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Abstract. Due to their extreme density and low temperature, neutron stars (NS) are efficient
probes to unveil interactions between standard model and dark matter (DM) particles. From
elastic scatterings on NS material, DM can get gravitationally trapped by the star. The
cooling of DM through further collisions may lead to the formation of a dense core which
could collapse into a black hole, thus destroying the whole NS. From the observation of old
NS, such a scenario leads to very stringent constraints on the parameter space of asymmetric
DM. In this work we reexamine this possibility in detail. This includes: (a) a new detailed
determination of the number of DM particles captured, properly taking into account the fact
that neutrons form a highly degenerate Fermi material; (b) the determination of the time
evolution of the DM density and energy profiles inside the NS, which allows us to understand
how, as a function of time, DM thermalizes with NS material; (c) the determination of the
corresponding constraints which hold on the DM-neutron cross section, including for the case
where a large fraction of DM particles have not thermalized; (d) the first determination of
the stringent constraints which also hold in a similar way on the DM-muon cross section,
particularly relevant for leptophilic DM models; and (e) the use of realistic NS equations of
state in determining these constraints.
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1 Introduction

If Dark Matter (DM) interacts with ordinary matter, it could be trapped in astrophysical
objects such as the Sun or compact stars. The most straightforward way this could be
realized is through elastic scattering of DM particle with ordinary matter in the stellar
medium. Such a scattering can reduce the kinetic energy of DM particle such that its
velocity falls below the corresponding escape velocity. Once gravitationally trapped, DM
can undergo further scatterings and thermalize with the stellar matter. This possibility is
interesting in several ways. For the Sun it is mostly interesting because it can lead to DM
signals in the form of high energy neutrino flux from DM pair annihilation. For a Neutron
Star (NS), the corresponding signal at Earth is expected to be very weak. However, for
Asymmetric Dark Matter (ADM, see e.g. the reviews of [1–4]), this is very interesting because
DM accumulating in the center could form a core which could further gravitationally collapse
into a black hole. The requirement that such collapses do not occur gives constraints on the
mass and interactions of particle DM. This has been analyzed in a series of works [5–21].
More generally, DM annihilation (and kinetic heating) can heat up the NS leading to an
increase of the surface temperature. Observational constraints on this temperature can lead
to an upper bound on the annihilation rate which depends on the number of DM particles
accreted [7, 13, 14, 22–26]. Also for a NS, the recent first observation of gravitational waves
from binary NS merger [27] lead naturally to the question of whether the presence of DM
in neutron stars could possibly affect the spectrum of such gravitational waves. All these
phenomena crucially depend on the amount of DM that can accumulate in neutron stars.

The impact of ADM on other objects such as the Sun and White Dwarfs are studied
in [28–32]. In this work, we reconsider in detail DM accretion and thermalization in NS and
associated constraints from black hole formation for ADM, incorporating a series of effects
which had not been considered (or only partially incorporated) before. This includes:

• A proper treatment of Pauli blocking for DM accretion rate, i.e. including the fact that
neutrons form a highly degenerate Fermi plasma in the NS. This allows us to obtain
semi-analytical results for the number of accreted DM particles. Interestingly, our
formalism takes into account various finite temperature effects. Two such effects turn
out to be particularly important for low DM mass: saturation of the Fermi degeneracy
suppression and evaporation of accreted DM (i.e. DM kicked out of the NS by scattering
off neutrons). This is detailed in section 2.

• The computation of trajectories (orbits) of DM particles, once they are gravitationally
trapped. More precisely, we examine the shrinking of orbits due to further scatterings
with NS matter, taking into account the effect of Pauli blocking, and also variations of
DM velocity along its orbit. DM trajectories can be divided in 2 periods: a first (short)
period where the average orbit is larger than the NS and, a second one where the orbit
is fully enclosed inside the star. This enables us to determine as a function of time, both
the DM radial density profile and the DM energy distribution, which to our knowledge
were never determined before. From the evolution of DM energy distribution, we can
compute as a function of time, the number of accreted DM particles which had (and
had not) the time to thermalize with the neutrons (i.e. whose kinetic energy does
(does not) reach the temperature of the NS). Thus, we treat DM thermalization as a
progressive effect rather than an instantaneous process happening for all the accreted
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DM particles after a characteristic average “thermalization time”. This point is the
subject of section 3.

• An update, using the two previous points, of the constraints which hold on the DM
mass and DM-neutron elastic cross section, from the requirement that the NS is not
destroyed due to black hole formation. In particular, the knowledge of the DM energy
distribution as a function of time, allows us to determine whether there is black hole
formation even when a large part of accreted DM have not had the time to thermalize.
This happens to be crucial for the case where DM is a boson and forms a Bose-Einstein
condensate. Section 4 is devoted to this point.

• For the first time, a detailed study of DM interactions, not only with neutrons, but
with protons and muons which are ineluctable constituents of NS matter. Using our
formalism we are able to compute DM accreted by scattering off degenerate protons
and muons, and the corresponding constraints from black hole formation. In partic-
ular, for muons this allows us to obtain interesting bounds on the DM-muon elastic
scattering cross section, which could be the only relevant ones if DM is for instance
“quarkophobic”. This is discussed at the end of section 4.

The results presented and discussed in this paper depend on the macroscopic properties
of neutron stars such as mass (M?), radius (R?) and temperature (T?), and also on the
microscopic properties of its degenerate medium (chemical potential, etc). These different
scales can be linked thanks to the equation of state of nuclear matter which, for the extreme
conditions met in a neutron star, relies on extrapolations. Hence in this paper, instead of
considering a uniform NS, we will consider a realistic profile, which is obtained by solving
TOV equations for a given equation of state. We rely on ref. [33] where phenomenological
fits are given for equations of state of varying stiffness. We will present our results for the
“Model A” which corresponds to the low mass configuration of model BSK20 from ref. [33],
chosen for being the most conservative one. We will also discuss how our results may change
with respect to the NS profile considered, by comparing these “Model A” results to the ones
obtained with three other benchmark models: B, C and D, see appendix A.

Note that the constraints on ADM from neutron stars are quite different from the
constraints one can obtain from other (less compact) astrophysical objects, such as the Sun or
White Dwarfs. As compared to these objects, NS have a much deeper gravitational potential
and a lower temperature (by∼ 2 orders of magnitude). This has three important implications:
(i) DM accretion is more efficient as soon as the scattering cross section responsible for the
capture is not many orders of magnitude larger that the geometric cross section of the NS
(see below). (ii) For NS DM evaporation becomes important only for DM masses below
O(keV), as compared to below O(GeV) for the Sun (or white dwarfs). This allows to probe
lower DM masses accordingly. (iii) The size of the core DM forms in the center of the NS is
much smaller than in the Sun and white dwarfs. Thus, the critical number of DM particles
required to form a black hole is much smaller, resulting in fully relevant black hole constraints
from NS.1

1Nevertheless, complementary constraints can be obtained from the Sun (or other solar mass objects)
by other means. For example, DM interactions with the stellar material can modify the heat transport
in the convective layers and hence the properties of the star. From asteroseismology (helioseismology) data
constraints could be set on DM elastic scattering cross sections for DM masses around O(GeV) [28–32]. These
studies constrain cross sections of the order ∼ pb [3, 4].
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2 Gravitational trapping of DM from elastic scattering with neutron star
matter

In this work, we are interested in models where DM (χ) is asymmetric, and with heavy
mediators (mmed � mχ). For bosonic DM, we consider the following vectorial and scalar
effective interaction lagrangian

Lint ⊃ G
(
χ†
↔
∂µχ

)
f̄γµf and Lint ⊃ GS

(
χ†χ

)
f̄f, (2.1)

which results in the following differential cross section in the non relativistic limit (i.e. when
both DM and fermion momenta are set to zero)

dσχ−f
d cos θcm

=
G2

2π

m2
χm

2
f

(mχ +mf )2 and
dσχ−f

d cos θcm
=
G2
S

8π

m2
f

(mχ +mf )2 , (2.2)

respectively. For fermionic DM (which we also denote by χ) we similarly consider the follow-
ing vector and scalar effective lagrangian

Lint ⊃ G (χ̄γµχ) f̄γµf and Lint ⊃ GS (χ̄χ) f̄f, (2.3)

which, in the non relativistic limit, turns out to result in the same differential cross section
as above

dσχ−f
d cos θcm

=
G2

2π

m2
χm

2
f

(mχ +mf )2 and
dσχ−f

d cos θcm
=
G2
S

2π

m2
χm

2
f

(mχ +mf )2 , (2.4)

respectively. Note that small momentum dependence in the cross section has been ignored.
In the following we will present the results we obtain for the vector mediator case. The
results for the scalar mediator case can be obtained from the vectorial case by the simple
rescaling G → GS/(2mχ) and G → GS , respectively. Phenomenology for pseudo-scalar,
axial-vector mediators and for light mediators is left for future work. As electrons in NS
are relativistic (their chemical potential is O(0.1) GeV, see appendix A), constraints on DM-
electron cross section is also left for future work since the scattering formalism presented here
is only relevant for non-relativistic degenerate neutron star matter.

2.1 Boltzmann equation for ADM

The rate of accumulation of DM particles in a star is governed by the Boltzmann equation
incorporating the capture of DM particles from the halo (Cw

? ), the rate of annihilation (A?)
and the rate of evaporation (Ew

? ). In the following we consider the case of completely anti-
symmetric DM candidate, which does not pair annihilate today. In this case the Boltzmann
equation reads

dNχ

dt
= Cw

? − Ew
? Nχ , (2.5)

with the following solution

Nχ(t) = Cw
? t?

(
1− e−Ew

? t?

Ew
? t?

)
. (2.6)

In the limit of evaporation being negligible, the number of accreted particles grows linearly
with time, Nχ(t) = Cw

? t?.
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2.2 Geometric upper bound on DM accretion

Before considering in detail how DM is accreted, it is useful to compute the amount of DM
which can be accreted if every DM particle passing through the neutron star were trapped
by it. This gives an absolute upper bound on the possible amount of accreted DM. To this
end, we define the geometric capture rate to be the flux of DM in the halo that intersects a
NS with mass M? and radius R? [34, 35],

Cgeom
? = πR2

?

(
ρχ
mχ

) ∫ ∞
0

duχ fv?(uχ)
ω2(R?)

uχ
,

= πR2
?

(
ρχ
mχ

)
〈v〉0

(
1 +

3

2

v2
esc(R?)

v2
d

)
ξ(v?, vd) , (2.7)

where ω(r) =
√
v2

esc(r) + u2
χ is the speed of the DM particle within the NS, vesc(r) is the

escape velocity at a given radius, uχ is the DM speed at infinity, ρχ is the DM energy density
in the star neighborhood and 〈v〉0 =

√
8/(3π)vd is the resulting average speed in the DM rest

frame with DM velocity dispersion vd. The factor ξ(v?, vd) takes into account the suppression
due to the motion of the NS with velocity v? (ξ(v? = 0, vd) = 1). For an isotropic flux of
DM, ξ(v?, vd) is

ξ(v?, vd) ≡
v2
d e
− 3 v2?

2 v2
d +

√
π
6
vd
v?

(
v2
d + 3 v2

esc(R?) + 3 v2
?

)
Erf
(√

3
2
v?
vd

)
2 v2

d + 3 v2
esc(R?)

.

For the canonical values of v? and vd, ξ(v? = 220 km/s, vd = 270 km/s) ' 0.75. By taking
vesc(R? = 11.6 km) = 0.62 c (Model A, see appendix A), the geometric rate can be written as

Cgeom
? = 5.6× 1025

(
ρχ

GeV/cm3
· 1 GeV

mχ
· R?

11.6 km
· M?

1.52 M�

)
s−1 . (2.8)

The mass and radius dependence is obtained assuming the second term dominates the paren-
thesis of eq. (2.7), which is always true in practice. Strictly speaking, this bound can only
be reached for an infinite cross-section σχ−f . Practically, in the following, as soon as σχ−f
becomes larger than σcrit = πR2

?/Nb (the geometrical cross section per baryon, with num-
ber of baryons Nb), the capture rate is close to this bound. In numbers, we find that
σcrit ≈ 2.5 · 10−45 for Model A. From Cgeom

? , one can estimate the total DM mass accreted
by a NS after a time t?,

M tot
χ ≈ mχC

geom
? t?, (2.9)

≈ 1.1× 10−14 M�.

(
M?

1.52 M�

)2( ρχ
GeV.cm−3

· 11.6 km

R?
· t?

10 Gyr

)
. (2.10)

Two important comments should be made here. Firstly, the characteristic scale of σcrit
shows that NS are able to probe very small elastic scattering cross section σχ−f . Secondly,
from eq. (2.10), the typical mass accreted is a small fraction of the NS mass. To maximize
this fraction, one can consider NS in “extreme” DM densities like ρχ = 106 GeV/cm3, and
use the most optimistic NS star profile (i.e. benchmark model D in the appendix A, which
increases the captured DM mass by 40%). Hence, we see right from the start that from
“standard accretion” this mass fraction will always remain tiny. Thus, as well known, it is
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not in this way that NS could accrete enough DM to leave an imprint in the gravitational
wave spectrum. Even if it were the case, we find it interesting to note, as a side comment,
that no such large imprint is expected since the dark matter cores will stay at the center of
the neutrons stars, see appendix G. Finally note that this absolute upper bound also holds for
the case where, on top of the capture induced by DM elastic scattering on ordinary matter,
DM is also accreted via DM self-interactions.

2.3 DM scattering off Fermi sea of neutrons

The neutrons in NS form a highly degenerate Fermi plasma whose degeneracy is parametrized
by the value of the corresponding chemical potential µF . This chemical potential can largely
vary depending on the neutron star model considered. The four benchmark NS models we
consider in appendix A give an idea of the possible variations, with chemical potentials in
the core ranging from 0.2 GeV to 0.8 GeV. The chemical potential also varies as a function
of radial distance from the core, as shown in figure 15. The effect of Pauli blocking in DM-
neutron scattering can be summarized as follows: when a DM particle scatters off a neutron,
the neutron must find an energy level which is not already occupied by an other neutron or
be completely ejected from the Fermi sea. This means that not all neutrons are available
to scatter along all the kinematical possibilities which, if there were no degeneracy, would
be allowed. This leads to a suppression in the scattering rate. For DM accretion in NS this
effect has been either neglected [8, 11] or estimated by simple means [10, 13]. In order to
account for this effect, one must compute the differential scattering rate integrated over the
incoming Fermi-Dirac neutron distribution fp(Ep) and over the available holes for the final
neutron state, 1− fp′(Ep′), [36]. To this end we write the capture rate as follows [37, 38]

Cw
? =

∫ R?

0
4πr2dr

∫ ∞
0

duχ

(
ρχ
mχ

)
fv?(uχ)

uχ
w(r)

∫ vesc(r)

0
R−(w → v) dv , (2.11)

where fv?(uχ) is the DM halo velocity distribution, and R−(w → v) is the differential scat-
tering rate in the NS frame for a DM particle with velocity w to scatter to a smaller velocity
v (w > v). The formal expression for a degenerate medium is given by,

R−(w → v) =

∫
ζn(r)ρu

dσ

dv
|w − u|fp(Ep, r)(1− fp′(Ep + q0, r))d

3u , (2.12)

where σ is the usual (free) particle cross section. The notations used are summarized in
table 1. The Fermi-Dirac distribution for the neutron in the initial and final state is

fp(Ep, r) =
(
e(Ep−µF (r))/T (r) + 1

)−1
, (2.13)

and

1− fp′(Ep + q0, r) = 1−
(
e(Ep+q0−µF (r))/T (r) + 1

)−1
, (2.14)

with q0 = 1/2mχ(w2 − v2), the energy lost by DM in a single scatter in the NS frame.
The eq. (2.12) also involves ρu, the phase space density of neutrons, ρu = gsm

3
n/(2π)3 (with

gs = 2 for spin 1/2 fermions). As detailed in appendix B, the factor ζn(r) is introduced to
account for the correct number density given by the NS profiles. That way we specify the
right number density for a given chemical potential.

From eq. (2.12) it is possible to derive analytical results for the R(w → v) factors, in the
non-relativistic and vanishing temperature limit, relevant when the target scattering particles

– 6 –
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Quantity Definition

uχ DM velocity in the DM halo far from the NS

w, kµ Incoming DM velocity and 4-momentum (Ek,k)

v, k′µ Outgoing DM velocity and 4-momentum (E′k,k
′)

u, pµ Incoming target particle velocity and 4-momentum (Ep,p)

u′, p′µ Outgoing target particle velocity and 4-momentum (Ep′ ,p
′)

qµ 4-momentum transfer for the process (q0, q)

p′µ = pµ + qµ 4-momentum conservation

k′µ = kµ − qµ 4-momentum conservation

mr Reduced mass of DM-target system

µF Chemical potential of the target particle

µ = mχ/mt Ratio of DM mass by the target mass (mt)

fi(Ei) Fermi-Dirac distribution, function of (Ei, µi, T )

Table 1. The relevant variables of the problem are listed in the first column, and the corresponding
definition in the second column. Note that we first focus on neutrons as DM targets. These notations
are generic and are also used below when muons and protons targets.

are neutrons, protons and muons. To this end we further generalize the calculation presented
in refs. [36, 39] by providing analytical expressions for the differential scattering rates above.
This derivation is quite technical, and we refer the interested reader to appendix C, where
details of this calculation are extensively discussed. Finally, to compute the capture rate, the
remaining three integrals on r, uχ and v in eq. (2.11) have to be computed numerically.

2.4 Results

In figure 1 we show the numerical results we obtain for the number of DM particles accreted
as a function of DM mass. We use benchmark NS Model A and compute these quantities for
two typical values of NS temperature, 105 K (solid-red lines) and 106 K (dashed-green lines),
respectively. These results follow from the computation of eq. (2.12). Also shown in figure 1,
in black-dashed line, the amount of accreted DM if all DM particles crossing the NS were
captured, as described by the geometrical limit eq. (2.7).

We first discuss the mass dependence of the accretion rate. For DM mass mχ & 1 GeV,
the mass dependence is the same as if neutrons were described by a Maxwell-Boltzmann
distribution, i.e. there is no effect due to Pauli blocking. Strictly this is true when the
average energy transfer is larger than µF or in other words, when the energy of DM particle
is large enough to kick a neutron out of the Fermi sea, where there are no occupied state.
Thus, in this case the DM accretion rate is simply proportional to the cross section and to
the DM flux. Since the latter is proportional to 1/mχ, the accretion rate goes as 1/mχ too,
just as the geometric cross section, eq. (2.7).2 In the example considered in figure 1, the
accretion rate is ∼ 2.5 times smaller than the geometric rate because we took a cross section
σχ−n = 10−45cm2 which is 2.5 times smaller than the critical cross section σcrit. Results in
this figure scale as the cross section, except if the accretion rate is larger than the geometric
one, in this case the accretion rate saturates to the geometric rate.

2Note that (even if this is not shown in the plots), this behavior is valid for a mass up to 106 GeV, for
neutrons/protons. Above this mass, the accretion rate scales as 1/m2

χ for kinematic reasons: it is less likely
that DM particles lose enough energy to be captured in a single scatter.
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Benchmark A: BSK-20-1
ρχ = 1 GeV/cm3

σχ−n = 10−45 cm2

T=105 K

T=106 K

McDermott et.al. '12
Geometric

Figure 1. Capture rate as a function of DM mass for benchmark Model A, for DM density ρχ =
1 GeV/cm3, and σχ−n = 10−45cm2. The dashed-green and solid-red lines results from our accurate
treatment of the Fermi sea, for two typical NS temperatures, while the blue line is computed from the
heuristic argument used in ref. [10]. The black dashed line corresponds to the geometric capture rate.

For mχ . 1 GeV the accretion rate no longer scales as 1/mχ but is suppressed because of
Pauli blocking. Actually, Pauli blocking effect manifest itself through a complicated interplay
of the four energy scales of the problem, namely the temperature (T?), the neutron mass (mn),
the chemical potential of neutron (〈µF 〉)3 and the DM mass (mχ). In figure 1 one can observe
three different regimes, depending on mχ:

• Regime I : for mχ in the range [0.1 GeV, 1 GeV], whose boundary values correspond to
〈µF 〉 ' 10−1 GeV (i.e. vf ' 0.44) and the neutron mass, respectively. In this regime,
the Fermi suppression is relatively moderate and increases when mχ decreases. For
instance, for mχ = 100 MeV, the suppression is of order 100 with respect to what
we would obtain neglecting the Fermi sea suppression. It is of order of a few when
compared to the results of [10] (blue line in figure 1). This regime does not depend on
the NS temperature.

• Regime II : for mχ in the range [10−8,−7 GeV, 0.1 GeV], whose boundary values corre-
spond to O(T ) and 〈µF 〉 ' 10−1 GeV. In this regime the suppression is more important
and leads to a flat behavior of the capture rate as the DM mass mχ decreases. Here, the
Fermi suppression brings the capture rate orders of magnitude below the geometrical
rate and, about an order of magnitude below the result of ref. [10]. Similar to regime I,
this regime does not depend on the NS temperature.

• Regime III : for mχ below O(T ). The accretion rate is no longer constant but increases
as 1/mχ with decreasing mass. This behavior is different from the T = 0 K limiting
case, which would corresponding to a flat behavior in the capture rate. Note that using

3In the following, we are referring to 〈µF 〉, the averaged Fermi chemical potential of neutrons in DM-neutron
collision.
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approximation of ref. [10] (blue-dashed line) the accretion rate decreases with mass.
Clearly, regime III is due to finite temperature effects.

To understand the behavior of these regimes we will start by discussing the T = 0 K
case which is relevant to describe regimes I and II, and subsequently discuss the effects of
non-vanishing temperature relevant for regime III.

2.4.1 T → 0 results: regimes I and II

It is not a surprise that Pauli blocking affects the capture rate for mχ below 1 GeV. The
capture rate is proportional to the integral of the product of the in-coming and out-going
neutron distribution functions, i.e. proportional to the overlap of these two functions. For a
vanishing temperature these distribution functions behave like theta functions,

fp(Ep − µF ) = Θ(µF − Ep), (2.15)

1− fp′(Ep + q0 − µF ) = Θ(Ep + q0 − µF ), (2.16)

whose overlap occurs on an interval of energy equal to the energy gained by the neutron, q0.
When mχ is above ∼ GeV, the 1−fp′(Ep+ q0−µF ) distribution function fully overlaps with
the fp(Ep − µF ) function, i.e. the outgoing neutron is not Pauli blocked. However when mχ

is below ∼GeV the overlap scales as q0. Thus we need to determine how q0 scales with mχ,
or more exactly how the distribution of q0 which holds for a given mχ scales with mχ. Here
it is useful to recall that for a given value of mχ and a given value of the initial DM particle
velocity, w, an all range of outgoing DM particle velocity, v, is kinematically available, with
different transition probabilities, resulting in a distribution of energy transfer q0. Hence, to
understand the scaling in mχ of the accretion rate, we start by writing the expression of q0

for the elastic collision in terms of momentum transfer q and initial neutron momentum p

q0 =
1

2mn

(
(p + q)2 − p2

)
=

1

2mn

(
q2 + 2p · q

)
. (2.17)

Next, for fixed v and w, we can integrate over both final neutron momentum angles.4 Given
the δ functions associated to conservation of energy and momentum, the angle between q
and p is fixed to a single possible value, which fixes q0 as a function of w, v and mχ,

q0 =
1

2
mχ

(
w2 − v2

)
. (2.18)

This shows that, for fixed initial velocity w, the distribution of q0 is totally fixed by mχ and
the distribution of final velocity v. When mχ � mn, it can be shown that for fixed value of
w, the distribution of v is independent of the value of mχ. Thus the q0 distribution scales as
mχ, which leads to an accretion rate independent of mχ (given that the flux of DM particles
scales as 1/mχ). This allows to understand regime II, that is to say the mass scaling of the
accretion rate between 0.1 GeV (∼ 〈µF 〉) and 2 T, see figure 1.

To better illustrate this dependence, we display in figure 2 the Fermi distribution func-
tions fp and the distribution of holes 1−fp′ for a vanishing NS temperature and for maximal
recoil energy qmax

0 = Eχk . As an example, we chose the values µF = 0.085 GeV, w = 0.7, v = 0
and display the distribution functions for mχ equals to 10−6 GeV, 10−7 GeV, and 10−8 GeV,
from the left to the right panel, respectively. One observes that the overlap of both functions
occurs on an interval equal to q0 which scales as mχ.

4Note that to derive the differential scattering rate we first integrate over the final state neutron phase
space which is then followed by integration over the initial state neutron phase space in the non-relativistic
limit.
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Figure 2. Distribution functions of eqs. (2.13) (blue line) and (2.14) (red line) for T = 0. Each panel
corresponds to a different DM mass, mχ = 10−6,−7,−8 GeV from left to right.

The transition from regime II to regime I is observed when mχ ∼ mn (or equivalently
for q0 ∼ µF ). This can be understood from the fact that for such values the distribution
of v for fixed value of w is not anymore independent of mχ. Note that we can obtain an
analytical expression for the differential scattering rate in the limit of vanishing temperature,
see appendix C. After performing both vt and vs integrals in eq. (C.7), the result we obtain
contains many terms involving different Θ functions, corresponding to different kinematical
conditions, see eq. (C.35). This shows explicitly that a simple ansatz for Pauli blocking in
ref. [10] is not necessarily correct. Among these terms, there are two types of terms, the
ones involving Θ functions linear in the velocities and the ones involving Θ functions which
are quadratic in the velocities. It is the second class which turns out to be dominant for
regime II whereas it is the first class which is relevant for regime I, i.e. the turnover which
occurs around the neutron mass. Note also that quantitatively, based on this mathematical
definition of regimes I and II, the latter implies v2

f −mχ/mn(w2 − v2) > 0 (Λ− > 0) which
means µF > q0 (see eqs. (C.35) and (C.36)).

2.4.2 Finite temperature effects: saturation in regime III

For non vanishing temperature, as a result of thermal fluctuations, part of the in-coming
neutrons have energies above µF while part of the out-going states with energies below µF
are available. In this case, the Fermi distribution fp(Ep − µF ) and the distribution of holes
1 − fp′(Ep + q0 − µF ) can no longer be approximated by θ functions, but show a smooth
tail above µF and below µF , respectively. The typical spread of these tails is equal to the
temperature T . Hence, the larger the temperature, the broader these tails. This behavior
is illustrated in figure 3 where both distribution functions are plotted for two values of
temperatures, three values of mχ (10−6 GeV, 10−7 GeV, and 10−8 GeV, from left to right)
and using the maximal recoil energy qmax

0 = Eχk . For the same values, we display in figure 4
the overlap resulting from the product of both distribution functions. We observe that when
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Figure 3. Same legend as figure 2 but for two typical NS temperature 105 K and 106 K.
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Figure 4. Overlap of the distribution functions (eqs. (2.13) and (2.14)), i.e. product of both the
distribution functions which appears in eq. (2.12), for two typical NS temperatures 105 K and 106 K.
Each curve corresponds to a different DM mass, from top to bottom mχ = 10−5,−6,−7,−8 GeV.

q0 is larger than the temperature, the overlap is close to a box function and so virtually the
same as the one given in the θ function approximation. On the other hand, when mχ is so
small that q0 reaches the thermal energy of the neutrons En, that is to say when

qmax
0 = Eχk ' 〈En〉 ' T , (2.19)

the overlap of the distribution functions quickly reaches an asymptotic value showing a peaked
profile, which strongly differs from the overlap of two θ functions. This asymptotic behavior
is reached when mχ = 10−7 GeV for T = 106 K as shown in the left panel of figure 4, and
when mχ = 10−8 GeV for T = 105 K as shown in the right panel of the same figure. The fact
that the overlap does not go to 0 but towards this asymptotic area is due to the non-vanishing
temperature.

The typical width of the asymptotic area is actually ∼ 2T . Physically, once the trans-
ferred energy q0 becomes smaller than T , “thermal” holes in the Fermi sea are available for
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the scattered neutron. In that regime, the overlap function is only determined by the tem-
perature and q0 becomes irrelevant. In practice, equating the maximal recoil energy qmax

0 to
the temperature T defines the typical mass

m∗χ =
2T

w2
≈ 50

(
T

105 K

)
eV , (2.20)

below which the accretion rate increases again as 1/mχ, similar to the case where mχ >
1 GeV, scaling as the number density of DM particle. This precise behavior explains regime III
(see figure 1), which according to the condition of eq. (2.20) starts at smaller masses for
smaller temperatures.

Note that in refs. [8, 11, 40] the Fermi sea suppression was not considered, whereas in
ref. [10] (or similarly in ref. [13]) it was estimated by multiplying the accretion rate obtained
without Fermi suppression by a factor δp/p, where p is the Fermi momentum and δp is the
recoil momentum in the neutron rest frame. The result obtained in this case is also shown
in figure 1 (blue-dashed line). They result in an accretion rate which is O(1) larger than
what we get in regime I, and up to an order of magnitude larger in regime II. Also, as these
estimations do not take into account any temperature dependence, they do not reproduce
the regime III.

2.4.3 Finite temperature effects: DM evaporation

Evaporation is a thermal phenomenon where DM gains energy from scattering on neutrons,
such that the resulting DM energy is larger than the escape energy. Thus DM is ejected from
the NS. In general, this phenomenon is relevant when thermal energy is comparable to the
escape energy. To our knowledge, for a Fermi degenerate medium such as in a NS, this effect
has never been explicitly computed in the literature so far. The evaporation rate is given
by [37, 38],

E? =

∫ R?

0
nχ(r)4πr2dr

∫ vesc(r)

0
fχ(w, r) 4πw2dw

∫ ∞
vesc(r)

R+(w → v) dv , (2.21)

in which the expression of R+ can be obtained from the one of R− in eq. (2.12), by replacing
fp′(Ep + q0) by fp′(Ep − q0). In eq. (2.21) we assume that the DM phase space density
in the NS is time-independent, and can be factorized in two functions: the radial number
density nχ(r) and the velocity distribution fχ(w, r) (for one DM particle). Hence to compute
evaporation, one needs a prior on these two distributions. As we will see below, in the case
of a NS, DM is actually sensitive to evaporation for masses mχ . keV. We will see in the
next section (more specifically the remark regarding eq. (3.15)) that, for those masses, after
the first collision which leads to capture, one can assume DM to have thermalized. Hence,
its velocity distribution fχ(w, r), follows a Maxwell-Boltzmann distribution truncated at the
escape velocity vesc(r) given by [37, 38]

fχ(w, r) =
1

π3/2

(
mχ

2T?

)3/2 e−
mχ
2T?

w2

Θ(vesc(r)− w)

Erf

(√
v2e(r)mχ

2T?

)
− 2√

π

√
v2esc(r)mχ

2T?
e−mχv

2
esc(r)/2T?

, (2.22)

where we have assumed the star to be isothermal with temperature T?. In this limit, we can
also write the normalized radial distribution of DM [37, 38]:

nχ(r) =
e−mχφ(r)/T?∫ R?

0 d3r e−mχφ(r)/T?
=

4

r3
χ

√
π

exp

(
− r

2

r2
χ

)
, (2.23)
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Figure 5. Evaporation rate as a function of DM mass for benchmark Model A for typical NS
temperatures.

where in the last equation we introduce the gravitational potential of the star φ(r) which

allows us to define a typical length rχ =
(

3T?
2πGρ?mχ

)1/2
, corresponding to the typical extension

of the thermalized DM core.
With these analytical handles on the DM radial distribution and the velocity distribution

inside NS, we can now proceed to compute the evaporation rate. Since it is impossible to
obtain a closed analytical expression for R+, we present numerical results obtained for the
evaporation rate, for benchmark NS model A in figure 5 for two different NS temperatures
105 K (10 eV, in red) and 106 K (100 eV, in green), respectively. As the evaporation rate is
∝ e−mχv2esc/2T? we see a clear exponential suppression for DM masses above few T, i.e. when
mχv

2
esc/(2Tχ) & 1. This feature is only quantitatively different with respect to the case where

neutrons are described by a Maxwell-Boltzmann distribution (see e.g. figure 3 of [38]). Similar
to the accretion term R−, the evaporation term R+ is also proportional to the product of
the in-coming and out-going neutron distribution functions. However, for evaporation to
proceed neutron has to lose momentum such that the final DM velocity exceeds vesc. Thus,
the overlap is now given by fp(Ep)(1− fp′(Ep− q0)). This implies in practice that only those
neutrons whose energy is larger than µF will participate in this process.

2.4.4 Putting accretion and evaporation together

In the ADM scenario the time evolution of number of DM particles is governed by eq. (2.5),
which results in the following solution

Nχ(t) = Cw
? t?

(
1− e−Ew

? t?

Ew
? t?

)
. (2.24)

With all the ingredients (capture and evaporation rate) already computed we now pro-
ceed to compute the number of accumulated DM particles at t = t? = 1010 yr). In figure 6
we present the results we get for Nχ(t?) for T? = 105 K (red curve) and for T? = 106 K
(green curve). We find that the minimum DM mass for which DM particles are not largely
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Figure 6. Number of DM particles at t = t? = 10 Gyr as a function of DM mass for benchmark
Model A, for DM density ρχ = 1 GeV/cm3 and σχ−n = 10−45 cm2. The green and red lines result
from our accurate treatment of the Fermi sea, for two typical NS temperatures, while the blue line is
computed from the heuristic argument used in ref. [10].

evaporated away (evaporation mass) is 2 · 10−6 GeV for T? = 105 K and 2 · 10−5 GeV for
T? = 106 K, respectively. We find a heuristic expression for evaporation mass given by

mevap ' 2 · 10−6

(
T?

105 K

)
GeV. (2.25)

Thus the 1/mχ scaling of the accretion rate in regime III, see figure 1, is completely washed
out by evaporation. Note that, even if Ew

? drops exponentially for mχ above a few times T
(see figure 5), the evaporation effect becomes important as soon as mχ < mevap ∼ 2 keV,
that is to say as soon as mχ . 200mevap. This is due to the fact that the argument Ew

? t? of
the exponential in eq. (2.24) involves a large value of t?, and thus is of order one only when
Ew
? is as small as 1/t? ∼ 10−17 sec−1.

3 Time evolution of DM density inside the neutron star and thermaliza-
tion

As computed previously, after the first interaction with NS matter, DM can be gravitationally
trapped. As shown in eq. (2.25), for mDM & keV evaporation is negligible and the number of
particles collected is simply given by Cw

? t?. After the first interaction, part of DM particles
have orbits going out of the NS, whereas another (in general much smaller) part have orbits
within the NS. Subsequently, DM loses further energy through scatterings, leading to smaller
orbits, such that it moves towards the center of the NS. Eventually DM particles have lost
so much energy that their energy reaches the neutrons temperature, at which point they
thermalize with the neutrons. All this dynamics is fully relevant for determining when DM
could eventually gravitationally collapse to form a black hole. So far the possibility of black
hole formation has been considered only for those cases where DM has thermalized. In
this case, to see whether a black hole forms one can just plug in the gravitational collapse

– 14 –



J
C
A
P
0
5
(
2
0
1
9
)
0
3
5

condition (see below), the value of the “thermal radius” of the DM core. The latter is just
the radius of the orbit of a particle with energy equal to the temperature. This makes sense if
the characteristic “thermalization time”, that a DM particle needs on average to thermalize,
is smaller than the NS age. This “thermalization time” is the sum of the time ′′t1” during
which the DM particles stay on orbits larger than the NS, and of the time ′′t′′2 which is
subsequently needed for this particle to thermalize.

In this section we go beyond this usual approach in 3 steps:

• First, since the dynamics towards thermalization is based on the fact that a gravitation-
ally trapped DM particle loses energy from subsequent elastic scattering with neutrons,
we start in section 3.1 by determining the energy loss rate, including Pauli blocking.
This has been done in ref. [39], showing large differences with previous estimates. Al-
though largely based on the formalism of this reference, our calculation here will differ
from the fact that to calculate the energy a particle loses when it scatters, we take into
account the variation of its energy along its orbital motion, and average over it.

• Second, we will calculate in section 3.2 the characteristic thermalization time tth =
t1 + t2. Here too we will essentially proceed as in ref. [39], with the difference that we
do not sum over the average time each scattering takes (i.e. assuming that all particles
undergo their nth scattering at the same time from the same average energy En−1 to
the same final energy En). Instead, we compute this time directly from integrating
over time the energy losses averaged along DM orbits.

• Third, after these preliminaries, we compute in section 3.3, as a function of time,
the energy distribution of DM particles. This is necessary for a proper treatment
of the thermalization process and, to our knowledge, this has never been considered
before. This will allow us to determine at any time what are the numbers of accreted
DM particles which have already, or have not yet, thermalized. Equivalently this will
also allow us to determine, as a function of time and of the distance from the NS
center, the distribution of DM particles in the NS. Beyond the fact that to determine
these distributions as a function of time is interesting in itself (as it is relevant for
any phenomenological effect DM could induce), this will allow us to set more precise
constraints on when a gravitational collapse would occur. In particular this allows us to
determine if there is gravitational collapse also for cases where most of the DM particles
would not have enough time to thermalize in the NS. We will compare this result with
the one obtained under the assumption of “instantaneous” thermalization of all DM
particles after the characteristic “thermalization time” defined in section 3.2.

3.1 Average of DM energy loss along orbits

Depending on the energy lost during the first collision, DM particle may have an orbit larger
or smaller than the neutron star radius. As already mentioned above, two typical times are
relevant: t1, the typical time for a particle orbiting in and out of the NS to be fully contained
in the NS, and t2, the typical time for a particle orbiting within the NS radius to reach the
thermal energy Eth = 3/2kBT . The thermalization time is given by the sum tth = t1 + t2.
Obviously these times depend on the rate of energy loss of DM particles. In this subsection
we calculate these rates taking into account that a particle scatters at random positions along
its orbit, thus with a kinetic energy which varies along this orbit. First we present (i) how
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we parameterize the motion of DM, and secondly (ii) how we compute the averaged energy
losses along DM orbits.

(i) DM orbits in the neutron star : we assume the orbits of particles to be eccentric
and approximate them as linear with radial extension r0. Since particles are gravitationally
trapped, there is a one to one correspondence between the orbital extent r0 and the total
energy Etot of DM particles. One has

Etot =


−GM?mχ

r0
for r0 > R?

−GM?mχ

2R?

(
3− r2

0

R2
?

)
for r0 ≤ R? .

(3.1)

Assuming the NS to be a sphere of constant density, the kinetic energy Ekin at a time t can
be expressed as a function of r(t). It follows that

Ekin =


Etot +

GM?mχ

r
for r > R? ,

Etot +
GM?mχ

2R?

(
3− r2

R2
?

)
for r ≤ R? .

(3.2)

In the following, to characterize an orbit we use the maximal kinetic energy that we denote
by E (which is also the kinetic energy of particles crossing the center of the star),

E ≡ Emax
kin =


−GM?mχ

r0
+ 3

GM?mχ

2R?
for r0 > R? ,

GM?mχ

2R?

(
r2

0

R2
?

)
for r0 ≤ R? .

(3.3)

(ii) Averaged energy losses along DM orbit : to compute the energy losses we start from
the differential scattering rate defined in eq. (C.2) which encodes the number of collisions
a DM particle with velocity w undergoes per unit time and per unit interval of out-going
velocity, v. In this rate the velocities can be traded for the in-coming and out-going DM
kinetic energies, Ek and E′k, leading to the following differential scattering rate in energy

dΓ

dE′k
=
√

2mχE′k
(
R−(Ek → E′k) +R+(Ek → E′k)

)
. (3.4)

For simplicity, instead of using the numerical result we obtained in the previous section for
this quantity, we will use the simpler analytic approximation obtained in eq. (22) of ref. [39],

dΓ

dE′k
= σχ

m2
nmχ

2π2m2
r

√
E′k
Ek

(Ek − E′k). (3.5)

We have checked the numerical compatibility of both results for values of Ek above the
thermal one, Eth. For those energies and for typical NS temperatures, the backreaction of
neutrons encoded in the second term of the right-hand side of eq. (3.4) (i.e. R+) turns out
to be negligible as long as E > Eth, and to very quickly become comparable to the R− term
as soon as the energy becomes very close to Eth.

Thus, in the following we consider that as long as the DM particle has an energy above
the thermal one, we can safely neglect the back reaction R+ term, whereas as soon as it
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becomes smaller it follows a Maxwell-Boltzmann distribution, as given in eq. (2.23). Since
we are interested in cross-section orders of magnitude smaller than the geometric cross-section
(∼ 10−45 cm2), the successive scatterings are spread randomly along the orbits. Thus, for
orbits with r0 < R?, the differential scattering rate for a DM particle moving along an initial
orbit with maximum radius r0 (corresponding to maximum kinetic energy E), going to an
orbit with maximum radius r′0 (corresponding to maximum kinetic energy E′), averaged over
the initial orbit, is

dΓ2

dE′
=

〈
dΓ

dE′k

〉
r0

=

∫ τ0

0

dΓ

dE′k
[Ek(r0, r(t))→ E′k(r

′
0, r(t))] dt∫ τ0

0
dt

(3.6)

= σχ
m2
nmχ

2π2m2
r

(
1−

√
1− E′

E

)
(E − E′) . (3.7)

Where τ0 is the period of the initial orbit. In this equation Ek(r0, r(t)) and E′k(r
′
0, r(t)) are

the kinetic energies of the in-coming and out-going DM particles when they lie at a distance
r(t) from the NS center along the orbit of extent r0 and r′0, respectively. From this expression
one can directly compute the average energy lost by a DM particle of energy E per unit time:

b2(E) =

∫ E

0

dΓ2

dE′
(E − E′)dE′ , (3.8)

=
σχ

42π2

m2
nmχ

m2
r

E3 . (3.9)

Recall that the latter is valid for an initial orbit inside the NS, r0 < R?. For r0 > R?, similar
average of dΓ1/dE

′ leads to:

b1(E) =

∫ E

0

dΓ1

dE′
(E − E′)dE′

=
2σχ

105π3

m2
nmχ

m2
r

E3
? ×

η(E)

B6
× I(E) , (3.10)

with η(E) the fraction of the period for which the DM is traveling inside the star, and I(E)
a non trivial function of energy (see appendix D for details).

On the left panel of figure 7 we show the energy loss rate, b(E), from refs. [10] and [39].
Since these results are not averaged over orbits, we plot this rate as a function of kinetic energy
Ek which, in this case, monotonously decreases with time. The energy scale is bounded from
below by the thermal energy and from above by the kinetic energy corresponding to the
escape velocity, Eesc. On the right panel of figure 7, we plot the energy loss rate we get
averaging over the orbits, eqs. (3.9) and (3.10). Not surprisingly, the more energy the DM
particle has already lost, the slower it will subsequently lose energy, see in particular eq. (3.9),
which applies when the DM particle has an orbit already fully contained inside the NS. Note
however, that for energies just below Eesc, the rate of energy loss increases as the energy
decreases, leading to a maximum in the energy loss rate. This is due to the fact that, when
E becomes smaller than Eesc, the energy losses are sharply increasing as the fraction of the
orbital period spent in the NS increases. Eventually DM reaches the thermal energy, at
which point the energy loss rate is set to zero. Note that, comparing the result of ref. [39]
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Figure 7. Energy losses as a function of DM energy without (left) and with (right) averaging over
orbits, for mχ = 1 GeV and σχ = 10−45 cm2. The solid red line on the right panel is from eqs. (3.9)
and (3.10), and corresponds to adding the orbit average effect to the result of ref. [39], given by the
black solid line on the left panel. The dashed blue line on the left panel is from ref. [10]. Finally the
dotted-dashed line on the right panel is from ref. [40].

on the left panel to the one from eqs. (3.9) and (3.10) on the right panel, one observes that
the typical effect of averaging over the orbits is to reduce the energy loss rate by a factor of
4, except for energies slightly below Eesc, where the effect is much larger. Also shown on the
right panel is the result of ref. [40] which did an orbit average but did not consider the effect
of Fermi sea suppression. A comparison of both lines in this panel shows that the Fermi sea
effect is not only important in the accretion process but also in the thermalization process.
This can be also seen partly from a comparison with the results of ref. [10] in the left panel.

In the following we will also make use of the total interaction rate per unit time, averaged
over the orbits:

Γ(E) =

∫ E

0

dΓ

dE′
dE′ . (3.11)

3.2 Estimate of the thermalization time

Before considering the thermalization process more rigorously in the next subsection (directly
from the evolution of the DM energy distribution), we begin by estimating the time t = t1+t2
it takes for DM to thermalize with the neutrons in the NS. To this end, we simply integrate
over time the orbit averaged energy losses we obtained in the previous section. The time
t1 can be obtained from the energy loss b1, eq. (3.10), by computing the time it takes for a
DM with initial energy E0 (just after the first collision) to reach the NS surface energy Esurf

corresponding to r0 = R∗. Similarly, t2 can be estimated from b2, computing the time it
takes for DM at Esurf to reach the thermal energy Eth. Hence,

t1 =

∫ Esurf

E0

dE

b1(E)
, (3.12)

t2 =

∫ Eth

Esurf

dE

b2(E)
. (3.13)
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The average energy E0 that a DM particle has just after being gravitationally trapped can
be estimated from the initial average kinetic energy Ei. From the average energy lost per
collision,

〈∆E〉 = Ei − E0 =

∫ k
0 dΓ(Ei) (Ei − Ef )∫ k

0 dΓ(Ei)
=

4

7
Ei , (3.14)

we get E0 = 3/7 · Ei ≈ 3/7 · Eesc, where Eesc = 3
2
GmχM?

R?
is the escape kinetic energy for

a particle at the center of the star. Note that, if, after the first scattering, E0 falls below
the energy Esurf = 1

2
GmχM?

R?
corresponding to particles orbiting till the surface, then t1 is

irrelevant because the orbit will be enclosed inside the NS. But this does not happen on
average since the average ratio is E0/Esurf = 9/7. However it can happen that the orbit size
at thermal energy is larger than the NS size. This happens for DM masses when Esurf < Eth,
namely:

mχ <
3R?T

GM?
= 1.33× 10−7 GeV

(
T

105 K

)
. (3.15)

In the worst scenario for capture, DM can be so light that the thermal energy is actually
larger than the escape energy. In the following we will not consider such small masses since
they lead to very diffuse DM halos around the neutron star, which are not suitable for
black hole formation. These considerations naturally lead to the notion of thermal radius
Rth corresponding to the typical size of the core obtained by equating gravitational energy,
−4πGR2

thρBmχ/3, with the thermal one, 3
2kBT ,

Rth =

√
9T

4πGρBmχ
= 4.29 m

(
T

105 K

)1/2(1 GeV

mχ

)1/2

. (3.16)

Note that Rth defined in this way, differs from the scale height rχ of the Maxwellian distri-
bution, eq. (2.23), by a factor

√
3/2, Rth =

√
3/2 rχ.

Coming back to the estimation of t1 and t2, while the first can only be computed
numerically, t2 can be approximated as:

t2 ≈
21π2m2

r

σχm2
nmχ

1

E2
th

≈ 10700 yrs
γ

(1 + γ)2

(
105 K

T

)2(
10−45 cm2

σχ

)
, (3.17)

with γ = mχ/mn. Note that in refs. [10] and [40], the mχ and Eth dependence of t2 are not
the same as in eq. (3.17), since they do not include a proper treatment of Pauli blocking.
This leads to drastically different results. For example, for mχ = 1 GeV, we obtain values
4×106 and 1.5×1010 times smaller than in refs. [10] and [40], respectively. Computing t1, it
appears that it is always much smaller than t2 [40], and account for less than 1% of the time
prior to thermalization for DM masses above 10−6 GeV. Thus, in the following we neglect
this first step of the thermalization process, and approximate tth ≈ t2.

3.3 Evolution of the DM energy distribution prior to thermal equilibrium

The estimation of thermalization time (t1 and t2) basically means that, for times below tth,
one assumes that none of the DM particles have reached Eth. This would be strictly true if the
captured DM particles were all losing energy in the same continuous way. However, energy
losses are not continuous but catastrophic: the jumps in energy are significant compared to
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the total energy a DM particle must lose to reach Eth. For example, according to eq. (3.14),
1 GeV DM particle needs only 10 scatterings on average for its energy to go below Eth.
Even smaller numbers of scatterings hold for lighter DM particles. Furthermore, the size of
the energy jumps is stochastic, thus the final DM energy after n number of scatterings is a
random variable. Hence one should consider the evolution of DM energy distribution. Since
we are dealing with large numbers of particles, to compute and to use this distribution makes
sense. In this section we will compute this DM energy distribution as a function of time.
We will perform this computation from the orbit averaged energy loss rates computed above.
This will allow us to determine at any given time the number of DM particles which are in
and out-of thermal equilibrium, as well as the spatial distribution of the DM particles. These
are of importance to determine when a black hole could form.

To this aim we introduce the function which gives the number of DM particles that have

an orbit with maximal kinetic energy E, per unit interval of E, fχ(E, t) =
dNχ(E, t)

dE
. This

distribution is time dependent and follows the Boltzmann equation,

∂fχ
∂t

(E, t) =

∫ +∞

E
dE′

dΓ

dE′
(E′ → E)fχ(E′, t)− Γ(E)fχ(E, t) + q(E, t) , (3.18)

where Γ(E) is the total energy loss rate defined in eq. (3.11). The source term q(E, t), i.e. the
number of particle accreted per unit time and per unit interval of energy E, is given by

qχ(E) =

∫ R?

0
4πr2dr

∫ ∞
0

duχ

(
ρχ
mχ

)
fv?(uχ)

uχ
w(r)

×
∫
dE′k δ(E

′
k − E′k(E, r))

√
2mχE′kR

−
i (Ek → E′k) , (3.19)

with E′k(E, r) the kinetic energy at position r of a particle with a given E. This integral is
similar to the one given above for the capture rate, eq. (2.11), except that now we do not only
count the number of particles that gets trapped but also keep track of their energies. This
equation can be solved semi-analytically by using a discrete grid in energy (see appendix E for
details). In the following we adopt two simple approximations already discussed above: (i)
first we only consider the evolution of the DM distribution inside the NS. This approximation
is very good since we have seen above that t1 is perfectly negligible in the DM mass range
considered. Hence dΓ

dE′ = dΓ2
dE′ and Γ = Γ2. (ii) Secondly, we assume that there is no neutron

“feedback” as long as E > Eth (see discussion above eq. (3.7)) and that all particles whose
energy is less than Eth are in thermal equilibrium with the neutrons, i.e. follows a Maxwell
distribution as given in eq. (2.23). Furthermore, as already mentioned above too, the strong
energy dependence of the energy losses, eq. (3.4), implies that the larger the energy of DM
particle, the faster it loses energy. Hence the shape of the source term q(E) has very little
impact on the solution fχ(E, t). We have checked that, for values of cross sections such as
the ones probed by neutron stars and for typical NS ages, the extreme source terms,

q(E) = Cw
? δ(E − Esurf) and q(E) =

Cw
?

Esurf − Eth
θ(E − Eth)θ(Esurf − E) , (3.20)

give the same results for fχ(E, t) (at the permille level) as soon as E is below Esurf by a
small fraction. In the following we use the latter accretion term for convenience.

Before looking at what gives the source terms of eq. (3.20), let us consider the case where
all the DM particles would have been trapped at the same given time, i.e. using a punctual
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Figure 8. Left: the time evolution of DM energy distribution for a punctual source term q(E)δ(t)
for several times t, fractions of the thermalization time tth. Right: same as the left panel, but using
a time-independent source term q(E).

source term in time q(E)δ(t) with q(E) any of the source terms in eq. (3.20). This case is
interesting because it gives the distribution fχ(E, t) which, up to a normalization factor is
proportional to the number of DM particles. This is nothing but the probability that a single
particle trapped at t = 0 with energy E = Esurf , ends up with an energy E at time t. The
results for this case are shown in the left panel of figure 8, where we show the evolution of
fχ(E, t) as a function of time, using the solution of eq. (3.18) given in appendix E. Because of
the large energy loss rate for large energies, the high energy tail of fχ(E, t) at a given time is
very steep and the time spent at those energies is short. For a given time t, the distribution
peaks around the energy ∼ E∗, given by the equation

t =

∫ E∗

Esurf

dE′

b2(E′)
. (3.21)

Note that for E∗ = Eth, t = t2 as we expect. Below E∗, the tail of the distribution behaves as
given by eq. (3.7), proportional to E′ for small values of E′. As times goes on, the distribution
is peaked at energies closer and closer to the thermal energy.

On the right panel of figure 8 we show the evolution of fχ(E, t) using the continuous
source term of eq. (3.20). We observe the same behavior at low energy: fχ(E, t) is propor-
tional to E and peaks at E∗. Above E∗ the distribution decreases as Cw

? /b2(E) ∝ E−3, the
time independent solution of equation eq. (3.18). From this distribution, one can deduce the
number of particles which have thermalized as the difference between the total number of
particles accreted N tot

χ and the number of those which are still cooling down:

N th
χ (t) = Cw

? × t−
∫ Esurf

Eth

f(E′, t)dE′. (3.22)

The left panel of figure 9 shows as a function of time, the fraction f = N th
χ /N

tot
χ of parti-

cles which have thermalized with respect to the total number of particles which have been
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Figure 9. Left: thermalized fraction f = N th
χ /N

tot
χ as a function of time for 1 GeV DM mass and

σχ−n = 10−45 cm2. The vertical lines correspond to the times t2 defined eq. (3.17) (dashed line), and
the discrete estimate from ref. [39] (dotted line). Right: evolution of number of DM particles within
a sphere of radius r. The several times ’t’ considered are fractions of the thermalization time tth.

gravitationally trapped. This fraction is given for a cross section σ0
χ = 10−45 cm2 and for

m0
χ = 1 GeV. Note that the result can be obtained from any other values of these 2 param-

eters by simply rescaling the time axis by the factor α =
σ0
χ

σχ

mχ
m0
χ

(1+γ0)2

(1+γ)2
, with γ = mχ/mn

and γ0 = m0
χ/mn. Obviously if one waits long enough this fraction tends to unity. Thus,

depending on the fraction of DM particles one requires to consider that DM has thermalized,
the thermalization time varies. For example, the time required to get a thermalized fraction
of 90% is 8 times larger than to get a thermalized fraction of 50%.

For comparison, in figure 9 we highlight with vertical lines the typical thermalization
time tth = t2 we got above in eq. (3.17), and the thermalization time obtained from a discrete
estimate of ref. [39]. These times differ by a factor 6 and the corresponding thermalized
fraction f obtained for these times are 54% and 17%, respectively.5

Conversely, from the rescaling relation above, one can compute for a given time t the
corresponding cross-section σχ−n required to yield a fraction f of thermalized DM particles.
The results for t = 1010 yrs are shown as a function of DM mass in figure 10. The solid, dotted,
dotted-dashed green lines correspond to values of f of 90%, 70% and 50%, respectively. The
areas under each of these lines correspond to the region of the parameter space where less
than f% of the DM particles have actually thermalized. The area for f = 90% is shaded in
green. In the same figure, we display for comparison the line defined in [39] as the frontier
between thermalized and not thermalized DM. This gives a cross section a factor of 6 and
38 smaller than the ones we get for 50% and 90% thermalized fraction. Below we will see
what are the fractions of thermalized DM which are relevant for deriving the bounds on the
parameters from the requirement of having no black hole formation. These percentages can
be quite low in some cases.

5Thus thermalization at the 90% level requires about 38 times more time than to get a thermalization at
the 17% level.
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Note that to determine thermalization times corresponding to given fractions of ther-
malized DM, as we just did, is instructive to give an idea of the time scale involved, but is
useless for all practical purposes. The fundamental physical quantity from which all relevant
constraints below can be obtained is the energy profile fχ(E, t) or equivalently the DM den-
sity profile ρχ(r, t) as a function of the distance from the center of the NS. The equivalence
between both profiles stems from the one-to-one correspondence between the kinetic energy
that the DM particle has when it crosses the center of the NS and the orbit it follows (as
long as we make the approximation of linear orbits as we do in this work).

To get ρχ(r, t) from fχ(E, t) we first use the correspondence between E and r0, the
radius of DM orbit, see eq. (3.3). There is a one to one correspondence between the energy
distribution fχ(E, t) and orbit-size distribution of the DM particles, which we denote as
gχ(r0, t),

fχ(E, t) =
dNχ(E, t)

dE
⇔ gχ(r0, t) =

dNχ(r0, t)

d r0
. (3.23)

Next, from gχ(r0, t), one can get the number of particles in a given sphere of radius r < R?,

Nχ(r, t) =

∫ R?

Rth

dr0 gχ(r0, t)τ(r, r0) +N th
χ (t)×

∫ r

0
nχ(r′) 4πr′2 dr′ , (3.24)

with τ(r, r0) the fraction of time spent within the radius r by a particle with orbital extent
r0. If r0 < r, the relation τ(r, r0) = 1 obviously holds, whereas, if r < r0 < R?, one
gets τ(r, r0) = 2/π arcsin (r/r0). The second term of eq. (3.24) corresponds to thermalized
particles which are distributed following nχ(r) (eq. (2.23)). In figure 9 we display Nχ(r, t) as
a function of r for the same times as the ones considered in figure 8. We see that the number
of particles increase with r, and flattens at a peculiar radius r∗0(t) which is the typical orbit
size of particles with energy E∗(t). For times t smaller than tth, the density increases up to
r∗0(t) which is larger than Rth. For times t larger than tth, r∗0(t) saturates to the radius Rth

(vertical line of the plot), below which Nχ(r) increases as r3. Finally the DM density ρχ(r, t)
is given by

ρχ(r, t) =
mχ

4πr2

∂Nχ

∂r
=

mχ

4πr2

∫ R?

r
dr0 gχ(r0, t)

∂τ

∂r
+N th

χ (t)× nχ(r) 4πr2 . (3.25)

One can show that the first term, which gives the contribution from those DM particles which
have still not thermalized, diverges as r tends to 0. This peaked density profile is actually not
physical, since it comes from the linear orbit approximation made here. To be more realistic,
the central density should be averaged within a sphere of typical radius, the mean ellipticity
of the bulk of DM particles at time t.6

4 Constraints on DM from black hole formation

For a flux of DM particles scattering off NS matter, we have so far determined the number of
DM particles accreted, their energy density profiles, and the related number of DM particles

6In practice however this has no effect on the bounds we will get below on the number of particles accreted,
or equivalently on the cross section, from the requirement of no black hole formation. This is due to the fact
that these bounds are set to a very good approximation by the particles which have thermalized, and not by
the ones which have still not thermalized.
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which have thermalized. Eventually DM particles accumulate so much towards the center
of the NS that the resulting DM core contracts to a black hole (BH) through gravo-thermal
processes. This will be the case when the system becomes self gravitating and satisfies
Chandrasekhar criteria. The formed black hole can eventually consume the neutron star,
thus destroying it. With the mere observation of neutron stars (i.e. they are not destroyed
due to DM) in various DM backgrounds we can place stringent constraints on DM elastic cross
section, assuming DM is asymmetric. On the basis of the results obtained in the previous
sections, in this section we re-evaluate constraints on DM-neutron elastic cross section. We
will also determine the constraints which hold on the DM-proton and DM-muon elastic cross
sections.

4.1 Gravitational collapse: Chandrasekhar limit and self gravitation

As abundantly discussed in the literature, a black hole can form provided the DM core
contains large enough number of DM particles [5, 8, 10, 11, 13–15, 40]. As already discussed
above, the DM particles which have thermalized form a core of radius Rth given by eq. (3.16),
as a result of the balance between the gravitational energy, −4πR2

thρBmχ/3 and the thermal
energy, 3

2kBT . In this core, we assume that particles are uniformly distributed and non-
interacting, the kinetic energy of order T , which means that they are highly non-relativistic
(unless the mass is tiny, below T ∼ eV ). The first condition to have gravitational collapse is
that this stable thermal radius configuration resulting from the balance between the “thermal
pressure” and the gravitational potential induced by the baryons is destabilized. This will
be the case if DM particles begin to self-gravitate. The self gravitation condition is ρχ & ρb,
which means

GNm2
χ

R
&

4π

3
GρbmχR

2 . (4.1)

If DM thermalizes with NS matter, the above equation can be re-written as

Nχmχ

4/3πR3
th

& ρb, (4.2)

Inserting the expression for thermal radius eq. (3.16) we get

N self ' 4.8× 1041

(
100 GeV

mχ

)5/2( TNS

105 K

)3/2

. (4.3)

If this condition is satisfied, the “thermal pressure” cannot counteract the effect of self-
gravitation because the self-gravitation potential in 1/R varies faster with respect to R than
the energy associated with the thermal pressure, and with the gravity induced by baryons.
From this time, as R decreases, DM is more and more confined and as a result of the Heisen-
berg uncertainty principle DM momentum increases. For a bosonic DM particle confined
within a radius R, the momentum simply goes as 1/R. Thus as long as the DM particle
remains non-relativistic the total energy of a bosonic DM particle is

Etot ∼ −
GNm2

χ

R
+

1

2mR2
, (4.4)

where the last term is the kinetic energy, Ekin ∼ p2/2mχ. This configuration has a stable
minimum for

R ∼ 1

GNm3
χ

, (4.5)
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so that it does not lead the system towards R = 0. However, if N is large enough, the
minimum with respect to R is so small that DM particles do not remain non-relativistic
anymore, in this case the total energy per particle is

Etot ∼ −
GNm2

χ

R
+

1

R
. (4.6)

The latter has no stable minimum for a finite value of R but, provided the first term dominates
over the second one, it has a singular minimum at R = 0.7 This condition that the first
term dominates over the second one is nothing but the Chandrasekhar condition, which is
satisfied if

N ch
bosons ' 1.5× 1034

(
100 GeV

mχ

)2

. (4.7)

Thus there is black hole formation if the number of thermalized particles is larger than
Max(Nself ,Nch). As well known, comparing both numbers, one observes that in the bosonic
case, if the self gravitation condition is satisfied, the Chandrasekhar condition is satisfied,
unless the DM mass is huge, above ∼ 1017 GeV(TNS/105 K)3 [10].

As well known too, for fermions, to satisfy the Chandrasekhar condition requires many
more particles, as a result of the Pauli exclusion principle which implies that inside the
DM core the fermions are confined within a distance ∼ R/N1/3. This, for relativistic
fermions, gives

Etot ∼ −
GNm2

χ

R
+

(
N

gf

)1/3 1

R
, (4.8)

where gf is the number of relativistic degrees of freedom, leading to a minimum at R = 0 if
the number of fermions is larger than

N ch
fermions ' 1.8× 1051g

−1/2
f

(
100 GeV

mχ

)3

. (4.9)

Thus for fermions the Chandrasekhar condition is more demanding than the self-gravitation
one.

Note that in the above, to set the conditions for black hole formation, we have taken
into account only those DM particles which have thermalized. For situations where only
a small fraction of DM has thermalized, one could wonder if all the particles which have
still not thermalized change this condition. It can be checked that the effect on the bounds
on DM cross section we will find below is small (because once the thermalized core begins
to self-gravitate and collapses, the non-thermalized particles will still not self-gravitate and
thus will not collapse as fast). Thus, to determine the black hole formation constraint, the
shape of DM profile beyond the thermal radius doesn’t enter into play. But we need to know
what is the percentage of accreted DM which has thermalized at a given time, information
which requires us to calculate the time evolution of the energy profile, as done above (see
previous section).

7In practice one can check that, for N as large as the one needed to satisfy the self-gravitation criteria,
when the Heisenberg uncertainty principle becomes saturated, the minimum, eq. (4.5), lies in a value of R
so small that at this radius the particle is already relativistic. Thus the particle becomes relativistic before
reaching this non-relativistic minimum and there is not much of a period where eq. (4.4) applies.
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4.2 Bose-Einstein condensation

For extremely large densities, and small temperatures, a gas of bosons can form a Bose-
Einstein condensate (BEC), stemming from the fact that, for zero temperature, a Bose gas has
a fundamental energy state whose energy vanishes [41]. A BEC will form if the temperature
of the gas (with gs degrees of freedom) is below the critical temperature Tc

Tc =
2π

mχ

(
N/V

gs ζ(3/2)

)2/3

. (4.10)

This will be the case if N is large enough. In this case, assuming a non-interacting system
in a 3D box [8, 10], the number of particles in the ground state and the radius of the BEC
can be estimated to the values

N0
χ = Nχ

[
1−

(
T

Tc

)3/2
]
, rBEC =

(
3

8πGρbm2
χ

)1/4

. (4.11)

The last quantity is obtained equating the kinetic energy p2/2mχ (non-relativistic in this
case) with the gravitational energy, 4πGρbr

2
BECmχ/3. In eq. (4.11), Nχ is the number of DM

particles which have thermalized. Thus the critical number of DM particles for a BEC to
form a black hole is

NBEC ' N ch
bosons + gs 1036

(
TNS

105 K

)3

, (4.12)

where N ch
bosons is given by eq. (4.7). So far we didn’t incorporate the fact that the DM

gas is not a non-interacting system but experiences the gravitational potential of NS. For a
potential of the form V (r) = 2π/3Gρbmχr

2, it was noted in [42] that the number of particles
in ground state and the critical temperature for BEC formation are modified

N0
χ = Nχ

[
1−

(
T

Tc

)3
]

with: Tc =

(
N

π3gsζ(3)

)1/3 (π
3
Gρb

)1/2
. (4.13)

Next these expressions are modified further by considering a GR background, as discussed
in [43], with the prescription ρb → ρb+3Pb. For the benchmark NS model A we have ρb(0) =
4.31×10−3 GeV4 and P (0) = 7.51×10−4 GeV4, respectively. We obtain the following estimate
for the number of accreted DM particles above which a BEC collapses into a black hole8

NBEC ' 1.5× 1034

(
100 GeV

mχ

)2

+ 3.07× 1035gs

(
TNS

105 K

)3

. (4.14)

4.3 Black hole mass and evaporation

Once the black holes are formed they can continuously consume the neutron star, thus
destroying it. However, if the formed black hole evaporates before the ’consumption’, the
neutron star can still survive, and BH constraints are alleviated.

8Note that the scalar or vector interactions at the origin of the capture processes, eqs. (2.1) and (2.3), also
induce a tiny DM self-interaction, which is attractive for the scalar case and repulsive for the vector case.
This self-interaction modifies eq. (4.14) (see e.g. [3, 13–15, 44]). Attractive self interactions will strengthen
this constraint whereas repulsive interactions will weaken it. A careful determination of the dynamics of
the associated scalar condensate formation (and collapse into a black hole) would help in understanding how
important are the corresponding effects.
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To take into account this effect we begin the discussion by noting that the initial black
hole mass is proportional to the number of self gravitating DM particles times DM mass,
MBH ∼ mχ Max(Nself

χ ,Nch
χ ). In this work we assume that the time evolution of BH mass is

governed by the following differential equation [8, 10, 13]

dMBH

dt
=

dMBH

dt
|NS +

dMBH

dt
|DM +

dMBH

dt
|Hawking. (4.15)

The various terms on the r.h.s. of the above equation are:

• BH accretion of NS matter: the first term above captures the effect of NS matter
accreting onto the BH. Assuming that matter falls into BH isotropically, the BH gains
mass through Bondi-Hoyle accretion process [45, 46]. However it is well known that
most neutron stars have large angular momentum, and hence the in-falling matter
could carry angular momentum, invalidating the constraints. This has been addressed
in [16] which concluded that one recovers conditions for Bondi accretion if the effect
of viscosity of nuclear matter in the core is considered. Thus the BH accretion of NS
matter for a static spherically symmetric BH is given by [47]

dMBH

dt

∣∣
NS

=
4πλρbG

2

c3
s

M2
BH, (4.16)

with cs = 0.33c and λ = 0.25 [10], respectively.

• BH accretion of DM: the second term in eq. 4.15 is DM accretion rate onto the BH. For
the case of bosonic DM (without BEC formation) and fermionic DM, assuming that
DM is collisionless, the accretion is spherical, and the rate is given by [47]

dMBH

dt

∣∣
DM

= 4π

(
2GMBH

vχ

)2

mχnχvχ. (4.17)

For bosonic DM with BEC formation the right hand side is equal to the capture rate
times mass. Once a BEC is formed all new particles that are captured go to the ground
state [10, 40].

• Hawking Evaporation: the last term in eq. (4.15) is the rate at which BH loses masses
through hawking evaporation

dMBH

dt
|Hawking = − 1

15360πG2M2
BH

. (4.18)

From the above one finds that the black hole formed does evaporate when

mχ & 3× 106 GeV for bosons with no− BEC (4.19)

mχ & 16 GeV for bosons with BEC (4.20)

mχ & 1010 GeV for fermions. (4.21)

It is not impossible that these bounds may be slightly relaxed from the fact that when the
BH evaporates there might be also at this stage a Fermi sea suppression effect at work [48],
a possibility we will not look at.
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4.4 Exclusion curves for old neutron stars

In this section we present the black hole formation exclusion curves we find for the DM-target
(neutron, proton and muon) elastic scattering cross section as a function of DM mass, for
bosonic as well as for fermionic DM. These curves depend on mainly three astrophysical
parameters, the age of the NS (τ?), the local DM density (ρχ), and the NS temperature
(T?). We start by discussing the values of these three inputs applying to the neutron stars
which have been observed so far, and subsequently will mention possibilities of future obser-
vations of neutron stars in extreme DM density environment which can lead to more stringent
constraints.

NS observation as of today. In our galaxy numerous pulsars with age of order several
billions of years have been observed [49]. Thus for the exclusion plots we will consider the
reference value τ? = 10 Gyrs. Note that the uncertainties on the slowing process (technically
on the braking index) and corrections due to secular motion affect the precise determination
of NS age, however to adopt such a reference value is still reliable. Most of these identified
pulsars are located in our local neighborhood (within 1 kpc from Earth), for which the DM
matter density corresponds to ρχ = 0.3 GeV/cm3.9 For what concerns the NS temperature,
a NS is thought to have formed as one of the possible end points of supernovae explosions,
with temperatures ∼ 1011 K at birth. It is well known that NS surface temperature rapidly
cools down to temperatures below 106 K within 105 yrs, via neutrino emission through direct
Urca process [51, 52]. For neutron stars with ages larger than 105 yrs the cooling is mostly
driven by photon emission from the surface and other sub-dominant processes. Numerous old
pulsars have been detected through their radio emission. However, measurement of thermal
spectra is challenging, hence there are uncertainties in the deduced surface temperature. For
the exclusion plots we will consider a uniform radial temperature profile and the reference
value T = 105 K.

For illustrative purposes, let us consider the examples of two old pulsars which have been
observed nearby and for which thermal emission have been measured with small uncertainties:
PSR J0437-4715 and PSR J2124-3358. These have a spin down age of τ? = 6.64×109 yrs and
τ? = 1.07×1010 yrs (corrected for the secular motion) [49] and lies at a distance equal to 139 pc
and 270 pc from Earth, respectively [53]. For PSR J0437-4715 the surface temperature T surf

?

is within 1.25−3.5×105 K [53, 54], whereas for PSR J2124-3358 T surf
? < 4.6×105 K. According

to a simple non-magnetic iron atmospheric model [55], one obtains an inner temperature of
T? = 2.1 × 106 K for PSR J0437-4715 and T? < 2.5 × 107 K for PSR J2124-3358. Note that
pulsars close to the galactic center have been observed, such as J1745-2900, which is located
0.1 pc from the galactic center. This is interesting because they experience a much denser
DM environment, ρχ ∼ 102 GeV/cm3 (assuming a NFW DM halo profile). However, its age
is much shorter, only ∼ 3.4 kyr for this pulsar according to [49]. Computing DM constraints
with this pulsar leads to less stringent constraints, as the increase in the local DM density
does not compensate for its younger age.

Prospects for future NS observations. In the future no better constraints are ex-
pected from the observation of even older NS since the age we consider is already close to
the age of the Universe. However it is possible that the limits improve largely from the

9Dependence on halo velocity profile is also relevant. We consider the standard Maxwellian velocity profile
in the galactic rest frame. Using a more realistic profile derived from N-body simulations can lead to a
difference of up to ∼ 20% in the DM accretion rate with respect to the standard Maxwellian, similar to the
case of DM accretion in the Sun [50].

– 28 –



J
C
A
P
0
5
(
2
0
1
9
)
0
3
5

observation of neutron stars experiencing larger DM local densities. In the exclusion plots
we will also present our results for large DM densities, equal to ρχ = 103 GeV/cm3 and
ρχ = 106 GeV/cm3. The latter value is quoted only for the purpose of a hypothetical far
future or experimental breakthrough. The former value, instead, could perhaps be relevant in
a not too far future. Actually, millisecond pulsars (MSPs), which are believed to be old recy-
cled pulsars, have already been discovered in DM rich environment like globular clusters [56]
(where ρχ ∼ 103 GeV/cm3 [8, 23]), with properties still under debate.

Different choices of values for ρχ and τ? imply a direct rescaling of the constraints
(see below). A change of temperature, instead, implies a more complicated rescaling. Such
a change does not only affect the accretion and evaporation rates (relevant for small DM
masses, see section 2), but also the conditions for self gravitation and more importantly on
the condition for BEC formation, see eqs. (4.3) and (4.14), respectively. As for the local DM
density we assume that it has not changed significantly during the evolution of NS.10

The black hole formation exclusion contours we get for these input values are presented
for bosonic DM in figure 10 (for neutrons), figure 11 (for protons), and figure 12 (for muons).
In all these figures, the case without BEC formation are shown in the left panels and the
case with BEC formation are shown in the right panels. The corresponding exclusion curves
for fermionic DM is presented in figure 13.

4.4.1 Scattering off neutrons (figure 10)

The dark red region in figure 10 gives the excluded region for local density equal to the
one expected in the solar system, ρχ = 0.3 GeV/cm3. The mild-red region is for DM density
ρχ = 103 GeV/cm3 and the light-red region is for an extreme DM density ρχ = 106 GeV/cm3.
We also show the exclusion curve obtained using estimation of DM capture rate in ref. [10]
(thin dashed black line) applied to NS model A (ρχ = 106 GeV/cm3). The hatched area
correspond to regions where the formed BH evaporates before the destruction of NS, hence
constraints do not hold in those regions. We also present in these figures the parameter
space regions where DM does not thermalize with NS medium, these are shaded in green.
The dotted, dashed and solid green curves correspond to the cases where 50%, 70% and 90% of
DM particles have thermalized, respectively. For comparison we also show the thermalization
curve from [39] (thick dashed black line, deep in the green shaded region), obtained by
calculating a characteristic thermalization time (see above).

First let us consider the case where the possibility of BEC formation is not taken into
account (left panel). For mχ > 1 GeV there is no effect of the Fermi sea. For these masses
and as long as mχ . 106 GeV, the effect of BH evaporation is negligible, and the number of
DM particles accreted from the halo is Cw

? τ?. Using eqs. (4.3) and (2.11) one can read off
from the plot the following upper limit on the cross section:

σχ−n < 2.2× 10−47 cm2

(
0.3 GeV/cm3

ρ

)(
1010 years

t?

)(
104 GeV

mχ

)3/2(
T?

105 K

)3/2

. (4.22)

For mχ < 1 GeV the effect of Pauli blocking becomes important as the phase space for
scattering is greatly reduced (see section 2). As noted already, BH formation in this case is
governed by the self gravitation condition of eq. (4.3). For masses smaller than∼ 100 MeV, for

10In presenting the exclusion curves we have assumed that the NS does not inherit DM particles accreted
by its progenitor. Inclusion of the stellar history of progenitor can at most double the number of DM particles
in NS, according to ref. [8].
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Figure 10. Exclusion plots for bosonic ADM scattering off neutrons: left panel (gravitational collapse
condition applied to the thermalized DM core and Right panel (gravitational collapse condition applied
to the BEC): in the shaded red regions accumulated DM forms a BH thus constraining the parameter
space. We present exclusion curves for ρχ = 0.3 GeV/cm3 (dark red regions), ρχ = 103 GeV/cm3

(mild red regions) and ρχ = 106 GeV/cm3 (light red regions). The black dashed contour along the
light red regions are the exclusion limits we obtain using the δp/pf approximation of [10]. In the green
shaded regions DM does not thermalize with neutrons. The solid, dotted, dotted-dashed green lines
correspond to thermalization of the DM particles at the level of 90%, 70% and 50% respectively. The
black dashed contour within the green shaded region are those obtained from [39]. In the hatched
regions the formed BH evaporates before destroying NS, hence constraints are relaxed. The latest
Xenon1t constraint on DM-neutron cross sections [57] is shown in purple shaded region. For right
panel only: the solid red contours deep in the “No thermalization” region is our result for the exclusion
curve using eq. (3.24), whereas the dashed red line is obtained still assuming that 100% of DM has
thermalized, even though this doesn’t make any sense in this “No thermalization” region.

a given cross section, DM accretion is inefficient and can never accrete enough DM particles
such that they self gravitate. For mass below 200 MeV we do not find any constraint on the
cross section because for such masses even a cross section of the order of the geometric one
doesn’t lead to black hole formation. For the range 200 MeV . mχ . 1 GeV, and when the
cross section is smaller than the geometric cross section, we find the upper limit to be

σχ−n < 5.94×10−47 cm2

(
106 GeV/cm3

ρ

)(
1010 years

t?

)(
0.5 GeV

mχ

)5/2( T?
105 K

)3/2

. (4.23)

This limit is a factor 1 to 8 times smaller than in previous studies (compare the red curve
with thin dashed black curve). These differences mainly stem from the improved evaluation
of the capture rate. For mχ & 106 GeV, the efficiency of capture decreases due to velocity
suppression [10] and scales as ∝ m−2

χ . Hence the change of slope around those masses. More
importantly, for such masses, Hawking evaporation of BH dominates and the formed BHs
are efficiently evaporated away, thus constraints from BH formation are relaxed (hatched
regions).

Next, let us consider the case when the BEC formation is taken into account (right panel
of figure 10). As argued above, in this case the conditions for BH formation becomes more
stringent. This is visible from comparing the left and right panels of figure 10. As a result,
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regions where there is no thermalization (or little level of thermalization) now touch the
regions excluded by the requirement of no black hole formation. As discussed above, in the
literature the “no thermalization” region (delimited by the dashed black line [39] in figure 10)
is obtained from calculating a “typical” thermalization time (see above). Beyond (before)
this time 100% of the accreted DM is supposed to have (have not) thermalized. Thus in the
thermalized region obtained in this way, the BEC black hole condition is obtained considering
a BEC stemming from this fully thermalized DM population (i.e. Nχ in eq. (4.13) is the total
number of DM particles accreted by the NS). In the no thermalization region instead, it is
either said that the BEC black hole condition should relax (implying implicitly that all of the
no thermalization region is not excluded by any black hole formation), or still an excluded
region is obtained by assuming a BEC stemming from a fully thermalized DM population,
even though one knows one lies in the no thermalization region. This latter condition,
which makes no sense, gives the red dashed line in figure 10). Here instead, knowing from
eq. (3.22) the number of DM particles which have actually thermalized at all time, N th

χ , we
can determine the number of DM particles there are in the BEC at all times, and compare at
all times this number with the number of DM particles one needs in the BEC to form a black
hole, eq. (4.14). This allows us to derive robust black hole formation exclusion regions, given
by the solid red curve, especially in the region where only a small fraction of the accreted DM
particles have thermalized. We find that this discussion turns out to be in fact irrelevant for a
DM density of the order of the one in our vicinity, ρχ = 0.3 GeV/cm3, because in this case the
exclusion curves lie in the region where the level of thermalization is high. But this discussion
is fully relevant for larger DM densities, for example within the 100 MeV . mχ . 1 TeV mass
range for ρχ = 103 GeV/cm3. For this case figure 10 shows that the level of thermalization
from which the black hole forms may largely vary. For example for mχ = 10 GeV this level is
as low as 25 % whereas for other masses it is higher. For the extreme case ρχ = 106 GeV/cm3

and same DM mass the level is as low as 0.9%.
The cross sections probed are much smaller than the ones probed by direct detection

experiments. For example, for mχ = 1 GeV we find that no black hole formation requires
σχ−n < 2× 10−54 cm2 in environments very close to the galactic center (ρχ = 106 GeV/cm3)
and σχ−n < 1× 10−52 cm2 for ρχ = 103 GeV/cm3, respectively. Our results give constraints
on σχ−n which may differ from previous constraints, by up to ∼ 2− 3 orders of magnitudes,
especially in the region where only a little proportion of the accreted DM particles has
thermalized.

As already noted in the literature, with BEC formation, the requirement of no black
hole formation constrains σχ−n in ADM models with DM mass down to ∼ 2 keV. Here we
find that it does it down to ∼ 6 keV (for ρχ = 106 GeV/cm3), whereas for ρχ = 103 GeV/cm3

and ρχ = 0.3 GeV/cm3 it does it down to 100 keV and 7 MeV respectively.
Note that the exclusion curve scales as m−2

χ in regions where DM largely thermalizes
with NS matter, for mχ . 0.1 GeV. This scaling is due to the fact that DM accretion rate
is independent of mχ and the BEC condition (eq. (4.14)) is driven by the term ∝ m−2

χ .
Empirically we find the following limit on the cross section

σχ−n < 1.6× 10−47 cm2

(
0.3 GeV/cm3

ρ

)(
1010 years

t?

)(
0.1 GeV

mχ

)2

. (4.24)

The constraints derived here are factor ∼ 8 smaller than those derived in previous
studies for mχ . 0.1 GeV. For masses larger than ∼ 10 − 15 GeV, there are no constraints
due to evaporation of the formed black holes. Finally note that in appendix F we combine
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Figure 11. Exclusion plots for bosonic DM scattering off protons: same as figure 10 for DM scattering
off protons.

into a single plot the constraints of both panels of figure 10, i.e. black hole formation
constraints from the BEC below 15 GeV and black hole formation constraints from the DM
thermal core above 15 GeV. In this appendix we also show these plots for temperature equal
to 106 K rather than 105 K.

4.4.2 Scattering off protons (figure 11)

Assuming that DM scatter off protons of the NS one can also get constraints on the DM-
proton cross section, given in figure 11. The most important difference with respect to
neutrons is that there are far fewer protons than neutrons, but with similar chemical poten-
tials. Thus, quantitatively the accretion rate and the resulting exclusion curves are simply
rescaled by the number density of protons. For NS model A, the averaged fraction of free
protons that DM can scatter off is approximately 2.7% of the total number of baryons and
the chemical potential is smaller than that of neutrons by factor 2 (see appendix A for a
discussion about NS profiles). Another point to note is that the geometric cross section per
proton is larger than that of neutrons by factor ∼ 35. Thus the saturation cross section is
35 times the critical geometric cross section for neutrons.

For the case without BEC formation, for mχ > 1GeV we find the following upper limit
on the cross section

σχ−p < 1.1× 10−45 cm2

(
0.3 GeV/cm3

ρ

)(
1010 years

t?

)(
104 GeV

mχ

)3/2(
T?

105 K

)3/2

. (4.25)

For mχ < 1 GeV, the impact of the Fermi sea suppression is large, similar to the case
of neutrons. Here, we find the following upper limit on the cross section

σχ−p < 1.0× 10−45 cm2

(
106 GeV/cm3

ρ

)(
1010 years

t?

)(
0.5 GeV

mχ

)5/2( T?
105 K

)3/2

. (4.26)

For the case where BEC formation is taken into account (note that the BEC condition
(eq. (4.14)) is independent of the target particle), the exclusion plot differ from that of
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neutrons only due to quantitative changes in the capture and thermalization rates. Again
using the refined treatment of thermalization we can robustly estimate the bounds even in
regions where DM does not thermalize. Here we require N th < NBEC (solid red curves). For
mχ < 0.1 GeV we obtain the following limit

σχ−p < 1.8× 10−46 cm2

(
0.3 GeV/cm3

ρ

)(
1010 years

t?

)(
0.1 GeV

mχ

)2

. (4.27)

For DM scattering off protons (for the BEC case) we exclude DM masses down to 2 keV.
Clearly NS probe a large region of the parameter space much better than direct detection
experiments, similar to the case of neutrons. Note nevertheless that these constraints on
σχ−p are interesting only if one assume a large violation of isospin symmetry. If we assume
that, as expected, isospin is a good symmetry, these limits on σχ−p are largely superseded by
the constraints on σχ−n of figure 10 (except for mχ of order a few keV). Note also that the
constraints on σχ−p we plot in figure 11 from direct detection (purple region) are assuming
isospin symmetry.

4.4.3 Scattering off muons (figure 12)

The possibility of the existence of muons in a NS was realized soon after the discovery
of the first pulsars. When the Fermi momentum of electrons exceeds the muon mass, it
becomes energetically favorable for electrons at the edge of the Fermi sphere to be converted
to muons, through thermal fluctuations [58]. However, the existence of muons in NS have
not been exploited to constrain properties of DM. Here we present the exclusion limits for
DM−µ elastic scattering cross section from observation of old NS for the first time. For a
discussion about the NS profile, equation of state and muon content, see appendix A. Note
that in, for instance, “quarkophobic” DM models, these constraints would be basically the
only relevant ones.

In the upper panel of figure 12 we show the capture rate we obtain for DM scattering on
muons, similar to figure 1 for the neutron case. Similar to protons and neutrons, muons are
also non-relativistic in NS (µF = 0.018 GeV for model A). Thus the formalism of capture and
thermalization remains the same with few quantitative changes. There are 3 main differences:
the mass, the number density or fraction of muons and finally the value of the chemical
potential. For the NS model A, the average number of free muons that DM can scatter
off is approximately 1.16% of the total number of baryons. Thus the geometric saturation
cross section for muons can be estimated by rescaling the neutron critical cross section with
the muon fraction. This yields the critical cross section for muons to be 4.9 × 10−43 cm2,
which is a factor 80 larger than the neutron critical cross section, similar to that of protons.
When below the critical cross section, the DM accretion rate for scattering off muons peaks
at the muon mass (whereas for neutrons it peaks around the neutron mass, see above), and,
for large masses, velocity suppression becomes relevant for mχ & 105 GeV (for neutrons
mχ & 106 GeV). Note also that for muons and mχ . mµ, the result we get from the δp/p
approximation are a factor 40 larger than the results we obtain.

In the lower panels of figure 12 we show the exclusion plots for the muon case, similar
to figure 10 for the neutron case. For the case without BEC formation (left panel) we
obtain the following limit on the cross section for mχ & 0.1 GeV (note the change of slope at
mχ ∼ 105 GeV)

σχ−µ < 1.3× 10−45 cm2

(
0.3 GeV/cm3

ρ

)(
1010 years

t?

)(
106 GeV

mχ

)3/2(
T?

105 K

)3/2

. (4.28)
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Figure 12. Upper panel : capture rate for DM scattering off muons: same legend as figure 1. Lower
panels: exclusion plot for bosonic DM scattering off muons: same legend as figure 10.

For mχ . 0.1 GeV, similar to the other cases, the best constraints are obtained for NS in
large DM density environments, we get

σχ−µ < 8.6× 10−45 cm2

(
106 GeV/cm3

ρ

)(
1010 years

t?

)(
0.1 GeV

mχ

)5/2( T?
105 K

)3/2

. (4.29)

For the case with BEC formation (right panel), NS can probe DM masses down to 6 keV (for
ρχ ∼ 106 GeV/cm3). For neutron stars in our local neighborhood we obtain the upper limit
for mχ . 0.1 GeV

σχ−µ < 1.6× 10−46 cm2

(
0.3 GeV/cm3

ρ

)(
1010 years

t?

)(
0.1 GeV

mχ

)2

. (4.30)

In appendix F we present the plot combining the constraints from both panels of figure 12,
as well as the results for T = 106 K rather than T = 105 K.
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4.4.4 Fermion DM scattering off NS matter

Similar to the case of bosonic DM we can obtain exclusion curves for fermionic DM scattering
off NS matter. However, it is well known that the constraints in this case are much weaker
than that of the bosonic case due to Pauli exclusion principle. Parametric dependence of
the critical number of particles on DM mass is different than that of bosons and scales
∝ m−3

χ , as given by eq. (4.9). In this case, Chandrasekhar limit (eq. (4.9)) is more stringent
than self-gravitation condition (eq. (4.3)) for all DM masses considered here. As we do not
consider DM self interactions we do not consider various subtleties that might arise from self
interactions. Another point to note is that Hawking evaporation of the formed black holes is
only relevant for DM masses above 1010 GeV, for the fermion DM case (see above).

The exclusion plots for fermion DM scattering off neutrons (upper panel), protons (lower
left panel), and muons (lower right panel) are shown in figure 13, respectively. The color
code is the same as in figure 10. Again, similar to the previous cases, the best constraints
are obtained when NS in extreme DM density environments are considered.

For neutrons we find the following limit on the cross section (when below the geometric
limit) for mχ < 106 GeV,

σχ−n < 2.2× 10−47 cm2

(
106 GeV/cm3

ρ

)(
1010years

t?

)(
105 GeV

mχ

)2

, (4.31)

and for mχ > 106 GeV

σχ−n < 5.4× 10−46 cm2

(
0.3 GeV/cm3

ρ

)(
1010years

t?

)(
109 GeV

mχ

)
. (4.32)

For DM scattering off protons we find the following limit (for mχ < 106 GeV)

σχ−p < 1.0× 10−45 cm2

(
106 GeV/cm3

ρ

)(
1010years

t?

)(
105 GeV

mχ

)2

, (4.33)

and for mχ > 106 GeV

σχ−n < 2.2× 10−44 cm2

(
0.3 GeV/cm3

ρ

)(
1010years

t?

)(
107 GeV

mχ

)
. (4.34)

For DM scattering off muons we have

σχ−µ < 1.5× 10−43 cm2

(
106 GeV/cm3

ρ

)(
1010years

t?

)(
1.3× 109 GeV

mχ

)
, (4.35)

and for mχ < 105 GeV

σχ−µ < 1.7× 10−45 cm2

(
0.3 GeV/cm3

ρ

)(
1010years

t?

)(
105 GeV

mχ

)
. (4.36)
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Figure 13. Exclusion plot for fermionic DM scattering off neutrons, protons and muons: color code
is the same as figure 10, for fermion DM scattering off neutrons (upper panel), protons (lower left
panel) and muons (lower right panel).

5 Summary and discussion

It is well known that neutron stars, from their high density, low temperature and oldness,
provide stringent constraints on the cross section between (asymmetric) Dark Matter (DM)
particle and neutrons. Multiple steps are involved in obtaining these constraints: gravita-
tional trapping of DM particles that intercept the neutron star; orbital trajectories these
particles subsequently follow outside and inside the NS; formation of a thermalized DM core
with or without the formation of a Bose-Einstein condensate; collapse of the DM core (or of
the central BEC part of the core) into a black hole when DM starts to self-gravitate (with
or without subsequent evaporation of the black hole). In this context we have improved and
refined several steps, and determined new constraints on DM elastic scattering cross section
with SM particles which were not considered before.

In computing the capture rate, instead of considering a uniform NS, we have considered
a realistic Equation of State (EOS) for the neutron star called BSK [33], with characteristic
radial distributions for number densities and chemical potentials of neutrons, protons and
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muons. We have considered one representative benchmark model BSK20-1 throughout the
text. We also determine and compare how the results vary when one considers a different
EOS in appendix A.

For DM accretion and for DM thermalization with neutron star medium, we perform a
thorough calculation considering the fact that neutrons form a highly degenerate medium in
the neutron star. This had been done for the thermalization process [39] but not in computing
the number of accreted DM particles. We do it in a consistent way for both the accretion
and the thermalization processes, going beyond some of the approximations made in [39].

For the accretion rate, section 2, we discuss the effect of Fermi degenerate medium in
detail and derive analytical expression (in appendix C) for the differential scattering rate for
DM scattering off non-relativistic particles, such as neutrons (protons and muons). We have
also taken into account the fact that the temperature of the NS is non-vanishing (∼ 10 eV).
This induces two effects, which were not considered before, and turns out to be crucial for
small DM mass, i.e. for mχ below ∼ keV: saturation of the Pauli blocking suppression and
evaporation of DM from scattering off neutrons. Numerically, for such masses these effects are
huge. For larger masses and up to ∼ 0.1 GeV we find that the suppression due to the Fermi
sea is very large for the accretion rate, and is about 6–8 times lower than the estimate in [10].

For the thermalization process, section 3, instead of computing a typical thermalization
time and assuming that after (before) this time all particles have (have not) thermalized,
we compute the evolution of the energy density profile, or equivalently (in the linear orbit
approximation) the radial DM number density profile. Beyond the fact that the knowledge
of these profiles is in principle relevant for any phenomenological study of DM properties in a
NS, this allows us to determine at any time the number of DM particles which have already,
or have not still, thermalized. This information is the one needed for deriving more reliable
constraints due to black hole formation, and allows to set such constraints also when the
level of thermalization is low. To determine these profiles we take into account the fact that
a DM particle has a varying velocity along its orbit, in the linear orbit approximation. To go
beyond the linear orbit approximation would certainly be quite interesting, but it basically
requires simulations which we leave for future work.

With all the ingredients in hand, in section 4 we present exclusion curves in the cross
section vs mass plane for ADM scattering off non-relativistic neutrons, see figure 10 for the
bosonic DM case with and without formation of BEC and figure 13 for the case of fermionic
DM, respectively. Depending on the value of the parameters (particularly DM densities)
considered, the black hole constraints we obtain may differ from previous estimates by factors
of order unity or by orders of magnitudes.

For fermionic DM, as well as for bosonic DM with no BEC formation, the upper bounds
we find on the elastic cross section on neutron are similar to the ones of [10]. The upper
bounds may differ by up to a factor 3–4. For bosonic DM with no BEC formation we find
that our upper bounds are always obtained for cases where the level of thermalization is very
close to 100%. For the bosonic case where we do take into account the fact that a BEC can
form, the constraints are more stringent. For a DM local density similar to the one of the
solar system, ρχ = 0.3 GeV/cm3, the upper bounds may differ again by factors of order 3–4.
For larger DM density, the results differ by orders of magnitudes, due to the fact that in this
case the gravitational collapse may occur when the level of thermalization is still low. For
instance for ρχ = 106 GeV/cm3 the results differ by up to 2–3 orders of magnitudes, precisely
where the black hole constraints are the most stringent.
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Beyond the bounds on the elastic cross section off neutrons, we have also determined
the amount of DM accreted from scattering with protons and with muons. The proton
case is of limited interest as it gives less stringent bounds than the neutron case (except for
mχ of order few keV), hence these proton bounds are irrelevant, unless one assumes that
isospin symmetry is largely violated. We stress, however, that there are many muons in a
neutron star, and that consequently quite interesting bounds can be obtained on the elastic
cross section between the DM and muons. These bounds, which we give in figures 12 and
figure 13, could be the best one can get in many models, in particular in leptophilic models.
As for the bounds on the cross section with electrons, we leave their determination for future
work. Electron in a neutron star are to a large extent relativistic and thus, unlike the other
components, cannot be considered in the non-relativistic formalism we have considered here.
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A Uncertainties from neutron star equations of states

As mentioned in the introduction, the capture rate depends on the properties of NS. Its
precise computation does not only depend on the NS mass and radius, but also on the radial
profile of the number density and chemical potential of the target material considered. For a
realistic estimation of the capture rate, we have used four NS benchmark profiles. These four
models stem from two different equations of state (EOS) called BSK20 and BSK21, described
in refs. [33, 59]. All regions of the star are treated in a unified and consistent way using the
nuclear energy density functional theory. The functionals underlying these two EOS were
fitted to microscopic neutron matter EOS that differ in their degree of stiffness [59]. For each
EOS we consider two extreme profiles corresponding to low and high “mass configuration” of
NS (see the corresponding radius and mass values in table 2). Hence the four cases: BSK20-1
(model A), BSK20-2 (model B), BSK21-1 (model C) and BSK21-2 (model D). In the discus-
sion above we only refer to BSK20-1 (model A), since the results do not qualitatively differ
from the other cases, but quantitatively by O(1) factors. Before discussing the dependence
of our results on the profiles, note that these EOS are still allowed by the latest constraints
from LIGO observation of a binary NS merger (see e.g. figure 1 of [60] and figure 3 of [61]).
Moreover note that these EOS consider only ordinary baryonic and leptonic matter (i.e. pro-
tons p, neutrons n, electrons e, muons µ) without “exotic” particles such has hyperons which
contain strange quarks.

In the top panel of figure 15, we show the number density of baryons (neutrons +
protons) as a function of NS radius for the four benchmark models considered. In all cases, we
notice that the number density is relatively constant in the inner regions of the NS and starts
to drop in the outer regions, from about two thirds of the NS radius. In the following four plots
of figure 15 we show the chemical potential of neutrons for the four models mentioned above
(right middle panel) and, we show the chemical potentials of neutrons, protons, electrons and
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Model A B C D

BSK-20-1 BSK-20-2 BSK 21-1 BSK 21-2

Radius R? [km] 11.6 10.7 12.5 12.0

Mass M? [M�] 1.52 2.12 1.54 2.11

Number of free particles

normalized to BSK-20-1

Nn 1.0 1.30 1.00 1.26

Np 1.0 3.42 0.83 6.07

Nµ 1.0 1.80 1.52 3.82

Core chemical potential [GeV]

µn 0.27 0.81 0.24 0.51

µp 0.098 0.60 0.38 0.25

µµ 0.065 0.11 0.095 0.16

Table 2. Relevant parameters for the benchmark NS models considered.

muons for BSK20-1 (middle left panel). We also show neutron fraction as a function of radius
(lower right panel) for the four NS models and, the NS composition for BSK20-1 (lower right
panel). All these figures show that the values of chemical potentials and number densities of
target particles are not constant within the NS. Hence, as a result of these inhomogeneities,
DM capture is also inhomegeneous (see below).

NS models and DM constraints. For each model the NS profile we consider, we give
in table 2 the total number of particles N of each species, relative to the numbers which
hold for BSK20-1. For example, one observes that while the number of neutrons varies by
30%, the (free) proton number can differ by as much as factor 6. The capture rate increases
linearly with this number N , and depends on the NS mass through vesc (see eq. (2.7)).

In the case of DM captured by scattering off neutrons, we show in figure 14 (upper
panel) the capture rate with respect to DM mass for model BSK20-1 and also for model
BSK21-2 which gives the largest deviation with respect to BSK20-1. For mχ > 1GeV, the
capture rate for BSK21-2 can be completely recovered by multiplying with a rescaling factor
β = Nn × MBSk21−2/MBSk20−1 (the relative ratio of total number of neutrons, and the
NS mass ratios, see table 2) to the capture rate obtained for BSK20-1. Below this mass,
for mχ 6 1GeV, Pauli blocking kicks in and suppresses the capture rate. The variation of
the capture rate with the chemical potential is not trivial since it depends on the radial
profile of the chemical potential (see below). Since the constraints presented in figures 10
to 13 are directly proportional to the capture rate, the uncertainties on the NS model imply
uncertainties on DM constraints. Computing the rescaling factor β for the four benchmark
models, one observes that the capture rate, and so the DM constraints, vary by a factor of
1.8, 8.4 and 5.3 for neutron, proton and muon, respectively (for mχ > 1 GeV). Note that the
reference BSK20-1 (Model A) was chosen because it corresponds to the case which gives the
most conservative bounds for all the species except protons.

Neutron star profile effects on DM capture. Now we focus on DM captured by neu-
trons for the model BSK20-1. From the lower left panel of figure 14 we notice that, for
mχ = 1 GeV, the capture rate per unit volume follows the neutron density (see top panel of
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Figure 14. Upper panel: capture rates (from DM scattering off neutrons) with respect to DM mass
for the two models: BSK20-1 and BSK21-2. Lower left panel: capture rates per unit volume for
BSK20-1, for mχ = 1 MeV and 1 GeV. The rates are normalized to make the comparison easier.
Lower right panel: distribution of DM particles captured as a function of NS radius, for DM masses
of 1 GeV and 1 MeV for BSK20-1.

figure 15). For this DM mass the capture rate is quite insensitive to Pauli blocking effects.
Instead, for mχ = 1 MeV, the capture rate is boosted in the outer regions where the chemical
potential is low (see middle panels of figure 15), and suppressed in the inner regions due to
a higher value of the chemical potential. In the lower right panel of figure 14 we show the
distribution of DM captured i.e. the fraction of DM accreted at a given radius, which is thus
different for different DM masses.

From this observation we come back to the comment on the capture rate in figure 14 for
mχ 6 1 GeV. We note that, in this mass regime, the effect of Pauli blocking is more important
in the model BSK20-1 than in BSK21-2, even after rescaling by the factor α (see above).
This seems to be in apparent contradiction as the chemical potential in model BSK21-2 is
larger by factor 2 in the core. However, this can be understood from the fact that the outer
layers are actually responsible for a larger capture fraction for those light DM particles due to
smaller chemical potential in those regions (see lower right panel of figure 14). Also note that
model BSK21-2 has a larger radius than BSK20-1. Thus, the effective volume of neutron
responsible for capture is larger in this model, and compensate for the suppression from
regions with higher chemical potential. Hence, a precise determination of the capture rate
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Figure 15. Upper panel: number density of baryons in the different models. Middle panels: evolution
of the chemical potential as a function of radius, for neutrons only in the different models (left), and
for all the species in the BSK20-1 model (right). Lower panel: evolution of the fraction of the different
species as a function of radius, for neutrons only in the different models (left), and for all the species
in the BSK20-1 model (right). Note that the fractions Yi are computed with respect to the baryonic
fraction. Hence Yn + Yp =1, and Yp = Ye +Yµ for charge conservation.
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Model A B C D

BSK-20-1 BSK-20-2 BSK 21-1 BSK 21-2

ζ = n
nfree at NS core

ζn 0.32 0.10 0.29 0.12

ζp 0.10 0.014 0.68 0.11

ζµ 1.5 1.9 1.7 2.3

Table 3. Rescaling factor for the number density of neutrons, protons and muons.

in this regime is intractable without taking into account the radial profile of NS chemical
potential.

Interestingly, note that for the case of protons in the model BSK20-1 (grey dashed
lines in the left panels of figure 15), the chemical potential drops to zero for radii above
≈6.5 km, unlike its contribution to the NS material which remains approximately constant.
This observation highlights a phase transition, corresponding to the fact that above ≈6.5 km,
protons are bound in clusters constituting a solid crust. In computing DM capture, we only
take into accounts collisions with the “free” fraction of protons, i.e. for r &6.5 km, since
scattering amplitudes might change for DM scattering off protons in clusters. We do not
correct the neutron number for the clustered ones since the proton fraction is always much
smaller than the neutron fraction. For other elements, electrons and muons, no such phase
transition is predicted in any model. This remark on protons also applies to the other three
models BSK20-2, BSK21-1 and BSK21-2.

B Number density rescaling

The dispersion relation for neutrons in an ideal and non relativistic Fermi gas is E = p2

2mn
. In

fact, at extreme nuclear densities, because of pair interactions, this relation is modified and

writes E = p2

2m∗n
+ Un, where the mass m∗n is the effective mass of the neutron and Un is the

associated potential energy. In this work, in computing capture and thermalization rates, we
assume neutrons are ideal and non relativistic Fermi gas, which is also the approximation
made in ref. [39]. Since we are using realistic NS profiles with given number densities n(r),
we multiply our predictions by the following rescaling factor,

ζn(r) =
n(r)

nfree(r)
, (B.1)

where, in the limit of vanishing temperature, nfree = (2mnµ
3/2
n /(3π2). Values of ζ at the NS

core can be found in table 3.

C Differential scattering rate

In this appendix we provide analytic/semi-analytic expressions for the differential scattering
rate. Starting from eq. (2.12), we find convenient to trade the integral over d3u = u2du d cos θ,
where θ is the angle between incoming DM and neutron (|w−u| =

√
w2 + u2 − 2wu cos θ),

for an integral over the velocity in the NS frame of the center of mass (CM) of the scattering,
vs, and velocity of DM in this CM frame, vt. These integration variables can be expressed
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as a function of u and w:

vs =
|u + µw|

1 + µ
, vt =

|w − u|
1 + µ

, (C.1)

where µ = mχ/mn. Separating the R integral in 2 pieces, R = R+ + R− depending on
whether in the collision DM lose energy (R−: v < w: accretion) or gains energy (R+: v > w:
evaporation) this the integrals

R±(w → v) = 16µ4
+n(r)ζ(r)

v

w

∫ ∞
0

dvs

∫ ∞
0

dvt vt fp(u)(1− fp′(u′))

dσ

d cos θcm
H±(vs, vt, w, v), (C.2)

where θcm is the angle between incoming DM and outgoing DM in CM frame. The functions
H± are combinations of Θ functions coming from the fact that we traded the cyclic θ variable
for a continuous variable

H±(vs, vt, w, v) ≡ Θ(w − |vs − vt|) Θ(vs + vt − w) Θ(v − |vs − vt|) Θ(vs + vt − v) , (C.3)

with

u2 ≡ 2µµ+ v
2
t + 2µ+ v

2
s − µw2 ,

u′2 ≡ 2µµ+ v
2
t + 2µ+ v

2
s − µ v2 ,

µ± ≡
µ± 1

2
, (C.4)

Thus for accretion (H−), the limits of integration if we perform vt-integral first are

w − v
2
≤ vs ≤

v + w

2
, w − vs ≤ vt ≤ v + vs ,

v + w

2
≤ vs ≤ ∞ , vs − v ≤ vt ≤ v + vs ; (C.5)

while for evaporation (H+) they are

v − w
2
≤ vs ≤

v + w

2
, v − vs ≤ vt ≤ w + vs ,

v + w

2
≤ vs ≤ ∞ , vs − w ≤ vt ≤ w + vs .

As discussed in the introduction of section 2, we consider the case of a cross section
which has no momentum dependence and is isotropic. Thus the differential cross section in
eq. (C.2) reads

dσ

d cos θcm
=
σ0

2
, (C.6)

and the differential accretion rate can be written as

R−(w→v) = 8µ4
+σ0n(r)ζ(r)

v

w

∫ ∞
0

dvs

∫ ∞
0

dvt vtfp(vs, vt)(1− fp′(vs, vt))H−(vs, vt, w, v). (C.7)
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For this case of a constant cross section, the vt integral can be calculated analytically. To
this end, consider the function:

I± =

∫ ∞
0

dvs

∫ ∞
0

dvt vtfp(vs, vt, w)(1− fp′(vs, vt, v))H±(vs, vt, w, v). (C.8)

We first integrate in variable vt. In order to make the equations tractable we can define
the following variables

I−t1 =

∫ v+vs

w−vs
dvt vt fp(vs, vt, w)(1− fp′(vs, vt, v))

I−t2 =

∫ v+vs

vs−v
dvt vt fp(vs, vt, w)(1− fp′(vs, vt, v)), (C.9)

and

I−1 =

∫ v+w
2

w−v
2

dvs I
−
t1

I−2 =

∫ ∞
v+w
2

dvs I
−
t2

I− = I−1 + I−2 . (C.10)

Similarly for evaporation, we have

I+
t1 =

∫ w+vs

v−vs
dvt vt fp(vs, vt, w)(1− fp′(vs, vt, v))

I+
t2 =

∫ w+vs

vs−w
dvt vt fp(vs, vt, w)(1− fp′(vs, vt, v)), (C.11)

I+
1 =

∫ v+w
2

v−w
2

dvs I
+
t1

I+
2 =

∫ ∞
v+w
2

dvs I
+
t2

I+ = I+
1 + I+

2 . (C.12)

Analytical results for the vt-integral are then

I−t1 =
1

4k2µµ+

(
1− e−

q0
T

) (log

[
1 + x1

1 + x2

]
− log

[
1 + x3

1 + x4

])

I−t2 =
1

4k2µµ+

(
1− e−

q0
T

) (log

[
1 + x5

1 + x6

]
− log

[
1 + x3

1 + x4

])
, (C.13)

and

I+
t1 =

1

4k2µµ+

(
1− e−

q0
T

) (log

[
1 + y1

1 + y2

]
− log

[
1 + y3

1 + y4

])

I+
t2 =

1

4k2µµ+

(
1− e−

q0
T

) (log

[
1 + y5

1 + y6

]
− log

[
1 + y3

1 + y4

])
, (C.14)
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with

k2 =
mn

2T
, (C.15)

q0 =
1

2
mχ

(
w2 − v2

)
, (C.16)

v2
f =

2µF
mn

, (C.17)

x1 = exp
[
k2
(
v2
f + µw2 − 2µ+

(
v2
s + µ(w − vs)2

))]
, (C.18)

x2 = exp
[
k2
(
v2
f + µv2 − 2µ+

(
v2
s + µ(w − vs)2

))]
, (C.19)

x3 = exp
[
k2
(
v2
f + µw2 − 2µ+

(
v2
s + µ(v + vs)

2
))]

, (C.20)

x4 = exp
[
k2
(
v2
f + µv2 − 2µ+

(
v2
s + µ(v + vs)

2
))]

, (C.21)

x5 = exp
[
k2
(
v2
f + µw2 − 2µ+

(
v2
s + µ(v − vs)2

))]
, (C.22)

x6 = exp
[
k2
(
v2
f + µv2 − 2µ+

(
v2
s + µ(v − vs)2

))]
, (C.23)

y1 = x5, (C.24)

y2 = x6, (C.25)

y3 = exp
[
k2
(
v2
f + µw2 − 2µ+

(
v2
s + µ(w + vs)

2
))]

, (C.26)

y4 = exp
[
k2
(
v2
f + µv2 − 2µ+

(
v2
s + µ(w + vs)

2
))]

, (C.27)

y5 = x1, (C.28)

y6 = x2. (C.29)

Next, the vs-integral must be performed. For this integral, to get an exact analytical
expression for arbitrary degeneracy turns out to be not possible. However we can make
approximations to eq. (C.13) and (C.14) in the extremely degenerate and non-relativistic
limits (T � µF ,mn). For instance, a good approximation one can make is to replace,

lim
T�µF

1

k2(1− e−q0/T )
log[1 + x1] (C.30)

∼
(
v2
f + µw2 − 2µ+

(
v2
s + µ(w − vs)2

))
Θ
(
v2
f + µw2 − 2µ+

(
v2
s + µ(w − vs)2

))
,

with similar limits for all other terms involved in eq. (C.13) and (C.14). With this simpli-
fication we can proceed to perform the vs-integral by parts. As all the integrands are of
the form ∫ s2

s1

ds
(
as2 + bs+ c

)
Θ
(
as2 + bs+ c

)
(C.31)

they can be rewritten as∫ s2

s1

ds
(
as2+bs+ c

)
Θ
(
as2+bs+ c

)
=

(
a

3
s3 +

b

2
s2 + cs

)
Θ
(
as2 + bs+ c

) ∣∣s2
s1

(C.32)

−
∫ s2

s1

ds

(
a

3
s3 +

b

2
s2 + cs

)
δ
(
as2 + bs+ c

)
(b+2as) .
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Using the δ function identity

δ (f(s)) = Σi
δ (s− si)
|f ′(si)|

, (C.33)

we get∫ s2

s1

ds
(
as2 + bs+ c

)
Θ
(
as2 + bs+ c

)
=

(
a

3
s3 +

b

2
s2 + cs

)
Θ
(
as2 + bs+ c

) ∣∣s2
s1

(C.34)

−Σi

(
a

3
s3
i +

b

2
s2
i + csi

)
Θ(s2 − si)Θ(si − s1).

This gives the final result

6µ+I
− = −(2vf + vµ)

(
Θ

(
ρ− − vf

2µ+

)
+ Θ

(
vf − ρ+

2µ+

))
(vf − vµ)2 (C.35)

−2Θ

(
vf − φ−

2µ+

)
Θ

(
ρ+ − vf

2µ+

)(
µ(2µ+ 3)v2 − 6µµ+v

2 − vfµv + 2v2f
)

(vf − vµ)

−3µ
(

(−v − w)
(
v2 − w2

)
Θ
(
v2f − α2

−
)

−(v − w)
((
v2 − w2

) (
Θ
(
v2f − α2

+

)
−Θ

(
v2f − β2

+

))
− (v + w)2Θ

(
v2f − β2

−
)) )

µ2
+

+(vf − wµ)2(2vf + wµ)Θ

(
vf + α−

2µ+

)
Θ

(
α+ − vf

2µ+

)
−(2vf − wµ)(vf + wµ)2Θ

(
α− − vf

2µ+

)
Θ

(
vf + α+

2µ+

)
+(vf + vµ)

(
Θ

(
vf + ρ−

2µ+

)
+ Θ

(
−vf + ρ+

2µ+

))(
µ(2µ+ 3)v2 − 6µµ+v

2 + vfµv + 2v2f
)

−
(

Θ

(
ρ− − Λ+

2µ+

)
+Θ

(
Λ+ − ρ+

2µ+

))
(vµ−Λ+)

(
2µ2v2−6µµ+v

2−µΛ+v+3v2f − Λ2
++3w2µ

)
−
(

Θ

(
ρ− + Λ+

2µ+

)
+Θ

(
−Λ++ρ+

2µ+

))
(vµ+Λ+)

(
2µ2v2−6µµ+v

2+µΛ+v+3v2f−Λ2
++3w2µ

)
−Θ

(
Λ+ − φ−

2µ+

)
Θ

(
ρ+ − Λ+

2µ+

)
(vµ− Λ+)

(
−6µµ+v

2+ 2v2f+ µ
(
(2µ+ 1)v2−Λ+v+2w2

))
−Θ

(
−φ− + Λ+

2µ+

)
Θ

(
Λ+ + ρ+

2µ+

)
(vµ+ Λ+)

(
−6µµ+v

2 + 2v2f + µ
(
(2µ+1)v2+Λ+v+2w2

))
+Θ

(
α− + Λ−

2µ+

)
Θ

(
α+ − Λ−

2µ+

)
(wµ− Λ−)

(
2v2f+µ

(
2v2+w (2µw+w−Λ−)

)
− 6w2µµ+

)
+Θ

(
α− − Λ−

2µ+

)
Θ

(
Λ− + α+

2µ+

)
(wµ+ Λ−)

(
2v2f + µ

(
2v2+w (2µw+w+Λ−)

)
− 6w2µµ+

)
.

with

Λ± ≡
(
v2
f ± µ(w2 − v2)

)1/2
,

α± ≡ µ+v ± µ−w,
β± ≡ µ−v ± µ+w,

ρ± ≡ µv ± µ+ (v + w) ,

φ± ≡ µv ± µ+ (v − w) . (C.36)
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This result, which hold for T = 0, has 2 types of terms, the ones which involve a single theta
function (with linear and quadratic arguments) and the ones which involve the product of
two theta functions (again with linear and quadratic arguments).

D Functions for eq. (3.10)

For orbits smaller than the NS size, namely r0 < R?, the orbits are isochrones with period:

Tin = 2π
R3/2

√
GM

. (D.1)

For orbits larger than the NS size, namely r0 > R?, the orbits are no longer isochrones, and
the periods depends on r0,

Tout = 4
R3/2

√
GM

(
arcsin(B) +

1

2

(r0

R

) 3
2

[
R

r0

√
r0

R
− 1 +

1

2
arctan

√
r0

R
− 1− 1

2

r0

R
(
r0

R
− 1)−1/2 +

π

4

])
, (D.2)

with B =
(

3− 2 Rr0

)−1/2
. In eq. (3.10), η(E) is the ratio between these two periods, η(E) ≡

Tin
Tout

. Note that eq. (3.10) also involves the function I(E), whose form we give here:

I(E) =

∫ B

0
(1− x2)5/2dx (D.3)

=
1

48
(B
√

1−B2(8B4 − 26B2 + 33) + 15 arcsin(B)) (D.4)

E Numerical solution of eq. (3.18)

To solve eq. (3.18) we simply discretize with respect to the energy. The grid indices are
chosen so that E0 corresponds to the largest energy (basically Esurf), and EN to the smallest
one (chosen to be Eth). The fact that the source term has a dependence in energy which
doesn’t depend on time simplifies the problem. We present the solutions for two typical time
evolution: (i) a steady source term in time q(E, t) = Q(E)×Θ(t), and (ii) a burst like source
term q(E, t) = Q(E)× δ(t). We introduce the discretized quantities:

fi(t) = fχ(Ei, t) (E.1)

Γi = Γ(Ei) (E.2)

Γi→j =
dΓ

dE′
(Ei → Ej) (E.3)

Qi = Q(Ei) . (E.4)

Using the trapezoidal rule11 to discretize the integral of eq. (3.18), we obtain the following
differential equation in time for each component fi

dfi
dt

=

i∑
j=0

Γ̃j→i fj − Γi fi + Qi, (E.5)

11We could have used more advanced scheme such as Simpson’s rule, although this method appears to be
accurate enough.
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with

Γ̃i→j =
1

2
(Ei−1 − Ei+1) Γi→j fi (E.6)

Γ̃0→j =
1

2
(E0 − E1) Γ0→j f0 . (E.7)

Solving eq. (E.5) is handle-able recursively, by going from the highest to the lowest energies.
The solution can be cast into the form,

fi(t) =

i∑
j=0

αij exp (−Γj t) , (E.8)

with, for the case (i)

j = 0 : αi0 =
1

Γi

(
i−1∑
k=0

Γ̃k→i α
k
0 +Qi

)
(E.9)

0 < j < N : αij =
1

Γi − Γj

i−1∑
k=0

Γ̃k→iα
k
j (E.10)

j = N : αiN = −
i−1∑
k=0

αik . (E.11)

For case (ii), only the expression for αi0 changes, and we get

j = 0 : αi0 =
Qi
Γi

. (E.12)

F Combined results and results for T = 106 K

In the left panel of figure 16 we merge both panels of figure 10 to summarize the best
constraints which hold for bosonic DM scattering off neutrons. In the right panel we present
the combined exclusion curve for T= 106 K. The discontinuities in this plot are due to black
hole evaporation thresholds.

Similar to above, in figure 17 we merge both panels of figure 12 to summarize the
best constraints which hold for DM scattering off muons. In the right panel we present the
combined exclusion curve for T= 106 K.

G Remark regarding the effect of DM on gravitational wave emission in
neutron star mergers

We finish the appendix with a comment which is a bit off the main subject of this work but
which we find interesting to mention. It concerns the possibility to observe a DM induced
modification to the spectrum of gravity waves in binary NS mergers. Of course to leave an
observable imprint in the gravitational wave spectrum one needs many more DM particles
in the NS than what can be accreted from scattering DM off ordinary matter. If all the
DM particles crossing the NS are all trapped (geometric case above) one could hardly get
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Figure 16. Combined exclusion plot for bosonic DM scattering off neutrons for T = 105 K and
T = 106 K : same as figure 10.
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Figure 17. Combined exclusion plot for bosonic DM scattering off muons for T = 105 K and T =
106 K : same as figure 10 for DM scattering off muons.

a DM fraction larger than ∼ 10−10 with respect to ordinary matter12 (see eq. (2.10) for
ρχ = 104 GeV/cm3). However one could eventually get more DM in other ways [63–66].
In this case one could hope, see for instance [67], that during the final stage of the spiral
motion, because of tidal forces, the two DM cores come out of the neutron stars and continue
to rotate within the newly-formed matter disk. Thus, the difference of rotation speed of the
cores and the NS could leave a characteristic imprint in the gravitational wave signal. We
argue in the following that this scenario is not realistic, i.e. the cores cannot escape from the
gravitational well. To convince the reader, we simply compute the velocity needed for the
core at the center to reach the edge at rest, and compare it with the one of the final collision.

12Note that, as shown in [62], NS in binary systems can accrete about four times more DM than an
isolated NS.
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We take the example of GW170817 [27]. The collision speed is obtained by multiplying
the length of the last orbit for which radius is assumed to be the NS radius, by half of the
highest frequency measured by LIGO (to account for the quadrupole emission). We also take
into account the gravitational redshift of the gravitational wave signal. Thus we get

vcollision =
600Hz

2
× 1√

1− 4GM?
c2R?

× 2πR? ≈ 0.073c . (G.1)

The escape velocity needed for the core to reach the edge of the NS can be estimated classically
for a homogeneous sphere:

vNesc =

√
GM?

R?
= 0.44 c . (G.2)

The exact GR calculation leads to:

vGR
esc = c

√
1− e2(Φ(0)−Φ(R)) = 0.63 c . (G.3)

In any case we see that the velocity reached during the collision is much lower than the one
required to extract the dark matter cores from the gravitational well of the NS. Thus, the fate
of the DM cores is completely related to what happens to the baryons. The addition of an
extra long range interaction between the DM particles could modify this picture (see e.g. [68]).
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[56] F. Özel and P. Fréire, Masses, Radii and the Equation of State of Neutron Stars, Ann. Rev.
Astron. Astrophys. 54 (2016) 401 [arXiv:1603.02698] [INSPIRE].

[57] XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of
XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

[58] S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York U.S.A. (1972).

[59] S. Goriely, N. Chamel and J.M. Pearson, Further explorations of
Skyrme-Hartree-Fock-Bogoliubov mass formulas. 13. The 2012 atomic mass evaluation and the
symmetry coefficient, Phys. Rev. C 88 (2013) 024308 [INSPIRE].

[60] E.R. Most, L.R. Weih, L. Rezzolla and J. Schaffner-Bielich, New constraints on radii and tidal
deformabilities of neutron stars from GW170817, Phys. Rev. Lett. 120 (2018) 261103
[arXiv:1803.00549] [INSPIRE].

[61] LIGO Scientific, Virgo collaboration, GW170817: Measurements of neutron star radii and
equation of state, Phys. Rev. Lett. 121 (2018) 161101 [arXiv:1805.11581] [INSPIRE].

[62] L. Brayeur and P. Tinyakov, Enhancement of dark matter capture by neutron stars in binary
systems, Phys. Rev. Lett. 109 (2012) 061301 [arXiv:1111.3205] [INSPIRE].

[63] A. Nelson, S. Reddy and D. Zhou, Dark halos around neutron stars and gravitational waves,
arXiv:1803.03266 [INSPIRE].

[64] D. McKeen, A.E. Nelson, S. Reddy and D. Zhou, Neutron stars exclude light dark baryons,
Phys. Rev. Lett. 121 (2018) 061802 [arXiv:1802.08244] [INSPIRE].

[65] J.M. Cline and J.M. Cornell, Dark decay of the neutron, JHEP 07 (2018) 081
[arXiv:1803.04961] [INSPIRE].

[66] B. Grinstein, C. Kouvaris and N.G. Nielsen, Neutron Star Stability in Light of the Neutron
Decay Anomaly, arXiv:1811.06546 [INSPIRE].

[67] J. Ellis et al., Search for Dark Matter Effects on Gravitational Signals from Neutron Star
Mergers, Phys. Lett. B 781 (2018) 607 [arXiv:1710.05540] [INSPIRE].

[68] J. Kopp, R. Laha, T. Opferkuch and W. Shepherd, Cuckoo’s eggs in neutron stars: can LIGO
hear chirps from the dark sector?, JHEP 11 (2018) 096 [arXiv:1807.02527] [INSPIRE].

– 53 –

https://doi.org/10.1086/428488
https://arxiv.org/abs/astro-ph/0412641
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0412641
https://doi.org/10.1088/1475-7516/2014/05/049
https://arxiv.org/abs/1312.0273
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0273
https://doi.org/10.1016/j.nuclphysa.2005.09.019
https://doi.org/10.1016/j.nuclphysa.2005.09.019
https://arxiv.org/abs/astro-ph/0508056
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0508056
https://doi.org/10.1146/annurev.astro.42.053102.134013
https://doi.org/10.1146/annurev.astro.42.053102.134013
https://arxiv.org/abs/astro-ph/0402143
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0402143
https://doi.org/10.1086/380993
https://arxiv.org/abs/astro-ph/0310854
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0310854
https://doi.org/10.1088/0004-637X/746/1/6
https://arxiv.org/abs/1111.2346
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2346
https://doi.org/10.1086/161292
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://arxiv.org/abs/1603.02698
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.02698
https://doi.org/10.1103/PhysRevLett.121.111302
https://arxiv.org/abs/1805.12562
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.12562
https://doi.org/10.1103/PhysRevC.88.024308
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,C88,024308%22
https://doi.org/10.1103/PhysRevLett.120.261103
https://arxiv.org/abs/1803.00549
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.00549
https://doi.org/10.1103/PhysRevLett.121.161101
https://arxiv.org/abs/1805.11581
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.11581
https://doi.org/10.1103/PhysRevLett.109.061301
https://arxiv.org/abs/1111.3205
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.3205
https://arxiv.org/abs/1803.03266
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.03266
https://doi.org/10.1103/PhysRevLett.121.061802
https://arxiv.org/abs/1802.08244
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.08244
https://doi.org/10.1007/JHEP07(2018)081
https://arxiv.org/abs/1803.04961
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.04961
https://arxiv.org/abs/1811.06546
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.06546
https://doi.org/10.1016/j.physletb.2018.04.048
https://arxiv.org/abs/1710.05540
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.05540
https://doi.org/10.1007/JHEP11(2018)096
https://arxiv.org/abs/1807.02527
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.02527

	Introduction
	Gravitational trapping of DM from elastic scattering with neutron star matter
	Boltzmann equation for ADM
	Geometric upper bound on DM accretion
	DM scattering off Fermi sea of neutrons
	Results
	T-0 results: regimes I and II
	Finite temperature effects: saturation in regime III
	Finite temperature effects: DM evaporation
	Putting accretion and evaporation together


	Time evolution of DM density inside the neutron star and thermalization
	Average of DM energy loss along orbits
	Estimate of the thermalization time
	Evolution of the DM energy distribution prior to thermal equilibrium

	Constraints on DM from black hole formation
	Gravitational collapse: Chandrasekhar limit and self gravitation
	Bose-Einstein condensation
	Black hole mass and evaporation
	Exclusion curves for old neutron stars
	Scattering off neutrons (figure 10)
	Scattering off protons (figure 11)
	Scattering off muons (figure 12)
	Fermion DM scattering off NS matter


	Summary and discussion
	Uncertainties from neutron star equations of states
	Number density rescaling
	Differential scattering rate
	Functions for eq. (3.10)
	Numerical solution of eq. (3.18)
	Combined results and results for T=10*6K
	Remark regarding the effect of DM on gravitational wave emission in neutron star mergers

