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Abstract. It has recently been proposed that the accreting collapsed object GRO J1655–40
could contain a non-zero gravitomagnetic monopole, and hence could be better described
with the more general Kerr-Taub-NUT (KTN) spacetime, instead of the Kerr spacetime.
This makes the KTN spacetime astrophysically relevant. In this paper, we study properties
of various circular orbits in the KTN spacetime, and find the locations of circular photon
orbits (CPOs) and innermost-stable-circular-orbits (ISCOs). Such orbits are important to
interpret the observed X-ray spectral and timing properties of accreting collapsed objects,
viz., black holes and naked singularities. Here we show that the usual methods to find the
ISCO radius do not work for certain cases in the KTN spacetime, and we propose alternate
ways. For example, the ISCO equation does not give any positive real radius solution for
particular combinations of Kerr and NUT parameter values for KTN naked singularities. In
such a case, accretion efficiency generally reaches 100% at a particular orbit of radius r = r0,
and hence we choose r = r0 as the ‘ISCO’ for practical purposes.
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1 Introduction

The primary purpose of this paper is to study the stable circular orbits (SCOs) in the
Kerr-Taub-NUT (KTN) spacetime, which is a geometrically stationary and axisymmetric
vacuum solution of the Einstein equation. The marginally stable circular orbit (also known
as innermost-stable-circular-orbit or ISCO) plays a very important role in the relativistic
astrophysics and for accreting X-ray sources [1]. It is well-known that equatorial circular
orbits with r ≥ rISCO (rISCO is the radius of ISCO) are stable, whereas those with r < rISCO

are unstable. Accretion flows of the free matter can continue its circular motion in the
orbits r ≥ rISCO and it faces radial free-fall for r < rISCO. However, to study the SCOs
in the KTN spacetime one should first start with the study of geodesics. The preliminary
studies on geodesics in the KTN spacetime was done in [2, 3] but there was no detailed
discussion on the SCOs. The aim of this paper is to find the SCOs which are physically
realistic and also relevant for the accretion flows of the free matter. These orbits could be
extremely important as they are astrophysically relevant for studying the accretion physics
as well as some other astrophysical phenomena in KTN spacetime. We show that all SCOs,
which are derived from the usual stability analyses of the orbits, cannot exist in the KTN
spacetime. Rather, some SCOs are not feasible, and the innermost SCO (or, we can call it
as ‘physical ISCO’) is determined from the remaining SCOs. The unfeasibility happens due
to the special geometric structure of the KTN spacetime, which we discuss in sections 4.2.1–
4.2.4. We show that the test particle (or, we can say accreting matter) moving in the KTN
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spacetime cannot continue its stable circular motion at the unfeasible SCOs. Mainly, the
unusual behaviours in the ergoregion, Kepler frequency and the energy of the orbits prevent
the test particle to have all of the SCOs. The same situation does not arise in the Kerr
spacetime, as well as some other known stationary and axisymmetric spacetimes. Here, one
immediate question is, which fundamental entity is responsible for this peculiarity? The
answer is the gravitomagnetic monopole or the so-called NUT parameter.

Historically, Newmann, Unti and Tamburino (NUT) [4] discovered a stationary and
spherically symmetric [5, 6] vacuum solution (which is now known as the NUT solution)
of the Einstein’s equation, that contains the gravitomagnetic monopole or NUT parameter.
This solution is related to neither merely post-Newtonian nor some modified theory [7, 8].
However, Demianski and Newman found that the NUT spacetime is in fact produced by
a ‘dual mass’ [9] or the gravitomagnetic charge/monopole. NUT spacetime is the general-
ized version of the Schwarzschild spacetime with the non-zero NUT charge and if the NUT
charge vanishes, the NUT solution reduces to the well-known Schwarzschild solution. If the
Kerr spacetime contains the NUT parameter or vice-versa, it is regarded as the KTN space-
time. Gravitomagnetic monopole is basically the gravitational analogue of Dirac’s magnetic
monopole [10, 11] and Bonnor [12] physically interpreted it as ‘a linear source of pure an-
gular momentum’ [7, 13], i.e., ‘a massless rotating rod’. The gravitomagnetic monopole is a
fundamental aspect of physics and the Einstein-Hilbert action requires no modification [8] to
accommodate it.

Lynden-Bell and Nouri-Zonoz [6] were perhaps the first to motivate the investigation
on the observational possibilities for gravitomagnetic monopoles. They suggested that the
signatures of gravitomagnetic monopole might be found in the spectra of supernovae, quasars,
or active galactic nuclei [6, 14]. They also studied the effects of gravitomagnetic monopole
aka NUT charge on light rays as a gravitational lens and microlens [15, 16]. In another work,
the local velocity of an orbiting star in the equatorial plane of a Kerr and a KTN black hole
was studied in relation to its spectral line shifts, as measured by the distant observers [17].
Interestingly, it was also proposed that the charged perfect fluid disks could be the sources
of Taub-NUT-type spacetimes [18], and the KTN solution representing relativistic thin disks
could be of great astrophysical importance [18–20]. In fact, several interesting observational
consequences were proposed [19, 21–23] for the KTN spacetime in last few years but the
practical ways to detect it, were not proposed [24].

KTN spacetime is the stationary and axisymmetric vacuum solution of the Einstein
equation. As we know that the axisymmetric vacuum solutions of Einstein equation are used
to describe a wide range of black holes appear in the Universe and the Plebański-Demiański
(PD) metric is the most general solution until now [25]. Schwarzschild, Kerr, Kerr-Newman,
Taub-NUT, KTN, Reissner-Nordström, and all other well-known vacuum solutions are the
special cases of this PD metric. Among all these solutions, the most prominent solution is
Kerr spacetime, as it is astrophysically relevant. However, in a very recent paper [24], the
first observational indication of the gravitomagnetic monopole has been reported and this
makes the KTN spacetime astrophysically relevant. Based on the X-ray observations of an
astrophysical collapsed object, black hole (BH) or naked singularity (NS), GRO J1655–40,
it has been inferred there that this object contains the non-zero gravitomagnetic monopole.
It was found earlier that the three independent primary X-ray observational methods gave
significantly different spin values for the above mentioned accreting collapsed object. Em-
ploying a new technique, ref. [24] has demonstrated that the inclusion of one extra parameter
(i.e., gravitomagnetic monopole or NUT parameter n) not only makes the spin and other
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parameter values inferred from the three methods consistent with each other, but also makes
the inferred black hole mass consistent with an independently measured value. Therefore, it
may be advantageous to use the more general KTN spacetime for accreting collapsed objects,
such as GRO J1655–40. This motivates us to study SCOs and CPOs in KTN spacetime.

The scheme of the paper is as follows. In section 2, we briefly recapitulate the KTN
spacetime. We discuss the usual methods to obtain the radii of SCOs and the ISCO in
section 3. These methods are based on the stability analyses of the circular orbits, which are
derived from the effective potential formalism, as well as from the radial epicyclic frequency.
The detailed discussions on the locations of SCOs and/or the ISCO are covered in section 4.
As we have already mentioned, some SCOs are unfeasible and we discuss this process in
sections 4.2.1–4.2.4, which is extremely important for the KTN spacetime. The similar
studies of sections 4.2.1–4.2.4 could also be relevant in future to find the accessible SCOs in
other spacetimes. Section 5 is devoted to the radii of CPOs in the KTN BHs and KTN NSs.
Finally, we conclude in section 6.

2 Brief description of Kerr-Taub-NUT spacetime

The metric of the KTN spacetime can be expressed as [17, 26]

ds2 = −∆

p2
(dt−Adφ)2 +

p2

∆
dr2 + p2dθ2 +

1

p2
sin2 θ(adt−Bdφ)2 (2.1)

with

∆ = r2 − 2Mr + a2 − n2, p2 = r2 + (n+ a cos θ)2,

A = a sin2 θ − 2n cos θ, B = r2 + a2 + n2 (2.2)

where M is the mass, a∗ = a/M is the Kerr parameter and n∗ = n/M is the NUT param-
eter. Setting ∆ = 0 and gtt = 0, one can obtain the radii of the outer horizon and outer
ergoregion as

rh = M(1 +
√

1 + n2
∗ − a2

∗) and, re = M(1 +
√

1 + n2
∗ − a2

∗ cos2 θ) (2.3)

respectively. These two quantities are relevant for the astrophysical purposes. One can
see that the radius of the ergoregion depends on the value of n∗ in the equatorial plane:
re|θ=π/2 = M(1 +

√
1 + n2

∗), whereas it becomes 2M [27] for all values of a∗ in the Kerr
spacetime. Interestingly, p2 vanishes at [28]

r = 0 and θ = cos−1(−n∗/a∗), (2.4)

which indicates the location of singularity in KTN spacetime. Therefore, the above expression
(eq. (2.4)) reveals that the singularity does not arise for n∗ > a∗, which indicates a singularity-
free KTN BH, whereas for a KTN BH with n∗ = a∗, singularity arises at θ = π, covered by
the horizon. However, the singularity always arises for the n∗ < a∗ case which could be a
KTN BH or a KTN NS depending on the numerical values of a∗ and n∗. As the horizon (rh)
vanishes for a∗ >

√
1 + n2

∗, one can always obtain a KTN NS in this case, whereas a KTN
BH with singularity (covered by the horizon) arises if and only if the following condition is
satisfied: n∗ ≤ a∗ ≤

√
1 + n2

∗.
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3 Basic discussions for obtaining the innermost stable circular orbits

It is well-known that a thin accretion disk can extend up to ISCO, and not inside ISCO. We
note that, throughout this paper, the ISCO and other discussed limiting equatorial circular
orbits are considered the innermost edge of a thin accretion disk. In this section, we briefly
describe the two ways to derive the so-called ISCO equation, which are based on the usual
stability analyses of the orbits. One way to derive it is from the expression of the radial
epicyclic frequency (Ωr), and another way is from the effective potential formalism. However,
as the expression of Ωr can be derived from the effective potential [29], these two approaches
are not independent to each other.

3.1 Effective potential formalism and stable circular orbits

We will not repeat the whole derivation in this paper, but one can easily derive the ISCO
equation for KTN spacetime from the expression of effective potential (Veff) which can be
expressed as (see eq. (71) of [2])

Veff(r, E, L) =
1

2

[
(E2 − 1)− P 2 − (r2 + n2 +O2)∆

(r2 + n2)2

]
(3.1)

where

P (r) = BE − La and O(r) = L− aE. (3.2)

E and L indicate the energy and angular momentum per unit mass of a test particle which
orbits around a KTN collapsed object. For n = 0, the effective potential reduces to eq. (15.20)
of [1] which is valid in the Kerr spacetime. One intriguing feature of Veff is that it is finite at
r = 0 due to the presence of NUT charge, whereas it diverges in the cases of Schwarzschild
and Kerr geometries. This can be found from the following expression:

V0 = Veff |r=0 =
a2(1− 3E2) + 4aEL− L2

2n2
− 1. (3.3)

One should note that r = 0 is relevant only for the KTN NS case, because r = 0 is hidden
inside the horizon in the BH case. However, if n vanishes, Veff will diverge at r = 0, which
could be realized from the Kerr geometry, as r = 0, θ = π/2 represents the ring singularity [27,
30]. Such a singularity does not exist at that particular point (r = 0, θ = π/2) in the KTN
geometry. This would be the main reason to obtain a finite effective potential at r = 0.
Another interesting point is that V0 does not depend on the mass (M) explicitly, rather it
depends only on the values of a∗, n∗, E and L/M .

Now, for a particle to rotate in a circular orbit at radius r = R, its initial radial velocity
(ṙ) must vanish. Imposing this condition in (see eq. (15.19) of [1])

E2 − 1

2
=

1

2
ṙ2 + Veff(r, E, L) (3.4)

we obtain
E2 − 1

2
= Veff(R,E,L). (3.5)

To stay in a circular orbit the radial acceleration must also vanish. Thus, differentiating
eq. (3.4) with respect to r leads to the condition:

∂Veff(r, E, L)

∂r

∣∣∣∣
r=R

= 0. (3.6)
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Stable orbits are the ones for which small radial displacements away from R oscillate about
it rather than accelerate away from it. Just as in Newtonian mechanics, that is the condition
that the effective potential must be a minimum:

∂2Veff(r, E, L)

∂r2

∣∣∣∣
r=R

> 0. (3.7)

Eqs. (3.5)–(3.7) determine the ranges of E, L, R allowed for SCOs in the KTN spacetime.
At the ISCO, the one just on the verge of being unstable — (eq. (3.7)) becomes an equality.
The last three equations are solved to obtain the values of E, L, R = rISCO that characterize
the orbit [31]. Eqs. (3.5) and (3.6) were already solved in [2] to obtain the energy (E) and
angular momentum (L) of a test particle moving in a circular orbit in the KTN spacetime.
For direct orbits, we can write E and L as [2, 32]

E =
r

1
2 (r2 − 2Mr − n2) + am

1
2[

(r2 + n2)
(
r3 − 3Mr2 − 3n2r +Mn2 + 2a(mr)

1
2

)] 1
2

, (3.8)

L =
m

1
2 (r2 + a2 + n2)− 2ar

1
2 (Mr + n2)[

(r2 + n2)
(
r3 − 3Mr2 − 3n2r +Mn2 + 2a(mr)

1
2

)] 1
2

(3.9)

respectively, where m = M (r2 − n2) + 2 n2r. We note that eqs. (3.8)–(3.9) reduce to
eqs. (12.7.17)–(12.7.18) of [33] for n = 0, in case of the Kerr spacetime. However, as the
ISCO equation was also obtained in [2] from the effective potential formulation, we do not
repeat it in this section.

The features of the effective potential curve of the KTN BH and KTN NS could be seen
from panels (a) and (b) of figure 1, respectively. To compare it with Kerr spacetime, we can
follow panels (c) and (d) of the same figure. One can see from panel (b) that the value of
Veff is finite at r = 0 for a KTN NS and the value of V0 can be calculated using eq. (3.3)
but it diverges in the case of a Kerr NS (see panel (d)). Here we should note that the ISCO
radii of the Kerr BH and Kerr NS have been mentioned in the plots of panels (c) and (d)
of figure 1, as these values are well-known. However, the detailed studies of the locations of
ISCOs in the KTN BH (panel a) and KTN NS (panel b) will be discussed in section 4. For
the time-being, it could be noted (also clearly seen from the Veff plots of panel (a)) that the
ISCO occurs at rISCO = 3.6M for the KTN BH with n∗ = 1 and a∗ = 1.20. However, one
cannot determine the ISCO radius of the KTN NS with n∗ = 1 and a∗ = 1.45 from panel (b)
of figure 1, as two local minima and one local maxima occur in this case. We discuss it in
section 4.2.

3.2 ISCO equation from the expression of radial epicyclic frequency

One can deduce the ISCO equation directly from the expression of radial epicyclic frequency
(Ωr). To derive the epicyclic frequencies one should investigate the small perturbations of a
circular orbit. Perturbing the circular orbit with coordinate radius r, one can derive the radial
epicyclic frequency (see eq. (11) of [34] and the discussions below of that equation). How-
ever, from the above-mentioned analysis, it is known that the square of the radial epicyclic
frequency (Ω2

r = 0) becomes zero at the ISCO [34–36]. No radial instability exists at the
ISCO, whereas Ω2

r becomes negative for smaller radii. The negative sign of Ω2
r also implies

that there cannot be a radial oscillation for smaller radii than the ISCO. It would be useful
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(a) KTN BH with n∗ = 1 and a∗ = 1.20 for E =
0.9. ISCO is located at rISCO = 3.6M .
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(b) KTN NS with n∗ = 1 and a∗ = 1.45 for E =
0.9. ISCO does not exist.
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(c) Kerr BH with a∗ = 0.90 for E = 0.9. ISCO is
located at rISCO = 2.32M .
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(d) Kerr NS with a∗ = 1.05 for E = 0.6. ISCO is
located at rISCO = 0.68M .

Figure 1. Veff vs. r (in ‘M ’) for various values of L (in ‘M ’) with the fixed E. rh indicates the radius
of horizon. See section 3.1 for details.

to mention here the general analytical expression of the epicyclic frequencies (ωx) in the
stationary and axisymmetric spacetime, which is expressed as (see eq. (27) of [29]),

ω2
x =

(
∂2Ueff

∂X2

)
. (3.10)

Here Ueff is the general expression of effective potential in a stationary and axisymmetric
spacetime with dX2 = gxxdx

2 > 0 being the proper length in the x direction (x denotes
either radial r or polar angle θ coordinate). Moreover, as ωx are measured with respect to
the proper time of a comoving observer, after dividing it by the squared redshift factor, one
can obtain the observed epicyclic frequencies (Ωx) at infinity (see eqs. (32)–(33) of [29] and
related discussions there for details). Now, it is clear from eq. (3.10) that the sign of ω2

r (and
also Ω2

r) is correlated with the sign of the second derivative of effective potential. However,
Ω2
r is positive for a SCO and we will show in this paper that all derived SCOs in the KTN

spacetime cannot be accessible for a test particle. Rather, some SCOs cannot exist in reality
and the innermost SCO is determined from the remaining SCOs.

Before going into the more detail, we should first clarify that we mainly focus on the
equatorial circular orbits in this paper. Therefore, we can directly use the expressions of
three fundamental frequencies which have already been deduced for KTN spacetime in [24]
using the general formulation derived by Ryan [32]. These are orbital frequency (Ωφ) or the
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Kepler frequency

Ωφ = ± m
1
2

r
1
2 (r2 + n2)± a m

1
2

, (3.11)

where m = M (r2−n2)+2 n2r, and the radial (Ωr) and vertical (Ωθ) epicyclic frequencies [24]

Ωr = ± 1

(r2+n2)
[
r

1
2 (r2+n2)±a m

1
2

] . [M(r6−n6+15n4r2−15n2r4)−16n4r3

−2M2r(3r4−2n2r2+3n4)±8ar
3
2m

3
2 +a2

{
M(n4+6n2r2−3r4)−8n2r3

}] 1
2
, (3.12)

Ωθ = ± 1

(r2+n2)
[
r

1
2 (r2+n2)±a m

1
2

] . [M(r6−n6+15n4r2−15n2r4)+2n2r(3r4−2n2r2+3n4)

+16M2n2r3∓4ar
1
2m

1
2 (n2+Mr)(n2+r2)−a2

{
M(n4+6n2r2−3r4)−8n2r3

}] 1
2

(3.13)

respectively. We note that the upper sign is applicable for the direct orbits and the lower
sign is applicable for the retrograde orbits.

Now, setting eq. (3.12) equal to zero, we obtain the so-called ISCO equation:

M(r6 − n6 + 15n4r2 − 15n2r4)− 2M2r(3r4 − 2n2r2 + 3n4)− 16n4r3

±8ar
3
2m

3
2 + a2

{
M(n4 + 6n2r2 − 3r4)− 8n2r3

}
= 0. (3.14)

One can check that eq. (3.14) reduces to the ISCO equation in Kerr spacetime [37] for n = 0:

r2 − 6Mr ± 8ar
1
2M

1
2 − 3a2 = 0 (3.15)

and obtain only one positive real root of this equation for each corresponding value of a∗
(see figure 7 of [30]), which is considered as the radius of the ISCO for that particular value
of a∗. This is true for all values of a∗ whether it indicates a BH (−1 ≤ a∗ ≤ 1) or a NS
(a∗ > 1, a∗ < −1). One intriguing feature is that eq. (3.14) gives more than one positive
real root for one class of combinations between a∗ and n∗. More interestingly, eq. (3.14) does
not give any positive real root for another class of combinations between a∗ and n∗, which
indicates that the so-called ISCO does not exist for these cases. We will discuss all these
cases as we proceed.

4 Stable circular orbits in KTN spacetime

In this section, we study the properties of the circular geodesics of a test particle, occurred
in the KTN spacetime and find the locations of the ISCO as well as the other SCOs. We
divide it into two subsections.

4.1 Location of ISCO in KTN black hole

The ISCO equation (eq. (3.14)) cannot be solved analytically, but one can solve it numerically
and obtain the solutions for all possible combinations of a∗ and n∗. For the non-extremal
KTN BH, we obtain only one positive real root of eq. (3.14) outside the horizon rh = M(1 +

– 7 –
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√
1 + n2

∗ − a2
∗).

1 Hence, we can conclude that the ISCO always occurs outside of the horizon:
rISCO > rh for all possible combinations of a∗ and n∗ which represent the non-extremal KTN
BHs. This is expected.

In an extremal KTN BH, ISCO equation for the direct orbits (eq. (3.14)) reduces to

M(r6 − n6 + 15n4r2 − 15n2r4)− 2M2r(3r4 − 2n2r2 + 3n4)− 16n4r3

+8(M2 + n2)
1
2 r

3
2m

3
2 + (M2 + n2)

{
M(n4 + 6n2r2 − 3r4)− 8n2r3

}
= 0 (4.1)

and it is satisfied by r1 = M which is independent of n∗. This also means that this solution
is satisfied by all values of n∗ and coincides with the horizon r1 = rh = M . We note that
the ISCO equation (eq. (3.15)) for an extremal Kerr BH is satisfied by r = M and therefore,
ISCO occurs at r = M . One intriguing feature is that eq. (4.1) is also satisfied by another
positive real root (r2) which occurs outside (i.e., r2 > M) or inside (i.e., r2 < M) the horizon
depending on the value of n∗. For 0 < n∗ < 0.577, r2 occurs inside the horizon whereas it
occurs outside the horizon for n∗ > 0.577, and r2 coincides with the horizon (r1 = r2 = M)
for n∗ ≈ 0.577. As the orbits inside the horizon are unfeasible for an accreting BH, one
should consider r1 = M as the ‘physical ISCO’ for an extremal KTN BH with n∗ value of
the following range, n∗ : 0 < n∗ . 0.577. However, referring to section 3.2, we plot the radial
epicyclic frequency (Ωr) for a few values of n∗. Except solid black, magenta and gray curves,
all the curves of figure 2 indicate the positions of r2 where Ωr vanishes. We note that solid
black curve shows the position of ISCO for an extremal Kerr BH whereas magenta and gray
curves show the position of r1 = M , as is discussed above. We confirm that Ωr also vanishes
at r1 = M for all these cases. It suggests that no radial instabilities should be found at r1

and r2 (see the related discussions in section 3.2), in principle. However, as the values of Ω2
r

become negative between r1 and r2 for the extremal KTN BHs with n∗ > 0.577, SCOs do
not exist. Now, question is which should be the ISCO (r1 or r2) in a realistic astrophysical
situation for the extremal KTN BHs with n∗ > 0.577? The answer of this question, i.e., the
location of ‘physical ISCO’ for the extremal KTN BH could not be found from the effective
potential plot, shown in panel (a) of figure 3 (effective potential in the extremal Kerr BH is
shown in panel (b) only for the comparison).

Therefore, to find the answer of this important question, we calculate the energy at r1

and r2 using eq. (3.8). We find that E comes out as less than 1 in all the orbits which are
in the range of r ≥ r2. This indicates that all these orbits are accessible by a test particle
and these are realistic for an astrophysical purpose. Now, if we calculate the energy at r1,
we obtain2

Er=r1=M =

√
1 + n2

∗
3− n2

∗
(4.2)

1In this manuscript, we do not consider the roots of any equation inside the horizon, as this is irrelevant
for an accreting black hole from the observational point of view. We focus only those solutions which occur
outside as well as on the horizon.

2For comparison, we note that the energy and angular momentum of an extremal Kerr BH can be expressed
as [1]

EKerr
ISCO =

1√
3

and LKerr
ISCO =

2M√
3

at r = M which is basically the ISCO for the extremal Kerr BH or a∗ = 1.
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Figure 2. Ωr (in ‘M−1’) vs. r (in ‘M ’) for different values of n∗ of the extremal KTN BHs. X-axis
starts from the event horizon rh = M . Solid black curve (n∗ = 0) stands for the extremal Kerr BH
and the ISCO is located at rISCO = M in this case. Each curve (except the solid black, magenta and
gray curves) touches the X-axis at r = r2 which is considered as the ‘physical ISCO’ for an extremal
KTN BH. Magenta and gray curves touch the X-axis at r1 = M which is considered as the ISCO for
these two cases. See section 4.1 for details.
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(a) KTN extremal BH with n∗ = 1 & a∗ =
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2 for
E = 0.8. ‘Physical ISCO’ is located at r2 = 1.75M .
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(b) Kerr extremal BH with a∗ = 1 for E = 0.7.
ISCO is located at rISCO = M .

Figure 3. Veff vs. r (in ‘M ’) for various values of L (in ‘M ’) with the fixed E. rh indicates the radius
of horizon. See section 4.1 for details.

and the corresponding angular momentum is

Lr=r1=M =
2M(1 + n2

∗)√
3− n2

∗
. (4.3)

At this point, we should note that all circular orbits are not bound. The orbit of a test
particle with energy E = 1 is regarded [37] as the marginally bound orbit (rmb). Therefore,
the bound circular orbits exist for r > rmb with E < 1, whereas unbound circular orbits exist
for r < rmb with E > 1 [33]. If an infinitesimal outward perturbation is given, a test particle
in an unbound orbit escapes to infinity on an asymptotically hyperbolic trajectory. However,
in realistic astrophysical problems, particle infall from infinity is very nearly parabolic, and
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any parabolic trajectory, penetrating to r < rmb, must plunge directly into the collapsed
object [33]. Now, we can see from eq. (4.2) that E ≥ 1 at r = r1 for 1 ≤ n∗ <

√
3,3 and

E < 1 for n∗ < 1. Therefore, the single orbit which occurs at r = r1 = M could not be
important in a realistic astrophysical situation for 1 < n∗ <

√
3, as the particle will plunge

directly into the black hole from the r2 orbit. Therefore, we should identify r = r2 as the
ISCO in this case.

For 0.577 < n∗ ≤ 1, the r = r1 orbit must be a SCO in principle and it should exist
but it could not be relevant for the astrophysical purpose. Let us first consider that an
extremal KTN BH with 0.577 < n∗ ≤ 1 is accreting matter from a distant source. The
matter generally follows the SCOs and the accretion disk exists till r = rISCO. The accreting
matter free-falls towards the BH at r < rISCO, as no SCOs exist there. It is clear from
figure 2 that SCOs exist for r ≥ r2 (as Ω2

r ≥ 0) and no SCOs exist in this range r1 < r < r2

(as Ω2
r < 0). In such a situation, one cannot expect that the accreting matter will form

a ‘single-ring’ disk on the event horizon, i.e., r = r1 = M after a free-fall from r > r2 to
r = r1 which basically represents the boundary of the BH. Therefore, one should consider
r = r2 as the ‘physical ISCO’ for all practical purposes in the case of an extremal KTN BH
with n∗ > 0.577. Figure 2 also reveals that the radius of ISCO (r2 in this case) increases
with increasing the value of n∗ of the extremal KTN BHs with n∗ > 0.577. However, as
we have already discussed, r1 should be the ‘physical ISCO’ for an extremal KTN BH with
0 < n∗ . 0.577.

4.2 Location of ISCO in KTN naked singularity

As the so-called ISCO equation (eq. (3.14)) could not be solved analytically, we solve it
numerically and obtain three classes of solution. For one class of solution, we obtain two
positive real roots (r1 and r2) of eq. (3.14). For the second class, one can obtain one (double
root) positive real root, and for another class, no positive real roots are found. Basically,
in the second class of solution, two positive real roots become equal, i.e., r1 = r2 for some
special combinations of a∗ and n∗. Our result has been depicted in figure 4. It shows that
one cannot obtain any positive real root of eq. (3.14) for those combinations of a∗ and n∗,
which are fallen in the red region, whereas at least one positive real root can be obtained, if
one choses the values of a∗ and n∗ from the white region. In this sense, the ISCO should not
exist for the KTN NSs which are in the ‘red-coloured’ region and SCOs can exist everywhere
in this spacetime. Here, we should note that, considering a toy model of a static spherically
symmetric perfect fluid interior with a singularity at the origin, it was found [38] that the
SCOs exist everywhere (till r → 0). However, our case is completely different here, which we
will be discussing in this section considering the various scenarios. Let us first consider an
example.

In figure 5, we have plotted Ωr for different values of r. It shows that the black dashed
curve which stands for the extremal KTN BH (n∗ = 1, a∗ =

√
2) touches the X-axis at

r/M = 1.75, which means that eq. (3.14) has a positive real root at r/M = 1.75. It has
already been recognized as r2 or the ‘physical ISCO’ for this case (see also the solid orange
curve in figure 2 and the related discussion in section 4.1). Now, if we slightly increase the
value of a∗ from

√
2 to 1.415 fixing the value of n∗ = 1, the event horizon vanishes and we

should consider it as a KTN NS. In this case, the solid cyan curve of figure 5 touches the
X-axis twice at r1/M = 1.2 and r2/M = 1.7 respectively. This means that eq. (3.14) has

3E →∞ for n∗ →
√

3, which represents the CPO. See section 5.1 for details. r1 is completely meaningless
for n∗ >

√
3 as E becomes imaginary.
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Figure 4. NUT parameter (n∗) versus Kerr parameter (a∗) space, which is divided into a KTN
BH and KTN NS region by the thin black curve. The a∗ and n∗ values of each point in the thin
black curve also indicates an extremal KTN BH. Solving eq. (3.14) one cannot obtain a positive real
root, for those combinations of a∗ and n∗ which are fallen in the ‘red-coloured’ region, whereas at
least one positive real root can be obtained, if one choses the combinations of a∗ and n∗ from the
‘white-coloured’ region. One should note that the ‘red-coloured’ region does not include any KTN
BH. Because, solving eq. (3.14) one can always obtain at least one positive real root outside or on the
horizon for all KTN BHs. See sections 4.1 and 4.2 for details.

two positive real roots at r1 and r2. If we again increase the value of a∗ from a∗ = 1.415 to
a∗ = 1.4167, the two roots become equal and coincide at r1 = r2 = 1.5. This means, that one
can obtain only one positive real root in this particular case. This is shown by the solid red
curve in figure 5. The green and orange curves do not touch the X-axis, which means that
one cannot obtain any positive real root of eq. (3.14) for these two curves, i.e., for n∗ = 1
& a∗ = 1.417 and n∗ = 1 & a∗ = 1.45, respectively. As we have discussed in section 3.2,
one can think that SCOs exist for all those values of r which gives the positive Ωr values in
principle. It can easily be seen that the SCOs exist in the outer branch (r2 ≤ r <∞) of the
cyan curve but for the inner branch (r ≤ r1) it might not be true always. We will discuss
it in the next two sections. A close look of panel (b) (the zoomed version of panel (a) of
figure 5) reveals that the cyan, red, green and orange curves (which are for KTN NSs) do
not continue to r → 0. Rather, all these curves are discontinued after arriving at a particular
orbit of radius r = Rf . Mathematically, this discontinuation indicates that the value of Ωr

becomes imaginary in the region: r < Rf , which is unphysical. One can check that the
Kepler frequency (eq. (3.11)) vanishes at the orbit r = Rf , which is unexpected. As far as
we know, this special feature has not been seen in other spacetimes until now. Therefore, we
should discuss it in detail in the next section. Side by side, we also continue our discussion
on SCOs in the later sections.
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(a) Different of Ωr curves shows that the locations
of SCOs are highly affected with a slight change in
the Kerr/NUT parameter values. As an example,
a∗ changes its value with a fixed n∗ in this partic-
ular figure.
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(b) Zoomed version of panel (a) with range 0.4 ≤
r/M ≤ 0.6 is shown for clarity. Ωr curves are
discontinued in the region: r < 0.414M .

Figure 5. Ωr (in ‘M−1’) vs. r (in ‘M ’) for various values of a∗ with n∗ = 1. Panel (a) also clearly
shows that three classes of solution (two, one and zero positive roots) of the ISCO equation (eq. (3.14))
exist for KTN NS. The orange and green curves show that one cannot obtain a positive real root by
solving of eq. (3.14) as Ωr does not vanish in any orbit. But, one can obtain two positive real roots for
the cyan curve and one positive real root for the red curve. Actually, the last one is the double root,
i.e., two positive real roots coincide at r/M = 1.5 for a∗ = 1.4167, which is clear from this figure.
See section 4.2 for details. For completeness, the black dashed curve is added, which stands for an
extremal KTN BH. We have already discussed on it in section 4.1.
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Figure 6. Ωφ (in ‘M−1’) vs. r (in ‘M ’) for various values of a∗ with n∗ = 1. One intriguing feature
is that Ωφ vanishes at r = 0.414M . See section 4.2.1 for details.

4.2.1 Digression 1: forbidden region for a test particle moving in a circular
geodesic

Figure 6 shows that the Kepler frequency of a test particle which moves in a circular geodesic,
increases at first, attains a peak value at r = rp and then vanishes at a particular orbit of
radius r = Rf . The value of Rf can be obtained setting the numerator of eq. (3.11) as zero
and it gives

Rf = M
(
n∗
√

1 + n2
∗ − n2

∗

)
. (4.4)
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Figure 7. Rf (in ‘M ’) vs. n∗, where Gray region indicates the “Forbidden Region”: r < Rf . The
solid black curve indicates the boundary values of the forbidden region, for each corresponding value
of n∗. Ωφ vanishes on the solid black curve. See section 4.2.1 for details.

Therefore, a test particle moving in a circular geodesic cannot continue its motion at r < Rf
as its angular velocity is zero. We call it as the forbidden region. As the angular velocity
vanishes at r = Rf , the test particle should free-fall towards the central object. In the next
sections, we will show that the test particle cannot even continue its stable circular motion
till r → Rf , in a realistic situation. However, we can see from eq. (4.4) that the forbidden
region is fully controlled by the gravitomagnetic monopole n∗ and Kerr parameter (a∗) has
no influence on it. Therefore, this region is absent in the Kerr spacetime, i.e., Rf = 0 (see
figure 7). If n∗ increases from 0 to a higher value, the radius of the forbidden region increases
primarily but it cannot be greater than M/2. A short calculation reveals that

Rf
M
|n∗�1 ≈ n2

∗

(
1 +

1

2n2
∗

)
− n2

∗ =
1

2
(4.5)

for higher values of n∗. It means that for n∗ � 1, the higher order terms could be neglected
and the radius of the forbidden region becomes almost a constant: M/2 which is also clear
from figure 7. The gray region indicates the forbidden region for various values of n∗. As Rf
is always less than rh, i.e., Rf < rh, it remains hidden inside the horizon and this region could
only be meaningful in case of a KTN NS. For a particular value of n∗, the Kepler frequency not
only vanishes at Rf in the strong gravity regime,4 but the other two fundamental frequencies
(radial and vertical epicyclic frequencies) are also discontinued there, acquiring the finite
values. This implies that the circular motion become frozen in the region r < Rf and cannot
be accessed by a test particle with its circular geodesic motion. Mathematically, all three
fundamental frequencies (Ωφ,Ωθ and Ωr) become imaginary at r < Rf .

However, differentiating eq. (3.11) with respect to r and setting it to zero:

dΩKTN
φ

dr
=
−8n2r3 +M

(
n4 + 6n2r2 − 3r4

)
2
√
rm [
√
r(r2 + n2) + a

√
m]

2

∣∣∣∣∣
r=rp

= 0 (4.6)

4Though this is completely a new thing but not unusual in the strong gravity regime. Note that the orbital
plane precession or the Lense-Thirring precession can also vanish (see figure 2 of [24]) in the strong gravity
regime in case of a KTN BH [39–41], which does not occur for a Kerr BH [30].
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one can obtain the radius of the peak (r = rp) where the Kepler frequency acquires the
maximum value

rp =
Mn∗

3


6 + 8n2

∗ + 3
(
1 + n2

∗
)1/3

+
2n∗

(
9 + 8n2

∗
)[

3 + 4n2
∗ − 3(1 + n2

∗)
1/3
] 1

2

 1
2

−
(

3 + 4n2
∗ − 3(1 + n2

∗)
1/3
) 1

2 − 2n∗

 . (4.7)

Eq. (4.7) shows that the value of rp also does not depend on a∗ and therefore the similar
situation cannot arise in case of a Kerr NS by any means.

Conclusion drawn from this discussion. The above discussion compels us to conclude
that the SCOs do not exist in the region: r ≤ Rf for all those four NS curves of figure 5.

4.2.2 Digression 2: angular velocity of the test particle inside the ergoregion

Now, the question is: can the SCOs exist in the range Rf < r ≤ r1 for the cyan curve and
Rf < r <∞ for the red, green and orange curve of figure 5a?

Here, we recall eq. (2.3) where re represents the boundary of the ergoregion. Though
the horizon does not exist for the KTN NS, the ergoregion remains there, and its radius
becomes

re|θ=π/2 = M
(

1 +
√

1 + n2
∗

)
. (4.8)

For KTN spacetime it depends on the value of n∗ which is seen from eq. (4.8). We note that
the radius of ergoregion at the equatorial plane remains same (re|θ=π/2 = 2M) for all values of
a∗, whether it is a Kerr BH or a Kerr NS [27]. However, it is well-known that it is impossible
to stay fixed inside the ergoregion with some arbitrary velocities. In general, it is possible
for an observer (or the test particle) to fix at a point (r, θ) inside the ergoregion, if it rotates
(prograde only) inside the ergoregion [1, 42] with the angular velocity Ω: Ω− < Ω < Ω+.
This range is determined by using eqs. (21)–(23) of [30]:

Ω± =
2a
(
n2 +Mr

)
±
(
n2 + r2

)√
∆

(n2 + r2)2 + a2 [3n2 + r(2M + r)]
. (4.9)

Therefore, inside the ergoregion, a test particle can rotate in an SCO with the Kepler fre-
quency Ωφ, if and only if it satisfies the following condition:

Ω− < Ωφ < Ω+. (4.10)

It is seen from panels (a) and (b) of figure 8 that this condition (eq. (4.10)) is always
satisfied in the cases of Kerr BH and Kerr NS. Panel (c) shows that it is also satisfied in
the case of a KTN BH but the condition mentioned in eq. (4.10) cannot be satisfied in the
case of a KTN NS (see panels (d) and (e)). This is because, it is clearly seen from panels
(d) and (e) that when the test particle reaches at the orbit of radius rC (which corresponds
to the point ‘C’ of the plots drawn in panels (d) and (e) of figure 8), it coincides with the
Ω− curve. Equating the expressions of Ωφ = Ω−, one can numerically obtain the value of
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(c) KTN BH with n∗ = 1 and a∗ = 1.4.
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(d) KTN NS with n∗ = 1 and a∗ = 1.415 (corre-
sponds to the cyan curve of figure 5).
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(e) KTN NS with n∗ = 1 and a∗ = 1.45 (corre-
sponds to the orange curve of figure 5).

Figure 8. Inside the ergoregion, a test particle can take only those Ω values which are in the following
range: Ω− < Ω < Ω+. Ω+ and Ω− (in ‘M−1’) are shown as solid blue and orange curves, respectively,
and have been plotted specifically inside the ergoregion, in the equatorial plane (θ = π/2), as a
function of r (in ‘M ’). For BHs, we can see from panels (a) and (c) that Ω± meet at the horizon. For
Kerr NS, we can see from panels (b) that Ω± meet at the singularity (r = 0) but they never meet in
the case of KTN NSs (see panels (d) and (e)). The red solid curves represent the Kepler frequency
Ωφ which does not satisfy eq. (4.10) after reaching the point ‘C’, for the KTN NSs. We note, as no
SCOs exist in the range r1 < r < r2 in panel (d), Ωφ is meaningless in this region. See section 4.2.2
for details.
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rC. remarkably, rC coincides with the circular photon orbit (CPO5) or rc (rC ≡ rc) for
every combination of a∗ and n∗ which represents a KTN NS. The reason behind that is, Ω−
is associated with the null vector K− = ∂t + Ω−∂φ, as was pointed out in eqs. (29)–(30)
of [30]. However, a test particle which moves in a timelike circular orbit, unable to make its
four-velocity u become null at rC. Therefore, the SCOs which exist in the range: r ≤ rC,
cannot be accessible by a test particle with its Kepler frequency. It would immediately fall
into the KTN collapsed object and hence, the SCOs of r ≤ rC are not meaningful.

We may note here that Ω± meet at the horizon and become a single-valued function
(Ωh), in case of a Kerr as well as a KTN BH. This frequency for the KTN BH can be
written as

Ωh =
a

2(Mrh + n2)
. (4.11)

It reduces to

ΩKerr
h =

a

2MrKerr
h

(4.12)

(where rKerr
h /M = 1 +

√
1− a2

∗) in the Kerr BH, which is well-known. For Kerr NS, ΩKerr
±

meet at the singularity (r = 0) with Ω±|r=0 = 1/a [30], but for KTN NS Ω± take two different
values at r = 0:

Ω±|r=0 =
2a±

√
a2 − n2

n2 + 3a2
(4.13)

which is seen from panels (d) and (e) of figure 8. We note that the condition a2 − n2 > 1
holds for the KTN NS and therefore, we always obtain two values of Ω± at r = 0.

Conclusion drawn from this discussion. The above discussion tells us that a test
particle cannot access the SCOs which exist in the region: r ≤ rC (rC corresponds to the
circular photon orbit) for all four NS curves of figure 5. Therefore, the ‘physical ISCO’ should
exist in the region: r > rC and its exact location is obtained in the next section.

4.2.3 Energy of the SCOs

Increasing the energy E with decreasing r is one of the consequences of the absence of stable
orbits [38]. One can check it in the region r1 < r < r2 for the cyan curve of figure 9, but, as E
decreases with decreasing of r in the region r < r1, we can conclude that SCOs exist in that
region. Now, the cyan curve shows a sudden fall of E for r/M ∼ 1.1 and the test particle
acquires E = 0 at r = r0/M ≈ 0.99. E = 0 represents that the efficiency (1−E) of accretion
reaches 100% at r = r0 orbit, i.e., all the mass-energy of the accreting gas is converted to
radiation and returned to infinity (see second paragraph of section 3.2 of [38]). This implies
a perfect engine which converts mass into energy with 100% efficiency [38]. Hence, the SCOs
at r/M < 0.99, which have negative E values, are not meaningful. Therefore, in such a case,
one can choose r = r0 as the ‘physical ISCO’.

Figure 9 is drawn for n∗ = 1 with different values of a∗. As is shown in this figure, rC/M
arise at 0.654, 0.65 and 0.58 for the red, green and orange curves, respectively. These are also
far from the E = 0 orbit (r0/M) which occur at 0.9963, 0.9960 and 0.95 respectively for these

5See section 5 for the detail discussions on the CPOs.
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Figure 9. Energy E vs. r (in ‘M ’) for n∗ = 1 with different values of a∗. The four dashed straight
lines (cyan, red, green and orange) are the corresponding rC values (rC/M = 0.66, 0.654, 0.65, 0.58)
of the cyan, red, green and orange curves, respectively. Magenta and black dashed straight lines show
the positions of r1 and r2 respectively, which arise only for the solid cyan curve. Note that the cyan
curve has actually no meaning in the region r1 < r < r2, as no SCOs exist in this region. In case
of the solid red curve, r1 coincides with r2, i.e., r1 = r2, which is represented by the dot-dashed red
straight line. See sections 4.2.3 and 4.2.4 for details.

three curves. Remarkably, one can see from figure 5a and figure 9 that there is no discontinuity
in these three curves (including the solid red one), i.e., E decreases with decreasing of r in the
whole range: r0 ≤ r ≤ ∞ and becomes zero at r = r0. Therefore, although one positive real
root is obtained (by solving the so-called ISCO equation) at r1 = r2 = 1.5M (red dot-dashed
straight line) for the solid red curve, this may be ignored, and we can conclude that the
‘physical ISCO’ occurs at r = r0 in all these three cases. Here, we should remember that
these ISCOs do not carry the usual meaning which we have discussed in section 3, as these
new ISCO radii do not satisfy the so-called ISCO equation (eq. (3.14)). However, these new
ISCO radii must satisfy the SCO condition mentioned in section 3. One important thing is
that there could exist many combinations of a∗ and n∗ (those are mainly fallen in the ‘red-
coloured’ region of figure 4), for which the accretion efficiency reaches 100% for the KTN
NSs, whereas it is possible only for those Kerr NSs whose a∗ values are in the following range:
1 < a∗ ≤

√
32/27. As an example, for a∗ =

√
32/27 ≈ 1.089, accretion efficiency reaches

100% at the ISCO: rISCO = 2M/3 [43] (E becomes zero in this particular orbit, see [37, 44]).

4.2.4 Importance of the marginally bound orbit

Energy E can increase or decrease with r and depending on that one can find the location
of SCOs. It is seen from figure 9 that the value of E always remains less than 1 in all orbits
for all curves. As we have discussed in section 4.1 that an orbit is called marginally bound
(rmb), if its energy becomes 1. Now, setting E = 1 in eq. (3.8), one can numerically solve
the following expression

(r2+n2)
(
r3 − 3Mr2 − 3n2r +Mn2 + 2a(mr)

1
2

)
−
[
r

1
2 (r2 − 2Mr − n2) + am

1
2

]2
= 0 (4.14)
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Figure 10. Panel (a) shows the positions of various orbits for a KTN NS with n∗ = 1.84 and
a∗ = 2.10: Rf/M = 0.47, rC/M = 0.82, r1/M = 1.35, r2/M = 3.26 and rmb/M = 1.81. Note that
the blue energy curve has no meaning in the region r1 < r < r2, as no SCOs exist in this region,
which is seen from panel (b). However, it is necessary to show the location of rmb. Panel (c) shows
the behaviour of effective potential. See section 4.2.4 for details.

to obtain the radius (rmb) of the marginally bound orbit. It is difficult to solve analytically
for the KTN spacetime but can be solved for the Kerr BH, which gives [45] (see eq. (141) of
chapter 7 of [37] also)

rKerr
mb = M

(
2− a∗ + 2

√
1− a∗

)
(4.15)

for the direct orbits. One can check that the value of rKerr
mb always comes as less than the

value of rKerr
ISCO for a particular value of a∗ in case of the Kerr spacetime. For the extremal

Kerr BH, rKerr
ISCO and rKerr

mb coalesce at the horizon: rh/M = 1. That is why, we generally do
not bother about rKerr

mb for the realistic astrophysical problems in Kerr BH and deal only with
the rKerr

ISCO.
Let us now consider figure 10 which is a special case in KTN spacetime. This figure

corresponds to a KTN NS with n∗ = 1.84 and a∗ = 2.10. One can safely say from panel (b) of
figure 10 that the SCOs do exist in the outer branch, i.e., r2/M ≥ 3.26. Panel (a) also shows
that E of a test particle decreases with r until it reaches at r2/M = 3.26, whereas SCOs
do not exist for the range 1.35 < r/M < 3.26 as E increase with r. This is also clear from
panel (b). However, rmb is located at rmb/M = 1.81 and it palys an importnat role in such a

– 18 –



J
C
A
P
0
5
(
2
0
1
9
)
0
3
4

situation. After reaching at r = r2, the test particle should start to free-fall in principle and
reach at the r = r1 = 1.35M orbit, the feature of which is a bit similar to the cyan curve
of figure 9. Incidentally, the energy of the r1 orbit is greater than 1 in this particular case,
i.e., E|r=r1 > 1, which is seen from panel (a) of figure 10. Moreover, one can also notice that
the test particle faces the ‘unbound’ (E > 1) orbits even in the region: r1 < r < rmb before
reaching at r = r1. Therefore, as the test particle penetrates to the unbound circular orbits
(E > 1) at r < rmb, it must plunge directly into the collapsed object [33] after crossing the
r = rmb orbit. Therefore, the SCOs which occur at r ≤ r1 cannot be feasible at all and these
orbits are also not meaningful for the accretion disk theory. In such a situation, r2 should
be considered as the ‘physical ISCO’ and the inner branch is unfeasible.

4.3 Special case

One can see from figure 9 that the value of r0 comes as smaller than the value of r2, i.e.,
r0 < r2. In this section, we show that this is not always true. Let us consider figure 11.
Panels (a)–(c) of the same are drawn for three different values of a∗ = 1.01, 1.10 and 1.30
with the n∗ values are almost close to zero, i.e., n∗ = 0.01, 0.10 and 0.14. In each panel,
the three dotted and dashed straight lines (black, gray, purple) are the corresponding r1 and
r2 values of the black, gray and purple solid curves respectively, which represent energy of
the circular orbits. One can see that feature of the three solid energy curves of panel (a) of
figure 11 is completely different from the feature of the energy curves of figures 9 and 10a.
In figure 11, each energy curve not only crosses E = 0 axis for three different values of r
(say, r01, r02 and r03, such that r01 < r02 < r03), but also one of them (r03) appears before
r2, i.e., r2 < r03. Now, consider a test particle/accreting matter approaches to a KTN NS
of a∗ = 1.01 and 0 < n∗ . 0.142 from infinity (in principle). It is needless to say that it
encounters r = r03 orbit first instead of r = r2 orbit unlike the cyan curve of figure 9. As all
the mass-energy of the accreting gas is converted to radiation and returned to infinity [38]
from this r = r03 orbit, no orbits with r < r03 are feasible in these cases. Therefore, r = r03

should be considered as the ‘physical ISCO’ for all these three cases of panel (a) of figure 11,
i.e., r03/M = 0.97, 0.98 and 0.99 for black, gray and purple solid curves respectively. Here,
we should note that n∗ ≥ 0.142 with a∗ = 1.01 represent KTN BHs and one has to follow
the discussion of section 4.1 to determine the location of ISCO for those cases.

Now, if we increase the value of a∗ from 1.01 to 1.10 (without changing the values of
n∗), the special feature of the energy curves of figure 11a starts to disappear (see panel (b))
depending on the values of n∗ and it completely disappears for higher values of a∗ which
can be seen from panel (c). We can see from panel (b) of figure 11 that although the solid
purple curve crosses the E = 0 axis thrice (similar to the solid curves of panel (a)), the gray
and black curves cross the same only once (similar to the solid curves of figure 9). This is
also clear from panel (d) of figure 11, which is the zoomed version of panel (b). Therefore,
if a test particle/accreting matter approaches to a KTN NS of a∗ = 1.10 and n∗ = 0.14
(purple curve) from infinity (in principle), it first encounters r03/M = 0.72 (see, r03 > r2)
orbit which should be the ‘physical ISCO’ as is described in the previous paragraph. A new
solid red curve is added in panel (d) for the KTN NS of n∗ = 0.1164 and a∗ = 1.10 to
show that r03 coincides with r02 and r2 at r/M = 0.651 (i.e., r03 = r02 = r2 = 0.651M ,
the red dot-dashed straight line) which should be considered as the ‘physical ISCO’ in this
case. However, the characteristic of solid gray curve of panel (b) and the solid purple curve
of panel (c) of figure 11 is similar to the solid cyan curve of figure 9. Therefore, one should
consider the E = 0 orbit (i.e., r0/M = 0.11 and r0/M = 0.14 respectively) as the ‘physical
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(d) Zoomed version of panel (b) with range 0.50 <
r/M < 0.85 is shown for clarity. A new solid red curve
is added for n∗ = 0.1164 to show that r03 coincides
with r02 and r2 (i.e., r03 = r02 = r2 = 0.651M , the
red dot-dashed straight line) in this particular case.

Figure 11. Energy E vs. r (in ‘M ’) for various values of a∗ with n∗ values close to zero. In each
panel, the three dotted and dashed straight lines (black, gray, purple) are the corresponding r1 and
r2 values of the black, gray and purple solid curves respectively, which represent the orbital energy.
Although the rC values have not been shown in these plots, one can note that rC appears as rC < r1

in all these cases. See section 4.3 for details.

ISCO’ in these two cases. The characteristic of the gray curve of panel (c) resembles to the
solid blue curve of figure 10a and one should consider r2/M = 0.73 as the ‘physical ISCO’
in this case. One can see that the two solid black curves of panels (b) and (c) of figure 11
continue to very close to r = 0 and r1 (i.e., dotted black straight lines) occurs just outside of
it. The characteristic of these two curves are also similar to the solid blue curve of figure 10a
and r = r2 is considered as the ‘physical ISCO’, as discussed in section 4.2.4.

5 Circular photon orbits

In this section, we study the location of the circular photon orbit in KTN spacetime, for
completeness. The expressions of L and E (eqs. (3.8)–(3.9)) imply that the circular orbits
exist down in a particular orbit of radius r = rc which is the solution of the following equation

r3
c − 3Mr2

c − 3n2rc +Mn2 + 2a(mcrc)
1
2 = 0 (5.1)
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where mc = M (r2
c − n2) + 2 n2rc. Specifically, E becomes infinity at r = rc and hence the

solution of eq. (5.1) gives the radius of CPO r = rc. Eq. (5.1) is difficult to solve analytically
but we can easily solve it numerically.

5.1 CPOs in KTN black holes

One can obtain only one positive real root of eq. (5.1) outside the horizon in case of a
non-extremal KTN BH (a∗ <

√
1 + n2

∗), which implies that only one CPO occurs for each
corresponding combinations of a∗ and n∗ and the CPO must exists outside the event horizon.

In case of an extremal KTN BH
(
a∗ =

√
1 + n2

∗

)
horizon occurs at rh = M and the

expression (eq. (5.1)) of CPO with radius rcx reduces to

r3
cx − 3Mr2

cx − 3n2rcx +Mn2 + 2
√
mcxrcx(M2 + n2) = 0 (5.2)

where, mcx = M (r2
cx − n2) + 2 n2rcx. The analytical solutions of the above equation are

rcx = M, M

(
1±

√
1 + n2

∗ +
√

2

√
1 + n2

∗ ±
√

1 + n2
∗

)
,

M

(
1±

√
1 + n2

∗ −
√

2

√
1 + n2

∗ ± 1
√

1 + n2
∗

)
(5.3)

of which

r1
cx = M

and,

r∓cx = M

(
1∓

√
1 + n2

∗ +
√

2

√
1 + n2

∗ ∓
√

1 + n2
∗

)
(5.4)

are positive and hence these are acceptable. One of these occurs at r1
cx = M due to the

prograde rotation whereas r+
cx occurs due to the retrograde rotation. A short calculation

reveals that the r−cx occurs inside the event horizon (r−cx < rh = M) for n∗ <
√

3 (i.e., a∗ < 2)
but it occurs outside of the event horizon for n∗ >

√
3 (i.e., a∗ > 2). This means that two

CPOs could exist simultaneously for n∗ >
√

3, whereas one can neglect r−cx for n∗ <
√

3,
as it occurs inside the event horizon. In this special case (n∗ >

√
3), one CPO coincides

with the event horizon and the other one exists outside of rh. For n∗ =
√

3 (i.e., a∗ = 2),
r1

cx = r−cx = M , hence, only one CPO occurs in this case. One can check that r−cx becomes 0
for n∗ = 0. That is why, we cannot obtain two CPOs for the extremal Kerr BH.6

5.2 CPOs in KTN naked singularities and comparison with Kerr spacetime

For each corresponding combinations of a∗ and n∗, we always obtain only one positive real
root of eq. (5.1) in case of a KTN NS, and it occurs at 0 < rc < M .

It could be useful to mention here the location of corotating CPOs in Kerr spacetime
for comparison. For a Kerr BH (0 < a∗ ≤ 1), one can calculate the radius of the corotating
CPO as 3M > rKerr

c ≥M using the following equation [37, 46]:

rKerr
c = 2M

[
1 + cos

{
2

3
cos−1 (−a∗)

}]
. (5.5)

6For n∗ = 0, r+
cx reduces to 4M which indicates that the CPO occurs at 4M for the retrograde rotation in

the extremal Kerr BH case.
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The corotating CPO does not occur in case of a Kerr NS (CPO is formally located at the
ring singularity) [47] but remarkably it occurs for a KTN NS at 0 < rc < M . This could
be an interesting distinguishable feature between a Kerr NS and a KTN NS. We can safely
say that the non-zero value of n∗ is basically responsible for this. Because, setting a→ 0 in
eq. (5.1), one can check that the CPO can always occur at [2, 48]

rTN
c →M

[
1 + 2(1 + n2

∗)
1/2 cos

{
1

3
tan−1 (n∗)

}]
(5.6)

(TN stands for Taub-NUT spacetime) for all values of n∗, in principle.
It is well-known that the ISCO occurs at 6M > rKerr

ISCO ≥ M . Hence, the CPO and
ISCO coalesce on the horizon (rh = M) only in the case of extremal Kerr BH (a∗ = 1) [37].
Otherwise, the ISCO always occurs outside the CPO for every value of a∗, i.e., rKerr

ISCO > rKerr
c

for 0 ≤ a∗ < 1.

6 Conclusion and discussion

Here we report several new and interesting features of circular orbits in the KTN spacetime.
We have derived the radii of CPOs as well as SCOs and discussed their implications for the
accreting KTN BHs and KTN NSs. We have mainly shown that the location of ISCO for
the non-extremal KTN BH can easily be determined by solving eq. (3.14), but one cannot
determine the same only by solving the so-called ISCO equation (eq. (3.14)) for the extremal
KTN BH and KTN NS. Some SCOs are unfeasible due to the various reasons as is discussed
in sections 4.2.1–4.2.4. The intriguing behaviour of the Kepler frequency and the restriction
on angular velocity inside the KTN ergoregion are the main reasons for this. Above all,
the orbital energy plays the most vital role to determine the location of ‘physical ISCO’. We
have calculated a few numerical values of the ‘physical ISCO’ radii in sections 4.2.3–4.2.4 and
section 4.3, but one can easily calculate the numerical value of the ‘physical ISCO’ for any
specific combination of a∗ and n∗, following the same procedure which we have pursued in
sections 4.2.1–4.2.4. In reality, the infinite combinations of a∗ and n∗ is possible (in principle),
and one can catagorize it into four different types.

(i) Solving the so-called ISCO equation, two positive real roots are obtained for an extremal
KTN BH. One occurs at r = r1 = M (on the event horizon) for all values of n∗ and
another occurs at r = r2 which depends on the values of n∗. We have shown that the r1

is unfeasible for the extremal KTN BHs with n∗ > 0.577, and therefore r = r2 should
be regarded as the ‘physical ISCO’ in these cases, whereas r = r1 = M should be the
‘physical ISCO’ for the extremal KTN BHs with 0 < n∗ . 0.577.

(ii) Similar to Case (i), one can also obtain two positive real roots (r1 and r2) of the
so-called ISCO equation as the solution of one class of KTN NSs. From the plot of
radial epicyclic frequency, one can clearly see that two branches of SCOs appear in the
range of r, i.e., r : Rf < r ≤ r1 (inner branch) and r : r2 ≤ r < ∞ (outer branch).
Although, all SCOs in the outer branch are feasible, this is not true for all SCOs of the
inner branch. If the energy of any orbit is greater than 1 (i.e., E > 1) in the region:
r1 < r < r2, the particle/matter must plunge directly into the collapsed object after
crossing the E = 1 orbit (i.e. r = rmb) as it is marginally bound. In such a situation,
we have to identify r2 as the ‘physical ISCO’, as the whole inner branch is unfeasible
in this particular case. If the particle/matter does not face E > 1 orbits in the region
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r1 < r < r2, and the energy of the r1 orbit is less than or equal to 1 (i.e., E ≤ 1),
the test particle or the matter makes its motion stable further in the SCOs of inner
branch. However, as the energy of SCOs decreases with decreasing the value of r, the
matter faces E = 0 (i.e., r = r0) orbit. In this case, r = r0 should be considered as the
‘physical ISCO’.

Now, if the two positive real roots coincide (r1 = r2), r = r0 should be the
‘physical ISCO’ as the energy of SCOs decreases with decreasing the value of r and it
reaches E = 0 at r = r0.

(iii) In Case (ii), the test particle/matter first encounters the r2 orbit before facing the r0

orbit, i.e., r2 > r0. In some cases, it is also possible to encounter the r0 orbit first
instead of r2. In such a situation, the r = r0 orbit should be considered as the ‘physical
ISCO’. It is needless to say here that if r0 and r2 coincide (r0 = r2), the same has to
be considered as the ‘physical ISCO’.

(iv) The most interesting case is when one does not obtain any positive real root of the
so-called ISCO equation, as the solution of one particular class of KTN NSs. In this
case, the test particle does not face E > 1 orbits but it must face the E = 0 orbit, as
the energy decreases with decreasing r in the SCOs. We have already shown that in
such a situation, accretion efficiency reaches to 100% at the r = r0 orbit, and hence,
we choose r = r0 as the ‘physical ISCO’ in this case.

One should note here that like a∗ the value of n∗ can be different for different objects
and it can even be very close to zero for some objects [24]. Finally, we emphasize that the
SCOs (in the equatorial plane) are more relevant when the accretion disk around a collapsed
object is geometrically thin and Keplerian. Such a disk is expected to have a multicolour
blackbody spectrum, and from such an observed spectral component, this type of disk can
be inferred [49]. For such a disk, SCOs, including ISCO, can be important to interpret
the observed quasi-periodic oscillations (QPOs) [50–52]. The energy and shape of the broad
relativistic iron line [53] observed from accreting collapsed objects are also expected to depend
on the disk inner edge radius, and hence on SCOs and ISCO.
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