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Abstract. We reexamine the results presented in [1] in which the properties of the noise
residuals in the 40 ms chirp domain of GW150914 were investigated. This paper confirmed
the presence of strong (i.e., about 0.80) correlations between residual noise in the Hanford
and Livingston detectors in the chirp domain as previously seen by [2] when using a numerical
relativity template given in [3]. It was also shown in [1] that a so-called maximum likelihood
template can reduce these statistically significant cross-correlations. Here, we demonstrate
that the reduction of correlation and statistical significance is due to (i) the use of a pecu-
liar template with extreme spin (0.977), which is qualitatively different from the properties
of GW150914 originally published by LIGO, (ii) a suspicious MCMC chain, (iii) uncertain-
ties in the matching of the maximum likelihood (ML) template to the data in the Fourier
domain, and (iv) a biased estimation of the significance that gives counterintuitive results.
We show that rematching the maximum likelihood template to the data in the 0.2 s domain
containing the GW150914 signal restores these correlations at the level of 60% of those found
previously [1]. With necessary corrections, the probability given in [1] for the residual cor-
relation will decrease by more than one order of magnitude. Since the ML template is itself
problematic, results associated with it are illustrative rather than final.
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1 Introduction and motivation

Knowledge of the properties of noise in the LIGO Hanford and Livingston data sets is crucial
for verification of the methods used to determined the physical nature and quantitative
details of the GW150914 event and all subsequent events [3]. In practice, the maximum
likelihood method used in [1] to analyze the GW events effectively assumes that the noise
is both stationary and Gaussian. The validity of these crucial assumptions can be tested
by considering the cross-correlations of the Hanford and Livingston noise residuals, which
should be at the level of chance correlations. In [2] we explored the assumption of uncorrelated
Hanford/Livingston noise residuals for GW150914 by considering a windowed Pearson cross-
correlator (see appendix A for more details). Significant abnormal correlations were found.

Using a numerical relativity (NR) template [3], we identified [2] three 40 ms domains
of significant noise correlation in a 0.2 s record:1 the chirp domain (16.39–16.43s) with a
Hanford/Livingston cross-correlation of 0.80, the precursor domain (16.27–16.31s) with a
cross-correlation of 0.60, and the echo domain (16.47–16.51s) during ring-down with a cross-
correlation of similar amplitude [2]. Taken together, these results are not consistent with

1The strain data for a 0.2 s time interval including GW150914 and the NR template are available at the
LIGO Open Science Center (LOSC). In the present paper, time positions are measured relative to the 32
seconds centered at GPS time 1126259462, a convention established in some of the files of the initial LOSC
release. For example, the peak amplitude of the GW150914 event occurs at approximately 16.42 seconds.
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the assumption of uncorrelated noise residuals under Gaussian and stationary assumptions.
Recently, this result was confirmed using the same NR template and 0.2s time interval in [1].
However, the authors of this paper also claim that the strong abnormal residual correlations
discovered in [2] can be reduced significantly in the chirp domain by using an alternative ML
template. We cannot with certainty exclude the possibility that some template in LIGO’s
models of binary black hole mergers can locally reduce residual correlations. While we
investigated this question in [1], we did not consider specific templates involving black holes
with extreme spins. Given that in the ML template, one of its participating black hole has a
spin indistinguishably close to the maximum possible value of 1, the ML template adopted
in [1] is an example of one such extreme template.

Clearly, independent verification of the methods and results of LIGO, such as [1], is a
matter of importance for our understanding of black hole physics. Especially since, according
ref. [37] in [3], the NR template used by LIGO is SXS:BBH:0305 which has on-axis spins of
+0.33 and −0.44 is almost identical to a zero spin template. In sharp contrast, the ML
template discussed in [1] involves a black hole with extreme spin — almost the physical
limit. This difference has important consequences. Unlike low-spin black holes, high-spin
Kerr black holes cannot be formed at early stages in the evolution of the Universe as so-
called primordial black holes. The black holes suggested by the results of [1] would rather
indicate that the black holes involved have a stellar origin from very massive stars. Even
given the stellar origin of such black holes, the extreme spin would appear to be challenging.

We also point out that the cleaned (i.e., bandpassed and notch-filtered) strain data used
by [1] is essentially identical to ours [2, 4]. Using a bandpass window of 35 ≤ f ≤ 350 Hz,
none of the 37240 templates considered in [5] (from which the ML template is extracted) can
reduce the precursor effect observed during the first 0.1s of GW150914. (This leads to a cross-
correlation of 0.60 between H/L residuals.) Indeed, in this time window the NR template,
like all other templates filtered from 35 ≤ f ≤ 350 Hz, is almost negligible in comparison
with noise.

Our goal here is to reevaluate the methods and results of [1] with regard to their claims
about the noise residuals for GW150914. We will first show that the matching of the ML
template to the data depends on the estimator assumed. In [1] the quantity to be optimized
is a complex overlap function (of Hanford and Livingston strain data) with the same overall
phase for each template. (See table 1 and its caption.) This constraint on the phase proves
to be crucial for introducing an effective shift of the peak position in the chirp domain.
Consequently, it plays a major role in decreasing the residual noise correlation. Second,
calculation of the SNR parameter involves a power spectral density (PSD) obtained from
a time interval that is nearly 4 orders of magnitude larger than the length of the most
significant GW domain (1040 s versus 0.2 s). The validity of this approach critically depends
on the assumptions that the noise is stationary and Gaussian. Neither assumption is true.
On the other hand, the equal-time comparison used for matching with the Pearson estimator
of eq. (A.2) does not depend on any such assumptions. It can be applied safely for short
(e.g., 0.2 s) records. In general, it is important to bear in mind that the implementation of
any statistical concepts, such as chance correlations, for the estimation of the significance of
noise cross-correlations needs to be performed with care. Due to the non-stationarity and
non-Gaussianity of the noise residuals, all such estimates can be misleading. (This point will
be illustrated in sections 4–5.) We emphasize that we do not regard such assumptions as safe
and have avoided them in [1] and [2]. Nevertheless, we will from time to time be forced to
assume stationarity and Gaussianity in the interests of following the methods of [1].
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The outline of the paper is as follows. In section 2, we briefly review the maximum
likelihood approach and the corresponding templates as provided in [5] and used in [1]. In
section 3, we consider the residuals and their correlations for both this template and for the
NR template. The significance of the residual correlations is estimated in section 4. Since we
regard the ML template itself as unsatisfactory, our primary focus is on how to correct [1] in
order to obtain unbiased estimations. We investigate some uncertainties in the ML method
in section 5, and a brief discussion of the results is given in section 6.

While this paper is largely concerned with residual correlations, the following should
be kept in mind: the presence of statistically significant correlations in the Hanford and
Livingston residuals is sufficient to eliminate any proposed waveform (e.g., the NR template
of [3]) from further consideration. The absence of such residual correlations does not provide
any evidence that the proposed waveform is correct.

2 The “maximum likelihood” template

2.1 Parameters of the ML-template

In table 1, we summarize the parameters of the ML template used by [1], which was produced
in [5].

Table 1 is characterized by 14 parameters that are actively involved in the MCMC
optimization and a single parameter (either coa phase or φ0) that is determined a posteriori.
During the random walk, φ0 is a meaningless random number. When the MCMC process is
finished, a new estimation will be given as φ0 so that the final template is

h̃(θ′, φ0) = h̃0(θ′)eiφ0 . (2.1)

Here, h0 is the template with φ0=0, and θ′ represents the 15 parameters including random φ0.
Note that, during the preparation of this work, all of the MCMC parameters were

updated online [6], but [1] still uses the old values. In figure 1 we show the old and new
templates from table 1. Although the variations in the parameters themselves range from 2
to 200% and the change in the summed phase φ0 is large, the differences in the time domain
morphology are quite small. Moreover, the two templates have almost identical SNRs with
a relative variation 0.1%, which is negligible given the magnitude of the noise. This is a
clear reflection of strong degeneracy in the parameters.2 Note in particular that the 2.4 ms
in the time shift, tc, is actually remarkably large. (In this regard, see figure 1 below.) These
differences between the old and new parameters immediately tell us that an expensive ML
approach has little scientific merit in determining the possible nature of black hole binaries in
events like GW150914. Although the entire ML approach employed in [5] is of questionable
value, we will simply take the ML template used by [1] for some further analysis.

Normally, for an MCMC chain, the ML point is asymptotically a best fit point, whereas
other points are random walks and can not be regarded as properly fitted. In fact, even the
ML point is not a genuine best fit point, because when the MCMC approach is re-run, a
new ML point will be generated, which is normally not the previous one. This is excellently
illustrated by the two columns in table 1 for the new and old parameters: each of them is the
ML point for its own round, but they give significantly different parameters. On the other
hand, a fitting procedure, if possible, can give the unique best fit. In the case of two detectors
like GW150914, the projection parameters (rows 1, 2, 3, 4, 7, 14, 15 in table 1) can be
related to the matching (fitting) parameters (amplitudes, phases, arrival times) by a physical

2These degeneracies have been discussed in [7]. See, for example, the left panel of figure 7 there.
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No. Name Old value New value

1 ra (α) 1.5730257 2.1140412

2 dec (δ) −1.2734810 −1.2518563

3 distance (dL) 476.7564547 527.0627598

4 inclination (ι) 2.9132713 3.0021228

5 mass1 (m1) 39.0257656 38.4900335

6 mass2 (m2) 32.0625631 32.3104771

7 polarization (ψ) 5.9925231 2.6053099

8 spin1 a (a1) 0.9767961 0.9635978

9 spin1 azimuthal (θa1) 3.6036952 4.7164805

10 spin1 polar (θp1) 1.6283548 1.9250337

11 spin2 a (a2) 0.1887608 0.2894704

12 spin2 azimuthal (θa2) 3.4359460 2.0230135

13 spin2 polar (θp2) 2.4915268 0.7928019

14 tc (from 1126259462) 0.4175646 0.4151170

15a coa phase 0.6883212 N/A

15b phase shift φ0 −0.9155276 1.7576289

15c summed phase −0.2272064 1.7576289

SNR 24.36169 24.33653

Table 1. The parameters of the ML template for GW150914 used by [1]. The large number of digits
is especially important for “tc” in order to ensure that the uncertainty in positioning is much less than
the possible ±10 ms delay in the arrival time. The ML parameters (in the column “Old values”) were
taken from [5]. During the preparation of this work, however, all of these parameters were updated
online [6], but [1] used only the old values. Nevertheless, we append the new values for this table
which involve relative changes in the parameters ranging from 2% to 200%. In spite of these changes,
the resulting templates are almost identical. In [1], the final parameter (15a) is unused in the Markov
Chain Monte Carlo (MCMC) process. Its value must be combined with the externally determined φ0
(15b) to give the summed phase (15c). The respective SNRs are shown in the final row. Although
they are not significantly different, the original template has a slightly higher SNR. We prefer the
old template in the following analysis, not only because of the higher SNR but also because this is
precisely the template used by [1].

connection, as shown by [8]. For two detectors, the number of degrees of freedom for matching
is less than the number of physical parameter, a re-matching procedure can be applied to the
points in the MCMC chain to improve the matching with data. This will be done below.

2.2 Self-contradictions in the MCMC chain

The ML template presented in [1] should be accompanied by a presentation of the distribution
of the parameters in the MCMC chain. The purpose is to check whether or not the values
of the ML template, as well as other templates with highest likelihoods, are consistent with
the distributions given by the whole converged MCMC chain. Such a test indicates, that
the ML template is very special in the MCMC chain. By simply reading the 37240 points
of the chain used by [1], we have constructed the scatter plot of the spin1 amplitude versus
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Figure 1. Left panel: comparison of the old and new templates from table 1 for Hanford. Right
panel: the same for Livingston.The green line is the difference between the old and new templates.

log-likelihood shown in figure 2. One can see that most of these templates have low spins.
However, the ML template has extreme spin of a1 = 0.977 that almost hits the boundary of
allowed priors that ranges from 0 to 0.99 [5], and is greater than 99.6% of the chain templates,
i.e., the parameters given by ML template deviate significantly from those of the main chain.
A similar situation is seen for the celestial longitude (ra), which is also shown in figure 2.
Moreover, both phenomena can be seen in the new chain as well.

All templates shown in figure 2 have relatively high likelihoods, and the templates with
highest likelihoods (including the ML template) are expected to have a posterior distribution
consistent with that of the main chain. If the above high-spin anomaly were found for the
single ML template, then one may consider solving the problem by excluding this template.
However, this is not the case: for example, all 8 templates of highest likelihoods have spins
that are in the top 12.5% (see the colored crosses in figure 2), which has a probability of
≈ 6×10−8. For the 1024 templates of highest likelihoods, 231 of them are in the same region,
which corresponds to a probability of ≈ 2 × 10−19. Thus the inclusion of more templates
with highest likelihood quickly sharpens this problem rather than alleviating it. This raises
concern about the approach of [1], not only for using a single ML template, but also for the
correctness of favoring higher and higher likelihoods in their MCMC realization.

2.3 Degrees of freedom, fluctuations in the SNR, and residual correlations

In [1], each point in the MCMC chain corresponds to one template. The 15th parameter
of the template (see table 1) is determined by matching to the strain data with all other
parameters fixed. However, a proper matching should contain 6 degrees of freedom (DOF):
position, amplitude, and phase for each detector. As a quick consistency check, we continue
to use the code of [1] but add a full matching of all 6 DOF using their pyCBC package. Our
aim is to focus only on the change from 1 to 6 DOF. The corresponding residual correlations
for all 37240 templates in the 16.39s–16.43s window are plotted in the left panel for 1 DOF
and right for 6 DOF. We see that, a partial 1 DOF matching (as adopted in [1]) leads
to residual correlations with large fluctuations even though all templates are within ±0.5%
relative variation of the SNR. The range of fluctuations is significantly reduced by a full
6 DOF matching but is still large. Therefore, the templates in the MCMC chain tend to
produce residual correlation with fluctuations that are large in comparison with the small
variations in SNR. Such large fluctuations may not be physically meaningful.
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Figure 2. Upper : scatter plot of the spin1 amplitude versus the log-likelihood. The blue lines are 1/2
(median), 1/4 and 1/8 splits of all templates. Lower : the same for ra, with the blue line for median
split. Red cross for the ML template, and green crosses for the next 7 highest likelihood templates.
Data from the MCMC chain used by [1].

Figure 3. Left : residual correlations for region 16.39s–16.43s for all 37240 templates in the MCMC
chain. The one for ML template in black. Right : same as left but each template is matched by 6
DOF instead of 1 DOF.
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3 Hanford-Livingston noise residuals and their cross-correlations

In table 1, 8 of the 14 parameters (except the coalescence phase) describe intrinsic properties
of the Black Hole binary. These include the mass, spin amplitude, and polar/azimuthal
angles for each black hole. The remaining 6 parameters are related to the projection of
GW onto detectors. A straightforward matching for 2 detectors will also use 6 parameters
including the arrival time, amplitude and phase at each detector. These 6 parameters can be
translated into the GW projection parameters. Therefore, for 2 detectors, either way (ML or
straightforward matching) has the same number of free parameters for the GW projection.
For n > 2 detectors, a straightforward matching requires more parameters than there can
be, and the projection procedure must be constrained properly. Thus, a ML approach using
15 parameters can be more convenient for n > 2 detectors even if each point in the chain is
unmatched. However, for two detectors like GW150914, there is no such constraint. Each
point in the MCMC chain is “unmatched” and should be “rematched”.

Before proceeding to the residual correlations, it is useful to look at two distinct meth-
ods for matching GW templates to the strain data. The most important consideration for
the rematching of templates is the non-stationarity of the GW signal. For the template pa-
rameters given in table 1, the frequency of the GW emitted during the inspiral exceeds the
low frequency of the band-pass filter fmin ' 30 Hz for a mere ≈ 0.15 s before the chirp. After
the chirp, both the ML and NR templates fall rapidly down to the noise level. The result
is that the GW150914 signal is visible only for approximately 0.15–0.2 s. A time interval
of 0.2 s corresponds to a frequency resolution 5 Hz. Such poor resolution is not sufficient to
ensure a proper match of the template in the frequency domain. In contrast, rematching
techniques, based on eq. (A.2), that maximize the cross-correlation between the strain data
and the template for a short 0.2 s record are unaffected by the this poor frequency space res-
olution. In the discussions below we will consider both templates that are rematched using
the Fourier methods of [1] and templates that we rematch directly in the time domain as
well as the corresponding residuals.

The use of a PSD obtained from 1040 s of data [1] in order to determine the parameters
of a template that is only visible for 0.2 s obviously requires the assumption that the noise
is stationary. This assumption is known to be violated, and the noise is tainted by non-
Gaussian features and non-stationary behavior. In the presence of such deviations from ideal
noise, a more conservative approach is to restrict the analysis to short segments in the time
domain within which the effects of non-stationarity and non-Gaussianity are potentially less
damaging. After bandpassing and notching, the template is largely localized in 200 ms region.
We use data from this region alone to perform rematching of the template to the data.

In figure 4 we summarize the results presented in [1] for the cross correlation of the
Hanford and Livingston residuals using their publicly available program. Results are also
shown for the NR template in order to provide a more complete picture of cross correlations
in the 40 ms time domain surrounding the chirp. This figure also shows the results after
rematching both templates to the data as follows.

• The rematching procedure is intended to maximize separately the correlations defined
in eq. (A.2) between the Hanford and Livingston strain data and the template.

• The rematching is performed in the 16.25–16.45 s time window with a sampling rate of
16 kHz for all templates considered.3

3Note that the pixel size for the ML template is 0.25 ms. This is why we perform the rematching using a
16 kHz sample rate.
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Figure 4. Left panel: comparison of the ML template residual cross-correlation with that for the
NR template. The green curve is identical to figure 2 in [1]. Right panel: the same residual cross-
correlations after rematching. The black and green curves are quite similar; their cross correlation
between the black and green curves is 0.95.

• The amplitudes and the phase, φ0, are not fixed; they are to be determined by opti-
mization.

• The results of Hanford rematching are a pixel shift of 0 pixels, a phase correction of
∆φ0 ≈ −0.05, and an amplitude correction factor of 1.0241.

• The resulting of Livingston rematching are a pixel shift of −2 pixels (−0.125 ms), a
phase correction of ∆φ0 ≈ −0.079, and an amplitude correction factor of 1.0236.

After rematching, we check the cross-correlation coefficient between the bandpassed and
notched strain and the template in the 16.25–16.45s window and find an increase from 0.893
to 0.894 for Hanford and an increase from 0.842 to 0.844 for Livingston, which is consistent
with our expectation. For Gaussian random noise, which provides the basis for the ML
approach, a higher cross-correlation coefficient necessarily means a higher SNR.

Figures 5–6 show the H/L residuals resulting after templates have been subtracted from
the strain data. Results are shown for the ML, NR and rematched NR templates. All figures
confirm our expectation that the correlations in the precursor and echo time domains are
insensitive to the choice of template. As shown in [2], these regions are characterized by
cross-correlation coefficients on the order of 0.6–0.7. In the chirp domain the structure of
the residuals for the rematched ML and rematched NR templates are more similar in spite
of the fact that they are significantly different for the non-rematched case.

4 Evaluation of the significance of residual correlations

In our view, the significance estimator used by [1] is both biased and counterintuitive. In
section 4.1, we explain why this is so and use a simple but more robust estimator to calculate
the significance. In section 4.2 we then use the estimator of [1] with necessary corrections
to obtain results that can be compared with the results of [1]. Moreover, by comparing the
significances estimated in section 4.1 and section 4.2 (with corrections), we see that they in
good agreement and that information regarding the peak position is of dominant importance.
This will be further illustrated in appendix B.

– 8 –
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Figure 5. The Hanford (black) and Livingston (red) residuals for the ML template (top), NR
template (middle), and the rematched NR template (bottom). The 16.39–16.43 region (green), the
precursor region (red) and the echo domain (yellow) are also shown. (See appendix G and figure 24
of [2] for details.) Note that Livingston residuals have been shifted by 7 ms and inverted. All residuals
have been bandpassed into the frequency range 35 ≤ f ≤ 350 Hz.

Figure 6. Left panel: the Hanford (black) and Livingston (red) residuals without rematching. The
upper plot is for ML and the lower for NR. The middle curve is the difference between them. Middle
panel: the same as the left panel but for rematched templates. Livingston residuals have again
been shifted by 7 ms and inverted. All residuals have been bandpassed into the frequency range
35 ≤ f ≤ 350 Hz. Right panel: the H/L cross-correlation coefficients in the 40 ms chirp domain
after rematching. The same as the right panel of figure 4. Black for ML and green for NR. The
cross-correlation between the black and green curves is 0.95.
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4.1 More robust estimation of the significance of residual correlation

The most important feature of the residual correlation is that it appears with a time lag
identical to that of the GW event itself. Since the physically allowed time lag range is
±10 ms, a robust estimation of the probability of the “time lag coincidence” is simply4

p = 2∆t/20, (4.1)

where ∆t (in ms) is the distance between the positions of the lowest points of the residual and
template cross correlations. Eq. (4.1) also has the considerable advantage that it is correct
even for non-stationary and non-Gaussian noise provided only that noise in the Hanford and
Livingston noises is independent. To illustrate the stability of this estimator, we observe
that in figure 3, 99.8% of the rematched residual correlations (right panel) have their lowest
points clustered between 7–8 ms. Even without rematching (left panel), 75% of them are still
clustered in this range.

For the case of the ML template without rematching, ∆t is less than 0.4 ms. Thus, from
eq. (4.1), the probability of “time lag coincidence” is 4%. When rematching is performed,
∆t is reduced to 0.06 ms, and the probability is less than 1%. However, in [1] the probability
is given at about 40%, which is completely counterintuitive. This strongly suggests that the
estimator used in [1] is significantly biased.

In figure 5 of [1], the authors performed an arbitrary modification of the chirp window
with the aim of demonstrating that the residual correlation is insignificant. Such an arbitrary
choice is not sufficient to support their claim. However, it is still useful to consider modifica-
tions of the window chosen. A more reasonable test of this kind can be carried out as follows.
We allow the window to start at 16.38, 16.39 or 16.40 seconds, and to end at 16.43, 16.44
or 16.45 seconds. The combinations give 9 different windows at various positions and with
various lengths between 30 and 70 ms. Residual correlations have been calculated for all 9
cases (yellow) as well as their average (black), as shown in figure 7. Apparently this 9-window
average estimation is much more reliable than the arbitrary choice in [1]. Before rematching,
∆t is found to be about 0.2 ms, corresponds to p = 2%, whereas after rematching, ∆t is less
than 0.06 ms, corresponding to p < 1%. Later in section 4.2.2, the same 9-window case is
reevaluated using the corrected estimator of [1], and the same 1% probability is found.

4.2 Calculations with the old estimator

In the event that one elects to use the significance estimator of [1], at least two adjustments
are required. Without such corrections, the results will be strongly biased. These include:

1. To obtain a reliable p-value for the observed residual cross-correlation, a correction
factor of roughly 0.5 should be applied because we are interested in the significance of
the physically meaningful cross correlation including its sign and not the significance
of the absolute value of the cross correlation as in [1].

2. To obtain a reliable p-value for the observed residual cross-correlation, at least two
points should be considered: a) The local minimum in the 6.5–7.5 ms window as given
by simulation is lower than that obtained with real data, and b) The global minimum in
the entire ±10 ms range lies in the same 6.5–7.5 ms window. Unfortunately, in [1] only
point a) is considered and b) is completely ignored. This provides another indication
that these results are biased.

4Strictly speaking, the p-value given by eq. (4.1) should be combined with the amplitude of the lowest
point to give a complete estimation. However, we have confirmed that this introduces only minor corrections
of relatively 10–20%, e.g., a change 4% to 3.6%. Thus, for simplicity, we ignore this correction here.

– 10 –
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Figure 7. Residual correlations for 9 windows with the windows starting from 16.38, 16.39 and
16.40s, and end at 16.43, 16.44, 16.45s, respectively. The average of 9 windows is plotted in black.
Left: no rematching, right: with rematching.

After considering both corrections, the resulting probability, even with the estimator of [1],
will decrease by roughly one order of magnitude and become consistent with the results
obtained in section 4.1.

In fact, even the choice to use the 6.5–7.5 ms is based on the a priori assumption that
one already knows that the true time lag is 7 ms. A more natural choice might be to consider
∆t as used in eq. (4.1).

4.2.1 Example of varying the window position

In our previous work [2], the window used for the calculation of the residual correlation was
16.39–16.43s. However, we also noticed that this position is somewhat more sensitive to un-
certainties in the choice of template than a slightly shifted window running from 16.40–16.44s.
For convenience, we will refer to the original window as “chirp A” and the second as “chirp B”.
We have used the rematched ML template and residuals to calculate the residual correlation
for these windows, and the resulting residual correlations are shown in figure 8 where the
maximum anticorrelations are seen to be −0.48 and −0.60 respectively.

In [1], the authors presented a significance estimation of the residual correlation by
simulation. However, as mentioned above, they consider only the amplitude but ignore the
sign. When the sign of the correlation is correctly taken into consideration, the p-value given
in their figure 3 should be multiplied by a factor of 0.5. We reproduce their figure 3 as the
right panel of figure 8 including this factor and indicate the residual correlations found at
the precursor, chirp A and chirp B positions. We see that the residual correlations for the
chirp B window has a significance of pB ≈ 4%. If the position of the lowest point is taken
into account, the probability will further decrease.

4.2.2 Significance estimation with 9 window average

As mentioned above and in section 4.1, one should allow the window position and size to
change in a way that is more reasonable than the arbitrary choice in figure 5 of [1]. In
section 4.1, we used the average of 9 windows to give a more robust estimation. Here we use
the same 9-windows and the corrected estimator as described at the beginning of section 4.2
to re-calculate the significance. The resulting p-value is 1%, which is consistent with the
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Figure 8. Left panel: the H/L residual correlation using the rematched templates and residuals
for the chirp A position (16.39s–16.43s) and the chirp B position (16.40s–16.44s). Right panel: the
p-value as a function of the residual correlation reproduced from [1] with the inclusion of the proper
factor of 1/2 as discussed in the text. The vertical lines indicate the cross-correlations found for chirp
A and chirp B.

result for 9-windows using eq. (4.1). Therefore, we conclude that, with the use of the ML
template, the probability of getting the observed residual correlation in the chirp domain by
chance is less than 1%.

4.2.3 Investigation of the RMS peaks

In our previous work [2], the positions of the precursor and echo were detected with a running
window calculation of the H/L residual correlation. These features of the noise can also be
verified by the running window RMS test, defined in eq. (4.2) of [2]. Note that this RMS
test is independent of the test performed in [2]: the RMS focuses on amplitudes; the test
performed in [2] depends only on morphology.

The RMS test is performed in the following way. We take a 20 ms running window5

along the Hanford data and the Livingston data (shifted by 7 ms and inverted). For each
window, we calculate the joint RMS as

δ(t) =
1

n

√√√√( n∑
i=1

Hi(t)2

)
·

(
n∑
i=1

Li(t)2

)
, (4.2)

where t is the start time of the window, i is the index of the data points Hi(t) and Li(t), and
n is the total number of points in the window. Figure 9 shows a plot of δ as a function of
the time, t, of the left boundary of the window. From this figure we see that the precursor
and echo windows correspond not only to regions of morphological similarity [2] but also
(and independently) to local regions of joint signal strength. It should also be noticed that,
even though the GW event is effectively finished after 16.45 seconds, the bandpassed and
notched template continues to show some signal as can be seen from the difference between
the black and red lines in figure 9. (This effect is not visible for the NR template because
the length of this template is only 260 ms.) The difference between the red and blue lines

5For a 40 ms window, 10 ms are excluded from each side in order to avoid edge effects when calculating the
residual correlation. The remainder will thus be of 20 ms.
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Figure 9. The Hanford and Livingston joint RMS δ calculated for 20 ms running windows using
eq. (4.2). The black curve is for the H/L strain (template not removed), the red curve is for the
residuals calculated with ML template, and the blue curve is for the residuals calculated with the NR
template (neither rematched). The precursor and echo windows are indicated by vertical lines. Since
the x-axis denotes the left boundary of the window, we shift the marks by a half-window to the left
to represent the effective region more accurately.

in the chirp domain is also noteworthy because it shows that, unlike the NR template, the
ML template “absorbs” much more power and introduces significant inhomogeneities (i.e.,
very low amplitudes) in δ(t) in the chirp domain. This effect can also be seen in figure 13 in
which comparable results are obtained when the difference between the two GW templates
is rescaled by a factor of 5.

5 Uncertainties in the maximum likelihood method

It is obvious that no fit to data can be considered to be complete until a reliable analysis of
the associated uncertainties has been performed. The importance of such an analysis is even
greater when the resulting parameters are presumed to have physical significance. Consider,
for example, figure 2 that shows the amplitude of the spin of the larger-mass black hole (upper
panel) and the right ascension angle, ra. The former is an intrinsic property of a BH system;
the latter determines the sky location of the presumed BBH system. The scatter plots show
that each of these parameters can assume essentially any of its possible values. The single
point of maximum likelihood selects only one point. The questions are thus: what are the
best values for these parameters, what are their uncertainties, and are these uncertainties
correlated? Since [1] does not address these issues, we will try to suggest some answers here.

It is important to understand the relation between the strain data (s), the GW signal (h),
and the noise (n = s− h). The SNR, ρ, used in [1] is given as

ρ =
〈s|h〉√
〈h|h〉

(5.1)

with

〈s|h〉 = 4<
∫
s∗(f)h(f)

Sn(f)
df. (5.2)
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Here, Sn(f) is the power spectral density of the noise. The log-likelihood for Bayesian
inference used by LIGO is

log(L) = −1

2
〈s− h|s− h〉, (5.3)

which can be converted to ρ2/2 with a proper offset. (The horizontal axis in figure 2 is
ρ2/2.) It was shown [9] that the variance of the log-likelihood associated with different noise
realizations is 1.6 However, in reality, the log-likelihood should be treated with care. For
example, 75% of the points in the MCMC chain have higher SNR than 24, the officially
reported SNR of GW150914 [3], thus there is no reason to reject any them. Meanwhile, in
the new MCMC chain (see table 1 and [6]), the mean log-likelihood is lower than the mean of
the old chain by 2. Such a difference is about 200 time bigger than the expected fluctuation
by chance, assuming Gaussian stationary noise. Finally, as pointed out in figure 2, a few
points look suspicious, and they are unfortunately the ones with highest likelihoods.

In summary, except for some suspicious points, the majority of the MCMC chain should
be either all rejected, or all accepted. There is no reason to regard the single ML template
as best or most reliable, especially when it and its kind show significant differences from
the remainder of the chain. Rather, each of the 37,240 templates represented in figure 2 is
an equally valid best-template candidate. Thus, the results of figure 2 and figure 3 provide
an illustration of the uncertainties that should be associated with parameter determination
and residual correlations (respectively) when adopting the maximum likelihood approach.
Consideration of such an extended family of templates would necessarily lead to an increased
uncertainty in the determination of parameters and residual correlations due to the MCMC
approach. This somewhat pessimistic conclusion is supported by the results shown in table 1
where a change in the SNR of 0.10% is sufficient to cause significant changes in the template
parameters.

6 Conclusion

In this work, we have discussed the properties of the noise residuals for GW150914 based
on the maximum likelihood template used by [1]. We have paid attention to how residual
correlations depend on the template adopted for the description of this event. In particular,
we have considered the “maximum likelihood” template of [1] with extreme spin and the
original low-spin template from [3]. We have shown that the assertion in [1] that “there are
no statistically significant correlations between the noise residuals of the two detectors at
the time of GW150914” is incorrect. Specifically, we have demonstrated that the apparent
statistical insignificance of the Hanford/Livingston residual correlations in the 40 ms chirp
domain is associated with inadequacies in the ML template. After rematching ML and NR
templates to the data, the residual correlations for these templates converge to 0.50–0.60 in
the chirp domain. A study of various window positions and widths in the provides a more
reliable estimation of residual correlations in the vicinity of the GW150914 chirp and suggests
that the probability that these noise correlations are genuine is roughly 0.99 (section 4.1
and 4.2.2).

6This derivation makes the assumption of colored Gaussian noise, but the result has been validated em-
pirically as a good approximation for real detector noise. More seriously, the derivation also assumes that
〈n|h〉 = 0, which is strictly valid only for the maximum likelihood template, and constitutes a “higher-order”
correction otherwise.
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More seriously, the results of figures 2 and 3 suggest that the decision to focus on the
single template with maximum likelihood is flawed in principle. As noted in section 2, every
one of the 37, 240 templates shown in these figures has a high likelihood. It is natural to
expect that the templates of highest likelihood will be centrally placed among these tem-
plates. Instead, the results reveal a considerable tension in which the parameters of the
ML template are not consistent with those that characterize the vast majority of the high-
likelihood templates. In this regard, see also the large changes in the templates presented in
table 1 that arise from a truly insignificant 0.1% change in the likelihood. This situation is
particularly dangerous since the parameters all have names that invite the reader to attach
physical significance to their numerical values. Our physical understanding of GW150914
depends critically on whether the black holes presumed to be involved have the low spins
suggested in [3] or the ultrarelativistic spins of [1]. The difficulty lies in the fact that the
morphology of the waveforms associated with BBH mergers are remarkably insensitive to the
choice of specific parameter values. The strength and importance of this near-degeneracy
was considered previously in some detail in [7] but is largely ignored in most discussions of
LIGO’s results. Unfortunately, this situation is further complicated by the presence of six
adjustable extrinsic parameters that have nothing to do with the intrinsic properties of a
BBH system.7 The appropriate response to these concerns should be a careful analysis of the
uncertainties associated with the various intrinsic and extrinsic parameters contained in the
waveform. Unfortunately, no suitable estimate of parameter uncertainties is provided in [1]
or elsewhere.

Finally, we wish to stress that the present manuscript should not be regarded as either
an endorsement of or a challenge to the interpretation of GW150914 as a BBH merger or
any other manifestation of gravitational waves. In our view, the physical interpretation of
this event remains open. In this sense, we remain convinced that data must be analyzed
and a best common signal determined without a priori biases and preconceptions before
theoretical models are invoked. It is a truism that, if gravitational waves are all you look for,
gravitational waves are all you will ever find.
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A The Pearson cross-correlator for LIGO noise

The cross correlation coefficient between two data sets, x(t) and y(t), at time t with a time
delay τ and window width w is given by

C(t, τ, w, t) = Corr(xt+τ+wt+τ , yt+wt ). (A.1)

7In this regard, note from figure 2 that the right ascension angle, ra, is not well determined. As a conse-
quence the sky location of GW150914 cannot be specified with useful accuracy.
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Here, Corr(x, y) is the Pearson cross-correlation coefficient [10] between two records x and y
defined as

Corr(x, y) =

∑
(x− x)(y − y)√∑

(x− x)2 ·
∑

(y − y)2
, (A.2)

where the sums extend over all entries contained in the time interval, w, considered and
where x and y are the corresponding average values of the entries in x and y, respectively.

B A toy model of residuals

In this section we present a toy model of how the non-stationarity of the noise residuals can
affect the significance of the amplitude of C(τ) relative to the importance of the characteristic
time lag τ for their correlations.

Suppose that the strain data for Hanford and Livingston are modeled as

SH(t) = WH(t) ~G(t) + nH(t),

SL(t) = WL(t) ~G(t+ τ) + nL(t) , (B.1)

where G(t) is the true signal, W is a projection operator (including a transfer function), the
operator ~ denotes a convolution, and n(t) is noise for Hanford and Livingston. Suppose
that we use a template, h(t), to fit the observational data of eq. (B.1). In general, this fitting
means that

SH(t) = WH ~ h(t) +WH(t) ~ [G(t)− h(t)] + nH(t),

SL(t) = WL(t) ~ h(t) +WL(t) ~ [G(t+ τ)− h(t+ τ)] + nL(t) . (B.2)

Here, the noise residuals are given as

RH(t) = WH(t) ~ [G(t)− h(t)] + nH(t),

RL(t) = WL(t) ~ [G(t+ τ)− h(t+ τ)] + nL(t) . (B.3)

Thus, the cross-correlation between the residuals, RH and RL, from eq. (A.2) contains the
chance correlations for the Hanford and Livingston noise and the residuals between the true
signal and the template. Note that the last term is already correlated with the time lag τ .
This model clearly illustrates the non-stationarity and non-Gaussianity of the residuals for a
time domain in the vicinity of the signal even if the noise terms, nH and nL, are Gaussian
and stationary.

In order to investigate the properties of the residual correlations, C(τ), for this model,
we use the 4096 s, bandpassed (35 ≤ f ≤ 350 Hz) and notched strain data given at [4], which
are identical to those adopted in [1]. We consider 50 disjoint domains of length 0.2 s for times
well after the GW150914 event and inject in each of them the signal Glosc with an H/L time
lag of τ = 7 ms as given by the LOSC template for GW150914 with masses m1 = 41.743M�
and m2 = 29.237M� and spins, spin1 = 0.355 and spin2 = −0.769. These 50 domains mimic
a statistical ensemble with a signal of Glosc and different realizations of genuine LIGO noise.

For the reconstruction of the signal in each of these 50 domains we use the ML template
rematched to the simulated data. It is useful to characterize the mismatch of the “signal”
and the template by functions rH/L, for Hanford and Livingston, respectively:

r = −f (hML(t)− hlosc(t)) (B.4)
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Figure 10. Left panel. The difference between ML and LOSC templates. Right panel. Same as the
left but for ML and NR templates.

Figure 11. The residual correlation, C(τ) for f = 0 (left panel) and f = 1 (right panel).

where the parameter f is chosen such that |r| is much less than |hlosc| and |hML|. In this toy
model all statistical properties of the noise and the residuals are known. For f = 0 the C(τ)
from eq. (A.2) corresponds to the pure noise correlations, for f = 1 we get the contribution
from the difference of the templates plus noise and, formally, for f →∞ we should see that
C → −1 for τ = 7 ms in each domain.

Figure 10 shows the difference between the (bandpassed and notched) LOSC and ML
templates. These templates are matched to the ML template used as a proxy for the
GW150914 signal. For comparison, the figure also shows the difference between NR and
ML templates with the same normalisation. The difference between NR and ML templates
is seen to be roughly twice the size of the difference between the ML and LOSC templates.
Note the position of the peaks is different in the two panels of this figure.

In figure 11 the left panel corresponds to the pure chance correlations of the noise and
the right panel show the residual correlations for the choice f = 1. Note that the choice
f = 1 corresponds to the case for which the signal (in the form of the LOSC template) is
fitted by the ML template. Let us focus on the time lag of the residual correlations in the

– 17 –



J
C
A
P
0
5
(
2
0
1
9
)
0
1
4

Figure 12. The residual correlation C(τ) for f = 3 (left panel), f = 5 (middle panel) and f = 10
mode (right panel).

vicinity of τ = 7 ms. For f = 0, one sees a negative peak in this domain with C ' −0.75.
(See the green line in figure 11). According to figure 8, the corresponding probability for
finding a peak of this size is P ' 0.01. For the choice f = 1, the amplitude of this peak
becomes C ' −0.9 a corresponding probability of P ' 10−4 according to figure 8. The same
tendency can be seen for the yellow positive peak at τ ' −(3.5) ms. For f = 0 the chance
noise correlations are C(τ ' −3.5) ' 0.8 with a corresponding probability of P ' 10−3 which
decreases to P ' 2× 10−4 for f = 1.

Thus, in the toy model considered here, we can trace the influence of the mismatch of
signal and template on the probability of the peak correlations. Usually, a mismatch between
template and signal leads to a stronger residual (anti)correlation than that found for chance
noise correlations alone. However, this is not necessarily the case when the genuine signal is
unknown, as is the case in the chirp domain of the GW150914 event.

B.1 Residuals correlations for the high amplitude case

In the toy model presented above the true signal is given by the LOSC template is approx-
imated by the ML template. In this case, the “exact” solution to the problem of residual
correlations is given by eq. (B.2) with f = 1. Let us now assume that we have no information
regarding chance correlations, so that we attempt to fit the data using a combination of the
ML template and the residuals, r from eq. (B.4), with f > 1. Note that the residuals r have
a characteristic time lag τ ' 7 ms. Figure 12 shows C(τ) for f = 3, 5, and 10 as a function
of |τ | ≤ 10 ms.

We see that, as the residuals, r become larger, almost all of the cross-correlation func-
tions collapse to asymptotic values, C(τ), with clearly established time lag 7 ms, Moreover,
the comparison between f = 5 and f = 10 models presented in figure 13, clearly illus-
trates the transition of the chance correlations from positive to negative values in the domain
τ = 7 ms (See the blue and green lines in this domain.) It is worth noting that the term
f [hlosc(t)− hML(t)] becomes roughly comparable to the residuals (black line) when f = 5.
This collapse of correlations is due to the increasing amplitude of the residuals relative to the
amplitude of the noise that makes the residual term more non-stationary and non-Gaussian.
At the same time, the application of the Gaussian statistics from the right panel of figure 8
will give us a completely misleading result. It follows from the right panel of figure 8 that
the corresponding chance probability is localized in the domain 0.1–1.

It is worth noting that the effect of the collapse of the residual correlations, described
with our toy model, is very general. For unknown signal, g(t), the noise residuals are given
by eq. (B.4), where both g and h have the same time lag τ . Thus, when the term ∝ (g − h)
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Figure 13. Comparison of the Hanford (left) and Livingston (right) ML template residuals (black)
with the f [hlosc(t)− hML(t)] term, where f = 1 and 5 respectively (red and blue). Two yellow vertical
lines indicate the position of chirp domain.

is close to the noise term n(t), we will see the beginning of the collapse of C(τ) around
τ ' 7 ms. The residuals are non-stationary and non-Gaussian, but the amplitude of C(τ)
can be relatively small (C(τ ' 7 ms) ' 0–0.5). Once again, assuming Gaussianity of the
residuals and using figure 8 one will conclude that this particular realisation of the residuals
is very likely, which is obviously not the case.
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