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1 introduction

Is GR unique? According to Lovelock theorem [1, 2], the answer is yes if we assume that (1)
the space time is 3+1 dimensional; (2) metricity; (3) space-time diffeomorphism invariance;
(4) at most second order derivative in the equation of motion. In terms of the language of
Hamiltonian analysis, the local gauge symmetry of GR, i.e. the space-time diffeomorphism
invariance gives rise to 8 constraints, including 4 primary ones and 4 secondary ones, which
are all first class. Therefore, a graviton in GR has only 2 polarizations. It is very intrigu-
ing to ask whether GR is still the unique effective description for massless spin-2 particles
if we demand all constraints in the theory to be first class in the first place. Or in other
words, is there any theory that is as good as GR in the sense that all of constraints are first
class, and therefore the structure of the theory at low energy scale is stable against quantum
corrections? This problem was formulated and investigated in ref. [3], where a new class of
minimally modified gravity theories was discovered. One of the most interesting examples
is the so-called square root gravity, of which Hamiltonian and Lagrangian have very percu-
liar square root structures. The theory is free from cosmological singularity if matter sector
couples to gravity in the minimal manner. However, as pointed out in ref. [4], the minimal
coupling between gravity and matter renders the algebra unclosed and the theory becomes
inconsistent. This inconsistency arises from the discrepancy between the local gauge sym-
metries of gravity and matter. The symmetry in matter sector is 4 dimensional space-time
diffeomorphism invariance, if matter minimally couples to gravity. However, temporal diffeo-
morphism invariance is broken in the gravity sector. Instead, gravity sector has a different
type of local gauge symmetry, which associated to the first class Hamiltonian constraint in
the vacuum. This symmetry is explicitly broken if matter couples to gravity in the minimal
manner.

On the other hand, the graviton scattering amplitude computation exhibits a pertur-
bative equivalence to GR which holds up to 5 point function level for all possible helicity
configurations in a Minkowskian vaccum [4]. Nevertheless, it is still premature to claim an
equivalence between the square root gravity and GR, given that the self-consistent matter
coupling in the square root gravity is still missing. Even when the theory is completely
equivalent to GR in the vacuum, the non-trivial and non-minimal coupling between matter
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field and gravity still yields non-standard predictions that differ from GR [5, 6]. This point
is actually not new. For instance, given Einstein-Hilbert action, we still consider the theory
as a modified gravity theory if matter couples to gravity in the Brans-Dicke manner. In our
current work, for the first time, we find the self-consistent matter coupling in the square
root gravity. Interestingly the cosmological solution exhibits the singularity freeness at high
energy limit. Therefore, the theory gives different predictions that differ from GR even at
the background level of Einstein equation. It is straightforward to generalise our analysis to
a broader class of theories.

This paper is organised as follows: in the section 2, starting from the simplest case of
one single scalar field, we derive a self-consistent way that a single scalar field couples to the
square root gravity. We will also briefly discuss its cosmology as well as its generalization in
this section. In the section 3 we discuss how to couple multi matter fields to the square root
gravity. We conclude in the section 4.

2 One single scalar field

2.1 Hamilontian analysis

We find it is more convenient to start from the Hamiltonian. In this section, we will firstly
introduce one single scalar field φ to represent the matter sector. Generalising to multi-
ple matter components is straightforward and will be discussed later. We adopt the ADM
decomposition of the 4-dimentional space-time,

ds2 = −N2dt2 + hij
(

dxi +N idt
) (

dxj +N jdt
)

. (2.1)

In terms of Hamiltonian language the gravitational field has 10 canonical pairs,
(

hij , π
ij
)

,
(N, πN ) and

(

N i, πi
)

, where πij , πN , πi are the conjugate momenta of hij , N and N i

respectively. The matter sector contains one canonical pair (φ, πφ). The total Hamiltonian
can be written as

H =

∫

d3x
[

NC +N iHi + λNπN + λiπi
]

, (2.2)

where C ≈ 0 is the Hamiltonian constraint, it can be splitted into the gravity part, which
contains a perculiar square root structure [3], and the matter part which is denoted as a

generic function U of arguments
π2

φ

h ,∇iφ∇iφ, and φ,

C ≡ −ξg
√
hB1/2

[

CR+D − 4

Ah

(

πijπij −
1

2
π2

)]1/2

+
√
h U

(

π2
φ

h
,∇iφ∇iφ, φ

)

, (2.3)

where ξg = ±1, R is 3-d Ricci scalar, πφ is the conjugate momentum of scalar field φ. The
explicit form of U will be decided by the consistency condition of the theory. The coefficients
A,B,C and D can be some functions of time, and their time dependences have to satisfy
a consistency condition that we will discuss later. We demand that BD > 0 so that the
Hamiltonian is real at the ground state of gravity. Hi ≈ 0 are three momentum constraints,

Hi ≡ −2
√
h∇j

(

πj
i√
h

)

+ πφ∇iφ , (2.4)

they generate 3-d diffeomorphism, and πN ≈ πi ≈ 0 are four primary constraints.
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With total Hamiltonian written in the form of eq. (2.2), it is obvious that the constraints
πN ≈ 0, and πi ≈ 0 are first class. While momentum constraint Hi ≈ 0 is also first class
because of the spatial diffeomorphism invariance of the theory [7, 8]. The self-consistency of
the theory requires that C ≈ 0 must be first class as well, otherwise dimension of the phase
space would be odd. Let us count the degrees as follows: at each point there are 11 canonical
pairs (including the one from matter sector) and thus 22 degrees in the phase space. The
Hamiltonian constraint C, if it is second class, eliminates one degree in the phase space. On
the other hand, the 7 first class constraints mentioned above eliminate 14 degrees in the phase
space. At the end we have 22 − 1 − 14 = 7 degrees in the phase space. The odd number of
dimension in the phase space implies that the theory is inconsistent. Therefore Hamiltonian
constraint must be first class. With C ≈ 0 being first class we only need that

{C[α], C[β]} ≈ 0, (2.5)

where we have introduced the notation O[α] ≡
∫

d3xαO for convenience. The direct compu-
tation of Poisson bracket eq. (2.5) gives us the following result,

{C[α], C[β]} ≈
∫

(

β∇iα− α∇iβ
)

·
[

2B2C

A · U2

√
h∇j

(

πj
i√
h

)

− ∂U
∂Q

∂U
∂X

πφ∇iφ

]

, (2.6)

where we have defined the following two variables to avoid clumsy notations,

Q ≡
π2
φ

2h
, X ≡ 1

2
∇iφ∇iφ . (2.7)

The Poisson bracket eq. (2.6) vanishes weakly if

B2C

A · U2
=

∂U
∂Q

∂U
∂X

. (2.8)

After rearranging the variables, the above equation can be rewritten as,

∂Ũ
∂Q

∂Ũ
∂X

= 1 , (2.9)

where Ũ ≡ 1
2

√

A
B2C

U2 and we have assumed that A
C > 0. If A

C < 0 a gradient instability

appears even at low energy scale and therefore we are not interested in this case. The eq. (2.9)
has the following linear solution,

Ũ =
1

2
Λ + ζQ+

1

ζ
X , (2.10)

where Λ, and ζ are generic functions of scalar field φ and time t, and the factor 1/2 in front
of Λ is introduced for the later convenience. Therefore we have

U = ξm

(

B2C

A

)1/4
√

ζ
π2
φ

h
+

1

ζ
∇iφ∇iφ+ Λ , (2.11)

where ξm ≡ ±1, i.e. there are positive and negative branches of solution. Interestingly, matter
sector contains a similar square root structure. The Hamiltonian constraint eq. (2.3) requires
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that the Hamiltonian of gravity part and matter part summed up to zero. It implies that
ξg = ξm and therefore we will omit the subscripts of them. We also need to take into account
the possible explicit time dependences of the parameters in the theory. Firstly, please notice
that both of gravity Hamiltonian and matter Hamiltonian contain

√
B and thus the time

dependence of
√
B, if any, can be absorbed into a redefinition of the lapse N . Therefore, we

will only consider B = constant throughout this letter. The explicit time dependences of the
rest of parameters in the Hamiltonian acquire the following consistency condition,

dC
dt

=
∂C
∂t

+ {C, H} ≈ ∂C
∂t

≈ 0 . (2.12)

This condition gives us

∂ζ

∂t
= 0,

∂(AC)

∂t
= 0,

∂Λ

∂t
=

∂
(

D
√

A/C
)

∂t
. (2.13)

No tertiary constraint is generated, and all 8 constraints, including Hamiltonian constraint, in
the theory are first class, provided the coefficients in the theory satisfy the condition eq. (2.13).
On the other hand, we can also introduce the scalar field φ dependence to coefficients A, C
and D (the φ dependence of B can be absorbed into a redefinition of the lapse N). The
necessary condition of Hamilontian constraint being first class, i.e. eq. (2.6), requires that
∂(AC)/∂φ = 0, while D can be an arbitrary function of scalar field φ.

These 8 first class constraints eliminate 16 degrees and at the end we have 22− 16 = 6
degrees in the phase space, or in other word, 3 dynamical degrees of freedom in physical
space-time. One of them is the scalar degree from matter sector, and the rest of 2 degrees
are 2 polarisations of a massless graviton. We conclude that there are only 2 local degrees of
freedom in the gravity sector. As we have known, first class constraints correspond to local
gauge symmetries in a theory. Even though sometimes these symmetries are not manifest
and transparent. The structure of the theory at low energies is expected to be protected by
these symmetries and thus stable against quantum corrections.

When B > 0 and D > 0, we obtain the Lagrangian for our gravity and matter by means
of a Legendre transformation,

L =
√
hNξ

{

M4

√

(

1+
c1
M2

K
)(

1+
c2
M2

R
)

−
√

[√

c2
c1

M4− ζ

N2

(

φ̇−N i∂iφ
)2
](

1

ζ
∇iφ∇iφ+Λ

)

}

.

(2.14)

where M ≡ (BD)1/8 , c1 ≡ AM2

B , c2 ≡ M2C
D , and K ≡ KijK

ij − K2. We have to bear in
mind that coefficients c1, c2, M and Λ can be time dependent, ζ and Λ can be some generic
functions of scalar field φ.

Let us split Λ into bare cosmological constant part and matter part, i.e. Λ = Λ0+2V (φ),
where V (φ) = 0 at the ground state of matter sector and a factor of 2 is introduced so that
V (φ) plays the role of potential of scalar field in the weak field limit. In the weak field limit,
we expand the action as

S =

∫

d4x
√
hNξ






M4 +

M2

2

(

c1K
ijKij − c1K

2 + c2R
)

−M2Λ
1/2
0

(

c2
c1

)1/4

+
ζΛ

1/2
0

(

φ̇−N i∂iφ
)2

2N2 (c2/c1)
1/4M2

− M2 (c2/c1)
1/4

2ζΛ
1/2
0

∇iφ∇iφ− M2(c2/c1)
1/4

√
Λ0

V (φ) + . . .






,

(2.15)
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where ellipsis denotes the higher order terms. At low energy scale, we recognize the effective
Planck mass M2

p = ξc1M
2, the sound speed of gravitational waves c2g = c2

c1
, and the effective

cosmological constant Λeff = M4 −M2Λ
1/2
0 (c2/c1)

1/4. We demand that ξc1 > 0 to ensure the
ghost freeness at low energy scale. The sound speed of matter sector reads c2s = M4cg/Λ0ζ

2,
and ξζ > 0 is required as the ghost free condition in the matter sector. The difference
between sound speeds of the gravitational waves and the scalar field is one of the evidences
that our theory is different from GR. At low energy limit, GR and Lorentz invariance in the
matter sector are recovered if we set

c2 = c1, ξζ = 1, M4 = Λ0. (2.16)

The above parameter choice also cancels out the cosmological constant term in the action,
and therefore the space-time is Minkowskian at the ground state of matter sector. The
deviation from GR appears only at high energy scale characterised by M .

2.2 Cosmology

Now let us study the cosmology of the theory. We take the FLRW ansatz,

ds2 = −N2dt2 + a2dx2 , (2.17)

adopt the parameter choice in eq. (2.16), and assume that A,B,C,D and c1 are all positive
and independent of time. At background level, the Einstein equations read

3c1M
2H2 =

1
2
φ̇2 + V (φ)

1 + 2V (φ)/M4
, (2.18)

2c1M
2Ḣ =

−φ̇2 + φ̇4/M4

1 + 2V (φ)/M4
. (2.19)

It is easy to check that eq. (2.18) is consistent with eq. (2.19) and thus Bianchi identity holds,
provided that scalar field φ satisfies the equation of motion,

(

1 +
2V

M4

)

φ̈+ 3H

(

1 +
2V

M4

)

(

1− φ̇2

M4

)

φ̇+

(

1− φ̇2

M4

)

∂V

∂φ
= 0. (2.20)

A de-sitter attractor is spotted if we trace our universe back in time, where

φ̇2 → M4, φ̈ → 0, Ḣ → 0, H2 → M2/6c1, (2.21)

as t → −∞. The Hubble constant approaches to a constant value, instead of infinity in the
limit V (φ) → ∞ in the far past. Therefore, the Hawking-Penrose singularity theorem [9]
does not apply here and our theory is free from the cosmological singularity. The cosmic
singularity freeness is another evidence that our theory differs from Einstein gravity with
minimally coupled matter.1

It is also important to examine the properties of cosmological perturbations. Firstly
let’s perturb our metric elements as follows,

N = 1 + α, Ni = ∂iβ, hij = a2e2ζ (δij + γij) , (2.22)

1If matter couples to gravity in a non-minimal Brans-Dickel manner, we can always recast the theory into

Einstein gravity with minimally coupled matter content by a conformal transformation.
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where α, β and ζ are scalar perturbation and γij is the tensor mode. The residual symmetries
allow us to omit the fluctuation of matter, as well as the scalar perturbations arising from
the off-diagonal part of 3-d induced metric hij . Due to the SO(3) invariance of FLRW space-
time, scalar modes and tensor modes decouple at linear perturbation level. After integrating
out the non-dynamical degrees the quadratic action for scalar perturbation reads

Sζ =

∫

a3
φ̇2

2H2

[

1

Γ
· ζ̇2 − Γ

k2

a2
ζ2
]

(2.23)

where Γ ≡
√

1− 6c1H2/M2. Noted that Γ → 0 when the space-time approaches to the
de-sitter attractor in the far past. The coefficient of kinetic term of scalar mode diverges in
this limit, which implies a weak coupling at high energy limit. This is in contrast to Einstein
gravity whose couplings are strong at UV side. On the other hand, sound speed of scalar
modes approaches to zero too. Similar properties can be found in tensor modes too. The
quadratic action of tensor modes reads

ST =
c1M

2

8

∫

a3
[

1

Γ
γ̇ij γ̇ij − Γ

k2

a2
γijγij

]

. (2.24)

The coefficient of the kinetic term of gravitational waves diverges in the same way as scalar
modes. All higher order couplings are highly suppressed by Γ which approaches to zero at
high energy density limit and then we end up with a free theory.

2.3 Generalization to the whole class of MMG

our analysis can be extended to the whole class of minimally modified gravity theories, whose
Hamiltonian can be formally written as

C =
√
hF (R+ λΠ/h) +

√
hU (Q,X, φ) , (2.25)

where Π ≡ πijπij− 1
2
π2, Q and X are defined in eq. (2.7). Let us take F (x) ∼ (x+constant)n

as an example. The consistency condition eq. (2.6) acquires that the Hamiltonian of matter
sector must take the form

U ∼
(

Λ + ζQ+
1

ζ
X

)n

. (2.26)

We recover the results of square root gravity if n = 1/2, and we recover GR if n = 1.

3 Multi matter fields

If matter contains multiple components, and then we introduce multi fields φI to represent
each of components. By means of the same approach in the previous section, the condition 2.5
requires that the matter part of Hamiltonian should be rewritten as

U = ξ

(

B2C

A

)1/4
√

√

√

√

∑

I

(

ζI
π2
I

h
+

1

ζI
∇iφI∇iφI

)

+ Λ. (3.1)

Translating to Lagrangian,

Lm = −ξ
√
hN

[

√

c2
c1
M4 −

∑

I

ζI
N2

(

φ̇I −N i∂iφI

)2

]1/2

·
(

∑

I

1

ζI
∇iφI∇iφI + Λ

)1/2

.

(3.2)
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A key feature to note in the above Hamiltonian and Lagrangian is the novel coupling among
different components of the matter sector. The non-trivial interaction among different com-
ponents of the matter sector is one of the general features of the theories in this class.

We can also include matter fields with higher spin into the square root of eq. (3.1), fol-
lowing the same summation rule. For instance, let’s investigate the Hamiltonian of a scalar
QED couples to the square root gravity in the same manner as scalar fields do. The Hamil-
tonian of a scalar QED minimally couples to Einstein gravity is derived in the appendix A.
We can add a scalar QED into the total Hamiltonian eq. (2.3) and couple it to square root
gravity in the same manner,

U = ξ
√
h

(

B2C

A

)1/4
[

πi
Aπ

j
Ahij
h

+
1

2
FijF

ij+
π2
1

h
+
π2
2

h
+2eAi

(

φ1∇iφ2−φ2∇iφ1

)

+∇iφ1∇iφ1

+∇iφ2∇iφ2+
(

m2+e2AiA
i
) (

φ2
1+φ2

2

)

+
π2
χ

h
+∇iχ∇iχ+V (χ)+Λ

]1/2

,

(3.3)

where the definition of each of notations can be found in the appendix A. As a toy model,
we have introduced an additional scalar field χ to represent the rest of part of the world.
There are 10 constraints in the theory, 8 of them are of gravity part and 2 of them are of
QED part. They are

C ≈ 0, Hi ≈ 0, πN ≈ 0, πi ≈ 0,

π0
A ≈ 0, G ≡ −∂iπ

i
A + e (π1φ2 − π2φ1) ≈ 0, (3.4)

where π0
A is the conjugate momentum of A0, and G ≈ 0 is the Gauss law. By a straight

forward computation we find that Poisson brackets of any two constraints in the theory are
vanishing. Therefore, all constraints are first class. The U(1) gauge symmetry is preserved
because the 2 constraints in the gauge field sector are first class. We expect that we can self
consistently couple the whole standard model of particle physics to our square root gravity
in this manner, without spoiling the gauge symmetries of standard model.

4 Conclusion and discussion

The self-consistent matter coupling of a broad class of minimally modified gravity theories has
been found. The existence of this broad class of theories, as well as the self-consistent matter
coupling discovered in our current work, may have challenged the distinctive role of GR as the
unique non-linear theory for massless spin-2 particles. However, the perturbative equivalence
between this class of theories and GR (up to 5 point function level in a Minkowskian vacuum)
was found in ref. [4]. It suggests that this class of theories is probably just GR in a different
guise. If this is indeed the case, our current work can be understood as some novel type of
matter coupling in GR, which was overlooked in the past. We can categorize our theories
into type-I minimally modified gravity theories [6]: the gravity theories are equivalent to GR
in the vacuum, but non-trivial matter coupling gives predictions differ from that of GR. The
Brans-Dicke theory, as well as another example that matter couples to gravity via a canonical
transformation [5, 6], are two examples of this kind.

The cosmology of the square root gravity exhibits an appealing property of cosmological
singularity freeness. However, the singularity of spherical static solution still exists. One of
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the possible way to kill this singularity is to introduce a φ dependence ofD in the Hamiltonian
eq. (2.3). Noted thatD has dimension [mass]4, therefore we can choose a function dependence
of D on φ so that it relates to the local energy density of matter at high density limit. The
effective Newtonian constant is proportional to D−1/2 and thus gravity becomes weaker at
short distances and high density regions. In a model of collapsing of an overdense region, the
collapsing comes to a halt after the local matter density reaches a critical value. This may
offer us some new thoughts to attack the problem of quantum gravity.
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A Hamiltonian analysis of a scalar QED minimally couples to Einstein

gravity

The action of a scalar QED minimally couples to Einstein gravity,

S =

∫

d4x
√−g

[

M2
p

2
R− 1

4
FµνF

µν − 1

2
(DµΦ)

†DµΦ− 1

2
m2Φ†Φ

]

, (A.1)

where Dµ ≡ ∂µ − ieAµ and Φ is a complex scalar Φ ≡ φ1 + iφ2. The conjugate momenta of
gauge field and scalars read

π0
A ≡ ∂L

∂Ȧ0

≈ 0,

πi
A ≡ ∂L

∂Ȧi

=

√
h

N

(

F0j −NkFkj

)

hij ,

π1 ≡ ∂L
∂φ̇1

=

√
h

N

[(

φ̇1 −N i∂iφ1

)

+ eφ2

(

N i∂Ai −A0

)

]

,

π2 ≡ ∂L
∂φ̇2

=

√
h

N

[(

φ̇2 −N i∂iφ2

)

− eφ1

(

N i∂Ai −A0

)

]

, (A.2)

where we have adopted ADM formalism. The Hamiltonian of scalar QED thus is calculated as

HQED =

∫

d3x
√
hN

[

πi
Aπ

j
Ahij
2h

+
1

4
FijF

ij+
π2
1

2h
+
π2
2

2h
+eAi

(

φ1∇iφ2−φ∇iφ1

)

+
1

2
∇iφ1∇iφ1

+
1

2
∇iφ2∇iφ2+

1

2

(

m2+e2AiA
i
) (

φ2
1+φ2

2

)

]

+N i
[

π1∂iφ1+π2∂iφ2−eAi (π1φ2−π2φ1)+πj
AFij

]

+A0

(

eπ1φ2−eπ2φ1−∂iπ
i
A

)

. (A.3)
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Let’s collect all of ingredients calculated above, and write down the total Hamiltonian,

Htot =

∫

d3x
[

NC +N iHi + λNπN + λiπi + λAπ
0
A +A0G

]

(A.4)

where G ≡ −∂iπ
i
A + e (π1φ2 − π2φ1) is the Gauss law (G stands for Gauss), C and Hi are

Hamiltonian constraint and momentum constraints,

C ≡
√
h

[

2

h

(

πijπij−
1

2
π2

)

−1

2
R+

πi
Aπ

j
Ahij
2h

+
1

4
FijF

ij+
π2
1

2h
+
π2
2

2h
+
1

2
∇iφ1∇iφ1+

1

2
∇iφ2∇iφ2

+eAi

(

φ1∇iφ2−φ2∇iφ1

)

+
1

2

(

m2+e2AiA
i
) (

φ2
1+φ2

2

)

]

, (A.5)

Hi = −2
√
h∇j

(

πj
i√
h

)

+π1∂iφ1+π2∂iφ2+πj
AFij−eAi (π1φ2−π2φ1) . (A.6)

The momentum constraint eq. (A.6) does not generate spatial diffeomorphism. The
spatial diffeomorphism generator must be the combination

H̃i ≡ Hi + G ·Ai

≈ −2
√
h∇j

(

πj
i√
h

)

+ π1∂iφ1 + π2∂iφ2 + πi
AFij −Ai∂jπ

j
A , (A.7)

We can check that it does generate the spatial diffeomorphism. For instance,

{Ai, ξjH̃j} ≈ LξAi = ξj∂jAi +Aj∂iξ
j . (A.8)

We have a whole set of constraints

ΦA =
(

C, H̃i, πN , πi, π0
A, G

)

, (A.9)

where H̃i ≈ πN ≈ πi ≈ π0
A ≈ 0 are all obviously first class. We just need to check the Poisson

brackets of the rest of two constraints C ≈ 0 and G ≈ 0, and we have

{G[α], C[β]} ≈ 0, {G[α], C[β]} ≈ 0 , {C[α], C[β]} ≈ 0 . (A.10)

Therefore, all constraints in the theory are first class, as we expect of course!
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