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Abstract. We investigate whether the current Hubble parameter H(z) measurements could
help improve the constraints on dark energy on the basis of the mainstream cosmological
probes including the type Ia supernovae (SN) observation, the cosmic microwave background
anisotropies (CMB) observation, and the baryon acoustic oscillations (BAO) observation. For
the current H(z) data, we use 30 data points measured by using a differential age method.
Furthermore, we also consider the future H(z) measurements based on the Sandage-Loeb
(SL) test by means of the E-ELT in construction, and thus we also use 30 simulated H(z)
data according to a 10-year SL test observation. In this work, we choose four typical dark
energy models as examples, i.e., the ΛCDM model, the wCDM model, the αDE model, and
the GCG model, to complete the analysis. We find that, when only the current H(z) data
are added, the constraints on these models are not improved compared to the cases using
the SN+CMB+BAO data; but when further adding the 10-year SL test data, the constraint
results are tremendously improved for all the four models. Therefore, we conclude that,
although the current H(z) measurements could not provide an evident improvement on the
basis of the current mainstream cosmological probes, the future H(z) measurements from
the SL test would have enormous potential to change the status of the Hubble parameter
measurements in constraining dark energy.
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1 Introduction

The accelerating expansion of the universe was discovered by two observation teams through
the observations of type Ia supernovae [1, 2] and was subsequently confirmed by various
other astronomical observations [3–6]. In order to explain the phenomenon of the cosmic
acceleration, a new energy component in the universe, named dark energy, is proposed,
which is assumed to be a source to produce negative pressure and can thus drive the cosmic
acceleration [7–16]. The current observations reveal that dark energy contributes about 68%
of the total energy in the universe. However, we actually know little about the nature of
dark energy. To investigate the nature of dark energy, numerous dark energy models have
been proposed.

The preferred candidate of dark energy is the so-called cosmological constant Λ, first
introduced by Einstein, which is actually physically equivalent to the vacuum energy density.
The cosmological constant Λ has an equation of state (EoS) wΛ = pΛ/ρΛ = −1, due to
the fact that its corresponding density is a constant. The cosmological model with Λ and
cold dark matter (CDM) is usually called the ΛCDM model, which is favored by the current
cosmological observations, especially by the observation of the Planck satellite mission [17].
However, it has always been challenged by some theoretical problems, such as the fine-tuning
and coincidence problems [18]. Thus, an important mission in cosmology is to probe if there
is some dynamics in dark energy, which usually leads to an EoS of dark energy which deviates
from −1 and evolves in time.

It is of great difficulty to measure the EoS w(z) (with z being the redshift factor of
the universe) of dark energy because w(z) is not a direct observable. Actually, w(z) has
a fairly complex relationship with the observables in cosmology. To probe the expansion
history of the universe, in practice one usually tries to establish a distance-redshift relation
because the luminosity distance and the angular diameter distance are the most common
observables in cosmology. However, these distances link to the EoS of dark energy by an
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integral over 1/H(z) (with H(z) being the Hubble parameter of the universe), and H(z) is
affected by dark energy through another integral over a factor involving w(z). The current
mainstream mature cosmological probes measuring the cosmic distances mainly include: type
Ia supernovae (SN), cosmic microwave background (CMB), and baryon acoustic oscillations
(BAO). By using these cosmological probes, the EoS of dark energy has been constrained to
be in a precision of less than ∼ 4% (assuming w is a constant) [17]. The aim in the next
decade is to measure the EoS of dark energy to be in a precision of less than ∼ 1%. Obviously,
for constraining w, the measurements of the Hubble parameter at different redshifts are of
vital importance, because there is only one integral between H(z) and w(z).

Although the measurements of H(z) are a challenging mission in cosmology, through the
great efforts of astronomers some H(z) data have been accumulated. In the past decades,
roughly 50 data points of H(z) have been obtained by using two astrophysical methods,
namely, the measurement of differential age of galaxies and the measurement of clustering
of galaxies or quasars [19–48]. These data points trace the cosmic expansion rate up to
z ≈ 2. Actually, there has been a proposal named Sandage-Loeb (SL) test [49, 50], which
proposes measuring the redshift drifts for the quasars in the redshift range of 2 . z . 5
(this range is also known as the “redshift desert”).1 Through the SL test, in the future one
would be capable of measuring H(z) up to z ∼ 5. These redshift-drift data would provide
an important supplement to other observational data and play a fairly significant role in
geometric measurements of the expansion of the universe. Recently, there have been a host
of works discussing the future observations of the redshift drifts [26, 28, 54–68], showing that
the simulated H(z) data at high redshifts could help to break degeneracies among parameters
by providing additional accurate information about Ωmh

2.

In this work, we wish to investigate if the current H(z) data could help improve the
constraints on dark energy on the basis of the mainstream cosmological probes (including SN,
CMB, and BAO). Furthermore, we wish to show how the SL test (future measurements of
the redshift drifts) changes the status of the Hubble parameter measurements in constraining
dark energy.

We will employ some concrete dark energy models to complete such an analysis. There
actually have been a lot of dark energy models in the research field of dark energy, but we of
course cannot use them all to do the analysis, and we can only choose several typical models
as examples to complete the analysis.

In a recent work by Yue-Yao Xu and Xin Zhang [69], a comparison was made for ten
typical, popular dark energy models according to their capability of fitting the current obser-
vational data. They show [69] that according to the capability of explaining the observations
the ΛCDM model is still the best one among all the models; the generalized Chaplygin gas
(GCG) model, the wCDM model (in which w is a constant), and the α dark energy (αDE)
model are worse than the ΛCDM model, but still are good models compared to others; the
holographic dark energy (HDE) model, the new generalized Chaplygin gas (NGCG) model,

1This is true for the measurements of the redshift drift with the European Extremely Large Telescope
(E-ELT) by observing the Lyman-α absorption lines of quasars. We note here that observations at z < 1 will
likely be realized by the Square Kilometre Array (SKA) [51, 52] or 21 cm experiments such as CHIME [53].
SKA will measure the redshift drift through the observations of neutral hydrogen (HI) emission signal of
galaxies at two different epochs to a precision of one percent in the range of 0 < z < 1 (for the SKA Phase 2
array) [51, 52]. Thus, actually, E-ELT and SKA ideally complement each other because the E-ELT probes the
deep matter era and the SKA probes the acceleration era. However, in this work, we only focus on the redshift
drift measurements by the E-ELT, because our aim is to discuss how the high-redshift H(z) measurements
help break the parameter degeneracies formed by the low-redshift observations.
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and the Chevalliear-Polarski-Linder (CPL) model can still fit the current observations well,
but from the perspective of “Occam’s Razor”, they are not so good; and, the new agegraphic
dark energy (NADE) model, the Dvali-Gabadadze-Porrati (DGP) model, and the Ricci dark
energy (RDE) model are evidently excluded by the current observations. According to this
analysis result, we decide to choose the ΛCDM model, the wCDM model, the αDE model,
and the GCG model as typical examples to make an analysis in the present work.

The structure of this paper is arranged as follows. In section 2, we present the analysis
method and the observational data used in this work. In section 3, we report the constraint
results and make relevant discussions. In section 4, we give the conclusion of this work.

2 Method and data

In this work, we will constrain the four typical dark energy models (the ΛCDM model,
the wCDM model, the αDE model, and the GCG model) by using several combinations
of observational data sets, from which we wish to show: (1) whether the current H(z)
data could help improve the constraints on dark energy on the basis of the mainstream
cosmological probes including SN, CMB, and BAO, and (2) how the SL test changes the
status of the Hubble parameter measurements in constraining dark energy. Therefore, we
will use the three data combinations, i.e., SN+CMB+BAO, SN+CMB+BAO+H(z), and
SN+CMB+BAO+H(z)+SL, in this work, where H(z) denotes the current H(z) data and SL
denotes the future H(z) data from redshift-drift measurement of SL test simulated according
to a 10-year observation.

In the following, we shall describe briefly these models and data considered in this work.

2.1 A brief description of the dark energy models

Though the four dark energy models have been discussed previously in the literature, in par-
ticular they have been uniformly constrained and compared in ref. [69], in this paper in order
to be self-contained in the contents we will still make a brief description for them. In general,
for the EoS of a dark energy w(z), the evolution of the Hubble parameter is expressed as
E2(z) ≡ H2(z)/H2

0 = Ωm(1+z)3+Ωr(1+z)4+(1−Ωm−Ωr) exp[3
∫ z

0 (1 + w(z′))/(1 + z′)dz′],
where Ωm and Ωr are the present-day fractional densities of matter and radiation, respec-
tively, and a flat universe is assumed throughout this work.

In what follows we will directly give the expressions of E(z) for the specific dark energy
models.

• ΛCDM model: although the cosmological constant Λ has been suffering the severe
theoretical puzzles, it can explain the various observations quite well, and thus it is still
the most promising candidate for dark energy. The cosmological constant has the EoS
of w = −1, and thus we have

E2(z) = Ωm(1 + z)3 + Ωr(1 + z)4 + (1− Ωm − Ωr). (2.1)

• wCDM model: this model is the simplest case for a dynamical dark energy because
the EoS of dark energy in this model is assumed to be a constant, i.e., w = constant.
Although it is hard to believe that a constant EoS would correspond to the real physical
situation, it can describe dynamical dark energy in a simple way. In this model, we have

E2(z) = Ωm(1 + z)3 + Ωr(1 + z)4 + (1− Ωm − Ωr)(1 + z)3(1+w). (2.2)
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• αDE model: this model [70] is a phenomenological extension of the DGP model, in
which the Friedmann equation is modified as 3M2

Pl(H
2 − Hα/r2−α

c ) = ρm(1 + z)3 +
ρr(1 + z)4, where α is a phenomenological parameter, MPl is the reduced Planck mass,
ρm and ρr are the present-day densities of matter and radiation, respectively, and
rc = (1− Ωm − Ωr)

1/(α−2)H−1
0 . In this model, E(z) is derived by solving the following

equation
E2(z) = Ωm(1 + z)3 + Ωr(1 + z)4 + Eα(z)(1− Ωm − Ωr). (2.3)

Obviously, the model with α = 1 reduces to the DGP model [71] and with α = 0
reduces to the ΛCDM model.

• GCG model: this model has an exotic EoS, pgcg = −A/ρβgcg, where A is a positive
constant and β is a free parameter. The GCG behaves as a dust-like matter at the
early times and behaves like a cosmological constant at the late times. In this model,
we have

E2(z) = Ωb(1+z)3 +Ωr(1+z)4 +(1−Ωb−Ωr)
(
As + (1−As)(1 + z)3(1+β)

) 1
1+β

, (2.4)

where As ≡ A/ρ1+β
gcg0 is a dimensionless parameter, ρgcg0 is the present-day density of

GCG, and Ωb is the present-day density of baryon matter. Actually, the GCG model
can be viewed as a model of vacuum energy interacting with cold dark matter with the
interaction term Q = 3βHρΛρc/(ρΛ + ρc), where ρΛ and ρc are the energy densities of
vacuum energy and cold dark matter. Thus, the GCG model with β = 0 reduces to
the ΛCDM model and with β = 1 reduces to the original Chaplygin gas model.

2.2 Current observations for cosmic distances

2.2.1 SN data

We use the “joint light-curve analysis” (JLA) compilation [72] of type Ia supernovae in this
work. It consists of 740 type Ia supernovae data, which are obtained by SDSS-II and SNLS
collaborations. The peak luminosity of SN observation is correlated to stretch and color, so
the distance modulus could be written as

µ = m∗B − (MB − α×X1 + β × C), (2.5)

where m∗B is the peak magnitude of observation in a rest-frame B-band, MB is absolute
magnitude of a SN Ia, X1 and C are the time stretching of light curve and the supernova
color at maximum brightness, respectively, and coefficients α and β are the linear corrections,
respectively, for stretch and color [72]. The luminosity distance dL of a supernova can be
calculated by

dL(z) =
1 + z

H0

∫ z

0

dz′

E(z′)
, (2.6)

where E(z) = H(z)/H0 with H0 being the Hubble constant. The χ2 function for SN obser-
vation is written as

χ2
SN = (µ̂− µth)†C−1

SN(µ̂− µth), (2.7)

where CSN is the covariance matrix of the SN observation [72], and the theoretical distance
modulus µth can be calculated by

µth = 5 log10

dL

10pc
. (2.8)
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2.2.2 CMB data

For the CMB data, we utilize the “Planck distance priors” from the Planck 2015 data [73].
The shift parameter R and the “acoustic scale” `A can be given by

R ≡
√

ΩmH2
0 (1 + z∗)DA(z∗), (2.9)

`A ≡ (1 + z∗)
πDA(z∗)

rs(z∗)
, (2.10)

where Ωm denotes the present-day fractional energy density of matter, z∗ is the redshift at the
decoupling epoch of photons, DA(z∗) denotes the angular diameter distance at the redshift
z∗, and rs(z∗) denotes the comoving sound horizon at the redshift z∗. In a flat universe, DA

can be expressed as

DA(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
, (2.11)

and rs(z) can be expressed as

rs(z) =
1√
3H0

∫ ∞
z

dz′

(1 + z′)E(z′)
√

1 + (3Ωb/4Ωγ)(1 + z′)−1
, (2.12)

where Ωb and Ωγ are the present-day baryon energy density and the present-day photon
energy density, respectively. We take 3Ωb/4Ωγ = 31500Ωbh

2(Tcmb/2.7 K)−4, with Tcmb =
2.7255 K. z∗ is given by [74]

z∗ = 1048[1 + 0.00124(Ωbh
2)−0.738][1 + g1(Ωmh

2)g2 ], (2.13)

where

g1 =
0.0783(Ωbh

2)−0.238

1 + 39.5(Ωbh2)−0.76
, g2 =

0.560

1 + 21.1(Ωbh2)1.81
. (2.14)

From the Planck TT+LowP data, the three values of the distance priors can be obtained:
R = 1.7488±0.0074, `A = 301.76±0.14, and Ωbh

2 = 0.02228±0.00023 [73]. The χ2 function
for CMB is

χ2
CMB = ∆pi[Cov−1

CMB(pi, pj)]∆pj , ∆pi = pobs
i − pth

i , (2.15)

where p1 = `A, p2 = R, p3 = Ωbh
2, and Cov−1

CMB is the inverse covariance matrix that can
be found in ref. [73].

2.2.3 BAO data

Using the BAO measurements, we can obtain the ratio of the effective distance measureDV(z)
and the comoving sound horizon size rs(zd). The spherical average gives us the expression
of DV(z),

DV(z) ≡
[
(1 + z)2D2

A(z)
z

H(z)

]1/3

. (2.16)

The comoving sound horizon size rs(zd) is given by eq. (2.12), where zd is the redshift of the
drag epoch and its fitting formula is given by [75]

zd =
1291(Ωmh

2)0.251

1 + 0.659(Ωmh2)0.828
[1 + b1(Ωbh

2)b2 ], (2.17)
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zeff ξ(zeff) Experiment Reference

0.106 rd/DV(zeff) = 0.336± 0.015 6dFGS [76]

0.15 DV(zeff)/rd = 4.466± 0.168 SDSS-DR7 [77]

0.32 DV(zeff)/rd = 8.467± 0.167 BOSS-DR11 [78]

0.57 DV(zeff)/rd = 13.773± 0.134 BOSS-DR11 [78]

Table 1. Values of the distance ratio ξ(zeff) = rd/DV(zeff) or DV(zeff)/rd from the BAO measure-
ments.

where
b1 = 0.313(Ωmh

2)−0.419[1 + 0.607(Ωmh
2)0.674],

b2 = 0.238(Ωmh
2)0.223.

(2.18)

We use four BAO data points: rd/DV(zeff) = 0.336 ± 0.015 at zeff = 0.106 from the
6dF Galaxy Survey [76], DV(zeff)(rd,fid/rd) = 664 ± 25 Mpc at zeff = 0.15 from the SDSS-
DR7 (where rd,fid = 148.69 Mpc) [77], DV(zeff)(rd,fid/rd) = 1264 ± 25 Mpc at zeff = 0.32,
and DV(zeff)(rd,fid/rd) = 2056± 20 Mpc at zeff = 0.57 from the BOSS-DR11 (where rd,fid =
149.28 Mpc) [78]. Note that here rd ≡ rs(zd) and thus rd,fid is the sound horizon size of
the drag epoch in a fiducial cosmology. For convenience, we give the values of the distance
ratio rd/DV(zeff) or DV(zeff)/rd from the BAO measurements in table 1. The χ2 function
for BAO is

χ2
BAO =

4∑
i=1

(ξobs
i − ξth

i )2

σ2
i

, (2.19)

where ξth and ξobs are, respectively, the theoretically predicted value and the corresponding
experimentally measured value for the ith point of the BAO observation, and σi is the
standard deviation of the i-th point.

2.3 Hubble parameter observations

2.3.1 Current H(z) data

In recent years, enormous efforts have been made in the measurements of H(z) data. By
definition, the Hubble parameter can be expressed as

H(z) =
ȧ

a
= − 1

1 + z

dz

dt
, (2.20)

where a and ȧ are the cosmic scale factor and its rate of change with the cosmic time t,
respectively.

According to the second equal sign in eq. (2.20), we can get the H(z) data by mea-
suring the differential age (DA) of galaxies, which is called the DA method or the cosmic
chromometer method. The method was proposed by Jimenez and Loeb in 2002 [79] and then
the first H(z) measurement at z ≈ 1 was made in 2003 [80].

We adopt 30 data points obtained from the DA method in this work. Concretely, Stern
et al. [81] provided 11 H(z) data points covering the redshift range 0.1 < z < 1.75 in 2010 and
discussed the role of the direct H(z) measurements in constraining dark energy parameters by
combining the H(z) data with CMB data. In 2012, Moresco et al. [19] reported 8 H(z) data
points covering the redshift range 0.15 < z < 1.1 obtained via the differential spectroscopic
evolution of early-type galaxies. In 2014, Zhang et al. [82] obtained 4 data points from

– 6 –
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z H(z) σH(z) Reference

0.07 69.0 19.6 [29]

0.1 69.0 12.0 [30]

0.12 68.6 26.2 [29]

0.17 83.0 8.0 [30]

0.179 75.0 4.0 [19]

0.1993 75.0 5.0 [19]

0.2 72.9 29.6 [29]

0.27 77.0 14.0 [30]

0.28 88.8 33.6 [29]

0.3519 83.0 14.0 [19]

0.3802 83.0 13.5 [84]

0.4 95.0 17.0 [30]

0.4004 77.0 10.2 [19]

0.4247 87.1 11.2 [19]

0.4497 92.8 7.8 [84]

0.4783 80.9 9.0 [84]

0.48 97.0 60.0 [30]

0.5929 104.0 13.0 [19]

0.6797 92.0 8.0 [19]

0.7812 105.0 12.0 [19]

0.8754 125.0 17.0 [19]

0.88 90.0 40.0 [30]

0.9 117.0 23.0 [30]

1.037 154.0 20.0 [19]

1.3 168.0 17.0 [30]

1.363 160.0 33.6 [83]

1.43 177.0 18.0 [30]

1.53 140.0 14.0 [30]

1.75 202.0 40.0 [30]

1.965 186.5 50.4 [83]

Table 2. The Hubble parameter values H(z) from the measurements of differential age of galaxies.
Here H(z) and σH(z) are in units of km s−1 Mpc−1.

luminous red galaxies (LRGs) of Sloan Digital Sky Survey Data Release Seven (SDSS DR7)
at the redshift range of 0 < z < 0.4, and they also combined these four data with previous
H(z) data to constrain both the flat and non-flat ΛCDM models. About one years later,
Moresco [83] presented 2 data points on the basis of previous dataset, and utilized these
data to estimate the improvement of accuracy on cosmological parameters in the ΛCDM
model and the wCDM model, finding an about 5% improvement of Ωm and w0. In addition,
in 2016 Moresco et al. [84] enriched the dataset again with five new model-independent
H(z) measurements around the redshift z ∼ 0.45 (in a narrow range) by using the cosmic
chronometer approach. For convenience, we list these H(z) data in table 2.

– 7 –
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In the current literature [21, 23, 24, 28, 85, 86], these 30 data points have been used
to estimate the accuracies of cosmological parameters in the ΛCDM and wCDM models,
which provide constraints on dark energy comparable to or better than those provided by
SN data. Note here that in this paper we do not adopt the H(z) data compilation from the
measurement of clustering of galaxies or quasars (simply called the “clustering” method).
The main reason is that some authors have questioned that these data are not totally model-
independent and thus cannot be adopted in cosmological parameter constraints [87–96]. In
addition, in this paper we also use the 4 data from BAO observation, which is overlapping
with the H(z) data from the “clustering” method.

The χ2 function of H(z) is given by

χ2
H(z) =

N∑
i=1

[Hth(zi)−Hobs(zi)]
2

σ2
H(zi)

, (2.21)

where Hth and Hobs are the theoretical value in a cosmological model and the measured
value of H(z), respectively, and σH(zi) is the standard deviation of the i-th data point.

2.3.2 Future H(z) data from SL test

We also use the future SL test observation (simulated data). The method was proposed by
Sandage in 1962 in order to directly probe the dynamics of the expansion [49]. Furthermore,
it was improved in 1998 by Loeb who suggested a possible scheme by decades-long observation
of the redshift variation of distant quasars (QSOs) Lyman-α absorption lines [50]. With the
continuous development of spectroscopy in the near future, the CODEX experiment (COsmic
Dynamics EXperiment) proposed for E-ELT will be capable of accessing the redshift range
of z ∈ [2, 5] [67]. Thus, a new “cosmological window” will be opened by the SL test.

In order to generate the mock data of SL test, we adopt the scheme accordant with our
previous papers [26, 28, 56–58, 68, 97]. The redshift variation, which is the main observable,
is usually expressed as a spectroscopic velocity shift [50],

∆v =
∆z

1 + z
= H0∆to

[
1− E(z)

1 + z

]
, (2.22)

where ∆to is the observer’s time interval, and E(z) = H(z)/H0 can be determined by spe-
cific cosmological models. According to Monte Carlo simulations carried out to Lyman-α
absorption lines from CODEX, the standard deviation on ∆v can be estimated as [67]

σ∆v = 1.35

(
2370

S/N

)(
NQSO

30

)−1/2(1 + zQSO

5

)x
cm s−1, (2.23)

where x is 1.7 for 2 ≤ z ≤ 4 and 0.9 for z ≥ 4, S/N = 3000 is spectral signal-to-noise ratio of
Lyman-α, and NQSO and zQSO are the number and redshift of observed quasars, respectively.
In this work, we simulate 30 H(z) data within the redshift range of z ∈ [2, 5] in a 10-year
observation of redshift drift. These mock SL test data are uniformly distributed over six
redshift bins of zQSO ∈ [2, 5]. The fiducial cosmology for the SL simulated data is chosen to
be the best fit result of the analysis of the data combination of SN+CMB+BAO+H(z).

– 8 –
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SN+CMB+BAO SN+CMB+BAO+H(z) SN+CMB+BAO+H(z)+SL

Parameter ΛCDM wCDM ΛCDM wCDM ΛCDM wCDM

w −1 (fixed) −0.964+0.034
−0.035 −1 (fixed) −0.969+0.036

−0.031 −1 (fixed) −0.965+0.032
−0.034

Ωm 0.322+0.008
−0.007 0.327+0.008

−0.009 0.322+0.008
−0.008 0.325+0.009

−0.008 0.322+0.005
−0.004 0.325+0.005

−0.005

h 0.668+0.005
−0.006 0.662+0.008

−0.008 0.669+0.006
−0.005 0.664+0.007

−0.008 0.669+0.004
−0.004 0.663+0.006

−0.006

Parameter αDE GCG αDE GCG αDE GCG

α 0.127+0.128
−0.125 − 0.133+0.138

−0.112 − 0.118+0.116
−0.122 −

β − −0.045+0.063
−0.065 − −0.040+0.060

−0.065 − −0.047+0.027
−0.026

As − 0.690+0.023
−0.028 − 0.693+0.023

−0.027 − 0.690+0.006
−0.006

Ωm 0.326+0.009
−0.008 0.346+0.027

−0.023 0.325+0.008
−0.008 0.343+0.026

−0.022 0.324+0.005
−0.005 0.345+0.006

−0.006

h 0.662+0.008
−0.008 0.661+0.008

−0.008 0.662+0.009
−0.007 0.662+0.008

−0.007 0.664+0.005
−0.005 0.661+0.004

−0.004

Table 3. Fit results of the ΛCDM, wCDM, αDE, and GCG models by using the SN+CMB+BAO,
SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL data.

3 Results and discussion

We constrain the ΛCDM, wCDM, αDE, and GCG models by using the data combinations
of SN+CMB+BAO, SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL. The detailed
fit results are presented in table 3 with the 1σ errors quoted. From table 3, we find that,
the constraint results from the SN+CMB+BAO+H(z) data combination are very similar
with those from the SN+CMB+BAO data combination, indicating that the current H(z)
data could not help improve the constraints on dark energy on the basis of the current
cosmological observations (measuring the distance-redshift relation). But when the 10-year
SL mock data are added to the SN+CMB+BAO+H(z) data combination, the constraint
results are significantly improved over other two cases, showing that the future H(z) data
from the SL test will have important potential to change the status of the Hubble parameter
measurements in constraining dark energy.

In order to visually see the improvements of the parameter constraints with the ad-
dition of the current H(z) data and the 10-year SL mock data, respectively, we present
the constraints (1σ and 2σ CL) on the ΛCDM, wCDM, αDE, and GCG models by using
the SN+CMB+BAO, SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL data in fig-
ures 1 and 2. From the two figures, we clearly see that adding the current H(z) data to
the SN+CMB+BAO data combination could not improve the constraints on the four dark
energy models, and further adding the 10-year SL mock data to the SN+CMB+BAO+H(z)
data combination can lead to a tremendous improvement for the constraints on these models,
in particular for the GCG model. In addition, we find that these mock H(z) data from SL
test can effectively break the degeneracies between Ωm and other parameters, in particular
between Ωm and β for the GCG model. Note that here the constraints from the 10-year
SL mock data alone are not shown, because the SL data alone can only give rather weak
constraints on dark energy models. Although the constraints from the SL data alone are very
weak, they are still rather helpful in breaking the parameter degeneracies since the degener-
acy directions formed by them in the parameter planes are different from those formed by
the SN+CMB+BAO+H(z) data. For the relevant issue, we refer the reader to see figure 2
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Figure 1. Constraints (1σ and 2σ CL) on the ΛCDM, wCDM, αDE, and GCG models in the Ωm–h
plane by using the SN+CMB+BAO, SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL data.

of ref. [56] and figure 4 of ref. [57], where the constraints on the ΛCDM and wCDM models
from the 30-year SL mock data alone are shown.

With the purpose of quantifying the constraint improvements from the current
H(z) data and the 10-year SL mock data, we list the constraint errors for the ΛCDM,
wCDM, αDE, and GCG models by using the SN+CMB+BAO, SN+CMB+BAO+H(z), and
SN+CMB+BAO+ H(z)+SL data in table 4. We calculate the error as σ = [(σ2

+ +σ2
−)/2]1/2,

where σ+ and σ− correspond to the 1σ deviation for upper and lower limits, respectively.
Furthermore, for a parameter ξ, its constraint precision ε(ξ) is defined as ε(ξ) = σ(ξ)/ξbf ,
where ξbf is the best-fit value of ξ. In table 5, we also present the constraint precisions of
parameters of the four models by using the SN+CMB+BAO, SN+CMB+BAO+H(z), and
SN+CMB+BAO+H(z)+SL data.

From table 4, we find that, with the addition of the current H(z) data, the constraint
errors of parameters are extremely close to those calculated from the SN+CMB+BAO data
(without the current H(z) data). But, when the 10-year SL mock data are combined to the
SN+CMB+BAO+H(z) data, the constraint errors of these parameters are greatly reduced.
In other words, the current H(z) data do not improve the constraints, but the 10-year SL
mock data can obviously improve the constraints on dark energy in the four models.

Similarly, we show the constraint precisions of parameters for the ΛCDM, wCDM,
αDE, GCG models in table 5. We see that, with the addition of the current H(z) data,
slight improvement is generated for the constraint precisions of parameters in the four mod-
els. When further adding the 10-year SL mock data to the SN+CMB+BAO+H(z) data,
the constraint precisions of parameters are tremendously improved for the four dark energy
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Figure 2. Constraints (1σ and 2σ CL) on the wCDM, αDE, and GCG models from the
SN+CMB+BAO, SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL data. We show the two-
dimensional marginalized contours in the Ωm −w plane for wCDM, in the Ωm − α plane for αDE, in
the Ωm − β and As − β planes for GCG.

SN+CMB+BAO SN+CMB+BAO+H(z) SN+CMB+BAO+H(z)+SL

Error ΛCDM wCDM ΛCDM wCDM ΛCDM wCDM

σ(w) − 0.035 − 0.034 − 0.033

σ(Ωm) 0.008 0.009 0.008 0.009 0.005 0.005

σ(h) 0.006 0.008 0.006 0.008 0.004 0.006

Error αDE GCG αDE GCG αDE GCG

σ(α) 0.127 − 0.126 − 0.119 −
σ(β) − 0.064 − 0.062 − 0.027

σ(As) − 0.026 − 0.025 − 0.006

σ(Ωm) 0.009 0.025 0.008 0.024 0.005 0.006

σ(h) 0.008 0.008 0.008 0.008 0.005 0.004

Table 4. Constraint errors of cosmological parameters in the ΛCDM, wCDM, αDE, and GCG models
by using the SN+CMB+BAO, SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL data.

models. Concretely, the precision of Ωm is improved from 2.5% to 1.6% for ΛCDM, from
2.8% to 1.5% for wCDM, from 2.5% to 1.5% for αDE, and from 7.0% to 1.7% for GCG.
For the parameter h, the constraint precision is improved from 0.9% to 0.6% for ΛCDM,
from 1.2% to 0.9% for wCDM, from 1.2% to 0.8% for αDE, and from 1.2% to 0.6% for
GCG. In the wCDM model, the precision of w is improved from 3.5% to 3.4%; in the
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SN+CMB+BAO SN+CMB+BAO+H(z) SN+CMB+BAO+H(z)+SL

Precision ΛCDM wCDM ΛCDM wCDM ΛCDM wCDM

ε(w) − 0.036 − 0.035 − 0.034

ε(Ωm) 0.025 0.028 0.025 0.028 0.016 0.015

ε(h) 0.009 0.012 0.009 0.012 0.006 0.009

Precision αDE GCG αDE GCG αDE GCG

ε(α) 1.000 − 0.947 − 1.008 −
ε(β) − 1.422 − 1.550 − 0.574

ε(As) − 0.038 − 0.036 − 0.009

ε(Ωm) 0.028 0.072 0.025 0.070 0.015 0.017

ε(h) 0.012 0.012 0.012 0.012 0.008 0.006

Table 5. Constraint precisions of cosmological parameters in the ΛCDM, wCDM, αDE, and GCG
models by using the SN+CMB+BAO, SN+CMB+BAO+H(z), and SN+CMB+BAO+H(z)+SL
data.

GCG model, the precision of As is improved from 3.6% to 0.9% and the precision of β is
improved from 155.0% to 57.4%. For the parameter β in the GCG model, its constraint
result approaches 0, indicating that the ΛCDM limit of the GCG model is more favored
by the observational data (β ∼ −0.04 from SN+CMB+BAO, SN+CMB+BAO+H(z), and
SN+CMB+BAO+H(z)+SL). Obviously, this is due to the fact that the fiducial cosmology
for the SL simulated data is chosen to be the same of the best fit of the SN+BAO+CMB+H(z)
analysis and therefore the SL mock data can only tighten constraints around this cosmology.
Note that β = 0 is the ΛCDM limit and β = 1 is the pure Chaplygin gas limit of the GCG
model, and β is not necessarily a positive number. We see that for the GCG model the error
of β is reduced by 56.5% and for the αDE model the error of α is reduced by 5.55% once the
10-year SL data are considered. Therefore, we conclude that the current H(z) data do not
help improve the constraints on dark energy on the basis of the SN+CMB+BAO combina-
tion, but the 10-year SL data would significantly improve the constraints on dark energy on
the basis of the SN+CMB+BAO+H(z) combination.

4 Conclusion

In this work, we wish to investigate whether the current H(z) measurements could help im-
prove the constraints on dark energy on the basis of the mainstream cosmological probes
(namely SN+CMB+BAO). We consider 30 H(z) data measured using the DA method. Fur-
thermore, we also consider the future redshift drift measurements (i.e., the SL test) by means
of the E-ELT that is still in construction. We thus simulate 30 future H(z) data from the
10-year redshift-drift observation. Thus, the second aim of this work is to investigate how
the SL test changes the status of the Hubble parameter measurements in constraining dark
energy. To fulfill the task, we employ several concrete dark energy models, including the
ΛCDM, wCDM, αDE, and GCG models, which are still favored by the current observations,
at least to some extent.

We first use the data combination of SN+CMB+BAO to constrain the four dark energy
models, and then we consider the addition of the current 30 H(z) data in the data combina-
tion, i.e., we use the data combination of SN+CMB+BAO+H(z) to constrain the models.
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We find that the current H(z) data actually could not help improve the constraints on dark
energy on the basis of the current mainstream cosmological probes (SN+CMB+BAO). Fur-
thermore, we consider 30 mock SL test data simulated according to a 10-year observation
in the data combination. By using the data combination SN+CMB+BAO+H(z)+SL, we
find that compared to the case of SN+CMB+BAO+H(z), the constraints on cosmological
parameters are tremendously improved for all the four dark energy models. For example,
with the help of the 10-year SL observation, the constraint on Ωm is improved by about
40%–75% and the constraint on H0 is improved by about 25%–50%. We find that the de-
generacies between cosmological parameters could be effectively broken by the 10-year SL
test data. Therefore, we conclude that although the current H(z) measurements could not
improve the constraints on dark energy on the basis of the mainstream cosmological probes,
the future redshift-drift observation will provide a good chance to change the status of the
Hubble parameter measurements in constraining dark energy.
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