(

N

k

)
· 21−2k−1

,

which is less than 1 for N < 22k−1k−1
. Thus, with positive probability there exists

a proper 2-colouring. □
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One can try to improve this estimate by replacing the simplest method of random
colouring with a more progressive one, but the improvement is expected to be rather
minor, whereas the current best upper estimate also involves an exponentiation
tower [164]:

F (k) ⩽ 2232
3..

.3

with total height 4k − 3.

9.4. Theorems of Erdős–Rubin–Taylor type. Let N(n, r) denote the mini-
mum number of vertices in an n-partite graph with list chromatic number larger
than r.

Theorem 9.4.1 (Erdős, Rubin, Taylor [71], 1979). For any r

m(r) ⩽ N(2, r) ⩽ 2m(r).

Kostochka proposed two generalizations of Theorem 9.4.1 (recall that p(n, 2) =
m(n, 2) = m(n) by definition). We present the proof of one of them.

Theorem 9.4.2 (Kostochka [103], 2002). For all r, n ⩾ 2

p(r, n) ⩽ N(n, r) ⩽ np(r, n).

Proof. Let H = (V,E) be an r-graph with the edge set E = {e1, . . . , ep(r,n)} which
admits no panchromatic n-colouring. Consider the complete n-partite graph G =
(W, A) with parts W1, . . . ,Wn, where Wi = {wi,1, . . . , wi,|E|} for 1 ⩽ i ⩽ n. The
ground set for the lists is V . Recall that each ei is an r-subset of V . For any
i = 1, . . . , n and j = 1, . . . , |E| define L(wi,j) := ej .

Assume that f is a proper colouring of G which corresponds to these lists. Since
G is a complete n-partite graph, each colour is used on at most one part. Then f
induces an n-colouring gf on V : gf (v) has the colour i such that v equals f(wi,j)
for some j or equals 1 if there is no such wi,j at all. Since for each j all the
vertices in {w1,j , w2,j , . . . , wn,j} must get different colours in f , the colouring gf

is a panchromatic n-colouring of H, which is a contradiction. Thus, N(n, r) ⩽
np(r, n).

Now consider a complete n-partite graph G = (W, A) with parts W1, . . . ,Wn and
|W | < p(r, n). Let L be an arbitrary assignment of r-lists for W . Let H = (V,E)
be the hypergraph with

V :=
⋃

w∈W

L(w) and E := {L(w) | w ∈ W}.

Since |E| = |W | < p(r, n), there exists a panchromatic n-colouring g of the hyper-
graph H. We define the colouring fg of the vertices of W as follows: if w ∈ Wi,
then in the edge L(w) of H we choose any vertex v with g(v) = i and we let
fg(w) = v. Then vertices in different parts cannot get the same colour, and f is
a proper colouring of G which is consistent with the lists. This proves the inequality
N(n, r) ⩾ p(r, n). □

Let Q(n, r) denote the minimum number of edges in an n-uniform n-partite
hypergraph with list chromatic number larger than r.
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Theorem 9.4.3 (Kostochka [103], 2002). For all r, n ⩾ 2

m(r, n) ⩽ Q(n, r) ⩽ nm(r, n).

9.5. Colourings of generalized Kneser graphs. Let K(n, k, s) denote the gen-
eralized Kneser graph, that is, the graph with vertex set

(
[n]
k

)
and with edges con-

necting pairs of vertices whenever they correspond to sets that intersect in s or
fewer elements, where [n] = {1, . . . , n}. The original Kneser graphs correspond to
s = 1.

Lovász’s famous theorem (a positive solution of the Kneser conjecture that had
remained open for thirty years) states that χ[K(n, k, 1)] = n − 2k + 2 for n ⩾ 2k.
For fixed k and s the chromatic numbers of the generalized Kneser graphs were
studied by Frankl and Füredi [74], [77]. We are interested in the case where k is
close to half of n and s is small.

Theorem 9.5.1 (Bobu–Kupriyanov [36], 2016). For all s < n/2

s + 2 ⩽ χ

[
K

(
n,

n

2
, s

)]
⩽ 2

(
2s− 1

s

)
.

For s ⩽ s′
√

n there exists a constant c = c(s′) such that

χ

[
K

(
n,

n

2
, s

)]
⩽ cn.

The lower bound follows immediately from Lovász’s theorem. The first of the
upper estimates is a particular case of the next lemma with

H =
(

[2s− 1],
(

[2s− 1]
s

))
,

that is, H is a complete s-graph on 2s− 1 vertices.

Lemma 9.5.2 (Balogh–Cherkashin–Kiselev [18], 2019). Let H = (V,E) be a hyper-
graph with discrepancy at least s and with |V | ⩽ n. Then

χ

[
K

(
n,

n

2
− t, s

)]
⩽ 2|E|.

Proof. We embed the graph H in [n]. For any hyperedge e ∈ E we define the
colours 1e and 2e in the following way (where e denotes the complement of e):

1e :=
{

A ∈ V

(
K

(
n,

n

2
− t, s

)) ∣∣∣∣ A ∩ e| ⩾ |e|+ s

2

}
;

2e :=
{

A ∈ V

(
K

(
n,

n

2
− t, s

)) ∣∣∣∣ A ∩ e| ⩾ |e|+ s

2

}
.

Note that these colours form independent subsets of our graph, since vertices of the
same colour intersect in at least s points.

Any subset A ⊂ [n] of size n/2 can be viewed as a colouring of the vertices of H
with two colours as follows: vertices in V (H) ∩ A are considered blue and vertices
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in V (H)\A are red. By the condition imposed on the discrepancy of H there exists
a hyperedge e ∈ E such that ∣∣ |A ∩ e| − |A ∩ e|

∣∣ ⩾ s.

Since |A ∩ e|+ |A ∩ e| = |e|, we have

|A ∩ e| ⩾ |e|+ s

2
or |A ∩ e| ⩽ |e| − s

2
.

Hence, either A ∈ 1e or A ∈ 2e, respectively, because |A ∩ e| ⩾ (|e| + s)/2 is
equivalent to |A ∩ e| ⩽ (|e| − s)/2. Thus, all vertices are coloured with one of 2|E|
colours. □

Theorem 7.1.1 and Lemma 9.5.2 immediately yield the following assertion.

Theorem 9.5.3 (Balogh–Cherkashin–Kiselev [18], 2019). Let n ⩾ m > 4s2 and
suppose that there exists a Hadamard matrix of order m. Then

χ

[
K

(
n,

n

2
, s

)]
⩽ 2m.

9.6. Euclidean Ramsey theory. Alon and Kostochka applied some results on
the growth of the list chromatic number of a hypergraph with an increase in its
degree to obtain the following results of Ramsey type.

Theorem 9.6.1 (Alon–Kostochka [14], 2011). For any finite set X in the Euclid-
ean plane and any positive integer s there is an assignment of a list of size s to
every point in the plane such that whenever the points in the plane are coloured
with colours from the corresponding lists, there is a monochromatic isometric copy
of X .

Proof. Put n = |X| and let us show that for any d there is a d-regular simple
n-graph whose vertex set is a finite set of points in R2 such that the vertices of each
edge form an isometric copy of X.

Consider n arbitrary points {v11, v12, . . . , v1n} =: X0 ⊂ R2 that form a copy
of X. We choose d − 1 rotations of the set X0 in a generic way and denote the
resulting points by {vi1, vi2, . . . , vin}, 2 ⩽ i ⩽ d. Now we construct the desired
hypergraph H = (V,E):

V := {v1j1 + v2j2 + · · ·+ vdjd
| 1 ⩽ jt ⩽ n for all t},

and each edge is defined by fixing all the terms but one,

E :=
{
{v1j1 + v2j2 + · · ·+ vdjd

| 1 ⩽ jt ⩽ n}
∣∣ 1 ⩽ t ⩽ d,

1 ⩽ v1j1 , . . . , vt−1,jt−1 , vt+1,jt+1 , . . . , vdjd
⩽ n

}
.

We chose rotations in a generic way, hence |V | = nd, |E| = dnd−1, and all edges
have size n. Also, H is d-regular and simple by construction. Theorem 4.2.2 states
that ch(H) > s under the condition d > d0(s). □
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[67] P. Erdős and A. Hajnal, “On a property of families of sets”, Acta Math. Acad. Sci.
Hungar. 12 (1961), 87–123.
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[87] A. Gyárfás and J. Lehel, “Trees in greedy colorings of hypergraphs”, Discrete
Math. 311:2-3 (2011), 208–209.
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theorem for cross-intersecting families”, J. Combin. Theory Ser. A 52:1 (1989),
90–97.

[126] E. W. Miller, “On a property of families of sets”, C. R. Soc. Sci. Varsovie 30
(1937), 31–38.
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Acta Math. Acad. Sci. Hungar. 15:3 (1964), 373–374.

[142] P.D. Seymour, “A note on a combinatorial problem of Erdős and Hajnal”,
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