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Abstract. We study the spin of primordial black holes produced by the collapse of large
inhomogeneities in the early universe. Since such primordial black holes originate from
peaks, that is, from maxima of the local overdensity, we resort to peak theory to obtain
the probability distribution of the spin at formation. We show that the spin is a first-order
effect in perturbation theory: it results from the action of first-order tidal gravitational
fields generating first-order torques upon horizon-crossing, and from the asphericity of the
collapsing object. Assuming an ellipsoidal shape, the typical value of the dimensionless
parameter as = S/GNM

2, where S is the spin and M is the mass of the primordial black
hole, is about (Ωdm/π)σδ

√
1− γ2. Here, σ2

δ is the variance of the overdensity at horizon
crossing, Ωdm measures the current abundance of the dark matter and the parameter γ is a
measure of the width of the power spectrum giving rise to primordial black holes. One has
γ = 1 for monochromatic spectra. For these narrow spectra, the suppression arises because
the velocity shear, which is strongly correlated with the inertia tensor, tends to align with
the principal axis frame of the collapsing object. Typical values of as are at the percent level.
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1 Introduction

The physics of black holes has attracted a lot of attention since the recent discovery of the
gravitational waves generated by the merger of rather massive black holes [1]. This interest
is also motivated by the fact that PBHs might compose a fraction of the dark matter of the
universe [2] (for a review, see ref. [3]).

One particularly interesting property of the black holes is their spin. Larger integrated
fluxes of gravitational waves are obtained for larger spins as they lead to smaller ISCO
separations in binaries and to longer inspiral phases. The observations of gravitational waves
sourced emitted during the merging of two massive black holes may be exploited to measure
the spin of the final state, as well as the orbital projection of the effective spin of the black
hole binary

χeff =
M1

~S1 +M2
~S2

M1 +M2
· L̂. (1.1)
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Here, ~S1 and ~S2 are the spins of the initial merging black holes in the binary and ~L their initial
angular momentum. Currently, the handful number of gravitational wave measurements
indicates that χeff is compatible with zero [4].

There are currently two major astrophysical models of black hole spin distributions.
One possibility is that the final spin of the binary system and the angular momentum are
not aligned, as expected for black hole binaries formed in a shared envelope evolution within
galactic fields [5]. Alternatively, the initial spins have an isotropic distribution as expected in
binaries originated in globular or stellar clusters in the proximity of active galactic nuclei [6].
There can be another mechanism which produces small effective spins. This is likely if the
black holes are of primordial origin,1 hence the name Primordial Black Holes (PBHs), and
they are produced by the collapse of sizeable inhomogeneities in the early universe. This case
is particularly interesting because numerical relativity simulations provide evidence that two
black holes with initially small spin merge into a bigger black hole of mass Mf possessing a
final spin Sf of the order of [8]

af =
Sf

GNM2
f

' 0.69− 0.56

(
M1 −M2

M1 +M2

)2

, (1.2)

where GN is Newton’s constant. This result is robust to the details of the evolution, and to
the choice of the initial binary orbital angular momentum in the case of quasi-circular orbits.
This prediction for af is compatible with current measurements.

PBHs can be generated in the early Universe through the collapse of large enough
density perturbations. In particular, inflation can lead to PBH production when the comoving
curvature perturbationR is enhanced on small scales (much smaller than the scales accessible
to the CMB). The process of reheating after inflation transfers these sizeable inhomogeneities
to radiation, and PBHs form when these extreme perturbations re-enter the horizon [3].

While the PBH spins are isotropically distributed at the PBH formation epoch, the
probability distribution of the spin amplitude at PBH formation time is not known. This
will be the focus of the present work. We shall study the PBH spin probability distribution at
formation time. Such a discussion is, to the best of our knowledge, absent in the literature. To
proceed, we will use standard results in peak theory [9] which is the appropriate framework
since PBHs originate from peaks or, more precisely, from local maxima of the radiation
density distribution.

We will show that the zeroth-order anisotropy of the collapsing object giving rise to a
PBH is coupled to the first-order tidal gravitational field and generate a first-order torque.
This happens if one takes into account the fact that the density profile around peaks gener-
ally deviates from spherical symmetry. This result bears a strong similarity with the well-
known “tidal-torque theory” in large-scale structure [10–15]. For instance, as demonstrated
in ref. [12], the classical result of Peebles [16] that the spin of halos is generated at second-
order is a consequence of choosing a Lagrangian sphere to describe the collapsing object. In
our case, the shape of the Lagrangian region which collapses to form a PBH is imprinted
when the characteristic scale of the perturbation is superhorizon.

Our findings indicate that the spin does not vanish at first-order in perturbation theory
because, in the homogeneous ellipsoid approximation adopted throughout this work (the
gravitational collapse of such ellipsoidal perturbations has been investigated extensively in the
large scale structure literature [17–27]), the lengths of the principal axes of the inertia tensor

1Massive black holes of stellar origin may also be born with small natal spins [7].
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are different. However, another necessary condition to generate a non-zero spin is the non-
vanishing of the off-diagonal components of the velocity shear. In other words, the ellipsoidal
perturbation tracing the peak from which the PBH originates must have its inertia tensor
misaligned with that of the velocity shear. This does not happen when the perturbations
are on superhorizon scales. Notwithstanding, a torque is generated once the perturbation
re-enters the horizon until it decouples from the background, i.e. until turnaround. This
generates a small, albeit non-zero spin. After turnaround, we speculate that the angular
momentum remains constant, as seen for the collapse of non-relativistic dust [12, 14, 16].
However, this issue should be explored further with numerical simulations.

We will show that the typical value of the dimensionless Kerr spin parameter as =
S/GNM

2 (where M is the mass of the PBH) is

as =
Ωdm

π
σδ
√

1− γ2 ∼ 10−2
√

1− γ2, (1.3)

where σ2
δ is the variance of the overdensity at horizon crossing, Ωdm ∼ 0.3 measures the

current abundance of the dark matter and γ measures how narrow is the power spectrum
giving rise to the PBHs. Very narrow power spectra have γ ' 1 (a monochromatic power
spectrum, or Dirac delta, has exactly γ = 1). Hence, the smaller the PBH spin, the narrower
the spectrum. As we shall see, the suppression factor due to the dependence on γ arises
because, as γ approaches unity, the velocity shear tends to be more strongly aligned with the
inertia tensor.

The conditional spin probability asP (as|ν) (where ν = δ/σδ parametrises the height of
the peak) exhibits some interesting features: for higher peaks, the PBH spin shifts towards
smaller values and, once the height of the peak is held fixed, slightly smaller values of the
spins are obtained the steeper the power spectrum is.

Our paper is organised as follows. In section 2, we start from peak theory to characterise
the spin at first- and second-order in perturbation theory. In section 3, we study the spin
on superhorizon scales, while section 4 is dedicated to the subhorizon treatment. Section
5 describes the PBH dimensionless Kerr parameter at formation time. Section 6 contains
technical details of the computation of the spin probability distribution. Section 7 illustrates
how the PBH spin is correlated with the shape of the power spectrum. Section 8 discusses the
impact of the spin onto the PBH abundance. Finally, section 9 summarizes our conclusions.

2 The spin of PBHs as local density maxima

The definition of spin or angular momentum in general relativity is a delicate issue, see for in-
stance ref. [28] for a detailed discussion and more recently ref. [29]. The angular momentum
represents a conserved quantity originated from rotational invariance. Naively, one might
define it through the (3+1)-formalism as the conserved quantity associated with rotations at
spatial infinity and to asymptotically flat spacetime observers. This would be the generalisa-
tion of the ADM momentum obtained by replacing the translation Killing vectors at spatial
infinity by the corresponding rotational Killing vectors. The problem with this definition is
that the resulting quantity does not transform as a vector under the change of the coordi-
nates preserving the asymptotic properties at infinity. The issue arises from the existence
of the so-called supertranslations at infinity [30]. However, if the spacetime possesses some
symmetries, global quantities may be defined which are coordinate-independent through the
technique introduced by Komar [31] which amounts to taking flux integrals of the derivative
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of the Killing vector associated with the symmetry over closed two-surfaces surrounding the
matter sources. These quantities are conserved in the sense that they do not depend on the
choice of the surface provided that all the matter is included in it. One can therefore define
the amplitude of the Komar angular momentum on a given time-slicing Σ through the Komar
integral [28]

S(Σ) =
1

16πGN

∫
∂Σ

dSµνD
µφν , (2.1)

where φν is the rotational Killing vector of the asymptotic flat metric. Using Gauss’ law and
Einstein equations, one can rewrite this expression as

S(Σ) =

∫
Σ

dSµJ
µ(φ), (2.2)

where Jµ(φ) = Tµνφν − Tφµ/2 is expressed in terms of the energy-momentum tensor. For a
relativistic perfect fluid one gets

S(Σ) =

∫
Σ

dV T 0
µφ

µ =
4

3

∫
Σ

dV ρ~v · ~φ, (2.3)

where ~v is the velocity field and ρ is the density field. In the following we will be concerned
with the spin of perturbations collapsing around a local maxima of the overdensity. Therefore,
expanding around the peak located at ~xpk, one obtains

Si =
4

3
a4(η)εijk

∫
d3x
√
γ ρ(~x, η)(x− xpk)j(v − vpk)k, (2.4)

where ~x is a comoving coordinate and we have gone to conformal time. The presence of
the velocity, which is a first-order quantity in cosmological perturbation theory, makes the
spin at least a first-order quantity. Of course, by expanding the energy density ρ(~x, η) in
perturbation theory one would obtain higher-orders contribution to the spin. However, in
the rest of the paper we will be concerned with the spin of PBHs only at first-order.

2.1 First-order description of the PBH spin

The 3-dimensional volume Ve over which we perform the integral eq. (2.4) could be signifi-
cantly aspherical. To proceed further, we associate the PBHs to high peaks of the overdensity
and use the triaxial ellipsoid approximation to prescribe the volume Ve. We then use the
standard results of peak theory and study the statistics of local maxima [9]. Expanding the
overdensity around the peak up to second-order (in the derivatives), we obtain2

δ(~x) =
δρ(~x)

ρ̄
' δpk +

1

2
ζij(x− xpk)i(x− xpk)j > fδpk, ζij =

∂2δ

∂xi∂xj

∣∣∣∣
pk

, (2.5)

where the first gradient term is zero as we are dealing with maxima of the overdensity. The
parameter f is set by the criterion to form a PBH, that is that the matter nearby the peak
be above a certain overdensity threshold. Performing a rotation of the coordinate axes to be
aligned with the principal axes of length λi of the constant-overdensity ellipsoids gives

δ ' δpk −
1

2
σζ

3∑
1

λi(x
i − xipk)2. (2.6)

2We choose to work with the density contrast instead of the curvature perturbation to avoid un-physical
IR effects arising from super-horizon modes, see for example ref. [32].
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Here, σζ is the characteristic rms variance of the components of ζij . We purposely avoid the
spectral moment notation of ref. [9] to remain as general as possible. As we will see later,
the velocity shear and the density perturbations which contribute to the linear tidal-torque
effect can expressed through the familiar spectral moments of the density power spectrum.

Eq. (2.6) can be rearranged as

2(δ − δpk)

σζ
= −

3∑
1

λi(x
i − xipk)2. (2.7)

Focusing on the approximately ellipsoidal surface δ = fδpk and defining the height of the
peak ν in units of the rms overdensity σδ as ν = δpk/σδ, leads to

2
σδ
σζ

(1− f)ν =
3∑
1

λi(x
i − xipk)2, (2.8)

whose solutions define the boundary of the integration volume in the spin integral. They are
the principal semi-axes of such an ellipsoid and are given by3

a2
i = 2

σδ
σζ

(1− f)

λi
ν. (2.9)

Notice that in the limit of large ν one obtains the following useful expressions [9]

λi =
γν

3
(1 + εi) , εi = O

(
1

γν

)
and a2

i ∼ 6
σ2
δ

σ2
×
, (2.10)

where

γ =
σ2
×

σδσζ
(2.11)

and σ2
× is the characteristic cross-correlation between δ and ζij . Eq. (2.9) shows that the

principal semi-axes behaves like a2
i ∼ σδν/σζ |ζij | ∼ R2

∗, where R∗ is a characteristic scale
to be defined below. Furthermore, the difference |λi − λj | is of order unity because the
“ellipticity” εi scales like 1/(γν).

Next, we first expand the velocity field around the peak

(v − vpk)k = vkl (x− xpk)l, vkl =
∂vk

∂xl

∣∣∣∣
pk

, (2.12)

to get

Si =
4

3
a4(η)εijkρrad(η)

∫
Ve

d3x(x− xpk)j(v − vpk)k

=
4

3
a4(η)εijkρrad(η)vkl

∫
Ve

d3x(x− xpk)j(x− xpk)l. (2.13)

In this expression we have expanded at zeroth-order the density field ρ(~x, t), and defined the
average density of the universe at a given time η, ρrad(η), which we suppose to be dominated
by radiation.

3Notice that a2
i , being ratios of first-order quantities, are not small quantities and this is the ultimate

reason why tidal-torque theory, when applied to dark matter halos, predicts a much larger spin parameter
although one starts from a density fluctuation at recombination which is of order (10−4 ÷ 10−3).
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The volume Ve over which the integral is performed generally is a function of time.
Internal and external tidal forces will gradually deform it until the whole perturbation col-
lapses to a black hole. However, since the characteristic (comoving) size of the perturbation is

k−1
H ∼M1/2

PBH, the deformation becomes significant only once the perturbation has re-entered
the horizon and decoupled from the background, i.e. after turnaround. Before turnaround,
we can approximate the perturbation as a rigid body of volume Ve whose boundary is the
isodensity surface δ = fδpk. The value of f < 1 is chosen such that fδpk equates the crit-
ical threshold δc for PBH collapse. This critical density depends on the choice of gauge
(see below).

The spin can be found by performing the integration over the ellipsoidal volume Ve

appearing in its definition as

Si =
4

3
a4(η)εijkρrad(η)vkl

∫
Ve

d3x xjxl =
4

3
a4(η)εijkρrad(η)gv(η)ṽkl

∫
Ve

d3x xjxl, (2.14)

where, without loss of generality, we have chosen ~xpk = 0 and we have factorised out the
time-dependence of vkl as

vkl (η) = gv(η)ṽkl . (2.15)

Eq. (2.15) defines the normalised velocity shear ṽkl (where the scale factor can be normalised
to unity today). We perform the integration by doing a change of coordinates to ellipsoidal
coordinates of the form∫

Ve

d3x = a1a2a3

∫ 1

0
r2dr

∫ 2π

0
dφ

∫ π

0
dθ sin θ (2.16)

and identifying

x1 = a1r cosφ sin θ, x2 = a2r sinφ sin θ, x3 = a3r cos θ. (2.17)

Thus we get ∫
Ve

d3xxjxl =
4π

15
a1a2a3

a2
1 0 0

0 a2
2 0

0 0 a2
3


jl

. (2.18)

Finally, eq. (2.14) can be written as [11]

~S(1) =
16π

45
a4(η)ρrad(η)gv(η)a1a2a3([a2

2 − a2
3]ṽ23, [a

2
3 − a2

1]ṽ13, [a
2
1 − a2

2]ṽ12). (2.19)

This shows that the spin does not vanish at first-order only if i) the lengths of the semi-
axis are different and ii) the off-diagonal components of the velocity shear are non-zero, and
misaligned with the inertia tensor. For later use, using eq. (2.9) we can recast the spin in
the form

~S(1) =
4

3

16
√

2π

15
a4(η)ρrad(η)gv(η)

(
σδ
σζ

)5/2 (1− f)5/2ν5/2

√
λ1λ2λ3

(−α1ṽ23, α2ṽ13,−α3ṽ12)

=

[
4

3
a4(η)ρrad(η)gv(η)(1− f)5/2R5

∗

]
16
√

2π

135
√

3

(
ν

γ

) 5
2 1√

Λ
(−α1ṽ23, α2ṽ13,−α3ṽ12) ,

(2.20)
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where

α1 =
1

λ3
− 1

λ2
, α2 =

1

λ3
− 1

λ1
, α3 =

1

λ2
− 1

λ1
, (2.21)

are defined such that αi ≥ 0, with α2 ≥ α1, α3 due to the labelling choice λ1 > λ2 > λ3.
Here,

Λ = λ1λ2λ3, R∗ =
√

3
σ×
σζ
. (2.22)

The term inside the square brackets in the last line of eq. (2.20) identifies the time-dependent
part of the spin, that we will label as the reference spin

Sref(η) =
4

3
a4(η)ρrad(η)gv(η)R5

∗(1− f)5/2. (2.23)

It is the same for all peaks, while the information on the shape and the height of the peak
is carried by the remaining term. The magnitude of the dimensionless spin can therefore be
written as

S(1)(η) = Sref(η)s(1)
e . (2.24)

While Sref(η) is common to all peaks, s
(1)
e depends on the shape and the height of the peaks.

This parametrisation isolates the time-dependence in such a way that its time derivative may
be thought of as the torque acting on matter in the neighbourhood of local density maxima.

As we can see, since αi ∼ |λj−λk|/λjλk ∼ 1/(γν)2, s
(1)
e genuinely is a quantity of order

O(1) (up to multiplicative factors of γ and ν). The only first order quantity appearing in
this calculation thus is the velocity shear vkl . Therefore, the spin S(1)(η) is truly first-order.

2.2 Second-order description of the PBH spin

For the sake of completeness, we present here the second-order expansion obtained taking
one more term when perturbing the energy density

ρ(~x, η) = ρrad(η) + δρ = ρrad(η) (1 + δ) = ρrad(η)

[
1 + δpk +

1

2
ζij(x− xpk)i(x− xpk)j

]
= ρrad(η) (1 + δpk) + ρrad(η)

[
1

2
ζij(x− xpk)i(x− xpk)j

]
. (2.25)

This corresponds to consider the second-order effects in the spin

Si =
4

3
a(η)4εijkρrad(η)vkl

[
(1 + δpk)

∫
Ve

d3xxjxl +
1

2
ζmn

∫
Ve

d3xxjxlxmxn
]
, (2.26)

where Ve is the ellipsoidal volume. We perform the integrations by doing a change of co-
ordinates to ellipsoidal coordinates as in eq. (2.16) and, defining Ijlmn =

∫
Ve

d3xxjxlxmxn,
one finds

I1111 =
4π

35
a5

1a2a3, I2222 =
4π

35
a1a

5
2a3, I3333 =

4π

35
a1a2a

5
3,

I2211 = I1122 = I2121 = I2112 = I1221 = I1212 =
4π

105
a3

1a
3
2a3,

I3311 = I1133 = I3131 = I3113 = I1331 = I1313 =
4π

105
a3

1a2a
3
3,

I3322 = I2233 = I2332 = I2323 = I3232 = I3223 =
4π

105
a1a

3
2a

3
3,

(2.27)
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where all the other components are zero. The spin up to second-order is therefore given by

~S = ~S(1)(1 + δpk) + ~S(2), (2.28)

where the components of ~S(2) are

S
(2)
1 =

16π

90
a4(η)ρrad(η)gv(η)a1a2a3 ·

1

7

[
3a4

2ṽ23ζ22 − 3a4
3ṽ23ζ33 + a2

1a
2
2(ṽ23ζ11 + 2ṽ13ζ12)

−a2
1a

2
3(ṽ23ζ11 + 2ṽ12ζ13) + a2

2a
2
3(−ṽ23ζ22 − 2ṽ22ζ23 + 2ṽ33ζ23 + ṽ23ζ33)

]
,

S
(2)
2 =

16π

90
a4(η)ρrad(η)gv(η)a1a2a3 ·

1

7

[
−3a4

1ṽ13ζ11 + 3a4
3ṽ13ζ33 − a2

1a
2
2(2ṽ23ζ12 + ṽ13ζ22)

+a2
2a

2
3(ṽ13ζ22 + 2ṽ12ζ23) + a2

1a
2
3(ṽ13ζ11 + 2ṽ11ζ13 − 2ṽ33ζ13 − ṽ13ζ33)

]
,

S
(2)
3 =

16π

90
a4(η)ρrad(η)gv(η)a1a2a3 ·

1

7

[
3a4

1ṽ12ζ11 − 3a4
2ṽ12ζ22 + a2

1a
2
2(−ṽ12ζ11 − 2ṽ11ζ12

+2ṽ22ζ12 + ṽ12ζ22) + a2
1a

2
3(2ṽ23ζ13 + ṽ12ζ33)− a2

2a
2
3(2ṽ13ζ23 + ṽ12ζ33)

]
.

(2.29)
We will now discuss the two relevant regimes, super- and sub-horizon.

3 The PBH spin before horizon crossing

In the early radiation-dominated Universe, PBHs are generated when highly overdense regions
gravitationally collapse directly into a black hole. Before collapse, the comoving sizes of
such regions are larger than the horizon length and the separate universe approach can be
applied [33]. We can therefore expand at leading order in spatial gradients of the various
observables, e.g. the overdensity. At this stage, one should fix the slicing and the threading
of the spacetime manifold. The so-called constant mean curvature slicing (CMC, sometimes
dubbed the uniform Hubble slicing) seems appropriate as it has been adopted to perform
numerical relativity simulations to describe the formation of PBHs and to calculate the
threshold for PBH formation [34]. In this slicing the equations for the lapse function and
the gravitational potentials are similar to those one encounters in the maximal slicing gauge
(in which the total curvature vanishes) in the asymptotically flat spacetime. We will provide
further considerations about this gauge in section 4.

In the CMC slicing, the overdensity turns out to be [33]

δ(~x, η) = −4

3
e−5R(~x)/2∇2eR(~x)/2

H2
, (3.1)

whereR(~x) is the comoving curvature perturbation. This expression is fully non-perturbative,
being the only expansion in gradients. Notice that the coefficient is 3/2 times larger than the
one in the comoving slicing (CG), as it is the corresponding threshold for PBH formation,
i.e. δc

cmc = 3δc
CG/2. We are going to consider, as a reference value, δc

CG = 0.45, and therefore
δc

cmc = 0.675 [33], neglecting the shape dependence of the threshold [35–37].
As the universe expands, the overdensity grows. Regions where it becomes of order

unity eventually stops expanding and collapse. This happens when the comoving scale of
such a region becomes of the order of the horizon scale. Even though the gradient expansion
approximation breaks down, it has been used to obtain an acceptable criterion for the PBH
formation, as confirmed by nonlinear numerical studies [3], and we will follow the same
strategy here. The spin grows until the system decouples from the background expansion
and torques are reduced.

– 8 –
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In the threading where the pertubed 0i component of the metric vanishes, the velocity
in the long wavelength regime is given by [33]

vi(~x, η) =
1

12H
∂iδ(~x, η). (3.2)

The velocity therefore scales like a3 on superhorizon scales.

Since the velocity is proportional to the gradient of the overdensity, from eq. (2.6) one
immediately concludes that the off-diagonal entries of the matrix ṽij are vanishing. Therefore,

before horizon-crossing the first-order PBH spin ~S(1) is zero. The physical reason is that, in
the coordinate frame aligned with the principal axis frame of the inertia tensor, the velocity
shear vkl is aligned with the inertia tensor and no spin can be generated independently of the
deviation from sphericity of the collapsing region and at any order in perturbation theory in
the comoving curvature perturbation R(~x).

We emphasize that this is true for any particular realization of a density peak, regardless
of the probability density of the random variables δ, vi etc. As soon as vi is proportional to
∂iδ, diagonalizing ζij(~xpk) will automatically diagonalize ṽkl(~xpk).

As we can see from eq. (2.29), the spin is also zero at second-order and, presumably, at
any higher order since the relation vi ∝ ∂iδ holds at any order in perturbation theory as long
as k � H. Furthermore, it is also true in the more familiar Newtonian longitudinal gauge
where δ = 4R/3 and the velocity is proportional to ∂iR and therefore to ∂iδ.

4 The PBH spin after horizon crossing

From horizon crossing onwards, i.e. when the characteristic wavelength of the perturbations
becomes smaller than the Hubble radius, the relation between the velocity and the overdensity
changes. As a result, the spin can grow briefly owing to the linear tidal torque until the
perturbation decouples from the background. Equating the free-fall and sound crossing
timescale, the Jeans criterion tells us that gravitational instability occurs for perturbation
with comoving wavenumber

k

H
<

√
2π

3

(1 + δpk)1/2

cS

≈ 2

cS

, (4.1)

up to a factor of order unity. We have assumed δpk ∼ 1 in this estimate. Since the sound
speed satisfies cS ' 1/

√
3 deep in radiation domination, the perturbations must decouple

from the background around horizon crossing in order to form PBHs. Otherwise, radiation
pressure would quickly stabilise them. Assuming that turnaround occurs at horizon crossing,
we can estimate the amount of angular momentum acquired by the perturbation through
linear tidal-torque.

To be consistent with the previous section, we will work in the CMC slicing. Since the
reader might be more familiar with the Newtonian longitudinal gauge we first summarise the
basic steps to go from the Newtonian longitudinal gauge to the CMC gauge.
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4.1 Relating Newtonian longitudinal gauge and the CMC gauge

To relate the CMC gauge and the Newtonian slicing and longitudinal gauge we follow the
standard reference [38]. The subset of metric perturbations we will be concerned with are

g00 = −a2(η)
[
1 + 2AQ(0)(xµ)

]
,

g0i = −a2(η)BQ
(0)
i (xµ),

gij = a2(η)
[
1 + 2HLQ

(0)(xµ)δij + 2HTQ
(0)
ij (xµ)

]
, (4.2)

where Q(0)(xµ) is the scalar harmonic and Q
(0)
i (xµ) and Q

(0)
ij (xµ) are the corresponding vector

and tensor. Taking a coordinate transformation of the form

η̃ = η + T (η)Q(0)(xµ),

x̃i = xi + L(η)Q(0)i(xµ), (4.3)

one gets the following transformations

Ã = A− T ′ −HT,
B̃ = B + L′ + kT,

H̃L = HL −HT −
k

3
L,

H̃T = HT + kL. (4.4)

We now impose the CMC gauge to be characterised by uniform-Hubble-constant hypersur-
faces, that is

H
′cmc
L +

k

3
Bcmc −HAcmc = 0, (4.5)

and we impose this condition going from the Newtonian longitudinal gauge to the CMC
gauge. In the Newtonian longitudinal gauge we use the notation of ref. [39], for which
A = Φ, B = HT = 0 and HL = −Ψ = −Φ. We omit labels to designate longitudinal gauge
quantities for the purpose of avoiding clutter. Furthermore, we have assumed zero shear or,
equivalently, zero anisotropic stress (which is an excellent approximation at PBH formation
since the mean free path is much shorter than any relevant scale.)

In a radiation-dominated universe the corresponding amplitude of change in the time
coordinate is

T = 3
(
k2 + 6H2

)−1 (
Φ′ +HΦ

)
=

6H2

k2 + 6H2

v

k
, (4.6)

where the amplitude of the velocity is vi = −i(ki/k)v. This fixes the time-slicing. The
corresponding change of the overdensity is then

δcmc = δ + 4HT = δ +
12H

k2 + 6H2

(
Φ′ +HΦ

)
. (4.7)

On superhorizon scales where Φ(~k, 0) = −2R/3 does not depend on time, this gives

δcmc(~k, 0) = δ(~k, 0) + 2Φ(~k, 0). (4.8)

Since δcmc(~k, 0) = (2/3)(k/H)2R, one correctly reproduces the condition δ(~k, 0) = −2Φ(~k, 0)
expected in the limit k � H for the Newtonian longitudinal gauge. Physically, this reflects
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the fact that a constant shift in the gravitational potential does not yield any observable
effect. In other words, PBHs must trace peaks of the familiar (i.e. CMC) density field rather
than peaks of the gravitational potential.

While we have fixed the CMC slicing, we have not determined the threading yet. We
can do so by imposing Bcmc = 0

Bcmc = 0 + L′ + kT = 0, (4.9)

where we have inserted the zero to remind the reader that B = 0 in the longitudinal gauge.
This fixes

L′ = −kT. (4.10)

Given the fact that the velocity transforms as

ṽ = v + L′, (4.11)

the gauge-invariant velocity is (v −H ′T /k). This leads to

vcmc −
H
′cmc
T

k
= v −

H ′T
k
. (4.12)

This means that the amplitude of the velocity in the CMC gauge is

vcmc =
H
′cmc
T

k
+ v + 0, (4.13)

where we have highlighted the fact that in the Newtonian longitudinal gauge HT = 0. Since

H
′cmc
T

k
= 0 + L′ = −kT, (4.14)

we finally get [38]

vcmc = v − kT =
(k/H)2

6 + (k/H)2
v. (4.15)

Since on superhorizon scales v(~k, 0) ' −(1/3)(k/H)R, we get, in the same limit,

vcmc(~k, 0) ' − 1

18

(
k

H

)3

R = − 1

12

(
k

H

)
δcmc(~k, 0), (4.16)

which nicely reproduces the result mentioned in the previous section. On subhorizon scales
the CMC velocity coincides of course with the Newtonian longitudinal velocity.

4.2 Subhorizon description in the CMC gauge

The expressions (4.7) and (4.15) allow us to compute the overdensity and the velocity shear
in the CMC gauge once the perturbations re-enter the horizon, in terms of quantities known
in the Newtonian longitudinal gauge.

From now on we consider a perturbation with characteristic comoving scale entering
the horizon at kH � keq, which is the regime relevant to PBH formation deep in radiation
domination. Here, since the mean free path is very short, one can again ignore any anisotropic
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stress and take the Bardeen potentials to be Φ = Ψ. Near horizon crossing the radiation
density perturbation reads [39]

δ(~k, η) ' −6Φ(~k, 0) cos(kcSη) + 4Φ(~k, η), (4.17)

where

Φ(~k, η) = 3Φ(~k, 0)
sin(kcSη)− (kcSη) cos(kcSη)

(kcSη)3
. (4.18)

Correspondingly, the Fourier modes of the radiation bulk velocity are given by

vi(~k, η) = i
9

2

ki

k
Φ(~k, 0) cS sin(kcSη) . (4.19)

This expression holds as long as k & keq. Since the comoving Hubble parameter satisfies

H = η−1, then horizon crossing occurs at ηH = k−1
H , with kH ∝ M

−1/2
PBH . The multiplicative

sine factor in the expression of the radiation bulk velocity becomes

sin(kcSηH) = sin(k/kS) with kS ≡
kH

cS

. (4.20)

For k = kH, we have sin(kH/kS) ' 0.546. Furthermore, the (physical) velocity shear at
horizon crossing is given by

vji (
~k, ηH) = ikiv

j(~k, ηH) = −9

2

kik
j

k
Φ(~k, 0)cS sin(k/kS), (4.21)

while the density perturbation is

δ(~k, ηH) ' −6Φ(~k, 0) cos(k/kS) + 4Φ(~k, ηH). (4.22)

Using the expressions (4.7) and (4.15) we finally get

δcmc(~k, ηH) = −6Φ(~k, 0)

[
2
(
3c2

S + 1
)

+ (k/kS)2
]

cos (k/kS)− 2
(
3c2

S + 1
)

(kS/k) sin (k/kS)

6c2
S + (k/kS)2

,

(4.23)
and

vj
cmci(

~k, ηH) = −9

2
Φ(~k, 0)

kik
j

k
cS

(
k

kS

)2 sin (k/kS)

6c2
S + (k/kS)2 . (4.24)

At this point, it is convenient to introduce a normalised density ν, shear ṽij and Hessian ζij
to retain the analogy with [11]:

σδcmcν(~x, ηH) =
V

(2π)3

∫
d3k

(
k

kS

)2

Tδ(k, ηH) Φ(~k, 0)W (k) ei
~k·~x,

ζcmcij(~x, ηH) = − V

(2π)3

∫
d3k kikj δcmc(~k, ηH)W (k) ei

~k·~x,

vj
cmci(~x, ηH) = −kH

V

(2π)3

∫
d3k

kik
j

k2

Tv(k, ηH)

Tδ(k, ηH)
δcmc(~k, ηH)W (k) ei

~k·~x ≡ gv(ηH)ṽj
cmci(~x, ηH).

(4.25)
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Here, W (k) is the Fourier transform of a spherically symmetric window function with char-
acteristic wavenumber kH, whereas the “transfer functions” Tδ(k, ηH) and Tv(k, ηH) are

Tδ(k, ηH) = −6

(
kS

k

)2
[
2
(
3c2

S + 1
)

+ (k/kS)2
]

cos (k/kS)− 2
(
3c2

S + 1
)

(kS/k) sin (k/kS)

6c2
S + (k/kS)2

(4.26)
and

Tv(k, ηH) =
9

2

(
k

kS

)
sin (k/kS)

6c2
S + (k/kS)2

. (4.27)

Notice also that eq. (4.25) makes it explicit that in the sub-horizon regime the velocity shear
is not proportional to the gradients of the density contrast. As we can see from eq. (4.25),
the rms variance σδcmc and σζcmc can be constructed from the spectral moments

σ2
j ≡

V

2π2

∫
dk k2+2j

∣∣δcmc(~k, ηH)
∣∣2W 2(k). (4.28)

This shows that

σδcmc = σ0, σζcmc = σ2, σ×cmc = σ1. (4.29)

Finally we define

g2
v(ηH) = k2

H

V

2π2

∫
dk k2T

2
v (k, ηH)

T 2
δ (k, ηH)

∣∣δcmc(~k, ηH)
∣∣2W 2(k) ∼ T 2

v (kH, ηH)

T 2
δ (kH, ηH)

k2
Hσ

2
δcmc

(ηH), (4.30)

where we approximated the contribution of the transfer functions to a constant, since in all
the relevant cases the power spectrum is peaked at k = kH. The numerical value is found to
be Tv(kH, ηH)/Tδ(kH, ηH) ∼ 0.5.

Since ṽcmcij does not vanish and is not aligned with the Hessian of δcmc, some angular
momentum is generated at linear order. With the assumption that turnaround occurs close
to horizon crossing, the corresponding reference spin is

Sref(ηH) =
4

3
a4(ηH)ρrad(ηH)gv(ηH)R5

∗(1− f)5/2. (4.31)

This determines the amplitude of the Kerr parameter at turnaround as we shall see next.

We conclude this section by some comments on the computation in the Newtonian
longitudinal gauge. To calculate the spin acquired through linear tidal-torque, one should
carefully handle the superhorizon contributions. While the velocity shear ∂iv

j is physical,
the superhorizon limit δ = −2Φ(~k, 0) is irrelevant as it cannot affect the collapse of the
perturbation. Therefore, in the expression of the Hessian of the density field

∂i∂jδ(~k, ηH) = 2kikjΦ(~k, 0) + 6kikjΦ(~k, 0)

[
cos(k/kS)− 2

sin(k/kS)− (k/kS) cos(k/kS)

(k/kS)3
− 1

3

]
,

(4.32)

using the first term in the right-hand side to define the shape of the ellipsoid would be equiv-
alent to select peaks of the gravitational potential or, equivalently, the curvature. However,
one cannot impose any constraint on the value of the gravitational potential at ~x = ~xpk

because this would not lead to any observable effect. To remedy this problem, one should
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subtract the superhorizon contribution to the density in the calculation of the covariance etc.
and consider instead

δcmc(~k, ηH) ≡ δ(~k, ηH) + 2Φ(~k, 0)

= −6Φ(~k, 0)

[
cos(k/kS)− 2

sin(k/kS)− (k/kS) cos(k/kS)

(k/kS)3
− 1

3

]
. (4.33)

As a result, the density Hessian that defines the ellipsoidal shape of the perturbation becomes

∂i∂jδcmc(~k, ηH) = 6kikjΦ(~k, 0)

[
cos(k/kS)− 2

sin(k/kS)− (k/kS) cos(k/kS)

(k/kS)3
− 1

3

]
=

13

5

(
k

kS

)2

kikjΦ(~k, 0) + . . . (4.34)

which is suppressed by an additional factor of (k/kS)2. This would ensure that the high
density fluctuations which collapse to form PBHs trace the peaks of the radiation density
field rather than the peaks of the curvature.

5 An estimate of the PBH dimensionless Kerr parameter at formation time

From now on, we will work at first-order in perturbation theory and, therefore, we will remove
the label (1) to avoid cluttering notation. One dimensionless parameter which is of interest
to us is the Kerr parameter

as =
S

GNM2
=
Sref(ηH)

GNM2
se ≡ A(ηH)se, (5.1)

such that

A(ηH) =
4

3

a4(ηH)gv(ηH)ρrad(ηH)R5
∗(1− f)5/2

GNM2
. (5.2)

Substituting a4(ηH)ρrad(ηH) = ρrad(η0) gives

A(ηH) =
4

3

ρrad(η0)gv(ηH)R5
∗(1− f)5/2

GNM2
, (5.3)

where η0 identifies the present time. This quantity has been evaluated at the time ηH when
the relevant modes of the perturbation re-enter the horizon to collapse into a PBH. In the
subhorizon regime, the leading time dependent factor in the velocity definition gv(ηH) scales
like gv(ηH) = (1/2)H(ηH)σδcmc(ηH). In the radiation phase the known behaviour H(η) ∝
a−1(η) leads to the relation

a(ηH) = a(ηeq)
H(ηeq)

H(ηH)
= a1/2(ηeq)

H0

H(ηH)
, (5.4)

where the subscript eq denotes the radiation-matter equality and where we used the fact that
in the matter-dominated era H ∼ a−1/2. We can compute the Hubble rate at crossing time

H(ηH) = a1/4(ηeq)

√
H0

2GNM
, (5.5)
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where we used the relation

H(ηH) =
a(ηH)

2GNM
, M 'MH ≡

4π

3
ρrad(ηH)

(
a(ηH)

H(ηH)

)3

(5.6)

to express the Hubble rate at the horizon crossing as a function of the primordial black hole
mass M and Newton coupling constant G. We then find

A(ηH) ∼ 4

3
· 1

2

H(ηH)σδcmc(ηH)

GNM2

(
Ωrad

3H2
0

8πGN

)
R5
∗(1− f)5/2 =

=
1

4π

H2
0

G2
NM

2
ΩradH(ηH)σδcmc(ηH)R5

∗(1− f)5/2. (5.7)

For a power spectrum peaked at the scale R∗ one has typically (1 − f) ∼ 1/3 (in the CMC
gauge) and R∗ ∼

√
3k−1

H ∼
√

3H−1(ηH) [37], such that

A(ηH) ∼ 1

4π

H2
0

G2
NM

2
Ωradσδcmc(ηH)H−4(ηH) (5.8)

and substituting eq. (5.5) in the previous equation gives

A(ηH) ∼ 1

4π

H2
0

G2
NM

2
Ωrada

−1(ηeq)σδcmc(ηH)
4G2

NM
2

H2
0

. (5.9)

An estimate for the Kerr parameter at the time of formation is, thus, provided by the simple
relation

as = A(ηH)se ∼
[

Ωdm

π
σδcmc(ηH)

]
se. (5.10)

Notice that as scales correctly as a first-order quantity. To get the feeling of the numbers,
we take Ωdm ∼ 0.3 and σδcmc(ηH) = δc

cmc/ν ∼ 0.08 to get

as ∼ 8 · 10−3se, (5.11)

were we used the indicative value ν = 8. The details are presented in section 7 and may
change upon the shape of the power spectrum. More importantly, the determination of the
probability distribution of as at the time of formation is directly related that of se. Therefore,
our next step is to study in detail the distribution of se. From eq. (2.20) one expects se to
scale like (for some i 6= j)

se '
16
√

2π

135
√

3Λ
ν5/2ṽijαi = O(1) ·

√
1− γ2, (5.12)

where we have taken into account that the velocity shear scales like
√

1− γ2 (this point will
become more clear in the next section). As a result, we expect as to be of the order of

as ∼ 10−2
√

1− γ2. (5.13)

This estimate will be confirmed by the investigation of the probability distribution of as

which will indeed be peaked around the value (5.13). In particular notice that in the limit
of very narrow power spectra, for which γ tends to unity, the spin vanishes. This has a
physical reason: as we will show in the next section, see eq. (6.6), the velocity shear has a
strong tendency to align itself along the principal axis of the mass ellipsoid due to the strong
correlation with the inertia tensor. In the limit γ = 1 this alignment is total and no spin can
be generated.
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6 The PBH spin and the statistics of local maxima

Following [11], the starting point for the calculation of the probability of the spin se is a joint
distribution which involves the sixteen variables

δ, ζi =
∂δ

∂xi
, ζij =

∂2δ

∂xi∂xj
, vji =

∂vj

∂xi
, (6.1)

where the last two matrices have six components, being both symmetric. We decide to drop
the label CMC from all quantities to simplify the subsequent equations. We can create a
vector V of sixteen components with the joint distribution

f(Vi)d
16Vi =

1

(2π)8|M|1/2
e−

1
2

(Vi−〈Vi〉)M−1
ij (Vj−〈Vj〉)d16Vi, (6.2)

where the covariance matrix M is given by (in the following we will use the fact that 〈Vi〉 = 0)

Mij = 〈(Vi − 〈Vi〉)(Vj − 〈Vj〉)〉. (6.3)

In the subhorizon regime, the sixteen variables are correlated as follows

〈δ2〉 = σ2
δ ,

〈δζ11〉 = −〈ζ1ζ1〉 = . . . = −σ2
×/3,

〈δṽ11〉 = . . . = −σδ/3,
〈ζ11ζ11〉 = 3〈ζ11ζ22〉 = 3〈ζ2

12〉 = . . . = σ2
ζ/5,

〈ζ11ṽ11〉 = 3〈ζ11ṽ22〉 = 3〈ζ12ṽ12〉 = . . . = σ2
×/5σδ,

〈ṽ2
11〉 = 3〈ṽ11ṽ22〉 = 3〈ṽ2

12〉 = . . . = 1/5,

(6.4)

where the ellipsis stands for the other components and the remaining correlators are vanish-
ing. We can rearrange the variables in the dimensionless forms

ν = δ/σδ,

x = −(ζ11 + ζ22 + ζ33)/σζ , y = −1

2
(ζ11 − ζ33)/σζ , z = −1

2
(ζ11 − 2ζ22 + ζ33)/σζ ,

vA = −(ṽ11 + ṽ22 + ṽ33), vB = −1

2
(ṽ11 − ṽ33), vC = −1

2
(ṽ11 − 2ṽ22 + ṽ33),

w1 = ṽ23, w2 = ṽ13, w3 = ṽ12,

ζ̃1 = ζ1/σ×, ζ̃2 = ζ2/σ×, ζ̃3 = ζ3/σ×,

ζ̃12 = ζ12/σζ , ζ̃13 = ζ13/σζ , ζ̃23 = ζ23/σζ ,

(6.5)

which are correlated as follows

〈x2〉 = 〈ν2〉 = 〈v2
A〉 = 3〈ζ̃2

1 〉 = 15〈ζ̃2
12〉 = 15〈w2

3〉 = 〈vAν〉 = . . . = 1,

〈xν〉 = 〈xvA〉 = 5〈vCz〉 = 15〈vBy〉 = 15〈ζ̃12w3〉 = . . . = γ,

〈z2〉 = 3〈y2〉 = 〈v2
C〉 = 3〈v2

B〉 = 1/5,

(6.6)

where γ = σ2
×/σδσζ . Again, the zero correlators are not reported here. Since 〈vAν〉2 =

〈v2
A〉〈ν2〉 = 1, then the variables vA and ν are correlated, so we can drop vA reducing to only
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fifteen independent variables. Notice that in the limit γ = 1 the velocity shear is totally
aligned with the inertia tensor.

Focusing now on the principal axes of the matrix −ζij/σζ , we can use its three eigen-
values plus the three Euler angles, describing the orientation of the principal axes, as new
variables in the place of the ζij . In particular

x = λ1 + λ2 + λ3, y =
1

2
(λ1 − λ3), z =

1

2
(λ1 − 2λ2 + λ3). (6.7)

Being the system independent on these angles, we can integrate over them, leaving twelve
independent variables. The corresponding distribution is

f(ν, ζ̃i, λi, vB, vC , wi) = Ae−Q2 |(λ1 − λ2)(λ2 − λ3)(λ1 − λ3)|, (6.8)

where we have defined, starting from

Γ =
1

1− γ2
, (6.9)

A =
55311/2

2(2π)11/2
Γ3 (6.10)

and

2Q2 = Γν2 − 2γΓxν + Γx2 + 15Γy2 − 30γΓyvB + 15Γv2
B + 5Γz2 − 10γΓzvC

+ 5Γv2
C + 15Γ(w2

1 + w2
2 + w2

3) + 3(ζ̃2
1 + ζ̃2

2 + ζ̃2
3 ).

(6.11)

In the region around a peak we can make a Taylor expansion of the kind

ζi =
∂δ

∂xi
=

(
∂2δ

∂xi∂xj

) ∣∣∣∣
pk

(x− xpk)j = ζij |pk(x− xpk)j , (6.12)

such that

d3ζ̃i =

(
σζ
σ×

)3

|λ1λ2λ3|d3xi. (6.13)

Integrating the distribution of eq. (6.8) over space eliminates three variables more, the ζ̃i, and
leaves only nine variables. The distribution obtained in such a way describes the comoving
number density of peaks in the element dνdvBdvCd3wi. Furthermore, we can integrate over
vB and vC , as these are unconstrained, leaving finally

Npk(ν, λi, wi)dνd3λid
3wi =

B

R3
∗
e−Q4F (λi)dνd3λid

3wi, (6.14)

where

F (λi) =
27

2
λ1λ2λ3(λ1 − λ2)(λ2 − λ3)(λ1 − λ3), B =

5439/2

211/2π9/2
Γ2, (6.15)

and
2Q4 = ν2 + Γ(x− x∗)2 + 15y2 + 5z2 + 15Γw2, (6.16)

with x∗ = γν and w2 = w2
1 + w2

2 + w2
3. This last quantity identifies the squared radius of a

polar coordinate system, with angles θ = arccos(u) and φ, for the variables wi, that we will
use from now on.
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The next step is to find the probability for the spin se. To do so, we can rewrite eq. (6.14)
in the following way

Npk(ν, λi, wi)dνd3λid
3wi = Npk(ν, λi, w, u, φ)w2dwdφd3λidν

du

dse
dse (6.17)

as a function of the previously defined dimensionless spin through eq. (2.20)

se =
29/2πν5/2w

5× 37/2γ5/2
√
λ1λ2λ3

√
β2 + (α2

3 − β2)u2, (6.18)

where

β2(λi, φ) = α2
1 cos2 φ+ α2

2 sin2 φ. (6.19)

In the limit γ very close to unity or, equivalently, Γ ≫ 1 (that is for a monochromatic
spectrum) the distribution (6.14) for w approaches a product of Dirac deltas

Npk(ν, λi, ~w) =
2

3 · 153
(2π)2σ2

ζ

B

R3
∗
y(x− 2z)·

·
[
(x+ z)2 − 9y2

]
(y2 − z2)e−(ν2+15y2+5z2)/2δ(x− x∗)δ(3)(~w). (6.20)

As a result, the value ~w = 0 is selected and the off-diagonal terms of the velocity shear
vanish and therefore the velocity shear is aligned with the inertia tensor. This implies that
the spin parameter of PBH collapsing from a monochromatic feature is zero. Furthermore,
the expression (6.14) shows us that the typical value of the velocity shear scales like 1/

√
Γ =√

1− γ2, a scaling we have been using to estimate se in eq. (5.12). Integrating now over
w, φ and λi (the integration over φ is replaced then by the integration over β) gives the
distribution of peaks of given height ν and spin se

Npk(ν, se) =
4Cse

R3
∗ν

5

∫ ∞
0

dλ1

∫ λ1

0
dλ2

∫ λ2

0
dλ3

∫ α2

α1

dβ
e−Q5F (λi)ΛT (α3, β, se, ν)√
|(α2

1 − β2)(α2
2 − β2)(α2

3 − β2)|
, (6.21)

where

Λ = λ1λ2λ3, C =
311511/2γ5Γ3/2

213π13/2
, 2Q5 = ν2 + Γ(x− x∗)2 + 15y2 + 5z2, (6.22)

and

T = Θ(α2
3 − β2)e

−15Γw2
3

2 D(X) + Θ(β2 − α2
3)

√
π

2
e
−15Γw2

β
2 erf(X). (6.23)

Here the argument of the Dawson’s integral D(X) is given by

X =

√
15

2
Γ|w2

β − w2
3|, with w3 =

√
Λse

Kν5/2α3
, wβ =

√
Λse

Kν5/2β
, K =

29/2π

5× 37/2γ5/2
. (6.24)

The conditional differential probability for se, given that the peak has a height ν, is the
given by [11]

P (se|ν)dse =
Npk(ν, se)

Npk(ν)
dse, (6.25)
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Figure 1. The rescaled comoving peak density for several choices of γ. The curves are almost
identical in the relevant region around ν ∼ 8.

where the comoving differential peak density is expressed as

Npk(ν)dν =
1

(2π)2R3
∗
e−

ν2

2 G(γ, x∗)dν (6.26)

in terms of the function

G(γ, x∗) =

∫ ∞
0

dxf(x)

√
Γ

2π
e−

Γ
2

(x−x∗)2
. (6.27)

The function f(x) that appears in the previous formula is provided by the expression

f(x) =
(x3−3x)

2

[
erf

(
x

√
5

2

)
+erf

(
x

2

√
5

2

)]
+

√
2

5π

[(
31x2

4
+

8

5

)
e−

5x2

8 +

(
x2

2
− 8

5

)
e−

5x2

2

]
.

(6.28)
Figure 1 shows the behaviour of the comoving peak density of eq. (6.26) for several choices of
γ. Figure 2 shows the behaviour of the distribution P (se|ν) for relevant choices of ν. Finally,
we can use the relation shown in eq. (5.10) to find the distribution for the Kerr parameter
as, plotted in figure 3.

We note that the conditional probability distribution for the spin of a material in the
vicinity of peaks of different heights shows a systematic shift towards smaller values for higher
peaks if the parameter γ is close to unity. Furthermore, for a given value of the height peak
ν, higher values of γ provide slightly smaller values of spins, and one can check that the
scaling with γ is indeed like

√
1− γ2.

6.1 The analytical approximation in the limit of high peaks

The formation of PBHs requires high thresholds and it is therefore interesting to investigate
analytically the large ν limit of the probability P (se|ν). To do so, we define a normalised
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Figure 2. Normalised distribution function for se.

dimensionless spin h as4

se ≡
29/2π

5γ6ν

h

Γ1/2
=

29/2π

5γ6ν

√
1− γ2h. (6.29)

The scaling with
√

1− γ2 is dictated by the scaling of the velocity shear, see eq. (5.12). The
distribution of the parameter h can be analytically approximated as

P (h)dh = exp
(
−2.37− 4.12 lnh− 1.53 ln2 h− 0.13 ln3 h

)
dh. (6.30)

Such a distribution is the result of a best-fit that was performed for the values γ = 0.9 and
ν = 8. We checked numerically that it holds for the relevant parameter space related to
the physics of PBH formation. In figure 4 we compared the numerical result and analytical
approximation for the probability distribution P (se|ν).

The analytical expression for the distribution of the Kerr parameter as is found to be
in the large ν limit

P (as|ν)das =

(
5γ6ν

29/2π

Γ1/2

A(ηH)

)
exp

[
−2.37− 4.12 ln

(
5γ6ν

29/2π

Γ1/2

A(ηH)
as

)

− 1.53 ln2

(
5γ6ν

29/2π

Γ1/2

A(ηH)
as

)
− 0.13 ln3

(
5γ6ν

29/2π

Γ1/2

A(ηH)
as

)]
das, (6.31)

where A(ηH) is defined in eq. (5.10). This is the main result of our paper.

4We note that eq. (C.7) of ref. [11] has the incorrect scaling with Γ. The factor Γ1/2 should be Γ−1/2.
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Figure 3. Normalised distribution function for as.
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Figure 4. Comparison between the numerical result (dots) and the fitted expression (lines) for the
probability distribution P (se|ν) in the large ν limit.

– 21 –



J
C
A
P
0
5
(
2
0
1
9
)
0
1
8

10-18 10-17 10-16 10-15 10-14 10-13 10-12 10-11 10-10 10-9 10-8

6.0

6.5

7.0

7.5

8.0

8.5

9.0
10-18 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100 102

Figure 5. The parameter ν as a function of β.

7 The PBH spin and the shape of the power spectrum

In the previous section we have seen that the spin distribution is characterised only by two
parameters, namely ν and γ. The parameter ν describes the height of the peaks in terms of
the variance and is determined by the required abundance of PBHs. In particular, assuming
a Gaussian statistics (for its non-Gaussian extension, see ref. [40]), the primordial PBH mass
fraction can be expressed as [3]

β =
ρPBH

ρrad

∣∣∣∣
form

=
1√
2πν

exp

(
−ν

2

2

)
, (7.1)

where ν is defined as ν = δc
cmc/σδcmc , which is gauge independent. The approximate relation

between β and ν is shown in figure 5. Assuming a monochromatic spectrum of masses and
imposing the PBH to be the dark matter, one may deduce the relation between the mass
fraction and the PBH mass to be

β ∼> 1.3× 10−9

(
M

M�

)1/2

. (7.2)

For models forming PBH in the physically relevant mass range, the parameter ν lies in
the range

6 ∼< ν ∼< 9. (7.3)

The power spectra of the density perturbation are directly calculable in terms of the power
spectra of the comoving curvature perturbation ζ as

Pδcmc(k) =
4

9

(
k

H

)4

Pζ,tot(k). (7.4)

The quantity Pζ,tot(k) is the sum of two pieces, the smooth power spectrum giving the correct
amplitudes for perturbations at the CMB scales and the term responsible for the formation
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Figure 6. Parameter γ and Q depending on σ.

of PBH at small scales, that is

Pζ,tot(k) = As

(
k

kp

)nζ−1

+ Pζ(k), (7.5)

where kp denotes a pivot scale, As ∼ 2 ·10−9 the corresponding amplitude and nζ the spectral
index of scalar perturbations. To compute the momenta of these distributions, we are going
to use the volume normalised Gaussian window function of the form W (k) = exp[−(kRH)2/2]
smoothing out perturbations on scales different from the characteristic scaleRH corresponding
to the cosmological horizon at formation.

These momenta enter in the computation of the parameter γ = σ2
×cmc/σδcmcσζcmc, which

contains all the relevant information on the shape of the power spectrum of the density
perturbations. In the following subsections we consider few examples of typical power spectra
and compute their characteristic parameter γ.

7.1 Log-normal power spectrum

We start by considering a log-normal power spectrum of the form

Pζ(k) = A exp

[
− 1

2σ2
log

(
k

k∗

)2]
. (7.6)

In general, the factor γ depends only on the parameter σ as shown in figure 6. We can
define the parameter Q = k∗/∆k to indicate how peaked is the power spectrum, where ∆k
stands for the full width at half of the maximum value (FWHM). The value Q for various
shapes is plotted in figure 6. For narrow power spectra, the parameter γ approaches unity,
while for wider profiles it quickly reaches the asymptotic value γ ∼ 0.82. For example, a
choice of parameters consistent with the totality of dark matter composed by PBH of mass
M = 10−12M� would be A = 0.066, σ = 0.5 and k∗ = 3 · 1012 Mpc−1 [41].

In the limit of small enough σ, the log-normal power spectrum can also serve as a good
approximation of a Dirac power spectrum, usually used in the literature. For example, let us
analyse the case of σ = 0.042 corresponding to a highly peaked power spectrum. From the
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explicit expression of the power spectrum we can compute its momenta

σ2
δcmc

=

∫
dkPδcmc(k)W 2(k)

1

k
= 0.0174A2,

σ2
×cmc =

∫
dkPδcmc(k)W 2(k)k = 0.0176 k2

∗A
2,

σ2
ζcmc

=

∫
dkPδcmc(k)W 2(k)k3 = 0.0179 k4

∗A
2

(7.7)

and

γ =
σ2
×cmc

σδcmcσζcmc

= 0.996 and Γ = 125. (7.8)

Being independent on A, our choice of σ determines the value Q = 10.

7.2 Nearly flat power spectrum

For a power spectrum of the form [42]

Pζ(k) = Af

(
k

kmin

)np−1

Θ(k − kmin), (7.9)

we may fix the parameters such that PBHs with masses ∼ M� form the dark matter. This
gives np ∼ 0.96, Af = 0.0308 and kmin = 103Mpc−1. For such a case we find γ ' 0.88.

7.3 Broken power law power spectrum

One can also consider the case of a power spectrum of the form [43]

Pζ(k) = Ab

[(
k

kp

)m
Θ(kp − k) +

(
k

kp

)−n
Θ(k − kp)

]
, (7.10)

where an example of a parameter set giving the PBHs to form the dark matter is m = 3,
n = 0.5, Ab = 0.0413 and kp = 2 · 106 Mpc−1, corresponding to a population of PBH peaked
at M ∼M�. This set gives γ = 0.85.

8 The impact of the spin onto the PBH abundance and the spin distribu-
tion function

Once we have calculated the spin distribution of PBH at formation time, we may study the
impact of the spin on the abundance of PBHs. This exercise has been already provided
in ref. [44] where, however, the spin distribution has been assumed to be flat. In order to
compare with their results, we are going to assume the same parameter dependence

M = CM |δ − δc(q)|γM , S = cS|δ − δc(q)|γSq, δc(q) = δ0c +Kq2, (8.1)

where γM = 0.3558 [45], γS = (5/2)γM = 0.8895 and K = 0.005685 [46]. The parameter q
describes the rotation and is related to the Kerr parameter as = S/GNM

2 by the relation

q =
C2
M

CJ

(
M

CM

)−1/2

as. (8.2)
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The parameter δc(q) is in turn related to the density fluctuations δ by the relation

δ = δc(q) +

(
M

CM

)1/γM

= δ0c +K

(
C2
M

CJ

)2(
M

CM

)−1

a2
s +

(
M

CM

)1/γM

, (8.3)

such that we can easily go from the variables δ and q to M and as, respectively.
The PBH density parameter at formation epoch is given by

ΩPBH =
1

MH

∫ ∞
0

dqP (q)

∫
δc(q)

dδM(δ)P (δ) (at formation), (8.4)

where, for demonstrative purposes, we take P (δ) to be a Gaussian distribution with variance
σ. Since the integration measure is transformed as

dq dδ =
CM
γMCJ

(
M

CM

)− 3
2

+ 1
γM

das dM, (8.5)

the density abundance becomes

ΩPBH =
1

MH

1√
2πσ

C2
M

γMCJ
·

·
∫ ∞

0
das

∫
dM P (as)

(
M

CM

)− 1
2

+ 1
γM

e
− 1

2σ2

(
δ0c+K

(
C2
M
CJ

)2(
M
CM

)−1
a2

s +
(
M
CM

)1/γM

)2

(8.6)

where P (as) is the distribution of the Kerr parameter as we have previously calculated. The
PBH spin distribution is therefore finally obtained by computing

dΩPBH

das
=

1

MH

1√
2πσ

C2
M

γMCJ

∫
dM P (as)

(
M

CM

)− 1
2

+ 1
γM

e
− 1

2σ2

(
δ0c+K

(
C2
M
CJ

)2(
M
CM

)−1
a2

s+
(
M
CM

)1/γM

)2

(8.7)
where we have to perform the integration over the masses M . The amount of PBHs formed
at a given epoch by the collapse of a region is described by5

β(M) =
1√
2πσ

CM
γMCJ

∫ ∞
0

das

∫
dM P (as)

(
M

CM

)− 3
2

+ 1
γM

e
− 1

2σ2

(
δ0c+K

(
C2
M
CJ

)2(
M
CM

)−1
a2

s+
(
M
CM

)1/γM

)2

.

(8.8)
In figure 7 we plot dΩ/βdas and dΩ/βd lnM for the distribution P (as) of the Kerr parameter
obtained numerically. We observe that the Kerr parameter is distributed with a peak which
shifts towards smaller values for higher values of γ, while the impact on the mass distribution
is rather negligible.

Our results assume that PBH spin after the formation does not evolve appreciably. For
a rough estimate we report here the considerations put forward in ref. [44]. After formation,
the spin of PBH evolves until the present day under the effect of the torque generated by the
background radiation fluid. The interaction with the background radiation has the effect of

5As we have seen, the generation of a first-order non-zero spin during the collapse of the overdensity is
due to the small deviations from spherical symmetry. One should recall that this has an impact also on the
threshold value at which the collapse takes place [47].
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Figure 7. The distributions dΩPBH/βdas and dΩPBH/βd lnM for the distribution P (as). The results
are obtained with CM = 5.118MH and CJ = 26.19MH [44]. The distribution of dΩPBH/βd lnM peaks
at M = 0.92MH.

reducing the spin. In particular, one can assess the loss of S as (passing to cosmic time and
setting 8πGN to unity)

Ṡ ∼ −MFrad ∼ −H2M3as, (8.9)

where we have estimated the force generating the torque as Frad ∼ ρradM
2as [44, 48, 49] and

used the fact that in a radiation dominated universe H2 ∼ ρrad. On the other hand, the
PBH mass evolves by accretion from the surrounding radiation fluid as

Ṁ ∼ ρradM
2 ∼ H2M2. (8.10)

Solving the previous equation tells us that the mass evolution is described by [50]

M ∼ t

1 + t/tH (tH/MH − 1)
(8.11)

where tH and MH are the initial time and mass, respectively. One can conclude that for PBH
with initial masses MH smaller than the horizon mass tH, their accretion is small. Finally,
the rate of change of the spin parameter is estimated to be

ȧs =
d

dt

(
S

M2

)
=

Ṡ

M2
− 2

SṀ

M3
∼ −H2MHas, (8.12)

resulting in an evolution given by [44]

as ∼ as,H exp

[
α
MH

tH

(
tH
t
− 1

)]
, α ∼ O (1) . (8.13)

Therefore, one might expect that the spin parameter evolution can be safely neglected after
formation when MH ∼< tH.

9 Conclusions

In this paper, we have computed the spin probability distribution of PBHs at formation
time. We have shown that two ingredients are crucial to generate a spin at first-order in
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perturbation theory: the collapsing object must be non-spherical, and the velocity shear be
misaligned with the inertia tensor of the object. If these conditions are satisfied, a spin of
order 10−2 is generated owing to the action of a first-order tidal torque as the perturbation
re-enters the horizon. The spin probability distribution of PBHs is such that smaller values of
the spin are achieved for a collapsing perturbation with higher peak significance and narrower
power spectrum.

Our results could be improved in several ways. On the one hand, we have assumed
that the initial distributions of the overdensity and velocity are Gaussian. It would be worth
assessing what is the impact of a primordial non-Gaussianity by extending our results from
peak theory to non-Gaussian distributions. Since PBHs are created from the tails of the
probability distribution, we expect this may have an impact on the spin as well.

On the other hand, we have not carefully followed the evolution of the spin after forma-
tion. Even though our rough estimates indicate that changes will not be appreciable, it has
been argued that spinning PBHs suffer from super-radiant instabilities in the radiation phase
(for masses M . 0.1asM�) and this may lead to a sizeable reduction of the spin δas ∼ as [51].
We leave these interesting points for future investigation.

Let us conclude with a brief comparison to the recent literature on the same topic. In
ref. [44], the PBH spin distribution has been derived by integrating the probability P (se, δ)
(or better their proxies as and MPBH) over δ under the assumptions that there is no corre-
lation between the initial overdensity and se, and the probability density for se is flat. This
represents a limiting case in which the initial overdensity is allowed to have a large angular
momentum. Our computations show that the assumption of a flat distribution for se is not
a good starting point.

Furthermore, another piece of work, ref. [29], appeared on the same subject of PBH
spin at formation time while we were completing our draft. Even though the spin probability
distribution is not discussed there, our results coincide with theirs as far as the percent level
of PBH spin is concerned. We also agree on the statement that the PBH spin should vanish
in the limit of very narrow power spectra, even though for a different reason. Namely, we find
that, in this limit, the probability for the off-diagonal elements of the velocity shear is peaked
around zero, thus delivering zero spin. This follows from the tendency of the velocity shear
to align with the inertia tensor for very narrow power spectra, which inhibits the generation
of spin. By contrast, ref. [29] have calculated the spin at second-order in perturbation theory,
as ∼ R2, in analogy with the argument of [16] that the total angular momentum contained
in a spherical proto-galaxy starts at second-order in perturbation theory. As we explained in
the introduction, this result is a consequence of the choice of a Lagrangian sphere to describe
the collapsing object. When the ellipsoidal shape of the density profile around the peaks is
taken into account, the spin can grow at first order for generic power spectra, in analogy
with the argument of refs. [10, 12].
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A Covariance matrix

In this appendix we compute the covariant matrix M, defined in eq. (6.3). All quantities are
defined in the CMC gauge and we decide to drop the label to simplify the notation. Let us
start with the computation of the correlator 〈δ2〉. We know from the definitions that

δ(~x, ηH) =
V

(2π)3

∫
d3k δ(~k, ηH)W (k) ei

~k·~x, (A.1)

thus

〈δ(~x)δ(~x)〉 ≡ 〈δ2〉 =
V

2π2

∫
dk k2

∣∣δ(~k, ηH)
∣∣2W 2(k) = σ2

δ . (A.2)

Now we can consider all the others. Indeed

• 〈δ ζij〉:

〈δ ζij〉 = V 2

∫
d3k

(2π)3

∫
d3k′

(2π)3
δ(~k, ηH)δ(~k′, ηH)W (k)W (k′)

∂2

∂yi∂yj
ei(

~k·~x+~k′·~y)
∣∣∣∣
~x→~y

= − V

2π2

∫
dk 4πk2kikj

∣∣δ(~k, ηH)
∣∣2W 2(k)

= −1

3
δij

V

2π2

∫
dk k4

∣∣δ(~k, ηH)
∣∣2W 2(k) = −1

3
δijσ

2
×;

(A.3)

• 〈ζiζj〉:

〈ζiζj〉 = V 2

∫
d3k

(2π)3

∫
d3k′

(2π)3
δ(~k, ηH)δ(~k′, ηH)W (k)W (k′)

∂2

∂xi∂yj
ei(

~k·~x+~k′·~y)
∣∣∣∣
~x→~y

= − V

2π2

∫
dk k2kikj

∣∣δ(~k, ηH)
∣∣2W 2(k)

= −1

3
δij

V

2π2

∫
dk k4

∣∣δ(~k, ηH)
∣∣2W 2(k) = −1

3
δijσ

2
×;

(A.4)

• 〈ζijζmn〉:

〈ζijζmn〉 = V 2

∫
d3k

(2π)3

∫
d3k′

(2π)3
δ(~k, ηH)δ(~k′, ηH)W (k)W (k′)

∂2

∂xi∂xj
∂2

∂ym∂yn
ei(

~k·~x+~k′·~y)
∣∣∣∣
~x→~y

=
V

2π2

∫
dk k2kikjkmkn

∣∣δ(~k, ηH)
∣∣2W 2(k)

=
1

15
(δijδmn + δimδjn + δinδjm)

V

2π2

∫
dk k6

∣∣δ(~k, ηH)
∣∣2W 2(k)

=
1

15
(δijδmn + δimδjn + δinδjm)σ2

ζ ;

(A.5)
therefore one finds 〈ζ11ζ11〉 = 3〈ζ11ζ22〉 = 3〈ζ2

12〉 = . . . = σ2
ζ/5;
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• 〈δ ṽij〉:

〈δ ṽij〉 = − kH

gv(ηH)
V 2

∫
d3k

(2π)3

∫
d3k′

(2π)3

Tv(k
′, ηH)

Tδ(k′, ηH)
δ(~k, ηH)δ(~k′, ηH)

×W (k)W (k′)

(
k′ik
′
j

k′2

)
ei(

~k·~x+~k′·~y)
∣∣∣∣
~x→~y

= − kH

gv(ηH)

V

2π2

∫
dk kikj

Tv(k, ηH)

Tδ(k, ηH)

∣∣δ(~k, ηH)
∣∣2W 2(k)

= −1

3
δij

kH

gv(ηH)

V

2π2

∫
dk k2 Tv(k, ηH)

Tδ(k, ηH)

∣∣δ(~k, ηH)
∣∣2W 2(k)

∼ −1

3
δij

kH

gv(ηH)

Tv(kH, ηH)

Tδ(kH, ηH)

V

2π2

∫
dk k2

∣∣δ(~k, ηH)
∣∣2W 2(k) = −1

3
δijσδ;

(A.6)

• 〈ζij ṽmn〉:

〈ζij ṽmn〉 = − kH

gv(ηH)
V 2

∫
d3k

(2π)3

∫
d3k′

(2π)3

Tv(k
′, ηH)

Tδ(k′, ηH)
δ(~k, ηH)δ(~k′, ηH)

×W (k)W (k′)

(
k′mk

′
n

k′2

)
∂2

∂xi∂xj
ei(

~k·~x+~k′·~y)
∣∣∣∣
~x→~y

=
kH

gv(ηH)

V

2π2

∫
dk kikjkmkn

Tv(k, ηH)

Tδ(k, ηH)

∣∣δ(~k, ηH)
∣∣2W 2(k)

=
1

15
(δijδmn+δimδjn+δinδjm)

kH

gv(ηH)

V

2π2

∫
dk k4Tv(k, ηH)

Tδ(k, ηH)

∣∣δ(~k, ηH)
∣∣2W 2(k)

∼ 1

15
(δijδmn+δimδjn+δinδjm)

kH

gv(ηH)

Tv(kH, ηH)

Tδ(kH, ηH)

V

2π2

∫
dk k4

∣∣δ(~k, ηH)
∣∣2W 2(k)

=
1

15
(δijδmn + δimδjn + δinδjm)

σ2
×
σδ

;

(A.7)
therefore one finds 〈ζ11ṽ11〉 = 3〈ζ11ṽ22〉 = 3〈ζ12ṽ12〉 = . . . = σ2

×/5σδ;

• 〈ṽij ṽmn〉:

〈ṽij ṽmn〉 =

(
kH

gv(ηH)

)2

V 2

∫
d3k

(2π)3

∫
d3k′

(2π)3

Tv(k
′, ηH)

Tδ(k′, ηH)

Tv(k, ηH)

Tδ(k, ηH)
δ(~k, ηH)δ(~k′, ηH)

×W (k)W (k′)

(
kikj
k2

)(
k′mk

′
n

k′2

)
ei(

~k·~x+~k′·~y)
∣∣∣∣
~x→~y

=

(
kH

gv(ηH)

)2 V

2π2

∫
dk

kikjkmkn
k2

T 2
v (k, ηH)

T 2
δ (k, ηH)

∣∣δ(~k, ηH)
∣∣2W 2(k)

=
1

15
(δijδmn + cycl.)

(
kH

gv(ηH)

)2 V

2π2

∫
dk k2 T

2
v (k, ηH)

T 2
δ (k, ηH)

∣∣δ(~k, ηH)
∣∣2W 2(k)

∼ 1

15
(δijδmn + cycl.)

(
kH

gv(ηH)

)2 T 2
v (kH, ηH)

T 2
δ (kH, ηH)

V

2π2

∫
dk k2

∣∣δ(~k, ηH)
∣∣2W 2(k)

=
1

15
(δijδmn + δimδjn + δinδjm) ;

(A.8)
therefore one finds 〈ṽ2

11〉 = 3〈ṽ11ṽ22〉 = 3〈ṽ2
12〉 = . . . = 1/5.
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