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Abstract. The local galaxy bias formalism relies on the energy constraint equation at the
formation time to relate the metric perturbation to the matter density contrast. In the
Newtonian approximation, this relationship is linear, which allows us to specify the initial
galaxy density as a function of local physical operators. In general relativity however, the
relationship is intrinsically nonlinear and a modulation of the short-wavelength mode by the
long-wavelength mode might be expected. We describe in detail how to obtain local coordi-
nates where the coupling of the long- to the short-wavelength modes is removed through a
change of coordinates (in the absence of primordial non-Gaussianity). We derive the general-
relativistic correction to the galaxy bias expansion at second order. The correction does not
come from the modulation of small-scale clustering by the long-wavelength mode; instead, it
arises from distortions of the volume element by the long-wavelength mode and it does not
lead to new bias parameters.
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1 Introduction

Next-generation large-scale stucture (LSS) surveys such as Euclid [1], LSST [2] and the
SKA [3], together with cross-correlations between these surveys [4, 5], will probe the distri-
bution of galaxies on ultra-large scales (above the equality scale), where the effects of general
relativity (GR) can become important. It is therefore imperative that the theoretical model
for these tracers is formulated consistently in GR.

We do not yet fully understand how galaxies form from the initial curvature perturbation
and then evolve under a given theory of gravity to become what we observe today, forcing
us to adopt an effective field theory-like approach to model their large-scale behaviour. This
approach uses perturbation theory techniques to model tracers as a function of the long-
wavelength mode of a set of physical operators, while averaging over the short-wavelength
mode component within a local patch. The averaged contribution of the short modes is
then incorporated as bias parameters, which may be determined from observations or N-
body simulations. The goal here is to be able to describe the observed statistics of any
tracer with as many bias parameters as may be required within a range of scales where the
perturbation theory description may be trusted. The bias parameters appear as coefficients
of the physical operators O(τ,x) in a perturbation theory expansion of the tracer proper
number density contrast

δg(τ,x) =
∑
n

bOn(τ){O(τ,x)}n , (1.1)

where δg = ng/n̄g − 1 is the density contrast of a particular galaxy type, bO is the bias
parameter, ng is the galaxy number density and n̄g is the mean. O(τ,x) consists of a set
of operators that may be constructed from the irreducible decomposition of higher than
one spatial derivative of the initial curvature perturbations [6]. The crucial result is that
the evolution over long time scales, which is natural in the case of LSS tracers, can be
dealt with order by order in perturbation theory [7, 8]. That is, even though the formation
history is highly nonlocal in time, the bias expansion can be written as local in time, as in
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equation (1.1). Whether the expansion is performed at initial time (Lagrangian) or at final
time (Eulerian) is then a matter of choice. More generally, any complete linearly independent
combination of these observables at any order in perturbation theory leads to an equivalent
bias expansion [6, 9].

An open problem in the effective description of biased tracers is to determine the num-
ber of distinctive operators that need to be included for an accurate description of galaxy
clustering at any given order in perturbation theory. Within the Newtonian approximation,
it is now well understood what key operators are to be included and also how to construct
them from the initial curvature perturbations [9]. This is straightforward in the Newtonian
approximation mainly because the energy constraint equation, Poisson’s equation, which re-
lates the initial curvature perturbation to the matter density contrast, is linear and there is
a unique Eulerian frame in which the initial density field is related to the evolved density
field. On ultra-large scales, we need to apply GR, and its energy constraint equation leads to
a nonlinear relationship between the curvature perturbation and the matter density field. In
addition, the Eulerian frame is not unique in GR, hence the gauge choice becomes an issue
as well.

Galaxy bias in GR was first discussed in [10–13] but at the linear order. The impor-
tance of expressing the galaxy bias model in local coordinates was discussed in [12, 14]. The
comoving-synchronous gauge was identified as a unique gauge choice in a Lagrangian frame
for specifying the initial galaxy bias in GR at second order in [15]. The details on how to
construct a consistent local coordinate valid on horizon scale up to second order in pertur-
bation theory were discussed in [16]. There is currently no study that brings these pieces of
information together to give a consistent expression for the local galaxy bias model in GR at
second order. This is a gap we aim to fill.

The main purpose of this paper is to provide a derivation of the local galaxy bias
model (including tidal stress) within GR at second order in perturbation theory in a universe
dominated by dust plus a cosmological constant, for Gaussian initial conditions. We also
investigate how GR effects influence galaxy clustering.

The structure of this paper is as follows. In section 2, we provide a formula for the
conservation of galaxy number in the comoving-synchronous gauge, which is the unique
Lagrangian frame in GR [15]. In section 3, we introduce the local coordinates at initial time
where the initial galaxy density is related to a set of local operators constructed from the
initial curvature perturbation. Using the conservation of galaxy number, we relate the initial
galaxy density to the evolved galaxy density. We show that distortion of the Lagrangian
volume leads to a GR correction to the galaxy bias model at second order. In section 4,
we show how to relate the galaxy bias model in comoving-synchronous gauge (C-gauge)
to various Eulerian gauges such as the total matter (or comoving orthogonal) gauge (T-
gauge) [17], Poisson gauge (P-gauge), N-body gauge [18], N-Boisson gauge [19], and other
possible Eulerian gauges.

Notation: Greek letters denote space-time indices and Latin denote spatial indices. The
(averaged) 4-velocity field of galaxies/ matter is uµ = dxµ/dτ , and the world-lines are labelled
by the comoving coordinates q. The matter density contrast is δm = δρm/ρ̄m and the galaxy
number density contrast is δg = δng/n̄g. We expand perturbations up to second order as
δ = δ(1) + δ(2)/2.
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Figure 1. We assume that galaxies form around peaks (see figure 2 for details) of the matter density
field at τini and evolve to τ in accordance with a set of conservation and propagation equations. A
τ = constant hypersurface orthogonal to uµ is shown.

2 Conservation of galaxy number in general relativity

We show in figure 1 the conceptual set-up for the formation and evolution of galaxies that
we describe as biased tracers of the dark matter density field. In this set-up, galaxies form
within a patch of radius R and evolve under the influence of gravity until observed at proper
time τ .

Firstly, we derive the relation between galaxy densities at τini and τ in C-gauge. The
C-gauge is a unique Lagrangian frame for irrotational dust fluid in GR. The line element in
C-gauge is

ds2 = −dτ2 + a2(τ)γij(τ, q)dqidqj , (2.1)

where a(τ) is the scale factor and γij is the conformal metric on hypersurfaces orthogonal to
uµ. The conservation of galaxy number within a small volume dVC in GR is given by,

dN = ngC(τ, q)dVC(τ, q) = ngC(τini, q)dVC(τini, q) , dVC = a3
√
γ d3q . (2.2)

Using ngC = n̄g(1 + δgC), equation (2.2) implies

1 + δgC(τ, q) =
[
1 + δLg (q)

] √γini(q)√
γ(τ, q)

. (2.3)
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Here δgC = δngC/n̄g is the galaxy density contrast in C-gauge, γiniij (q) ≡ γij(τini, q) is the

‘seed’ metric and δLg (q) ≡ δgC(τini, q) is the initial (Lagrangian) galaxy density contrast.
The evolved metric can be written in terms of the displacement field βi as [20]

a2(τ)γij(τ, q)dqidqj = a2(τ)
[
1−2B(τ, q)

]
γinikl (q)

[
δki +∂iβ

k(τ, q)
][
δlj+∂jβ

l(τ, q)
]
dqidqj , (2.4)

where B is the trace of the scalar perturbations of γij (see appendix A for details). In the
limit B → 0, √

γini(q)√
γ(τ, q)

→ J(τ, q) ≡ det
[
δki + ∂iβ

k(τ, q)
]
, (2.5)

we reproduce the Newtonian approximation

1 + δgC(τ, q) =
[
1 + δLg (q)

]
J(τ, q) (B = 0) , (2.6)

to the full GR expression (2.3). The seed metric is given by [20, 21]

γiniij = δij exp

[
−10

3
Φ(τini, q)

]
= δij

[
1− 10

3
Φ(τini, q) +

50

9

(
Φ(τini, q)

)2]
, (2.7)

where Φini(q) ≡ Φ(τini, q) is related to the initial curvature perturbation ζ = −5Φini/3.
Assuming that the initial matter density field is nearly smooth [22], the conservation of the
matter density field implies that

1 + δmC(τ, q) =

√
γini(q)√
γ(τ, q)

. (2.8)

This can also be derived from the conservation equation for the matter density by assuming
that the perturbation in the matter density at τini is negligible [22]. This residual gauge
does not affect

√
γini/
√
γ, thus the evolved matter density is invariant under this residual

spatial gauge transformation. Using equation (2.8), the GR conservation equation (2.3) can
be rewritten as

1 + δgC(τ, q) =
[
1 + δLg (q)

]
[1 + δmC(τ, q)] . (2.9)

This has the same form as the Newtonian approximation — but the latter is arrived at by
implicitly neglecting the contribution of the metric perturbation B.

At linear order, the GR and Newtonian results agree: δ(1)mC = δ(1)mN,C = δ(1)m . At second

order, we can decompose δmC into a Newtonian part and a GR correction δ(2)mC = δ(2)mN,C +

δ(2)mGR,C, where the Newtonian part is given by

δ(2)mN,C(τ, q) =
2

3

[
2 +

F (τ)

D(τ)2

] (
δ(1)m (τ, q)

)2
+

[
1− F (τ)

D(τ)2

]
s2(τ, q) . (2.10)

Here D is the matter growth factor at linear order and s2 = sijs
ij , where the tidal field sij

is defined below. In an Einstein-de Sitter background, F (τ) = 3[D(τ)]2/7, and this is a very
good approximation in ΛCDM as well. The second-order GR correction is given by [17, 23]

δ(2)mGR,C(q) = 6ΩmH2

[
−1

4
∂i∇−2δ(1)m (q)∂i∇−2δ(1)m (q) + δ(1)m (q)∇−2δ(1)m (q)

](
1 +

2

3

f

Ωm

)
,

(2.11)
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Figure 2. The thick grey line is the long mode of the dark matter density field, while the snaky black
line is the total dark matter density fluctuation. The short modes are responsible for the intrinsic
scatter around δl.

where Ωm is the matter-energy density parameter, f is the growth rate; in a ΛCDM universe
f = Ω0.55

m is a good approximation. We have introduced the conformal Hubble parameter
H = H(η), where η is the conformal time, related to τ according to dτ = adη. ∇−2δ(1)m (q) ∼
Φ(q) and ∂i∇−2δ(1)m (q) ∼ ∂iv(q), with v being the peculiar velocity potential. We have
suppressed the τ dependence for brevity.

2.1 Effective theory-like description of galaxy formation

In the previous section, we provided the relation between the initial and evolved galaxy
density in C-gauge. In this section, we provide the expression for the initial galaxy density.
The idea here is to describe the complicated physics of galaxy formation using a set of bias
parameters that relates the galaxy density to a set of local observables constructed from the
initial curvature perturbation. The bias parameters hide our ignorance of the detailed physics
of galaxy formation. The key difficulty though is how to define these local observables, since
we cannot simply expand δLg as a functional of a set of all terms that could be formed from Φ,
for example F(Φ, ∂iΦ, ∂i∂jΦ). The reason is that the gradient of Φ is coordinate dependent
and the relationship between Φ and δmC in GR differs from its equivalent in the Newtonian
limit. We first review the Newtonian case.

• Lagrangian bias in the Newtonian approximation: the initial galaxy density may be
expressed in terms of the local observables constructed from the initial metric fluctu-
ation, δLg (q) = F [Φini(q)], but we need to remove unphysical modes. We make a local

gradient expansion of Φini(q) about a reference world-line q = 0,

Φini(q) = Φini
0 + (∂iΦ

ini
0 )qi +

1

2
(∂i∂jΦ

ini
0 )qiqj +O(q)3 , (2.12)

where we set Φini
0 ≡ Φini(0), ∂iΦ

ini
0 ≡

(
∂iΦ

ini
)
0

and ∂i∂jΦ
ini
0 ≡

(
∂i∂jΦ

ini
)
0

to reduce
clutter. The second term does not have any influence on physics within the local patch
as it can be removed by a change of coordinates,

η̃ = η , q̃i = qi + ξi(η) , (2.13)

where ξ is a spatially constant 3-vector. Under this coordinate change, Φ transforms
as [24]

Φini(q̃) = Φini(q)−
(
∂2ηξi +H∂ηξi

)
qi. (2.14)
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The constant gradient ∂iΦ
ini
0 can be removed by demanding that ξi solves the equation

∂2ηξ
i +H∂ηξi = ∂iΦini

0 . (2.15)

In the new coordinates, the gradient term vanishes and the first term is simply a
constant and may be absorbed into the scale factor of the background spacetime. The
coordinate transformation that removes this term corresponds to re-labelling of the fluid
world-lines in the presence of the long-wavelength mode [9]. In the new coordinates,
the galaxy position is slightly displaced, q + ξ = q̃ → ξ, and this coordinate change
leaves equation (2.9) invariant. Thus, δLg is only a functional of ∂i∂jΦ

ini
0 and its higher

derivatives. The observables are then constructed from the irreducible decomposition

∂i∂jΦ
ini
0 =

1

3
∇2Φini

0 δij + s0ij , (2.16)

where s0ij is the initial tidal tensor: s0ij = DijΦ
ini
0 and Dij is given by Dij =

∂i∂j−∇2δij/3 . Furthermore, the energy density constraint equation in the Newtonian
approximation is the Poisson equation

∇2Φ(q̃) =
3

2
ΩmH2δmN(q̃) , (2.17)

which gives a linear relationship between Φ and δmN at all orders in perturbation
theory [25]. By decomposing δmN into long and short modes, δmN = δs+δl, it is possible
to specify δLg (q̃) as a local functional of the long mode, δLg (q̃) = F

[
δl(q̃), s2l (q̃)

]
, where

the effect of the short mode is encoded in the bias parameters.

• Lagrangian bias in general relativity: we now turn into the case of GR. In GR, the
energy constraint equation that links Φ to δm is a nonlinear equation.1 At second order
in C-gauge it is given by [21, 28]

∇2Φ(q) +

[
2Φ(q)∇2Φ(q)− 1

2
∂iΦ(q)∂iΦ(q)

](
1 +

2

3

f

Ωm

)
=

3

2
ΩmH2δmC(q) . (2.18)

An equivalent expression exists in Possion gauge [29] and in total matter gauge [17].
We perform a short/long-wavelength mode decomposition, neglecting gradients of the
long modes relative to those of the short modes, and using Φs∇2Φl � Φl∇2Φs. This
leads to

∇2Φs(q)+

[
2Φl(q)∇2Φs(q)−∂iΦl(q)∂iΦs(q)

](
1 +

2

3

f

Ωm

)
=

3

2
ΩmH2δmCs(q) , (2.19)

for the short mode. This equation may suggest that clustering on small scales is mod-
ulated by the long-wavelength mode in a similar way to primordial non-Gaussianity of
the local type [21], and this would in principle require additional bias parameters to
capture these effects.

However, this is not the case as we now show. Firstly, we have to elevate the coordinate
transformation (equation (2.13)) that removes the unphysical mode in the Newtonian

1This is derived from the Hamiltonian constraint in a 1 + 3 covariant decomposition [26, 27].
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limit to full GR. Similar to the Newtonian approach, we consider the following coordi-
nate transformation

q̃i = qi + ξi. (2.20)

Under this change of coordinates the spatial metric transforms as

γ̃ij − γij = ξk∂kγij + γkj∂iξ
k + γik∂jξ

k , (2.21)

where the right-hand side is equal to the Lie derivative of γij , Lξγij . We then seek ξi

that solves the following conformal Killing equation

Lξγij = (A− 1) γij , (2.22)

such that the metric transforms as γ̃ij = Aγij , where A is an effective conformal factor.
ξ that solves equation (2.22) for the Euclidean metric, δij , is given by [30, 31]

ξi = ai +M i
jq
j + λqi + 2

(
qjb

j
)
qi − qjqjbi , (2.23)

where ai, bj and λ are infinitesimally small and spatially constant. M i
j and ai are

associated with the spatial rotations and translations respectively, λ is related to the
dilatation and bj is related to the special conformal transformation. The effective
conformal factor may then be expressed in terms of ξi as

A = 1 +
2

3
∂iξi = 1 + 2

(
λ+ 2qibi

)
. (2.24)

Dropping the spatial rotations and translations since they leave the metric unchanged,
equation (2.20) becomes

η̃ = η , (2.25)

q̃i = qi + λqi + 2qiqjbj − qjqjbi . (2.26)

Now applying the spatial diffeomorphism to the initial metric perturbation,

γiniij = δijexp

(
−10

3
Φini(q)

)
, (2.27)

and using equation (2.24), we can determine λ and bj that remove the conformal factor
of the initial metric for constant Φini

0 and ∂iΦ
ini
0 . This gives the transformation

η̃ = η , (2.28)

q̃i = qi
(

1− 5

3
Φini
0

)
− 5

3
qiqj∂jΦ

ini
0 +

5

6
qjq

j∂iΦini
0 . (2.29)

Φini
0 is related to the long-wavelength mode of the matter density perturbation [32, 33]

Φini
0 =

9

10
ΩmH2

[
1 +

2f

3Ωm

]
∇−2δ0 , (2.30)
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where δ0 is the leading order term in the gradient expansion of δl

δl(q) = δ0 + (∂iδ0)q
i + · · · . (2.31)

Again we set δ0 ≡ δ(0) and ∂iδ0 ≡ (∂iδ)0. In appendix B, we show that this coordinate
transformation is equivalent at this order to going to the conformal Fermi coordinates
defined by [16, 34, 35].

Under the local coordinate transformation given in equation (2.29), the linear matter
density transforms as

δmC(q̃) = δmC(q) + ∂jδmC (q)
(
q̃j − qj

)
. (2.32)

We split the density into short and long modes as δmC = δl + δs and perform the trans-
formation for the short mode density. After lengthy algebra (see details in appendix C),
equation (2.32) becomes

δs(q̃) = δs(q) + 3ΩmH2

[
1 +

2f

3Ωm

]
δs(q)∇−2δ0

+
3

2
ΩmH2

[
1 +

2f

3Ωm

]
∂j∇−2δs(q)∂j∇−2δ0 . (2.33)

Substituting equation (2.33) in equation (2.19) removes all the long-short coupling
contribution therein. Thus, in local coordinates or within the local patch, the matter
density contrast at second order in C-gauge is well approximated by the Newtonian
density field and the local patch is not modulated by the long mode, hence no new bias
parameter is required. We reach the same conclusion by constructing local coordinates
using conformal Fermi coordinates (CFC) as shown in appendix B.

We can now specify δLg (q̃) as a functional of local observables constructed from the
second derivatives of Φl:

1 + δLg (q̃) = F
[
δl(q̃), s2l (q̃)

]
= 1 + bL1 δ

(1)

l (q̃) +
1

2

[
bL2 (δ(1)l (q̃))2 + bLs s

2
l (q̃)

]
, (2.34)

where bL1 and bL2 are linear and nonlinear Lagrangian bias parameters respectively and bLs is
the initial tidal bias parameter [9];

bL1 ≡
Dini

D

∂F
∂δl

, bL2 ≡
(
Dini

D

)2 ∂2F
∂δ2l

, bLs ≡
(
Dini

D

)2 ∂F
∂s2l

. (2.35)

The evolution of the galaxy number is dependent on the hypersurface or the trajectory
of the fluid flow, so we need to transform equation (2.9) to the local coordinates using
equation (2.20);

1 + δgCl(q̃) =
[
1 + δLg (q̃)

]
[1 + δmC(τ, q̃)] (2.36)

= 1 +
[
1 + bL1

]
δ(1)l (q̃)

+
1

2

[
δ(2)mNl(q̃) + δ(2)mGR,Cl(q̃) +

[
bL2 + 2bL1

] (
δ(1)l (q̃)

)2
+ bLs s

2
l (q̃)

]
. (2.37)

In the first line, we used the fact that the conservation equation is unchanged under the local
coordinate transformation. In the second line, we made use of equation (2.34) and the long-
wavelength part of δmC. To obtain the long-wavelength part of δmC at second order, i.e δ(2)mNl

– 8 –
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and δ(2)mGR,Cl, we first decompose equation (2.11) into long and short-wavelength parts and

transform to local coordinates. Long/short-wavelength coupling terms in δ(2)mN are absorbed
into the local spatial curvature [16], the short/short-wavelength coupling terms in δ(2)mGR,C are

negligible as ∇−2δ(1)l � ∇
−2δ(1)s , while the long/short-wavelength coupling terms in δ(2)mGR,C

are removed by local coordinate transformation (see equation (2.33)), leaving

δ(2)mGR,Cl(q̃) = 6ΩmH2

[
−1

4
∂i∇−2δ(1)l (q̃)∂i∇−2δ(1)l (q̃) + δ(1)l (q̃)∇−2δ(1)l (q̃)

](
1 +

2

3

f

Ωm

)
.

(2.38)
This is how equation (2.37) receives a general relativistic correction. Note that this contri-
bution is not coming from the initial galaxy density, rather it is coming from the effect of
volume distortions as the tracer evolves from τini to τ . We may now simplify equation (2.37)
further such that the second-order matter density contrast appears in the same form as the
linear order term, i.e

[
1 + bL1

]
δ(1)l (q̃). A few steps of algebraic simplification lead to

1 + δgCl(q̃) = 1 +
[
1 + bL1

]
δ(1)l (q̃) (2.39)

+
1

2

{(
1 + bL1

)
δ(2)mNl(q̃) +

[
bL2 +

2

3
bL1

(
1− F

D2

)] (
δ(1)l (q̃)

)2
+

[
bLs − bL1

(
1− F

D2

)]
s2l (q) + δ(2)mGR,Cl(q̃)

}
.

We can now change q̃ to q via coordinate transformation; for δgCl we have

δgCl(q) = δgCl(q̃)− ∂jδgCl (q)
(
q̃j − qj

)
. (2.40)

There is a similar expression for δl(q). Applying these to equation (2.39) and requiring that
equation (2.39) is satisfied order by order, i.e ∂jδ

(1)

gCl =
[
1 + bL1

]
(∂iδ

(1)

l ), leads to

δgC(q) =
[
1 + bL1

] [
δ(1)mN(q) +

1

2
δ(2)mN(q)

]
(2.41)

+
1

2

[[
bL2 +

2

3
bL1

(
1− F

D2

)] (
δ(1)m (q)

)2
+

[
bLs − bL1

(
1− F

D2

)]
s2(q) + δ(2)mGR,C(q)

]
.

We omit the subscript l from now on as all perturbations in the above equation are long-mode
and there is no confusion.

3 Eulerian gauges in global coordinates

We have specified the galaxy density contrast in terms of the long-wavelength mode of the
dark matter density contrast in C-gauge. As mentioned in the introduction, in GR, there is
no unique Eulerian frame. We can go to any convenient gauge by a performing coordinate
transformation. In GR, perturbations change under a general coordinate transformation

xµ → xµ + Zµ , with Zµ = (T, Li). (3.1)

Here T stands for a temporal gauge choice and Li corresponds to spatial gauge choice and
we decompose Li = ∂iL + Li⊥, where ∂iL

i
⊥ = 0. Consider a perturbed line element on an

FLRW background

ds2 = a2
[
− (1 + 2ψ)dη2 + 2Bidx

idη + (1− 2φ)δijdx
idxj + 2Eijdx

idxj
]
, (3.2)
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where Bi = ∂iB and Eij =
(
∂i∂j − 1

3δij∇
2
)
E. We consider two different gauge choices, X-

gauge and C-gauge. The gauge transformation of the density field from X to C-gauge up to
second order is given by [17, 36]

δIX(x) = δIC(x)− 3HT (x) +
1

2
T (x)

[
3

(
2H2 +

3

2
H2Ωm

)
T (x)− 3HT ′(x) (3.3)

+2δ′IC(x)− 6HδIC(x)

]
+

(
∂iδIC(x)− 3

2
H∂iT (x)

)
∂iL(x) ,

where I = g,m and ′ = ∂η and we omit the η dependence. Note that both δIC and δIX are
calculated at the same coordinate position. We consider the total matter gauge (T-gauge)
which corresponds to an Eulerian gauge in the Newtonian approximation and then give a
general expression for any other Eulerian gauge choice.

• Total matter gauge: in T-gauge, the components of the gauge vector are [17]

L(1)(x) = ∇−2δ(1)m (x) , T = 0 . (3.4)

At linear order the density does not change and at the second order,

δ(2)gT(x) = δ(2)gC(q) + 2∂j∇−2δ(1)m (x)∂jδ
(1)

gC(x) , (3.5)

Putting everything together, the galaxy bias model in T-gauge becomes

δgT(x) = b1

[
δ(1)m (x) +

1

2
δ(2)mN,T(x)

]
+

1

2

[
b2[δ

(1)
m (x)]2 + bss

2(x) + δ(2)mGR,C(x)

]
,(3.6)

where we introduced the ‘Eulerian’ bias parameters

b1 = 1 + bL1 , (3.7)

b2 = bL2 +
2

3
(b1 − 1)

[
1− F

D2

]
=

8

21
(b1 − 1) + bL2 , (3.8)

bs = bLs − (b1 − 1)

[
1− F

D2

]
= bLs −

4

7
(b1 − 1) . (3.9)

The second equality holds in the Einstein de Sitter limit. δ(2)mN,T is the Newtonian limit
of the second order matter density perturbation in T-gauge,

δ(2)mN,T(x) = 2∂j∇−2δ(1)m (x)∂jδ
(1)
m (x) +

2

3

(
2 +

F

D2

)
(δ(1)m (x))2 +

(
1− F

D2

)
s2(x) .

(3.10)
This agrees with the conventional Newtonian result in the Eulerian frame.

• X-Eulerian density: using equation (2.41) in equation (3.3) gives the general Eulerian
galaxy density in X−gauge

δgX(x) = b1

[
δ(1)mX(x) +

1

2
δ(2)mX(x)

]
+ (b1 − 1)

[
3HT (1)(x)− 1

2

(
δ(2)mGR,C(x)− 3HT (2)(x)

)]
+

1

2

[
b2
(
δ(1)mX(x)

)2
+ bss

2(x)
]

+
(
b′1 + 3Hb2

)
δ(1)mX(x)T (1)(x)

+
3

2
(b1 − 1)

[
H∂iT (1)(x)∂iL(1)(x)− T (1)′(x)T (1)(x)

]
+

3

2

[
(b1 − 1)

(
2H2 +

3

2
H2Ωm

)
+ b′1H+ 3b2H2

]
(T (1)(x))2 . (3.11)
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Note that when δ(2)mX(x) is decomposed into Newtonian and GR corrections parts,
b1δ

(2)

mGR,C(x) drops out. The possible gauge choices include N-body-gauge for inter-
preting the Newtonian N-body simulation in the general relativistic context [18] and
N-Boisson-gauge, which allows to include the effects of radiation in the Newtonian
N-body simulation [19].

Equation (2.41), with equation (2.38), is our key result.

4 Discussion and conclusion

It is well-known in cosmological perturbation theory that the comoving-synchronous gauge
completely fixes the gauge in a matter plus cosmological constant dominated universe, once
the initial matter world-line coordinates are fixed [37] . So where does the extra freedom to
re-define the coordinates come from? It is important to stress that there is no contradiction
with standard cosmological perturbation theory, since it assumes that the initial curvature
perturbation (ζ = −5Φini/3) falls off appropriately as r → ∞ [38]. In our case, we made a
key assumption that the galaxy formation process happens within a local patch of the full
spacetime. Based on this assumption, we split the initial curvature perturbation into long
and short-wavelength modes, ζ = ζs + ζl, where short-wavelength refers to the modes that
are equal or shorter than the size of the local patch. This allows us to express the initial
metric as

γiniij = δije
2ζ = δije

2ζse2ζl . (4.1)

The exponential conformal factor for the short-wavelength mode falls off in the limit r → R.
The exponential conformal factor for the long-wavelength mode does not die off in this limit,
hence it is unobservable within the local patch.

As a result it generates conformal transformations of the local patch which results in
a residual diffeomorphism [38–40]. We have used this residual diffeomorphism symmetry
to absorb ζl into the coordinates of the FLRW background spacetime. If both ζs and ζl
fall off as r → R, there will not be any residual symmetry. Only in this limit can the
comoving-synchronous gauge completely fix the gauge in the matter plus cosmological con-
stant dominated universe. We used these residual diffeomorphism symmetries of GR to show
that there is no coupling between ζs and ζl in the energy constraint equation in GR for a
ΛCDM universe. This implies that there is no modulation of the local physics of galaxy for-
mation by the long-wavelength mode of the metric perturbation. That is, at second order, no
new terms appear in the bias expansion of equation (1.1) when working in full GR rather than
the Newtonian limit. The GR corrections only appear in the expressions for the operators
in terms of, e.g. ζ. This agrees with the conclusions reached by [41], who argued that new
relativistic bias terms should only appear starting at third order. We showed that the general
relativistic effects do affect local clustering through the distortion of the volume element.

In summary, our key result is (2.41), with equation (2.38). We described in detail for the
first time how to obtain a consistent expression for the local galaxy bias model at second order
in GR. We showed how the galaxy density is related to the underlying matter density field
in both the Lagrangian frame (equation (2.41)) and in the Eulerian frame (equation (3.11)).
Our results show in a more transparent manner that the long wavelength mode associated
with the GR corrections to the Poisson equation does not modulate galaxy clustering on
small scales in a similar way that the local form of the primordial non-Gaussian does [42, 43],
rather, GR effects deform the volume element of the local patch as galaxies evolve.
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A Perturbed metric in C-guage

The line element in C-gauge is given by

ds2 = −dτ2 + a2(τ)γij(τ, q)dqidqj , (A.1)

where τ is the proper time and a(τ) is the scale factor. The metric perturbation is obtained by
solving the Einstein field equation for dust plus cosmological constant domianted universe [17]

γij(τ, q) = γiniij (q)− 4

3

1

H2Ωm
∂i∂jΦ(τ , q)− 20

9H2Ωm
∂iΦ

ini(q)∂jΦ(τ , q) (A.2)

+
1

2

[
10

9H2Ωm
∂kΦ

ini(q)∂kΦ(τ , q)

− 8

9(H2Ωm)2
F

D2

(
[∇2Φ(τ , q)]2 − ∂l∂kΦ(τ , q)∂l∂kΦ(τ , q)

)]
δij

− 4

9(H2Ωm)2

[
∂i∂kΦ(τ , q)∂k∂jΦ(τ , q)

−2
F

D2

(
2∂i∂jΦ(τ , q)∇2Φ(τ , q)− ∂i∂lΦ(τ , q)∂j∂

lΦ(τ , q)
)]

.

γij may also be decomposed in terms of the displacement field as

γij(τ, q) = γinikl (q)
[
1− 2B(τ, q)

][
δki + ∂iβ

k(τ, q)
][
δlj + ∂jβ

l(τ, q)
]
, (A.3)

where B is obtained from γij [20].

B Comparison with conformal Fermi coordinates in C-gauge

In conformal Fermi coordinates, the metric in the neighbourhood of the central geodesic is
given by [35]

gFµν(xµF ) = a2F (τF )
[
ηµν + hFµν(τF , x

i
F )
]
, (B.1)

where hFµν is a small metric perturbation evaluated on the central geodesic, which may be
decomposed in terms of the components of the Riemann tensor,

hF00 = −RF0l0mxlFxmF , (B.2)

hF0i = −2

3
RF0limx

l
Fx

m
F , (B.3)

hFij = −1

3
RFiljmx

l
Fx

m
F . (B.4)
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The local scale factor aF is constructed from the spacetime divergence of the 4-velocity of
the central geodesic HF = ∇µuµF /3,

aF (τF ) ∝ exp

[∫
dτHF

]
. (B.5)

The relationship between the CFC coordinates and the global coordinates may be written
as [35, 45]

xµF (τ,x) = xµ + ξµ(τ) +Aµi (τ)xi +Bµ
ij(τ)xixj + Cµkij(τ)xixjxk , (B.6)

where ξµ, Aµi , B
µ
ij and Cµkij are infinitesimally small and spatially constant. They are eval-

uated on the central geodesic. Note that equation (B.6) is expressed in terms of the CFC
coordinates in [35, 45], while we have expressed it in global coordinates since the coordinate
transformation may be inverted order by order. In C-gauge, equation (B.6) reduces to

xjF (τ, xi) = xj + ξj(τ) +Aji (τ)xi +Bj
ij(τ)xixj + Cjkij(τ)xixjxk , (B.7)

where

ξj(τ) = 0 , (B.8)

Aji (τ) = − [(aF /a)(τ,0)− ζ0] δji , (B.9)

Bk
ij(τ) =

1

2
Γ̃kij(τ,0) =

1

2

[
−∂kζ0δij + ∂iζ0δ

k
j + ∂jζ0δ

k
i

]
, (B.10)

C lkij(τ) =
1

6

[
∂kΓ̃

l
ij(τ,0)−Klkij(τ,0)

]
=

1

6

[
− ∂k∂lζ0δij + ∂k∂iζ0δ

l
j + ∂k∂jζ0δ

l
i −Klkij(τ,0)

]
. (B.11)

(aF /a)(τ,0) is the first order perturbation in the local scale factor evaluated on the central
geodesic [τ,0] and ζ0 ≡ ζ(τ,0) . The Christoffel connections are evaluated on the central
geodesic. Note that some residual gauge freedom discussed in [45] has been used to introduce
Klkij in equation (B.11). Klkij is related to the local curvature of the spatial section

Klkij(τ,0) = −1

6
KF (δlkδij + δliδjk + δljδki) , with KF = −2

3
∂2ζ0 . (B.12)

In the limit of vanishing local spatial curvature, KF = 0, i.e vanishing double spatial deriva-
tives of ζ on the central geodesic, equation (B.7) reduces to

xiF (τ,x) = xi(1 + ζ̂0) + xixj∂jζ0 −
1

2
xjx

j∂iζ0 , (B.13)

where we have set ζ0− (aF /a)(τ,0) ≡ ζ̂0. This is exactly the result we obtained from solving
the conformal Killing equation in equation (2.29).

C Long mode and density perturbations

Consider the short mode component of the matter density perturbation in local coordinates

ρ̃s(q̃) = ρ̄+ δρs(q̃) , (C.1)
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where we omit the time dependence for brevity. We can generate the long-wavelength mode
by changing the coordinates of δρs(q̃),

δρs(q̃) = δρs(q) +
∂δρs
∂q̃j

(q)
(
q̃j − qj

)
, (C.2)

= δρs(q) +

[
−5

3
qiΦini

0 −
5

3
qiqj(∂jΦ

ini
0 ) +

5

6
qiq

i(∂iΦini
0 )

]
∂δρs (q)

∂q̃j
, (C.3)

where we made use of equation (2.26) in the second equality. We simplify each term as
follows:

• Dilatation: −5
3q
iΦini

0 :

δs(q̃) = δs(q)− 5

3
Φini
0

(
qi
∂

∂qi
δs(q)

)
, (C.4)

where δs = δρs/ρ̄. Expanding in Fourier space gives

δs(k̃) = δs(k) +
5

3
Φini
0

(
3 +

d log δs(k)

d log k

)
δs(k) . (C.5)

To simplify the term within the brackets, we use the linear order Poisson equation in
C-gauge to relate to Φ in the Fourier space,

δs(k) = − 2

3ΩmH2
k2Φ(k) . (C.6)

We then relate Φ to the primordial potential ϕk through the transfer function T (k),
Φ(τ,k) = g(τ)T (k)ϕk:

3 +
dlogδs(k)

dlogk
= 2 + 3 +

dlogϕk

dlogk
= 2 +

dlogT (k)

dlogk
+
dlog(k3ϕk)

dlogk
. (C.7)

The transfer function is constant on ultra-large scales T (k) ≈ 1, and for a scale invariant
initial power spectrum, the last term vanishes. Putting everything together leads to

δs(q̃) = δs(q) +
10

3
Φini
0 δs(q). (C.8)

Using equation (2.30) leads to

δs(q̃
i) = δs(q) + 3ΩmH2

(
1 +

2f

3Ωm

)
δs(q)∇−2δ0 . (C.9)

• The first term of the special conformal transformation: −5
3q
iqj∂jΦ

ini
0 : the response of

the short mode to this part of the long-wavelength fluctuation is given by

δs(q̃) = δs(q)− 5

3
∂jΦ

ini
0

(
qiqj

∂

∂qi
δs(q)

)
. (C.10)

Expanding in Fourier space gives

δs(k̃) = δs(k) + i
5

3
∂jΦ

ini
0

[
4

δs(k)

∂δs(k)

∂kj
+

ki
δs(k)

∂2δs(k)

∂ki∂kj

]
δs(k) . (C.11)
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We use the Poisson equation again for the term within the square bracket,

1

δs(k)

∂δs(k)

∂kj
=

1

Φ

∂Φ

∂kj
+ 2

kj

k2
, (C.12)

1

δs(k)

∂2δs(k)

∂ki∂kj
=

1

Φ

∂2Φ

∂ki∂kj
+ 2

[
ki

k2
1

Φ

∂Φ

∂kj
+
kj

k2
1

Φ

∂Φ

∂ki

]
+

2

k2
δij . (C.13)

On large scales, for the initial scale invariant potential,

1

ϕk

∂ϕk

∂ki
=

ki

k2

[
d log(k3ϕk)

d log k
− 3

]
≈ −3

ki

k2
, (C.14)

ki

ϕk

∂2ϕk

∂ki∂kj
=
kj

k2

[
d2 log(k3ϕk)

d(log k)2
+

[
d log(k3ϕk)

d log k

]2
− 7

d log(k3ϕk)

d log k
+ 12

]
≈ 12

kj

k2
.

(C.15)

Upon simplification this leads to

δs(k̃) = δs(k)− 10

3
∂jΦ

ini
0

[
kjs
k2s
δs(k)

]
. (C.16)

Remapping back to real space, using −k2s = ∇2, ikjs = ∂j , gives

δs(q̃) = δs(q) + 3ΩmH2

(
1 +

2f

3Ωm

)
∂j∇−2δs(q)∂j∇−2δ0 . (C.17)

• The second part of the special conformal transformation 5
6qiq

i∂iΦini
0 : the coordinate

transformation involving this term is given by

δs(q̃) = δs(q) +
5

6
∂iΦini

0

(
qjq

j∂iδs(q)
)
. (C.18)

Evaluating the derivative in Fourier space leads to

δs(k̃) = δs(k)− 5

6
∂iΦini

0

[
2

δs(k)

∂δs(k)

∂ki
+

ki

δs(k)

∂2δs(k)

∂k2

]
δs(k) . (C.19)

The simplification of equation (C.19) is equivalent to the simplification of equa-
tion (C.10), so a similar procedure applies,

δs(k̃) = δs(k) + i
5

3
∂jΦ

ini
0

kj

k2
δs(k) . (C.20)

Again using −k2s = ∇2, ikjs = ∂j and equation (2.30) leads to

δs(q̃) = δs(q)− 3

2
ΩmH2

(
1 +

2f

3Ωm

)
∂j∇−2δs(q)∂j∇−2δ0 . (C.21)

Bringing all the terms together leads to

δs(q̃) = δs(q) + 3ΩmH2

(
1 +

2f

3Ωm

)
δs(q)∇−2δ0

+
3

2
ΩmH2

(
1 +

2f

3Ωm

)
∂j∇−2δs(q)∂j∇−2δ0 . (C.22)
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