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Abstract. We consider a system where dark matter dynamics is enriched by the presence of
clustering quintessence in the approximation where the system is effectively reduced to one
degree of freedom. We study the corresponding observables up to one-loop order and then
point out similarities between the power spectrum of the reduced system and the behaviour
of non-equal time pure dark matter correlators. We then focus on the one-loop total density
power spectrum in the IR limit as a diagnostic tool for consistency relations breaking. Unlike
the non-equal time case, the reduced system does still obey consistency relations; we illustrate
this by explicitly verifying the 1-loop IR cancellation. A more general setup, obtained by
relaxing the assumption of a vanishing sound speed, is also analyzed. In this and similar
scenarios the presence of additional dynamics, typical of dark energy and modified gravity
models, implies that one may no longer gauge away the squeezed contribution of observables
such as the dark matter bispectrum. We show how these effects propagate all the way to
biased tracers.
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1 Introduction

A detailed understanding of the mildly-non-linear formation of structure in the universe is
of paramount importance for cosmology. These scales carry crucial information both on
early (e.g. non-Gaussianities [1]) and late-time (e.g. current cosmic acceleration [2]) physics.
Several approaches have been developed to tackle the dynamics in these regimes, with N-body
simulations as the one able to probe deeper into the highly non-linear regime.

Remarkably, it is also possible to construct consistent perturbative formalisms [3]–[14]
that deliver observables up to scales of about ∼ 0.5 [h/Mpc]. The perturbative framework,
although severely limited in k-reach, enables one to account for the various layers of physics
that make up actual large scale structure observables. From baryonic effects [15] to biased
tracers [16] to redshift space [17, 18]; from primordial non-Gaussianities [19] to the extra
degrees of freedom of dark energy and modified gravity models. In particular, the effective
field theory treatment [12] of large scale structure encapsulates the action of unaccessible
smaller scales on (at reach) long-wavelength modes in a number of “UV” coefficients, to be
determined by comparison with simulations and, in the near future, observations.

In what follows we adopt the perturbative treatment to investigate the effects of adding
a clustering quintessence component to cold dark matter in the fluid description. Such set-
up enjoys drastic simplifications in the limit of vanishing quintessence sound speed. The
resulting dynamics serves as an illustrative proxy for systems that go beyond the ΛCDM
paradigm.

We find that the reduced (cs → 0) system still enjoys properties typical of the pure
dark matter case, such as so-called consistency relations between the equal-time squeezed
bispectrum and the power spectrum. The same properties are behind the well-known 1-loop
IR cancellation, which we verify explicitly for the simplified system. A non-zero sound speed,
on the other hand, signals the presence of a non-adiabatic mode which may break consistency
relations.

This paper is organized as follows: in section 2 we first illustrate the dynamics of the
reduced system and then provide a parallel with non-equal-time correlators; we show why the
observables are similar and elucidate where the parallel breaks down; in section 3 we provide
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a brief general treatment of consistency relations in large scale structure set-ups, with special
focus on the case when a dark energy or a modified gravity component is present; in section 4
we show how these effects propagate to biased tracers.

2 Total power spectrum

Additional degrees of freedom (e.g. those of dynamical dark energy) can be added to the fluid
description of dark matter, thereby generating a system of gravitationally coupled equations.
In the next section, we will describe some of the properties of such a system. In this one
we study the simplified dynamics of a clustering quintessence model in the vanishing sound
speed approximation first analyzed in [20]. The continuity and Euler equation read

∂τδT + ∂i[(C + δT )vi] = 0 , ∂τv
i +Hvi + vj∂jv

i = −∇iΦ ; (2.1)

where the total density contrast δT has been defined as the combination of dark matter and
quintessence densities weighted by density parameters as in δT ≡ δm +

ΩQ

Ωm
δQ. The variables

Φ and vi stand respectively for the gravitational potential and the velocity field. We stress
in particular the time-dependent quantity defined as

C(τ) = 1 + (1 + w)
ΩQ

Ωm
(τ) , (2.2)

where the latter is equal to unity in ΛCDM. The system is closed by Poisson’s equation
∇2Φ = 3

2H
2ΩmδT . The dynamics can be solved perturbatively. The results for the tree-level

bispectrum are given in [20] whilst the one-loop power spectrum, as well as all-order integral
solutions for the fields, were found in [21]. The kernels for the total density fluctuations δT
up to the third order are

F2 = −1

2

(
1− ε(1) − 3

2
ν2

)
αs +

3

2

(
1− ε(1) − 1

2
ν2

)
β,

F3 = (1− ε(2))F ε3 + ν3Fν3
3 + (1− ε(1))ν2Fν2

3 + λ1Fλ1
3 + λ2Fλ2

3 , (2.3)

where for simplicity we have suppressed momentum-vector dependence as well as time de-
pendence in ε, ν3, ν2, λ2 and λ1 (for explicit definitions we refer the reader to the appendix
in A; for a derivation see instead [20, 21]). The reduced kernels such as α, β, and F ε3 are time-
independent and are only function of momenta [21]. We reproduce here the explicit form of
the quantities ε(n) since they will be of particular importance in what follows. These read:

ε(1)(η) = 1− e−η
∫ η

−∞
dη̃[eη̃/C(η̃)]

ε(2)(η) = 2

∫ η

−∞
dη̃ e2(η̃−η) (1− (1− ε)/C(η̃)) . (2.4)

Note that, by construction, both vanish in the simplified case where C = 1, as the system
in eq. (2.1) reduces to the pure dark matter case. We consider the one-loop power spectrum
for the total density:

P1-loop(k, a) = PL(k, a) + P22(k, a) + 2P13(k, a) + Pc.t.(k, a), (2.5)
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Figure 1. The total power spectrum as a function of the wavenumber normalized w.r.t. the ΛCDM
result. It is clear how the clustering effect emerges only at midly-non-linear scales. In orange the
correction due to an EFT counter-term with the typical (k/kNL)2 scaling (for illustrative purposes,
we have chosen the value ∆α = 1 Mpc2/h2). The dashed black line is obtained using the EdS approx-
imation.

where each of the above contributions is defined as

PL,k(a) = D2
+(a)P in

k ,

P22,k(a) = 2D4
+(a)

∫
q

[
F2(k− q,q, a)

]2
P in
|k−q|P

in
q ,

P13,k(a) = 3D4
+(a)P in

k

∫
q
F3(k,−q,q, a)P in

q . (2.6)

Here D is the linear growth function and Pc.t.(k, a) stands for the one-loop counterterm,
encoding short-scale dynamics. It is given in the EFT of LSS [13] simply as ∝ k2/k2

NL PL,
and multiplies a to-be-determined (by, for example, comparison with N-body simulations)
numerical coefficient. P in

k is the time-independent initial power spectrum obtained form
Boltzmann algorithms such as [22, 23].

We present here for the first time several plots of the total power spectrum of the
reduced clustering quintessence system for the w 6= 1 case. The comparison in figure 1 with
the ΛCDM result underscores how the clustering quintessence system deviates from standard
behaviour in the high-k regime. The reason becomes clear after repackaging eq. (2.1) as

∂δk
∂η
−Θk =

α(q1,q2)

C(η)
Θq1δq2

∂Θk

∂η
−Θk −

f−
f2

+

(Θk − δk) =
β(q1,q2)

C(η)
Θq1Θq2 , (2.7)

where the following definitions have been used

f+/− ≡ d lnD+/−

d lna
; θk ≡ D+δ

in
k ; Θk ≡ −

C

Hf+
θk , (2.8)

with D+/− as the solutions for the linear growth rate, and α(q1,q2), β(q1,q2) the standard
(see e.g. [4, 5]) kernels. The non-trivial time dependence of C(τ) appears in eq. (2.7) only
on the righ hand side, that is only at non-linear order in perturbation theory. Observations
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Figure 2. The total power spectrum as a function of the redshift z for different values of the equation
of state parameter w. Dashed lines correspond to the linear result, solid curves to the observable
including the one loop contribution.

at those scales dictate that these extra effects must remain very small (i.e. at most a few
percent level). Notice that this is in direct contradistinction to the case of screened dark-
energy and modified gravity theories. There, above a (model-dependent [24]) threshold value
for the momentum, the effective coupling between dark matter and any additional degree
of freedom is suppressed and the system flows back to ΛCDM. This screening behaviour is
characteristic of models where a so-called fifth-force is present: (i) at linear scales an order
one difference is allowed for observables with respect to their cold dark matter + cosmological
constant counterpart; (ii) conversely, the dynamics at smaller scales ought to be unaffected
by any fifth force in order to recover general relativity.

It is also interesting to plot (see figure 2) the power spectrum, up to one loop, as a
function of redshift. We have normalized it so as to match the pure dark matter result at
early times, where D(τ) ' a(τ).

Of course, although upcoming surveys will soon allow us to probe increasingly large red-
shifts, the observables at our disposal are typically biased tracers whose description demands
we include several layers of additional dynamics. We will return to this point in section 4.

Parallel with non-equal time correlators. We elaborate in this section on an intriguing
fact: by judiciously choosing two different redshifts for the ΛCDM case, the DM+quintessence
and ΛCDM systems can provide consistently similar contributions for observables such as the
power spectrum up to at least one-loop order. In figure 3 we plot the total (DM+quintessence)
power spectrum results up to one-loop for different values of w, at redshift z = 0, as a
function of momentum. In the same plots we show the non-equal time power spectrum for
the ΛCDM case up to one-loop. Both power spectra are normalized by the same ΛCDM
power spectrum quantity. From the plots in figure 3, one can see that the two power spectra
are very similar (� 1% difference) on scales where the one-loop results are expected to be
valid, k . 0.15 Mpc/h [13]. On the right panel of figure 3 we add a typical (in the sense of the
“EFT of LSS” approach [12]) counterterm contribution. This shows that a small change in the
counterterm parameter values assures that an unequal-time power spectrum can mimic our
DM+quintessence 10% deviations from (equal time) ΛCDM up to and beyond k . 0.2 Mpc/h.

The similarities between the power spectrum of the DM-quintessence system and that
of non-equal time DM fields stems from the fact that a non-trivial time-dependence in C(τ)
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Figure 3. The total DM+Q density power spectrum for w = −1.1 and −0.9, normalized by the
ΛCDM (w = −1.0) power spectrum (for the latter, we use an Einstein-de Sitter-type approximation,
i.e. we neglect the time dependence of the kernels, which is standard practice in the field), is shown
up to one-loop order in solid blue lines. Left : the red dashed lines and the red band represent the
approximation obtained from the non-equal time ΛCDM power spectrum choosing z1 and z2 different
from the nominal z. This power spectrum too is normalized by the ΛCDM power spectrum at the
nominal redshift z. Right : in addition to the non-equal time ΛCDM power spectrum, red dashed lines
and the red band contain an additional small contributions ∼ k2Plin. This corresponds to the small
change of value of the EFT parameter (counterterm), which can further extend the range of validity
for this approximation.

acts as an additional “clock” in the DM-only dynamics. As such, it mimics non-equal time-
dependent observables. This correspondence is in place for the full power spectra starting
from the linear contributions until up to, and possibly further than, one-loop. We find this
rather intriguing and, as a consequence, it is worthwhile to explore how far we can take this
parallel. In order to do so, we will employ a crucial probe of extra dynamics: the breaking
of so-called consistency relations (CRs).

The latter are specific relations between observables that stem from (residual) symme-
tries in the description of the physical system at hand. We defer a discussion of consistency
relations to the next section and focus here on the consequences of one of the symmetries
behind CRs in large scale structure: Galilean invariance.

In ΛCDM, it is well-known that a cancellation between the leading infrared (IR) con-
tributions occurs for equal time correlators [25–29]. It was recognized already in [25] that
Galilean invariance (invariance under time-dependent translations) is at the heart of the
cancellation. Later works have further investigated this result and placed it squarely in the
context of consistency relations.

It is expected that extra dynamics, such at that due to the presence of extra non-
adiabatic degrees of freedom, will break consistency relations already for equal-time corre-
lators with Gaussian initial conditions. Things are a little more subtle for the system of
eq. (2.7): although the equations appear to describe one degree of freedom, there is “rem-
nant” of its two-species origin in the time dependence of C(η). On the other hand, the two
species only interact gravitationally and the only density constrast we can probe is ultimately
what appears on the right hand side of Poisson’s equation, namely δT . We ask then: does
the breaking occur in the case of our reduced system? Is this the reason behind the similar-
ity between the reduced system power spectrum and the non-equal time ΛCDM two-point
correlator?

Let us verify, by a direct 1-loop order calculation, whether the IR cancellation is still in
place. For the leading infrared contributions we find

p1-loop
k,q (a)

PL,k(a)PL,q(a)

∣∣∣∣∣
k�q

∼
((

1− ε(1)
)2
− 1 + ε(2)

)
2

3

k2

q2
, (2.9)
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where p1-loop
k,q is the integrand of the one-loop power spectrum: P 1-loop

k =
∫
q p

1-loop
k,q . For

C(τ) = 1 (i.e. in the ΛCDM limit) as well as for a generic constant C we naturally recover the
expected cancellation. The non-trivial information comes from the fact that, even for a time-
dependent C(τ), the system still enjoys the IR cancellation (up to higher order corrections).
This can be readily verified after some algebra upon direct substitution of the ε(n) functions
in eq. (2.9). Crucially, this result is in contradistinction to the non-equal time ΛCDM dark
matter power spectrum. Let us show this at the level of the same IR limit as in eq. (2.9):

p1-loop,k,q(a1, a2)

PL,k(a1)PL,q(a2)

∣∣∣∣
k�q
∼ −(D(a1)−D(a2))2

D(a1)D(a2)

1

3

k2

q2
, (2.10)

where D is the linear growth function.

We must then conclude that the one between these two systems, even when limited up
to one loop, is an intriguing parallel but is far from being an exact equivalence. We have been
focussing on the 1-loop IR limit because of its importance for the squeezed configuration of
the corresponding observables: this is the limit in which so-called consistency relations are
relevant. In turn, consistency relations are relevant as a natural probe of extra dynamics in
a physical system.

Our findings underscore that the main contributions to the observables plotted in figure 3
do not originate from the IR limit in, respectively, eq. (2.9) and (2.10). In addition to the
IR contributions, one must indeed account for the linear piece as well as the contributions
from other 1-loop configurations. These, depending on k, will be the leading ones. Having
verified, by means if the IR cancellation, that consistency relations are still active for the
reduced system, we now expand the analysis to the full system, allowing a non-zero sound
speed for the quintessence component.

3 Consistency relations for clustering quintessence

Consistency relations are interesting in the large scale structure context for the following
reason. If there is only one species, dark matter, the leading term in the squeezed limit of
the bispectrum is related to a gauge transformation of the power spectrum. As a result, it
does not contain physical information, it is a gauge artifact and is not observed. It is only
sub-leading terms that are physical. On the other hand, in the presence of extra degrees of
freedom, the leading term in squeezed bispectrum can itself be directly a physical quantity
and is therefore often enhanced with respect to the same quantity in the single species case.
This is why the squeezed bispectrum is considered an excellent probe of extra physics in the
LSS (as well as in the inflationary) context.

In this section we shall adopt the notation of [31, 32]. Consistency relations (hereafter
CRs) stem from a residual gauge symmetry of the action or the equations of motion (eom) of
a physical system. Although certain gauges, such as unitary gauge, are known to completely
fix diffeomorphism (diff) invariance, the fact that such fixing is complete is strictly true only
for diffs that vanish at spatial infinity. Indeed, the residual gauge symmetry CRs rely upon
is that of diffs that do not vanish at infinity [33].

One may derive non-trivial CRs when the soft mode characterizing any squeezed limit
transforms non-linearly under the residual diff. In the context of large scale structure, using
the fluid treatment for pure dark matter dynamics, one may show that the system equations
possess a time dependent symmetry under which the velocity potential π and the Newtonian
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potential Φ transform non-linearly [27, 28, 32]. It follows that the effect of a long mode πL
on n short modes corresponds to the action of a residual gauge-symmetry on the observable
made up by the corresponding n-point function and can, as such, be gauged away. This often
translates into a suppressed signal for the squeezed n+1-correlator.

The mere requirement that the eom are invariant under a residual diff is not enough
to guarantee that the CRs (at least in their standard formulation) are in place. Following
e.g. [32] one may list three main necessary conditions:

- Symmetry of the action (eom) under the residual diff;

- Single-clockness: the transformation of an array of n hard modes is mapped to the
presence of one soft mode;

- Adiabaticity: the eom of the gauge parameter describing the residual diff ought to
mimic that of a long physical mode.

Our reduced system satisfies these requirements. To clarify the picture and set the stage
for generalizations, we report the full system in eq. (3.1)–(3.3) below, in the approximation
already in use in [20, 34] and in the Newtonian limit. For dark matter, we have

∂δm
∂τ

+ ∂i[(1 + δm)vim] = 0 ,
∂vim
∂τ

+Hvim + vjm∂jv
i
m = −∇iΦ , (3.1)

that is, the standard continuity and Euler equations. Lifting the cs → 0 limit, the (linear)
quintessence equations are instead modified, to give

∂δQ
∂τ
− 3(ω − ĉ2

s)HδQ + (1 + ω)∂iv
i
Q −

9H2

∇2
(1 + ω)(ĉ2

s − ω)∂iv
i
Q ' Θ(δ2),

vi ′Q +H(1− 3ĉ2
s)v

i
Q +∇iΦ +

ĉ2
s ∂iδQ
1 + ω

' Θ(δ2) , (3.2)

and the Poisson equation reads:

∇2Φ ' 3

2
H2Ωm

(
δm +

Ωq

Ωm
δQ

)
≡ 3

2
H2ΩmδT . (3.3)

A few comments are in order. We have restricted our analysis to linear order because, for
the sake of consistency relations, we are mainly concerned with the behaviour of one long
mode; for such mode the linear approximation is valid by definition. We have neglected a
contribution proportional to 9H2/∇2 in the Poisson equation as this term is much smaller
than unity for the scales of interest, well inside the horizon.1 We have introduced the gauge-
invariant quantity ĉ2

s, the sound speed in the quintessence rest frame [30]. The non-linear
corrections we are indicating as Θ(δ2) in eqs. (3.1)–(3.3) would necessarily have to account
also for corrections to ĉ2

s. Finally, in the ĉ2
s → 0 limit one obtains the starting point for

eq. (2.1), which is derived for δT as defined in the right hand side of eq. (3.3) and where it
has been assumed viQ = vim ≡ vi. Linearly, both the reduced system in eq. (2.1) closed by the

1Note that the same conclusions cannot [34] be drawn, at least at early times, for the similar term in the
continuity eq. (3.2).
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corresponding Poisson’s equation and the full system in eqs. (3.1)–(3.3) in the limit ĉs → 0,
are invariant the under time-dependent translations

τ → τ̃ = τ ; xi → x̃i = xi + ni(τ) ; vim,Q → vim,Q + n′ i

δm,Q → δ̃m,Q = δm,Q ; Φ→ Φ̃ = Φ− xi(Hn′ i + n′′ i) , (3.4)

and this is precisely the (Galilean) symmetry that generates CRs in large scale structure. The
effect of a non-zero ĉs in the full system is intuitively clear: it renders the Euler equation (and
solution) for the two species different already at the linear level. A different large scale limit
for two velocities is a direct violation of the equivalence principle and leads to a modification
of standard CRs. A measurement of a non-zero ĉs is then a direct signature of CRs breaking.
Let us describe more in detail how consistency relations emerge in a general set-up.

3.1 Brief general treatment

One key ingredient for consistency relations to be in place is the existence of a field that
transforms (also) non linearly under a residual diff we shall call “s′′. In the following, up
to and including eq. (3.12), we will provide a qualitative presentation of how consistency
conditions work in our and similar setups. In coordinate space, the generic action of a gauge
transformation “s” on a field “ϕ” is:

δsϕ ≡ i[Qs, ϕ] = (. . .)ϕ︸ ︷︷ ︸
linear

+ (. . .)︸︷︷︸
non-linear

, (3.5)

where Qs is the charge associated with the symmetry s and we have not specified the ex-
pression on the right hand side because it depends on the specific transformation “s”. The
dots preceding ϕ typically stand for a differential operator and the only relevant information
on the non-linear piece is that it is not proportional to powers of ϕ.2 To give an example
other than the transformation in eq. (3.4), the action of a dilaton symmetry on a field whose
transformation has also a non-linear component is [31]:

δdζ = i[Qd, ζ] = −1− x · ∂xζ , (3.6)

where in this case the non-linearly transforming field is a gravitational degree of freedom,
specifically the metric scalar perturbation ζ. Let us now apply this reasoning on the trans-
formation law for the 2-point function made up by two hard modes. From eq. (3.5) it
follows that:

〈[Qs, ϕϕ]〉 ∝ ∂

∂
〈ϕϕ〉+ . . .︸︷︷︸

non-linear

, (3.7)

where we use the symbol ∂
∂ to denote the generic differential operator we inherit from the

linear transformation component of the field, such as the second term on the r.h.s. of eq. (3.6).
We use the proportionality sign between left and right hand side in eq. (3.7) to keep the
discussion general and stress again that, for the purposes of this brief discussion on the
properties of consistency relations, it will not be necessary to specify the details of a particular

2We refer the reader to [35] for a recent interesting application of CRs with the velocity field as soft mode.
The work in [35] relies on the fact that, in our language, the velocity field has both linear and non-linear
transformations.
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“s” transformation. The conclusions we will draw from eq. (3.7)–(3.12) will be fairly general
and only later adapted to the system under study. The unspecified non-linear terms on the
r.h.s. of eq. (3.7) stand for pieces corresponding to diagrams which are not connected in the
standard field theory sense and therefore we omit them in what follows. The proof of this
last statement for a system endowed with the symmetries in eq. (3.4) can be found in [36].
There is another, equivalent, way to express the action of the symmetry via the charge Qs,
it relies on introducing a complete set of mutually orthogonal states [31] (see also [37]):

〈[Qs, ϕϕ]〉 = 2i Im

[
〈Qs

∑
n

(|n〉〈n|)ϕϕ〉

]
. (3.8)

For the sake of simplicity and without loss of generality, let us limit here the number of such
states to two: |ϕ〉 and |σ〉, which we assume to have been already orthogonalized. Whenever
there is an expectation value (such as the one that defines our chief observable, the total
power spectrum) that satisfies conjugate symmetry, linearity and positive-definiteness, one
may define a corresponding scalar product. It follows that orthogonalization procedures,
such as the Gram-Schmidt method, can be applied.

In practice, in this setup |ϕ〉 stands as a placeholder for any of the fields in eq. (3.4),
that is δm,Q, as well as Φ and vm,Qi . As will be clear from eq. (3.10) however, only non-
linearly transforming fields will give rise to non-trivial consistency relations. Indeed, com-
bining eq. (3.7) and (3.8), it follows that

∂

∂
〈ϕϕ〉 ∝ 2i Im

[
〈Qs|ϕ〉〈ϕ|ϕϕ〉+ 〈Qs|σ〉〈σ|σϕ〉

]
. (3.9)

If ϕ and σ transform only linearly under the symmetry, by virtue of the averaging process
one has

〈Qs|ϕ〉 ∝
∂

∂
〈ϕ〉 = 0 =

∂

∂
〈ϕ,ϕ〉 , (3.10)

and no non-trivial consistency relation is active. If instead only e.g. ϕ has a non-linear
transformation component, then it follows that:

〈Qs|ϕ〉 = cnumber(q → 0)⇒ ∂

∂
〈ϕϕ〉 ∝ 〈ϕq→0 ϕϕ〉 , (3.11)

indicating that the CR holds in the simplest form. Finally, if also σ has a non-linear compo-
nent the result is a less standard:

∂

∂
〈ϕϕ〉 ∝ 〈ϕq→0 ϕϕ〉+ cr〈σq→0 ϕϕ〉 , (3.12)

where cr stands for a relative coefficient, unimportant for the present discussion. If both terms
in eq. (3.12) are non-zero one concludes that the squeezed contribution of quantities such as
〈ϕq→0 ϕkϕq−k〉 may not be gauged away. This carries important observational consequences
which are well known e.g. in the context of multi-field inflationary models where CRs breaking
contains information on the mass, the spin, and the coupling of the extra3 particles [38, 39].

3In the inflationary context, “extra” is to be understood with respect to the inflaton field, whilst in our
LSS set-up it refers to any species other than cold dark matter.

– 9 –



J
C
A
P
0
5
(
2
0
1
9
)
0
3
3

3.2 Relevance for dark energy and modified gravity

Let us now apply this line of reasoning to the system in eqs. (3.1)–(3.3). From eq. (3.4)
it is clear that there are several modes that transform non-linearly under the symmetry:
Φ, πm, πQ, the last two being the velocity potentials (defined as ∂i π

m,Q ≡ vm,Qi ) associated
to, respectively, vm and vQ. Furthermore, the two velocities (potentials) have generically
independent solutions. In the most general setup the action of a soft mode is then of the
form in eq. (3.12) and does therefore break standard CRs. We stress that such dynamics is
not at all limited to a quintessence component but applies to e.g. general dark energy and
modified gravity dynamics.

One may ask what happens in a reduced system such as that of eq. (2.1). The latter
obtained, as usual, by imposing on the full system that ĉs → 0 and vm = vQ. The quintessence
component precisely tracks dark matter in this limit. The assumption of a common velocity
for all species is akin to having, intuitively speaking, one and a half degrees of freedom (this
“naive” counting gives two degrees of freedom only if both density and velocity fields are
independent for dark matter and quintessence). The consistency of this assumption has been
demonstrated in earlier literature [43] and further confirmed in [20, 34]. The reduced system
enjoys invariance under eq. (3.4). There is more: only one velocity potential is now in play
and its action as a soft mode is not independent from that of the Newtonian potential as one
may readily verify from the linear eom. The two act in fact as alternative soft “pions” [32]
and therefore deliver a standard consistency relation.

It is instructive at this stage to point out yet another route to non-standard consistency
relations in the case of modified gravity. Modification Einstein’s equation in low density
environments are allowed so long as general relativity (GR) is recovered in high density regions
(e.g. the solar system) where observations are compatible only with very small deviations from
ΛCDM. The transition from order one modification of the laws of gravity to GR can occur by
means of several screening mechanism (see [44, 45] for a review). Screening dynamics puts to
the test one of the requirements in our CRs checklist: adiabaticity. For the standard relation
to be in place, the equation of motion of the (one and only) gauge parameter describing the
residual diff must be the same as that of a long physical mode.

Crucially, screening dynamics entails a solution e.g. for the density contrast field that
changes according to its being in the (un)screened region. It is then impossible to identify a
single time-dependent and spatially independent gauge mode n(τ) that always satisfies the
adiabaticity condition. This immediately leads to modified CRs [46].

It is interesting to point out how clustering quintessence dynamics differs from the
physics of screened systems, such as f(R) theories (the same applies, at least qualitatively,
to Vainshtein screened models). To ease the comparison, we employ the reduced quintessence
model. First of all, we note that screened systems can have order one differences with respect
to the corresponding ΛCDM observables at very large scales, in the linear regime [47]. The
reason is that, as we move towards non-linear scales, screening will restore continuity with
ΛCDM, as demanded by observations. The clustering quintessence system does not have a
screening mechanism in place, it instead departs from the pure dark matter case especially in
the non-linear regime. One can infer such behaviour from eq. (2.7): the time-dependent C(η)
only appears on the r.h.s. of the equation, the non-linear one. As a consequence, in order
to agree with observations, the clustering quintessence dynamics may not have order one
deviations from ΛCDM (these would occur in the non-linear regime), but only percent-level
ones. The different dynamics makes it somewhat harder to employ consistency relations tests
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for screened systems across a vast range of scales. It is nevertheless possible to do so (see
e.g. [46]). We shall return to this topic in upcoming work [48].

4 Clustering of biased tracers

One may ask how the effects of additional dofs propagate all the way to biased tracers
observables. Just as in ΛCDM, here too the effect of short distance physics on long wavelength
dynamics is encoded in an effective stress-energy tensor. There is however also an effective
force: it accounts for the momentum exchange (at short distances) between dark matter
and additional species, mediated by gravity. One can employ the bias models developed
in [16, 19, 41, 42] to derive the results for two or more species. Due to the fact that the
formation time of a collapsed object is approximately of order Hubble, one should account
for the density of a given collapsed object to depend on the underlying history, in other words
on long-wavelength fields evaluated over a length of time going back at least one Hubble time.
This explains the integral over time in the following expression for the halo field:

δh(x, t) '
∫ t

H(t′)

[
cδT (t′)

δT (xfl, t
′)

H(t′)2
+ cδd.e.(t

′) δd.e.(xfl)

+ c∂vc(t
′)
∂iv

i
c(xfl, t

′)

H(t′)
+ c∂vd.e.

(t′)
∂iv

i
d.e.(xfl, t

′)

H(t′)

+ cεc(t
′) εc(xfl, t

′) + cεd.e.(t
′) εd.e.(xfl, t

′) +c∂2δT (t′)
∂2
xfl

k2
M

δT (xfl, t
′)

H(t′)2
+ . . .

]
, (4.1)

where the dependence on the density fields and corresponding bias coefficients cδT , cδd.e. as
well as the dependence on the velocity fields and corresponding parameters c∂vc , c∂vd.e.

are
outlined. The stochastic component regulated by cεc , cεd.e. is introduced to account for the
difference between the average dependence of, for example, the galactic field on a given
realization of the long wavelength dark matter fields, and its response in a specific realization.
One ought to also include in this framework the presence of a non-trivial length scale enclosing
the radius of influence in the halo formation. This scale will be approximately of the same
order as the range covered by the matter that ended up in a given collapsed object. The
wavenumber corresponding to this scale is conventionally called kM and it accounts for the
last term in the above formula. For a detailed derivation of eq. (4.1) we refer the reader
to the work in [16] for the single species case and [19] for the two species (dark matter +
baryons) generalization. The definition of the flow variable is:

xfl(x, τ, τ ′) = x−
∫ τ

τ ′
dτ ′′v(τ ′′,xfl(x, τ, τ ′)) . (4.2)

Note also that, in principle, the definition of the “flow” variable, xfl, accounting for the halo
formation, can be different for different species [19].

The above equation resembles the DM+baryons result, although there exists one impor-
tant difference. The deviation from the EdS-like approximation (i.e. assuming that kernels
in eq. (2.3) are time-independent) introduces new operators in the bias expansion above. In-
deed, upon using eq. (4.1), one can show that the time dependence of the kernels in eq. (2.3),
encoded in terms such as ε(1), ε(2), ν3, introduces (after formally performing the time integra-

tion) an independent bias coefficient (see [19]). At second order in the field δ
(2)
h , this is not
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expected to yield any new independent bias operators due to degeneracies in the operators

momentum dependence. For δ
(3)
h , on the other hand, we expect one new independent opera-

tor to arise due to the effects of time evolution. The same kind of reasoning holds already in
ΛCDM cosmology (if one does not assume the EdS-like approximation) but there the effects
are known to be small. Crucially, the presence of additional dofs, such as dark energy, will
magnify them.

5 Conclusions

Given the vast amount of data that is being currently gathered by several astronomical
surveys of the galaxy distribution, it is both important and timely to study how the additional
dynamics typical of beyond-ΛCDM models may affect large scale structure observables. We
have provided one such study by focussing on the dynamics of a dark matter+clustering
quintessence system. In particular, we detailed on the properties of the power spectrum and
suggested a parallel with the behaviour of the non-equal time pure dark matter correlators.
The non-trivial time dependence carried by the parameter C in eq. (2.1) is what enables such
comparisons.

We then studied so called consistency relations for a more general setup than the reduced
dark matter+quintessence system by restoring a non zero sound speed for the latter and
clarified under what conditions consistency relations are modified. Dark energy and modified
gravity models exhibit the characteristic features that prevent one from being able to “gauge
away” the squeezed contribution of observables such as the bispectrum. We show that, as
one probes higher orders in perturbation theory, this conclusion holds true also at the level
of biased tracers.

Whilst the dynamics of the reduced system has been solved analytically to all orders4

in perturbation theory, a detailed analysis of the observables from the full system requires
considerably more numerical work, something that we plan to address in a forthcoming
study [48]. Another necessary next step is to investigate possible degeneracies between the
effects on observables due to extra dynamical degrees of freedom and those sourced by pri-
mordial non-Gaussian initial conditions, going beyond local type non-Gaussianity.
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A Kernels derivation for the reduced system

For a thorough derivation of the results reported here we refer the reader to [21]. We start
by reporting the typical ansatz for the total density contrast solution:

δk(η) =

∞∑
n=1

Fn(q1 . . .qn, η)Dn
+(η)δin

q1
. . . δin

qn
, (A.1)

4The caveat here being the addition of counterterms from the effective field theory treatment.
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where δin
q represents the initial value of the total density contrast. One should stress that an

explicit time dependence is directly present in the kernels Fn. The definition for the basic
kernels α, β is as follows:

α(q1,q2) = 1 + (q1 · q2)/q2
1 , β(q1,q2) = (q1 + q2)2(q1 · q2)/2q2

1q
2
2 , (A.2)

and the corresponding symmetrized and shortened expression for α kernels is:

αs12,3(q1,q2,q3) =
1

2

[
α(q1 + q2,q3) + α(q3,q1 + q2)

]
. (A.3)

The time-dependent kernels µn, νv are angle-averaged quantities whose dynamics is regulated
by the equations [4, 5]:

ν̇n + n νn − µn =
1

C

n−1∑
m=1

(
n

m

)
µm νn−m , (A.4)

µ̇n + (n− 1)µn −
f−
f2

+

(µn − νn) =
1

3C

n−1∑
m=1

(
n

m

)
µm µn−m ,

with initial conditions ν1 = µ1 = 1 and where C is the time-dependent quantity defined below
eq. (2.1). Employing and generalizing the same procedure as in [4, 5], in [21] the following
relations were derived for λi and κi

λ̇i + 3λi − κi =
1

C

(
ν2 c

ν2
λi

+ µ2 c
µ2
λi

)
,

κ̇i + 2κi −
f−
f2

+

(κi − λi) =
1

C
µ2 c

µ2
κi , (A.5)

where the index i can take values {1, 2}. These equations, similarly to those for µn, νn, can
be efficiently integrated numerically. Continuity with well-known results in Einstein-de Sitter
space can be obtained by demanding in eq. (A.5) above:

cν2
λ1

= cµ2
λ1

= cν2
λ2

= 2cµ2
λ2

= 1 , cµ2
κ1

= cµ2
κ2

= 0 . (A.6)

The momentum dependence for the third order kernels is given by:

F ε3 = − 1

12

[
(αs12,3 − 3β12,3)(3β12 − αs12) + 2 perm.cross

]
,

Fν3
3 =

1

8

[(
αs1,23(αs23 − 3β23) + β1,23(αs23 + β23)

)
+ 2 perm.cross

]
,

Fν2
3 =

1

4

[
(αs12,3 − β12,3)(3β12 − αs12) + 2 perm.cross

]
,

Fλ1
3 =

1

16
[(α12,3(3αs12 + 7β12) + α1,23(−9αs23 + 19β23)− 2β1,23(αs23 + 9β23)) + 2 perm.cross] ,

Fλ2
3 =

1

4
[(α1,23(3αs23 − 5β23)− α12,3(αs12 + β12)− 2β1,23(αs23 − 3β23)) + 2 perm.cross] ,

(A.7)

where by cross permutations in, for example, the quantity α1...m,m+1...n it is meant those
permutations that exchange momenta in the (1 . . .m) set with those in the (m+ 1 . . . n) set.
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